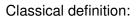
Measurement of Electric Dipole Moments of Charged Hadrons in Storage Rings

J. Pretz RWTH Aachen/ FZ Jülich

RWTHAACHEN

HPSP, Bad Honnef, August 2012


Outline

Electric Dipole Moments (EDMs)

- What is it?
- Why is it interesting?
- What do we know about it?
- How to measure it?

What is it?

Electric Dipoles

$$\vec{d} = \sum_i q_i \vec{r}_i$$

Order of magnitude

atomic physics:

$$q_1 = -q_2 = e$$
, $|\vec{r}_1 - \vec{r}_2| = 1$ Å= 10^{-10} m

$$\rightarrow |\vec{d}| = 10^{-10} e \cdot cm$$

Water molecule: $d = 2 \cdot 10^{-9} e \cdot \text{ cm}$

Order of magnitude

atomic physics:

$$q_1 = -q_2 = e$$
, $|\vec{r}_1 - \vec{r}_2| = 1$ Å= 10^{-10} m

$$\rightarrow |\vec{d}| = 10^{-10} e \cdot cm$$

Water molecule: $d = 2 \cdot 10^{-9} e \cdot \text{cm}$

hadron physics:

$$|\vec{r}_1 - \vec{r}_2| = 1 \text{fm} = 10^{-13} \text{cm}$$

$$\rightarrow |\vec{d}| = 10^{-13} e \cdot \text{cm}$$

Limit on neutron EDM $< 3 \cdot 10^{-26} e \cdot cm$

Order of magnitude

- Molecules do have EDM of expected order of magnitude
- Hadrons not

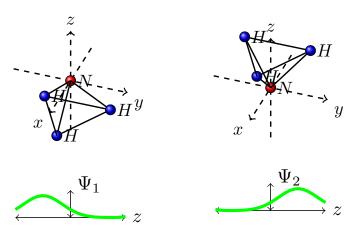
Why?

Hadrons have a given parity:

$$P|\text{had}>=\pm 1|\text{had}>$$

Operator:
$$\vec{d} = q\vec{r}$$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):


$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$

Consequences:

In a state $|a\rangle$ of given parity the expectation value is 0:

$$\left\langle a|\vec{d}|a
ight
angle =-\left\langle a|\vec{d}|a
ight
angle$$

Situation is completely different for molecules

ground state: mixture of
$$\Psi_s=rac{1}{\sqrt{2}}\left(\Psi_1+\Psi_2
ight) \quad P=+ \ \Psi_a=rac{1}{\sqrt{2}}\left(\Psi_1-\Psi_2
ight) \quad P=-$$

(Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique quantique)

Ground state is mixture of (allmost)* degenerated states with different parity:

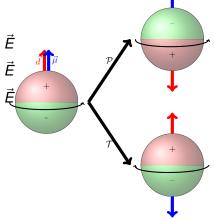
$$|a> = \alpha |\Psi_s> +\beta |\Psi_a>$$

 $\left\langle a|\vec{d}|a
ight
angle
eq 0$ in general

* energy difference $E_s - E_a$ can be neglected if energy shift due to applied electric field is large compared to $E_s - E_a$

Elementary particles (including hadrons) can only have dipole moment if parity $\mathcal P$ and time reversal $\mathcal T$ invariance are violated! (In this case they are not in a state of a given parity!)

\mathcal{T} and \mathcal{P} violation of EDM


 \vec{d} : EDM

 $\vec{\mu}$: magnetic moment

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

$$\mathcal{T}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

$$\mathcal{P}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{\xi}$$

 \mathcal{T} violation $\overset{\mathcal{CPT}}{\rightarrow} \mathcal{CP}$ violation

Symmetries

Continious Symmetries

- Translation
- Rotation

Discrete Symmetries

- Parity (P)
- Time Reversal (T)
- Charge Conjugation (C)

Symmetries

	electro-mag.	strong	weak
\mathcal{C}	✓	✓	Ź
${\cal P}$	✓	✓	ź
$\mathcal{T} \stackrel{\mathcal{CPT}}{\rightarrow} \mathcal{CP}$	✓	✓	(\mathcal{E})

- \bullet ${\cal C}$ and ${\cal P}$ are maximally violated in weak interactions (Lee, Young, Wu)
- CP violation discoverd in kaon decays (Cronin,Fitch)

Why is it interesting?

