5/7th Bethe Center Workshop "**Challenges in Strong Interaction Physics**" Physikzentrum Bad Honnef, September 29 – October 2, 2015

Electric Dipole Moments of Light Ions

Andreas Wirzba (IAS-4 / IKP-3, Forschungszentrum Jülich)

in collaboration with Jan Bsaisou, Christoph Hanhart, Ulf-G. Meißner, Andreas Nogga, Jordy de Vries, Susanna Liebig, David Minossi, Werner Bernreuther and Wouter Dekens

Bad Honnef | October 2, 2015

Matter Excess in the Universe

1 End of inflation: $n_B = n_{\bar{B}}$

- 2 Cosmic Microwave Bkgr.
 - SM(s) prediction:* $(n_B-n_{\bar{B}})/n_{\gamma}|_{\text{CMB}} \sim 10^{-18}$
 - WMAP+PLANCK ('13): *n_B/n_γ*|_{CMB}=(6.05±0.07)10⁻¹⁰

Sakharov conditions ('67) for dyn. generation of net *B*:

1 B violation to depart from initial B=0

2 C & CP violation to distinguish *B* and \overline{B} production rates

3 out of thermal equilibrium to dist. *B* production from back reaction and to escape (*B*)=0 if CPT holds

 $(*) \ 2 J_{\rm Jarlskog}^{\rm CKM}(m_t^2 - m_u^2) (m_t^2 - m_c^2) (m_c^2 - m_u^2) (m_b^2 - m_d^2) (m_b^2 - m_s^2) (m_s^2 - m_d^2) / M_{\rm EW}^{12} \sim 10^{-18}$

CP violation and the Electric Dipole Moment (EDM)

EDM:
$$\vec{d} = \sum_{i} \vec{r}_{i} e_{i} \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / |\vec{S}|_{\text{(axial)}}$$

 $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} - d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
P: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
T: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$

Any *non-vanishing EDM* of a non-deg. (subatomic) particle violates **P** & **T**

- Assuming CPT to hold, CP is violated as well (flavor-diagonally)
 → subatomic EDMs: "rear window" to CP violation in early universe
- Strongly suppressed in SM (CKM-matrix): $|d_n| \sim 10^{-31} e \text{ cm}$, $|d_e| \sim 10^{-38} e \text{ cm}$
- Current bounds: $|d_n| < 3 \cdot 10^{-26} e \text{ cm}, |d_p| < 8 \cdot 10^{-25} e \text{ cm}, |d_e| < 1 \cdot 10^{-28} e \text{ cm}$

n: Baker et al. (2006), p prediction: Dimitriev & Sen'kov (2003)*, e: Baron et al. (2013)*

* from $|d_{199}_{Hg}| < 3.1 \cdot 10^{-29} e \text{ cm}$ bound of Griffith et al. (2009) [†] from polar ThO: $|d_{ThO}| \lesssim 10^{-21} e \text{ cm}$ Andreas Wirzba 3|21

Three motivations for EDM searches

Three motivations for EDM searches

and why are EDMs of light ions interesting?

Road map from EDM Measurements to EDM Sources

Experimentalist's point of view \rightarrow

← Theorist's point of view

CP-violating BSM sources of dimension 6 from above EW scale

to their hadronic equivalents below 1 GeV

W. Dekens & J. de Vries, JHEP 05 (2013)

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

D. Vorderstraße

→ Symmetries (esp. chiral one) plus Goldstone Theorem
 → Low-Energy Effective Field Theory with External Sources
 i.e. Chiral Perturbation Theory (suitably extended)

Scalings of \mathcal{CP} hadronic vertices – from θ to BSM sources 5 discriminable classes:

 $^{*\,)}$ Goldstone theorem \rightarrow relative $\mathcal{O}(M_{\pi}^2/m_n^2)$ suppression of $N\pi$ interactions Andreas Wirzba

 $\checkmark^{p'}$

Calculation: from form factors to EDMs

/ ^{p'}

Calculation: from form factors to EDMs

$$\langle f(p')|J_{em}^{\mu}|f(p)\rangle = \bar{u}_{f}(p')\Gamma^{\mu}(q^{2})u_{f}(p)$$

$$q \qquad q^{2} = (p - p')^{2}$$

$$p$$

$$\Gamma^{\mu}(q^{2}) = \gamma^{\mu}F_{1}(q^{2}) - i\sigma^{\mu\nu}q_{\nu}\frac{F_{2}(q^{2})}{2m_{f}} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}\frac{F_{3}(q^{2})}{2m_{f}} + (\oint q^{\mu} - q^{2}\gamma^{\mu})\gamma_{5}\frac{F_{a}(q^{2})}{m_{f}^{2}}$$
Dirac FF Pauli FF electric dipole FF (QP) anapole FF (P)
$$\Rightarrow d_{f} := \lim_{q^{2} \to 0} \frac{F_{3}(q^{2})}{2m_{f}} \quad \text{for } s = 1/2 \text{ fermion}$$
Nucleus A
$$(f|J_{pT}^{0}(q)|f|)$$
in Breit frame
$$\int \frac{\xi_{i}}{\sqrt{p_{f}}} = \int \frac{\xi_{i}}{\sqrt{p_{f}}} + \int \frac{\xi_{i}}{\sqrt{p_{f}}} = -iq^{3}\frac{F_{3}^{A}(q^{2})}{2m_{A}}$$

