New method to search for axion-like particles with a polarized beam at the COSY storage ring

SWATHI KARANTH
MARIAN SMOLUCHOWSKI INSTITUTE OF PHYSICS, JAGIELLONIAN UNIVERSITY, CRACOW, PL
05 - 10 SEPTEMBER 2021
PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE

E-mail: swathi.karanth@doctoral.uj.edu.pl
Axion – axion-like particle (ALPs)

• Proposed to explain the lack of CP violation in the strong interaction.
• Candidates for dark-matter in the universe.
• Axion/ALPs – gluon coupling induces an oscillating Electric Dipole Moment (EDM).

\[d = d_{\text{static}} + d_{\text{osc}} \cos(\omega t + \phi) \]

Oscillation frequency connected to axion mass \(\omega = \frac{m_a c^2}{\hbar} \)
Phase of the oscillating EDM is unknown.

See: P. W. Graham et al., PRD 84, 055013 (2011)
Cooler Synchrotron (COSY)

- A proof-of-principle experiment to search for ALPs
- Polarized deuterons
- WASA detector as the polarimeter
How to search for ALPs in a storage ring?

- Horizontally polarized beam
- \(\text{Spintune}(\nu_S) = \frac{\text{#spin rotation}}{\text{#particle revolution}} \)
 \[\nu_S = G\gamma \]

 \(G \): anomalous magnetic moment

 \(\gamma \): Lorentz factor
How to search ALPs in a storage ring?

Static EDM

Oscillating EDM

Axion oscillation frequency \(= \) Spin tune frequency \(\Rightarrow \) Accumulation of vertical polarization
Model calculations

- Ramp frequency in search of resonance
- Describe the polarization jump at resonance crossing.
- Phase plays an important role in determining the jump.

Unknowns of the experiment: frequency and phase

\[
\text{Phase} = \frac{\pi}{2} \text{ rad}
\]

\[
\text{Phase} = 0 \text{ rad}
\]
Phase problem and 4 bunches

• Simultaneous searches with perpendicular beam polarization using 4 bunches.

• RF solenoid run at $f_{\text{rev}}(1 + G\gamma)$
Measurement procedure

- Vary the spintune frequency (ramp rate ≈ 0.1Hz/s) in search of resonance.
- Measure polarization.
- About 100 scans
 - Frequency Range
 119997 Hz – 121457 Hz
 - Total width ≈ 1500 Hz
 - ALP mass range
 \(4.96 \times 10^{-9}\text{eV} – 5.02 \times 10^{-9}\text{eV}\)
RF Wien filter scan and analysis of data

- A test of methodology.
- A check for the calibration used to calculate the d_{osc} from data.
Axion scan

- Analysis is ongoing.
- No signal seen.
Summary

• ALP induces an oscillating EDM (d_{osc}), allows searching for ALPs in a storage ring.

• Polarized deuteron beam to search for resonance between the oscillating EDM frequency and the spintune frequency.
 o Frequency Range 119997 Hz – 121457 Hz. Total width \approx 1500 Hz.
 o ALP mass range 4.96×10^{-9}eV – 5.02×10^{-9}eV.

• RF Wien filter used as a test to observe a signal at resonance crossing.

• No signal was found.
Thank You