First electric dipole moment measurement of the deuteron with a waveguide RF Wien Filter

Frank Rathmann (on behalf of the JEDI collaboration)

Forschungszentrum Jülich

f.rathmann@fz-juelich.de

02.07.2018

Contents

- Proof of principle EDM experiment at COSY
 Model calculation
- 2 Results from commissioning the RF Wien filter
 - Overview
 - Lorentz force measurements
 - Phase and impedance mismatch
 - Beam oscillation amplitudes
 - EDM-like vertical polarization buildup
 - Theoretical expectations for the buildup in an ideal ring
 - Measurements of EDM-like polarization buildup

3) Technical improvements

- Machine setup
- WASA Polarimeter
- More improvements

4 Beam Request

Proof of principle experiment using COSY ("Precursor experiment")

Highest EDM sensitivity shall be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - *E* field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ ecm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea behind proof-of-principle experiment with novel RF Wien filter $(\vec{E} \times \vec{B})$:

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - $\Rightarrow\,$ Allows one to accumulate EDM effect as function of time in cycle ($\sim 1000\,\text{s}).$

Goal of proof-of-principle experiment:

Show that conventional storage ring useable for first direct EDM measurement

First electric dipole moment measurement of the deuteron

Proof of principle EDM experiment at COSY Model calculation

Model calculation of EDM buildup with RF Wien filter

Ideal ring with deuterons at $p_d = 970 \text{ MeV/c}$:

- ${\it G}=-0.143,\,\gamma=1.126,\,f_{s}=|f_{\sf rev}(\gamma{\it G}+{\it K}_{(=0)})|pprox120.765\,{\sf kHz}$
- Electric RF field integral assumed $1000 \times \int E_{WF} \cdot d\ell \approx 2200 \text{ kV} (w/o \text{ ferrites})$ [1].

EDM accumulates in $P_y(t) \propto d_{\text{EDM}}$ [2, 3, 4].

First electric dipole moment measurement of the deuteron

Frank Rathmann(on behalf of the JEDI collaboration)

Overview

RF Wien filter

• RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25Ω resistor.

First electric dipole moment measurement of the deuteron

Frank Rathmann(on behalf of the JEDI collaboration)

Operational frequencies of RF Wien filter

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}}\left(\gamma \mathsf{G} \pm \mathsf{K}
ight) \,, \mathsf{k} \in \mathbb{Z}.$$

- RF Wien filter operational at frequencies between 0 to 2 MHz.
- Open symbols not reachable with present setup of driving circuit:
 - deuterons at K = 0 (-120.8 kHz), and
 - protons at K = -2 (39.4 kHz)

First electric dipole moment measurement of the deuteron

(1)

Driving circuit

Realization with load resistor and tunable elements (L's and C's):

• Design layout using four separate 1 kW power amplifiers.

Circuit tested and ready

- Elements built by Fa. Barthel, http://www.barthel-hf.de.
- Tuneable elements allow [1]:
 - minimization of Lorentz-force, and
 - velocity matching to β of the beam.
- Power upgrade to $4 \times 2 \,\text{kW}$: $\int B_z dz = 0.218 \,\text{T} \,\text{mm}$ possible later.

Lorentz force compensation [1]

Integral Lorentz force is of order of $-3 \, \text{eV/m}$:

- Electric force *F*_e, magnetic force *F*_m, and Lorentz force *F*_L.
- Trapezoidal electrodes determine where *F*_e and *F*_m cross.

Lorentz force

$$\vec{F}_{\rm L} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \,, \tag{2}$$

- q particle charge, velocity vector $\vec{v} = c(0, 0, \beta)$, fields $\vec{E} = (E_x, E_y, E_z)$ and $\vec{B} = \mu_0(H_x, H_y, H_z)$, where μ_0 is vacuum permeability.
- Vanishing Lorentz force $\vec{F}_{L} = 0 \Rightarrow$ field quotient Z_{q}

$$E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \quad \Rightarrow \quad Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega$$
 (3)

Results from commissioning the RF Wien filter

Lorentz force measurements

Measured phase and impedance mismatch $f_{WF} = 871 \text{ kHz}$

E/B phase as function of C_L and C_T .

Impedance Z_9 as function of C_L and C_T .

β matching:

 $Z_9 = 79\,\Omega$ when matched to deuteron momentum of $970\,\text{MeV/c}$

Variation of β -functions using PAX section

Device installed in PAX low- β section at COSY:

- $\Rightarrow\,$ Allows for systematic studies with respect to divergence of beam.
 - β -functions at RF Wien filter[5] (rel. uncertainty $\approx 10\%$):

	Low- β Off	$Low-\beta On$
β_x	4 m	1.0 m
β_y	3 m	1.2 m

Table: from Bernd Lorentz using MAD.

