Accelerator Physics
Limitations on an EDM ring Design

Valeri Lebedev
Fermilab

November 10-11, 2014
EDM collaboration meeting
=>
March 13, 2015
Julich, Forschungszentrum
Contents

- Bending and Focusing with Pure Electric Field
 Optics code: http://www-ap.fnal.gov/~ostiguy/OptiM/
- Linear and non-linear optics
- IBS and Coulomb tune shift
- Spin precession and its suppression by a feedback system
- Suppression of vertical magnetic field
- Limitations and requirements for radial magnetic field

This presentation is aimed to discuss issues related accelerator physics

It is not aimed to make a credible suggestion for a ring
Coupling formalizm and IBS are described in: http://www.springer.com/gp/book/9781493908844
Electronic copy is also available there

Electrostatic bends do not change IBS formulas derived for circular machines based on magnetic field!!!
Bending and Focusing with Pure Electric Field

- Electric field in electrostatic bend
 - Non-linearities are present at fundamental level
 \[\varphi(r, z) = A_1 \ln \left(\frac{r}{R} \right) + \sum_{n=2}^{\infty} A_n \left(y^n - \frac{n(n-1)}{4} y^{n-2} r^2 \right) \]
 - If required \(E_y \) can be made linear:
 \[\Phi(x, y) = E_0 R_0 \left(\left(1 + \frac{m}{2} \right) \ln \left(1 + \frac{x}{R_0} \right) - \frac{m}{4} \left(1 + \frac{x}{R_0} \right)^2 - 1 \right) + \frac{m y^2}{2 R_0^2} \]
 \[\xrightarrow{x \ll R_0} E_0 R_0 \left(\frac{x}{R_0} - (1 + m) \frac{x^2}{2 R_0^2} + m \frac{y^2}{2 R_0^2} + (2 + m) \frac{x^3}{6 R_0^3} + O(x^4) \right) \]
 - Non-linear contribution to \(E_x \) is \(\Delta E/E_0 \approx (x/R_0)^2 \approx 10^{-7} \) \((\Delta G/G \approx (x/R_0) \approx 3 \cdot 10^{-4})\)
 It is well below expected manufacturing accuracy

- Electric field in electrostatic quadruple
 \[\varphi(\rho, \theta) = C_2 r^2 \cos(2\theta) + C_6 r^6 \cos(6\theta) + \ldots \implies \varphi(x, y) = G_0 \frac{x^2 - y^2}{2} + \ldots \]
 - Motion non-linearity comes from kin. en. change \((\Delta F/F \approx 2 \cdot 100 \text{ keV}/230 \text{ MeV} \approx 10^{-3})\)
 \[\frac{dp}{ds} = -\frac{e}{v} \nabla \varphi \approx -\frac{e}{v_0} \left(1 - \frac{\delta v}{v_0} \right) \nabla \varphi \approx -\frac{e}{v_0} \left(1 + \frac{e \varphi}{m c^2 \beta^2 \gamma^3} \right) \nabla \varphi = -\frac{e}{v_0} \left(\nabla \varphi + \frac{e}{2 m c^2 \beta^2 \gamma^3} \nabla (\varphi^2) \right) \]
 - It cannot be compensated by electrode geometry adjustments: \(\Delta (\varphi^2) \neq 0 \)
Linear Optics

Methods of optics analyses developed for magnet-based beam optics are directly applicable to the optics based on electrostatics

- Difference comes from kinetic energy change in electric field
 \[K = E_0 - e\phi \]

- Analysis is based on transfer matrix
 - kinetic energy is the same in drifts => K changes are irrelevant

Transfer matrix of electric bend (see H. Wollnik, “Optics of charged particles”)

\[
M = \begin{bmatrix}
 c_x & s_x & 0 & 0 & 0 & d_x N_t \\
 -k_x^2 s_x & c_x & 0 & 0 & 0 & s_x N_t / R_0 \\
 0 & 0 & c_y & s_y & 0 & 0 \\
 0 & 0 & -k_y^2 s_y & c_y & 0 & 0 \\
 -s_x N_t / R_0 & -d_x N_t & 0 & 0 & 1 & -N_t^2 t_d \\
 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}, \quad V = \begin{bmatrix}
x \\
\theta_x \\
y \\
\theta_y \\
s \\
\Delta \rho / p
\end{bmatrix}
\]

!!! In this definition \(M_{56} \) accounts for the effective orbit lengthening
 - includes both orbit lengthening and velocity change due to radial displacement in the bend
 - Does not include the effect of velocity change due to momentum change outside bend - standard acc. phys. definition.
Weak Focusing Ring

- **Major part of focusing comes from bends, m≈0.2**
- **Ring structure**
 - 14 periods:
 - each include electric bending with $R_0=40 \text{ m}$ and 0.834 m drift
 - Gap between plates 3 cm, Voltage ±157 kV
 - Small variations of β-functions excited by drifts, constant dispersion
 - Large beta-functions \Rightarrow Ring is extremely sensitive to focusing errors
 - Trim quads are required for final tuning and optics correction
 - GdL≈2 kV/cm² for tune correction
"Strong" Focusing Ring

Ring structure

- Same 14 periods. Each includes:
 - 2 electric bends with $R_0 = 40\,\text{m}$ and $L = 8.97\,\text{m}$
 - Gap between plates 3 cm, $V = \pm 157\,\text{kV}$,
 - $m = 0$ (no vert. focusing)
 - 2 electric quads, one F and one D
 - $L = 15\,\text{cm}$, $G_F = 17.2\,\text{kV/cm}^2$, $G_D = -13.8\,\text{kV/cm}^2$
 - Each quad can be independently adjusted for optics correct.

