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Motivation

JEDI Collaboration: First direct measurement of charged light
hadrons’ permanent Electric Dipole Moment in storage rings

= simple system with EDM d and MDM /1 aligned
with spin S
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= EDMs violate tests both parity P and time
reversal 7 symmetry
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source: en.wikipedia.org
= CPT Theorem: permanent EDMs violate CP
symmetry
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https://en.wikipedia.org/wiki/Neutron_electric_dipole_moment
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JEDI Collaboration: First direct measurement of charged light
hadrons’ permanent EDM in storage rings

spin motion: % =S x (QMDM + QEDM) (Thomas-BMT Equation)

Qupm = & ((1 +7G)BL +(1+ G)B| — (7% +VG) B x E/C)
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Spin Motion in a Magnetic Storageﬁmg‘

JEDI Collaboration: First direct measurement of charged light
hadrons’ permanent EDM in storage rings

= spin motion: =S x (QMDM + QEDM) (Thomas-BMT Equation)

= stationary ring with vertical guiding field B, and B” —E=0
Quom = ((1 +7G)B, )
Qe = 41 8 x BL) couples to motional electric field

= MDM:ji=2(G+1)3 " S with anomalous magnetic moment G
d

=12 S~ 103" ecm < 1~ 10~ for SM light hadrons
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Generating an EDM Signal

stationary ring with vertical guiding field Band é\l —E=0

=

ﬁr'\ng = % ((1 +VG)§+ %gx B)

= spin precession around vertical axis with tune 7G

= tiny EDM tilt of precession axis

= prepare beam with purely horizontal spins

= oscillating vertical spin component, but signal
mutch too small to observe

tion
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Generating an EDM Signal

stationary ring with vertical guiding field Band é\l —E=
Ging = & ((14+G)B + 36 x B)

m

= spin precession around vertical axis with tune 7G

= tiny EDM tilt of precession axis

= prepare beam with purely horizontal spins

= oscillating vertical spin component

tion

= introduce additional in-plane spin kick in phase with precession
= oscillating spins point forward most of the time
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=- continuous build-up of vertical spin component =~ EDM Signal
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Generating an EDM Signal, cont.

Bochum

supplement lattice with local vertical magnetic
field Bwr oscillating with spin precession

minimize beam perturbation by adjusting net
Lorentz Force to zero

Ewr/c = — x Bwr (Wien-Filter condition)

additional spin rotation in RF Wien-Filter around vertical axis

MDM = 7 ((1 +~G)Buwr — (ﬁ +'yG) B x EWF/C)

QL

Qepn = 27 (EWF/C+§>< éw,:> =0

, September 15, 2015 s.mey@fz-juelich.de EDM Measurements in Magnetic Storage Rings 6



tion

Member of the Helmholtz-Associat

#) JOLICH

FORSCHUNGSZENTRUM

Generating an EDM Signal, cont.

] supplgment lattice with local vertical magnetic
field By oscillating with spin precession

= minimize beam perturbation by adjusting net
Lorentz Force to zero

Ewr/Cc = — /3 x B (Wien-Filter condition)

= additional spin rotation in RF Wien-Filter around vertical axis

QMDM = = %% BWF
The RF Wien-Fielter itself is EDM transparent, but is capable
of generating an EDM signal due to modulation of the spin
precession.*

[* W. M. Morse, Y. F. Orlov and Y. K. Semertzidis, Phys. Rev. ST Accel. Beams 16, 114001 (2013)]
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= investigate action of RF Wien-Filter
fields by direct observation of resulting
MDM motion

= use radial magnetic field with vertically
prepared spins

=- continuous rotation of spin vector
during operation

= Lorentz force compensation: E/c = —f x B

= spin precession: Qupm = %é

] particles sample localized RF field once each turn at orbit angle 6
= b(f) = [Bdz cos(’RFG + qb) Yoo o 0(0 —2mn)

Bochum, September 15, 2015 s.mey@fz-juelich.de The Prototype RF ExB-Dipole 8



iation

Member of the Helmholtz-Associ:

JULICH

FORSCHUNGSZENTRUM

Resonance Strength of an RF Wien-Filter

= intrinsic resonance strength given by spin rotation per turn,
calculate Fourier integral over driving fields along orbit*:

fspin 1+G b(e) iKo

o = oy 9, € d0

€K = frev 27y

1+G [Baz . -
= %IBp S o cos(27rn£ + ¢)el2mkn

_ 114G JBdz Lid S fae
— 227y Bp Zne (5(” K:F frev)

= spin tune =~ G, resonance at every sideband with
K=1G=n+ o for = fo[n—Gl; n€Z
= dat970MeV/c: fo = 750.603kHz; vG = —0.16098

n 0 1 =1 2 -2
fre/ kHz | 120 629 871 1380 @ 1621

[*S. Y. Lee, 10.1103/PhysRevSTAB.9.074001 (2006)]
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The Prototype RF ExB Dipole
RF B dipole RF E dipole

foil electrodes

ferrite blocks

distance 54 mm
coil: 8 windings length 580 mm
length 560 mm

50 um stainless steel
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ceramic beam chamber

