

EDM: Bright Future for COSY

September 6, 2013 | Andreas Lehrach

Our World consist of Matter

ANTI-MATTER!

... and not Antimatter

Antimatter on Earth can be produced or observed

- in particles physics experiments
- in (secondary) cosmic radiation
- and in cosmic rays

September 6, 2013 | A. Lehrach

Big Bang

Prevailing cosmological model that describes the early development of our Universe

Equal amounts of Matter – Antimatter was produced

Where the antimatter went is still not clear today

Violation of fundamental symmetries needed to explain the disappearance of Antimatter Sakharov (1967)

The mystery of the missing antimatter (the puzzle of our existence)

Search for Antimatter

Did the Antimatter really disappear ?

September 6, 2013 | A. Lehrach

Electric Dipole Moment: What is it?

Definition

Charge separation creates an electric dipole

September 6, 2013 | A. Lehrach

Electric Dipole Moment: What is it?

p = q s

ÜLICH

Water molecule: permanent electric dipole (has degenerate GS w/ different parity)

p ~ 3 · 10⁻³⁰ C m ~ 2 · 10⁻⁹ e cm

Charge separation creates an electric dipole

September 6, 2013 | A. Lehrach

Example:

 H_2O

Symmetry of Electric Dipole Moments

IF particle has an EDM

Violation of discrete symmetries (P and T)

September 6, 2013 | A. Lehrach

Neutron Electric Dipole Moment

No EDM yet, only limits

September 6, 2013 | A. Lehrach

Electric Dipole Moment

EDM: precision frontier

September 6, 2013 | A. Lehrach

Limits for Electric Dipole Moments

EDM searches - only upper limits up to now (in e.cm):

Particle/Atom	Current EDM Limit	Future Goal
Neutron	< 3 ×10 ⁻²⁶	~10 ⁻²⁸
¹⁹⁹ Hg	< 3.1 ×10 ⁻²⁹	~10 ⁻²⁹
¹²⁹ Xe	< 6 ×10 ⁻²⁷	~10 ⁻³⁰ – 10 ⁻³³
Proton	< 7.9 ×10 ⁻²⁵	~10 ⁻²⁹
Deuteron	?	~10 ⁻²⁹

CP violation can have different sources

It is important to measure neutron **and proton and deuteron**, and light nuclei EDMs in order to disentangle various sources of CP violation

No direct EDM measurement of charged particles

EDMs – Ongoing / planned Searches

P. Harris, K. Kirch ... A huge worldwide effort

September 6, 2013 | A. Lehrach

How EDMs are Measured

Spin vectors of particles a rotating

September 6, 2013 | A. Lehrach

How EDMs are Measured

"Freeze" horizontal spin

September 6, 2013 | A. Lehrach

Storage Ring EDM Project

92 members

(Aachen, Dubna, Ferrara, Cornell, Jülich, Krakow, Michigan, St. Petersburg, Minsk, Novosibirsk, Stockholm, Tbilisi, ...) 10 PhD students

September 6, 2013 | A. Lehrach

Options:

All-electric ring (proton, electron): only E-field All-in-one ring (proton, deuteron, ³He): E- and B-fields

srEDM Collaboration (BNL) - JEDI Collaboration (FZJ)

Dedicated precision storage ring

September 6, 2013 | A. Lehrach

Cooler Synchrotron COSY

COSY: From tests to first direct measurement

September 6, 2013 | A. Lehrach

srEDM Collaboration (BNL) - JEDI Collaboration (FZJ)

R&D Activity	Goal	Test
Internal Polarimeter	spin as a function of time	COSY
	Systematic errors < 1 ppm	
	Full-scale polarimeter	COSY
Spin Coherence Time	SCT >10 ³ s	COSY
Systematic effects	Estimate for systematic limits	COSY
Beam Position Monitor	resolution 10 nm,1 Hz BW 64 BPMs, 10^7 s measurement time \rightarrow 1 pm (stat.) relative position (CW-CCW)	RHIC IP
E/B-field Deflector	17 MV/m, 2 cm plate separation, 0.15-0.5T	FAME

JEDI – First Direct Measurement

Establish srEDM, first direct measurement ; sensitivity ~10⁻²⁴ e

September 6, 2013 | A. Lehrach

September 6, 2013 | A. Lehrach

