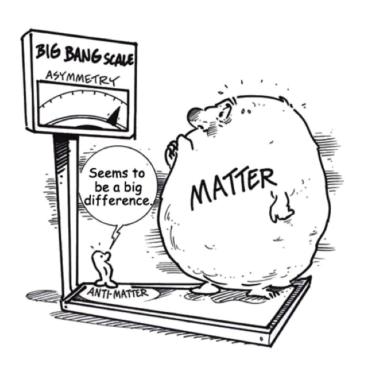
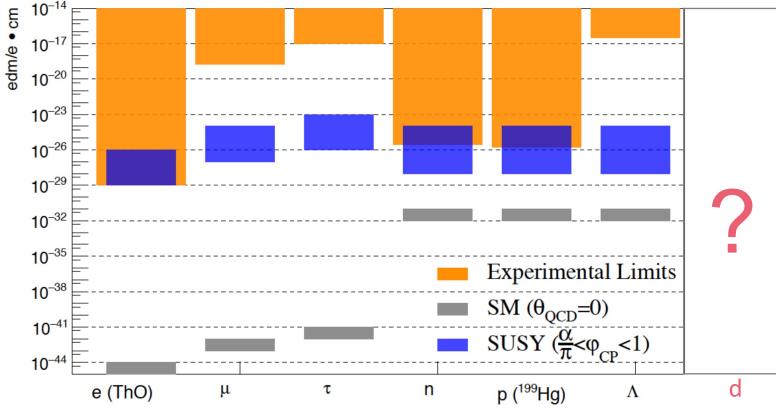


FIRST ELECTRIC DIPOLE MOMENT MEASUREMENT OF THE DEUTERON WITH THE WAVEGUIDE RF WIEN FILTER (SYSTEMATIC STUDIES)

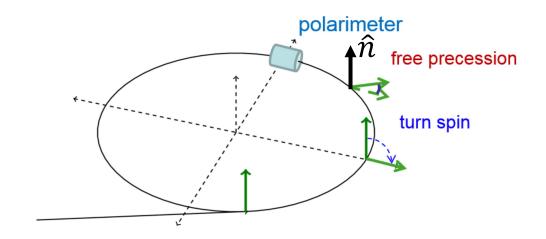
23.02.2023 I ACHIM ANDRES (ON BEHALF OF JEDI)



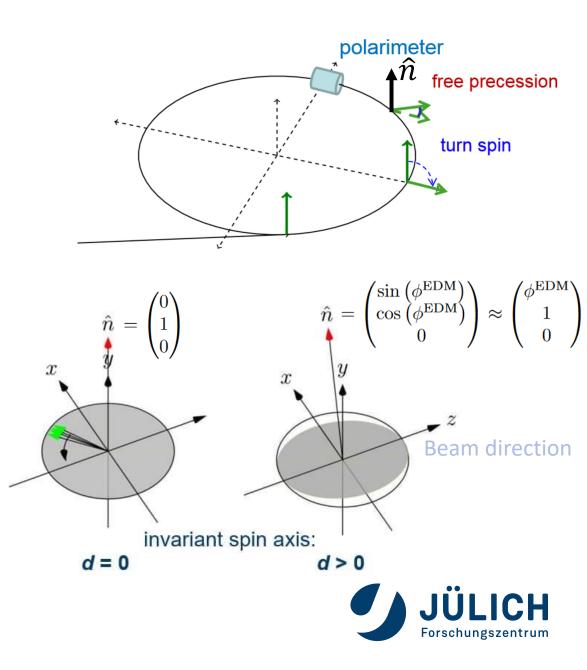

CBAC Meeting #14 (Proposal E005.8)