- One of two 80 cm gaps between quads and bends are filled with
 - H or V corrector, skew-quad corrector, F or D sextupole, and BPM
 - Other can be used by experiment, + RF cavity

- Circumference - 300 m
- Kinetic energy - 232.79 MeV
Weak Focusing versus “Strong” Focusing

<table>
<thead>
<tr>
<th></th>
<th>Weak foc.</th>
<th>Strong foc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic energy [MeV]</td>
<td>232.79</td>
<td></td>
</tr>
<tr>
<td>Number of periods</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Circumference [m]</td>
<td>263</td>
<td>300</td>
</tr>
<tr>
<td>Focusing parameter in bends, m</td>
<td>0.199</td>
<td>0</td>
</tr>
<tr>
<td>Tunes, Q<sub>x</sub> /Q<sub>y</sub></td>
<td>1.229 / 0.456</td>
<td>2.32 / 0.31</td>
</tr>
<tr>
<td>Maximum beta-function, β<sub>x</sub>/β<sub>y</sub> [m]</td>
<td>34 / 91.7</td>
<td>29.1 / 204</td>
</tr>
<tr>
<td>Dispersion</td>
<td>45.5</td>
<td>17.35</td>
</tr>
<tr>
<td>Maximum momentum deviation: Δp/p<sub>max</sub></td>
<td>±3.3·10<sup>-4</sup> ♦</td>
<td>±8.6·10<sup>-4</sup> ♦</td>
</tr>
<tr>
<td>Rms momentum spread</td>
<td>1.1·10<sup>-4</sup> ♦</td>
<td>2.9·10<sup>-4</sup> ♦</td>
</tr>
<tr>
<td>Hor. norm. acceptance [mm mrad]</td>
<td>5 ♦</td>
<td>5.8 ♦</td>
</tr>
<tr>
<td>Hor. /vert. norm. emittance [mm mrad]</td>
<td>0.56 ♦/1.52</td>
<td>0.31 ♦/2.2 ♦</td>
</tr>
<tr>
<td>Revolution frequency [kHz]</td>
<td>682.1</td>
<td>597.3</td>
</tr>
<tr>
<td>Momentum compaction, α</td>
<td>1.785</td>
<td>0.51</td>
</tr>
<tr>
<td>Slip-factor: η = α - 1/γ<sup>2</sup></td>
<td>1.144</td>
<td>-0.132</td>
</tr>
<tr>
<td>Transition energy (γ<sub>tr</sub> = 1/√α), [MeV]</td>
<td>N/A ♦</td>
<td>376</td>
</tr>
</tbody>
</table>

* Limited by distance between bending plates (2a=3 cm)
* Operation above transition because α>1
♦ Set by IBS
Tune Diagram for Weak Focusing Ring

- Working tunes are very close to 6-th and 8-th order resonances
- Their effect will be suppressed by quite small variations of β-functions. However simulations with realistic errors are required to understand effect of beam space charge on particle stability
 - But actual problem is IBS
- Distance to 4-th order resonance, $3Q_x+Q_y=4$, is ~ 0.04. It is sufficient to accommodate the space charge tune shifts
Tune Diagram for “Strong” Focusing Ring

- Additional focusing adjustments \((F_x & F_y)\) instead of parameter \(m\)
 - Larger flexibility in choice of beam optics

- Considerable space in the tune diagram
 - Distance to 4-th order resonances is \(\sim 0.06\). It is sufficient to accommodate the space charge tune shifts

- Weak vertical focusing was chosen for control of radial magnetic field
 - It results in high sensitivity to focusing errors

- “Strong” focusing ring has
 - larger area in the tune diagram
 - Larger momentum acceptance
 - operates above transition \(\Rightarrow\) better for IBS (see below)
RF and Related Parameters

- Synchrotron frequency has to be large enough to minimize spin decoherence within one synchrotron period but small relative to the distance to strong resonances

- Sum of bunch lengths, $n_b\sigma_s$, has to be as large as possible to reduce space charge tune shifts and IBS
 - Bucket height, $\Delta p/p|_{\text{bucket}}$, has to be only slightly larger than the longitudinal acceptance, $\Delta p/p|_{\text{max}}$, but linearity is still desirable

 \[Q_s = \sqrt{\frac{heV_0\eta}{2\pi mc^2\gamma}\frac{2Q_s}{h\eta}} \]

 \[\frac{\Delta p}{p|_{\text{bucket}}} = \frac{2Q_s}{h\eta} \]

 \[\sigma_s = \frac{C\eta\sigma_p}{2\pi Q_s} \]

 \[\Rightarrow \frac{\Delta p/p|_{\text{bucket}}}{\Delta p/p|_{\text{max}}} = 1.5 \]
Coupling between Transverse and Longitudinal Motions

- Large dispersion results in coupling between x and s motions
- However for chosen RF voltage this coupling is sufficiently small even for the soft focusing ring considered above
 - It has a weak dependence on number of cavities => 1 cavity looks OK
 - It results in minor changes in tunes

\[
N_{\text{cav}} = 1
\]
\[
Q_1 = 0.22858 \quad Q_x = 1.22883
\]
\[
Q_2 = 0.45634 \quad Q_y = 0.45634
\]
\[
Q_3 = 0.01991 \quad Q_s = 0.01987
\]

\[
\frac{v_1}{v_{10}} = \begin{pmatrix}
1 \\
2.938 \times 10^{-4} \\
0 \\
0 \\
1.349i \\
4.003 \times 10^{-7}
\end{pmatrix}
\]

\[
\frac{v_3}{v_{34}} = \begin{pmatrix}
-0.019i \\
4.003 \times 10^{-7} \\
0 \\
0 \\
1 \\
-4.14i \times 10^{-6}
\end{pmatrix}
\]

- and a change in the horizontal beta-function from \(\beta_x = 33.99 \text{ m} \) to \(\beta_{x1} = 34.10 \text{ m} \) (in Mais-Ripken representation)
- As one can see from the above eigen-vector corresponding to horizontal betatron oscillations, \(v_1 \), the betatron motion is accompanied by the longitudinal motion
 - at the cavity location the motions are shifted in phase by 90 deg.
 - 1\(\sigma \) horizontal motion makes 0.025\(\sigma \) synchrotron motion
Requirements to Manufacturing and Installation of Bending Plates

- The plate bending radius in the vertical plane is \(R_y = \frac{R_0}{m} = 201 \text{ m} \)
 - For vertical displacement \(y_{\text{plate}} = 10 \text{ cm} \) it yields \(\delta x \) of 25 \(\mu \text{m} \)
 - Looks close to impossible to manufacture and install with required accuracy

