A Search for Axion-like Particles with a Horizontally Polarized Beam in a Storage Ring

Edward J. Stephenson, for JEDI Collaboration Indiana University

2019 Workshop on Polarized Sources, Targets, and Polarimetry, September 23-27, 2019

Axions proposed to explain the lack of CP violation. Electric dipole moments (EDMs) did not appear.

Axions are a candidate for interstellar dark matter.

One characteristic is the ability to induce oscillating EDM.

 $d = d_0 + d_1 \cos(\omega t + \varphi)$

Oscillation frequency connected to axion mass.

At the time of observation, the phase is unknown.

Idea: create an oscillating polarization, look for resonance at ω .

Description of the axion search (demonstration)

We start from a known COSY setup: polarized deuterons at 0.97 GeV/c Beam is electron (pre-)cooled with long, in-plane polarization lifetime.

Standard picture of frozen spin EDM experiment:

The frequency is unknown. So scan for it.

Then you will measure:

You may be lucky enough to cross the axion frequency.

Axion frequency

Flat regions allow for a precise before-after comparison.

Critical assumptions:

> The axion is coherent in space.
 All particles oscillate together.
 The axion is present in all of COSY.
 Axions are dense.

> The axion is coherent in time. It takes a few seconds to pass COSY. (only slow axions stay in galaxy, v[esc] ~ 550 km/s)

New data acquisition procedure – time stamp every event

Sample data

Distribution of beam around the ring as a function of time in the store.

Times are exponential decay rates.

phase in a single store with fixed spin tune

Program searches for highest amplitude in a narrow range.
To get maximum asymmetry stationary in one angle bin, spin tune must be accurate to < 1e-6. Normal scatter is usually < 1e-7.
Best error in phase is ~ 3° /s.
Downward slope means spin tune wrong by 3e-8 (δ ~ 10%).
EDM ring requirement is 1e-9 from feedback.

Problem: Axion phase is unknown.

Conduct search simultaneously with beams having perpendicular polarizations. Combine results for better signal.

Plan: Use 4 bunches...

Calibration based on tracking through rotational history

Test calibration

A system test was made using an RF Wien filter to generate signals similar to an axion. The signal response was also used to calibrate the polarization jump.

Check against Wien filter:

Frequency at maximum power level produces average $\varepsilon = 1.42 \times 10^{-7}$

Scale for ramp rate

predicted for 0.1 Hz/s $\Delta p = 0.736$

predicted for 0.05 Hz/s $\Delta p = 0.915$

In practice, random phase distributions resulted in a spread of jumps. We want the maximum.

Values in figures are the length of the diagonals.

 Δ asym B0 and B1 (ramp speed 0.112)

Typical jumps averaged over all cases:

 $0.1 \text{ Hz/s} \rightarrow \Delta(\text{pA}) = 0.0948$

 $0.05 \text{ Hz/s} \rightarrow \Delta(\text{pA}) = 0.1163$

∆ asym B1