EDM LIMITS

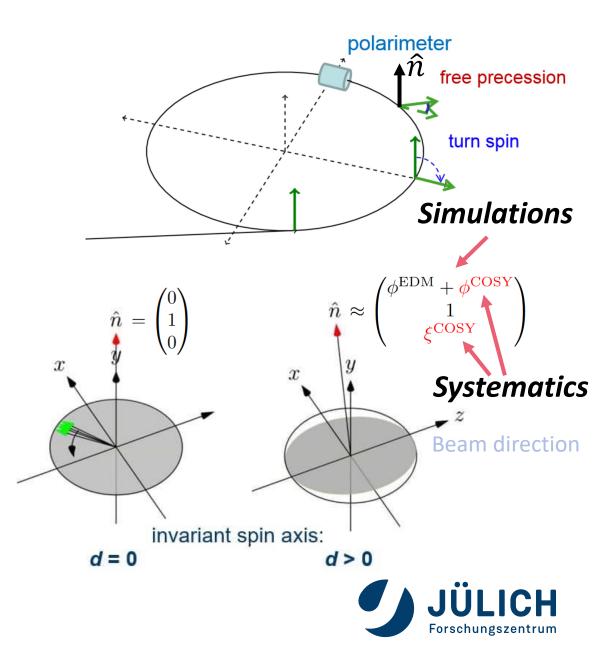
JEDI Collaboration (2011) – Juelich Electric Dipole Moment Investigations

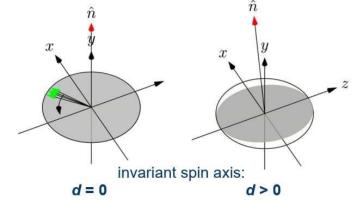


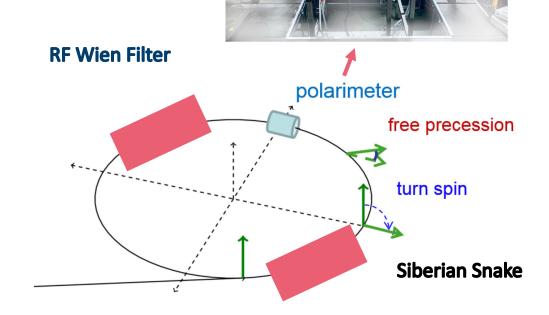
- According to A. Sakharov: **CP Violation** is needed
- EDMs of fundamental particles are CP violating
- EDM is a vectorial property aligned with the particles spin

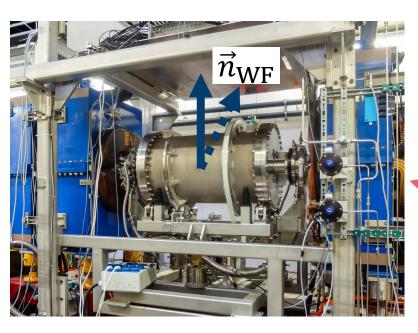


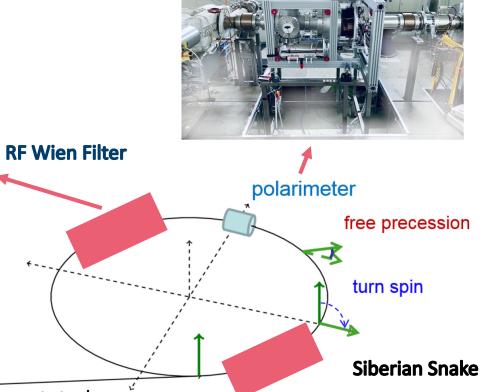
- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses around invariant spin axis \hat{n}

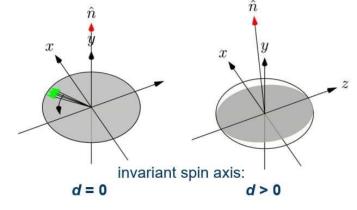


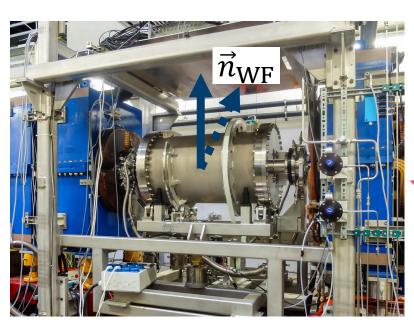



- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in **radial** x direction by ϕ^{EDM} (no longitudinal effect expected)
- **Goal**: Determination of the **orientation** of \hat{n}

