

THE SEARCH FOR ELECTRIC DIPOLE MOMENTS OF CHARGED PARTICLES IN STORAGE RINGS

DPG Spring Meeting Karlsruhe
08.03.2024 I ACHIM ANDRES (ON BEHALF OF THE JEDI COLLABORATION)

RWMHAACHEN

SCIENTIFIC MOTIVATION

JEDI Collaboration (2011) - Juelich Electric Dipole moment Investigations

$$
\mathcal{L}_{\bar{\theta}_{\mathrm{QCD}}}=-\bar{\theta}_{\mathrm{QCD}} \frac{g_{s}^{2}}{64 \pi^{2}} \epsilon^{\mu \nu \alpha \beta} G_{\mu \nu}^{a} G_{\alpha \beta}^{a}
$$

- EDM is a vectorial property aligned with the particles' spin
- EDMs of fundamental particles are CP violating
- Matter Antimatter Asymmetry remains a mystery
- According to A. Sakharov: CP Violation is needed

$$
\begin{array}{r}
d^{\mathrm{d}}=d_{\mathrm{DC}}+d_{\mathrm{AC}} \cos \left(\omega_{a}+\phi_{a}\right) \\
\omega_{a}=\frac{m_{a} c^{2}}{\hbar}
\end{array}
$$

- Existence of an axion leads to an additional oscillating EDM component
- Axion could explain the strong CP - problem
- Axion are potential candidate for Dark Matter

AXION SEARCH

$$
\begin{array}{r}
d^{\mathrm{d}}=d_{\mathrm{DC}}+d_{\mathrm{AC}} \cos \left(\omega_{a}+\phi_{a}\right) \\
\omega_{a}=\frac{m_{a} c^{2}}{\hbar}
\end{array}
$$

- Constraints for the axion gluon coupling:

$$
\left|g_{a d \gamma}\right|<1.7 \times 10^{-7} \mathrm{GeV}^{-2}
$$

- Permant EDM component d_{DC} :

First Search for Axionlike Particles in a Storage Ring Using a Polarized Deuteron Beam

(JEDI Collaboration)

COSY - COOLER SYNCHROTRON (1993-2023)

Overview

- Circumference 184 m
- Accelerate and Store Polarized / Unpolarized Deuterons and Protons
- $p=0.3-3.7 \mathrm{GeV} / \mathrm{c}$
- Excellent Beam Quality
- Hadron Physics / Precision Experiments

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses
 around invariant spin axis \hat{n}

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses
 around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in radial x direction by $\phi^{\text {EDM }}$ (no longitudinal effect expected)
- Goal: Determination of the orientation of \widehat{n}

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in radial x direction by ϕ^{EDM} (no longitudinal effect expected)
- Goal: Determination of the orientation of \hat{n}
- Problem: Ring imperfections (magnet misalignments,..) lead to rotations of \hat{n} in radial (x) and longitudinal (z) direction

9) Јӥцисн

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

- $\vec{E} \perp \vec{B} \perp$ Beam $\rightarrow \vec{F}_{L}=0$
- Rotational Device: $\vec{n}_{\mathrm{WF}^{-}}$Field can be rotated

$$
p_{y} \propto \frac{N_{L}-N_{R}}{N_{L}+N_{R}}
$$

 around the beam pipe by $\boldsymbol{\phi} \mathbf{W F}$

$$
\vec{n}_{\mathrm{WF}}=\left(\begin{array}{c}
\sin \left(\phi^{\mathrm{WF}}\right) \\
\cos \left(\phi^{\mathrm{WF}}\right) \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi^{\mathrm{WF}} \\
1 \\
0
\end{array}\right)
$$

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

PRELIMINARY RESULTS

We are missing something!

- Bmad simulation of the experiment (M. Vitz)
- Includes current understanding of (misaligned) magnets in COSY
- Simulations predict tilts of the invariant spin axis not larger than O(0.1mrad)
- Measured angles are an order of magnitude too large!

$1 \mathrm{mrad} \approx 10^{-17} e \cdot \mathrm{~cm}$

Simulations

SUMMARY $d^{\mathrm{d}}=d_{\mathrm{DC}}+d_{\mathrm{AC}} \cos \left(\omega_{a}+\phi_{a}\right)$

- Orientation of Invariant Spin axis directly relates to EDM strength
- Order of magnitude is too large

- EDM as a source of CP violation
- Measure influence of EDM on beam polarization

Systematics
${ }^{z}$
Beam direction
$d=0$.

$$
d=0
$$

$$
d>0
$$

JÜLICH
Forschungszentrum

