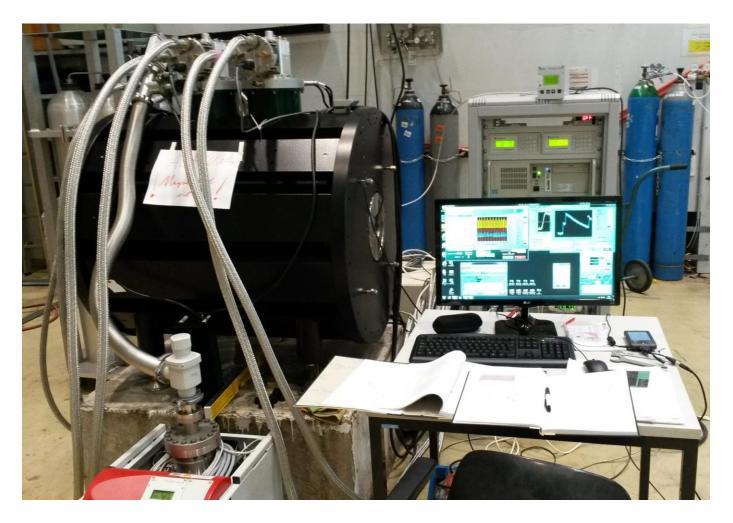

Commissioning of the Siberian Snake in COSY

Commissioning team: Ralf Gebel, Fabian Hinder, Andreas Lehrach, Bernd Lorentz, Dieter Prasuhn, Christian Weidemann (IKP-4, FZ Jülich), Ralf Engels (IKP-2, FZ Jülich)

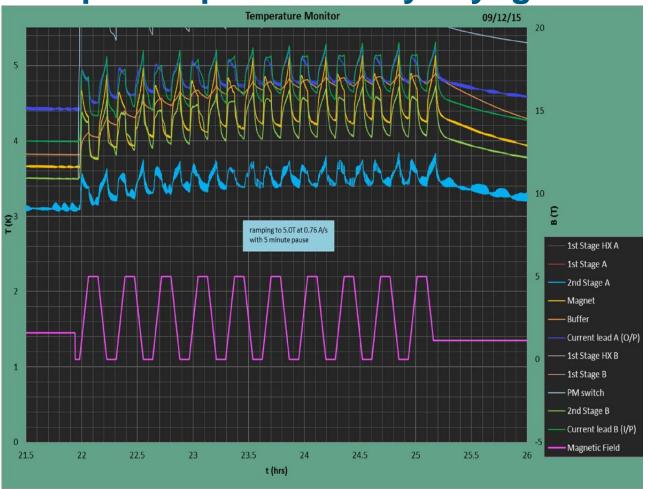
December 19, 2016 | Andreas Lehrach, FZ Jülich (IPK-4) & RWTH Aachen (Ex.Physik IIIb)

Physics at COSY using Longitudinally Polarized Beams: Original Plan



December 19, 2016 | A. Lehrach

SC Solenoid Setup



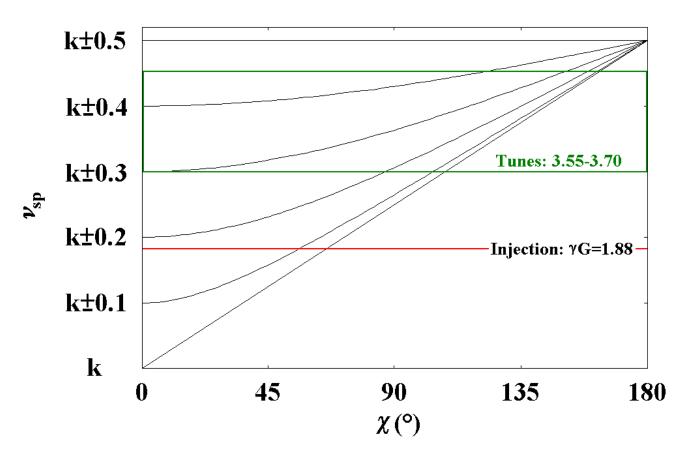
Setup of the SC Solenoid at the test stand in the COSY hall.

December 19, 2016 | A. Lehrach

Siberian Snake Commissioning

Test Sequence performed by Cryogenics

A sequence of ramps to 5 T at a ramp rate of 0.76 A/s (0.018 T/s)


measured with a hall probe (lower graph).