• Measurements of Lorentz force \vec{F}_{L} with low- β section ON/OFF were carried out at the K = -1 harmonic at $f_{WF} = 871$ kHz.

Beam oscillations at $f_{\rm WF}=$ 871 kHz for low- β ON/OFF $_{\rm Vertical}$

Low- β section ON.

Low- β section OFF.

RF power P = 1 kW, driving circuit uses fixed $L_f = 28 \,\mu\text{H}$:

- Beam oscillation amplitudes measured using BPM #17.
- Matching point (MP):
 - located at $C_{\rm L} = 6800$ and $C_{\rm T} = 4950$.
 - Location, where E and B in phase and Lorentz force $\vec{F}_{L} = 0$,
 - C_L and C_T in steps from 0 to 10000, C's here range from 50 to 950 pF.

Beam oscillations at $f_{\rm WF}=$ 871 kHz for low- β ON/OFF Horizontal

Low- β section ON.

Low- β section OFF.

RF power P = 1 kW, driving circuit uses fixed $L_f = 28 \,\mu\text{H}$:

- Beam oscillation amplitudes measured using BPM #17.
- Matching point (MP):
 - located at $C_L = 6800$ and $C_T = 4950$.
 - Location, where E and B in phase and Lorentz force $\vec{F}_{L} = 0$,
 - C_L and C_T in steps from 0 to 10000, C's here range from 50 to 950 pF.

Lorentz force measurements

Beam oscillations at 630 kHz, 1380 kHz, and 1621 kHz $_{\rm Vertical}$

All measurements with low- β section OFF and RF power $P = 1 \,\text{kW}$:

• Beam oscillation amplitudes measured using BPM #17.

630 kHz: Fixed $L_f = 30 \mu$ H. C's: 500 pF to 1.5 nF. MP: $C_L = 4400$ and $C_T = 3700$.

1380 kHz: Fixed $L_f = 25 \,\mu$ H. C's: 50 pF to 950 pF. MP: $C_L = 2450$ and $C_T = 2980$.

1621 kHz: Fixed $L_f = 20 \mu$ H. C's: 50 pF to 950 pF. MP: $C_L = 3200$ and $C_T = 4700$.

Interpretation

Observation

٩	Typical horizontal and vertical CC	DSY	workin	g points	at $ u_{x,y} pprox 3.6$	
	$\Rightarrow \Omega$	betat	$^{ m ron}pprox 0$	$.6 \cdot f_{rev} =$	= 450 kHz	
	calculate ratio R	$= \frac{1}{2}$	$f_{\rm WF}$	- 1		(4)
٩	From inspection of previous graph	ns, it	t appea	rs that t	he closer <i>R</i> is to an	
	integer, the larger the observed os	scilla	ation ar	nplitude	ε_{v} :	
	fv	NF	R	ε_y		
	630 kl	Hz	1.40	small		
	871 kl	Hz	1.94	large		

Conclusion

• Each harmonic induces different oscillation amplitudes, which generate different contributions to the systematic error of the experiment.

1380 kHz 3.07

3.60

1621 kHz

large

small

Strength of EDM resonance

EDM induced vertical polarization oscillations,

• can be described by

$$p_{y}(t) = a \sin(\Omega^{p_{y}} t + \phi_{\mathsf{RF}}).$$
(5)

• Define EDM resonance strength ε^{EDM} as ratio of angular frequency Ω^{p_y} relative to orbital angular frequency Ω^{rev} ,

$$arepsilon^{\mathsf{EDM}} = rac{\Omega^{m{
ho}_y}}{\Omega^{\mathsf{rev}}}\,,$$

Alternatively,
$$arepsilon^{\mathsf{EDM}}$$
 can be determined from the measured slopes $\dot{p}_y(t)$

• through variation of
$$\phi_{\text{RF}}$$

 $\varepsilon^{\text{EDM}} = \frac{\dot{p}_y(t)|_{t=0}}{a \cos \phi_{\text{RF}}} \cdot \frac{1}{\Omega^{\text{rev}}}.$ (7) $\vec{P}_y(t)$
• If $|\vec{P}| = 1 \Rightarrow \dot{p}_y(t) = \dot{\alpha}(t)$

(6)

Expectation for $d = 10^{-20} \,\mathrm{e\,cm}$ in ideal COSY ring

Resonance strengths ε^{EDM} from Eq. (6) (\approx 175 random-points)

•
$$\phi_{\rm rot}^{\rm WF} = [-1^{\circ}, \dots, +1^{\circ}],$$

•
$$\chi^{\text{Sol 1}}_{\text{rot}} = [-1^{\circ}, \dots, +1^{\circ}]$$
 (100 keV cooler), and

- $\chi_{\rm rot}^{\rm Sol\,2} = 0$ (2 MeV cooler).
- Each point from calculation with $n_{turns} = 50\,000$ and $n_{points} = 200$.