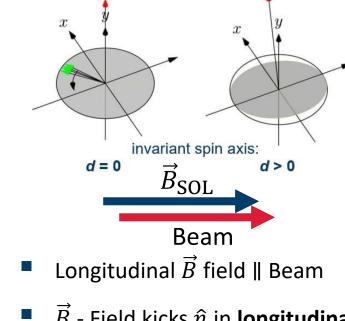

- Measure influence of EDM on beam polarization
- Injection of vertically polarized deuteron beam
- Rotate polarization into accelerator plane
- COSY: Magnetic Ring \rightarrow Polarization Vector precesses around invariant spin axis \hat{n}
- Non-zero EDM: Tilts \hat{n} in **radial** x direction by ϕ^{EDM} (no longitudinal effect expected)
- **Goal**: Determination of the **orientation** of \hat{n}
- Problem: Ring imperfections (magnet misalignments,..)
 lead to rotations of î in radial (x) and longitudinal (z)
 direction





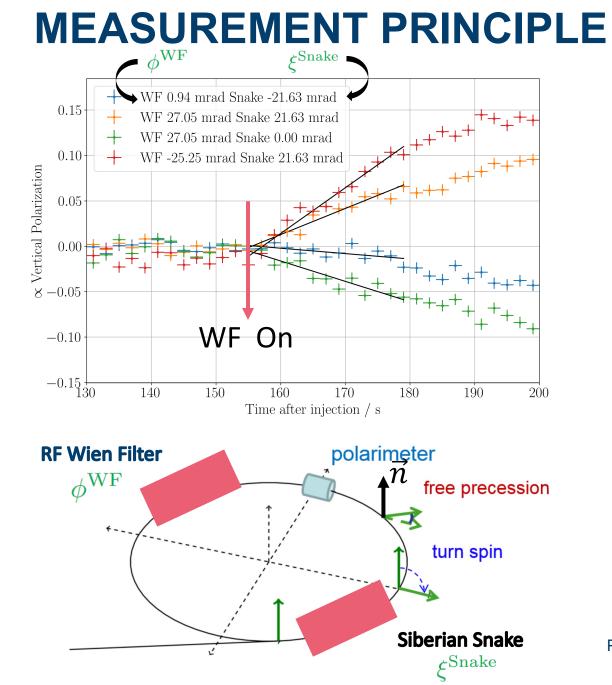

- $\vec{E} \perp \vec{B} \perp \text{Beam} \rightarrow \vec{F}_L = 0$
- Rotational Device: $\vec{n}_{\rm WF}$ Field can be rotated around the beam pipe by $\phi^{\rm WF}$

$$\vec{n}_{\rm WF} = \begin{pmatrix} \sin\left(\phi^{\rm WF}\right) \\ \cos\left(\phi^{\rm WF}\right) \\ 0 \end{pmatrix} \approx \begin{pmatrix} \phi^{\rm WF} \\ 1 \\ 0 \end{pmatrix}$$



- $\vec{E} \perp \vec{B} \perp \text{Beam} \rightarrow \vec{F}_L = 0$
- Rotational Device: $\vec{n}_{\rm WF}$ Field can be rotated around the beam pipe by $oldsymbol{\phi}^{\rm WF}$

$$\vec{n}_{\rm WF} = \begin{pmatrix} \sin\left(\phi^{\rm WF}\right) \\ \cos\left(\phi^{\rm WF}\right) \\ 0 \end{pmatrix} \approx \begin{pmatrix} \phi^{\rm WF} \\ 1 \\ 0 \end{pmatrix}$$



 \overrightarrow{B} - Field kicks \widehat{n} in **longitudinal** direction (*z*) by ξ ^{Snake}

$$\vec{n} = \begin{pmatrix} \phi^{\text{EDM}} + \phi^{\text{COSY}} \\ 1 \\ \xi^{\text{Snake}} + \xi^{\text{COSY}} \end{pmatrix}$$

Page 9

$\xi^{ m Snake}$ ϕ $\epsilon^2(\phi^{\rm WF},\xi^{\rm Snake}) \propto |\vec{n}_{\rm WF} \times \vec{n}|^2 \quad \vec{n}_{\rm WF} : B \text{ field axis of rf Wien filter} \quad \vec{n} : \text{ISA}$ WF 0.94 mrad Snake -21.63 mrad $\approx \left| \begin{pmatrix} \phi^{\rm WF} \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} \phi_0^{\rm EDM} + \phi_0^{\rm COSY} \\ 1 \\ \xi^{\rm Snake} + \xi_0^{\rm COSY} \end{pmatrix} \right|^2$ 0.15WF 27.05 mrad Snake 21.63 mrad WF 27.05 mrad Snake 0.00 mrad Build up rate 0.10WF -25.25 mrad Snake 21.63 mrad $\approx \left[\left(\left(\phi_0^{\text{EDM}} + \phi_0^{\text{COSY}} \right) - \phi^{\text{WF}} \right)^2 + \left(\xi^{\text{Snake}} + \xi_0^{\text{COSY}} \right)^2 \right]$ $\epsilon \propto \frac{\mathrm{d}}{\mathrm{d}t} p_y(t)$ WF On -0.10x $-0.15 \underset{130}{\longleftarrow}$ **n**WF 150160170180190 $2\dot{0}0$ 140 Time after injection / s polarimeter **RF Wien Filter** $\phi^{ m WF}$ free precession turn spin JÜLICH **Siberian Snake** Page 10 Forschungszentrum **C**Snake

