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ABSTRACT

FIELD MODELING, SYMPLECTIC TRACKING, AND SPIN DECOHERENCE
FOR EDM AND MUON G-2 LATTICES

By

Eremey Vladimirovich Valetov

While the first particle accelerators were electrostatic machines, and several electrostatic storage

rings were subsequently commissioned and operated, electrostatic storage rings pose a number of

challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle

energy generally changes in electrostatic elements. Conservation of energy in an electrostatic

element is, in practice, only approximate, and it requires careful and accurate design, manufacturing,

installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields,

tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than

homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.

The search for electric dipole moments (EDMs) of fundamental particles is of key importance

in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov

conditions that explain the matter–antimatter asymmetry in the universe. Determining the source

of CP violations would provide valuable empirical insight for beyond-Standard-Model physics.

EDMs of fundamental particles have not to this date been experimentally observed. The search for

fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet

to be discovered.

In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for

the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage

ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in

a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the

deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin

vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.



The principle of an anomalous magnetic dipole moment (MDM) measurement using a storage

ring, shared by BNL’s completed E821 Experiment and the ongoing E989 Experiment operated by

Fermi National Accelerator Laboratory (FNAL), requires injecting muons into a magnetic ring at

the so-called magic momentum. The magic momentum, as defined in this context, would freeze the

muon’s spin vector along its momentum if the anomalous MDM was zero. The spin precession in

the horizontal plane relative to the momentum is proportional to the anomalous MDM.

Storage rings for measurement of EDM and anomalous MDM present a new frontier in tracking

code accuracy requirements. For accurate tracking of storage rings with electrostatic particle optical

elements, it is necessary to model the fringe fields of such elements accurately, in particular, because

not doing so provides a mechanism for energy conservation violation. However, the previous

research on fringe fields tended to focus on magnetic rather than electrostatic particle optical

elements. We will study and model the fringe fields of several electrostatic deflectors. Field falloffs

of electrostatic deflectors are slower than exponential, and Enge functions are not suitable for

accurate modeling of these falloffs. We will propose an alternative function to model field falloffs

of electrostatic deflectors. We will use conformal mapping methods to obtain the main field of the

Muon g-2 storage ring high voltage quadrupole, and we will calculate its fringe field and effective

field boundary (EFB) using Fourier analysis.

Furthermore, we will study tracking of storage rings with electrostatic elements using map

methods. We will find that, for simultaneous symplecticity and energy conservation, it is only

necessary to enforce symplecticity in COSY INFINITY. We will model and track several benchmark

lattices – an electrostatic spherical deflector, a homogeneous magnetic dipole, and a proton EDM

lattice – in COSY INFINITY and MSURK89, our in-house eighth order Runge–Kutta–Verner

tracking code. Finally, we will investigate spin decoherence and systematic errors in FS and quasi-

frozen spin (QFS) lattices. Spin decoherence effects are similar in FS and QFS lattices, and spin

decoherence in said lattices often remains in the same range over time, indicating the feasibility of

EDM measurement using FS and QFS lattices.
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CHAPTER 1

INTRODUCTION

Particle accelerators are machines that use electromagnetic fields to accelerate atomic or subatomic

particles to high energies. The applications of particle accelerators include experiments to research

fundamental forces and matter, as well as mass spectrometry, isotope production, and medical

diagnostics.

Because of the similarity between optics in optical systems and particle beam dynamics in

particle accelerators, and for historical reasons, particle beam dynamics are also called particle

beam optics.

In high energy physics, after the acceleration of particle bunches, it is often desirable to store

them or to observe their dynamics for a period of time in a specific system or regime. This is

achieved by storage rings, which are characterized by cyclic motion through a closed system of

particle optical elements, often at a constant particle energy.

The first particle accelerators, such as the Van de Graaf accelerator and the Cockroft–Walton

generator, were electrostatic machines [101]. There were a few electrostatic storage rings such as

DESIREE in Stockholm [39] and, most notably, the 1954 Brookhaven Electrostatic AGS Analog

Ring [85, 107].

However, electrostatic storage rings pose multiple challenges. Unlike motion in the magnetic

field, where particle energy remains constant, particle energy generally changes in electrostatic

elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and

it requires careful and accurate design, manufacturing, installation, and operational use. Moreover,

electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberra-

tions of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles.

Accordingly, magnetic storage rings are overwhelmingly prevalent.
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1.1 Electric Dipole Moment

An electric dipole is a system characterized by centers of equal and opposite total charges ±q

separated by a very short distance d. The electric dipole moment (EDM) of two point-like charges

is defined as p = qd. A uniform electrostatic field E acts on an electric dipole of the EDM p with

torque τ = p×E.

For a charge distribution ρ (r) in a volume V , the EDM is

p(r) =
�

V
ρ (r0)(r0− r)d3r0,

where r is the point of observation.

If the net charge Q in the volume V is zero, that is, Q =
�

V ρ (r0)d3r0 = 0, then the EDM p(r)

does not depend on the point of observation r. For charged particles, the net charge Q is not zero,

and the EDM definition is specialized by setting the point of observation r as the center of mass of

the particle [88].

EDMs of fundamental particles were not experimentally observed so far. However, one of

the principal challenges in the Standard Model (SM) is baryon asymmetry, that is, the abundance

of matter observed in the universe, in contrast to almost no antimatter. The baryon asymmetry

is quantified by the baryon asymmetry parameter η =
(
nB−nB̄

)
/nγ ' 5×10−10, where nB, nB̄,

and nγ are baryon, antibaryon, and photon number densities in the cosmic microwave background

radiation (CMBR), respectively [49, 25].

If the baryon asymmetry existed as an initial condition at the beginning of the Big Bang, it

would be eliminated by dilution during the inflationary period [25, 50]. The Sakharov conditions,

proposed by Andrei Sakharov in his seminal 1967 article [92], represent a dynamic mechanism

for baryon asymmetry generation, called baryogenesis, that does not require baryon asymmetry

as an initial condition. The Sakharov conditions are as follows: (1) baryon number B violation,

(2) C and CP violation, and (3) departure from thermal equilibrium [103, 92]. A nonzero EDM

in a fundamental particle would result in both C and CP violation [88], which would support the

Sakharov conditions as the reason for the baryon asymmetry.
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The order of a neutron EDM due to C and CP violations is estimated as |dn| ' 10−23 e · cm [5,

p. 107]. The SM predicts, due to the CP-violating phase δ in the CKM matrix, |dn| ' 10−31 e · cm

[5, p. 112][74]. This suggests a target search region for a beyond-SM neutron EDM [89] as

10−31 e · cm > |dn|> 10−23 e · cm.

This region applies to nucleon EDMs in general because of their order-wise approximate equivalency,

as dimensional analysis and SUSY considerations show [3, pp. 7–9].

It is desirable to search for intrinsic EDMs of multiple particles in order to apply complementary

methods over a broad search domain and to determine the source of CP violation from EDMs

of multiple particles [89] (e.g., the CP-violating phase δ in the CKM matrix, the CP-violating

parameter θ̄ of QCD, spontaneous CP violation in the Higgs field interaction [5, pp. 108–116][3,

pp. 7–9]).

So far, the search for intrinsic particle EDMs has narrowed the EDM limits, for example, to

|de| < 1.85× 10−27 e · cm for electrons (at 95.8% confidence level (CL); indirect measurement

using the YbF molecules) [59, p. 29], |dn| < 3.6× 10−26 e · cm for neutrons (at 95% CL) [84,

p. 21], and
∣∣dp
∣∣ < 7.9× 10−25 e · cm for protons (including 30% theoretical uncertainty; based

on measurement of 199
80 Hg EDM at 95% CL) [44, p.101601-4], but an EDM signal is yet to be

discovered. Experiments continue with increasing measurement precisions, and an expansion of the

search domain to include deuterons is envisioned.

The idea of using storage rings for the search of charged hadron EDMs is an alternative with

the potential of higher sensitivity than current state-of-the-art methods, including ultracold neutron,

paramagnetic atom, and diamagnetic atom EDM experiments [5, 40].

In 2008, BNL’s Storage Ring EDM collaboration had proposed the frozen spin (FS) concept [2]

for measurement of the deuteron EDM, illustrated in Fig. 1.1. The FS concept envisions launching

deuterons through a storage ring with combined radial electrostatic and vertical magnetic fields.

The electrostatic (E) and magnetic (B) fields are in a proportion that would, without an EDM, freeze

the deuteron’s spin1 along its momentum as the deuteron moves around the lattice. The radial

1Spin is the intrinsic angular momentum of a particle, as opposed to orbital angular momentum.
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Figure 1.1: In the FS lattice concept, the projection sxz of the deuteron’s spin s on the midplane x–z
is aligned with the deuteron’s momentum p. An deuteron EDM would cause the azimuthal angle α

to slowly grow from the initial α = 0 to a measurable value.

electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM,

rotating the spin vector out of the midplane.

Measurement of the proton EDM using the FS method had been proposed by the Storage

Ring EDM collaboration in 2011 [3]. The Jülich Electric Dipole moment Investigations (JEDI)

collaboration, based at the Institute of Nuclear Physics at Forschungszentrum Jülich, is considering

the FS method for design of a deuteron EDM storage ring, as well as its modification called the

quasi-frozen spin (QFS) method [65, 98]. We will introduce the QFS method in sec. 6.3.2.1.

1.2 Anomalous Magnetic Dipole Moment

The magnetic dipole moment (MDM) µ is defined by the relation τ = µ×B, where τ is the

torque exerted on an object, such as a magnet, by an external magnetic field B.

The spin MDM of a lepton (an electron e−, a muon µ−, or a tau τ−) is µ = g e
2ms, where

the lepton spin is s = 1/2, m is the lepton mass, e is the elementary charge, and g is the g-factor

(gyromagnetic ratio) of the lepton.

The Dirac equation predicts the g-factor as 2 for leptons, and the quantity a = (g−2)/2, arising

from quantum effects, is known as anomalous MDM (or MDM anomaly).
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The SM-framework prediction for the muon anomalous MDM consists of three parts [52, 14]:

aSM
µ = aQED

µ +aEW
µ +aHad

µ ,

where QED, EW, and Had denote the QED, electroweak, and hardronic contributions, respectively.

The muon anomalous MDM is predicted by the SM as [14, 23, 48]

aSM
µ =


116591802(49)×10−11 in [23, p. 10],

116591828(49)×10−11 in [48, p. 21].

It is desirable to experimentally validate the SM prediction of the muon anomalous MDM.

The Muon g-2 Experiment E821 at BNL [53], completed in 2001, measured the muon anomalous

MDM as [14, p. 8][43, p. 46]

aE821
µ = 116592089(63)×10−11,

with an experimental precision of 0.54 ppm – a significant improvement over previous muon

anomalous MDM measurements (see, e.g., [19, 21, 20, 35]).

The resulting discrepancy between the experimental and theoretical values was [14, 23, 48]

∆aµ = aE821
µ −aSM

µ =


287(80)×10−11 [23, p. 10],

261(80)×10−11 [48, p. 22].
(1.1)

These results represent 3.6σ and 3.3σ disagreements between experiment and theory, respectively,

and are not at the discovery threshold of 5σ .

In 2010, the new Muon g-2 Experiment E989 [17, 43], now at FNAL, was proposed to measure

the muon anomalous MDM, using the same measurement principle, to 0.14 ppm experimental

precision. That should exceed the 5σ discovery threshold, assuming the discrepancy between

experiment and theory remains similar to the discrepancy in eq. 1.1.

The principle of anomalous MDM measurement, shared by the E821 and E989 Experiments,

requires injecting muons into a magnetic ring at the magic momentum p = 3.09GeV/c, correspond-

ing to γ = 29.3 [53, p. 9][43, p. 73]. The magic momentum, as defined in this context, would
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Figure 1.2: In the E821 and E989 lattice concepts, the polar angle α between the muon’s spin vector
s and momentum p is initially at α = 0. A nonzero muon anomalous MDM aµ causes α to slowly
grow to a measurable value.

freeze the muon’s spin vector along its momentum if aµ was zero. Thus, the spin precession in the

horizontal plane relative to the momentum is proportional to aµ . This lattice concept is illustrated

in Fig. 1.2.

1.3 Thomas–BMT Equation

The Thomas–BMT equation describes the dynamics of spin vector s in magnetic field B and

electrostatic field E, and it is generalized to account for the EDM effects as follows [79, 37]:

ds
dt

= s× (ΩMDM +ΩEDM) ,

where the MDM and EDM angular frequencies ΩMDM and ΩEDM are

ΩMDM =
q
m

[
GB−

(
G− 1

γ2−1

)
E×β

c

]
,

ΩEDM =
q
m

η

2

[
E
c
+β ×B

]
,
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where m, q, G are the particle mass, electric charge, and anomalous MDM, respectively; β is the

ratio of particle velocity to the speed of light; and γ is the Lorentz factor. The EDM factor η is

defined by d = η
q

2mcs, where d is the particle EDM and s is the particle spin.

The magic momentum, utilized in the anomalous MDM and the proton EDM storage ring

concepts, is a momentum that causes the coefficient of the β ×E term in the Thomas–BMT equation

to vanish. The magic momentum corresponds to the Lorentz factor γ =
√
(1+G)/G.

As the deuteron has negative anomalous MDM, the magic momentum concept is not applicable.

Accordingly, the deuteron EDM storage ring concept uses combined E +B fields in such proportion

that the entire ΩMDM term vanishes. This is achieved by a radial electrostatic field (compare with

[2, p. 10])

E =
BcGβ

1+β 2 (1+G)
≈ BcGβγ

2,

where B is the vertical magnetic field and G is the deuteron’s anomalous MDM.

1.4 Lattice Tracking Requirements

Lattice simulation and tracking is an essential part of lattice concept feasibility studies, design,

and post-commissioning operation.

To validate the feasibility of a lattice for EDM or anomalous MDM, it is necessary to perform

spin coherence time (SCT) and systematic errors analysis studies, as well as to simulate measurement

of an EDM or an anomalous MDM signal. EDM and anomalous MDM storage rings are high-

precision measurement devices and, accordingly, require highly accurate orbital and spin tracking.

A broadly manifesting challenge of EDM and anomalous MDM storage rings is that they

require the magic momentum or a γ-dependent proportion of E and B fields; however, generally,

electrostatic fields affect particle energy. Symplecticity (see Ch. 4 or [4, 41]) is a fundamental

property of Hamiltonian mechanics and results, among other things, in the conservation of phase

space volume by Liouville’s theorem. For some time, there was a general notion that numerical

tracking of nonintegrable systems cannot simultaneously preserve energy and symplecticity [117].

Practically all storage rings are magnetic, and tracking codes tend to have specialized control
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mechanisms for symplecticity of motion but not energy conservation [11, pp. 292–295].

Furthermore, for accurate tracking of storage rings with electrostatic particle optical elements, it

is necessary to accurately model fringe fields of electrostatic particle optical elements. However,

the previous research on fringe fields tended to focus on magnetic (e.g., [82, 83, 112]) rather than

electrostatic particle optical elements (e.g., the 2016 article [73]), and previous results on fringe

field models of electrostatic particle optical elements are limited.

1.5 Beamline Coordinate System

Particle beam lattices, such as accelerators and storage rings, are typically designed with an

ideal particle trajectory called the reference orbit. In storage rings, the beam transport is periodic,

and the reference orbit is closed.

Beamline coordinate systems use the distance s along the reference orbit (the arc length) as a

natural parametrization of motion.

Let r (s) be the coordinate vector of a particle in a global Cartesian coordinate system as a

function of s, and let the index 0 refer to the reference particle.

Each point s on the reference orbit is the origin of a local orthonormal basis. The Frenet–Serret

frame is used as the local orthonormal basis. The Frenet–Serret frame comprises tangent ez, normal

ex, and binormal ey unit basis vectors [11, pp. 168–190][105, pp. 15–18]

ez (s) =
r′0 (s)∣∣r′0 (s)∣∣ ,

ex (s) =
e′z (s)∣∣e′z (s)∣∣ ,

ey (s) = ez (s)× ex (s) .

The Frenet–Serret unit vectors ex, ey, and ez are related to the reference orbit curvature κ and

torsion τ by the Frenet–Serret formulas

e′x (s) =−κ (s)ex (s)+ τ (s)ez (s) ,

e′y (s) =−τ (s)ex (s) ,
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e′z (s) = κ (s)ey (s) .

We will primarily perform beam physics computations in COSY INFINITY [68]. Accordingly,

we will use COSY INFINITY’s beamline coordinate system with phase space coordinates [12, p. 9]

r1 = x, r2 = a = px/p0,

r3 = y, r4 = b = py/p0,

r5 = l =−(t− t0)v0
γ

1+γ
, r6 = δK =

K−K0
K .

Coordinates x and y are the transversal Frenet–Serret position coordinates in meters, p is the

momentum, K is the kinetic energy, v is the velocity, t is the time of flight, and γ is the Lorentz

factor. The index 0 refers to the reference particle.

The six phase space coordinates form three canonically conjugate pairs (x,a), (y,b), and (l,δK).

In some instances, we will use a global Cartesian coordinate system (x,y,z) based on the local

Frenet–Serret coordinate system (x(s) ,y(s) ,z(s)) at a fixed point s. This is mostly useful for

individual particle optical elements with a straight reference orbit. In that case, the s defining the

coordinate system, and its origin, are typically at the physical exit edge or the exit effective field

boundary (EFB) of the element.

1.6 Thesis Outline

First, we will address the issue of accurate description of main and fringe fields of particle

optical elements used in spin lattices. In Chapter 2, we will calculate the fringe fields of several

semi-infinite electrostatic deflectors using conformal mapping methods, compare the results with the

fringe fields of several finite rectangular electrostatic deflectors obtained using a boundary element

method (BEM) field solver, and propose a function to model field falloffs of electrostatic deflectors.

In Chapter 3, we will use conformal mapping methods to obtain the main field of the Muon g-2

storage ring high voltage quadrupole, and we will calculate its fringe field and EFB using Fourier

analysis.

Next, we will study tracking of storage rings with electrostatic elements using map methods.

In Chapter 4, we will review symplecticity and symplectification methods, discuss the feasibility
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of simultaneous symplectification and energy correction, and conclude that it is only necessary to

enforce symplecticity in COSY INFINITY, as energy conservation was foundational in the tracking

code design. In Chapter 5, we will model and track several benchmark lattices – an electrostatic

spherical deflector, a homogeneous magnetic dipole, and a Proton EDM lattice – in COSY INFINITY

and MSURK89, our in-house 8th order Runge–Kutta–Verner tracking code. Finally, we will

investigate spin decoherence and systematic errors in FS and quasi-frozen spin (QFS) lattices in

Chapter 6. We will find that the spin decoherence effects are similar in FS and QFS lattices, and

spin decoherence often remains in the same range over time, indicating the possible feasibility of

EDM measurement using FS and QFS lattices.
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CHAPTER 2

FRINGE FIELDS OF ELECTROSTATIC DEFLECTORS

2.1 Introduction

The electrostatic deflector is a core particle optical element type in a lattice for EDM measure-

ment.

Electrostatic deflectors used in beam physics generally comprise two plates of different voltages

V1 and V2. In the approximation of an electrostatic deflector as a capacitor with parallel flat plates

and the reference orbit with zero curvature, nominally, plate voltages have the same magnitude but

opposite signs: V1 =V and V2 =−V .

The distance D between the plates – the full aperture – is usually small compared to plate

widths and lengths and the deflector’s radius R of curvature. This leads to the idea that fringe

fields of realistic electrostatic deflectors can be effectively modeled by fringe fields of semi-infinite

capacitors.

We studied the fringe fields of semi-infinite electrostatic capacitors. In many cases, a semi-

infinite electrostatic capacitor can be modeled by a generalized polygon with two vertices at the

infinity separating two groups of sides characterized by two different constant voltages. The

electrostatic field of this capacitor may then be obtained by finding a conformal mapping from a

bi-infinite strip to this polygon.

We compared the field falloffs obtained using conformal mapping methods for several semi-

infinite electrostatic capacitors to the field falloffs of two finite electrostatic capacitors obtained

using a BEM field solver.