- Non-parallel plates (non-concentric plate surfaces) create skew-quad field with gradient \(G_s = \frac{\theta E_0}{a} \), where \(\theta \) is the angle between plates
 - Requirement to have this skew gradient much smaller than the gradient of vertical focusing field, \(\frac{\theta E_0}{a} \ll \frac{m E_0}{R_0} \), yields: \(\theta \ll 1.5 \cdot 10^{-4} \)
 - with margin of 100 (skew quads are still required) one obtains very tight requirement: \(\theta < 1.5 \cdot 10^{-6} \)

- Looks like that the required mechanical and installation accuracies are too tight => “Soft-focusing -> Normal quad focusing machine!!!”
Space Charge Tune Shifts

- Space charge tune shift is weakly affected by ring optics
 \[\Delta Q \approx \frac{r_p}{(2\pi)^{3/2}} \frac{\beta^2 \gamma^3}{\sigma_s^3} \frac{N_p}{2\varepsilon} \]

- Exact formulas were used

- Beam emittances and momentum spreads are set by aperture (gap)

- Requirement to have sufficiently small IBS sets the beam current for soft-focusing ring

- Tune shifts due to space charge are the main beam current limitation for strong focusing ring

- The tune shift due to counter rotating beam, \(\sqrt{2\pi C / N_b \sigma_s} \approx 5.5 \), is smaller and does not represent a problem

<table>
<thead>
<tr>
<th></th>
<th>Weak foc.</th>
<th>Strong foc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons per bunch:</td>
<td>(N_p)</td>
<td>1.5 (\cdot 10^8)</td>
</tr>
<tr>
<td>Beam current, [mA]</td>
<td>1.1</td>
<td>4.7</td>
</tr>
<tr>
<td>(\Delta Q_x / \Delta Q_y), [10^{-3}]</td>
<td>4.7/6.6</td>
<td>15/27</td>
</tr>
</tbody>
</table>

\[\Delta Q_x = \frac{r_p N_p C}{(2\pi)^{3/2}} \frac{\beta_x}{\sigma_s^3 \left(\sigma_x + \sigma_y \right) \sigma_x} \]
\[\Delta Q_y = \frac{r_p N_p C}{(2\pi)^{3/2}} \frac{\beta_y}{\sigma_s^3 \left(\sigma_x + \sigma_y \right) \sigma_y} \]
IBS

- IBS is the major source of emittance growth and, consequently, the major source of particle loss
- Dependence of potential energy on radial position in the electrostatic bend yields an additional term to the dependence of average particle momentum on radius
 - However it does not change local velocity spreads => “standard” IBS theory is applicable
- For the case when derivatives of dispersions and beta-functions can be neglected the growth rates for Gaussian beam are expressed by comparatively simple formula

\[
\frac{d}{dt}\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\sigma_p
\end{bmatrix} = \frac{r_p c N_p L_c}{4 \sqrt{2} \beta^3 \gamma^5 \sigma_x \sigma_y \sigma_z \sqrt{\theta_x^2 + \theta_y^2 + \theta_p^2}} \left[\begin{bmatrix}
\beta_x \psi(\theta_x, \theta_y, \theta_p) + \gamma^2 \frac{D_z}{\beta_x} \psi(\theta_p, \theta_x, \theta_y) \\
\beta_y \psi(\theta_y, \theta_x, \theta_p) \\
\gamma^2 \beta_x \psi(\theta_p, \theta_x, \theta_y)
\end{bmatrix} - \begin{bmatrix}
\beta_x \psi(\theta_x, \theta_y, \theta_p) \\
\beta_y \psi(\theta_y, \theta_x, \theta_p) \\
\gamma^2 \beta_x \psi(\theta_p, \theta_x, \theta_y)
\end{bmatrix} \right],
\]

\[
\begin{aligned}
\sigma_x &= \sqrt{\varepsilon_x \beta_x + (\sigma_p D_z)^2}, \\
\sigma_y &= \sqrt{\varepsilon_y \beta_y}, \\
\theta_x &= \sqrt{\varepsilon_x / \beta_x}, \\
\theta_y &= \sqrt{\varepsilon_y / \beta_y}, \\
\theta_p &= \sigma_p \sqrt{\varepsilon_p \beta_z} / (\gamma \sigma_x), \\
L_c &= \ln(\sqrt{\sigma_x \sigma_y / r_{min}}), \\
r_{min} &= 2r_p / (\beta^2 \gamma^2 (\theta_x^2 + \theta_y^2 + \theta_p^2))
\end{aligned}
\]

\[
\Psi(x, y, z) = \frac{\sqrt{2} \sqrt{x^2 + y^2 + z^2}}{3 \pi} \left(y^2 R_d(z^2, x^2, y^2) + z^2 R_d(x^2, y^2, z^2) - 2x^2 R_d(y^2, z^2, x^2) \right), R_d(x, y, z) = \frac{3}{2} \int_0^\infty \frac{dt}{\sqrt{(t+x)(t+y)(t+z)^3}}
\]

- Growth rates look significantly more complicated in the general case
 - Exact formulas are used in below estimates
IBS for the Weak and Strong Focusing Rings

- **Weak focusing ring**
 - Operates above transition
 - It is impossible to get to a quasi-equilibrium between temperatures of planes
 ⇒ Fast emit. growth
 - Emittance growth leads to particle loss which determines the experiment time scale
 - 1000 s measurement
 ⇒ IBS growth rates to be greater or about 300 s (see below)
 ⇒ Protons per bunch

- **Strong focusing ring**
 - IBS is suppressed in a quasi-equilibrium state
 - Beam space charge is the major limitation