ξ^{Snake} $\boldsymbol{\phi}$ $\epsilon^2(\phi^{\rm WF},\xi^{\rm Snake}) \propto |\vec{n}_{\rm WF} \times \vec{n}|^2 \quad \vec{n}_{\rm WF} : B \text{ field axis of rf Wien filter} \quad \vec{n} : \text{ISA}$ WF 0.94 mrad Snake -21.63 mrad $\approx \left| \begin{pmatrix} \phi^{\rm WF} \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} \phi_0^{\rm EDM} + \phi_0^{\rm COSY} \\ 1 \\ \xi^{\rm Snake} + \xi_0^{\rm COSY} \end{pmatrix} \right|^{2}$ 0.15 -WF 27.05 mrad Snake 21.63 mrad WF 27.05 mrad Snake 0.00 mrad Build up rate 0.10WF -25.25 mrad Snake 21.63 mrad $\approx \left[\left(\left(\phi_0^{\text{EDM}} + \phi_0^{\text{COSY}} \right) - \phi^{\text{WF}} \right)^2 + \left(\xi^{\text{Snake}} + \xi_0^{\text{COSY}} \right)^2 \right]$ $\epsilon \propto \frac{\mathrm{d}}{\mathrm{d}t} p_y(t)$ WF On -0.10x-0.15 + 130MWF Map 150160170180190 $2\dot{0}0$ 140 Time after injection / s **RF Wien Filter** polarimeter $\phi^{ m WF}$ free precession 0.03 turn spin 0.02 0.03 5 Snake / rad 0.02 0.01 WF rad 0.01 0 0 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 **Siberian Snake** Page 11 Forschungszentrum **C**Snake

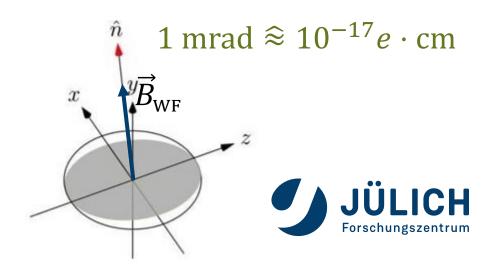
PRELIMINARY RESULTS

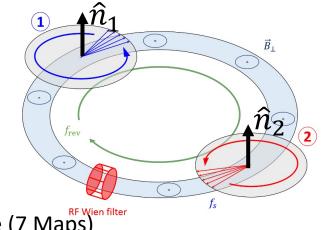
$$\epsilon^{2}(\phi^{\mathrm{WF}},\xi^{\mathrm{Snake}}) \approx \left[A_{1}^{2} \cdot \left((\phi_{0}^{\mathrm{EDM}} + \phi_{0}^{\mathrm{COSY}}) - \phi^{\mathrm{WF}}\right)^{2} + A_{2}^{2} \cdot \left(\xi^{\mathrm{Snake}} + \xi_{0}^{\mathrm{COSY}}\right)^{2}\right]$$

Precursor 1 (2018)

- 3 weeks of beam time (3 Maps)
- 6 days with **desired** conditions
- Provided necessary input for improvements

Precursor 1 $\phi_0^{\text{EDM}} + \phi_0^{\text{COSY}}$ ξ_0^{COSY} Value $-3.57(5) \, \text{mrad}$ $-5.55(5) \, \text{mrad}$