Field falloffs of semi-infinite electrostatic capacitors are slower than exponential. We think

that this applies to electrostatic deflectors in general, as substantiated by the example of a finite

cylindrical electrostatic deflector in Ch. 5. Thus, whereas Enge functions are useful for modeling

falloffs of magnetic particle optical elements, they are not generally suitable for electrostatic
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Figure 2.1: The polygonal model of the semi-infinite capacitor with infinitely thin plates.

deflectors. We propose an alternative function to model field falloffs of electrostatic deflectors, and

we demonstrate its use in the example of a semi-infinite electrostatic capacitor.

2.2 Semi-Infinite Capacitor with Uniform Charge Distribution

The simplest model of a semi-infinite capacitor comprises infinitely thin semi-planes and

assumes uniform charge distribution in the plates.

We consider such a model with plates at horizontal offsets x =±d and longitudinal coordinates

z ≤ 0, shown in Fig. 2.1. The z axis is a reference orbit in the approximation of no fringe fields

and the radius-of-curvature limit of R→ +∞. The full aperture is D = 2d. Without limiting the

generality, we set the surface charge densities as σ = 1 for the x = d plate and σ = −1 for the

x =−d plate.

The electrostatic potential ϕ (x,y,z) between the plates can be obtained as the sum of integrals

of the Coulomb potential over the two plates

ϕ (x,y,z) =
� +∞

−∞

dt1

� 0

−∞

dt2 ∑
j=±1

|σ | j√
(x− jd)2 + t2

1 +(z− t2)2
. (2.1)

Performing integration over t1 within eq. 2.1, we have
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� +∞

−∞

dt1 ∑
j=±1

|σ | j√
(x− jd)2 + t2

1 +(z− t2)2
=

= lim
t1→+∞

∑
j=±1

j ln

 t1 +
√

(x− jd)2 + t2
1 +(z− t2)2

−t1 +
√
(x− jd)2 + t2

1 +(z− t2)2

=

= lim
t1→+∞

ln


(√

ξ 2 + t2
1 +4dx− t1

)(√
ξ 2 + t2

1 + t1
)

(√
ξ 2 + t2

1 +4dx+ t1
)(√

ξ 2 + t2
1 − t1

)
=

= lim
t1→+∞

ln

1+
2t1
(√

ξ 2 + t2
1 +4dx−

√
ξ 2 + t2

1

)
(√

ξ 2 + t2
1 +4dx+ t1

)(√
ξ 2 + t2

1 − t1
)
=

= lim
t1→+∞

ln

1+
2
(

2dx
t1

+O
(

1
t31

))
(√

ξ 2+4dx
t21

+1+1

)(
ξ 2
2t1

+O
(

1
t31

))
=

= ln
(

1+
4dx

(x−d)2 +(z− t2)2

)
,

(2.2)

assuming x 6= d or t2 6= z, and where we denoted ξ 2 = (x−d)2 +(z− t2)2.

Let

f (x,z) =
[
(t2− z) ln

(
1+

4dx
(x−d)2 +(z− t2)2

)]0

t2=−∞

. (2.3)

Evaluating the right-hand side in eq. 2.3, we obtain

f (x,z) =−z ln
(

1+
4dx

(x−d)2 +(z− t2)2

)
=

= z ln

[
(x−d)2 +(z− t2)2

(d + x)2 +(z− t2)2

]
=

= z ln
(

1− 4dx
(d + x)2 +(z− t2)2

)
.

(2.4)
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Considering eqns. 2.2, 2.3, and 2.4, we complete the integration in eq. 2.1:

ϕ (x,y,z) =
� +∞

−∞

dt1

� 0

−∞

dt2 ∑
j=±1

|σ | j√
(x− jd)2 + t2

1 +(z− t2)2
=

=

� 0

−∞

dt2 ln
(

1+
4dx

(x−d)2 +(z− t2)2

)
=

= f (x,z)+
� 0

−∞

dt2
(t2− z)2

1+ 4dx
(x−d)2+(z−t2)

2

8dx[
(x−d)2 +(z− t2)2

]2 =

= f (x,z)+
� 0

−∞

dt2
8dx(t2− z)2[

(x−d)2 +(z− t2)2
][
(x+d)2 +(z− t2)2

] =
= f (x,z)+

� 0

−∞

dt2

[
− 2(d− x)2

(d− x)2 +(t2− z)2 +
2(d + x)2

(d + x)2 +(t2− z)2

]
=

= f (x,z)+
[

2(x−d) tan−1
(

t2− z
d− x

)
+2(d + x) tan−1

(
t2− z
d + x

)]0

t2=−∞

=

= f (x,z)+2(x−d) tan−1
(
− z

d− x

)
+2(d + x) tan−1

(
− z

d + x

)
+2πx =

= f (x,z)+2(x−d) tan−1
(

d− x
z

)
+2(d + x) tan−1

(
d + x

z

)
+4πx [z < 0]

for −d < x < d and z 6= 0, where the Iverson bracket was used, defined as [42, p. 24] [P] = 1 if P is

true and [P] = 0 if P is false.

Thus, we have

ϕ (x,y,z) = z ln
(

1− 4dx
(d + x)2 + z2

)
+2(x−d) tan−1

(
d− x

z

)
+

+2(d + x) tan−1
(

d + x
z

)
+4πx [z < 0]

for z 6= 0.

The singularity of the electrostatic potential ϕ and its derivatives at z = 0 is removable and has

no physical meaning. We remove the singularity to make ϕ continuous and infinitely differentiable

at z = 0.

We obtain the x component Ex (0,y,z) of the electrostatic field in the midplane x = 0 from the
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electrostatic potential as

Ex (0,y,z) =−
∂

∂x
ϕ (x,y,z) |x=0 =

=− lim
w→z

[(
8dxw(d + x)(
(d + x)2 +w2

)2 − 4dw
(d + x)2 +w2

)(
1− 4dx

(d + x)2 +w2

)−1
−

− 2w(x−d)

w2 +(d− x)2 +2tan−1
(

d− x
w

)
+

2w(d + x)

w2 +(d + x)2 +2tan−1
(

d + x
w

)
+

+4π [w < 0]]x=0 =

=


−4cot−1( z

d )−4π ,z < 0,

−4cot−1( z
d ) ,z > 0,

−2π ,z = 0.

Normalizing the electrostatic field to Ex (0,y,−∞) = 1 (i.e., limz→−∞ Ex (0,y,z) = 1) and con-

sidering the translational symmetry in the y direction, we obtain

Ex (z) = Ex (0,y,z) =



1
π

cot−1( z
d )+1 ,z < 0,

1
π

cot−1( z
d ) ,z > 0,

1/2 ,z = 0,

Fig. 2.2 shows the falloff of the electrostatic field Ex (z).

The electrostatic field satisfies the condition Ex (z)+Ex (−z) = 1. This is due to the assumption

that the surface charge densities are uniform. As a result of this assumption, the surface charge

densities ±σ in the plates are symmetric to the zero surface charge density in their complementary

semi-planes at x =±d and z > 0. More generally, the equality Ex (z)+Ex (−z) = const would hold

for any charge density ρ (x,y,z) such that ρ (x,y,z)+ρ (x,y,−z) = const.

2.2.1 Taylor Enge Function Coefficients

To approximate the falloff of the electrostatic field Ex (z) by an n-th order Enge function

Fn (z) =
1

1+ exp
(

∑
n+1
j=1 a j (z/D) j−1

) ,
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Figure 2.2: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with uniform charge
distribution.

one may think of performing an n-th order Taylor expansion of the function f (z) defined by

1
1+ exp f (z)

= Ex (z) .

The abscissa of an Enge function is always scaled by the full aperture D of the particle optical

element that it represents. This is because electrostatic and magnetic fields scale with geometry.

We had obtained the 5th order Taylor series expansion of

f (z) = ln
(

1
Ex (z)

−1
)

in Mathematica as

f (z) =
8
π

( z
D

)
−

32
(

π2−4
)

3π3

( z
D

)3
+

128
(

48−20π2 +3π4
)

15π5

( z
D

)5
+O

[( z
D

)6
]
,

resulting in Taylor Enge function coefficients a1 = 0, a2 = 8/π , a3 = 0, a4 = 32
(

4−π2
)
/3π3,

a5 = 0, and a6 = 128
(

48−20π2 +3π4
)
/15π5.

For an odd function f (z), the Enge function satisfies the symmetry condition F (z)+F (−z) = 1.

Indeed, assuming that f (−z) =− f (z),

F (z)+F (−z) = 1⇔ 1
1+ exp f (z)

+
1

1+ exp f (−z)
= 1⇔
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Figure 2.3: 5th order Taylor Enge function F5 (z) (dashed red), based on the electrostatic field falloff
Ex (z) (solid blue) of the semi-infinite capacitor with uniform charge distribution.

⇔ 1 = exp( f (z)+ f (−z))⇔

⇔ f (−z) =− f (z) .

A plot of the Taylor Enge function F5 (z) in Fig. 2.3 demonstrates that, generally, finite-order

Taylor expansions do not produce the best polynomial fit of the respective order. However, Taylor

function coefficients may be used as the initial guess in a least-squares fit.

One may be tempted to calculate Taylor Enge function coefficients of a higher order to obtain a

better approximation. The following are the 16th order Taylor Enge function coefficients of Ex (z),

computed as a differential algebra (DA) value of f (z/D) at z = 0 in COSY INFINITY:

I COEFFICIENT ORDER EXPONENTS

1 2.546479089470326 1 1 0 0 0 0 0

2 −2.019239983477256 3 3 0 0 0 0 0

3 − .8881784197001252E−15 4 4 0 0 0 0 0

4 3.982947197900324 5 5 0 0 0 0 0

5 − .5329070518200751E−14 6 6 0 0 0 0 0

6 −10.10612663161852 7 7 0 0 0 0 0
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7 − .3552713678800501E−14 8 8 0 0 0 0 0

8 28.89989597659871 9 9 0 0 0 0 0

9 − .1278976924368180E−11 10 10 0 0 0 0 0

10 −88.63211876076747 11 11 0 0 0 0 0

11 0.1051603248924948E−11 12 12 0 0 0 0 0

12 284.5981022831754 13 13 0 0 0 0 0

13 − .3922195901395753E−11 14 14 0 0 0 0 0

14 −943.9943887193954 15 15 0 0 0 0 0

15 − .6893969839438796E−09 16 16 0 0 0 0 0

For comparison, the following is the 9th order Taylor series expansion of f (z), obtained by

symbolic differentiation in Mathematica:

f (z) =
2048

(
80640−60480π2 +19152π4−3272π6 +315π8

)
2835π9

( z
D

)9
−

−
512

(
−2880+1680π2−392π4 +45π6

)
315π7

( z
D

)7
+

+
128

(
48−20π2 +3π4

)
15π5

( z
D

)5
−

32
(

π2−4
)

3π3

( z
D

)3
+

8
π

( z
D

)
+O

[( z
D

)10
]
=

=2.546479089470325
( z

D

)
−2.019239983477256

( z
D

)3
+3.982947197900328

( z
D

)5
−

−10.10612663161852
( z

D

)7
+28.89989597659899

( z
D

)9
+O

[( z
D

)10
]
.

The CPU times of Taylor Enge function coefficients calculations, up to the 63rd order, were 6.91 s

and 0.0125 s in Mathematica and COSY INFINITY, respectively.

As Fig. 2.4 illustrates, increasing the order of a Taylor Enge function tends to result in faster

exponential convergence to the asymptotes, decreasing the Enge function approximation accuracy.

Moreover, actual and apparent asymptotes alternate between the intended limz→−∞ F (z) = 1,

limz→+∞ F (z) = 0 and the unintended limz→−∞ F (z) = 0, limz→+∞ F (z) = 1, depending on the

leading polynomial terms of the Taylor expansion of f (z).
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Figure 2.4: 14th (dot-dashed green) and 16th (dashed red) Taylor Enge functions F14 (z) and F16 (z),
based on the electrostatic field falloff Ex (z) (solid blue) of the semi-infinite capacitor with uniform
charge distribution.

2.2.2 Least-Squares Enge Function Coefficients

We fitted a 5th order Enge function F5 (z) to the electrostatic field Ex (z) using the

Levenberg–Marquardt Gauss–Newton method and the least-squares variance function in COSY

INFINITY and Mathematica. The set a1 = 6.2118×10−17, a2 = 1.87847, a3 = 3.35814×10−17,

a4 = −0.136631, a5 = 1.09036× 10−18, and a6 = 0.00406222, obtained in Mathematica, is a

representative example.

The odd Enge function coefficients were practically zero, which agrees with the symmetry

condition F5 (z)+F5 (−z) = 1.

Although the least-squares fits resulted in improvements over the 5th order Taylor Enge function

coefficients, the representation accuracy was still not satisfactory, as Fig. 2.5 illustrates. This is

because the electrostatic field falloff is slower than exponential.

We concluded that although Enge functions often accurately represent field falloffs, it is not

the case for the semi-infinite capacitor with infinitely thin plates and uniform charge distribution.

As we will show later, Enge functions are not good representations of electrostatic deflector field
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Figure 2.5: Least-squares Enge function F5 (z) (dashed red), fitted to the electrostatic field falloff
Ex (z) (solid blue) of the semi-infinite capacitor with uniform charge distribution.

falloffs in general.

In this uniform charge distribution case, the field falloff Ex (z) has a quite simple symbolic form.

This is the next best thing in the absence of an accurate Enge function representation.

Moreover, one may attempt to model hypothetical field falloffs of similar visual appearance that

satisfy Ex (z)+Ex (−z) = 1, but do not have a known symbolic form, by a function such as

Fn (z) =



1
π

cot−1(∑n−1
j=0 a j

( z
D
)2 j+1

)+1 ,z < 0,

1
π

cot−1(∑n−1
j=0 a j

( z
D
)2 j+1

) ,z > 0,

1/2 ,z = 0.

2.2.3 Asymptotic Field Falloff Behavior

A Taylor series expansion of the electrostatic field along the z axis Ex (z) at point z =+∞, performed

in Mathematica, yields

Ex (z) =
1

2π (z/D)
− 1

24π (z/D)3 +
1

160π (z/D)5 +O

[(
1

(z/D)

)7
]
.
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However,

1. the electrostatic field of an electrostatic dipole, comprising two point-like charges at x =±d,

y = 0, and z = 0, falls off at (x,y,z) = (0,0,+∞) as ∼ 1/z3; and

2. the electrostatic field of a capacitor, comprising two semi-infinite rods at x =±d, y = 0, and

z≤ 0, falls off at (x,y,z) = (0,0,+∞) as ∼ 1/z2.

To see that there is no contradiction, it is sufficient to note that the point-like charges electrostatic

dipole consists of 0D elements, the semi-infinite rods capacitor consists of 1D elements, and, in our

case, the semi-infinite plates capacitor comprises 2D elements.

Consider an observation point (x,0,z), where z > 0. In case of semi-infinite rods with linear

charge densities λ =±1, the electrostatic potential at point (x,0,z) is

ϕ (x,0,z) =
� 0

−∞

dt ∑
λ=±1

λ√
(x−λd)2 +(z− t)2

,

whereas in case of semi-infinite plates the electrostatic potential at point (x,0,z) is

ϕ (x,0,z) =
� +∞

−∞

dt1

� 0

−∞

dt2 ∑
σ=±1

σ√
(x−σd)2 + t2

1 +(z− t2)2
.

The latter is equivalent to the one-dimensional integral

ϕ (x,0,z) =
� 0

−∞

dt

 ∑
σ=±1

σ√
(x−σd)2 +(z− t)2

 f (z, t) ,

where

f (z, t) = 2(z+ t)arccos
(

z
t + z

)
is the length of the arcs of radius z+ t, sweeping the upper and lower plates from center points

(d,0,z) and (−d,0,z), respectively.

This further illuminates why the asymptotic order of the electrostatic potential at (x,y,z) =

(0,0,+∞) is one order higher for the semi-infinite plates capacitor than for the semi-infinite rods

capacitor.
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Figure 2.6: The Schwarz–Christoffel map f from the bi-infinite strip −π ≤ ℑ(v) ≤ −π to the
physical domain with semi-infinite infinitely thin plates at x =±d, y≤ 0.

2.3 Semi-Infinite Capacitor with Plates of Uniform Potential

In the realistic case of plates with uniform electrostatic potentials, we expect the surface charge

density in the semi-infinite capacitor’s plate to be higher near the edge. Indeed, if there were

a uniform surface charge density at initial time z = 0, integration of the Coulomb electrostatic

potentials would have lower total magnitude near the plate edge, which would result in charges

rushing to the edge and in relaxation to an equilibrium with higher charge density near the edge.

The relatively higher surface change density near the edges increases the magnitude of the

electrostatic field Ex (z) near z = 0 compared to the uniform surface charge case, which also means

that Ex (−z) increases in magnitude near z = 0. As a result, now we have Ex (z)+Ex (−z)≥ 1+a

for some a > 0 in a neighborhood U (0) of z = 0.

Due to the translational symmetry in the y direction, we can reduce the 3D problem to 2D.

Conformal mapping methods, detailed in App. A, are often effective for computing the electrostatic

potential for 2D representations of semi-infinite capacitors.

2.3.1 Infinitely Thin Plates

We continue to study a semi-infinite capacitor with infinitely thin plates at x =±d, y≤ 0, with full

aperture D = 2d, but now the plates are of uniform electrostatic potential instead of uniform charge

distribution.
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We utilize the Schwarz–Christoffel transformation f : C→ C [54, pp. 103–111]

z+ ix = f (v) =
d
π
(1+ v+ exp(v)) ,

which transforms the real axis onto itself, the line v = πi to the plate at x = d, z≤ 0, and the line

v =−πi to the plate at x =−d, z≤ 0. The transformation f is shown in Fig. 2.6.

From the definition of f , we have

v+ exp(v) =−1+
π

d
(z+ ix)

and

exp(v)exp(exp(v)) = exp
(
−1+

π

d
(z+ ix)

)
.

Applying the Lambert W function defined as the solution of W (t)expW (t) = t, we obtain

exp(v) =W
[
exp
(
−1+

π

d
(z+ ix)

)]
and, finally,

v = f−1 (z+ ix) =

=−1+
π

d
(z+ ix)−W

[
exp
(
−1+

π

d
(z+ ix)

)]
.

If the voltages of the plates at x = d and x =−d are V =V0 and V =−V0, respectively, then

the electrostatic potential ϕ (v) at point v is ϕ (v) =V0ℑ(v)/π . Without loss of generality, we set

V0 = 1.

Thus, we obtain the electrostatic potential as

ϕ (x,z) =
1
π

ℑ

(
f−1 (z+ ix)

)
=

=
x
d
− 1

π
ℑ

[
W
(

exp
(
−1+

π

d
(z+ ix)

))]
.

(2.5)

The branch κ (z) of the Lambert W function that produces the required range [−1,1] of the electro-

static potential ϕ (x,z) is

κ (z) =
⌈

1
2π

ℑ

(
π

d
z
)
− 1

2

⌉
.
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The x component Ex (x,z) of the electrostatic field is then

Ex (x,z) =−
∂

∂x
ϕ (x,z) =

=
1
d
− 1

d
ℜ

[
W (exp(−1+π (z+ ix)/d))

1+W (exp(−1+π (z+ ix)/d))

]
.

We normalize the electrostatic field to Ex (0,−∞) = 1. Then, along the z axis, the electrostatic field

is

Ex (z) = 1−ℜ

(
W (exp(−1+πz/d))

1+W (exp(−1+πz/d))

)
.

Unlike in the case of plates with uniform charge distribution, the electrostatic field falloff Ex (z)

is asymmetric relative to point (z,x) = (0,1/2). Accordingly, we offset the electrostatic field by the

non-zero effective field boundary (EFB) zEFB/D = 0.920945. The EFB is computed as

zEFB = zint +
1

Ex (zint)

� zext

zint
Ex (z)dz, (2.6)

where zint and zext are points well inside and well outside the particle optical element, respectively.

As a result, the area of the region defined by Ex (z)≤ E ≤ 1, z ≤ zEFB is equal to the area of the

region defined by 0 ≤ E ≤ Ex (z), z ≥ zEFB, with accuracy depending on zint and zext. We use

zext/D =−5 and zext/D = 20, and we denote the EFB computed this way as EFB20.