Parameters RF B dipole

Parameters RF E dipole

Prus /W 90 Prus / W 90
1/A 5 AU/KV 2
[B.dl/ Tmm 0.175 [E, dI/kv 241
far range /kHz 629 - 1170 frr range /kHz 629 - 1060
Bochum, September 15, 2015 s.mey@fz-juelich.de The Prototype RF ExB-Dipole 10
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The Prototype RF ExB Dipole

RF B dipole

ferrite blocks

coil: 8 windings

distance 54 mm
length 580 mm

RF E dipole

foil electrodes
50 um stainless steel
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(Jeor)
COSY as Spin Physics R&D Facility

fast, continuous
polarimetry A
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polarized source

Bochum, September 15, 2015 s.mey@fz-juelich.de Measurements



Member of the Helmholtz-Association

fast, continuous
polarimetry
S, e

polarized source
Bochum, September15 2015

£xy and 22

electron cooling

RF ExB dipole gy

controlﬁ%
g

position along ring / m

g
A“/‘r}

- bunch-shape evolution per fill
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timeincycle /s
Measurements
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RF ExB Setup for Field Compensatlorh
Amplitude Scan RF-E at Tres =2A

]
= move betatron sideband onto ;ZZ '
RF freq. for max. sensitivity £ 500 ; ;
8 400
ay - fev L (147G)fey = 629kHz ~ §woo i*ig“ ! i s
3 200 L] iﬂ
= polarimeter target directly above 100 #
beam ||m|ts acceptance 010200 170.0 220.0 270.0 320.0 370.0 420.0 470.0 520.0
0O RF-E/V
= exited part of beam is removed Phase Scan
30.0
= diagnosis with COSY beam 50| | + .
current transformer over wol 1 Pl
At =30s I t
g 8 150 +
§ = determination of amplitudes and ; 100 M H f
phase corresponding to Lorentz ® 50 #ﬁ
H force compensation down to per 00
€ 82.0 84.0 86.0 88.0 90.0 92.0 94.0 96.0

mille! I (E-B) /
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Beam Response

Analogue signal from one vertical BPM pickup electrode during
RF operation exactly on resonance
Center fq, = fev(1 4+ gy) = 1380kHz, Span Af = 10kHz

RF Wien-Filter: RF Sol.:
IRF-B ~ 740 mA; URF-E ~ 108V ISoI. ~ 780 mApp
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Polarization Measurements

= beam polarization < average over all particles’ spins

= massive carbon target with slow extraction = long observation time

Niett — Nright

i ati i incin 120(d d) -
* polarization signal = rate asymmetries in '°C(d,d) : P, Nt F N

= continuous rotation of P =- oscillation of P,
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Measurement Resonance Strength

Run 3449; Vertical Polarization

Final TR 0= -0.035 £ 0.005

Fmeuf»’=(0.1995¢n.00B0)Hz - RF Wien_Filter and RF
Fitted &, = (0.0000 0.0747) Hz Solenoid both drive
FRTH, = 021320001 He continuous rotation of P

Projection

100 110 120 130

= find resonance by scan
of driving frequency

fRe = fev(1 —7G)

RF-Wien @ Q = 3.877: §,,,= (0

= total spin flip only on resonance =
average polarization — 0

0.22F

= minimum of oscillation frequency fp, i - S .
feu(1-y G) I Hz
=  measurement of resonance strength
fPme
€T T
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Preliminary result of Fixed Frequency Scans

resonance strength measurements to determine level of field compensation
= RF Solenoid: fp, = 41 [Bd/  RF Wien-Filter: fp, = 41£C [Bd |

p 4m p ATy .

= RF B-Dipole: f/:!y = gﬁ—VG fde | + interference due to beam motion

= RF E-Dipole: fp, = -4, *"*S [Ed/ + interference due to beam motion
qyf,evl kHz
4.0 . , 450 500 550 600 650
3 T T = RF Solenoid T T
—+ RF Wien Filter
39 —— RF B-Dipole
: v RF E-Dipole
38 -
6 L
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Summary

= versatile prototype RF ExB dipole with minimal excitation of
coherent beam oscillations has been successfully commissioned

* Prus = 90W = [B,d/=0.175Tmm; [E,d/ =24.1kV
Frequency Range 630 kHz - 1060 kHz

= entirely beam-based method for field matching has been worked
out and verified

= spin manipulation performance on the same level as with the
“proven” RF-Solenoid’system
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Outlook

= first attempt of a direct measurement of the deuteron EDM requires
a upright, high precision version of an RF Wien-Filter

= rotatable stripline solution scheduled for commissioning at COSY in
summer 2016

= introduction of the concept and field simulations — J. Slim,
“Towards a High-Accuracy RF Wien Filter for Spin Manipulation at
COSY Jilich”
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