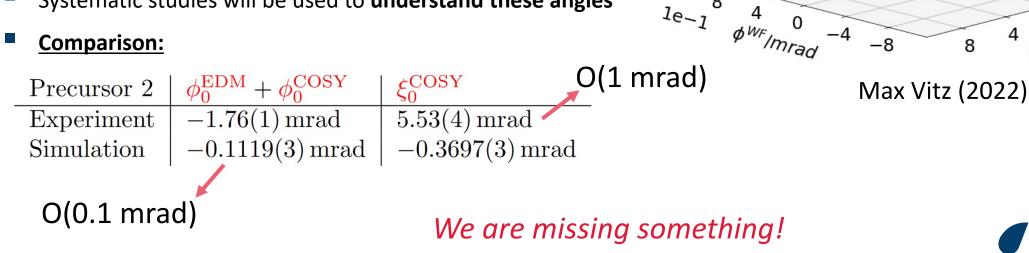

<u> Updates 2018 - 2021</u>


- Beam Based alignment of quadrupoles & Siberian Snake
- Alignment campaigns of COSY magnet system (Stollenwerk)
- New Jedi Polarimeter
- Improved **Matching** ($\vec{F}_L = 0$) of the rf Wien filter

Precursor 2 (2021)

- 5 weeks of beam time (7 Maps)
- Many improvements compared to 2018
- New **technique** with two bunches

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \hline Precursor 2 & \phi_0^{\text{EDM}} + \phi_0^{\text{COSY}} & \xi_0^{\text{COSY}} \\ \hline \text{Value} & -1.76(1) \, \text{mrad} & 5.53(4) \, \text{mrad} \\ \hline \end{array}$



INTERPRETATION

- Bmad **simulation** of the experiment
- Includes **current understanding** of (misaligned) magnets in COSY
- **Simulations predict** tilts of the invariant spin axis not larger than O(0.1mrad)
- Measured angles are an order of magnitude too large!
- Systematic studies will be used to **understand these angles**

Comparison:

 $\begin{array}{ccc} 4 & 0 & -4 & -8 \\ 4 & 5^{\text{snake}} \text{[mrad} & 1e-1 \\ \end{array}$

le

ω

6.0

4.5

3.0

1.5

0.0

8

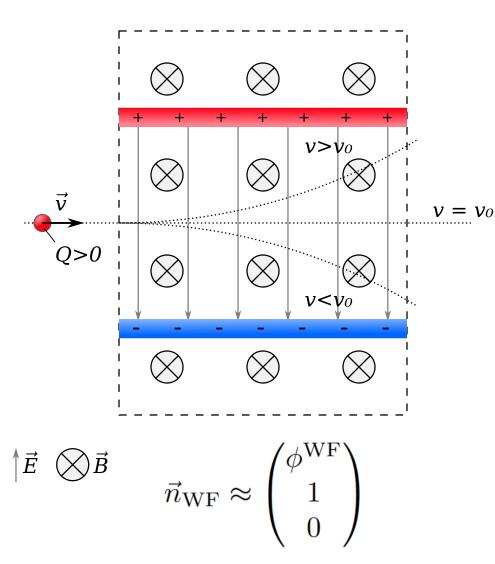
-4

-8

8

le-1

A POSSIBLE SOLUTION

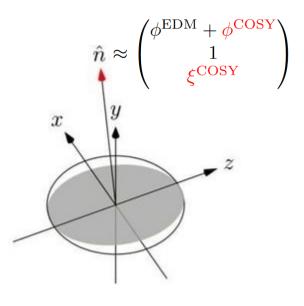

$$\begin{split} \phi^{\rm WF}, \xi^{\rm Snake}) &\propto |\vec{n}_{\rm WF} \times \vec{n}|^2 \quad \vec{n}_{\rm WF} : B \text{ field axis of rf Wien filter} \quad \vec{n} : \text{ISA} \\ &\approx \left| \begin{pmatrix} \phi^{\rm WF} \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} \phi_0^{\rm EDM} + \phi_0^{\rm COSY} \\ 1 \\ \xi^{\rm Snake} + \xi_0^{\rm COSY} \end{pmatrix} \right|^2 \\ &\approx \left[\left((\phi_0^{\rm EDM} + \phi_0^{\rm COSY}) - \phi^{\rm WF} \right)^2 + \left(\xi^{\rm Snake} + \xi_0^{\rm COSY} \right)^2 \right] \end{split}$$

- \vec{B} field direction of rf Wien filter is **only known from simulations**
- Depends on geometrical design Predicted Precision O(0.1 mrad)
- We would like to measure the \vec{B} field direction **experimentally**
- Additional field components → change of the fit formula

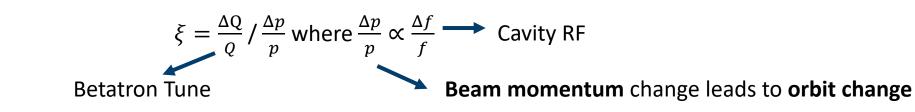
 ϵ^2

HOW TO MEASURE $\vec{n}_{\rm WF}$?