Fig. 2.7 shows a plot of Ex (z) and its 5th order Enge function F5 (z) fitted using the Leven-

berg–Marquardt Gauss–Newton method and the least-squares variance function. We recognize that

the Enge function is an accurate representation only up to about z/D = 4.5 due to the electrostatic

field falloff being slower than exponential, and we will address this issue in sec. 2.6.

2.3.1.1 Charge Distribution in the Plates

Consider the 2D representation of the upper infinitely thin plate as

A = {(d, t) |t ∈ (−∞,0]}

at voltage V = 1.
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Figure 2.7: Up to about z/D = 4.5, the least-squares Enge function F5 (z) (dashed red) is a good
approximation of the electrostatic field falloff Ex (z) (solid blue) of a semi-infinite capacitor with
infinitely thin plates. The curves are offset horizontally by the EFB20 zEFB/D = 0.920945 so that
the EFB20 is at z = 0.

The surface charge density σ (z) of the plate is proportional to the jump in the normal component

Ex of the electrostatic field; specifically,

σ (z) =


ε0 (Ex (d +0,z)−Ex (d−0,z)) in SI units,

1
4π

(Ex (d +0,z)−Ex (d−0,z)) in Gaussian units,

where ε0 is the vacuum permittivity.

Alternatively to obtaining σ (z) from the electrostatic field, we can obtain σ (z) by solving the

Fredholm equation of the first type

f (z) =
� +∞

−∞

σ (z)K (z, t)dt, (2.7)

where

1. σ (z) is the surface charge distribution in the plate, with σ (z) = 0 for z > 0 (beyond the plate

edge);
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Figure 2.8: Electrostatic potential f (z) = ϕ (d,z) in plane of the upper plate.

2. f (z) is the electrostatic potential f (z) = ϕ (d,z) in the plane of the plate, with f (z) = 1 for

z≤ 0, shown in Fig. 2.8;

3. K (z, t) is the difference kernel K (z, t) = K (z− t) obtained from the Coulomb potential as

K (z, t) =
� +∞

−∞

 1√
(t− z)2 + y2

− 1√
(2d)2 +(t− z)2 + y2

dy,

from which we obtain, similarly to eq. 2.2,

K (z, t) = ln

[
4d2

(t− z)2 +1

]
.

From eq. 2.5, we have

f (z) = ϕ (d,z) = 1− 1
π

ℑ

(
W
(
−eπz/d−1

))
.

To check that eq. 2.7 indeed produces the solution for σ (z), it is sufficient to insert K (z, t) into

the integral, which results in the Coulomb potential integral

f (z) =
� 0

−∞

� +∞

−∞

σ (z)

 1√
(t− z)2 + y2

− 1√
(2d)2 +(t− z)2 + y2

dydt

with integration over the two plates.
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Figure 2.9: Surface charge distribution σ (z) in the upper plate, located at x = d, z≤ 0.

To solve this Fredholm equation of the first kind [86, sec. 10.3-1], we apply the Fourier transform

to both sides of the equation, obtaining

Fz (σ (z)) =
Fz ( f (z))
Fz (K (z))

.

Next, we take the inverse Fourier transform of the expression and obtain

σ (z) = F−1
ω (Fz (σ (z)))(z) =

= F−1
ω

(
Fz ( f (z))
Fz (K (z))

)
(z) .

The resulting form of surface charge distribution σ (z) is shown in Fig. 2.9.

2.3.2 Solid Metal Plates

We proceed to study electrostatic deflectors with solid metal plates. Using the Schwarz–Christoffel

Toolbox (SC Toolbox) for MATLAB [28] (see App. A for details), we obtain derivatives of conformal

maps for calculation of the electrostatic potential. We consider the cases of one capacitor and two

adjacent capacitors.
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Figure 2.10: The polygonal model of the semi-infinite capacitor with infinitely thick plates.

2.3.2.1 One Capacitor

2.3.2.1.1 Infinitely Thick Plates

Consider a solid metal semi-infinite capacitor with full aperture D = 2 and infinitely thick plates

A = {(t0, t1, t2) |t0 ∈ [d,+∞)∧ t1 ∈ (−∞,+∞)∧ t2 ∈ (−∞,0]}

and

B = {(t0, t1, t2) |t0 ∈ (−∞,−d]∧ t1 ∈ (−∞,+∞)∧ t2 ∈ (−∞,0]} ,

at voltages V = 1 and V =−1, respectively.

The geometry and the electrostatic potential are, up to the change of sign, reflection-symmetric

relative the x = 0 plane. By this symmetry, the electrostatic potential at x = 0 is zero. This enables

us to reduce the problem to its x≥ 0 part.

We represent the x≥ 0 half of the electrostatic capacitor by a complex region bounded by (1)

the real axis at zero potential and (2) the 2D representation of the upper plate

A = {t + id|t ∈ (−∞,0]}∪{it|t ∈ [d,+∞)}

28



at voltage V = 1, where d = 1. This polygonal model is shown in Fig. 2.10.

We encode this polygonal physical domain in the SC Toolbox by its vertices w = z+ ix =

(i,∞,0,∞,2i) and interior angles απ = (3/2,0,1,−1/2,1)π as

p1 = polygon ( [ i , I n f , 0 , I n f , 2∗ i ] , [ 3 / 2 , 0 , 1 , −1/2 , 1 ] )

where vertices 0 and 2i were added as guiding points for the SC Toolbox’s algorithm.

We obtain a conformal mapping f from the bi-infinite strip 0≤ ℑ(v)≤ 1 using the command

f1 = s t r i p m a p ( p1 , [ 2 , 4 ] , o p t i o n s )

with the second and fourth prevertices +∞ and −∞ mapping to the infinite vertices of the polygon.

The resulting output lists prevertices v j = f−1 (w j
)

of the conformal mapping, corresponding

to vertices w j and interior angles πα j of the polygonal model.

s t r i p m a p o b j e c t :

v e r t e x a l p h a p r e v e r t e x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I n f + 0 .00000 i −0.50000 −I n f

0 .00000 + 2 .00000 i 1 .00000 0.000000000000 e +00

0 .00000 + 1 .00000 i 1 .50000 6.933630404535 e−01

I n f + 0 .00000 i 0 .00000 I n f

0 .00000 + 0 .00000 i 1 .00000 9.552476375563 e−01 + i

c = −1.7238602 − 1 .7238602 i

Apparen t a c c u r a c y i s 2 . 4 8 e−16

The formula for a conformal mapping from the bi-infinite strip 0≤ ℑ(v)≤ 1 is [30, p. 46]

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,
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Figure 2.11: The electrostatic field and equipotential lines of the semi-infinite capacitor with
infinitely thick plates.

where n = 3 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.6933630404535,0.9552476375563+ i)

are the finite prevertices; απ = (1,1.5,1)π are the respective interior angles of the polygon; and

α−π =−0.5π , α+π = 0 are the divergence angles at the ends of the bi-infinite strip. A prevertex v j

can be used for the reference point v0; then f (v0) is the respective vertex w j. The scaling constant

c =−2.4379064258967187 in this formula is different from scaling constant c in the SC Toolbox’s

output and can be obtained by matching prevertice images f
(
v j
)

to respective vertices w j.

Fig. 2.11 shows the resulting electrostatic field and equipotential lines of the semi-infinite

capacitor with infinitely thick plates. The x component Ex (z) of the electrostatic field along the z

axis is shown in Fig. 2.12. The falloff Ex (z) is very slow, and the EFB as a function of an increasing

zext does not appear to converge. The EFB20 is zEFB/D = 1.41566.
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Figure 2.12: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with infinitely thick plates.
The red vertical gridline denotes the EFB20 zEFB/D = 1.41566.
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Figure 2.13: The polygonal model of the semi-infinite capacitor with finitely thick plates.
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2.3.2.1.2 Plates of Finite Thickness

Consider a semi-infinite capacitor with full aperture D = 2 and plates of D/20 thickness 2r = 0.1.

We model the x ≥ 0 half of this capacitor by a complex region bounded by the real axis at zero

potential and the plate

A = {t + id|t ∈ (−∞,0]}∪{it|t ∈ [d,d +2r]}∪{t +(d +2r) i|t ∈ (−∞,0]}

at voltage V = 1, where d = 1. This polygonal model is shown in Fig. 2.13.

We encode this polygonal physical domain in the SC Toolbox by its vertices w j and interior

angles α jπ as

p2 = polygon ( [ 1 . 1 i , i , I n f , 0 , I n f , −1+1.1 i ] , [ 3 / 2 , 3 / 2 , 0 , 1 , −1, 1 ] )

where vertices 0 and −1+1.1i were added as guiding points for the SC Toolbox’s algorithm.

Similarly to the previous case, we obtain the following conformal mapping from a bi-infinite

strip to the physical domain using the SC Toolbox:

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,

where n = 4 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.4475104912323,0.7298948123684,1.051921215239+ i)

are the finite prevertices; απ = (1,1.5,1.5,1)π are the respective interior angles of the polygon;

and α−π =−π , α+π = 0 are the divergence angles at the ends of the bi-infinite strip. The scaling

constant is c =−5.042384793987374.

Fig. 2.14 shows the resulting electrostatic field and equipotential lines of the semi-infinite

capacitor with plates of D/20 thickness. The falloff of the x component Ex (z) of the electrostatic

field along the z axis has the EFB20 zEFB/D = 0.952043 and is shown in Fig. 2.15.
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Figure 2.14: The electrostatic field and equipotential lines of the semi-infinite capacitor with plates
of D/20 thickness.
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Figure 2.15: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with plates of D/20
thickness. The red vertical gridline denotes the EFB20 zEFB/D = 0.952043.
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Figure 2.16: The polygonal model of the semi-infinite capacitor with plates of D/20 thickness and
rounded edges.

2.3.2.1.3 Plates of Finite Thickness with Rounded Edges

Consider a semi-infinite capacitor with full aperture D = 2 and plates of D/20 thickness 2r = 0.1

with rounded edges. We model the x≥ 0 half of this capacitor by a complex region bounded by the

real axis at zero electrostatic potential and the plate

A = {t +di|t ∈ (−∞,0]}∪
{
(d + r) i+ r exp(it) |t ∈

[
−π

2
,
π

2

]}
∪{t +(d +2r) i|t ∈ (−∞,0]}

at voltage V = 1, where d = 1. We approximate the arc by a piecewise linear curve with 42 line

segments of equal lengths. This polygonal model is shown in Fig. 2.16.

We encode this polygonal physical domain in the SC Toolbox as listed in App. B.3.

Proceeding as in the previous cases, we obtain the following conformal mapping from a bi-

infinite strip to the physical domain using the SC Toolbox:

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,

where n = 45 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.3805344321060,0.3866459670307,0.3933092616665,
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0.4004238033105,0.4079574599867,0.4158853193485,0.4241790327221,

0.4328391532257,0.4418431833483,0.4511799906304,0.4608417087954,

0.4708063751390,0.4810908733017,0.4916343816466,0.5024841810347,

0.5136015853200,0.5249435318814,0.5365474909385,0.5483716273552,

0.5604324317077,0.5726549790831,0.5850879474069,0.5976858775498,

0.6104007470804,0.6232810803701,0.6362432805046,0.6492989469765,

0.6623928970331,0.6755595399189,0.6887381824925,0.7018677939905,

0.7149929505145,0.7280204245606,0.7409539842791,0.7537450473342,

0.7663616643523,0.7787656435760,0.7909001604658,0.8027400857953,

0.8142156994585,0.8252593198779,0.8357891776466,0.8456098356243,

1.088069920623+ i)

are the finite prevertices;

απ =

1,
85
84

,
43
42

, . . . ,
43
42︸ ︷︷ ︸

41 times

,
85
84

,1

π

are the respective interior angles of the polygon; and α−π = −π , α+π = 0 are the divergence

angles at the ends of the bi-infinite strip. The scaling constant is c =−5.096904973741541.

Fig. 2.17 shows the resulting electrostatic field and equipotential lines of the semi-infinite

capacitor with plates of D/20 thickness and rounded edges. The falloff of the x component Ex (z) of

the electrostatic field along the z axis has the EFB20 zEFB/D = 0.962347 and is shown in Fig. 2.18.

Additionally, we performed calculations for the same case of a semi-infinite capacitor with

finitely thick plates and rounded edges, but with the plate thickness increased to D/4. The resulting

falloff of the electrostatic field Ex (z) has the EFB20 zEFB/D = 1.10338 and is shown in Fig. 2.19.
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Figure 2.17: The electrostatic field and equipotential lines of the semi-infinite capacitor with plates
of D/20 thickness and rounded edges.
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Figure 2.18: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with plates of D/20
thickness and rounded edges. The red vertical gridline denotes the EFB20 zEFB/D = 0.962347.
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Figure 2.19: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with plates of D/4
thickness and rounded edges. The red vertical gridline denotes the EFB20 zEFB/D = 1.10338.
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Figure 2.20: The polygonal model of the semi-infinite capacitor with infinitely thin plates.
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2.3.2.1.4 Infinitely Thin Plates

For accuracy comparison, we return to the case of a semi-infinite capacitor with full aperture D = 2

and infinitely thin plates. We model the x≥ 0 half of this capacitor by a complex region bounded

by the real axis at zero electrostatic potential and the plate

A = {t +di|t ∈ (−∞,0]}

at voltage V = 1, where d = 1. This capacitor model is shown in Fig. 2.20.

We encode this polygonal physical domain in the SC Toolbox by its vertices w j and interior

angles α jπ as

p0 = polygon ( [ i , I n f , 0 , I n f , −1+ i ] , [ 2 , 0 , 1 , −1, 1 ] )

where vertices 0 and −1+ i were added as guiding points for the SC Toolbox’s algorithm.

We obtain the following conformal mapping from a bi-infinite strip to the physical domain using

the SC Toolbox:

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,

where n = 3 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.5660574857390,0.9730053888353+ i)

are the finite prevertices; απ = (1,2,1)π are the respective interior angles of the polygon; and

α−π = −π , α+π = 0 are the divergence angles at the ends of the bi-infinite strip. The scaling

constant is c =−4.866174962862232.

Fig. 2.21 shows the resulting electrostatic field and equipotential lines of the semi-infinite

capacitor with infinitely thin plates. The falloff of the x component Ex (z) of the electrostatic field

along the z axis is shown in Fig. 2.22 and agrees well with the previous result from Fig. 2.7. The

EFB20 is zEFB/D = 0.920945 – same as obtained in sec. 2.3.1.
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Figure 2.21: The electrostatic field and equipotential lines of the semi-infinite capacitor with
infinitely thin plates.
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Figure 2.22: Electrostatic field falloff Ex (z) of the semi-infinite capacitor with infinitely thin plates
obtained using the SC Toolbox (dashed red) is visually coincident with the previous result from Fig.
2.7 (dashed blue). The red vertical gridline denotes the EFB20 zEFB/D = 0.920945.
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Figure 2.23: The polygonal model of the two adjacent semi-infinite capacitors with plates of 3D/4
thickness, symmetric voltages, and rounded edges.

2.3.2.2 Two Adjacent Capacitors with Symmetric Voltages

We now consider two adjacent semi-infinite capacitors with full aperture D = 2, plates of 3D/4

thickness 2r = 2.5, and rounded edges. Let the voltages of these capacitors have the same magnitude

and symmetric alignment along the x axis, i.e., the upper (x > 0) plates of these capacitors have

voltages of the same sign. This model straightforwardly follows from the approximation of an

electrostatic deflector as a parallel plates capacitor with (1) the deflection radius as infinity and (2)

plate voltages of the same magnitude and the opposite sign. We specify and model the capacitors by

a complex region bounded by the real axis at zero electrostatic potential, the first capacitor’s upper

plate

A = {−zoff + t +di|t ∈ (−∞,0]}∪
{
−zoff +(d + r) i+ r exp(it) |t ∈

[
−π

2
,
π

2

]}
∪

∪{−zoff + t +(d +2r) i|t ∈ (−∞,0]}

at voltage V = 1, and the adjacent capacitor’s upper plate

B = {zoff + t +di|t ∈ [0,+∞)}∪
{

zoff +(d + r) i− r exp(it) |t ∈
[
−π

2
,
π

2

]}
∪

∪{zoff + t +(d +2r) i|t ∈ [0,+∞)}

at the same, symmetric voltage V = 1, where d = 1. Let the distance between the capacitors be

2zoff = 10, not including the rounded parts of their edges. We approximate each arc by a piecewise

linear curve with 42 line segments of equal lengths. This polygonal model is shown in Fig. 2.23.

We encode this polygonal physical domain in the SC Toolbox as listed in App. B.5.

We obtain a conformal mapping f from the bi-infinite strip 0≤ ℑ(v)≤ 1 using the command
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f3b = s t r i p m a p ( p , [ 4 4 , 4 6 ] , o p t i o n s )

with the 44th and 46th prevertices +∞ and −∞ mapping to the infinite vertices of the polygon.

The resulting conformal mapping f is as follows:

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,

where n = 90 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.06898503648935,0.1407073105108,0.2134982040465,

0.2864841921843,0.3590056630890,0.4305569321602,0.5007505699052,

0.5692474769696,0.6358038856252,0.7002087675776,0.7623352142584,

0.8220702444247,0.8793651508882,0.9341719308222,0.9864907936049,

1.036323118213,1.083711410132,1.128699072557,1.171331486694,

1.211673088789,1.249799897438,1.285781148129,1.319690530978,

1.351613922478,1.381632958122,1.409823501502,1.436268003408,

1.461053624759,1.484253948760,1.505950018365,1.526211988764,

1.545118039791,1.562734119036,1.579130994654,1.594366892925,

1.608502284766,1.621587383544,1.633672991990,1.644798981369,

1.654992351819,1.664262998209,1.672540497375,1.752685224415,

1.973073503798,2.193484524393,2.273641964824,2.281920852719,

2.291193070108,2.301388186731,2.312516104216,2.324603832939,

2.337691257349,2.351829196176,2.367067879712,2.383467798869,

2.401087200915,2.419996878987,2.440262806666,2.461963194376,

2.485168228891,2.509958989885,2.536409099130,2.564605762845,

2.594631480586,2.626562168172,2.660479520094,2.696469479019,
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Figure 2.24: The electrostatic field and equipotential lines of the two adjacent semi-infinite capaci-
tors with plates of 3D/4 thickness, symmetric voltages, and rounded edges.

2.734605805023,2.774957809473,2.817601596109,2.862601691144,

2.910003568099,2.959850729000,3.012185784615,3.067010211839,

3.124324320648,3.184080193251,3.246229204345,3.310658424767,

3.377240981341,3.445765832052,3.515989160286,3.587571751257,

3.660126008227,3.733145992744,3.805971730819,3.877729193575,

3.946748819345,1.973050207634+ i)

are the finite prevertices;

απ =

85
84

,
43
42

, . . . ,
43
42︸ ︷︷ ︸

41 times

,
85
84

,1,−1,1,
85
84

,
43
42

, . . . ,
43
42︸ ︷︷ ︸

41 times

,
85
84

,1

π

are the respective interior angles of the polygon; and α±π = 0 are the divergence angles at the ends

of the bi-infinite strip. The scaling constant is c = 4.9197519279647315+ i1.0048276665744966.

Fig. 2.24 shows the resulting electrostatic field and equipotential lines of the two adjacent

semi-infinite capacitors with plates of 5D/4 thickness and rounded edges.

We denote the x component of the electrostatic field along the z axis of the two adjacent

capacitors as EA&B (z), of the left capacitor A in free space as EA (z), and of the right capacitor B

in free space as EB (z).
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Figure 2.25: EA&B (z) (solid blue) is the electrostatic field of two adjacent semi-infinite capacitors
with plates of 3D/4 thickness, symmetric voltages, and rounded edges. EA (z) (solid orange) and
EB (z) (solid green) would be the individual electrostatic fields of the left and the right capacitor in
free space, respectively. The difference EA&B (z)−EB (z) (dashed red) demonstrates that EA&B (z)
is not a superposition of EA (z) and EB (z) due to electrostatic induction.