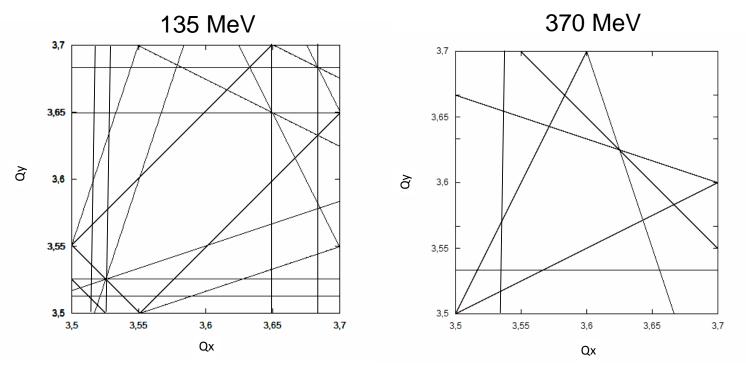
Temperatures in different subsystems of the snake are shown in the upper curves.

FORSCHUNGSZEI

Spin Tune

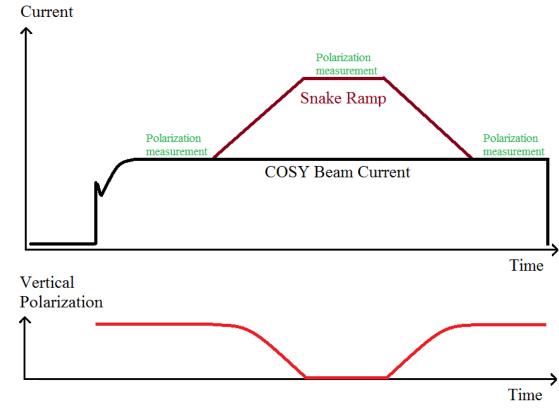
Spin tune v_{sp} versus rotation angle χ of the spin in the snake, k is an integer.

Energy for half integer spin tune: $E_{kin} = 370 \text{MeV} + k \cdot 523 \text{MeV}$


Strategy for Commissioning

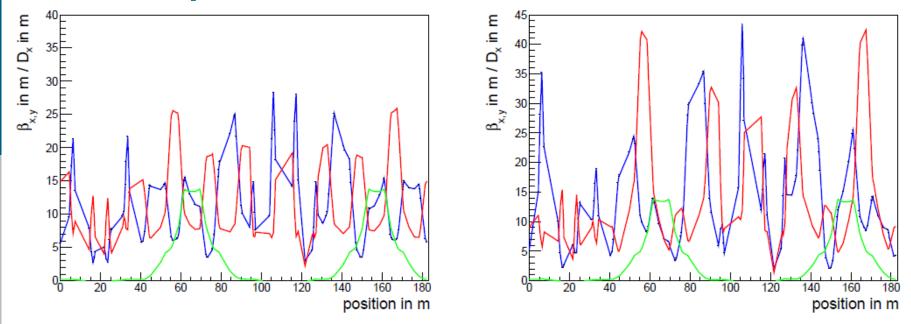
- Start with a beam momentum of 911.86 MeV/c (kinetic energy of 370 MeV), where the spin tune v_{sp} = γG without snake equals 2.5
 → depolarizing resonances are not crossed during the snake ramp
- In a stepwise approach we will move γG close to integer and study spin resonance crossing during the snake ramp.
- Investigate the beam momentum of 521 MeV/c (135 MeV), where γG equals 2.05 to study snake resonances. This beam momentum is proposed for the TRIC and PAX experiment.
- The operation of strong solenoidal fields with respect to HESR is studied, especially betatron tune shifts and phase space coupling.

Higher-Order Depolarizing Resonances



Higher-order depolarizing resonances at 135 MeV up to fourth order plotted in a betatron tune diagram (left): 2+Qx-Qy, 2+Qx-Qy, -5+Qx+Qy, -5+2Qx, -5+2Qy, -9+Qx+2Qy, -9+2Qx+Qy, 13-2Qx-Qy, 13-Qx-2Qy, 13-3Qx, 13-3Qy, -9+3Qx, -9+3Qy, -5+3Qx-Qy, -5-Qx+3Qy, -12+2Qx+2Qy, 9+Qx-3Qy, 9-3Qx+Qy, -12+4Qx, -12+4Qy.

