

High Precision Spin Manipulation at COSY

Sebastian Mey Hamburg, February 26, 2015 Forschungszentrum Jülich

Spin Motion in a Storage Ring

Spin Motion in a Storage Ring

Thomas-BMT Equation: $\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}$

$$\vec{\Omega} = \frac{q}{m} \left((1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} - \left(\frac{\gamma}{\gamma + 1} + \gamma G \right) \vec{\beta} \times \frac{\vec{E}}{c} \right)$$

Spin Motion in a Storage Ring

Free Precession

Thomas-BMT Equation:
$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}$$

$$\vec{\Omega} = \frac{q}{m} \left((1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} - \left(\frac{\gamma}{\gamma + 1} + \gamma G \right) \vec{\beta} \times \frac{\vec{E}}{c} \right)$$

- ideal ring: only main bending dipoles
- additional spin precession per turn due to anomalous magnetic moment G
- spin tune ν_S = γG is relative number of precessions per turn
- ! vertical polarization component S_y is constant

Spin Motion in a Storage Rin

Driven Oscillation

Thomas-BMT Equation:
$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}$$

$$\vec{\Omega} = \frac{q}{m} \left((1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} - \left(\frac{\gamma}{\gamma + 1} + \gamma G \right) \vec{\beta} \times \frac{\vec{E}}{c} \right)$$

- additional perturbation field leads to tilt of precession axis
- oscillating RF field in phase with spin precession will lead to accumulation of spin kicks
- \Rightarrow rotation of \vec{S} in vertical plane
- \Rightarrow oscillation of S_y
 - resonant at all side bands $f_S = |n + \nu_s| f_{rev}; n \in \mathbb{Z}$
 - resonance strength is defined as vertical spin rotation per revolution

Driven Oscillation

Thomas-BMT Equation:
$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}$$

$$\vec{\Omega} = \frac{q}{m} \left((1 + \gamma G) \vec{B}_{\perp} + (1 + G) \vec{B}_{\parallel} - \left(\frac{\gamma}{\gamma + 1} + \gamma G \right) \vec{\beta} \times \frac{\vec{E}}{c} \right)$$

- additional perturbation field leads to tilt of precession axis
- oscillating RF field in phase with spin precession will lead to accumulation of spin kicks
- \Rightarrow rotation of \vec{S} in vertical plane
- \Rightarrow oscillation of S_y
 - resonant at all side bands $f_S = |n + \nu_s| f_{rev}; n \in \mathbb{Z}$
 - resonance strength is defined as vertical spin rotation per revolution

St-o-DEH The Constant of the Constant o 2 COSY as Spin Physics R&D Facility

COSY as Spin Physics R&D Facility

COSY as Spin Physics R&D Facility

Fast Polarimetry

massive carbon target as defining aperture, use slow extraction
 beam polarization ⇔ average over all particles' spins
 ⇒ asymmetries in ¹²C(d, d):

$$m{P}_y \propto \epsilon_{
m lr} = rac{N_{
m left} - N_{
m right}}{N_{
m left} + N_{
m right}}; \quad m{P}_x \propto \epsilon_{
m ud} = rac{N_{
m up} - N_{
m down}}{N_{
m up} + N_{
m down}}$$

since 2012: high resolution timestamping for every event*

Horizontal Polarization Measurement

- use RF flipper to rotate polarization in horizontal plane
- accumulate data in time bins
- time stamping ⇒ determination of up-down-asymmetry signal in every bin:

$$P_x(t) \propto \widetilde{\epsilon} \sin(2\pi
u_s f_{\mathsf{rev}} t + \phi)$$

amplitude $\tilde{\epsilon}$ corresponds horizontal polarization

Spin Tune Evolution

- fix determined spin tune to all other macroscopic bins
- observe phase evolution $\tilde{\phi}(t)$ over whole cycle
- \Rightarrow correlation of data from all time bins
 - total spin tune change over time given by derivative of phase $ilde{\phi}$

$$u_s(t) =
u_s^0 + rac{1}{2\pi f_{
m rev}}rac{{
m d} ilde{\phi}}{{
m d}t} = 0.1609752 + \Delta
u_s(t)$$

spin tune average over pprox 100 s cycle determined to 10⁻⁹ (!)