θ-Term Induced Nucleon EDM

Crewther, di Vecchia, Veneziano & Witten, PLB (1979); Pich & de Rafael, NPB (1991); Ottnad et al., PLB (2010)

Isovector πNN coupling:

$$g_{0}^{\theta} = \frac{(m_{n}-m_{\rho})^{\text{strong}}(1-\epsilon^{2})}{4F_{\pi}\epsilon} \bar{\theta} \approx (-0.018 \pm 0.007)\bar{\theta} \quad (\text{where } \epsilon \equiv \frac{m_{u}-m_{d}}{m_{u}+m_{d}})$$
$$\Rightarrow d_{N}|_{\text{loop}}^{\text{isovector}} \sim (2.1 \pm 0.9) \cdot 10^{-16} \bar{\theta} \text{ e cm} \qquad \text{Bsaisou et al., EPJA 49 (2013)}$$

single nucleon EDM:

Preliminary Lattice (full QCD) results

Preliminary Lattice (full QCD) results

$$\Rightarrow d_n = \bar{\theta} (-2.7 \pm 1.2) \cdot 10^{-3} \cdot e \cdot fm \text{ and } d_p = \bar{\theta} (2.1 \pm 1.2) \cdot 10^{-3} \cdot e \cdot fm$$
Akan, Guo & Meißner, *PLB* 736 (2014); see also $d_n = \bar{\theta} (-3.9 \pm 0.2 \pm 0.9) 10^{-3} e fm$ Guo et al., PRL 115 (2015)

Preliminary Lattice (full QCD) results

(adapted from Eigo Shintani (RIKEN-AICS), INT Program INT-15-3, Seattle, Sept. 22, 2015)

Don't mention the ... light nuclei

Single Nucleon Versus Nuclear EDM

single nucleon EDM:

two nucleon EDM:

Sushkov, Flambaum & Khriplovich, Sov. Phys. JETP (1984)

unknown coefficient

Single Nucleon Versus Nuclear EDM

single nucleon EDM:

EDM of the Deuteron at LO: CP-violating π exchange

$$\mathcal{L}_{QP}^{\pi N} = -d_n N^{\dagger} (1 - \tau^3) S^{\mu} v^{\nu} N F_{\mu\nu} - d_p N^{\dagger} (1 + \tau_3) S^{\mu} v^{\nu} N F_{\mu\nu} + (m_N \Delta) \pi^2 \pi_3 + g_0 \mathcal{M}^{\dagger} \pi \cdot \overline{\tau} N + g_1 N^{\dagger} \pi_3 N + \underbrace{C_1 \mathcal{N}^{\dagger} \mathcal{N} \mathcal{D}_{\mu} (\mathcal{N}^{\dagger} \overline{S}^{\mu} N)}_{3S_1} + \underbrace{C_2 \mathcal{N}^{\dagger} \overline{\tau} \mathcal{N} \cdot \mathcal{D}_{\mu} (\mathcal{N}^{\dagger} \overline{\tau} \overline{S}^{\mu} N)}_{3S_1} + \cdots$$

$$\overset{3S_1}{\longrightarrow} \underbrace{I_{(3D_1)}}_{(3D_1)} = \underbrace{I_{(3D_1)}}_{3S_1} LO: \underbrace{g_0 \mathcal{N}^{\dagger} \overline{\pi} \cdot \overline{\tau} N}_{N} (CP, I) \rightarrow 0 \text{ (Isospin filter!)} \\ \mathsf{NLO:} \underbrace{g_1 \mathcal{N}^{\dagger} \pi_3 N}_{3S_1} (CP, I) \rightarrow \text{``LO" in D case}$$

	term	N ² LO ChPT	A <i>v</i> ₁₈	CD-Bonn	units
1	d_n^D	0.939 ± 0.009	0.914	0.927	d _n
	d_p^D	0.939 ± 0.009	0.914	0.927	dp
\rightarrow	<i>g</i> 1	0.183 ± 0.017	0.186	0.186	$g_1 e { m fm}$
	$\rightarrow \Delta f_{g_1}$	-0.748 ± 0.138	-0.703	-0.719	$\Delta e \text{fm}$

Bsaisou, dissertation, Univ. Bonn (2014); Bsaisou et al., JHEP 03 (2015)

BSM \mathcal{QP} sources: $g_1 \pi NN$ vertex is of LO in qCEDM and 4qLR case

EDM of the Deuteron at LO: CP-violating π exchange

BSM \mathcal{CP} sources: $g_1 \pi NN$ vertex is of LO in qCEDM and 4qLR case

³He EDM: results for CP-violating π exchange

 $g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ (CP, I) $g_1 N^{\dagger} \pi_3 N$ (CP, I) LO: *θ*-term, qCEDM LO: qCEDM, 4qLR N²LO: 4qLR

NLO: θ term

³He EDM: results for CP-violating π exchange

 $g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ (CP, I) $g_1 N^{\dagger} \pi_3 N$ (CP, I) LO: *θ*-term, *q*CEDM LO: *q*CEDM, 4*q*LR N²LO: 4gLR