Higher-order depolarizing resonances at 370 MeV up to fourth order plotted in a betatron tune diagram (right): -1+Qx, -1+Qy, -1+2Qx-Qy, -1-Qx+2Qy, -12+3Qx+Qy, -12 + Qx + 3Qy, -12 + 2Qx + 2Qy, -12 + 4Qx, -12 + 4Qy.


Measurement Cycle for Commissioning

- Injection of vertically polarized beam
- Acceleration to desired momentum (135 – 370 MeV)
- Measurement of the polarization using EDDA detector
- Turning on the snake to $\chi = 180^{\circ}$
- Measurement of vanishing vertical polarization with EDDA
- Turning of the snake
- Measurement of the reappearance of vertical polarization with EDDA
- Deceleration and next injection

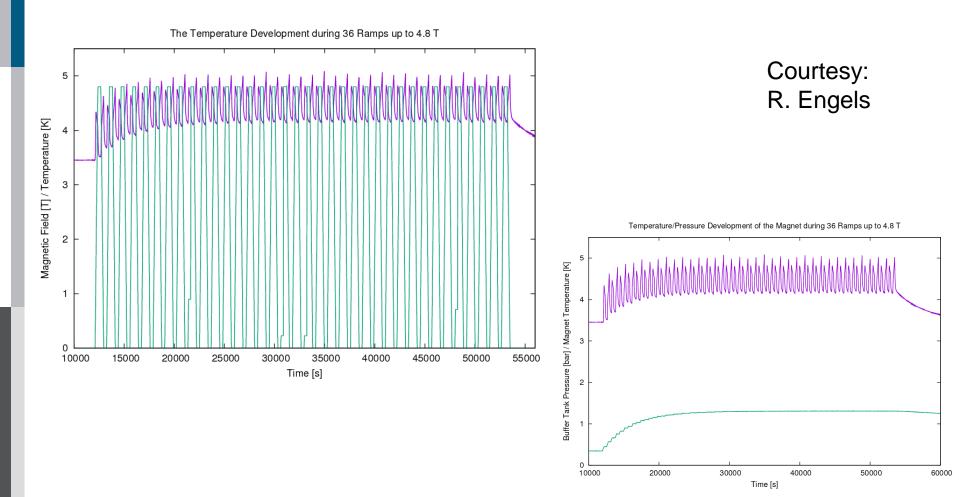
Beam Optics

Beam optics without (left) and with (right) Siberian snake turned on. The transverse betatron amplitudes $\beta_{x,y}$ (blue, red line) and horizontal dispersion D_x (green line) are plotted versus the position in the COSY ring.

The betatron tunes are shifted from $Q_{x,y} = 3.62$, 3.59 without snake to 3.76 resp. 3.57 with the snake turned on.

SC Solenoid Parameters and Performance

- Length of the cryostat: 975 mm
- Bore diameter (i.e. inner diameter of vacuum tube): 90 mm
- Maximum field integral along axis: 4.7 Tm; maximum field: 6 T at 258.83 A
- Cryogen-free operation (no external liquefier, no manual refill of cryogenic liquids)
- Turnkey, stand-alone system required including all the auxiliary systems (compressors, power units, re-condensing system, Hall sensors, temperature sensors)


Maximum field / T	Ramp rate / A/s	Sequence	Dwell time $/ s$
3	1.6	yes	300
4	1.0	yes	300
5	0.76	yes	300
6	0.24	no	-

0.76 A/s equals 0.018 T/s

To realize a full Siberian snake a magnetic field of roughly 2.7 T at a beam momentum of 521 MeV/c and 4.8 T at 911.86 MeV/c has to be provided by the SC solenoid.

Test Sequence in Jülich

36 ramps to 4.8 T with 300 s dwelling time

JÜLICH FORSCHUNGSZENTRUM

Conclusion / Outlook

- The delivered 4.7 Tm superconducting solenoid allows to adjust a longitudinal polarized beam at EDDA/PAX.
- Commissioning at beam momenta between 520 and 920 MeV/c.
- Only the change of the vertical beam polarization can then be measured with the EDDA detector.
- Upgrade of hard- and software controls to allow starting a sequence of ramps with external trigger is finalized.
- Implementation of SC solenoid in COSY is planned for the winter shut down 2016/2017 at the ANKE location.
- Requested beam time (2 weeks + MD) has been recommended by CBAC #4 with triple A.
- Commissioning early next year would be favorable.