Expectation for $d = 10^{-18} \,\mathrm{e\,cm}$ in ideal COSY ring

Resonance strengths ε^{EDM} from Eq. (6) (≈ 175 random-points)

•
$$\phi_{\rm rot}^{\rm WF} = [-0.1\degree, \dots, +0.1\degree],$$

•
$$\chi^{\sf Sol\,1}_{\sf rot} = [-0.1\,^\circ,\ldots,+0.1\,^\circ]$$
 (100 keV cooler), and

- $\chi_{\rm rot}^{\rm Sol\,2} = 0$ (2 MeV cooler).
- Each point from calculation with $n_{\text{turns}} = 200\,000$ and $n_{\text{points}} = 100$.

First measurement of EDM-like buildup signals

Rate of out-of-plane rotation angle $\dot{\alpha}$ as function of Wien filter RF phase $\phi_{\rm RF}$

- B field of RF Wien filter normal to the ring plane.
- Wien filter operated at $f_{WF} = 871 \text{ kHz}$.
- Variations of $\phi_{\rm rot}^{\rm WF}$ and $\chi_{\rm rot}^{\rm Sol\,1}$ affect the pattern of observed $\dot{\alpha}$ (see also Figs. on slides 16 and 17).

First electric dipole moment measurement of the deuteron

Frank Rathmann(on behalf of the JEDI collaboration)

18/ 30

Improvements I

Machine setup

- Reliable automatic COSY orbit control with Schneider box feedback to stabilize detector rate in horizontal and vertical ring planes toward end **E005.4** run.
- Progress with beam-based alignment at COSY.
 - Purpose: better characterize real position offsets of BPMs at COSY.
 - Based on first recent test using quadrupole QT12, dedicated JEDI proposal (A015 T. Wagner & B. Lorentz) submitted for present CBAC [6].
- During E005.4, new mode of operation established at COSY:
 - Switch off electron beam on flattop, and magnetic elements of 100 keV cooler.
 - Magnitude of strong steerer fields in cooler section reduced to $\approx 5\%$ of nominal value.
 - New operation mode simplifies COSY lattice \Rightarrow spin-tracking simulations shall become simpler.

Improvements II

WASA Polarimeter

- 1. Commissioning times were successfully used to make WASA available as on-line polarimeter for polarization monitoring, spin tune measurement and phase-locking.
- 2. Carbon block target at WASA routinely operated. Orbit control in conjunction with extraction process optimized.
- 3. During commissioning runs in Nov. '17 (E005.2) and May '18 (E005.4), improved versions of phase-lock feedback tested with polarized beam.

Improvements III

Further items addressed during commissioning runs

- 1. Read-back of dipole, steerer, quadrupole, sextupole, and solenoid currents implemented at COSY.
 - Data stored in EPICS database, including settings of Schneider box, and active spin bits from polarized ion source.
- 2. Two more Zurich lock-in amplifiers^a implemented for \vec{F}_{L} measurement, making use of BPM #17.
 - Signals from four BPM quadrants now acquired individually.
- 3. 10 MHz frequency reference signal prepared and distributed to COSY RF, solenoid RF, and Wien filter RF.
 - Makes sure that all frequency generators agree frequency-wise.

^aZurich Instruments, model HF2LI, https://www.zhinst.com/products/hf2li.

Improvements IV

Further items addressed during commissioning runs.

- 4. Wien filter aligned with respect to the COSY ring plane,
 - determined during recent COSY magnet survey & alignment campaign^a.
 - New electronic levels^b implemented to set WF rotation angle with accuracy of at least 170 µrad^c:

#3483Z: $\theta(\vec{B} \parallel \vec{e_y}) = (+0.74 \pm 0.17) \text{ mrad at } T = 21.006 \,^{\circ}\text{C}$

#3486Z: $\theta(\vec{B} \parallel \vec{e}_x) = (+0.57 \pm 0.17) \text{ mrad at } T = 20.865 \degree \text{C}$

- $\vec{e_y}$ denotes true normal to ring plane, and
- $\vec{e_x}$ is radially-outward pointing vector in ring plane.
- 5. Improved calibration of new pair of Rogowski coil BPMs presently established using upgraded laboratory test setup.
 - Calibrated coils will be installed at entrance and exit of RF Wien filter during summer shutdown.