NLO: θ term

term	A	N ² LO ChPT	Av ₁₈ +UIX	CD-Bonn+TM	units
d _n	³ He	0.904 ± 0.013	0.875	0.902	dn
	ЗН	-0.030 ± 0.007	-0.051	-0.038	
d _p	³ He	-0.029 ± 0.006	-0.050	-0.037	dp
	³ Н	0.918 ± 0.013	0.902	0.876	
Δ	³ He	-0.017 ± 0.006	-0.015	-0.019	$\Delta e \text{fm}$
	³ H	-0.017 ± 0.006	-0.015	-0.019	
g_0	³ He	0.111 ± 0.013	0.073	0.087	<i>g</i> ₀ <i>e</i> fm
	³ H	-0.108 ± 0.013	-0.073	-0.085	
<i>g</i> ₁	³ He	0.142 ± 0.019	0.142	0.146	$g_1 e { m fm}$
	³ H	0.139 ± 0.019	0.142	0.144	
Δf_{g_1}	³ He	-0.608 ± 0.142	-0.556	-0.586	$\Delta e \text{fm}$
	³ Н	-0.598 ± 0.141	-0.564	-0.576	
C1	³ He	-0.042 ± 0.017	-0.0014	-0.016	$C_1 e \mathrm{fm}^{-2}$
	³ H	0.041 ± 0.016	0.0014	0.016	
C ₂	³ He	0.089 ± 0.022	0.0042	0.033	$C_2 e \mathrm{fm}^{-2}$
	³ H	-0.087 ± 0.022	-0.0044	-0.032	

Andreas Wirzba

Bsaisou, dissertation, Univ. Bonn (2014); Bsaisou et al., JHEP 03 (2015)

³*He* EDM: results for CP-violating π exchange

$$\mathcal{L}_{CPT}^{\pi N} = -d_n N^{\dagger} (1 - \tau^3) S^{\mu} v^{\nu} N F_{\mu\nu} - d_p N^{\dagger} (1 + \tau_3) S^{\mu} v^{\nu} N F_{\mu\nu} + (m_N \Delta) \pi^2 \pi_3 + g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N + g_1 N^{\dagger} \pi_3 N + C_1 N^{\dagger} N D_{\mu} (N^{\dagger} S^{\mu} N) + C_2 N^{\dagger} \vec{\tau} N \cdot D_{\mu} (N^{\dagger} \vec{\tau} S^{\mu} N) + \cdots$$

term	A	N ² LO ChPT	Av ₁₈ +UIX	CD-Bonn+TM	units
d _n	³ He	0.904 ± 0.013	0.875	0.902	dn
	³ Н	-0.030 ± 0.007	-0.051	-0.038	
d _p	³ He	-0.029 ± 0.006	-0.050	-0.037	dp
	³ Н	0.918 ± 0.013	0.902	0.876	
Δ	³ He	-0.017 ± 0.006	-0.015	-0.019	$\Delta e \text{fm}$
	³ H	-0.017 ± 0.006	-0.015	-0.019	
g_0	³ He	0.111 ± 0.013	0.073	0.087	<i>g</i> ₀ <i>e</i> fm
	³ H	-0.108 ± 0.013	-0.073	-0.085	
<i>g</i> 1	³ He	0.142 ± 0.019	0.142	0.146	$g_1 e { m fm}$
	³ H	0.139 ± 0.019	0.142	0.144	
Δf_{g_1}	³ He	-0.608 ± 0.142	-0.556	-0.586	$\Delta e \text{fm}$
	ЗН	-0.598 ± 0.141	-0.564	-0.576	
C1	³ He	-0.042 ± 0.017	-0.0014	-0.016	$C_1 e \mathrm{fm}^{-2}$
	³ H	0.041 ± 0.016	0.0014	0.016	
C ₂	³ He	0.089 ± 0.022	0.0042	0.033	$C_2 e \mathrm{fm}^{-2}$
	³ H	-0.087 ± 0.022	-0.0044	-0.032	

Andreas Wirzba

Bsaisou, dissertation, Univ. Bonn (2014); Bsaisou et al., JHEP 03 (2015)

Discriminating between three CP scenarios at 1 GeV

The Standard Model + $\bar{ heta}$

 $\mathcal{L}^{\theta}_{\mathsf{SM}} = \mathcal{L}_{\mathsf{SM}} + \bar{\theta} m_q^* \bar{q} i \gamma_5 q$

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

2 The left-right symmetric model — with two 4-quark operators: $\mathcal{L}_{LR} = -i \Xi \left[1.1(\bar{u}_R \gamma_\mu u_R)(\bar{d}_L \gamma^\mu d_L) + 1.4(\bar{u}_R t^a \gamma_\mu u_R)(\bar{d}_L t^a \gamma^\mu d_L) \right] + \text{h.c.}$

