

Design of a Stochastic Cooling System for EDM Experiments at COSY CERN EDM Kick-Off Meeting

March 14th 2017 | Bernd Breitkreutz

Motivation

- Requirements for EDM experiments at COSY
 - Small momentum spread for high spin coherence time
 - Small vertical emittance to reduce intrinsic depolarization
 - Small horizontal emittance (betatron coupling)
- Pre-Cooling is done with 100kV e-Cooler
- Emittance blow-up by intra-beam scattering and residual gas scattering
 - Cooling during experiments would be desirable
- Solenoids of e-cooler may not perfectly be compensated, and therefore can influence the spin on a long term behavior
- Existing stochastic cooling system not sensitive at low particle velocities

Development of a dedicated stochastic cooling system for EDM experiments

Cooling of Polarized Beams: Proof of principle

- Is stochastic cooling a source of depolarization?
- Influence of stochastic cooling on beam polarization was investigated at COSY in 2013
 - 1965 MeV/c protons, N=3·108
 - Vertical cooling, to apply horizontal magnetic fields
 - Within 30 minutes no polarization loss has been observed
- It was shown that Stochastic Cooling of polarized beams is possible at COSY

Pick-up and Kicker for HESR

- Ring-slot structures newly developed for HESR
- Currently installed at COSY
- 2-4 GHz cooling band
- Advantages

High coupling impedance (9 ohms per ring)

Simultaneous 3D operation

Static aperture

Pick-up and Kicker for HESR

Design by L. Torndahl (CERN), R. Stassen (FZJ)

Single slot-ring with 8 electrodes (90mm aperture)

Combiner board (16x1) for one structure

- 1. Assembly of 16 rings
- 2. Full structure with 16 rings
- 3. Stack of 2 structures

System considerations

- Bad mixing above 700 MHz
- PU/KI performance is insufficient above 1GHz
- → Frequency Band: 350 700 MHz

Pick-up and Kicker design for EDM experiments

- Based on HESR ring-slot design
- 90 mm aperture
- Frequency tuning: slot width increased from 13mm to 150mm
- Mechanical stiffness: thicker walls, supporting features
- No ferrites needed ($f_{c,TE11} = 1.95GHz$)
- Only 4 electrodes per ring instead of 8
- First test rings are currently under construction

HESR ring-slot coupler

New ring-slot coupler design

Kicker Performance

- Longitudinal and transverse kicker shunt impedance have been simulated with CST Microwave **Studio**
- The sensitivity of the EDM kicker is comparable to the HESR kicker.

System Performance (Simulation results)

- System simulation
 - Cooling of all three planes simultaneously
 - Intra-beam scattering is considered
- Anticipated Equilibrium states:
 - 6-10⁻⁵ rms momentum spread
 - 0.35 mm mrad horizontal rms emittance
 - 0.2 mm mrad vertical rms emittance
- After switching off cooling: beam blow-up due to intra-beam scattering
- Microwave power less than 100 mW
 - Off-the-shelf power amplifiers perfectly good

Dotted curves: cooling is not switched off

Summary

- A stochastic cooling system for polarized low energy beams at COSY is under development
- Experiments showed that beam depolarization by the system is not to be expected
- a satisfying performance is anticipated
- System of manageable cost
 - Standard power amplifiers sufficient
 - Structures of comparatively low complexity