UNIVERSITY
The Search for Charged Particle Electric Dipole Moments in Storage Rings
Achim Andres for the JEDI Collaboration - RWTH Aachen University \& Forschungszentrum Jülich

Electric Dipole Moments (EDMs)

- Fundamental (vector) property of a particle aligned with the particles spin axis
- Requires \mathcal{P} and \mathcal{T} violation $\stackrel{\text { CPT }}{=} \mathcal{C P}$ violation
- Close connection to matter antimatter asymmetry
- Goal: First direct measurement of the deuteron EDM
- Current neutron EDM limit $\sim 10^{-26} \mathrm{e} \cdot \mathrm{cm}[1] \rightarrow$ Measurement requires precise experiments

Technique Part I

- COSY @ Forschungszentrum Jülich: Magnetic Ring (184m)

- Inject a vertically polarized deuteron beam
- Rotate the polarization into the accelerator plane
- Polarization starts to precess around the so-called Invariant spin axis n (ISA)
- Beam polarization is constantly measured by a polarimeter

Spin Dynamics

- Main Idea: Measure influence of EDM on Beam Polarization

- In absence of an EDM \& ideal accelerator: ISA \perp accelerator plane
- Non zero EDM rotates the ISA \hat{n} in radial (x) direction

$$
\hat{n}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \stackrel{\operatorname{EDM}}{\Rightarrow}\left(\begin{array}{c}
\sin \phi_{0}^{\mathrm{EDM}} \\
\cos \phi_{0}^{\mathrm{EDM}} \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi_{0}^{\mathrm{EDM}} \\
1 \\
0
\end{array}\right)
$$

- Magnet misalignment add additional systematics to the orientation of the ISA \hat{n} in radial (x) and longitudinal direction (z)

$$
\hat{n}_{\text {meas. }}=\left(\begin{array}{c}
\phi_{0}^{\mathrm{EDM}}+\phi_{0}^{\mathrm{COSY}} \\
1 \\
\xi_{0}^{\mathrm{COSY}}
\end{array}\right)
$$

- Simulations are needed to disentangle ϕ_{0}^{EDM} and ϕ_{0}^{COSY} (M. Vitz)
- Goal: Measurement of the orientation of the Invariant spin axis \hat{n}

References

[1] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, feb 2020.
[2] F. Rathmann, N. Nikolaev, and J. Slim, Spin dynamics investigations for the electric dipole moment experiment, Feb 2020.

Technique Part II

The radio frequency (rf) Wien filter provides a vertical \vec{B} and horizontal \vec{E} field

$$
\vec{E} \perp \vec{B} \perp \text { Beam } \rightarrow \vec{F}_{L}=\overrightarrow{0}
$$

- No influence on beam \rightarrow Ideal Spin manipulator
- The Wien filter can be radially rotated around the beam pipe. The magnetic field direction of the Wien filter is given by

$$
\hat{n}_{\mathrm{WF}}=\left(\begin{array}{c}
\sin \phi^{\mathrm{WF}} \\
\cos \phi^{\mathrm{WF}} \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi^{\mathrm{WF}} \\
1 \\
0
\end{array}\right)
$$

- The rf Wien filter induces a linear build up of the vertical polarization
- The build up depends on the direction of the magnetic field axis of the rf Wien filter \hat{n}_{WF} and the orientation of ISA $\hat{n}_{\text {meas. }}$ [2]

$$
\begin{aligned}
\epsilon^{2}\left(\phi^{\mathrm{WF}}\right) & \propto\left|\hat{n}_{\mathrm{WF}} \times \hat{n}_{\text {meas. }}\right|^{2} \\
& \propto\left(\left(\phi_{0}^{\mathrm{EDM}}+\phi_{0}^{\mathrm{COSY}}\right)-\phi^{\mathrm{WF}}\right)^{2}+\epsilon_{0}\left(\xi_{0}^{\mathrm{COSY}}\right)
\end{aligned}
$$

- No build up if $\hat{n}_{\mathrm{WF}} \| \hat{n}_{\text {meas }}$

Preliminary Results

- Orientation of ISA in radial direction including ring systematics

$$
\begin{aligned}
\phi_{0}^{\mathrm{EDM}}+\phi_{0}^{\mathrm{COSY}} & =-1.76(1) \mathrm{mrad} \\
& \approx 10^{-17} \mathrm{e} \cdot \mathrm{~cm} \text { Upper Limit }
\end{aligned}
$$

- Simulations of the experiment (including magnet misalignments, steerer \& magnet settings,..) predict radial angles not larger than $\mathcal{O}(0.1)$ mrad
- We are missing systematics of an order of magnitude
- Systematic Studies are ongoing

Contact: achim.andres@rwth-aachen.de