3 The aligned two-Higgs-doublet model — with the dipole operators: $\mathcal{L}_{a2HM} = -e\frac{d_d}{2} \, \bar{d} \, i\sigma_{\mu\nu}\gamma_5 d F^{\mu\nu} - \frac{\tilde{d}_d}{4} \, \bar{d} \, i\sigma_{\mu\nu}\gamma_5 \lambda^a d \, G^{a\mu\nu} + \frac{d_W}{3} \, f_{abc} \tilde{G}^{a\mu\nu} G^b_{\mu\rho} \, G^{c\rho}_{\nu}$ — with the hierarchy $\tilde{d}_d \simeq 4d_d \simeq 20d_W$

matched on

$$\mathcal{L}_{\mathcal{S}P^{\prime}EFT}^{\pi N} = -d_{n}N^{\dagger}(1-\tau^{3})S^{\mu}v^{\nu}NF_{\mu\nu} - d_{p}N^{\dagger}(1+\tau_{3})S^{\mu}v^{\nu}NF_{\mu\nu} + (m_{N}\Delta)\pi^{2}\pi_{3} + g_{0}N^{\dagger}\vec{\pi}\cdot\vec{\tau}N + g_{1}N^{\dagger}\pi_{3}N + C_{1}N^{\dagger}N\mathcal{D}_{\mu}(N^{\dagger}S^{\mu}N) + C_{2}N^{\dagger}\vec{\tau}N\cdot\mathcal{D}_{\mu}(N^{\dagger}\vec{\tau}S^{\mu}N) + \cdots .$$

Discriminating between three CP scenarios at 1 GeV

The Standard Model + $ar{ heta}$

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

 $\mathcal{L}^{\theta}_{\mathsf{SM}} = \mathcal{L}_{\mathsf{SM}} + \bar{\theta} m_q^* \bar{q} i \gamma_5 q$

2 The left-right symmetric model — with two 4-quark operators: $\mathcal{L}_{LR} = -i \Xi \left[1.1(\bar{u}_R \gamma_\mu u_R)(\bar{d}_L \gamma^\mu d_L) + 1.4(\bar{u}_R t^a \gamma_\mu u_R)(\bar{d}_L t^a \gamma^\mu d_L) \right] + \text{h.c.}$

3 The aligned two-Higgs-doublet model — with the dipole operators: $\mathcal{L}_{a2HM} = -e\frac{d_d}{2} \, \bar{d} \, i\sigma_{\mu\nu}\gamma_5 d F^{\mu\nu} - \frac{\tilde{d}_d}{4} \, \bar{d} \, i\sigma_{\mu\nu}\gamma_5 \lambda^a d \, G^{a\mu\nu} + \frac{d_W}{3} \, f_{abc} \tilde{G}^{a\mu\nu} G^b_{\mu\rho} \, G^{c\rho}_{\nu}$ — with the hierarchy $\tilde{d}_d \simeq 4d_d \simeq 20d_W$

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

Measurement of the helion and neutron EDMs

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

Measurement of the helion and neutron EDMs

 $d_{^{3}\text{He}} - 0.9 d_{n} = -\bar{\theta} \left(1.01 \pm 0.31_{\text{had}} \pm 0.29_{\text{nucl}}^{\star} \right) \cdot 10^{-16} e \, \text{cm}$

Extraction of $\bar{\theta}$

*includes ±0.20 uncertainty from 2N contact terms

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

Measurement of the helion and neutron EDMs

$$d_{^{3}\text{He}} - 0.9d_{n} = -\bar{\theta} \left(1.01 \pm 0.31_{\text{had}} \pm 0.29_{\text{nucl}}^{\star}\right) \cdot 10^{-16} e\,\text{cm}$$

Extraction of $\bar{\theta}$

 $d_D - 0.94 (d_n + d_p) = \bar{\theta} \left(0.89 \pm 0.29_{\rm had} \pm 0.08_{\rm nucl} \right) \cdot 10^{-16} e\,{\rm cm}$

Prediction for $d_D - 0.94(d_n + d_p)$ (& triton EDM): $d_D^{\text{Nucl}} \approx -d_{3\text{He}}^{\text{Nucl}} \approx \frac{1}{2}d_{3\text{H}}^{\text{Nucl}}$

*includes ±0.20 uncertainty from 2N contact terms

Dekens et al., JHEP 07 (2014); Bsaisou et al., JHEP 03 (2015)

Measurement of the helion and neutron EDMs

$$d_{^{3}\text{He}} - 0.9 d_{n} = -\bar{\theta} \left(1.01 \pm 0.31_{\text{had}} \pm 0.29_{\text{nucl}}^{\star} \right) \cdot 10^{-16} e \, \text{cm}$$

Extraction of $\bar{\theta}$

 $g_1^{\theta}/g_0^{\theta} \approx -0.2$

 $d_D - 0.94 \big(d_n + d_p \big) = \bar{\theta} \left(0.89 \pm 0.29_{\rm had} \pm 0.08_{\rm nucl} \right) \cdot 10^{-16} e\,{\rm cm}$

Prediction for $d_D - 0.94(d_n + d_p)$ (& triton EDM): $d_D^{\text{Nucl}} \approx -d_{^{3}\text{He}}^{\text{Nucl}} \approx \frac{1}{2}d_{^{3}\text{H}}^{\text{Nucl}}$

$$\begin{array}{l} \boldsymbol{g}_{0}^{\theta} = \frac{(m_{n}-m_{p})^{\mathrm{strong}}(1-\epsilon^{2})}{4F_{\pi}\epsilon} \boldsymbol{\bar{\theta}} = (-16\pm2)10^{-3}\boldsymbol{\bar{\theta}} \\ \frac{g_{1}^{\theta}}{g_{0}^{\theta}} \approx \frac{8c_{1}(M_{\pi\pm}^{2}-M_{\pi0}^{2})^{\mathrm{strong}}}{(m_{n}-m_{p})^{\mathrm{strong}}} \ , \ \ \boldsymbol{\epsilon} \equiv \frac{m_{u}-m_{d}}{m_{u}+m_{d}} \end{array}$$