\mathcal{CP} violation

- We are surounded by matter (and not anti–matter) $\eta = \frac{n_B n_{\bar{B}}}{n_{\gamma}} = 10^{-10}$
- Starting from equal amount of matter and anti-matter at the Big Bang, from \mathcal{CP} -violation in Standard Model we expected only 10^{-18}
- In 1967 Sakharov formulated three prerequisites for baryogenesis. One of these is the combined violation of the charge and parity, CP, symmetry.
- New CP violating sources outside the realm of the SM are clearly needed to explain this discrepancy of eight orders of magnitude.
- They could manifest in EDMs of elementary particles

Sources of CP violation

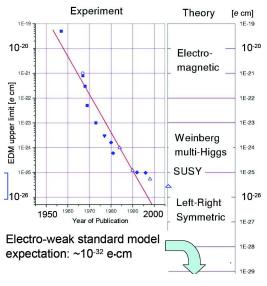
\mathcal{CP} violation can have different sources

- Weak Interaction (unobservably small)
- QCD θ term (limit set by neutron EDM measurement)
 ——— Part of Standard Model ————
- sources beyond SM
- \Rightarrow It is important to measure neutron **and** proton **and** deuteron **and** . . . EDMs in order to disentangle various sources of \mathcal{CP} violation.

What do we know about (hadron) EDMs?

What do we know about (hadron) EDMs?

Particle/Atom	Current Limit/e-cm
Neutron	$< 3 \cdot 10^{-26}$
¹⁹⁹ Hg	$< 3.1 \cdot 10^{-29}$
\rightarrow Proton	$< 7.9 \cdot 10^{-25}$
Deuteron	?
³ He	?


- direct measurement only for neutron
- proton deduced from atomic EDM limit
- no measurement for deuteron (or other nuclei)

Why is there no measurement of charged particle EDMs?

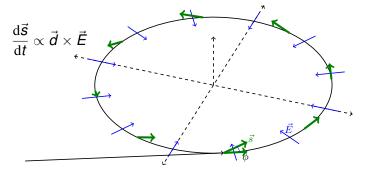
- EDM of neutral particles can be measured in traps
- applying an electric field on a charged particle accelerates the particles, you have to build larger "traps" called storage rings
- Two exceptions:

$$\Lambda$$
: < 1.5 · 10⁻¹⁶ e ·cm
 μ : 0.1 ± 0.9 · 10⁻¹⁹ e ·cm

History of Neutron EDM

50 years of effort

Extensions of SM allow for large EDMs


from K. Kirch

How to measure it?

How to measure it?

General Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_{\perp} \propto |d|$, then determine s_{\perp} using polarimeter

In general:
$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s}$$

$$\vec{\Omega} = \frac{e\hbar}{mc} [\vec{G}\vec{B} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{1}{2} \eta (\vec{E} + \vec{v} \times \vec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}$$
, $\vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$, $G = \frac{g-2}{2}$, $g:g$ -factor

Several Options:

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}$$
, $\vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$, $G = \frac{g-2}{2}$, $g:g$ -factor

Several Options:

Pure electric ring

with
$$\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$$
 , works only for $G > 0$

$$ec{\Omega} = rac{e\hbar}{mc}[Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}$$
, $\vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$, $G = \frac{g-2}{2}$, $g:g$ -factor

Several Options:

• Pure electric ring with $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$, works only for G > 0

② Combined
$$\vec{E}/\vec{B}$$
 ring
$$G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$$