Fig. 2.25 shows a plot of electrostatic fields EA&B (z), EA (z), EB (z), and the difference

EA&B (z)−EB (z). If the electrostatic field EA&B (z) of the two adjacent capacitors was a superposi-

tion of their individual free-space electrostatic fields EA (z) and EB (z), EA&B (z)−EB (z) would be

equal to EA (z), but neither is the case. This is because of electrostatic induction effected by the

capacitors onto each other. We note that EA&B (z)−EB (z) quickly falls off to zero, and we think it

can be effectively represented by an Enge function.

A comparison of the electrostatic field differences EA&B (z)−EB (z) for cases zoff ∈ {5,10,20}

is shown in Fig. 2.26, and it demonstrates that the effect of electrostatic induction on the field

EA&B (z) decreases as the distance 2zoff between the electrostatic capacitors increases. The absolute

value of EA (z)+EB (z)−EA&B (z) is the highest near the edges of the capacitors.
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(a) As zoff increases, the EA&B (z)−EB (z) curves approach their zoff → +∞ limit EA (z)
(solid blue). Note the zoff = 5 (solid orange) curve quickly falling off to zero near z/D =5 and
forming a peculiar angle. This is because the edge of the capacitor B in the zoff = 5 case is at
z/D = 5. In cases zoff = 10 and zoff = 15, the edge of the capacitor B is outside the range of
the plot.
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(b) Plots of EA (z) +EB (z)−EA&B (z) are scaled by 0.1. As zoff increases, the EA (z) +
EB (z)−EA&B (z) curves decrease toward zero. In case of zoff = 5, the curve makes a second
peak near the edge of the capacitor B at z/D = 5. In cases zoff = 10 and zoff = 15, the edge of
the capacitor B is outside the range of the plot.

Figure 2.26: Electrostatic field differences EA&B (z)−EB (z) for cases zoff = 5 (solid orange),
zoff = 10 (dashed green), and zoff = 15 (dot-dashed red), of the two adjacent semi-infinite capacitors
with plates of 3D/4 thickness, symmetric voltages, and rounded edges. The origin of each curve is
at the edge of the left capacitor A in the respective case.
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2.3.2.3 Two Adjacent Capacitors with Antisymmetric Voltages

Next, we consider two adjacent semi-infinite capacitors with full aperture D = 2, plates of 3D/4

thickness 2r = 2.5, and rounded edges. Let the voltages of these capacitors have the same magnitude

and antisymmetric alignment along the x axis, i.e., the upper (x > 0) plates of these capacitors have

voltages of the opposite sign. We specify and model the capacitors by a complex region bounded by

the real axis at zero potential, the first capacitor’s upper plate

A = {−zoff + t +di|t ∈ (−∞,0]}∪
{
−zoff +(d + r) i+ r exp(it) |t ∈

[
−π

2
,
π

2

]}
∪

∪{−zoff + t +(d +2r) i|t ∈ (−∞,0]}

at voltage V = 1, and the adjacent capacitor’s upper plate

B = {zoff + t +di|t ∈ [0,+∞)}∪
{

zoff +(d + r) i− r exp(it) |t ∈
[
−π

2
,
π

2

]}
∪

∪{zoff + t +(d +2r) i|t ∈ [0,+∞)}

at the opposite, antisymmetric voltage V =−1, where d = 1.

Due to reflection symmetry, the potential at the vertical axis iR is zero. Utilizing this symmetry,

we reduce the problem to solving the Laplace equation in the complex region bounded by the

capacitor’s upper plate A at voltage V = 1 and the curve

O = {t|t ∈ (−∞,0]}∪{it|t ∈ [0,+∞)}

at zero electrostatic potential.

Let the distance between the capacitors be 2zoff = 10, not including the rounded parts of their

edges. We approximate the arc by a piecewise linear curve with 42 line segments of equal lengths.

This polygonal model is shown in Fig. 2.27.

We encode this polygonal physical domain in the SC Toolbox as listed in App. B.6.

We obtain a conformal mapping f from the bi-infinite strip 0≤ ℑ(v)≤ 1 using the command

f 6 a s 1 = s t r i p m a p ( p6as1 , [ 4 6 , 4 8 ] , o p t i o n s )
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Figure 2.27: The polygonal model representing the two adjacent semi-infinite capacitors with plates
of 3D/4 thickness, antisymmetric voltages, and rounded edges.

with the 46th and 48th prevertices +∞ and −∞ mapping to the infinite vertices of the polygon.

The resulting conformal mapping f is as follows:

f (v) = f (v0)+ c

v�

v0

exp
[

π

2
(α−−α+)ζ

] n

∏
j=1

[
sinh

π

2
(
ζ − v j

)]α j−1
dζ ,

where n = 46 is the number of finite prevertices of the polygon in the canonical domain,

v = (0,0.2082710702589,0.2268694858472,0.2471979527171,

0.2689758999462,0.2921056174591,0.3165255488086,0.3421986885406,

0.3691065983606,0.3972266859049,0.4265528768239,0.4570728278723,

0.4887944128923,0.5217160650131,0.5558559351444,0.5912199103837,

0.6278324936766,0.6657097679051,0.7048910918775,0.7454131347512,

0.7873094700208,0.8306281371978,0.8754293623704,0.9217656617397,

0.9696928619268,1.019283409164,1.070604438361,1.123710114681,

1.178661078068,1.235524415901,1.294329412306,1.355110639100,

1.417856827234,1.482560341451,1.549149509315,1.617540278889,
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Figure 2.28: The electrostatic field and equipotential lines of the two adjacent semi-infinite capaci-
tors with plates of 3D/4 thickness, antisymmetric voltages, and rounded edges in the z≤ 0, x≥ 0
quadrant.

1.687562902355,1.759014151587,1.831592691508,1.904946457872,

1.978601404745,2.051925721199,2.124069791109,2.193382958646,

3.233898704303,0.6626244510635+ i)

are the finite prevertices;

απ =

1,
85
84

,
43
42

, . . . ,
43
42︸ ︷︷ ︸

41 times

,
85
84

,1,
1
2

π

are the respective interior angles of the polygon; and α−π =−0.5π , α+π = 0 are the divergence

angles at the ends of the bi-infinite strip. The scaling constant is c = −2.807110433411235+

i2.8071104400617424.

Fig. 2.28 shows the resulting electrostatic field and equipotential lines of the two adjacent

semi-infinite capacitors with plates of 3D/4 thickness and rounded edges in the z ≤ 0, x ≥ 0

quadrant.
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Figure 2.29: EA&B (z) (solid blue) is the electrostatic field of two adjacent semi-infinite capacitors
with plates of 3D/4 thickness, asymmetric voltages, and rounded edges. EA (z) (solid orange) and
EB (z) (solid green) would be the individual electrostatic fields of the left and the right capacitor in
free space, respectively. The difference EA&B (z)−EB (z) (dashed red) demonstrates that EA&B (z)
is not a superposition of EA (z) and EB (z) due to electrostatic induction.

We denote the x component of the electrostatic field along the z axis of the two adjacent

capacitors as EA&B (z), of the left capacitor A in free space as EA (z), and of the right capacitor B

in free space as EB (z).

Fig. 2.29 shows a plot of electrostatic fields EA&B (z), EA (z), EB (z), and the difference

EA&B (z)−EB (z). The plot demonstrates that the electrostatic field of the two adjacent capacitors

EA&B (z) is not a superposition of their individual electrostatic fields EA (z) and EB (z).

A comparison of the electrostatic field differences EA&B (z)−EB (z) for cases zoff ∈ {5,10,20}

is shown in Fig. 2.30, and it demonstrates that the effect of electrostatic induction on the field

EA&B (z) decreases as the distance 2zoff between the electrostatic capacitors increases. The absolute

value of EA (z)+EB (z)−EA&B (z) is the highest near the edges of the capacitors.
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(a) As zoff increases, the EA&B (z)−EB (z) curves approach their zoff → +∞ limit EA (z)
(solid blue). Note the zoff = 5 (solid orange) curve quickly falling off to zero near z/D =5 and
forming a peculiar angle. This is because the edge of the capacitor B in the zoff = 5 case is at
z/D = 5. In cases of zoff = 10 and zoff = 15, the edge of the capacitor B is outside the range
of the plot. The origin of each curve is at the edge of the left capacitor A in the respective case.

-6 -4 -2 2 4 6
z/D

-0.4

-0.2

0.2

0.4

Ex(z)

0

(b) Plots of EA (z)+EB (z)−EA&B (z) are scaled vertically by 0.1 and horizontally by zoff/5.
The capacitor edges are at z =±5 and denoted by red vertical gridlines. As zoff increases, the
EA (z)+EB (z)−EA&B (z) curves decrease toward zero.

Figure 2.30: Electrostatic field differences EA&B (z)−EB (z) for cases zoff = 5 (solid orange),
zoff = 10 (dashed green), and zoff = 15 (dot-dashed red), of the two adjacent semi-infinite capacitors
with plates of 3D/4 thickness, asymmetric voltages, and rounded edges.
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2.3.2.4 Two Adjacent Capacitors with Different Voltages

In the case of two adjacent semi-infinite capacitors with different voltages, the total number

of different plate voltages is four, counting voltages of the same magnitude but opposite signs.

Therefore, the method of solving the Laplace equation by finding a conformal mapping from a

bi-infinite strip no longer applies.

However, the problem can be solved as follows [30, pp. 77–83]. Let V1 and V2 be the upper plate

voltages of the left and the right semi-infinite capacitors, respectively. First, we obtain a conformal

mapping f from the upper half-plane H+ ⊂ C to the polygonal model that represents the upper half

x≥ 0 of the two capacitors. As a result, the preimages of the capacitor’s plates are intervals on the

real axis, delimited by ±∞ and a set of points

−∞ < v1 < · · ·< vn−1 <+∞

for some n≥ 3, to account for the three constant Dirichlet boundary condition values 0 (on the real

axis), V1, and V2.

For n Dirichlet boundary conditions φ1, . . .φn and n−1 points v1, . . .vn−1 on the real axis, the

conformal mapping ϕ : H+→ H+,

φ (v) = ℜ

[
− i

π

(
φ1 ln(v− v1)+φ1 ln

(
v− v2
v− v1

)
+

+ . . .+φn−1 ln
(

v− vn−1
v− vn−2

)
+φn ln

(
1

vn−1− v

))]
satisfies [30, pp. 77–83]

φ (x) =



φ1 −∞ < v < v1,

φ2 v1 < v < v2,

...
...

φn−1 vn−2 < v < vn−1,

φn vn−1 < v <+∞.
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Figure 2.31: The polygonal model of the two adjacent semi-infinite capacitors with plates of D/2
thickness at different voltages.

It follows that the solution of the Laplace equation for the two adjacent semi-infinite capacitors

with different voltages is

ϕ (w) = ℜ

(
φ

(
f−1 (w)

))
. (2.8)

We can find a conformal mapping f using the SC Toolbox’s command hplmap. To find the

conformal mapping φ , we can use the SC Toolbox’s command lapsolve.

The command lapsolve has no provisions for the crowding effect. Experimentation has

shown that, in this case, modeling rounded plate edges using a high-fidelity piecewise linear

curve results in no convergence or very low computational accuracy. Computational accuracy was

somewhat acceptable when the rounded edges were modeled by two diagonal lines intersecting at

90◦ (“triangular edges”).

Consider two adjacent semi-infinite capacitors with full aperture D = 2, plates of D/2 thickness

2r = 1, and such triangular edges. Let the voltages of these capacitors have different magnitudes V1,

V2 and symmetric alignment along the x axis, i.e., the upper (x > 0) plates of these capacitors have

voltages of the same sign. We specify and model the capacitors by a complex region bounded by

the real axis at zero potential, the first capacitor’s upper plate

A = {−zoff + t +di|t ∈ (−∞,0]}∪{−zoff +di+(r+ ri) t|t ∈ [0,1]}∪

∪{−zoff +(d +2r) i+(r− ri) t|t ∈ [0,1]}∪{−zoff + t +(d +2r) i|t ∈ (−∞,0]}
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at voltage V1, and the adjacent capacitor’s upper plate

B = {zoff + t +di|t ∈ [0,+∞)}∪{zoff +di+(ri− r) t|t ∈ [0,1]}∪

∪{zoff +(d +2r) i− (ri− r) t|t ∈ [0,1]}∪{zoff + t +(d +2r) i|t ∈ [0,+∞)}

at voltage V2, where d = 1. For definiteness, let V1 = 1 and V2 = 3. Let the distance between the

capacitors be 2zoff = 10, not including their edges. This polygonal model is shown in Fig. 2.31.

We encode this polygonal physical domain in the SC Toolbox by its vertices w j and interior

angles α jπ as

p3bm = polygon ( [ 0 , i n f , 5 . + 1 . i , 4 . 5 + 1 . 5 i , 5 . + 2 . i , 6 . + 2 . i , i n f , . . .

−6.+2. i , −5.+2. i , −4.5+1.5 i , −5.+1. i , i n f ] , . . .

[ 1 , 0 , 5 / 4 , 3 / 2 , 5 / 4 , 1 , −1, 1 , 5 / 4 , 3 / 2 , 5 / 4 , 0 ] ) ;

where vertices 0, −6+2i, and 6+2i were added as guiding points for the SC Toolbox’s algorithm.

We obtain a conformal mapping f from the upper half-plane H+ using the command hplmap.

f3bm = hplmap ( p3bm , o p t i o n s ) ;

Next, we compute the composite conformal mapping as in eq. 2.8 using the command lapsolve

bmod = [ 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 3 ] ;

p h i = l a p s o l v e ( f3bm , bmod ) ;

where its Dirichlet boundary conditions are supplied as the vector bmod.

Fig. 2.32 shows a plot of electrostatic fields EA&B (z), EA (z), EB (z), and the difference

EA&B (z)−EB (z). The plot demonstrates that the electrostatic field of the two adjacent capacitors

EA&B (z) is not a superposition of their individual electrostatic fields EA (z) and EB (z).

A comparison of the electrostatic field differences EA&B (z)−EB (z) for cases zoff ∈ {5,7.5,10}

is shown in Fig. 2.33, and it demonstrates that the effect of electrostatic induction on the field

EA&B (z) decreases as the distance 2zoff between the electrostatic capacitors increases. The absolute

value of EA (z)+EB (z)−EA&B (z) is the highest near the edges of the capacitors.
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Figure 2.32: EA&B (z) (solid blue) is the electrostatic field of the two adjacent semi-infinite capac-
itors with plates of D/2 thickness and different voltages. EA (z) (solid orange) and EB (z) (solid
green) would be the individual electrostatic fields of the left and the right capacitor in free space,
respectively. The difference EA&B (z)−EB (z) (dashed red) demonstrates that EA&B (z) is not a
superposition of EA (z) and EB (z) due to electrostatic induction. The capacitor edges in this zoff = 5
case are at z/D =±zoff/D =±2.5, denoted by red vertical gridlines.

2.4 Finite Rectangular Electrostatic Capacitors

Helmut Soltner (Forschungszentrum Jülich, Germany) had calculated the electrostatic field for

several finite rectangular electrostatic capacitors with finitely thick plates. The calculations were

performed in COULOMB.

2.4.1 COULOMB

COULOMB is a 3D electric computer-aided design (CAD) and analysis software program [32].

COULOMB’s boundary element method (BEM) field solver is useful for calculations of field falloffs

of electrostatic particle optical elements.

The 3D model of a particle optical element is specified as a solid part in a STEP-formatted [55]

file. Surfaces of the 3D model are assigned voltages and are discretized by meshes. A grid-point

set of coordinates, listed in an input text file, specifies where the electrostatic potential or the
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(a) As zoff increases, the EA&B (z)−EB (z) curves approach their zoff → +∞ limit EA (z)
(solid blue). Note the zoff = 5 (solid orange) curve quickly falling off to zero near z/D =5 and
forming a peculiar angle. This is because the edge of the capacitor B in the zoff = 5 case is at
z/D = 5. In cases zoff = 7.5 and zoff = 10, the edge of the capacitor B is outside the range of
the plot.
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(b) Plots of EA (z)+EB (z)−EA&B (z) are scaled vertically by 0.1. As zoff increases, the
EA (z)+EB (z)−EA&B (z) curves decrease toward zero. The zoff = 5 curve makes a second
peak near the edge of the capacitor B at z/D = 5. In cases zoff = 7.5 and zoff = 10, the edge
of the capacitor B is outside the range of the plot. Some artifacts due to computation errors are
visible.

Figure 2.33: Electrostatic field differences EA&B (z)−EB (z) for cases zoff = 5 (solid orange),
zoff = 7.5 (dashed green), and zoff = 10 (dot-dashed red), of the two adjacent semi-infinite capacitors
with plates of D/2 thickness and different voltages. The origin of each curve is at the edge of the
left capacitor A in the respective case.
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Figure 2.34: Rendering of the large rectangular capacitor with plates of D/4 thickness and rounded
edges. The infinite line represents the z axis. One-eighth of the capacitor geometry, denoted by
purple, is stored in the STEP file. The full geometry is recovered in COULOMB by specifying the
three reflection symmetries.

electrostatic field is to be calculated.

Next, the BEM solver performs calculations, and the results are written to a text file. Our

calculations typically took several hours to complete.

2.4.2 Large Rectangular Capacitor

Consider a rectangular electrostatic capacitor comprising solid plates of D/4 thickness

A = f ({(x,y,z) |x ∈ [1,1.5] cm;y,z ∈ [−1,1] m;})

at voltage V = 1 V and

B = f ({(x,y,z) |x ∈ − [1,1.5] cm;y,z ∈ [−1,1] m;})

at voltage V =−1 V, respectively. The function f represents adding material to the plates to form

rounded edges. This rectangular capacitor is shown in Fig. 2.34.

The COULOMB calculations were performed with about 85,000 boundary elements and pro-

duced electrostatic field data at points

H =
{(

kxhx,kyhy,40 cm+ kzhz
)

|kx,ky = 1,2, . . . ,10;kz = 1,2, . . . ,100
}
,

where
(
hx,hy,hz

)
= (0.1,5,0.2) cm.

The falloff of the x component Ex (z) of the electrostatic field along the z axis is shown in Fig.

2.35.
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Figure 2.35: Electrostatic field falloff Ex (z) of the large rectangular capacitor with plates of D/4
thickness and rounded edges.

2.4.3 Small Rectangular Capacitor

Consider a smaller rectangular electrostatic capacitor comprising solid plates of D/4 thickness

A = f ({(x,y,z) |x ∈ [1,1.5] cm;y ∈ [−5.5,5.5] cm;z ∈ [−1,1] m})

at voltage V = 1 V and

B = f ({(x,y,z) |x ∈ − [1,1.5] cm;y ∈ [−5.5,5.5] cm;z ∈ [−1,1] m})

at voltage V =−1 V, respectively. The function f represents adding material to the plates to form

rounded edges.

The COULOMB calculations were performed with 70,000 boundary elements and produced

electrostatic field data at points

H =
{(

kxhx,kyhy,40 cm+ kzhz
)

|kx,ky = 1,2, . . . ,10;kz = 1,2, . . . ,100
}
,

where
(
hx,hy,hz

)
= (0.1,0.05,0.2) cm.

The falloff of the x component Ex (z) of the electrostatic field along the z axis is shown in Fig.

2.36.
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Figure 2.36: Electrostatic field falloff Ex (z) of the small rectangular capacitor with plates of D/4
thickness and rounded edges.
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Figure 2.37: Electrostatic field falloffs Ex (z) of the large (solid green) and small (solid orange)
rectangular capacitors modeled by 70,000 boundary elements, the small rectangular capacitor
modeled by 150,000 boundary elements (dashed blue), and the semi-infinite capacitor with plates
of D/4 thickness and rounded edges (dot-dashed red). The Ex (z) curves of the small rectangular
capacitor modeled by 70,000 and 150,000 boundary elements visually coincide. As expected,
the Ex (z) curve of the large rectangular capacitor is only slightly lower than of the semi-infinite
capacitor with finitely thick plates and rounded edges.
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To assess the accuracy of the COULOMB calculations, the calculations were repeated with

150,000 boundary elements instead of the initial 70,000. Fig. 2.37 shows, inter alia, a comparison

of the electrostatic field falloffs in these two cases. We are satisfied with the initial accuracy of the

calculations, as the electrostatic field falloffs are visually indistinguishable.

