Measurement of Permanent Electric Dipole Moments of Proton, Deuteron and Light Nuclei in Storage Rings

J. Pretz

RWTH Aachen/ FZ Jülich on behalf of the JEDI collaboration

SSP2012, Groningen June, 2012

Outline

Electric Dipole Moments (EDMs)

- What is it?
- Why is it interesting?
- What do we know about it?
- How to measure it?

What is it?

Electric Dipole Moments: What is it?

- EDM: Permanent spatial separation of positive and negative charges
- Water molecule: $d = 2 \cdot 10^{-9} e \cdot \text{cm}$

- Water molecule can have large dipole moment because ground state has two degenerate states of different parity
- This is not the case for proton. Here the existence of a permanent EDM requires both $\mathcal T$ and $\mathcal P$ violation, i.e. assuming \mathcal{CPT} invariance this implies \mathcal{CP} violation:

That makes it interesting!

\mathcal{T} and \mathcal{P} violation of EDM

 \mathcal{T} violation $\overset{\mathcal{CPT}}{\rightarrow} \mathcal{CP}$ violation

Why is it interesting?

Why is it interesting?

- \mathcal{CP} violation of Standard Model predicts Proton EDM $< 10^{-31}\,e\cdot\text{cm}$
- This corresponds to a separation of two u-quarks from a d-quark by $\approx 10^{-30}$ cm, i.e 10^{-17} of the proton radius!

- Not reachable experimentally in foreseeable future
- Extensions of Standard Model predict EDM as large as 10⁻²⁴ e·cm
- Sources of CP outside the realm of SM are needed to explain matter/anti-matter imbalance in universe

What do we know about (hadron) EDMs?

What do we know about (hadron) EDMs?

Particle/Atom	Current Limit/e-cm	
Neutron	$< 3 \cdot 10^{-26}$	
¹⁹⁹ Hg	$< 3.1 \cdot 10^{-29}$	
\rightarrow Proton	$< 7.9 \cdot 10^{-25}$	
Deuteron	?	
³ He	?	

- direct measurement only for neutron
- proton deduced from atomic EDM limit
- no measurement for deuteron (or other nuclei)

History of Neutron EDM

50 years of effort

Extensions of SM allow for large EDMs

Sources of CP violation

CP can have different sources

- Weak Interaction (unobservably small)
- QCD θ term (limit set by neutron EDM measurement)
 ——— Part of Standard Model ————
- sources beyond SM
- \Rightarrow It is important to measure neutron **and** proton **and** deuteron **and** . . . EDMs in order to disentangle various sources of \mathcal{CP} violation.

How to measure it?

How to measure it?

General Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_{\perp} \propto |d|$, then determine s_{\perp} using polarimeter

In general:
$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s}$$

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$$

Several Options:

$$\vec{\Omega} = rac{e\hbar}{mc}[G\vec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)\vec{v} imes \vec{E} + rac{1}{2}\eta(\vec{E} + \vec{v} imes \vec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$$

Several Options:

Pure electric ring

with
$$\left(G-\frac{1}{\gamma^2-1}\right)=0$$
 , works only for $G>0$

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$$

Several Options:

- Pure electric ring with $\left(G \frac{1}{\gamma^2 1}\right) = 0$, works only for G > 0
- 2 Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G \frac{1}{\gamma^2 1}\right)\vec{v} \times \vec{E} = 0$

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}$$

Several Options:

- Pure electric ring with $\left(G \frac{1}{\gamma^2 1}\right) = 0$, works only for G > 0
- **2** Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G \frac{1}{\gamma^2 1}\right)\vec{v} \times \vec{E} = 0$
- Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	p/GeV/c	E_R /MV/m	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius \approx 40m Smaller ring size possible if $B_V \neq 0$ for proton $E = \frac{GBc\beta\gamma^2}{1+G\beta^2\gamma^2}$

1. Pure Electric Ring

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the alin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

2. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Main advantage:

Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!