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}$$
, $\vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$, $G = \frac{g-2}{2}$, $g:g$ -factor

Several Options:

- Pure electric ring with $\left(G \frac{1}{\gamma^2 1}\right) = 0$, works only for G > 0
- 2 Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G \frac{1}{\gamma^2 1}\right)\vec{v} \times \vec{E} = 0$
- Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	p/GeV/c	E_R /MV/m	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius \approx 40m Smaller ring size possible if $B_V \neq 0$ for proton $E = \frac{GBc\beta\gamma^2}{1+G\beta^2\gamma^2}$

1. Pure Electric Ring

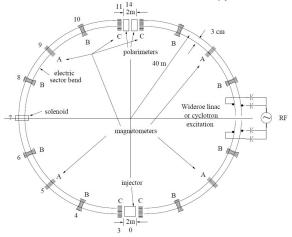


Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the alin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

2. Combined \vec{E}/\vec{B} ring

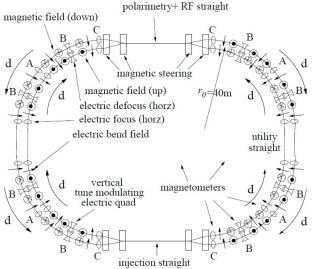


Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Main advantage:

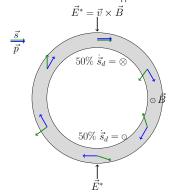
Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!



COSY provides (polarized) protons and deuterons with $p=0.3-3.7 \text{GeV}/c \Rightarrow \text{Ideal starting point}$

$$\Omega = rac{e\hbar}{mc}\left(G ec{B} + rac{1}{2} rac{\eta ec{v} imes ec{B}
ight)$$

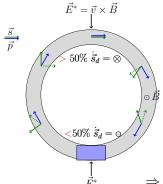
Problem:


Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

$$\Omega = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta}{ec{v}} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.



E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

$$\Omega = \frac{e\hbar}{mc} \left(\vec{G} \vec{B} + \frac{1}{2} \frac{\eta}{\vec{v}} \vec{v} \times \vec{B} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow part$. trajectory is not affected but

 $B^* \neq 0 \rightarrow \text{mag.}$ mom. is influenced

⇒ net EDM effect can be observed!

Summary of different options

	\odot	
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}He, \dots$	both \vec{E} and \vec{B} required
3.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity

Statistical Sensitivity

$$\sigma pprox rac{\hbar}{\sqrt{\textit{NfT} au_{\textit{p}}}\textit{PEA}}$$

Р	beam polarization	0.8
$ au_{ extsf{p}}$	Spin coherence time/s	1000
E	Electric field/MV/m	10
Α	Analyzing Power	0.6
N	nb. of stored particles/cycle	4×10^7
f	detection efficiency	0.005
T	running time per year/s	10 ⁷

 $\Rightarrow \sigma \approx 10^{-29} e \cdot \text{cm/year}$ (for magnetic ring $\approx 10^{-24} e \cdot \text{cm/year}$) Expected signal \approx 3nrad/s (for $d=10^{-29} e \cdot \text{cm}$) (BNL proposal)

Systematics

One major source:

Radial B field mimics an EDM effect:

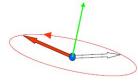
- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

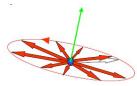
$$\begin{split} B_r &= \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T \\ \text{(Earth Magnetic field} \approx 5 \cdot 10^{-5} \text{ T)} \end{split}$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

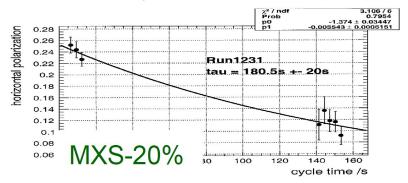
Main Challenges

- Spin Coherence Time (SCT)≈ 1000s
- Polarimetry on 1 ppm level (ppm = part per million)
- Beam positioning ≈ 10nm (relative between CW-CCW)
- Field Gradients ≈ 10MV/m


Spin Coherence Time (SCT)


Usally we dont care about decoherence of spins

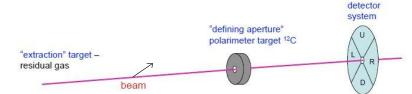
because polarisation with respect to invariant spin axis \vec{n} is the same.