2.5 Comparison of Single-Capacitor Results

In the above, we obtained electrostatic field falloffs for the following cases of one electrostatic

capacitor:

1. Semi-infinite capacitor with infinitely thin plates, manually obtained conformal mapping;

2. Semi-infinite capacitor with infinitely thin plates, SC Toolbox calculations;

3. Semi-infinite capacitor with infinitely thick plates, SC Toolbox calculations;

4. Semi-infinite capacitor with plates of D/20 thickness, SC Toolbox calculations;

5. Semi-infinite capacitor with plates of D/20 thickness and rounded edges, SC Toolbox calcula-

tions;

6. Semi-infinite capacitor with plates of D/4 thickness and rounded edges, SC Toolbox calcula-

tions;

7. Large rectangular capacitor with plates of D/4 thickness, COULOMB calculations; and

8. Small rectangular capacitor with plates of D/4 thickness, COULOMB calculations.

We compare the falloffs of the electrostatic fields Ex (z) from cases 1, 3, 4, and 5 in Fig. 2.38.

The electrostatic fields Ex (z) from cases 2, 3, 5, 6, 7, and 8 are compared in Fig. 2.39. In Fig. 2.22

above, we compared the electrostatic fields Ex (z) for cases 1 and 2. We observed a general pattern

that the electrostatic field falloffs are in or near the region bounded by the electrostatic field falloffs

of semi-infinite capacitors with infinitely thin and infinitely thick plates. Increasing the thickness of

the plates – ceteris paribus – visibly increased Ex (z) for z/D ? 1.
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Figure 2.38: The electrostatic field falloffs Ex (z) in cases 1 (dot-dashed blue), 3 (solid brown), 4
(solid green), and 5 (dashed red).
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Figure 2.39: The electrostatic field falloffs Ex (z) in cases 2 (solid cyan), 3 (solid brown), 5 (solid
orange), 6 (dashed blue), 7 (dashed green), and 8 (dot-dashed red).
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Figure 2.40: The x component Ex (0.9d,z) of the electrostatic field along the x = 0.9d line in cases
1 (solid green), 2 (dashed red), 3 (solid brown), and 6 (dot-dashed blue).
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Figure 2.41: The x component Ex (0.9d,z) of the electrostatic field along the x = 0.9d line in cases
1 (dot-dashed blue), 4 (solid green), and 5 (dashed red).
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Figure 2.42: The x component Ex (0.9d,z) of the electrostatic field along the x = 0.9d line in cases
1 (dot-dashed blue), 7 (solid green), and 8 (dashed red).

As illustrated previously in Fig. 2.9, the plate surface charge density σ (z) spikes near the plate

edge. Accordingly, the electrostatic field Ex (x,z) along a line x = a near the plate at x = d spikes

near the plate edge at z = 0 (same applies to the lower plate at x =−d). As an example, we consider

the line x = 0.9d. Falloffs of the x component Ex (0.9,z) of the electrostatic field along the line

x = 0.9d in cases 1, 2, 3, 6 are shown in Fig. 2.40, in cases 1, 4, 5 in Fig. 2.41, and in cases 1, 7, 8

in Fig. 2.42. The results are consistent with the standard electrostatics result [56, pp. 75–79] that

the surface charge density tends to be higher near sharp edges and not as high near blunt or rounded

edges.

2.6 Accurate Fringe Fields Representation

Enge functions

FN (z) =
1

1+ exp
(

∑
N
j=1 a j

( z
D
) j−1

) ,
are effective at representing fringe fields of magnetic dipoles. As Fig. 2.43 illustrates, fringe fields

of electrostatic deflectors fall off slower than fringe fields of magnetic dipoles.
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Figure 2.43: The electrostatic field falloff Ex (z) of a semi-infinite electrostatic capacitor with
infinitely thin plates (solid blue), compared to the magnetic field falloff of a homogeneous magnetic
dipole (dashed red). Each curve is horizontally offset so that origin z = 0 is at its EFB (the EFB20,
computed with zext/D = 20, in the electrostatic case).
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Figure 2.44: An Enge function F5 (z) (dashed red), fitted to the electrostatic field falloff Ex (z) (solid
blue) of a semi-infinite capacitor with infinitely thin plates. The electrostatic field falloff Ex (z) is
scaled to 1 well inside the capacitor. The origin z = 0 is at the EFB20.
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Coefficient Value

a1 1.2769683902492515
a2 1.4049887582360876
a3 −0.882202957166947
a4 0.48659244279111313
a5 −0.1378864476786552
a6 0.014397164677247012

Table 2.1: Coefficients of the Enge function F5 (z), fitted to the electrostatic field falloff Ex (z) of
the semi-infinite capacitor with infinitely thin plates. The Enge function is accurate for z/D≤ 4.

Coefficient Value

b1 4.057204346021459
b2 5.656314468345938
b3 0.08405676267706107
b4 −0.0074011699896916186
b5 0.0003532805303953159
b6 −6.893356779357708×10−6

Table 2.2: Fitted coefficients of the function H1 (z), approximating the electrostatic field falloff
Ex (z) at z/D≥ 3.

Consider the x component Ex (z) of the electrostatic field along the z axis of a semi-infinite

electrostatic capacitor with infinitely thin plates. In this section, Ex (z) is offset by the EFB20

zEFB/D = 0.920945 so that the EFB20 is at the origin z = 0. Fig. 2.44 shows a 5th order Enge

function F5 (z) as a representative attempt to fit an Enge function to the electrostatic field Ex (z).

The resulting Enge function coefficients are listed in Table 2.1. Unlike Ex (z), the Enge function

F5 (z) quickly falls off to zero.

Increasing the number of Enge function order N resulted in some erratic-looking Enge function

behavior and did not resolve this issue. The same issue was observed for fringe field falloffs of

other electrostatic deflectors. We concluded that this is because the field falloff of an electrostatic

deflector is slower than exponential.

Since the electrostatic field of a point charge falls off as ∼ 1/r2 and the electrostatic field of a

semi-infinite capacitor is an integral of charge density over its plates, we supposed that the fringe

field falloff of a semi-infinite capacitor is similar in form to 1/r.
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Figure 2.45: Function H1 (z) (dashed red), fitted to the electrostatic field falloff E (z) (solid blue)
over the interval 3≤ z/D≤ 15. The origin z = 0 is at the EFB20.

The Enge function F5 (z) is a good approximation of Ex (z) up to about z/D = 4, as Fig 2.44

shows. We note that this Enge function is already a significant improvement over using magnetic

dipole Enge function coefficients to model the fringe field of the electrostatic deflector.

Complementarily, we fitted the function

H1 (z) =
1

∑
N
j=1 b j

( z
D
) j−1

to Ex (z) in the interval 3≤ z/D≤ 15. The results of the fit are shown in Fig. 2.45. The fitted values

of coefficients b j are listed in Table 2.2.

Next, we smoothly glued the Enge function F (z) and the function H1 (z) using the formula

H2 (z) = F5 (z)
1

1+ exp
[( z

D −3.5
)2] +H1 (z)

1

1+ exp
[
−
( z

D −3.5
)2] .

We propose the general form

H (z) =
1

1+ exp
[
∑

N1
j=1 a j

( z
D
) j−1

] 1

1+ exp
[( z

D − c
)2]+

+
1

∑
N2
j=1 b j

( z
D
) j−1

1

1+ exp
[
−
( z

D − c
)2] .
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for such an approximation of the field falloff of an electrostatic deflector, where a j, b j, and c are

parameters.

The function H2 (z) is plotted in Fig. 2.46 against Ex (z) and shows a good fit over at least

−5 ≤ z/D ≤ 15, with sup−5≤z/D≤15 |H2 (z)−Ex (z)| of about 0.005, and with the difference

|H2 (z)−Ex (z)| the most significant in the interval −2≤ z/D≤ 5.

Not completely satisfied with the accuracy of H2 (z), we calculated a numerical approximation

H3 (z) to the Fourier exponential series of Ex (z)−H2 (z) of order 20, with Fourier parameters

a = 1 and b = π/5, in the interval 1.5−π/ |b| ≤ z/D≤ 1.5+π/ |b| (i.e., −3.5≤ z/D≤ 6.5). The

resulting Fourier expansion H3 (z) is

H3 (z) = (0.000034592190696502585+0.000015478461970141042i)exp(−4iπ (z/D−1.5))−

− (0.000018077924429864712−0.00004593257538937567i)exp(−19iπ (z/D−1.5)/5)−

− (0.00006353082276061136+0.000023106674840721097i)exp(−18iπ (z/D−1.5)/5)+

+(0.000028478297945671638−0.00008017779530694298i)exp(−17iπ (z/D−1.5)/5)+

+(0.00011030296357655544+0.000031545142879819836i)exp(−16iπ (z/D−1.5)/5)−

− (0.000043749144828268773−0.00013687173427145814i)exp(−3iπ (z/D−1.5))−

− (0.00017389809467850326+0.00003741257064118089i)exp(−14iπ (z/D−1.5)/5)+

+(0.0000608358170498856−0.00022395108511517542i)exp(−13iπ (z/D−1.5)/5)+

+(0.00024643987127510484+0.00003943949222229756i)exp(−12iπ (z/D−1.5)/5)−

− (0.000051390417457536415−0.0003308925544755625i)exp(−11iπ (z/D−1.5)/5)−

− (0.0002991843170572326+0.00005038314716731468i)exp(−2iπ (z/D−1.5))−

− (0.0000336483235441472+0.00041226203805249685i)exp(−9iπ (z/D−1.5)/5)+

+(0.00027288464436715397+0.000059492609979352665i)exp(−8iπ (z/D−1.5)/5)+

+(0.00018899136099786987+0.00031141333068954147i)exp(−7iπ (z/D−1.5)/5)−

− (0.0001173243748690325+0.00008237663640946321i)exp(−6iπ (z/D−1.5)/5)−

− (0.0002685913288988471−0.000227766412409432i)exp(iπ (z/D−1.5))−
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(a) H2 (z) (dashed red) and Ex (z) (solid blue).
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(b) H2 (z) − Ex (z) (dashed red) and F5 (z) − Ex (z) (solid blue).
sup−5≤z/D≤15

∣∣H2 (z)−Ex (z)
∣∣ is about 0.005.

Figure 2.46: The piecewise function H2 (z) is an improved approximation of electrostatic field
falloff Ex (z) compared to the Enge function F5 (z). The function H2 (z) is formed by smoothly
gluing F5 (z) and H1 (z) at z/D = 3.5, indicated by the vertical gridline. The origin z = 0 is at the
EFB20.
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− (0.00012021044338404635−0.0006224497940703973i)exp(−4iπ (z/D−1.5)/5)−

− (0.0000367792387674523+0.00012020905645207353i)exp(−3iπ (z/D−1.5)/5)−

− (0.0001448084077170699+0.00026198489039169006i)exp(−2iπ (z/D−1.5)/5)−

− (0.00002599518346899367−0.0004604060654995473i)exp(−iπ (z/D−1.5)/5)+

+0.00014791662685726133−

− (0.00002599518346899378+0.0004604060654995472)exp(1iπ (z/D−1.5)/5)−

− (0.0001448084077170699−0.00026198489039169)exp(2iπ (z/D−1.5)/5)−

− (0.00003677923876745228−0.00012020905645207357)exp(3iπ (z/D−1.5)/5)−

− (0.00012021044338404654+0.0006224497940703973)exp(4iπ (z/D−1.5)/5)−

− (0.00026859132889884717+0.00022776641240943203)exp(iπ (z/D−1.5))−

− (0.0001173243748690325−0.00008237663640946321)exp(6iπ (z/D−1.5)/5)+

+(0.0001889913609978698−0.00031141333068954126)exp(7iπ (z/D−1.5)/5)+

+(0.0002728846443671541−0.000059492609979352705)exp(8iπ (z/D−1.5)/5)−

− (0.00003364832354414726−0.00041226203805249685i)exp(9iπ (z/D−1.5)/5)−

− (0.0002991843170572325−0.00005038314716731472i)exp(2iπ (z/D−1.5))−

− (0.000051390417457536605+0.0003308925544755627i)exp(11iπ (z/D−1.5)/5)+

+(0.00024643987127510484−0.00003943949222229763)exp(12iπ (z/D−1.5)/5)+

+(0.0000608358170498856+0.00022395108511517544)exp(13iπ (z/D−1.5)/5)−

− (0.0001738980946785033−0.00003741257064118092)exp(14iπ (z/D−1.5)/5)−

− (0.000043749144828268773+0.00013687173427145811)exp(3iπ (z/D−1.5))+

+(0.00011030296357655545−0.00003154514287981986i)exp(16iπ (z/D−1.5)/5)+

+(0.00002847829794567166+0.00008017779530694296)exp(17iπ (z/D−1.5)/5)+

+(0.00006353082276061137−0.0000231066748407211)exp(18iπ (z/D−1.5)/5)+

+(0.000018077924429864712+0.00004593257538937565)exp(19iπ (z/D−1.5)/5)+
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Figure 2.47: Function H3 (z) (dashed red) is a Fourier expansion of Ex (z)−H2 (z) (solid blue) over
the interval −3.5≤ z/D≤ 6.5. The origin z = 0 is at the EFB20.

+(0.00003459219069650258−0.000015478461970141045i)exp(4iπ (z/D−1.5)) .

Fig. 2.47 illustrates that the function H3 (z) approximates Ex (z)−H2 (z) well.

Finally, we obtained a function G(z), a sum of H2 (z) and H3 (z) with smooth boundaries of

H3 (z) at z/D =−3 and z/D = 6, as

G(z) = H2 (z)+F3 (z)
1

1+ exp
[
−
( z

D +3
)2] 1

1+ exp
[( z

D −3
)2] .

As Fig. 2.48 shows, G(z) is a good approximation of Ex (z) over at least the interval −5 ≤

z/D≤ 15, with sup−5≤z/D≤15 |G(z)−Ex (z)| of about 4×10−4.

2.7 Conclusion

We modeled fringe fields of semi-infinite electrostatic capacitors with infinitely thin, infinitely

thick, and finitely thick plates, including plates with rounded edges. Additionally, we modeled

fringe fields of two adjacent semi-infinite capacitors with finitely thick plates and symmetric,

antisymmetric, and different voltages. We used conformal mapping methods to perform this

modeling.
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(a) G(z) (dashed red) and Ex (z) (solid blue).
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(b) G(z)−Ex (z) (dashed red) and H2 (z)−Ex (z) (solid blue). sup−5≤z/D≤15 |G(z)−Ex (z)|

is about 4×10−4.

Figure 2.48: The piecewise function G(z), an improved approximation of electrostatic field falloff
Ex (z) over function H2 (z). Vertical gridlines at z/D =−3, 3.5, and 6 are points of smooth gluing
or smooth boundaries used in construction of G(z), as described in the text. The origin z = 0 is at
the EFB20.
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Comparison of the results for fringe fields of semi-infinite capacitors with fringe fields of several

finite rectangular electrostatic capacitors obtained using a BEM field solver shows good agreement.

We found that the field falloff of an electrostatic deflector is slower than exponential. Enge

functions are not suitable for accurate modeling of such falloffs. We proposed an alternative function

to model field falloffs of electrostatic deflectors..
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CHAPTER 3

MAIN AND FRINGE FIELDS OF THE MUON g-2 STORAGE RING HIGH VOLTAGE
QUADRUPOLE

3.1 Introduction

We studied the main and fringe fields of the Muon g-2 storage ring high voltage quadrupole (or

the Muon g-2 collaboration quadrupole) described in [93]. The Muon g-2 storage ring is the lattice

that was used for the E821 MDM measurement experiment and will be used, with modifications,

for the E989 MDM measurement experiment.

In this chapter, we present a method to calculate the 2D main field of the quadrupole, accounting

for geometric asymmetries and mispowered plates (e.g., for RF scraping).

Conformal mapping methods provide an analytic formula for a fully Maxwellian map from a

canonical domain such as a rectangle to a polygon.

The cross section of the quadrupole is represented by a polygon. We obtained an accurate

and fully Maxwellian approximation of the electrostatic potential for this 2D geometry using the

following general method (or its adaptation):

1. Calculate the electrostatic potential using conformal mapping methods for one plate at 1 V

and the other plates, the rectangular enclosure, and the trolley rails at 0 V.

2. Apply appropriate rotations to the resulting solutions for the potential, scale those solutions

(e.g., by ±2.4×104 or with mispowered values), and use their superposition.

This method allows rapid recalculations with adjustments to the geometry and the individual plate

voltages.

The multipole terms of the electrostatic potential may be calculated (1) using Fourier analysis

or (2) by taking the DA value of the potential. We calculated the multipole terms of the Muon g-2

collaboration quadrupole using these methods and performed an error analysis.
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Moreover, we developed a code to automatically generate a 3D model in STEP1 file format

from a cross-sectional geometry represented by a polygon. We prepared a 3D model of the Muon

g-2 collaboration quadrupole using this code, and the electrostatic potential data (“Soltner–Valetov

data”) for a respective grid-point set was calculated using COULOMB’s BEM field solver by Helmut

Soltner (Forschungszentrum Jülich).

We obtained an approximation of the multipole strengths by calculating Fourier modes of the

electrostatic potential at a set of radii in the transversal plane. From this data, we obtained the falloff

of the quadrupole strength and the EFB.

We applied the same method for calculating multipole strengths to the electrostatic field data for

the Muon g-2 collaboration quadrupole obtained using Opera-3d’s finite element method (FEM)

field solver [1] by Wanwei Wu (FNAL and University of Mississippi) [116]. The quadrupole

strength falloffs and the EFBs obtained from Soltner–Valetov and Wu field data agree well, and so

do the tunes calculated based on them.

3.2 Main Field

3.2.1 Conformal Mapping Methods

In this section, we use concepts and notation and refer to software introduced in App. A Conformal

Mapping Methods.

3.2.2 Conformal Mappings for Main Field Calculation

To calculate the electrostatic potential for the cross section of the quadrupole using the superposition

method we outlined above, we consider each plate with the constant Dirichlet boundary condition

1 V and the other plates, the rectangular enclosure, and the trolley rails with the constant Dirichlet

boundary condition 0 V. These two constant Dirichlet boundary conditions are interposed by two

von Neumann boundary conditions, forming a logical quadrilateral. A conformal mapping from a

1STEP is an abbreviation for STandard for the Exchange of Product model data – ISO 10303-242
[55].
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rectangular part of a bi-infinite strip is suitable for a physical domain as this logical quadrilateral, as

App. A notes.

The derivative of the conformal mapping f : C→ C, v 7→ w from a rectangle is

f ′ (v) = c cn(v|m)dn(v|m)
n

∏
j=1

(
sn(v|m)− sn

(
x j + i y j|m

))α j−1
, (3.1)

where n is the number of polygon vertices, x j+ i y j = v j are the prevertices f−1 (w j
)

of the polygon

vertices w j, πα j are the interior polygon angles, m is the elliptic parameter, and c is a constant [30,

p. 49].

For computational efficiency and to implicitly account for the singularity at iK′ = i K(1−m), a

conformal mapping f from a rectangle and its derivative f ′ are often calculated using a composite

map f = f2 ◦ f1 where f1 (v) = log(sn(v|m))/π is the conformal mapping from a rectangle to the

strip 0≤ ℑ(z)≤ 1 and

f2 (z) = A+C

z�
exp
[

π

2
(α−−α+)ζ

] n

∏
k=1

[
sinh

π

2
(ζ − zk)

αk−1
]

dζ

is the conformal mapping from the strip 0≤ ℑ(z)≤ 1 to the interior of a polygon. Points zk are

the prevertices of the polygon other than the complex infinity at the two sides of the infinite strip,

angles παk are the respective interior angles of the polygon, and πα± are the divergence angles of

the sides of the strip at the ends of the strip [30, p. 46].

We note that

f ′1 (v) =
cn(v|m)dn(v|m)

π sn(v|m)
.

The following is an outline of a calculation process of the prevertices v j in a rectangular canonical

domain, as performed in the SC Toolbox [28, 30].