^aVermessungsbüro Stollenwerk & Burghof, Bergheim, Germany ^bZEROTRONIC inclination sensor, WylerAG, https://www.wylerag.com. ^cCorresponds to ½ year drift, weekly recalibration shall give acurracy < 50 μrad. (8)

Planned sequence of beam times (as of CBAC # 7)

	2017				
Q2			E005.1	WF + unpolarized beam	
Q3					
Q4		E005.2		WF + WASA + polarized beam	

	2018				
Q1		E005.3		WF + WASA + unpol. beam (cont'd)	
Q2			E005.4	1^{st} EDM measurement w/o ferrites	
Q3	Shutdown			Installation of ferrites	
Q4			E005.5	2 nd EDM measurement with ferrites	

		201	9
Q1	E005.5		2 nd EDM measurement with ferrites

Difficulties with polarized beam operation during previous runs:

- \Rightarrow Only few days of polarized beam during E005.2 and E005.4, no polarized beam in E005.3.
- \Rightarrow Modified strategy for 1st EDM measurement w/o ferrites.
 - JEDI decision: Ferrites will be installed only after 1st EDM measurement.

Actual sequence of used beam times

	2017				
Q2		E005.1	WF + unpolarized beam		
Q3					
Q4	E005.2		WF + WASA + polarized beam		

				2018
Q1		E005.3		• \vec{F}_{L} measurements at 4 WF frequencies, $f_{WF} = 630, 871, 1380$, and 1621 kHz.
Q2			E005.4	 Set up with 100 keV e-cooler magnets and steerers switched off on flattop.
				 Operation of Siberian snake as small angle spin rotator.
				• Few $\phi_{\rm RF}$ scans of EDM-like polarization buildup during last weekend.
Q3	Shutdown			No installation of ferrites
Q4		EO)5.5	1 st EDM measurement w/o ferrites

Beam Request E005.5

Production run to perform a first EDM measurement without ferrites:

- In view of past experience with machine development for JEDI, we would kindly like to request 2 MD weeks to set up machine.
- Essentially all subsystems of experimental setup have been tested successfully.
 - Recalibrated and improved Rogowski-BPM system at RF Wien filter shall be installed in next shutdown.
- We would like to request 4 weeks for the EDM measurement.

References

- J. Slim et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016).
- [2] A. Saleev et al., Phys. Rev. Accel. Beams 20, 072801 (2017).
- [3] F. Rathmann, A. Saleev, and N. N. Nikolaev, J. Phys. Conf. Ser. 447, 012011 (2013).
- [4] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006).
- [5] C. Weidemann et al., Phys. Rev. ST Accel. Beams 18, 020101 (2015).
- [6] T. Wagner and B. Lorentz, Beam-based alignment, 2018, available from http://collaborations.fz-juelich.de/ikp/jedi/public_files/ proposals/Proposal_Beam_Based_Alignment_short.pdf.
- [7] J. Slim et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 859, 52 (2017).

Spare transparencies

Sequence of JEDI related beam times at COSY

Priority list for JEDI:

Priority	Experiment	number	starting in
0	EDM proton database	E004	already scheduled
1	Precursor experiment	E005.5	2018
1b	COSY beam studies	A005.4	2018
2	Beam-based alignment	A015	2019
3a	Spin dynamics issues	E007.1	2019
3b	Axion-EDM	E008	2019
4	Polarimetry	E002.6	2019

Features of the waveguide RF Wien filter

Aim was to build the best possible device, with respect to

- Electromagnetic performance [1] and mechanical tolerances [7].
- Excellent cooperation with RWTH Aachen University and ZEA-Jülich.

Electromagnetic field simulations (incl. ferrites) [1]

Full-wave simulations

• using CST Microwave Studio^a.

^aComputer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com

At an input power of 1 kW, magnetic and electric field integrals are ($\ell = 1.550$ m):

$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ 2.72 \times 10^{-2} \\ 6.96 \times 10^{-7} \end{pmatrix} \operatorname{Tmm}, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} 3324.577 \\ 0.018 \\ 0.006 \end{pmatrix} \vee \quad (9)$$

First electric dipole moment measurement of the deuteron