

THE SEARCH FOR ELECTRIC DIPOLE MOMENTS OF CHARGED PARTICLES IN STORAGE RINGS

DPG Spring Meeting Dresden

22.03.2023 I ACHIM ANDRES (ON BEHALF OF JEDI)

JEDI

RWMHAACHEN

EDM LIMITS

JEDI Collaboration (2011) - Juelich Electric Dipole Moment Investigations

- According to A. Sakharov: CP Violation is needed
- EDMs of fundamental particles are CP violating
- EDM is a vectorial property aligned with the particles spin

COSY - COOLER SYNCHROTRON

Overview

- Circumference 184 m
- Accelerate and Store Polarized / Unpolarized Deuterons and Protons
- $p=0.3-3.7 \mathrm{GeV} / \mathrm{c}$
- Excellent Beam Quality
- Hadron Physics / Precision Experiments

Page 3

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses
 around invariant spin axis \hat{n}

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses
 around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in radial x direction by $\phi^{\text {EDM }}$ (no longitudinal effect expected)
- Goal: Determination of the orientation of \widehat{n}

MEASUREMENT PRINCIPLE

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in radial x direction by ϕ^{EDM} (no longitudinal effect expected)
- Goal: Determination of the orientation of \hat{n}
- Problem: Ring imperfections (magnet misalignments,..) lead to rotations of \hat{n} in radial (x) and longitudinal (z) direction

g Ј ЈӥLıн

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

- $\vec{E} \perp \vec{B} \perp$ Beam $\rightarrow \vec{F}_{L}=0$
- Rotational Device: $\vec{n}_{\mathrm{WF}^{-}}$Field can be rotated

around the beam pipe by $\boldsymbol{\phi} \mathbf{W F}$

$$
\vec{n}_{\mathrm{WF}}=\left(\begin{array}{c}
\sin \left(\phi^{\mathrm{WF}}\right) \\
\cos \left(\phi^{\mathrm{WF}}\right) \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi^{\mathrm{WF}} \\
1 \\
0
\end{array}\right)
$$

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

MEASUREMENT PRINCIPLE

PRELIMINARY RESULTS

We are missing something!

- Bmad simulation of the experiment (M . Vitz AKBP 9.2 16:00)
- Includes current understanding of (misaligned) magnets in COSY
- Simulations predict tilts of the invariant spin axis not larger than $\mathbf{O}(0.1 \mathrm{mrad})$
- Measured angles are an order of magnitude too large!
- Systematic studies will be used to understand these angles

$1 \mathrm{mrad} \approx 10^{-17} e \cdot \mathrm{~cm}$

SUMMARY

- EDM as a source of CP violation
- Measure influence of EDM on beam polarization
- Orientation of Invariant Spin axis directly relates to EDM strength
- Order of magnitude is too large

Simulations

Systematics

Beam direction

$$
d=0 \quad d>0
$$

JÜLICH