<table>
<thead>
<tr>
<th></th>
<th>Weak foc.</th>
<th>Strong foc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons per bunch</td>
<td>$1.5\cdot10^8$</td>
<td>$7\cdot10^8$</td>
</tr>
<tr>
<td>$\Delta Q_x/\Delta Q_y$, $[10^{-3}]$</td>
<td>4.7/6.6</td>
<td>15/27</td>
</tr>
<tr>
<td>$\tau_x=\varepsilon_x/(d\varepsilon_x/dt)[s]$</td>
<td>305</td>
<td>7500</td>
</tr>
<tr>
<td>$\tau_y=\varepsilon_y/(d\varepsilon_y/dt)[s]$</td>
<td>-1400</td>
<td>7500</td>
</tr>
<tr>
<td>$\tau_s=\varepsilon_s/(d\varepsilon_s/dt)[s]$</td>
<td>250</td>
<td>7500</td>
</tr>
</tbody>
</table>
Growth Rates and Beam Lifetime

- In the above emit. growth rate calculations we assume (1) the beam distribution stays Gaussian and (2) there is no boundaries, i.e. particle loss
- Boundaries => the beam loss
 - When the beam size approaches aperture the particle distribution comes to the equilibrium shape which form does not change
 ⇒ exponential intensity decay
 - Simple model to estimate the beam lifetime
 - Hor. and long. growth rates are equal
 - Vertical growth rate is zero
 - Diffusion does not depend on coordinates

=> Diffusion equation in 4D phase space \((x, \theta_x, s, \Delta p/p)\)

\[
\frac{\partial f}{\partial t} = D \Delta_4 f
\]

- Here all variables are normalized to the gap between plates and we assume the growth rates inside each plane \((x, \theta_x)\) & \((s, \Delta p/p)\) are equal due to mixing by betatron or synchrotron motions
IBS Growth Rates and Beam Lifetime (continue)

- Taking into account that particle scraping happens due to both betatron and synchrotron motion we obtain the boundary condition

 \[f(t, R)_{R=a} = 0, \quad R = \sqrt{x^2 + \Theta_x^2 + s^2 + \Theta_s^2} \]

- Looking for spherically symmetric solution with exponential decay in time we obtain ordinary differential equation for the distribution function

 \[-\lambda f = D \frac{1}{R^3} \frac{d}{dR} \left(R^3 \frac{df}{dR} \right), \quad f(a) = 0 \]

 Solution is

 \[f(R) = 2J_1(\mu_{11}R/a)/(R/a) \]

- Integrating it over \(s, \Theta_x, \Theta_s \) we obtain particle distribution, \(n(x) \)

- Taking into account that diffusion depends on \(N_p \) we obtain a dependence of particle population on time

 \[N(t) = \frac{N_p}{1 + \lambda_D t}, \quad \lambda_D \approx \frac{\mu_0^2}{n_\sigma (\tau_x + \tau_s)}, \quad n_\sigma \approx 2.96, \quad \tau_x \approx \tau_s \]

An independent re-analysis of the storage ring proton EDM concept, Valeri Lebedev,
Effect of Voltage Ripple on Coherent Spin Precession

- Spin precession

\[
\frac{ds}{dt} = \frac{e}{m_p c} s \times \left(\left(\frac{g_p - \gamma - 1}{2} \right) B - \left(\frac{g_p - 1}{2} \right) \gamma (\beta \cdot B) \beta - \left(\frac{g_p - \gamma}{2} \right) \beta \times E \right), \quad a_p = \frac{g_p - 2}{2}
\]

- Neglecting drifts and assuming uniform field variation along the ring

\[
\Omega_s - \Omega_0 = \frac{e}{m_p c} \left(a_p B_y - \left(\frac{1}{\gamma^2 \beta^2 - a_p} \right) \beta E_r \right), \quad a_p \approx 1.793
\]

- Magic moment: \(\gamma^2 \beta^2 = 1/a_p \Rightarrow K = 232.792 \text{ MeV}, \quad pc = 700.74 \text{ MeV/c} \)

- RF frequency in storage ring can be stabilized to very high accuracy

- That stabilizes the revolution frequency
- Variation of voltage between plates results in
 - Electric field change
 \(\Rightarrow \) Orbit change
 - but the revolution frequency stays the same

\[
\frac{\Omega_s - \Omega_0}{\Omega_0} = \gamma \left(a_p \frac{\beta B_y}{E_0} + \frac{\Delta E + \beta B_y}{E_0} \frac{2}{\gamma^2 \beta^2 - m} \right) \xrightarrow{\gamma^2 \beta^2 = 1/a_p, m=0.2} \approx 5.5 \frac{B_y}{E_0} + 7 \frac{\Delta E}{E_0}, \quad B_y \ll E_0
\]

- RF frequency stabilization increases magnetic field effect by \(~3\) times
- For \(\Delta E/E_0=10^{-5} \) we obtain spin precession of \(49.7 \text{ Hz} \)
 - Accounting for the drifts (soft. foc.) changes this number to \(50.3 \text{ Hz} \)

An independent re-analysis of the storage ring proton EDM concept, Valeri Lebedev, December 9-10, 2013
Feedback to Suppress Spin-walk due to Voltage Variations

- Definition of spectral density of voltage ripple

\[
\frac{U(t)^2}{U^2} = \int_{-\infty}^{\infty} P_U(\omega) d\omega, \quad K_U(\tau) = \frac{U(t)U(t+\tau)}{U^2} = \int_{-\infty}^{\infty} P_U(\omega)e^{i\omega \tau} d\omega
\]

- Feedback effect on the spin-motion (analog system is assumed)

\[
\begin{aligned}
\frac{ds_x}{dt} &= \kappa_E \left(\frac{\Delta U(t)}{U} + V \right) \\
\Rightarrow \frac{ds_x}{dt} &= \kappa_E \left(\frac{\Delta U(t)}{U} - KS_x \right) \\
V &= -KS_x
\end{aligned}
\]

where \(\tau_0 = 1 / (\kappa_K K) \), \(|s| = 1 \), \(\kappa_E = \frac{4\pi \gamma f_0}{\gamma^2 \beta^2 - m} \)

- Combining we obtain rms fluctuations of spin deviation from velocity direction due to voltage fluctuations of the bending voltage

\[
\Delta s_x^2 \bigg|_U = \kappa_E^2 \int_{-\infty}^{\infty} \frac{P_U(\omega) d\omega}{\omega^2 + 1/\tau_0^2}
\]