Situation is different if $\vec{S} \perp \vec{n}$

Longitudinal Polarization is lost.

Results on Spin Coherence Time (SCT)

Spins decohere during storage time very preliminary results form Cosy run May 2012 using correction sextupole


 \Rightarrow SCT increase from a few s to \approx 200s already reached

(Ed. Stephenson)

Polarimeter

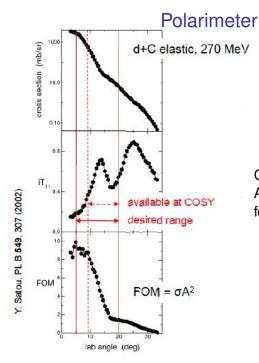
Principle: Particles hit a target: Left/Right asymmetry gives information on EDM Up/Down asymmetry gives information on g-2

Polarimeter: Figure of Merit

Goal: Determine vertical polarization *P*Measure counting rates in left and right detector:

$$N_R \propto N^{up} \sigma_R + N^{dn} \sigma_L, \quad N_L \propto N^{up} \sigma_L + N^{dn} \sigma_R$$

Calculate asymmetry:

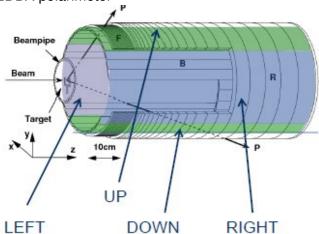

$$\epsilon = \frac{N_R - N_L}{N_R + N_L} = \underbrace{\frac{N^{up} - N^{dn}}{N^{up} + N^{dn}}}_{P} \underbrace{\frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}}_{A} = PA$$

P: Polarization(to be determined), A: analyzing power(known)

$$P = rac{\epsilon}{A}$$

Statistical error $\sigma_{\epsilon} = 1/\sqrt{N}$, $N = N_R + N_L$

$$\Rightarrow \sigma_P = \frac{1}{A\sqrt{N}}$$
, Figure of merit (FOM) = $\frac{1}{\sigma_P^2} = A^2N$

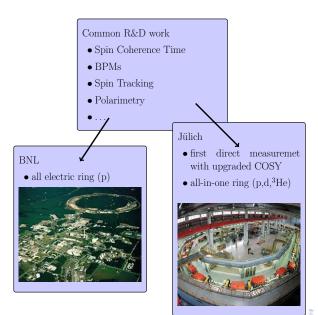


Cross Section & Analyzing Power for deuterons

Polarimeter

Available at COSY for tests:

EDDA polarimeter



Stepwise approach of JEDI project in Jülich

JEDI = **J**ülich **E**lectric **D**ipole Moment **I**nvestigations

1	Spin coherence time studies	COSY
	Systematic Error studies	
2	COSY upgrade	COSY
	first direct measurement	COSY
	at 10 ⁻²⁴ <i>e</i> ⋅ cm	
3	Build dedicated ring for	
	p,d and ³ He	
4	EDM measurement	Dedicated
	at 10 ⁻²⁹ <i>e</i> ⋅ cm	ring

Storage Ring EDM Efforts

Summary

- EDM of various hadrons species are of high interest to disentangle various sources of \mathcal{CP} violation searched for to explain matter antimatter asymmetry in the Universe
- Up to now only direct measurement for neutron
- EDM of charged particles can be measured in storage rings
- Experimentally very challenging because effect is tiny
- Efforts at Brookhaven and Jülich to perform such measurements