Design of a Stochastic Cooling System for EDM Experiments at COSY
CERN EDM Kick-Off Meeting

March 14th 2017 | Bernd Breitkreutz
Motivation

• Requirements for EDM experiments at COSY
 • Small momentum spread for high spin coherence time
 • Small vertical emittance to reduce intrinsic depolarization
 • Small horizontal emittance (betatron coupling)
• Pre-Cooling is done with 100kV e-Cooler
• Emittance blow-up by intra-beam scattering and residual gas scattering
 • Cooling during experiments would be desirable
• Solenoids of e-cooler may not perfectly be compensated, and therefore can influence the spin on a long term behavior
• Existing stochastic cooling system not sensitive at low particle velocities

Development of a dedicated stochastic cooling system for EDM experiments
Cooling of Polarized Beams: Proof of principle

- Is stochastic cooling a source of depolarization?
- Influence of stochastic cooling on beam polarization was investigated at COSY in 2013
 - 1965 MeV/c protons, \(N=3 \cdot 10^8 \)
 - Vertical cooling, to apply horizontal magnetic fields
 - *Within 30 minutes no polarization loss has been observed*
- It was shown that Stochastic Cooling of polarized beams is possible at COSY

\[P = 0.753 \pm 0.006 \]
\[P = 0.750 \pm 0.005 \]
Pick-up and Kicker for HESR

- Ring-slot structures newly developed for HESR
- Currently installed at COSY
- 2-4 GHz cooling band
- Advantages
 - High coupling impedance (9 ohms per ring)
 - Simultaneous 3D operation
 - Static aperture
Pick-up and Kicker for HESR

Design by L. Torndahl (CERN), R. Stassen (FZJ)

Single slot-ring with 8 electrodes
(90mm aperture)

Combiner board (16x1) for one structure

1. Assembly of 16 rings
2. Full structure with 16 rings
3. Stack of 2 structures
System considerations

Related parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>184 m</td>
</tr>
<tr>
<td>Ions</td>
<td>d+</td>
</tr>
<tr>
<td>Intensity</td>
<td>10^9</td>
</tr>
<tr>
<td>Kin. energy</td>
<td>118 MeV/u</td>
</tr>
<tr>
<td>β</td>
<td>0.46</td>
</tr>
<tr>
<td>δ_{rms}</td>
<td>$2 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>η</td>
<td>0.6</td>
</tr>
</tbody>
</table>

New design required for pick-ups and kickers!

- Bad mixing above 700 MHz
- PU/KI performance is insufficient above 1GHz

→ **Frequency Band: 350 – 700 MHz**
Pick-up and Kicker design for EDM experiments

- Based on HESR ring-slot design
- 90 mm aperture
- Frequency tuning: slot width increased from 13mm to 150mm
- Mechanical stiffness: thicker walls, supporting features
- No ferrites needed \((f_{c,TE11} = 1.95\text{GHz})\)
- Only 4 electrodes per ring instead of 8
- First test rings are currently under construction
Kicker Performance

- Longitudinal and transverse kicker shunt impedance have been simulated with CST Microwave Studio.
- The sensitivity of the EDM kicker is comparable to the HESR kicker.

![Electric field at 600 MHz](image)

![Graph showing longitudinal and transverse impedance](image)
System Performance (Simulation results)

- **System simulation**
 - Cooling of all three planes simultaneously
 - Intra-beam scattering is considered

- **Anticipated Equilibrium states:**
 - $6 \cdot 10^{-5}$ rms momentum spread
 - 0.35 mm mrad horizontal rms emittance
 - 0.2 mm mrad vertical rms emittance

- **After switching off cooling:** beam blow-up due to intra-beam scattering

- **Microwave power less than 100 mW**
 - Off-the-shelf power amplifiers perfectly good

Dotted curves: cooling is not switched off
Summary

• A stochastic cooling system for polarized low energy beams at COSY is under development
• Experiments showed that beam depolarization by the system is not to be expected
• a satisfying performance is anticipated
• System of manageable cost
 • Standard power amplifiers sufficient
 • Structures of comparatively low complexity