- If the spectral density width is narrower than the system bandwidth, \(1/\tau_0 \), then the spin motion is determined by rms voltage fluctuations

\[
\Delta s_x^2 \approx \kappa_E^2 \int_{-\infty}^{\infty} \frac{P_U(\omega) d\omega}{1/\tau_0^2} = \kappa_E^2 \tau_0^2 \frac{\Delta U^2}{U^2}
\]
Shot Noise in the Spin Measurement System

- Each proton makes pulse $u(t) \Rightarrow$ the spectral density of spin signal is

$$P_u(\omega) = 2\pi \dot{n} \left| S_\omega \right|^2, \quad S_\omega = \frac{1}{2\pi} \int u(t) dt$$

where $\dot{n} \equiv \frac{dn}{dt}$ is the rate of particles in the measurement system

- It results in the spectral density of V value

$$P_V(\omega) = \left| \frac{S_\omega(\omega)}{S_\omega(0)} \right|^2 \frac{K^2}{2\pi \dot{n} \Delta A^2},$$

where Δ is polarimeter resolution efficiency ($A\approx0.6$ used, need more realistic value)

- That yields the rms fluctuations of spin deviation from velocity direction due to shot noise

$$\Delta S_x^2 \left| S \right| = \frac{1}{2\pi \dot{n} \Delta A^2} \int \left| \frac{S_\omega(\omega)}{S_\omega(0)} \right|^2 \frac{d\omega}{1 + \omega^2 \tau_0^2}$$

Here we assume that duration of single particle signal is much smaller than the damping time

- Otherwise more complicated integro-differential equation needs to be used (next slide)
System stability with a finite decay time of single particle signal

Let’s consider system where signal of each particle exponentially decays with time: \[u(t) = u_0 e^{-t/t_a} \],

\[\Rightarrow \quad \text{corresponding spectral density ratio is:} \]

\[\left| \frac{S_\omega(\omega)}{S_\omega(0)} \right|^2 = \frac{1}{1 + \omega^2 \tau_a^2} \]

The equation describing the system response is now changing to:

\[\frac{ds_x}{dt} = -\frac{s_x}{\tau_0} \Rightarrow \frac{ds_x}{dt} = -\frac{1}{\tau_0} \int_{-\infty}^{t} s_x(t')e^{-\frac{t-t'}{\tau_a}} \frac{dt'}{\tau_a} \]

Differentiating and using the original equation one obtains an ordinary differential equation

\[\frac{d^2s_x}{dt^2} = -\frac{1}{\tau_a} \frac{ds_x}{dt} - \frac{s_x}{\tau_0 \tau_a} \]

The solution is:

\[s_x = s_x e^{-t/\tau}, \quad \frac{1}{\tau} = \frac{1}{2\tau_a} \pm \sqrt{\left(\frac{1}{2\tau_a} \right)^2 - \frac{1}{\tau_0 \tau_a}} \]

The system loses stability with \(\tau_a > \tau_0 / 4 \), otherwise it’s response is close to the response for the original first order equation.
Optimization of Polarimeter

- Shot noise in polarimeter limits performance of the spin-feedback
 - Maximum possible percentage of lost protons needs to be used in polarimeter

- Two step scattering (similar to Tevatron collimation system)
 - Thin primary target
 - Particle with typical impact parameter of ~ 1 μm does not leave this target through its side
 \[\Rightarrow \text{2 mm graphite yields 1.6 mrad rms angle} \]
 - Thick major target (50 cm downstream, 50 mm graphite)
 - Half of the particles scattered in primary collimator gets to it
 - Probability of nuclear scattering in major target ~10%
 - 50 cm between targets is chosen to reduce probability of particle to get out on side
 - It would reduce probability of nuclear interaction
 - Energy lost is ~100 MeV
 - Particle detector intercepts major fraction of particles lost in the target => ~3% of lost particles will make useful signal
Estimate of Spin Fluctuations due to Voltage Ripple and Shot Noise in the Spin Measurement System

- For exponential decay of single particle system we have
 \[
 \Delta s_x^2 \bigg|_S = \frac{1}{2\pi nA^2} \int_{-\infty}^{\infty} \frac{S_\omega(\omega)}{S_\omega(0)} \frac{d\omega}{1 + \omega^2 \tau^2} = \frac{1}{2\pi nA^2} \int_{-\infty}^{\infty} \frac{d\omega}{1 + \omega^2 \tau^2 \left(1 + \omega^2 \tau_a^2\right)} = \frac{1}{2nA^2 \left(\tau_0 + \tau_a\right)}
 \]

- For \(\tau_a < \tau_0/4\) we can neglect \(\tau_a\) in denominator. That yields the total spin fluctuations:
 \[
 \Delta s_x^2 \bigg|_{tot} = \Delta s_x^2 \bigg|_S + \Delta s_U^2 \approx \frac{1}{2nA^2 \tau_0} + \kappa_E^2 \tau_0 \frac{\Delta U^2}{U^2}
 \]

- Optimum damping rate and resulting spin motion are:
 \[
 \frac{1}{\tau_0}_{opt} \approx 3\sqrt{\frac{4nA^2 \kappa_E^2 \Delta U^2}{U^2}}, \quad \sigma_S \equiv \Delta s_x^2 \bigg|_{\text{@opt}} \approx \frac{3}{2} \sqrt{\frac{\kappa_E^2 \Delta U^2}{2n^2 A^4 U^2}}
 \]

- We imply here that 3% of lost particles is intercepted by spin measurement system

- Number of particles left after \(~1000~s\) is insufficient to support further operation of spin feedback
Vertical Magnetic Field Compensation

- Magnetic field does not change as fast as electric field and a suppression its fluctuations with feedback system is easier.
- Vertical component of magnetic field
 - To nullify $<B_y>$ we can use the second spin feedback which measures the horizontal spin precession of the counter rotating beam and corrects it with vertical magnetic field excited by coils.
 - only average magnetic field needs to be compensated
 - 0.1 rad after 1000 s corresponds $\Delta B_y=0.058 \, \mu G$
 - Keeping the spin horizontal components equal to zero for both beams keeps us at the magic energy if $dB_y/dx = 0$.
 - Otherwise the beam separation introduced by magnetic field makes average magnetic field different for both beams
 - \Rightarrow slightly different energies
Effect of Radial Magnetic Field