COSY provides (polarized) protons and deuterons with $p=0.3-3.7 \text{GeV}/c \Rightarrow \text{Ideal starting point}$

$$\Omega = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

$$\Omega = \frac{e\hbar}{\textit{mc}} \left(\textit{G}\vec{\textit{B}} + \frac{1}{2} \frac{\eta \vec{\textit{v}} \times \vec{\textit{B}}}{} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

$$\Omega = \frac{e\hbar}{mc} \left(\vec{G} \vec{B} + \frac{1}{2} \frac{\eta}{\vec{v}} \vec{v} \times \vec{B} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization components is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$: $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but $B^* \neq 0 \rightarrow \text{mag.}$ mom. is influenced

⇒ net EDM effect can be observed!

Summary of different options

	\odot	
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}He, \dots$	both \vec{E} and \vec{B} required
3.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity

Statistical Sensitivity

$$\sigma pprox rac{\hbar}{\sqrt{\textit{NfT} au_{\textit{p}}}\textit{PEA}}$$

Р	beam polarization	0.8
$ au_{ extsf{p}}$	Spin coherence time/s	1000
E	Electric field/MV/m	10
Α	Analyzing Power	0.6
N	nb. of stored particles/cycle	4×10^7
f	detection efficiency	0.005
T	running time per year/s	10 ⁷

 $\Rightarrow \sigma \approx 10^{-29} e \cdot \text{cm/year}$ (for magnetic ring $\approx 10^{-24} e \cdot \text{cm/year}$) Expected signal $\approx 3 \text{nrad/s}$ (for $d = 10^{-29} e \cdot \text{cm}$) (BNL proposal)

Systematics

One major source:

Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

Solution: Use two beams running clockwise and counter clockwise, Separation of the two beams is sensitive to B_r

Main Challenges

- Spin Coherence Time (SCT)≈ 1000s
- Beam positioning ≈ 10nm (relative between CW-CCW)
- Polarimetry on 1 ppm level
- Field Gradients ≈ 10MV/m

Polarimeter

Principle: Particles hit a target: Left/Right asymmetry gives information on EDM Up/Down asymmetry gives information on g-2

Cross Section & Analyzing Power for deuterons

Polarimeter

Available at COSY for tests:

EDDA polarimeter

Results on Spin Coherence Time (SCT)

Spins decohere during storage time very preliminary results form Cosy run May 2012 using correction sextupole

 \Rightarrow SCT of \approx 200s already reached

(Ed. Stephenson)

pEDM at Brookhaven

Time-lines:

2013-2014	R&D preparation
2014	final ring design
2015-2017	ring/beam-line construction
2017-2018	Installation

Stepwise approach of JEDI project in Jülich

JEDI = Jülich Electric Dipole Moment Investigation (Collaboration since March 2012, \approx 70 members, still growing)

1	Spin coherence time studies	COSY
	Systematic Error studies	
2	COSY upgrade	COSY
	first direct measurement	COSY
	at 10 ⁻²⁴ <i>e</i> ⋅ cm	
3	Build dedicated ring for	
	p , d and 3 He	
4	EDM measurement	Dedicated
	at 10 ⁻²⁹ <i>e</i> ⋅ cm	ring

Time scales: Steps 1 and 2 <5 years Steps 3 and 4 >5 years

Storage Ring EDM Efforts

Summary

- EDM of (charged) hadrons are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- Measurements of p,d and ³He needed in addition to neutron
- efforts at Brookhaven and Jülich to perform such measurements

EDM Workshop at ECT* Trento

EDM Searches at Storage Rings

October 1-5, 2012 http://www.ectstar.eu

Organizers:

Frank Rathmann (Jülich) Hans Ströher (Jülich) Andreas Wirzba (Jülich)

Mei Bai (BNL) William Marciano (BNL) Yannis Semertzidis (BNL)