*includes ±0.20 uncertainty from 2N contact terms

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Measurement of the deuteron and nucleon EDMs

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Measurement of the deuteron and nucleon EDMs

 $d_D - 0.94(d_n + d_p) \simeq d_D = -(2.1 \pm 0.5^{\star})\Delta^{LR}e\,\mathrm{fm}$

Extraction of Δ^{LR}

*includes ±0.1 uncertainty from 2N contact terms

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

*includes ±0.1 uncertainty from 2N contact terms

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Testing strategies: aligned 2-Higgs Doublet Model

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Measurement of the deuteron and nucleon EDMs

Testing strategies: aligned 2-Higgs Doublet Model

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Measurement of the deuteron and nucleon EDMs

 $d_D - 0.94(d_n + d_p) = [(0.18 \pm 0.02)g_1 - (0.75 \pm 0.14)\Delta]e$ fm

Extraction of g_1^{eff} (including Δ correction)

Testing strategies: aligned 2-Higgs Doublet Model

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Measurement of the deuteron and nucleon EDMs

 $d_D - 0.94(d_n + d_p) = [(0.18 \pm 0.02)g_1 - (0.75 \pm 0.14)\Delta]e$ fm

Extraction of g_1^{eff} (including Δ correction)

+ Measurement of $d_{^{3}\text{He}}$ (or $d_{^{3}\text{H}}$)

Testing strategies: aligned 2-Higgs Doublet Model

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Testing strategies: aligned 2-Higgs Doublet Model

Dekens et al. JHEP 07 (2014); Bsaisou et al. JHEP 03 (2015)

Andreas Wirzba

18 21

Summary

- D EDM might distinguish between θ
 and other scenarios and allows extraction of the g₁ coupling constant via d_D 0.94(d_n+d_p). (The prefactor of (d_n+d_p) stands for a 4% probability of the ³D₁ state.)
- ³He (or ³H) EDM necessary for a **proper test** of $\overline{\theta}$ and LR scenarios
- Deuteron & helion work as complementary isospin filters of EDMs
- a2HDM scenario: helion and triton EDMs would be needed for a test
- pure qCEDM: similar to a2HDM scenario
- pure qEDM: $d_D = 0.94(d_n + d_p)$ and $d_{^{3}\text{He}/^{3}\text{H}} = 0.9d_{n/p}$
- gCEDM, 4quark chiral singlet:

controlled calculation/disentanglement difficult (lattice ?)

■ Ultimate progress may eventually come from Lattice QCD $\Rightarrow GP N\pi$ couplings $g_0 \& g_1$ may be accessible even for dim-6 case

Traditional atomic EDMs

 Why can't we get this info from EDMs of Hg, Ra, Rn, ... ? Strong bound on atomic EDM: |*d*¹⁹⁹Hg| < 3.1 ⋅ 10⁻²⁹ ⋅ *e* ⋅ fm

Griffiths et al., PRL (2009)

The atomic part of the calculation is well under control

 $d_{^{199}\text{Hg}} = (2.8 \pm 0.6) \, S_{\text{Hg}} \cdot e \cdot \text{fm}^{-2}$

Dzuba et al., PRA (2002), (2009)

S_{Hg}: Nuclear Schiff moment

But the nuclear part isn't ...

 $S_{199}_{Hg} = [(0.3 \pm 0.4)g_0 + (0.4 \pm 0.8)g_1] e \cdot \text{fm}^3$ Engel et al., *PPNP* (2013)

- There is no power counting for nuclei with so many nucleons
- Short-range 4N contributions not even considered
- Hadronic uncertainties of g₀ and g₁ are underestimated too

Conclusions

- EDMs probe New CP-odd Physics (at similar energy scales as LHC)
- The first non-vanishing EDM might be detected in a charge-neutral case: neutrons or dia-/ paramagnetic atoms or molecules ...

However, measurements of **light ion EDMs** will play a key role in disentangling the *sources* of (flavor-diagonal) CP

- EDM measurements are of *low-energy nature*:
 - \Rightarrow non-leptonic predictions have to be in the *language of hadrons*
 - → only systematical methods: ChPT/EFT and Lattice QCD
- EDMs of light nuclei give independent information to nucleon ones and may be even larger and, moreover, even simpler

At least the EDMs of p, n, d, and ³He are needed to have a realistic chance to disentangle the underlying physics

Many thanks to my colleagues

- in Jülich: Jan Bsaisou, Christoph Hanhart, Susanna Liebig, Ulf-G. Meißner, David Minossi, Andreas Nogga, Jordy de Vries
- in Bonn: Feng-Kun Guo, Bastian Kubis, Ulf-G. Meißner
- and: Werner Bernreuther, Wouter Dekens, Bira van Kolck, Kolya Nikolaev

References:

- 1 J. Bsaisou, U.-G. Meißner, A. Nogga and A.W.,
 - *P- and T-Violating Lagrangians in Chiral Effective Field Theory and Nuclear Electric Dipole Moments*, Annals of Physics **359**, 317-370 (2015), arXiv:1412.5471[hep-ph].
- 2 J. Bsaisou, C. Hanhart, S. Liebig, D. Minossi, U.-G. Meißner, A. Nogga and A.W., Electric dipole moments of light nuclei, JHEP 03,104 (05,083) (2015), arXiv:1411.5804.
- 3 A.W., Electric dipole moments of the nucleon and light nuclei Nuclear Physics A 928, 116-127 (2014), arXiv:1404.6131 [hep-ph].
- 4 W. Dekens, J. de Vries, J. Bsaisou, W. Bernreuther, C. Hanhart, U.-G. Meißner, A. Nogga and A.W., Unraveling models of CP violation through electric dipole moments of light nuclei, JHEP 07, 069 (2014), arXiv:1404.6082 [hep-ph].
- 5 J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, A. Nogga and A.W., The electric dipole moment of the deuteron from the QCD θ-term, Eur. Phys. J. A 49, 31 (2013), arXiv:1209.6306 [hep-ph].

Backup slides

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

 $\mathcal{L}_{QCD}^{\theta} = \bar{\theta} m_q^* \sum_{f} \bar{q}_f i \gamma_5 q_f : \quad \mathcal{OP}, \text{ I} \qquad m_q^* = \frac{m_u m_d}{m_u + m_d}$

- $\Rightarrow \bar{\theta}$ source breaks chiral symmetry ($\propto m_q^*$) but conserves the isospin one:
- $\Rightarrow |g_0^{\theta}| \gg |g_1^{\theta}| : \text{NDA estimate: } g_1^{\theta}/g_0^{\theta} \sim \mathcal{O}(M_{\pi}^2/m_n^2)$ de Vries et al. *PRC* '11 ChPT LECs predict: $g_1^{\theta}/g_0^{\theta} \sim \mathcal{O}(M_{\pi}/m_n)!$ Bsaisou et al. *EPJA* '13

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- chromo quark EDM: chiral symmetries are (& isospin ones may be) broken because of quark masses → Goldstone theorem respected
- 4quark Left-Right EDM: explicit breaking of chiral & isospin symmetries because of underlying W boson exchange → Goldstone theorem does not apply

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- quark EDM: $N\pi$ (and NN) interactions are **suppressed** by $\alpha_{em}/(4\pi)$
- gluon color EDM (and chiral-4quark EDM): relative $\mathcal{O}(M_{\pi}^2)$ suppression of $N\pi$ interactions because of Goldstone theorem

here: only absolute values considered

here: only absolute values considered

θ -term: **CP** π **NN** vertices determined from LECs Leading g_0^{θ} coupling (from c_5) Crewther et al.

Crewther et al. (1979); Ottnad et al. (2010); Mereghetti et al. (2011); de Vries et al. (2011); Bsaisou et al. (2013)

 g_0^{θ} : $N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ -vertex

$$\mathcal{L}_{\pi N} = \dots + c_5 2B N^{\dagger} \left((m_u - m_d) \tau_3 + \frac{2m^* \bar{\theta}}{F_{\pi}} \vec{\pi} \cdot \vec{\tau} \right) N + \dots$$
$$\delta M_{np}^{str} = 4B(m_u - m_d) c_5 \quad \rightarrow \quad g_0^{\theta} = \bar{\theta} \, \delta M_{np}^{str} \, (1 - \epsilon^2) \frac{1}{4F_{\pi}\epsilon}$$

 $\delta M_{np}^{em} \rightarrow \delta M_{np}^{str} = (2.6 \pm 0.5) \text{MeV} \qquad \text{Walker-Loud et al. (2012)}$ $\longrightarrow \boxed{g_0^{\theta} = (-0.018 \pm 0.007)\overline{\theta}}$

$$\epsilon = (m_u - m_d) / (m_u + m_d), \quad 4Bm^* = M_{\pi}^2 (1 - \epsilon^2), \quad m^* = \frac{m_u m_d}{m_u + m_d}$$

θ -term: subleading g_1^{θ} coupling (from c_1 LEC)

EDM of the Deuteron:

Deuteron (D) as Isospin Filter

note: $\underline{} = \frac{ie}{2}(1 + \tau_3)$

2N-system: I + S + L=odd

EDM of the Deuteron: NLO-and N²LO Potentials

EDM of the Deuteron: NLO-and N²LO Potentials

X: vanishing by selection rules, X: sum of diagrams vanishes
X: vertex correction

29|21

N²LO

EDM of the Deuteron: NLO and N²LO Currents

EDM of the Deuteron: NLO and N²LO Currents

×: vanishing by selection rules, ×: sum of diagrams vanishes

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_\rho} \sim 10^{-14} e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot F_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2}),$

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-})| / |\mathcal{A}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \text{ cm}$
- In SM (without θ term): extra $G_F F_{\pi}^2$ factor to *undo* flavor change

$$\Rightarrow |d_N^{\rm SM}| \sim 10^{-7} \times 10^{-24} e \, {\rm cm} \sim 10^{-31} e \, {\rm cm}$$

 $\Rightarrow The empirical window for search of physics BSM(θ=0) is$ 10⁻²⁴ e cm > |d_N| > 10⁻³⁰ e cm.