Long Time Stability

Amplitude Evolution \Leftrightarrow Spin Coherence Time

- spin precession frequency $f_s \approx \gamma G \cdot f_{rev}$
- averaging over particles' spins \Rightarrow use bunching to fix f_{rev} for all particles

Horizontal Asymmetry Run: 2042

- energy spread $\frac{\Delta\gamma}{\gamma} \Rightarrow$ spin tune spread
- ⇒ use beam cooling to minimize

Canceling 2nd Order Effects with Sextupoles

consider path lengthening effects

$$rac{\Delta\gamma}{\gamma} \propto rac{\Delta L}{L} \propto (\langle x
angle^2, \langle y
angle^2, \delta^2)$$

Horizontal Asymmetry Run: 2051

three independent families of COSY sextupoles at locations with large β_x , β_y , *D* to compensate

s.mey@fz-juelich.de

The RF ExB dipole in Wien Filter Configuration

High Precision Spin Manipulation at COSY

Measurements: Vertical Polarization

Driven Polarization Oscillation

- \blacksquare total spin flip only on resonance \Rightarrow average polarization \rightarrow 0
- minimum of vertical polarization oscillation frequency f_{Pv}
- resonance strength is spin rotation per turn $\varepsilon = \frac{f_{Py,min}}{f_{ry}}$

ELMHOLTZ ASSOCIATION

Determination of Lorentz Force Compensation

- **RF** Wien filter at $f_{S,-1} = 871.4277$ kHz
- scan of betatron tune q_y determines influence of beam oscillations
- **RF-solenoid:** $f_{P_y} = \text{const.}$; **RF-Wien-Filter:** $f_{P_y} = \text{const.}$
- RF-dipole: interference with driven coherent beam osc.

High Precision Spin Manipulation at COSY

Conclusion

Conclusion

JEDI -Collaboration: search for light hadrons' permanent EDM*

- accelerator \equiv experiment \Rightarrow aim for ultimate precision "conventional" accelerator
- utilize polarization as diagnostic tool, examples:
 - horizontal polarization:
 - spin tune measurements as high precision tool established
 - observation time for horizontal polarization pushed towards 1000 s mark
 - vertical polarization:
 - precision spin manipulation with minimal beam disturbance
 - resonance strength determination by means of frequency measurement

[*talk by A. Lehrach]

Spin Tune per Time Bin

- use RF flipper to rotate polarization in horizontal plane
- detector signal: $N_{
 m up,\ down}(t) \propto 1 \pm \sin(2\pi f_{S}t + \phi)$
- $f_S \approx \gamma G \cdot f_{rev} = 120 \text{ kHz}$, but event rate only $\approx 5 \text{ kHz}$
- ⇒ detector event only every 25th oscillation period

[J. Pretz, JEDI Collaboration]

Spin Tune per Time Bin

- use RF flipper to rotate polarization in horizontal plane
- detector signal: $N_{
 m up, \ down}(t) \propto 1 \pm \sin(2\pi f_{S}t + \phi)$
- $f_S \approx \gamma G \cdot f_{rev} = 120 \text{ kHz}$, but event rate only $\approx 5 \text{ kHz}$
- ⇒ detector event only every 25th oscillation period
 - time stamps t ⇒ map all events of macroscopic bin into one assumed oscillation period T_s ⇔ t' = mod (t, T_s)

[J. Pretz, JEDI Collaboration]

Spin Tune per Time Bin, cont.

- 1 timestamps $t \Rightarrow$ map all events of macroscopic bin into one assumed oscillation period $T_s \Leftrightarrow t' = \mod(t, T_s)$
- 2 calculate asymmetries in one time period and fit oscillation
- 3 extract amplitude $\tilde{\epsilon} \propto$ polarization from fit

[[]D. Eversmann, JEDI Collaboration]

Spin Tune per Time Bin, cont.

- ► 1 timestamps $t \Rightarrow$ map all events of macroscopic bin into one assumed oscillation period $T_s \Leftrightarrow t' = \mod(t, T_s)$
- 2 calculate asymmetries in one time period and fit oscillation
- 3 extract amplitude $\tilde{\epsilon} \propto$ polarization from fit
- 4 vary value of T_s, repeat
- **5** best spin tune manifests as maximum in spectrum of $\nu_s = \frac{2\pi}{T_c f_{rev}}$

[[]D. Eversmann, JEDI Collaboration]