1. The side-length ratios and the prevertices z j on the sides of the infinite strip 0 ≤ ℑ(z) ≤ 1

are obtained using a quasi-Newton method, or a modular nonlinear equation solver such

as Algorithm D6.1.3 NEDRIVER in [24, p. 285], from the n−3 real side-length conditions

that arise from the integrals of f ′ along the polygon side preimages between consecutive
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prevertices:

� z j+1

z j
f ′ (ζ ) dζ = w j+1−w j, j = 1,3, . . . ,n−2,

where the initial guess for the prevertices z j is made by placing points equidistantly on the

sides of the infinite strip 0≤ ℑ(z)≤ 1 matching the Dirichlet boundary conditions.

2. The corners of the rectangle are determined in the form

(
K,K + iK′,−K + iK′,−K

)
from the side-length ratios.

3. The prevertices v j are obtained as preimages of z j under the conformal mapping from the

rectangle to the infinite strip

f1 (v) =
1
π

log(sn(v|m)) ,

where the initial guess for the prevertices v j is made by placing points equidistantly on the

sides of the rectangle matching the Dirichlet boundary conditions.

3.2.3 Multipole Terms

Consider an element with the electrostatic potential ϕ (s,r,θ), where s is the longitudinal and (r,θ)

are the polar transversal particle optical coordinates. We perform a Taylor series expansion of ϕ

in r, followed by a Fourier series expansion of the result in θ [11, pp. 120–125]. The resulting

Taylor–Fourier series expansion

ϕ (s,r,θ) =
+∞

∑
k=0

+∞

∑
l=0

Mk,l (s)cos
(
lθ +θk,l

)
rk

is the multipole expansion of the potential2. The term Ml,l (s) is called the multipole strength of

order l, and θl,l is called the phase.

2Whenever r is not scaled in a formula explicitly, e.g., to a radius R relative to a reference radius
Rref, it is assumed to be implicitly scaled.
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As [11, pp. 120–125] shows, the terms Mk,l (s) with (k, l) other than k = l, l+2, l+4, . . . vanish.

For n ∈ N,

Ml+2n,l (s) =
M(2n)

l,l (s)

∏
n
ν=1

(
l2− (l +2ν)2

) .
If Ml,l (s) is independent of s, the terms Mk,l (s) vanish for k > l. For an s-independent electro-

static potential ϕ , the multipole expansion has the form [11, pp. 120–125]

ϕ (r,θ) =
+∞

∑
l=0

Ml,l cos
(
lθ +θl,l

)
rl .

3.2.3.1 Fourier Analysis

To obtain the multipole terms for an s-independent main field, it is sufficient to obtain the Fourier

coefficients of the electrostatic potential at one radius Rref, which is called the reference radius. The

reference radius Rref is normally chosen as large as possible for the numerical computation to most

accurately distinguish and determine the multipole terms, but less than the aperture. The numerical

solution for the electrostatic potential often has inaccuracies excessively close to the aperture, e.g.,

because of the nearby singularities in the ODE or the approach to the convergence radius of the

Taylor series expansion.

If the Fourier series expansion at the reference radius Rref is

ϕ (r,θ) =
a0Rref

2
+

+∞

∑
j=1

r j
(

a jRref cos( jθ)+b jRref sin( jθ)
)
,

the multipole expansion is then

ϕ (r,θ) =
a0Rref

2
+

+∞

∑
j=1

(
r

R
Rref

) j(
a jRref cos( jθ)+b jRref sin( jθ)

)
, (3.2)

where R is the scaling radius.

Denoting

A j = a jRref

(
R

Rref

) j
, B j = b jRref

(
R

Rref

) j

in eq. 3.2, we obtain

ϕ (r,θ) =
A0
2

+
+∞

∑
j=1

r j (A j cos( jθ)+B j sin( jθ)
)
. (3.3)
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In the cross section of an element with an s-independent main field, the aperture radius3 a is also

a dimensional scale (δ r) of the radius. The scaling radius R is often chosen at or near the aperture4.

3.2.3.2 Differential Algebra Methods

One of the advantages of DA computations is that Taylor series expansions can be produced

automatically for a highly complex analytic function by substituting its comprising functions with

their DA values. Another advantage is the DA fixed-point algorithms, e.g., for the inversion of a

Taylor series expansion, that complete in finitely many steps [11, pp. 96–102].

Knowing the analytic expression for f ′ and the constant part (the scalar value)

g0 = cons(g(0)) ∈ C

of the DA value of g = f−1 at the origin w = 0, we can obtain the DA value5 of f ′ (v) at v = g0.

Then the DA value of f (g0) is

f (g0) = 0+∂
−1 f ′ (g0) ,

where ∂−1 is the antiderivation operator, which is the DA equivalent of taking the integral
� z

0 p(t) dt of a Taylor expansion p(z).

The DA value of g(0) is then obtained by taking the DA inverse of ∂−1 f ′ (g0) and adding the

constant part:

g(0) = g0 +
(

∂
−1 f ′ (g0)

)−1
.

Now we obtain the DA value of the electrostatic potential ϕ at the origin as

ϕ (0) = ψ ◦g(0) ,

3The aperture is the radius of the largest circle with center at the origin of the local Frenet–Serret
frame that can be inscribed in the cross section of the element. Thus, the aperture is also the radius
of convergence of the Taylor expansion of the electrostatic potential at the origin of the complex
plane.

4The reasons for scaling are twofold: (1) scaling gives practical advantages in some calculations,
such as reduction of floating-point errors; and (2) scaling applies the notions of magnitude and scale,
which are universal in physics and are useful, e.g., for phenomenological and asymptotic analysis.

5The appropriate DA algebra here is nDv, where n is the desired order of computation and v is
the number of variables v≥ 1.
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OPERA-

UNITS
Length          : cm    
Flux density    : C m  
Field strength  : V m  
Potential       : V       
Conductivity    : S m  
Source density  : C cm
Power           : W      
Force           : N       
Energy          : J        
Mass            : kg      

PROBLEM DATA
quad_no_offset.st
Linear elements
XY symmetry
Scalar potential
Electric fields
Static solution
Scale factor = 1.0
  6084  elements
  3155  nodes
    52  regions
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Fig. 18. The plotted parameter #POT3 is the regular potential (plotted in Fig. 17) minus the quadrupole potential and is defined as

#POT3 ¼ POT� ðPOT2 cm=22Þ*ðx
2 � y2Þ: The dominance of the 20 pole, b10=b2 ¼ 1:9% on the circle with r ¼ 4:5 cm; is clearly visible.

Table 5

The potential multipoles at r ¼ 4:5 cm; the edge of the muon
storage region, for negative muon storage and 724 kV on the

plates

Order of multipole Cosine term

(Normal) [V]

Sine term

(skewed) [V]

1 0.0 ð�12Þ 0.0

2 20177.8 0.1

3 0.0 ð�28Þ 0.0

4 33.0 ð�153Þ 0.1

5 0.0 ð�10Þ 0.0 ð�8Þ
6 �45:9 ð�26Þ 0.1

7 0.0 0.0

8 �5:5 �0:2
9 0.0 0.0

10 �391:3 0.1

11 0.0 0.0

12 �6:5 ð18Þ 0.0

13 0.0 0.0

14 52.3 �0:1

The placement of the plates is assumed ideal and the distance of

the plates from the vacuum chamber walls is equal for all plates

as shown in Fig. 17. In parentheses we show the multipoles

generated due to the scalloped vacuum chambers violating the

four fold symmetry.

Table 6

The potential multipoles at r ¼ 4:5 cm, the edge of the muon
storage region, for negative muon storage and 724 kV on the

plates

Order of multipole Cosine term

(normal) [V]

Sine term

(skewed) [V]

1 405 345

2 19875 �75
3 173 �120
4 �190 20

5 �10 �8
6 �35 30

7 �50 35

8 20 10

9 �50 �30
10 �391.3 0

11 �15 10

12 20 4

13 4 2

14 50 �2

The placement of the plates is assumed to be the worst possible

(i.e. 70:75 mm on the side plates, and 70:5 mm on the top

ones). The multipoles shown are the highest values found when

different combinations of non ideal quad plate positioning is

assumed.

Y.K. Semertzidis et al. / Nuclear Instruments and Methods in Physics Research A 503 (2003) 458–484476

Figure 3.1: Cross section of the Muon g-2 collaboration quadrupole. (Reprinted from Nucl. Instr.
Meth. Phys. Res. A, Vol. 503, Yannis K. Semertzidis et al., The Brookhaven Muon (g-2) Storage
Ring High Voltage Quadrupoles, Page No. 476, Copyright 2003, with permission from Elsevier.)

where ψ is the solution of the Laplace equation for the electrostatic field in the canonical domain.

We obtain the Taylor series expansion of ϕ from the DA value of ϕ (0) as

ϕ (w) =
n

∑
j=0

ckwk +o(wn) .

To obtain the multipole coefficients in the trigonometric form, we take a0 = 2c0, a j = ℜ
(
c j
)
,

and b j = ℜ
(
i c j
)
, where j = 1,2, . . . ,N.

We may now apply a scaling radius R relative to a reference radius Rref. If scaling was not

performed prior to these calculations, the reference radius is Rref = 1 in the units used for the

calculations.

3.2.4 Calculations and Results

Fig. 3.1 shows the cross section of the Muon g-2 collaboration quadrupole.
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First, we considered the case with non-mispowered plates and no geometric asymmetries. We

solved the problem for one-eighth of the cross section and extended the solution to the entire cross

section, utilizing the four-fold rotational symmetry and the four mirror symmetries.

Next, we considered the general case of mispowered plates and geometric asymmetries. In that

case, we approximated the cross-sectional geometry by a simply-connected region using connecting

rods between the plates and the rectangular enclosure. Having calculated the electrostatic potential

using conformal mapping methods with one plate at 1 V and the other plates and the rectangular

enclosure at 0 V, we applied geometrical perturbations, rotations, and scaling to four copies of the

potential and superimposed them to obtain the solution for the potential.

All multipole expansions presented here are up to the order 24. The unit of length in the physical

domain is centimeters.

Unless otherwise specified, we used MATLAB R2016b, the SC Toolbox 2.3, COSY INFINITY

9.1 [68], and Mathematica 11 for calculations.

We enumerated the quadrupole plates, as well as their voltage coefficients V j and errors D j in

the distance from the origin, where j = 1,2,3,4, in the counter-clockwise direction starting from

the left plate on the cross section drawing.

3.2.4.1 Nominal Symmetric Case (“SM”)

The four-fold rotational symmetry and the four mirror symmetries (with accounting for the alternat-

ing sign of the voltages) in the case of non-mispowered plates and symmetrical geometry allow us to

reduce the problem of finding the electrostatic potential in the entire cross section of the quadrupole

to obtaining it only in one-eighth of the geometry. This one-eighth part of the cross-sectional

geometry is shown in Fig. 3.2. We denote this nominal symmetric case as “SM”.

The MATLAB function listed in App. C.1 returns the conformal mapping object f for a conformal

mapping from a rectangle to the interior of the polygon object p representing the 2D geometry.

Entering [p,f] = initquad4 in the MATLAB command line yields the prevertices and the

corners of the rectangular canonical domain:
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Figure 3.2: Model of one-eighth of the cross section of the Muon g-2 collaboration quadrupole for
the case of non-mispowered plates and no geometric asymmetries (“SM”).

r ec tmap o b j e c t :

c n r v e r t e x a l p h a p r e v e r t e x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 0 .00000 + 7 .00000 i 0 .50000 1 .57079633 e +00

−5.59792 + 7 .00000 i 0 .50000 1 .57079633 e +00 + 5.68557125 e +00 i

−5.59792 + 5 .87990 i 0 .75000 1 .57079633 e +00 + 5.74755826 e +00 i

−4.49396 + 4 .77594 i 1 .50000 1 .57079633 e +00 + 6.26976031 e +00 i

−4.63495 + 4 .63495 i 0 .50000 1 .57079633 e +00 + 6.35334334 e +00 i

2 0 .00000 + 0 .00000 i 0 .25000 1 .57079633 e +00 + 1.07013887 e +01 i

3 0 .00000 + 5 .00000 i 0 .50000 −1.57079633 e +00 + 1.07013887 e +01 i

−2.35000 + 5 .00000 i 1 .50000 −1.57079633 e +00 + 6.91809897 e +00 i

−2.35000 + 5 .30000 i 1 .50000 −1.57079633 e +00 + 5.27565570 e +00 i

4 0 .00000 + 5 .30000 i 0 .50000 −1.57079633 e +00
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c = −3.9440549 e−15 − 64 .411305 i

Conformal modulus = 3 .4063578

Apparen t a c c u r a c y i s 6 . 4 0 e−14

A heatmap plot of the electrostatic potential as the inverse of the conformal mapping object f is

shown in Fig. 3.3.

Now we apply the list of prevertices, the list of α’s, the scaling constant c, and the parameter

m to the analytic formula for the derivative f ′ of the conformal mapping in eq. 3.1. Note that the

scaling constant c in eq. 3.1 is different from the constant c in the MATLAB output. The constant c

and the parameter m are obtained as described in App. A.

The resulting derivative f ′ : C→ C, v 7→ w of the conformal mapping from the rectangular

canonical domain to the physical domain is

f ′ (v) = c cn(v|m)dn(v|m)
n

∏
j=1

(
sn(v|m)− sn

(
x j + i y j|m

))α j−1
,

where n is the number of polygon vertices. The scaling constant is c =−i12429.568123663117,

and the parameter m is m = 8.1098319813220654×10−9. The other parameters are as follows:

α = (0.5,0.5,0.75,1.5,0.5,0.25,0.5,1.5,1.5,0.5) ,

x =

K(m) , . . . ,K(m)︸ ︷︷ ︸
6 times

,−K(m) , . . . ,−K(m)︸ ︷︷ ︸
4 times

 ,

and

y = (0,5.6855712537881429,5.7475582573144708,

6.2697603145320198,6.3533433441730081,10.701388724040664,

10.701388724040664,6.9180989665683397,5.2756556972892490,0) .

The preimage v0 of the origin w = 0 is

v0 = g(0) = 1.570796329979620+ i10.70138872404065.
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Figure 3.3: “SM MATLAB”: heatmap plot of the electrostatic potential as the inverse of the conformal
mapping object f.

The derivative f ′ has a branch point at v = v0, which presents certain difficulties in the analysis.

For example, it is not possible to obtain the electrostatic potential multipole terms by obtaining f

via a Taylor series expansion of f ′ and then calculating the inverse series. The same applies to the

calculation of DA values of f at point v = v0.

3.2.4.1.1 Differential Equation Solution in Mathematica (“Mathematica PDE”)

First, we obtained the electrostatic potential ϕ on the vertical edge of the polygon, shown in Fig.

3.4, in Mathematica by solving the restriction of the ODE

dg(w)
dw

=
1

f ′ (g(w))
, g(w0) = z0

(see App. A) to the respective one-dimensional case, where a point w0 was chosen on the vertical

edge.

Next, we solved the Cauchy–Riemann PDE in Mathematica, with the boundary conditions as

found in the previous step on the vertical edge and as zero on the diagonal edge of the polygon. The

result is shown in Figs. 3.5 and 3.6.
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Figure 3.4: “SM Mathematica PDE”: vertical boundary condition of the Laplace equation for the
electrostatic potential ϕ .

Finally, we calculated the Fourier modes of ϕ at the reference radii

Rref = 1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5 cm

by taking numerical integrals. For each radius, we formulated the multipole terms in accordance to

eq. 3.3.

3.2.4.1.2 Fourier Analysis in MATLAB (“MATLAB Fourier”)

For the conformal mapping object f and a reference radius R, the MATLAB function listed in App.

D.1 calculates the discrete Fourier transform (DFT) dn and the Fourier modes a0, an, bn of the

electrostatic potential ϕ using a fast Fourier transform (FFT).

To that end, the MATLAB function performs an equidistant discretization of the circle of radius

R, centered at the origin r = 0, with N = 1001 arc intervals of length4t = 2πR/N. It computes the

inverse values of the conformal mapping object f at that grid-point set:

u =

(
f−1

(
Rcos( j4t) ,f−1 (Rsin( j4t))

)N−1

j=0

)
.

The DFT of the electrostatic potential ϕ around the circle of reference radius R is obtained as
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Figure 3.5: “SM Mathematica PDE”: 3D plot of the solution of the Cauchy–Riemann PDE for the
electrostatic potential ϕ .
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Figure 3.6: “SM Mathematica PDE”: heatmap plot of the multipole expansion of the electrostatic
potential, up to order 24.
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Figure 3.7: “SM MATLAB Fourier”: heatmap plot of the multipole expansion of the electrostatic
potential, up to order 24.

the FFT transform of u, with Fourier parameters (a,b) = (1,−1), divided by N:

dn =
1
N

N−1

∑
j=0

u j exp
(
−2πi

N
jn
)
.

The Fourier modes in trigonometric form are obtained from the DFT, utilizing the Hermitian

symmetry [16, pp. 76–77], as

a0 = 2d0,

an = dn +dN−n,

bn = dn−dN−n.

From the Fourier modes calculated for each of the reference radii

Rref = 1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5 cm,

we formulated the multipole terms in accordance to eq. 3.3.

Figs. 3.7 and 3.8 show plots of the multipole expansion with Rref = 4.5 cm starting from the

zeroth and the third order, respectively.
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Figure 3.8: “SM MATLAB Fourier”: contour plot of the multipole expansion of the electrostatic
potential, orders 3 to 24.

3.2.4.2 Non-Symmetric Case (“NSM”)

Regarding the general case of mispowered plates and geometric asymmetries, we cannot simplify

the problem by reducing the physical domain, using the four-fold symmetry and the four mirror

symmetries, as we did in the SM case. We denote this general non-symmetric case as “NSM”.

The cross section of the quadrupole is represented by a multiply-connected region consisting of

five simple polygons: the rectangular enclosure and the trolley rails as one simple polygon and each

of the four plates as one simple polygon.

The conformal mapping theory for physical domains as n-connected regions for n > 2 is quite

challenging (see, e.g., [22]), and, in practice, various approximations and assumptions are used.

Doubly connected regions require specialized methods and present certain restrictions and issues

[30, pp. 64–70].

We approximated the cross-sectional geometry by a simply-connected region using connecting

rods between the rectangular enclosure and the four plates, as Fig. 3.9 shows. We placed the rods in

the middle of the back side of each plate to minimize their impact on the multipole terms.

We consider geometric asymmetries as errors in the distances between the plates and the origin
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Figure 3.9: Model of the cross section of the Muon g-2 collaboration quadrupole for the case of
mispowered plates and geometric asymmetries (“NSM”).

in the cross section.

In principle, we could supply arbitrary plate distance errors as parameters in the polygonal

model and compute the respective conformal mapping using the SC Toolbox. However, due to the

crowding phenomenon [30, 6, 31, 7] illustrated by the distances between successive prevertices in

Fig. 3.10 reaching ∼ 10−4, the optimization algorithm that obtains conformal mapping prevertices

in the SC Toolbox is affected by numerical stability issues and often does not converge. Hence, we

treat plate distance errors as perturbations and, for each plate distance error, use a two-point linear

interpolation (or extrapolation, as applicable, which has the same formula in this case) based on

the solution for the nominal geometry and one other solution where optimization had successfully

converged.

Having prepared the interpolation data, we obtain the electrostatic potential in the NSM case

using the following adaptation of the general method:
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Figure 3.10: Distances between successive prevertices zn of a conformal mapping from a rectangle
to the interior of the polygon representing the cross-sectional geometry in the NSM case.

1. Calculate the electrostatic potential using conformal mapping methods with one plate – the

left plate on the cross section drawing (as in Fig. 3.1) – at 1V and the other Dirichlet boundary

conditions (the remaining plates, the rectangular enclosure, and the trolley rails) of 0 V.

2. Apply plate distance errors as perturbations to four copies of the potential, each copy corre-

sponding to one plate at 1 V and the other Dirichlet boundary conditions of 0 V.

3. Apply appropriate rotations to these four copies of the potential, scale the copies (e.g., by

±2.4×104 or with mispowered values), and use their superposition.

To test NSM results against SM results, we used the identical configuration of non-mispowered

plate voltages (±2.4×104 V) and no geometric asymmetries.

The MATLAB function listed in App. C.2 returns the conformal mapping object f for a conformal

mapping from a rectangle to the interior of the polygon object p representing the 2D geometry.