Chronology of upper bounds on the neutron EDM

Chronology of upper bounds on the neutron EDM

Smith, Purcell, Ramsey (1957)Baker et al. (2006)

 \hookrightarrow 5 to 6 orders above SM predictions which are out of reach !

Chronology of upper bounds on the neutron EDM

Smith, Purcell, Ramsey (1957)Baker et al. (2006)

 \hookrightarrow 5 to 6 orders above SM predictions which are out of reach !

EDM bounds from neutral particles

• Modern neutron EDM experiments at ILL, SNS, PSI, TRIUMF current $d_n = (0.2 \pm 1.5(\text{stat.}) \pm 0.7(\text{sys.})) \cdot 10^{-26} e \text{ cm}$ Baker et al. *PRL*'06 (ILL)

proposed $\sim 10^{-28} e \,\mathrm{cm}$

Proton (and neutron) EDM inferred from diamagnetic atoms current $|d(^{199}\text{Hg})| < 3.1 \cdot 10^{-29} e \text{ cm}$ (95% C.L.)

Griffith et al. PRL '09 (UW)

 $\Rightarrow |d_p| < 7.9 \cdot 10^{-25} e \,\mathrm{cm}$

Theory input from: Dimitriev & Sen'kov PRL '03

ongoing experiments on Ra, Rn, Xe, ...

 Electron EDM inferred from paramagnetic atoms or non-generate molecules:

non-generate molecules:

current
$$|d_e| < 8.7 \cdot 10^{-29} e \, \mathrm{cm}$$
(90% C.L.)from polar ThOBaron et al. Science '14 (ACME)

EDM measurement of neutral particles in a nutshell

ground state with s = 1/2:

Direct EDM searches with charged particles

in storage rings

General idea: Farley et al. *PRL*'04

Initially longitudinally polarized particles interact with radial \vec{E} field \Rightarrow build-up of vertical polarization (measured with a polarimeter)

Limit on muon EDM: $d_{\mu} < 1.8 \cdot 10^{-19} e \, \text{cm} \, (95 \, \% \, \text{C. L.})$ Bennett et al. (BNL g-2) PRL'09:

Proposed storage ring experiments (~ $10^{-29}e$ cm):

- Counter-circling proton ring at Brookhaven (srEDM) or Fermilab (Project X)?
- All-purpose ring for proton, deuteron (and helion) in Jülich (JEDI) ?

• \Rightarrow Precursor experiment ($\gtrsim 10^{-24} e \text{ cm}$) for *p* or *D* at COSY@Jülich ! Andreas Wirzba

CP violation in the Standard Model

The conventional source: Kobayashi-Maskawa mechanism

Empirical facts: 3 generations of u/d quarks (& e/ν leptons)

- quarks & leptons in mass basis ≠ quarks & leptons in weak-int. basis
- $\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{gauge-fermion} + \mathcal{L}_{gauge-Higgs} + \mathcal{L}_{Higgs-fermion}$ is CP inv.,
 - with the exception of the θ term of QCD (see later)

and the **charged-weak-current** interaction ($\subset \mathcal{L}_{gauge-fermion}$)

$$\mathcal{L}_{c-w-c} = -\frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{d}_{Li} \gamma^{\mu} V_{ij} u_{Lj} W_{\mu}^{-} - \frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{\ell}_{Li} \gamma^{\mu} U_{ij} \nu_{Lj} W_{\mu}^{-} + \text{h.c.}$$

V:3×3 unitary quark-mixing matrix
(Cabibbo-Kobayashi-Maskawa m.)

3 angles + 1 \mathcal{P} phase δ_{KM}

U: 3 × 3 unitary lepton-mixing matrix (Maki-Nakagawa-Sakata matrix)

3 angles +1(3) \mathcal{OP} phase(s) for Dirac (Majorana) ν_i 's

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \mathbf{J}_{\mathsf{KM}} \simeq 10^{-15} \mathbf{J}_{\mathsf{KM}},$$

$$\Rightarrow (n_B - n_{\bar{B}})/n_{\gamma}|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \text{ cm} \sim 10^{-34} e \text{ cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

1 loop:

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \frac{J_{\text{KM}}}{J_{\text{ariskog PRL '86}}}$$

$$\Rightarrow (n_B - n_{\bar{B}})/n_{\gamma}|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \text{ cm} \sim 10^{-34} e \text{ cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

2 loops:

$$d_{\text{quark}}^{2\text{-loop}} = d_{\text{chromo q}}^{2\text{-loop}} = 0$$

Shabalin Sov.J.NP '78

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \frac{J_{\text{KM}}}{J_{\text{ariskog PRL '86}}}$$

$$\Rightarrow (n_B - n_{\bar{B}})/n_{\gamma}|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \text{ cm} \sim 10^{-34} e \text{ cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

 $d_n^{\text{KM}} \simeq 10^{-32} e \text{ cm}$ because of long-range pion & 'strong penguin' Gavela; Khriplovich & Zhitnitsky ('82)