- First assume that B_x does not change along circumference. Then, β has only longitudinal component, and the spin precession into vertical plane is:

$$\frac{ds_y}{dt} = \frac{e}{m_p c} \left(\left(\frac{g_p}{2} - \frac{\gamma - 1}{\gamma} \right) B_x s_z + \left(\frac{g_p}{2} - \frac{\gamma}{\gamma + 1} \right) \beta E_y s_z \right)$$

- Equation of motion bounds electrical and magnetic fields

 - That yields

 $$\frac{dp_y}{dt} = e \left(E_y + \beta B_x \right) = 0 \quad \Rightarrow \quad E_y = -\beta B_x$$

 $$\frac{ds_y}{dt} = \frac{e}{m_p c} \left(\left(\frac{g_p}{2} - \frac{\gamma - 1}{\gamma} \right) - \left(\frac{g_p}{2} - \frac{\gamma}{\gamma + 1} \right) \beta^2 \right) B_x s_z \quad \text{At magic energy}$$

 $$\approx \frac{e}{m_p c} \left(2.59 - 0.8 \right) B_x s_z$$

 - Thus, electric field which comes from the vertical focusing reduces the spin precession by about 30%

 - Effect has the same sign for both counter-rotating beams. It mimics EDM

- The half-separation of beams comes from: $mE_0 \Delta y / R_0 = \beta B_x$

 - It is directly related to the spin precession to the vertical plan

 $$\frac{\Omega_{sy}}{\Omega_0} \equiv \frac{1}{\Omega_0} \frac{ds_y}{s_z dt} = m \gamma \left(\left(\frac{g_p}{2} - \frac{\gamma - 1}{\gamma} \right) - \left(\frac{g_p}{2} - \frac{\gamma}{\gamma + 1} \right) \beta^2 \right) \frac{\Delta y}{R_0} \quad \text{At magic energy}$$

 $$\approx 2.24 m \frac{\Delta y}{R_0}$$

 $$\Rightarrow 5 \cdot 10^{-6} \text{ rad after } 1000 \text{ s} \Rightarrow B_x \approx 0.29 \text{ pG} \quad \text{and} \quad \Delta y \approx 0.1 \text{ pm}$$

An independent re-analysis of the storage ring proton EDM concept, Valeri Lebedev, December 9-10, 2013
Limitations on Radial Magnetic Field Cancellation

- Typical values of residual magnetic fields
 - in SC cavities ~10 mG
 - in high precision experiments with active suppression in small volume ~ 1 μG

- In our estimate we assume that
 - the magnetic field is suppressed to 1 μG
 - we have 14 infinite accuracy BPMs
 - after correction of differential orbit for counter rotating beams we assume the magnetic field being distributed in worst possible scenario

\[
B_x(s) = \frac{m_p c^2 \gamma}{e} \left(\left(k^2 - k^2 \right) \cos(ks) + k^2 \right) A_y, \quad k = \frac{2\pi}{C} N_{BPM}, \quad \kappa = \frac{2\pi}{C} Q_y, \quad N_{BPM} = 14
\]

which corresponds to the beam displacement of

\[
y(s) = \left(1 + \cos(ks) \right) A_y
\]

- \(B_{max} = 1 \mu G \) yields \(A_y = 380 \text{ pm} \) and the average \(\overline{B_x} = \Delta B_{max} \left(Q_y / N_{BPM} \right)^2 = 1.06 \text{ nG} \)
Limitations on Radial Magnetic Field Cancellation

- The above estimate results in that it does not make much sense to have
 - BPM accuracy better than ~50 pm and that

- the best expectations for average magnetic field cancellation is about 1 nG if 1 μG is achieved in non-beam measurements

- This is 4 orders of magnitude worse than the desired values
 - Note that 1 μG field used in the estimate looks as extremely optimistic requirement
 - Note that this residual field is not determined by random fluctuations and therefore cannot be averaged out with more measurements
Sources of Magnetic Field Gradient

- Eddy magnetic field in the cavity is the major source of magnetic field gradient and, consequently, magnetic field
 - Beam crosses the cavity at zero voltage
 \[\int GdL_{\text{cavity}} \approx \frac{\omega_{RF} V_{RF}}{2c} \approx 0.22 \, G \] for \(V_{RF}=13 \, kV \)
 - For the differential precession rate <5 nrad/s we obtain the beam offset from the cavity center < 0.35 nm
 - Typical microseism > 1 \(\mu \text{m} @ \sim 1 \text{ s} \)
 \[\Rightarrow \text{we need 3000 times suppression} \]

- Main limitations on beam position measurements
 - Shot noise after 1 sec averaging ~ 60 pm @ full intensity
 - Thermal noise with 5 k\(\Omega \) coupling impedance and room temperature amplifier ~ 50 pm in 10 Hz band @ full intensity

- These accuracy limitations correspond to expectations from the previous slide
- Can we achieve such accuracy?
 - Systematic errors are expected to be the main problem
Conclusions

- Overall concept of proton EDM electrostatic machine is not limited by the considered beam-physics issues
- Judged on pure acceleration physics grounds the strong focusing ring looks better than the soft focusing ring
 - Larger momentum acceptance and particle number
 - Suppressed IBS rates