We note that, of MATLAB releases R2009a, R2014b, R2016b, and R2017a, this calculation

successfully completes only in releases R2016b and R2017a.
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Figure 3.11: “NSM MATLAB”: heatmap plot of the electrostatic potential as the inverse of the
conformal mapping object f.

A heatmap plot of the electrostatic potential as the inverse of the conformal mapping object f is

shown in Fig. 3.11.

Next, we apply the list of prevertices, the list of α’s, and the parameter m to the analytic formula

for the derivative f ′ of the conformal mapping in eq. 3.1. The scaling constant c in eq. 3.1 differs

from the constant c in the MATLAB output. The constant c and the parameter m are obtained as

described in App. A.

The resulting derivative f ′ : C→ C, v 7→ w of the conformal mapping from the rectangular

canonical domain to the physical domain is

f ′ (v) = c cn(v|m)dn(v|m)
n

∏
j=1

(
sn(v|m)− sn

(
x j + i y j|m

))α j−1
,

where n is the number of polygon vertices. The scaling constant is c = 1.1819869586349204×107,

and the parameter m is m = 2.1776166063953954×10−15. The other parameters are as follows:

α = (0.5,1.5,1.5,1.5,1.5,0.5,0.5,0.5,0.75,1.5,1.5,0.75,0.5,0.5,

0.5,1.5,1.5,1.5,1.5,0.5,0.5,0.5,0.75,1.5,1.5,0.75,0.5,0.5,

0.5,1.5,1.5,1.5,1.5,0.5,0.5,0.5,0.75,1.5,1.5,0.75,0.5,0.5,
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0.5,1.5,1.5,1.5,1.5,0.5,0.5,0.5,0.75,1.5,1.5,0.75,0.5,0.5) ,

x =

K(m) , . . . ,K(m)︸ ︷︷ ︸
6 times

,−K(m) , . . . ,−K(m)︸ ︷︷ ︸
50 times

 ,

and

y = (0,4.707844817895257,6.1123226415433312

12.154244427584317,13.558722251232082,18.266567069128161,

18.266567069128161,13.274266140422423,12.918629029969397,

11.576281153221727,10.948991934692465,10.675215453051434,

10.65269458697405,10.604072782442005,10.6027963210765,

10.569241422270052,10.476916632115067,9.4896639886962486,

9.4722605135357565,9.4665721145687325,9.4663618193493928,

9.4586650413212396,9.4552969316026854,9.4223471739893334,

9.3806007759118621,9.3504541968427848,9.3474996905761945,

9.3408322140301419,9.3406516641648345,9.3358001108809781,

9.3213334522713787,8.9452336168578217,8.9307669582482223,

8.9259154049643676,8.9257348550990603,8.9190673785530059,

8.9161128722864156,8.8859662932173382,8.8442198951398652,

8.8112701375265097,8.8079020278079554,8.8002052497797987,

8.799994954560459,8.794306555593435,8.7769030804329375,

7.7896504370136723,7.6973256468586344,7.6637707480521646,

7.6624942866866617,7.6138724821545702,7.5913516160771657,

7.3175751344358959,6.6902859159059922,5.347938039156598,

4.9923009287031883,0) .

89



-0.75

-0.50

-0.25

0

0.25

0.50

0.75

Figure 3.12: “NSM MATLAB Fourier”: heatmap plot of the multipole expansion of the electrostatic
potential, up to order 24.

The preimage v0 of the origin w = 0 is

v0 = g(0) =−0.9486801376613026+ i9.133283534564583.

3.2.4.2.1 Fourier Analysis in MATLAB (“MATLAB Fourier”)

For the conformal mapping object f and a reference radius R, the MATLAB function listed in App.

D.2 calculates the DFT dn and the Fourier modes a0, an, bn of the electrostatic potential ϕ using an

FFT.

From the Fourier modes calculated for each of the reference radii

Rref = 1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5 cm,

we formulated the multipole terms in accordance to eq. 3.2.

Figs. 3.12 and 3.13 show plots of the multipole expansion with Rref = 4.5 cm starting from the

zeroth and the third order, respectively.
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Figure 3.13: “NSM MATLAB Fourier”: contour plot of the multipole expansion of the electrostatic
potential, orders 3 to 24.

3.2.4.2.2 DA Calculation in Mathematica (“Mathematica DA”)

Mathematica has a DA implementation, where DA values are encoded in SeriesData objects.

Mathematical operations are defined for SeriesData objects and produce results as SeriesData

objects.

We developed a Mathematica notebook that, for the conformal mapping derivative f in the ana-

lytic form, calculates the multipole terms a0, an, bn (trigonometric form), and cn (exponential form)

of the electrostatic potential ϕ using the DA method described in sec. 3.2.3.2. This Mathematica

notebook is listed in App. E.

The Mathematica notebook outputs the unscaled Fourier modes a0, an, and bn (trigonometric

form) as the scalar value a0 and the lists an and bn, respectively:

a0 =0.39605146671241603

an ={−0.06885669876025119 ,0 .010385498335510007 ,

−0.0012979130328780464 ,0 .00011476439020259089 ,

−8.616661281676434∗10^−6 ,−8.001918237312118∗10^−8 ,

2.0824622994066985∗10^−7 ,−5.650565366333305∗10^−8 ,
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9.49311257232955∗10^−9 ,−1.1783959917396393∗10^−9 ,

8.674992182657303∗10^−11 ,4.7439258953997255∗10^−12 ,

−2.0785575798462163∗10^−12 ,4.148094011328047∗10^−13 ,

−6.33695369929115∗10^−14 ,8.492752468745464∗10^−15 ,

−1.873561549973473∗10^−15 ,3.4306594232475737∗10^−16 ,

−4.803243173690091∗10^−17 ,3.624992112376469∗10^−18 ,

6.630918080108423∗10^−19 ,−3.3213814949302035∗10^−19 ,

8.966581646343429∗10^−20 ,−1.9952929970350762∗10^−20 ,

3.793742595796802∗10^−21 ,−2.8012134244396143∗10^−22}

bn ={8.336931069526638∗10^−10 ,−3.794138538379455∗10^−10 ,

9.09371800225003∗10^−11 ,−1.3418145691681178∗10^−11 ,

1.0494507650372826∗10^−12 ,1.0332235646552139∗10^−13 ,

−6.485090438390214∗10^−14 ,1.6930587560640178∗10^−14 ,

−3.120390662980916∗10^−15 ,4.06780222146135∗10^−16 ,

−1.5013659690567033∗10^−17 ,−1.929422691566964∗10^−17 ,

1.4144128584705∗10^−17 ,−7.650940703168617∗10^−18 ,

3.0481313019656075∗10^−18 ,−5.667559487084578∗10^−19 ,

−3.51094538704568∗10^−19 ,4.6557961617641415∗10^−19 ,

−3.166471479008234∗10^−19 ,1.574207595519098∗10^−19 ,

−5.787690633861256∗10^−20 ,1.1856606658833134∗10^−20 ,

3.380342869683127∗10^−21 ,−5.488606040416573∗10^−21 ,

3.8095070621154405∗10^−21 ,−1.9698604453416265∗10^−21}

Figs. 3.14, 3.15 show plots of the multipole expansion starting from the zeroth and the third

order, respectively.

3.2.4.2.3 DA Calculation in COSY INFINITY (“COSY INFINITY DA”)

We implemented the calculation of the multipole terms using the DA method described in sec.

3.2.3.2 as a COSY INFINITY program called mterms.
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Figure 3.14: “NSM Mathematica DA”: heatmap plot of the multipole expansion of the electrostatic
potential, up to order 24.
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Figure 3.15: “NSM Mathematica DA”: contour plot of the multipole expansion of the electrostatic
potential, orders 3 to 24.
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The program queries the user for optional changes to nominal plate voltage magnitude (default

value 24,000 V), plate voltage coefficients (default values V1 = 1, V2 =−1, V3 = 1, and V4 =−1),

errors in distances from the origin to the plates (default values D1 = 0 cm, D2 = 0 cm, D3 = 0 cm,

D4 = 0 cm), and scaling radius of the multipole coefficients (default value R = 4.5 cm).

Nonzero values of D j were implemented using linear interpolation. For details, see the descrip-

tion in the error analysis section below.

The 2D geometry data is stored in mterms in the SC Toolbox format. The program generates a

MATLAB M-file that uses the SC Toolbox to calculate the prevertices z j, the constant c, the strip

length L, and the preimage g(0) of the origin w = 0. Next, multipole terms are calculated using

DA. Alternatively, the user can select the option to use pre-calculated multipole terms stored in the

program.

The following is the program output with the default parameters.

MULTIPOLE TERMS

SCALED TO R = 4.500000000000000 cm

NOMINAL PLATE VOLTAGE PHI = 24000.00000000000 V

PLATE VOLTAGE COEFFICIENTS :

PLATE 1 : V1 = 1.000000000000000

PLATE 2 : V2 = −1.000000000000000

PLATE 3 : V3 = 1.000000000000000

PLATE 4 : V4 = −1.000000000000000

PLATE DISTANCE ERRORS:

PLATE 1 : D1 = 0.0000000000000000E+00 cm

PLATE 2 : D2 = 0.0000000000000000E+00 cm

PLATE 3 : D3 = 0.0000000000000000E+00 cm

PLATE 4 : D4 = 0.0000000000000000E+00 cm

A0 = 0.0000000000000000E+00

94



N AN BN

1 −0.1270392504150563E−11 −0.1498801083243961E−11

2 20189.41051825105 0.1766027536678210E−02

3 0.1018547399907894E−11 −0.9484600604903193E−12

4 0.0000000000000000E+00 0.5532731267819562E−12

5 −0.9367417464417151E−12 −0.2250740182608863E−12

6 −63.78872501452805 −0.1248379149706613E−02

7 0.1753671159615466E−12 0.1661679275441700E−12

8 0.0000000000000000E+00 −0.2234113065318811E−12

9 0.4862302476884544E−12 0.1802625285412201E−12

10 −385.2021979951332 0.2398685362109508E−03

11 0.7086316906170801E−13 0.1568495243459249E−12

12 0.0000000000000000E+00 0.1153720159933965E−13

13 −0.7883469452910978E−13 0.3007767867428958E−13

14 55.60328952513591 0.2232092717536040E−03

15 −0.1587524669086704E−13 −0.5139053379739946E−13

16 0.0000000000000000E+00 0.1128975791355853E−13

17 −0.3264494074407542E−13 0.8431259451135848E−14

18 18.83394598327191 −0.4786556212617289E−13

19 0.1739271370955237E−13 −0.1753062093467197E−13

20 0.0000000000000000E+00 0.9765821268656394E−14

21 −0.7524327143791555E−15 −0.7234953952318767E−15

22 −6.616981865806735 0.2512483933577411E−13

23 0.1422827463617597E−14 0.1129331093494757E−13

24 0.0000000000000000E+00 0.0000000000000000E+00

25 0.0000000000000000E+00 0.0000000000000000E+00

Figs. 3.16, 3.17 show plots of the multipole expansion starting from the zeroth and the third

order, respectively.
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Figure 3.16: “NSM COSY INFINITY DA”: heatmap plot of the multipole expansion of the electro-
static potential, up to order 24.
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Figure 3.17: “NSM COSY INFINITY DA”: contour plot of the multipole expansion of the electro-
static potential, orders 3 to 24.
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The calculation of multipole terms using “Mathematica DA” and “COSY INFINITY DA”

completed in 14.5 min and 0.07 s on the same computer.

3.2.4.2.4 Python Version of mterms

We implemented a Python version of the COSY INFINITY program mterms (see App. F for details

and source code.). As Python does not have DA functionality, the Python version of mterms

only use pre-calculated sets of multipole terms, with the same method and results as in the COSY

INFINITY version introduced in case “COSY INFINITY DA”. The Python version does not include

de novo computation of multipole terms using the SC Toolbox and DA.

3.2.4.3 Multipole Terms

Table 3.1 lists multipole terms for cases “SM Mathematica PDE”, “SM MATLAB Fourier”, “NSM

MATLAB Fourier”, and “NSM Mathematica DA”. Table 3.2 lists multipole terms for case “NSM

COSY INFINITY DA”.

For each plate voltage coefficient V j+4V j and distance from the origin D j (8 cases in total), we

computed multipole terms in “NSM Mathematica DA” with a perturbation4V j or D j, respectively,

the rest of these parameters remaining unperturbed. The unperturbed values are D j = 0 cm and

V j +4V j with4V j = 0, V1 = 1, V2 =−1, V3 = 1, and V4 =−1.

Multipole terms with perturbations4V j and D j of plate voltage coefficients and plate distances

are listed in Tables 3.3, 3.4 and 3.5, 3.6, respectively.

We note that in “NSM COSY INFINITY DA”, multipole terms for order n = 24 are numerically

calculated as zero even if the computation order in mterms is increased from the default value of 25

to 30. This is due to floating-point underflow.

3.2.4.4 Error Analysis

In this a posteriori error analysis, we use methods and measures that include the following:
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Order n SM Mathematica PDE SM MATLAB Fourier NSM MATLAB Fourier NSM Mathematica DA

1 1.9745943647419334×10−12 9.079982791749051×10−14 0. 0.

2 20214.97653712142 20232.98426780849 20189.40925816141 20189.40876423145

3 2.5046868116525192×10−12 −1.5984993366164723×10−11 0. 0.

4 −1.999071489496519×10−6 −1.6264478976965794×10−11 0. 0.

5 8.845917707820406×10−13 9.14806631798289×10−12 0. 0.

6 −99.48139575133254 −118.26614359059352 −63.788529979036376 −63.788211449330845

7 1.5853077240419715×10−12 8.78863940492948×10−12 0. 0.

8 −8.017648259522616×10−13 −2.7459971391853632×10−11 0. 0.

9 1.298726494930936×10−12 −2.6192553454071565×10−11 0. 0.

10 −259.77056186360966 −360.8978554756162 −385.20109622396365 −385.20119645612806

11 7.355032700884383×10−13 8.287110710130606×10−12 0. 0.

12 −1.1562641498237162×10−12 3.043766956845234×10−11 0. 0.

13 1.762557385977699×10−12 2.3045039516510903×10−11 0. 0.

14 27.990065388237984 49.6181080101752 55.602386906876 55.602589324698265

15 3.3925916602277514×10−12 4.107208903423128×10−12 0. 0.

16 −1.828818941841522×10−12 1.0954794995043528×10−14 0. 0.

17 1.3782403619675239×10−12 8.153607909284305×10−12 0. 0.

18 −84.09455183738272 19.954184119037713 18.8341954294158 18.85706451271575

19 0. 5.86335215814601×10−13 0. 0.

20 −0.000035820067317830976 −3.6922316850239525×10−11 0. 0.

21 1.5107634736951705×10−12 −4.0231745053258074×10−11 0. 0.

22 0.3874045390909366 −7.1158335523071745 −6.616941027862705 −7.486266749401171

23 1.013801804716496×10−12 6.954205882858485×10−12 0. 0.

24 −2.87575152448993×10−12 2.4426166197145148×10−11 0. 0.

Table 3.1: Multipole terms Mn,n in cases “SM Mathematica PDE”, “SM MATLAB Fourier”, “NSM MATLAB Fourier”, and “NSM
Mathematica DA”.
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Order n Cosine terms A0, An Sine terms Bn

0 0. N/A
1 −1.270392504150563×10−12 −1.498801083243961×10−12

2 20189.41051825105 1.766027536678210×10−3

3 1.018547399907894×10−12 −9.484600604903193×10−13

4 0. 5.532731267819562×10−13

5 −9.367417464417151×10−13 −2.250740182608863×10−13

6 −63.78872501452805 −1.248379149706613×10−3

7 1.753671159615466×10−13 1.661679275441700×10−13

8 0. −2.234113065318811×10−13

9 4.862302476884544×10−13 1.802625285412201×10−13

10 −385.2021979951332 2.398685362109508×10−4

11 7.086316906170801×10−14 1.568495243459249×10−13

12 0. 1.153720159933965×10−14

13 −7.883469452910978×10−14 3.007767867428958×10−14

14 55.60328952513591 2.232092717536040×10−4

15 −1.587524669086704×10−14 −5.139053379739946×10−14

16 0. 1.128975791355853×10−14

17 −3.264494074407542×10−14 8.431259451135848×10−15

18 18.83394598327191 −4.786556212617289×10−14

19 1.739271370955237×10−14 −1.753062093467197×10−14

20 0. 9.765821268656394×10−15

21 −7.524327143791555×10−16 −7.234953952318767×10−16

22 −6.616981865806735 2.512483933577411×10−14

23 1.422827463617597×10−15 1.129331093494757×10−14

24 0. 0.

Table 3.2: Multipole terms A0, An, and Bn in case “NSM COSY INFINITY DA”. The sine multipole
terms are included for comparison with “NSM COSY INFINITY DA” multipole terms calculated
with perturbed geometry and voltages in Tables 3.3, 3.4, 3.5, and 3.6.
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Order n 4V1 = 10−5 4V2 =−10−5 4V3 = 10−5 4V4 =−10−5

0 9.505235201160260×10−2 −9.505235201160260×10−2 9.505235201160260×10−2 −9.505235201160260×10−2

1 −7.436523597891738×10−2 8.266246815751127×10−11 7.436523597637661×10−2 −8.515344572191423×10−11

2 20189.46099177735 20189.46099177735 20189.46099177735 20189.46099177735

3 −2.838536489744372×10−2 5.994811899668481×10−9 2.838536489948082×10−2 −5.992913734586033×10−9

4 1.129454381431691×10−2 −1.129454381431691×10−2 1.129454381431691×10−2 −1.129454381431691×10−2

5 −3.816042156893218×10−3 5.361648904967867×10−10 3.816042155019734×10−3 −5.380342277459531×10−10

6 −63.78888448634059 −63.78888448634059 −63.78888448634059 −63.78888448634059

7 1.867570482658803×10−3 −3.900047013374706×10−9 −1.867570482308069×10−3 3.900383589753429×10−9

8 −2.280364607148135×10−3 2.280364607148135×10−3 −2.280364607148135×10−3 2.280364607148135×10−3

9 1.723985667991497×10−3 1.310874637723331×10−9 −1.723985667019037×10−3 −1.309883051616690×10−9

10 −385.2031610006283 −385.2031610006283 −385.2031610006283 −385.2031610006283

11 3.190201723315910×10−4 1.851384811087571×10−9 −3.190201721898647×10−4 −1.851244694012594×10−9

12 7.850716940114915×10−5 −7.850716940114915×10−5 7.850716940114915×10−5 −7.850716940114915×10−5

13 −1.547902248761007×10−4 −1.535845107803755×10−9 1.547902247184313×10−4 1.535685413417173×10−9

14 55.60342853335972 55.60342853335972 55.60342853335972 55.60342853335972

15 −9.555798106664925×10−5 −2.717804380859608×10−10 9.555798103489875×10−5 2.717485332842149×10−10

16 5.761744754729378×10−5 −5.761744754729378×10−5 5.761744754729378×10−5 −5.761744754729378×10−5

17 −5.717782937401201×10−5 7.582411050566096×10−10 5.717782930872212×10−5 −7.583065672290997×10−10

18 18.83399306813687 18.83399306813687 18.83399306813687 18.83399306813687

19 −2.965993100024038×10−5 1.739271370955237×10−14 2.965993103502581×10−5 1.739297528979414×10−14

20 1.022093822923510×10−5 −1.022093822923510×10−5 1.022093822923510×10−5 −1.022093822923510×10−5

21 7.572076577709902×10−6 −7.524327143791555×10−16 −7.572076579214769×10−6 −7.524438561832755×10−16

22 −6.616998408261400 −6.616998408261400 −6.616998408261400 −6.616998408261400

23 1.787269032222077×10−5 1.422827463617597×10−15 −1.787269031937511×10−5 1.422783699214458×10−15

24 0. 0. 0. 0.