- $\vec{E} \perp \vec{B} \perp \text{Beam} \rightarrow \vec{F}_L = 0$
- Mismatch the Wien Filter on purpose $\vec{F}_L \neq 0$
- If $\phi_{WF} = 0$ (vertical magnetic field), only **horizontal** beam **displacements** should be observed
- Unknown transversal field components lead to an orbit change in vertical direction
- Problem: Phase Space Coupling due to longitudinal fields in dipoles, quadrupoles and sextupoles can mimic this effect
 - Determined by measuring the **tune shift** for different


quadrupole strengths

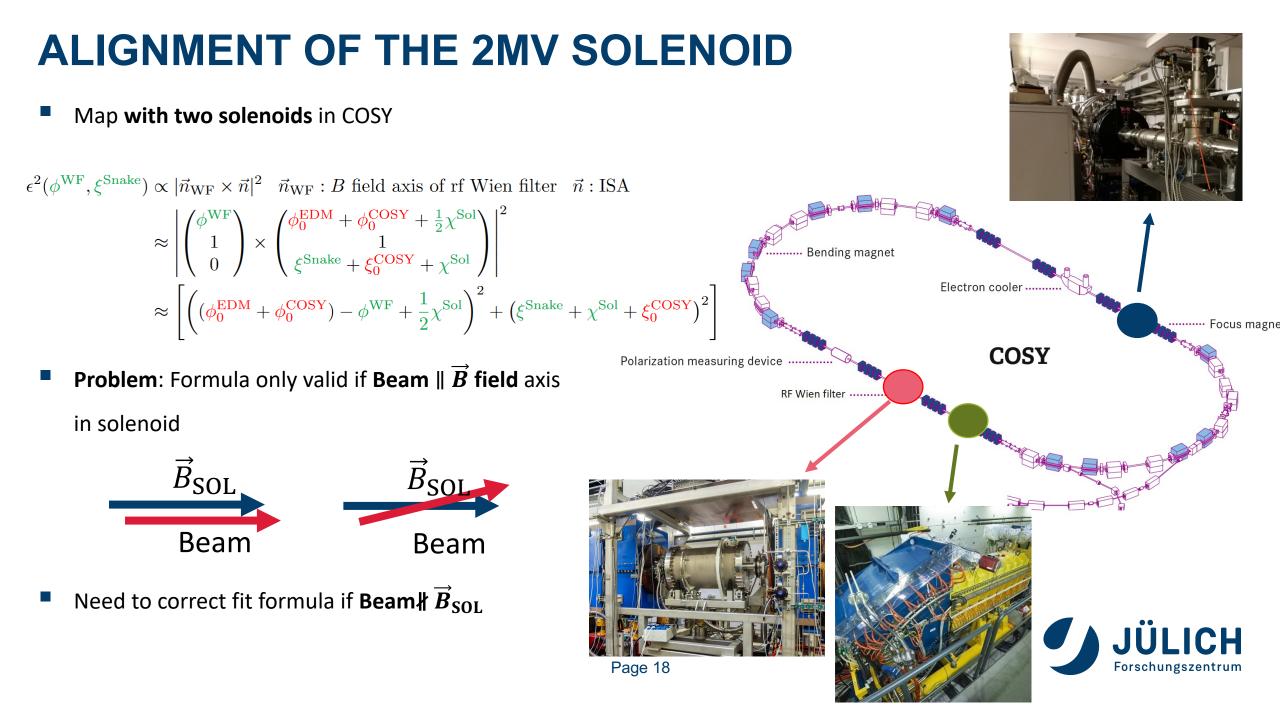
$$\Delta Q = Q_x - Q_y$$


ORBIT MEASUREMENTS

- Open questions regarding orbit measurements in COSY
- Not possible to predict the absolute beam position with BMAD
- We would like to produce a systematic and consistent data set of orbit measurements to support spin tracking simulations
- Starting point is COSY without correcting steerer magnets
- See if measured orbit reacts the same to different magnet / steering settings as in the simulation
- If predicted changes in orbit do not coincide with measured orbit changes, the beam might pick up additional stray fields not included into our simulation which lead to additional spin rotations