<table>
<thead>
<tr>
<th></th>
<th>Soft focusing</th>
<th>Strong focusing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference, m</td>
<td>263</td>
<td>300</td>
</tr>
<tr>
<td>Qx/Qy</td>
<td>1.229/0.456</td>
<td>2.32/0.31</td>
</tr>
<tr>
<td>Particle per bunch</td>
<td>1.5·10^8</td>
<td>7·10^8</td>
</tr>
<tr>
<td>Coulomb tune shifts, ΔQx/ΔQy</td>
<td>0.0046/0.0066</td>
<td>0.0146/0.0265</td>
</tr>
<tr>
<td>Rms emittances, x/y, norm, μm</td>
<td>0.56/1.52</td>
<td>0.31/2.16</td>
</tr>
<tr>
<td>Rms momentum spread</td>
<td>1.1·10^{-4}</td>
<td>2.9·10^{-4}</td>
</tr>
<tr>
<td>IBS growth times, x/y/s, s</td>
<td>300/(-1400)/250</td>
<td>7500</td>
</tr>
<tr>
<td>RF voltage</td>
<td>13</td>
<td>10.3</td>
</tr>
<tr>
<td>Synchrotron tune</td>
<td>0.02</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Analysis of spin decoherence for both rings is required to see their potential for EDM

- In particular, the sensitivity of spin decoherence to sextupoles

Small vertical tune requires exceptionally high mechanical accuracies of bending plates manufacturing

- Corrections are required for any ring
- At minimum a standard set: dipole correctors, trim quads, skew-quads and sextupoles.
- Note that all soft-focusing machines which were built had much larger ratio of the gap to radius
 - It greatly alleviates problems

2 feedback systems are required to cancel the vertical magnetic field and keep the spin aligned along velocity

It is not feasible how the average radial magnetic field can be suppressed below 1 nG

- It is already unprecedented level of magnetic field suppression for such large vacuum chamber
- Looks like we are above the desired value by about 4 order of magnitude
500 m Electric Ring: IBS and Beam Parameters

Valeri Lebedev
Fermilab

December 24, 2014
Optics

Main parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>232.792 MeV</td>
</tr>
<tr>
<td>Circumference</td>
<td>500 m</td>
</tr>
<tr>
<td>Qx/Qy</td>
<td>2.42/0.44</td>
</tr>
<tr>
<td>Number of super-periods</td>
<td>4</td>
</tr>
<tr>
<td>FODO sells per super period</td>
<td>6</td>
</tr>
<tr>
<td>FODO sell length</td>
<td>20.833333 m</td>
</tr>
<tr>
<td>Number of arcs</td>
<td>4</td>
</tr>
<tr>
<td>Sells per arc</td>
<td>5</td>
</tr>
<tr>
<td>Number of straights</td>
<td>4</td>
</tr>
<tr>
<td>Sells per straight</td>
<td>1</td>
</tr>
<tr>
<td>Bends per half cell</td>
<td>3</td>
</tr>
<tr>
<td>Bending radius</td>
<td>52.3089</td>
</tr>
<tr>
<td>Gap</td>
<td>3 cm</td>
</tr>
<tr>
<td>Bending voltage</td>
<td>±120 kV</td>
</tr>
<tr>
<td>Slip-factor, $\eta=\alpha-1/\gamma^2$</td>
<td>-0.192</td>
</tr>
</tbody>
</table>
Structure of FODO half-cell in arc (other half is mirror symmetric)

<table>
<thead>
<tr>
<th>N</th>
<th>Name</th>
<th>S[cm]</th>
<th>L[cm]</th>
<th>Ge[kV/cm**2]</th>
<th>E[kV/cm]</th>
<th>Ge[kV/cm**2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LqDh1</td>
<td>1061.67</td>
<td>20</td>
<td>-3.3918</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>oQ</td>
<td>1141.67</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rbend</td>
<td>1415.56</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>ob</td>
<td>1425.56</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Rbend</td>
<td>1699.44</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>ob</td>
<td>1709.44</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rbend</td>
<td>1983.33</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>oQ</td>
<td>2063.33</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LqF</td>
<td>2083.33</td>
<td>40</td>
<td>3.7306</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>oQ</td>
<td>2183.33</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Rbend</td>
<td>2457.22</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>ob</td>
<td>2467.22</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Rbend</td>
<td>2741.11</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>ob</td>
<td>2751.11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rbend</td>
<td>3025</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>oQ</td>
<td>3105</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>LqDh</td>
<td>3125</td>
<td>20</td>
<td>-3.2068</td>
<td>80.16</td>
<td>0</td>
</tr>
</tbody>
</table>

Optical structure of in straight lines

<table>
<thead>
<tr>
<th>N</th>
<th>Name</th>
<th>S[cm]</th>
<th>L[cm]</th>
<th>Ge[kV/cm**2]</th>
<th>E[kV/cm]</th>
<th>Ge[kV/cm**2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rbend</td>
<td>273.889</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>oQ</td>
<td>353.889</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LqD1</td>
<td>393.889</td>
<td>40</td>
<td>-3.3918</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>oLong</td>
<td>1395.56</td>
<td>1001.67</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>LqF1</td>
<td>1435.56</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>oLong</td>
<td>2437.22</td>
<td>1001.67</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>LqD1</td>
<td>2477.22</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rbend</td>
<td>2831.11</td>
<td>273.889</td>
<td>0</td>
<td>80.16</td>
<td>0</td>
</tr>
</tbody>
</table>
Optics (3)

Twiss parameters for 1 super-period (out of four)

$\beta_{x_{\text{max}}}=47 \text{ m}, \beta_{y_{\text{max}}}=216 \text{ m}, D_{x_{\text{max}}}=29.5 \text{ m}$
Optics (4)

- **Ring structure**
 - 4 super periods. Each includes:
 - 5 FODO cells with 3 bends per half cell
 - electric bends with $R_0=52.3$ m and $L=2.7389$ m
 - Gap between plates 3 cm, $V=\pm120$ kV,
 - $m=0$ (no vert. focusing)
 - 1 FODO cell of the same length but without bends (~22 m straight line)
 - One of two 80 cm gaps between quads and bends are filled with
 - H or V corrector, skew-quad corrector, F or D sextupole, and BPM
 - Other can be used by experiment
 - RF cavity, injection kicker and septum are located in the straights

- **Large flexibility in adjustments of beam optics**

- **For chosen optics its major parameters are:**
 - $\beta_{x_{\text{max}}}=47$ m, $\beta_{y_{\text{max}}}=216$ m, $D_{x_{\text{max}}}=29.5$ m

- **Weak vertical focusing was chosen for control of radial magnetic field**
 - It results in high sensitivity to focusing errors
Optics (5)

