Development of Beam Position Monitors for Storage Rings

Falastine Abusaif Forschungszentrum Jülich, Nuclear Physics Institute IKP-2 RWTH Aachen University On Behalf of the JEDI Collaboration München, DPG spring meetings 17th -22nd March 2019

Precision experiments

COSY storage ring: polarized proton/deuteron beams

The search for electric dipole moment

Knowing beam positions is mandatory

Working principle

Rogowski based coil Current signal induces voltage signal

Horizontal ratio =
$$\frac{\Delta U_{hor}}{\sum_{i=1}^{4} U_i} = \frac{(U_1 + U_2) - (U_3 + U_4)}{\sum_{i=1}^{4} U_i}$$

Vertical ratio
$$= \frac{\Delta U_{ver}}{\sum_{i=1}^{4} U_i} = \frac{(U_1 + U_4) - (U_3 + U_2)}{\sum_{i=1}^{4} U_i}$$

BPM construction

Winding the coil
Assembling the parts
Connections for voltage signal

BPM lab test

AC current (emulate COSY beam)
 Move the coil by moving the stepping motors
 Measure the coil response

✓ Repeated tests for fixed beam current
✓ Repeated tests for different beam currents

Measured ratios agree with theory

$$\succ \quad \frac{\Delta U_{hor}}{\sum_{i=1}^{4} U_i} = c_1 x - c_2 (x^3 - 3y^2 x) + c_3 (x^5 - 10y^2 x^3 + 5y^4 x) + \dots$$

. . .

 $\succ \quad \frac{\Delta U_{ver}}{\sum_{i=1}^{4} U_i} = c_1 y - c_2 (y^3 - 3x^2 y) + c_3 (y^5 - 10x^2 y^3 + 5x^4 y) + \dots \quad \text{Credit: F.Trinkel}$

Theoretical-based model for coil in air

Possible higher sensitivities for complete BPM coil

$$\chi^{2} = \left[Ratio_{measured} - Ratio_{expected}\right]^{T} * \left[Cov\right]^{-1} * \left[Ratio_{measured} - Ratio_{expected}\right]$$

Calibration parameters:

• $C_1 = 0.01914 \ mm^{-1}$

Enhancement factor of \approx 1.75 (wrt a simple coil in air)

- $C_2 = 1.4724 \times 10^{-6} mm^{-3}$
- $C_3 = 4.7615 \times 10^{-11} mm^{-5}$
- $X_{off} = -0.401 \, mm$
- $Y_{off} = 0.3195 \, mm$

Position accuracy

JÜLICH Forschungszentrum

Installation in COSY

Calibration independent of COSY beam current

Bump test

- The Rogowski BPM was successfully constructed and calibrated in the lab
- The Rogowski BPM was successfully installed and operated in COSY
- The compactness of the Rogowski BPM is a good advantage for this type of coils as monitors

Outlook

- Use the coil as a probe for multi-bunches beam
- Study/calibrate the coil at different frequencies
- Use as a BCT/field probe
- Build several such coils.

Theoretical prediction of coil parameters

•
$$c_1 = \frac{2}{\pi\sqrt{R^2 - a^2}}$$

= 0.01092mm⁻¹
• $c_2 = \frac{Ra^2}{3\pi(R^2 - a^2)^{\frac{5}{2}}(R - \sqrt{R^2 - a^2})}$
= 1.0817 × 10⁻⁶mm⁻³
• $c_3 = \frac{Ra^2(4R^2 + 3a^2)}{20\pi(R^2 - a^2)^{\frac{9}{2}}(R - \sqrt{R^2 - a^2})}$
= 1.9511 × 10⁻¹⁰mm⁻⁵

Elements of covariance matrix

. .

$$f_{1} = \frac{u_{3} + u_{4} - u_{1} - u_{2}}{\sum_{i=1}^{4} u_{i}}$$
(Ratio_x)
$$f_{2} = \frac{u_{1} + u_{4} - u_{3} - u_{2}}{\sum_{i=1}^{4} u_{i}}$$
(Ratio_y)

$$\succ \begin{bmatrix} c11 & c12 \\ c21 & c22 \end{bmatrix} \qquad (Covariance matrix)$$

$$c_{11} = \left[\left(\frac{\partial f_1}{\partial u_1} * \sigma_{u1} \right)^2 + \left(\frac{\partial f_1}{\partial u_2} * \sigma_{u2} \right)^2 + \left(\frac{\partial f_1}{\partial u_3} * \sigma_{u3} \right)^2 + \left(\frac{\partial f_1}{\partial u_4} * \sigma_{u4} \right)^2 \right]^{0.5}$$

$$= \frac{2}{(\sum_{i=1}^4 u_i)^2} * \left[(\sigma_{u1}^2 + \sigma_{u2}^2) * (u_3 + u_4)^2 + (\sigma_{u3}^2 + \sigma_{u4}^2) * (u_1 + u_2)^2 \right]^{0.5}$$

$$\succ c_{22} = \left[\left(\frac{\partial f_2}{\partial u_1} * \sigma_{u1} \right)^2 + \left(\frac{\partial f_2}{\partial u_2} * \sigma_{u2} \right)^2 + \left(\frac{\partial f_2}{\partial u_3} * \sigma_{u3} \right)^2 + \left(\frac{\partial f_2}{\partial u_4} * \sigma_{u4} \right)^2 \right]^{0.5} \\ = \frac{2}{(\sum_{i=1}^4 u_i)^2} * \left[(\sigma_{u1}^2 + \sigma_{u4}^2) * (u_3 + u_2)^2 + (\sigma_{u3}^2 + \sigma_{u2}^2) * (u_1 + u_4)^2 \right]^{0.5}$$

 c_{12} , c_{21} from correlation between $f_1 \& f_2$ \succ

Measured coil impedance at the range 200KHz - 2.0MHz

Backup

 $\Delta U_{x} / \Sigma U_{i}$

 $\Delta U_{x} / \Sigma U_{i}$

Backup

 $\Delta U_x / \Sigma U_i$