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \mathbf{J}_{\mathsf{KM}} \simeq 10^{-15} \mathbf{J}_{\mathsf{KM}},$$

$$\Rightarrow (n_B - n_{\bar{B}})/n_{\gamma}|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \text{ cm} \sim 10^{-34} e \text{ cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

EDM sources: QCD θ -term of the SM

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} (\mathcal{P} (\mathcal{P}) interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} - \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \quad \text{(note: } \epsilon^{0123} = -\epsilon_{0123} \text{ \& dim = 4)}$$

• Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $-\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} \bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow additional \text{ coupling constant is actually } \bar{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$

EDM sources: QCD θ -term of the SM

The topologically non-trivial vacuum structure of QCD

strong

induces a direct \mathcal{P} a $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} - \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \quad \text{(note: } \epsilon^{0123} = -\epsilon_{0123} \text{ \& dim = 4)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $-\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} \bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow additional \text{ coupling constant is actually } \bar{\theta} = \theta + \arg \det \mathcal{M}_{\text{ouark}}$
- Naive Dimensional Analysis (NDA) estimate of $\overline{\theta}$ -induced *n* EDM:

$$|d_n^{\bar{\theta}}| \sim \bar{\theta} \cdot \frac{m_q^*}{m_s} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1).$$

$$|d_n^{emp}| < 2.9 \cdot 10^{-26} e \,\mathrm{cm} \rightsquigarrow |\bar{\theta}| < 10^{-10}$$

Andreas Wirzba

Baker et al. PRL '0

EDM sources: QCD θ -term of the SM

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} a $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} - \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \quad \text{(note: } \epsilon^{0123} = -\epsilon_{0123} \text{ \& dim = 4)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $-\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} \bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow additional \text{ coupling constant is actually } \bar{\theta} = \theta + \arg \det \mathcal{M}_{\text{cuark}}$
- Naive Dimensional Analysis (NDA) estimate of $\overline{\theta}$ -induced *n* EDM:

$$\begin{split} |d_n^{\bar{\theta}}| \sim \bar{\theta} \cdot \frac{m_q^*}{m_s} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e\,\text{cm} \sim \bar{\theta} \cdot 10^{-16} e\,\text{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1). \\ 10^{-10} > |\bar{\theta}| > 10^{-14} \text{ eventually measurable via nonzero EDM, but} \\ \text{because of } \Lambda_{\chi SB} \ll \Lambda_{EWSB} \text{ it doesn't explain the cosmic matter surplus.} \\ \\ \text{Andreas Wirzba} \qquad 38|_{21} e^{-14} e$$

EDM sources: QCD θ -term of the SM

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} a $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} - \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \quad \text{(note: } \epsilon^{0123} = -\epsilon_{0123} \text{ \& dim = 4)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $-\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} \bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow additional coupling constant is actually \quad \bar{\theta} = \theta + \arg \det \mathcal{M}_{ouark}$
- Naive Dimensional Analysis (NDA) estimate of $\bar{\theta}$ -induced *n* EDM:

$$|d_n^{\bar{\theta}}| \sim \bar{\theta} \cdot \frac{m_q^*}{m_s} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1).$$

Thus \mathcal{QP} by new physics (NP) (*i.e.* dimension \geq 6 sources beyond SM) needed to explain the cosmic matter-antimatter asymmetry.

How to handle CP-violating sources beyond the SM?

New interactions as higher dimensional operators

Add to the SM all possible effective interactions

The new interactions appear as higher dimensional operators

$$\mathcal{L}_{\text{eft}} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{5}^{(i)}}{M_{\gamma'}} \mathcal{O}_{5}^{(i)} + \sum_{i} \frac{c_{6}^{(i)}}{M_{\gamma'}^{2}} \mathcal{O}_{6}^{(i)} + \dots$$

where M_{γ} is the scale of the *New Physics* particles

- Only the lowest dimensional operators should be important
- Hadronic EDMs: non-leptonic CP-violating operators of dim. 6 Not of dim. 5 because of Higgs insertion (chiral symm.) at high (low) scales

Andreas Wirzba

- All degrees of freedom beyond NP (EW) scale are integrated out:
 - \hookrightarrow Only SM degrees of freedom remain: $q, g, (H, Z, W^{\pm}, ...)$
- Write down *all* interactions for these *active* degrees of freedom that respect the SM+ Lorentz symmetries: here dim. 6 or higher order
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom *beyond NP (EW) scale* are integrated out:
 - \hookrightarrow Only SM degrees of freedom remain: $q, g, (H, Z, W^{\pm}, ...)$
- Write down *all* interactions for these *active* degrees of freedom that respect the SM+ Lorentz symmetries: here dim. 6 or higher order
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom beyond NP (EW) scale are integrated out:
 - \hookrightarrow Only SM degrees of freedom remain: $q, g, (H, Z, W^{\pm}, ...)$
- Write down *all* interactions for these *active* degrees of freedom that respect the SM+ Lorentz symmetries: here dim. 6 or higher order
- Need a *power-counting scheme* to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom *beyond NP (EW) scale* are integrated out:
 - \hookrightarrow Only SM degrees of freedom remain: $q, g, (H, Z, W^{\pm}, ...)$
- Write down *all* interactions for these *active* degrees of freedom that respect the SM+ Lorentz symmetries: here dim. 6 or higher order
- Need a *power-counting scheme* to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