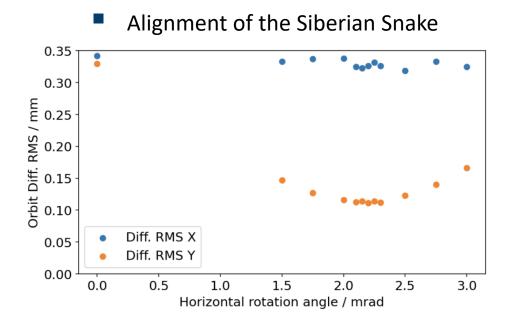
NATURAL CHROMATICITY

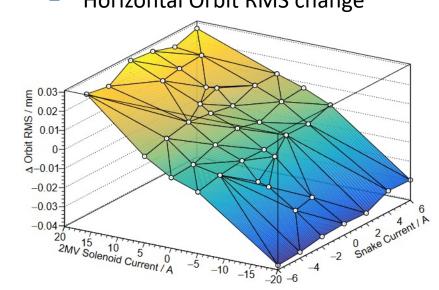
Without sextupole corrections


Horizontal ChromaticityVertical ChromaticityTotal chromaticityCOSY $\xi_x = -14.91$ $\xi_y = 9.8$ Simulation $\xi_x = -4.54$ $\xi_y = -3.75$

- Mismatch is a hint that nonlinear fields of dipoles and quadrupoles contribute to the measured chromaticity
- Solution is to measure the natural chromaticity

$$\xi = \frac{\Delta Q}{Q} / \frac{\Delta p}{p}$$
 where $\frac{\Delta p}{p} \propto \frac{\Delta f}{f}$ and $\frac{\Delta p}{p} = \frac{\Delta B}{B}$ \longrightarrow No Orbit Change

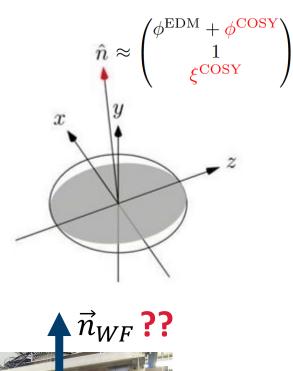

- Obtain natural chromaticity of the linear machine without any correction and effects of nonlinear fields
- These effects are **responsible** for the discrepancy between the **measured** chromaticity with sextupoles off and the model
 Page 17

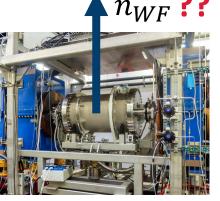


ALIGNMENT OF THE 2MV SOLENOID

- Alignment campaign of the Siberian Snake in 2020
- If **Beam** $\nexists \vec{B}_{SOL}$ beam gets steered
- By changing the beam path through the solenoid, the Orbit RMS change needs to be minimized

Horizontal Orbit RMS change

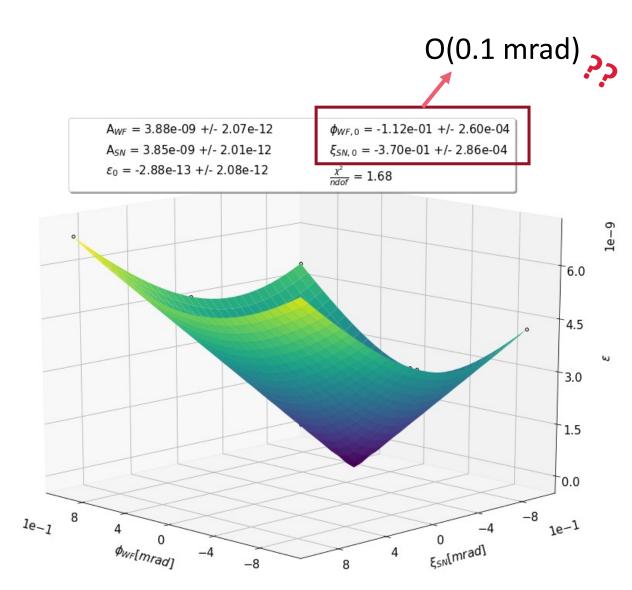

SUMMARY


Precursor 2	$\phi_0^{\rm EDM} + \phi_0^{\rm COSY}$	$\xi_0^{ m COSY}$
Experiment	$-1.76(1) \mathrm{mrad}$	$5.53(4)\mathrm{mrad}$
Simulation	-0.1119(3) mrad	$-0.3697(3) \mathrm{mrad}$