- Tunes were chosen to exclude strong resonances in the working point vicinity.
- Resonances of 5-th and 7-th order are located in close vicinity. However they are not excited by the beam space charge and therefore are not expected to limit the dynamic aperture.
- Distance to 4-th order resonances is ~0.07.
 - It is sufficient to accommodate the space charge tune shifts.
Acceptances

- Horizontal acceptance is set by the gap between plates of 3 cm and maximum of beta-function in the bends of 44 m
 - Assuming 3 mm orbit error one obtains $\varepsilon_{H_{\text{max}}} = 3.2 \text{ mm mrad}$
- The maximum dispersion in the bends is 27 m
 - Similarly, one obtains the maximum momentum spread: $\left(\frac{\Delta p}{p}\right)_{\text{max}} = 4.6 \cdot 10^{-4}$
- We determine the vertical acceptance to be large enough so that the vertical and horizontal degrees of freedom would be in thermal equilibrium, i.e. vertical and transverse velocity spreads would be equal
 - That minimizes the IBS
 - It results in: $\varepsilon_{V_{\text{max}}} = 17 \text{ mm mrad}$ and the maximum beam size (at acceptance boundary) of 6.2 cm which is about 5 times larger than the horizontal beam size
Acceptances (2)

Beam boundary at acceptances:
\[\varepsilon_{H\text{max}} = 3.2 \text{ mm mrad}, \quad \varepsilon_{V\text{max}} = 17.5 \text{ mm mrad}, \quad (\Delta p/p)_{\text{max}} = 4.6 \times 10^{-4} \]
RF and Related Parameters

- Synchrotron frequency has to be large enough to minimize spin decoherence within one synchrotron period but small relative to the distance to strong resonances, \(Q_s = \text{0.0066} \) was chosen (\(\Delta Q_{\text{SC}} \approx 0.04 \))

- Sum of bunch lengths, \(n_b \sigma_s \), has to be as large as possible to reduce space charge tune shifts and IBS
 - Bucket height, \(\Delta p/p\big|_{\text{bucket}} \), has to be only slightly larger than the longitudinal acceptance, \(\Delta p/p\big|_{\text{max}} \), but linearity is still desirable
 \[\Rightarrow \Delta p/p\big|_{\text{bucket}} / \Delta p/p\big|_{\text{max}} = 1.5 \]

- Main parameters
 - RF voltage: \(V_0 = 6 \text{ kV} \)
 - Harmonic number: \(h = 100 \)
 - RF frequency: \(f_{\text{RF}} = 35.878 \text{ MHz} \)
 - Synchrotron tune: \(Q_s = 0.0066 \)
 - Bucket height: \(\Delta p/p\big|_{\text{bucket}} = 6.9 \cdot 10^{-4} \)
 - Bucket length: 5.0 m
 - Bunch length: \(\sigma_s = 32 \text{ cm} \)

Space Charge Tune Shifts

- Beam emittances and momentum spreads are set by aperture (gap)
- Tune shifts due to space charge are the main beam current limitation for strong focusing ring
- The tune shifts due to counter rotating beam, $\sqrt{2\pi C / N_b \sigma_s} \approx 40$, are smaller and do not represent a problem

$$\Delta Q_x = \frac{r_p N_p C}{(2\pi)^{3/2} \beta^2 \gamma^3 \sigma_s} \left(\frac{\beta_x}{(\sigma_x + \sigma_y)\sigma_x}\right)_{s}$$

$$\Delta Q_y = \frac{r_p N_p C}{(2\pi)^{3/2} \beta^2 \gamma^3 \sigma_s} \left(\frac{\beta_y}{(\sigma_x + \sigma_y)\sigma_y}\right)_{s}$$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons per bunch: N_p</td>
<td>$2.5 \cdot 10^8$</td>
</tr>
<tr>
<td>Beam current, [mA]</td>
<td>1.4</td>
</tr>
<tr>
<td>Rms bunch length [cm]</td>
<td>32</td>
</tr>
<tr>
<td>Rms norm. emittances, $\varepsilon_x/\varepsilon_y$ [μm]</td>
<td>0.12/0.61</td>
</tr>
<tr>
<td>$\Delta Q_x/\Delta Q_y$, [10^-2]</td>
<td>2.9/5.0</td>
</tr>
</tbody>
</table>
IBS Growth Rates

- Operation below transition greatly reduces IBS growth rates for operation at the thermal equilibrium: $\tau_{x,y,s} \approx 1600$ s (no scraping)
- Temperature exchange between different degrees of freedom proceeds faster by more than an order of magnitude for a states close to the equilibrium
- Collimation stops emittance growth when the rms beam size achieves approximately 1/3 of the aperture
- For chosen optics the major aperture limitation is in the longitudinal plane. That results in a quasi-equilibrium state when the growth rates of horizontal and vertical emittances due to IBS are equal to zero. The IBS driven emittance growth rate for longitudinal plane of $1/830$ s$^{-1}$ is stopped by collimation which results in the intensity loss:

$$N(t) = \frac{N_p}{1 + \lambda_D t}, \quad \lambda_D \approx \frac{\mu_{01}^2}{n_{\sigma} \tau_s}, \quad \frac{\mu_{01}}{n_{\sigma}} \approx 2.96, \quad \tau_x = \tau_y = 0$$

- The parameters of the quasi-equilibrium state are: $\varepsilon_x = 0.21$ µm, $\varepsilon_y = 1.0$ µm, $\sigma_p = 1.4 \cdot 10^{-4} \Rightarrow \tau_s = 830$ s, $1/\lambda_D = 350$ s
An increase of horizontal and vertical emittances at the quasi-equilibrium reduces the space charge tune shifts to: $\Delta Q_{SCx}=0.021$, $\Delta Q_{SCy}=0.032$

Variation of rms velocity spreads in the beam frame along the quarter of the ring. Major axes of 3D velocity ellipsoid are presented.
Heating contributions to the horizontal and vertical planes along the quarter of the ring at the equilibrium. One can see that averaging yield much smaller resulting values.