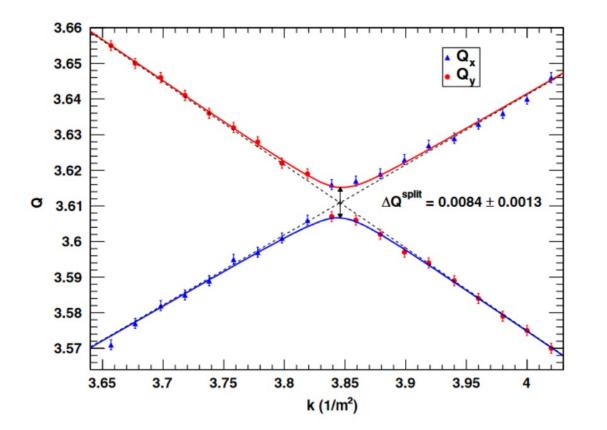
- Apply for two weeks of beam time
- Measured orientation of \vec{n} can not be explained by simulations
- Measure the orientation of \vec{n}_{WF}

$$\begin{split} \epsilon^{2}(\phi^{\mathrm{WF}},\xi^{\mathrm{Snake}}) &\propto |\vec{n}_{\mathrm{WF}} \times \vec{n}|^{2} \quad \vec{n}_{\mathrm{WF}} : B \text{ field axis of rf Wien filter} \quad \vec{n} : \mathrm{ISA} \\ &\approx \left| \begin{pmatrix} \phi^{\mathrm{WF}} \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} \phi^{\mathrm{EDM}}_{0} + \phi^{\mathrm{COSY}}_{0} \\ \xi^{\mathrm{Snake}} + \xi^{\mathrm{COSY}}_{0} \end{pmatrix} \right|^{2} \\ &\approx \left[\left((\phi^{\mathrm{EDM}}_{0} + \phi^{\mathrm{COSY}}_{0}) - \phi^{\mathrm{WF}} \right)^{2} + \left(\xi^{\mathrm{Snake}} + \xi^{\mathrm{COSY}}_{0} \right)^{2} \right] \end{split}$$

- Measurements to improve our models of COSY
 - Systematic **Orbit measurements** to find field imperfections
 - Measurement of natural chromaticity
 - Measure Alignment of the 2 MV Solenoid
- These measurements can <u>only be done in COSY</u> are needed to <u>finalize the EDM experiment and fulfill the</u> <u>milestone in the current POF period</u>


BEAM REQUEST

Торіс	Tasks	Estimated
		Beam Time
Orbit studies	Setup and preparation of tools	2 days
	Measurements at injection energy	1 day
	Measurements at $970 \mathrm{MeV/c}$	1 day
Wien filter studies	en filter studies Final setup of Wien filter with beam	
	Preparation of measurement tools	
	Preparation of solenoid	
	in total (partially in parallel)	3 day
	Measurements at 0°	2 days
	Measurements at 90°	2 days
	Orbit studies	1 day
2 MV solenoid	Beam based alignment	1 day
Chromaticity		1 day
	Total	14 days


SIMULATION REVISITED

- Many open questions still need to be adressed regarding beam & spin tracking simulations
- Mapping Field Imperfections using Orbit
 Measurements
- Natural Chromaticity Measurements
- Measurements at COSY support our current understanding of simulations
- Problems with absolute values

PHASE SPACE COUPLING

- Problem: Phase Space Coupling due to multipoles in dipoles, quadrupoles and sextupol can mimic this effect
- Coupling can be measured with the tune split

 $\Delta Q = Q_{\rm x} - Q_{\rm y}$

- Measure horizontal and vertical betatron tune as function of quadrupole strength k
- To correlate the measured momentum kick with the phasespace coupling and the observed tune split one can use the existing solenoids (snake, 2 MV cooler) for calibration