Table 3.3: Cosine multipole terms A0, An in case “NSM COSY INFINITY DA” with specified perturbations 4V j of plate voltage
coefficients.
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Order n 4V1 = 10−5 4V2 =−10−5 4V3 = 10−5 4V4 =−10−5

1 8.243405957841787×10−11 7.436523597614819×10−2 −8.543166174490580×10−11 −7.436523597914579×10−2

2 1.766031951747060×10−3 1.766031951747054×10−3 1.766031951747048×10−3 1.766031951747042×10−3

3 −5.994741812329063×10−9 −2.838536489941073×10−2 5.992844892208082×10−9 2.838536489751381×10−2

4 3.161414553920099×10−9 −3.160308004931769×10−9 3.161414548386968×10−9 −3.160307999398638×10−9

5 5.368765582249675×10−10 3.816042155731402×10−3 −5.373267062614893×10−10 −3.816042156181550×10−3

6 −1.248382270654487×10−3 −1.248382270654487×10−3 −1.248382270654487×10−3 −1.248382270654487×10−3

7 3.900364810142848×10−9 1.867570482649604×10−3 −3.900032474287760×10−9 −1.867570482317268×10−3

8 −3.117515154626748×10−9 3.117068330893074×10−9 −3.117515152436465×10−9 3.117068328702791×10−9

9 1.310568670004184×10−9 −1.723985667325004×10−3 −1.310208144947101×10−9 1.723985667685530×10−3

10 2.398691358822895×10−4 2.398691358822901×10−4 2.398691358822907×10−4 2.398691358822948×10−4

11 −1.851161851410052×10−9 3.190201724175774×10−4 1.851475550458744×10−9 −3.190201721038783×10−4

12 2.145763565102821×10−9 −2.145740490658827×10−9 2.145763565021230×10−9 −2.145740490536441×10−9

13 −1.535736195430552×10−9 1.547902248273437×10−4 1.535796350787900×10−9 −1.547902247671883×10−4

14 2.232098297767835×10−4 2.232098297767833×10−4 2.232098297767832×10−4 2.232098297767836×10−4

15 2.717131723054726×10−10 −9.555798110216454×10−5 −2.718159533730674×10−10 9.555798099938346×10−5

16 −7.035211691164543×10−10 7.035437486894595×10−10 −7.035211692308105×10−10 7.035437487956475×10−10

17 7.582821812568048×10−10 5.717782934979833×10−5 −7.582653187379024×10−10 −5.717782933293581×10−5

18 −4.786556212617289×10−14 −4.786561402226913×10−14 −4.786566591836537×10−14 −4.786588509350543×10−14

19 −1.753062093467197×10−14 −2.965993103516372×10−5 −1.753062093467197×10−14 2.965993100010247×10−5

20 9.765821268656394×10−15 9.765833785695678×10−15 9.765796234577818×10−15 9.765931443908367×10−15

21 −7.234953952318767×10−16 −7.572076579185831×10−6 −7.234953952318767×10−16 7.572076577738841×10−6

22 2.512483933577411×10−14 2.512492039090965×10−14 2.512500144604519×10−14 2.512484741876086×10−14

23 1.129331093494757×10−14 1.787269033209125×10−5 1.129331093494757×10−14 −1.787269030950463×10−5

24 0. 0. 0. 0.

Table 3.4: Sine multipole terms Bn in case “NSM COSY INFINITY DA” with specified perturbations4V j of plate voltage coefficients.
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Order n D1 = 10−5 cm D2 = 10−5 cm D3 = 10−5 cm D4 = 10−5 cm

0 −4.424991842810755×10−2 4.424991842810755×10−2 −4.424991842810755×10−2 4.424991842810755×10−2

1 1.57876858921876×10−2 5.40683282654414×10−6 −1.578768589310954×10−2 −5.406834852347936×10−6

2 20189.38795547691 20189.38795547691 20189.38795547691 20189.38795547691

3 4.104796527084991×10−3 2.413725184267611×10−4 −4.104796525037468×10−3 −2.413725160359214×10−4

4 −2.947473221000326×10−3 2.947473221000326×10−3 −2.947473221000326×10−3 2.947473221000326×10−3

5 −1.817416554008738×10−3 2.062335646140603×10−5 1.81741655220565×10−3 −2.062335826776784×10−5

6 −63.78592414544445 −63.78592414544445 −63.78592414544445 −63.78592414544445

7 −2.467557291457782×10−3 −1.555384668326032×10−4 2.467557291799718×10−3 1.555384671863416×10−4

8 3.07300944321362×10−3 −3.07300944321362×10−3 3.07300944321362×10−3 −3.07300944321362×10−3

9 −1.556422642040572×10−3 5.247298500533006×10−5 1.556422643039743×10−3 −5.247298399725565×10−5

10 −385.2009674038089 −385.2009674038089 −385.2009674038089 −385.200967403809

11 −2.600024552646485×10−4 7.378270763189497×10−5 2.600024554055848×10−4 −7.378270748964422×10−5

12 −1.818382215511822×10−4 1.818382215511822×10−4 −1.818382215511822×10−4 1.818382215511822×10−4

13 4.506844218163286×10−4 −6.115724123437846×10−5 −4.506844219761083×10−4 6.115724107481854×10−5

14 55.60278639311861 55.60278639311861 55.60278639311861 55.60278639311861

15 3.710213603257118×10−4 −1.10878930476378×10−5 −3.710213603579178×10−4 1.108789301549602×10−5

16 −3.223080948135712×10−4 3.223080948135712×10−4 −3.223080948135712×10−4 3.223080948135712×10−4

17 1.182560483985171×10−4 3.004623224282604×10−5 −1.182560484631099×10−4 −3.004623230765092×10−5

18 18.83386356141041 18.83386356141041 18.83386356141041 18.83386356141041

19 −1.370788357518164×10−5 1.38000473541436×10−7 1.370788360996695×10−5 −1.380004387559051×10−7

20 6.371905486653597×10−5 −6.371905486653597×10−5 6.371905486653597×10−5 −6.371905486653597×10−5

21 −8.12996954732784×10−5 6.224477582157721×10−8 8.12996954717736×10−5 −6.224477732632099×10−8

22 −6.616896403654835 −6.616896403654835 −6.616896403654835 −6.616896403654835

23 −5.935334052843666×10−5 1.729810664202958×10−10 5.935334053128231×10−5 −1.729782206155512×10−10

24 0. 0. 0. 0.

Table 3.5: Cosine multipole terms A0, An in case “NSM COSY INFINITY DA” with specified perturbations D j of plate distances from the
origin.
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·

Order n D1 = 10−5 cm D2 = 10−5 cm D3 = 10−5 cm D4 = 10−5 cm

1 5.406833480936513×10−6 −1.578768589410862×10−2 −5.406834979737596×10−6 1.578768589111101×10−2

2 2.117816741216531×10−3 2.117816741216532×10−3 2.117816741216535×10−3 2.117816741216537×10−3

3 −2.413725186012523×10−4 4.104796524838491×10−3 2.413725162301022×10−4 −4.104796527209642×10−3

4 −6.241207228382077×10−7 6.241218293842069×10−7 −6.241207228369357×10−7 6.241218293831894×10−7

5 2.062335718565881×10−5 1.817416552817827×10−3 −2.062335763580684×10−5 −1.817416553342999×10−3

6 −1.496641666694401×10−3 −1.496641666694403×10−3 −1.496641666694403×10−3 −1.496641666694404×10−3

7 1.55538467170032×10−4 −2.467557291475427×10−3 −1.555384668614345×10−4 2.467557291807763×10−3

8 5.479028625297525×10−7 −5.479033093512959×10−7 5.479028625271038×10−7 −5.479033093486471×10−7

9 5.247298470503409×10−5 1.556422642722333×10−3 −5.247298431446527×10−5 −1.556422642361809×10−3

10 2.875084409755162×10−4 2.875084409755162×10−4 2.875084409755149×10−4 2.875084409755111×10−4

11 −7.378270740737561×10−5 −2.600024551827504×10−4 7.378270772107465×10−5 2.600024554916964×10−4

12 1.982877226920842×10−7 −1.982876996177626×10−7 1.982877226923698×10−7 −1.982876996180889×10−7

13 −6.115724112566527×10−5 −4.506844218671139×10−4 6.115724118582062×10−5 4.506844219272692×10−4

14 2.676013289590522×10−4 2.676013289590525×10−4 2.676013289590529×10−4 2.676013289590516×10−4

15 1.108789298159123×10−5 3.710213602890859×10−4 −1.108789308437229×10−5 −3.710213603918668×10−4

16 −1.716345429854064×10−7 1.716345655646772×10−7 −1.716345429848183×10−7 1.716345655641217×10−7

17 3.004623228456449×10−5 −1.18256048423242×10−4 −3.004623226770197×10−5 1.182560484401045×10−4

18 −4.786550271350386×10−14 −4.786548313818143×10−14 −4.786534788640852×10−14 −4.786507688191113×10−14

19 −1.380004736793519×10−7 −1.370788361010491×10−5 1.380004386181101×10−7 1.370788357504367×10−5

20 9.76581027479493×10−15 9.76589863347751×10−15 9.76565929472537×10−15 9.76649188717796×10−15

21 6.224477585051353×10−8 8.12996954718025×10−5 −6.224477729750432×10−8 −8.12996954732495×10−5

22 2.512482697969831×10−14 2.512441608739869×10−14 2.512405049788011×10−14 2.512476577073213×10−14

23 −1.72968350279657×10−10 −5.935334051856618×10−5 1.729909369015269×10−10 5.93533405411528×10−5

24 0. 0. 0. 0.

Table 3.6: Sine multipole terms Bn in case “NSM COSY INFINITY DA” with specified perturbations D j of plate distances from the origin.
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Figure 3.18: “SM Mathematica PDE”: multipole terms Mn,n versus reference radius Rref.

1. The apparent accuracy computed by the SC Toolbox. It is defined as the maximum of the

differences of (1) the differences w j+1−w j between successive finite polygon vertices and

(2) the integrals
� v j+1

v j f ′ (ζ )dζ between the respective prevertices.

2. Adaptations of C. Runge’s heuristic rule of a posteriori error estimation: “if the difference be-

tween two approximate solutions computed on a coarse mesh Th with mesh size h and refined

mesh Thref
with mesh size href (e.g., href = h/2)” becomes small, then both approximated

solutions uhref
and uh are probably close to the exact solution” [72, p. 31] and “also, the

quantity uh−uhref
can be viewed (in terms of modern terminology) as a certain a posteriori

error indicator” [91].

3. Relative differences between the approximations of multipole terms.

4. Difference plots between the approximated multipole expansions and the approximation of

the electrostatic potential in the SC Toolbox from the inverse of the conformal mapping object.

3.2.4.4.1 “SM Mathematica PDE”

Fig. 3.18 shows the multipole terms Mn,n, scaled to R = 4.5 cm, versus the reference radius Rref.

The relative difference between multipole terms Mn,n at Rref = 4.0 cm and Rref = 4.5 cm ranges
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Figure 3.19: Contour plot of the difference between the electrostatic potential ϕ obtained in (1)
“SM Mathematica PDE” as a multipole expansion up to order 24 and in (2) SM from the inverse of
the conformal mapping object f.

from ∼ 10−4% for M2,2 to ∼ 102% for M22,22.

Fig. 3.19 shows the difference between the potential ϕ obtained in (1) “SM Mathematica PDE”

and in (2) SM from the inverse of the conformal mapping object f.

3.2.4.4.2 “SM MATLAB Fourier”

Fig. 3.20 shows the convergence of multipole terms Mn,n, scaled to R = 4.5 cm, as a function of

error tolerance ε specified by a line of the form

o p t i o n s = scmapopt ( ’ T o l e r a n c e ’ , e p s i l o n ) ;

in the function initquad4. The relative difference between multipole terms Mn,n at ε = 10−15 and

ε = 10−16 ranges from ∼ 10−15% for M2,2 to ∼ 10−12% for M22,22.

Fig. 3.21 shows the multipole terms Mn,n, scaled to R = 4.5 cm, versus the reference radius Rref.

The relative difference between multipole terms Mn,n at Rref = 4.0 cm and Rref = 4.5 cm ranges

from ∼ 10−15% for M2,2 to ∼ 10−10% for M22,22.
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Figure 3.20: “SM MATLAB Fourier”: convergence of multipole terms Mn,n versus error tolerance ε .
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Figure 3.21: “SM MATLAB Fourier”: multipole terms Mn,n versus reference radius Rref.
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Figure 3.22: “SM MATLAB Fourier”: apparent accuracy E versus error tolerance ε .
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Figure 3.23: Contour plot of the difference between the electrostatic potential ϕ obtained in (1)
“SM MATLAB Fourier” as a multipole expansion up to order 24 and (2) SM from the inverse of the
conformal mapping object f.

The apparent accuracy in the case of ε = 10−16 is 6.40×10−14. Fig. 3.22 shows the resulting

apparent accuracy E versus the specified error tolerance ε .

Fig. 3.23 shows the difference between the electrostatic potential ϕ obtained in (1) “SM

MATLAB Fourier” and (2) SM from the inverse of the conformal mapping object f.
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Figure 3.24: “NSM MATLAB Fourier”: multipole terms Mn,n versus reference radius Rref.

3.2.4.4.3 “NSM MATLAB Fourier”

With the error tolerance of ε = 10−16, out of MATLAB releases R2009a, R2014b, R2016b, and

R2017a, the computations successfully completed only in releases R2016b and R2017a. Changing

the error tolerance ε in the function initquad7 resulted in aborted computation or very low apparent

accuracy.

Fig. 3.24 shows the multipole terms Mn,n, scaled to R = 4.5 cm, versus the reference radius Rref.

The relative difference between multipole terms Mn,n at Rref = 4.0 cm and Rref = 4.5 cm ranges

from ∼ 10−13% for M2,2 to ∼ 10−10% for M22,22.

The apparent accuracy in the case of ε = 10−16 is 8.07×10−11.

Fig. 3.25 shows the difference between the electrostatic potential ϕ obtained in (1) “NSM

MATLAB Fourier” and (2) NSM from the inverse of the conformal mapping object f.

3.2.4.4.4 “NSM Mathematica DA”

Fig. 3.26 shows the difference between the electrostatic potential ϕ obtained in (1) “NSM Mathe-

matica DA” and (2) NSM from the inverse of the conformal mapping object f.
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Figure 3.25: Contour plot of the difference between the electrostatic potential ϕ obtained in (1)
“NSM MATLAB Fourier” as a multipole expansion up to order 24 and (2) NSM from the inverse of
the conformal mapping object f.
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Figure 3.26: Contour plot of the difference between the electrostatic potential ϕ obtained in (1)
“NSM Mathematica DA” as a multipole expansion up to order 24 and in (2) NSM from the inverse
of the conformal mapping object f.
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Figure 3.27: Contour plot of the difference between the electrostatic potential ϕ obtained in (1)
“NSM COSY INFINITY DA” as a multipole expansion up to order 24 and in (2) NSM from the
inverse of the conformal mapping object f.

3.2.4.4.5 “NSM COSY INFINITY DA”

Fig. 3.27 shows the difference between the electrostatic potential ϕ obtained in (1) “NSM COSY

INFINITY DA” and (2) NSM from the inverse of the conformal mapping object f.

3.2.4.4.6 Relative Differences

Table 3.7 shows relative differences between (1) significant multipole terms Mn,n in the three cases

“SM Mathematica PDE”, “SM MATLAB Fourier”, “NSM Mathematica DA”, and “NSM MATLAB

Fourier” and (2) significant multipole terms Mn,n in the “NSM COSY INFINITY DA” case.

The significant difference between SM and NSM results may be explained by the modeling

error due to the approximation of the 2D geometry using the connecting rods in the NSM case.

We note the particularly small relative differences between the “NSM COSY INFINITY DA”

and “NSM MATLAB Fourier” cases. Heuristically, we suppose that the orders of the relative errors

of these methods do not exceed the orders of these relative differences.
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Order n NSM MATLAB Fourier NSM Mathematica DA SM MATLAB Fourier SM Mathematica PDE

2 −6.24134×10−6% −8.68782×10−6% 0.215825% 0.126631%
6 −0.000305752% −0.000805103% 85.4029% 55.9545%
10 −0.000286024% −0.000260003% −6.3095% −32.5625%
14 −0.00162332% −0.00125928% −10.7641% −49.6611%
18 0.00132445% 0.122749% 5.94797% −546.505%
22 −0.000617169% 13.1372% 7.53896% −105.855%

Table 3.7: Relative differences between (1) significant multipole terms Mn,n in cases “SM Mathematica PDE”, “SM MATLAB Fourier”,
“NSM Mathematica DA”, and “NSM MATLAB Fourier” and (2) significant multipole terms Mn,n in the “NSM COSY INFINITY DA” case.
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We also note that in “SM Mathematica PDE”, the Laplace equation was solved in Mathematica

with boundary conditions obtained from the conformal mapping object f.

3.2.4.4.7 Plate Distance Perturbations

In the NSM case, we used linear interpolation for perturbations of plate distances from the origin,

based on successful calculations in the SC Toolbox with small perturbations of plate distances.

In the process of obtaining the linear interpolation, we considered the effect on multipole terms

of various nonzero perturbations D j of distances of the plates from the origin.

Plate distance perturbations are applied to four copies of the electrostatic potential, where plate

voltage coefficients are V1 = 1, V2 = 0, V3 = 0, and V4 = 0 (i.e., V = (1,0,0,0)). At this stage of

the calculations, nominal plate voltage magnitude is not yet applied and is effectively 1 V.

For each plate number j, we attempted calculations in the SC Toolbox with about 20–40

different values of perturbation D j, about 6–8 of which completed successfully despite the crowding

phenomenon.

For the linear interpolation, we selected four sets of perturbed multipole terms data, namely,

calculated with perturbations D1 =−5.04×10−5 cm, D2 =−5×10−5 cm, D3 =−5.1×10−5 cm,

and D4 =−4.8×10−5 cm. These perturbation values were based on proximity to −5×10−5 cm –

one value of a suitable order of magnitude – and availability of data from successfully completed

calculations.

We considered finite difference approximations4A0/D j, 4An/D j, and4Bn/D j of the first

derivatives (FDAFDs) of multipole terms by and as functions of perturbations D j. Their behavior

may be placed in two groups:

1. FDAFDs have relatively small variances, typically within one order of magnitude. Linear

interpolation is mostly justified. See Fig. 3.28 for an example with 4An/D2. This group

comprises mostly the cosine sets and one sine set: 4A0/D1,4An/D1,4A0/D2,4A0/D2,

4An/D2,4A0/D3,4An/D3,4A0/D4,4An/D4, and4Bn/D2.
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Figure 3.28: Absolute values of finite difference approximations4An/D2 of the first derivatives
of cosine multipole terms An with respect to perturbations D2 in case “NSM COSY INFINITY
DA”. In many cases, plot markers denoting4An/D2 for lower magnitudes of D2 cover or are in
close proximity to plot markers higher magnitudes of D2. This indicates the validity of the linear
interpolation, with limitations shown by some disagreement in4An/D2 at orders n = 9 and n≥ 20.
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Figure 3.29: Absolute values of finite difference approximations4Bn/D2 of the first derivatives
of sine multipole terms Bn with respect to perturbations D2 in case “NSM COSY INFINITY DA”.
Some plot markers denoting4Bn/D2 for lower magnitudes of D2 cover or are in close proximity
to plot markers higher magnitudes of D2. Overall, the dependence of multipole terms Bn on D2
does not appear to be linear.
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2. FDAFDs have relatively high variances. The dependence of multipole terms on the D j does

not appear to be linear. See Fig. 3.29 for an example with4Bn/D2. This group comprises

three sine sets: 4Bn/D1,4Bn/D2, and4Bn/D3.

Linear interpolation results are relatively accurate for cosine multipole terms but should be consid-

ered with care for sine multipole terms.

We note that the theoretical values for sine multipole terms are zero if the cross-sectional

geometry has a reflection symmetry relative to the horizontal axis, that is, if D2 = D4. However,

in application of plate distance errors to the four copies of the electrostatic potential, the plate

distance errors value set is rotated as {D1,D2,D3,D3}, {D2,D3,D4,D1}, {D3,D4,D1,D2}, and

{D4,D1,D2,D3} to account for the subsequent rotation of the four copies of the electrostatic

potential. Thus, considering the rotations of the electrostatic potential, the sine multipole terms are

generally useful even if D2 = D4 in the unrotated cross-sectional geometry.

3.2.5 Main Field Discussion

We presented a method to calculate the main field of the Muon g-2 collaboration quadrupole. In this

context, we provided the theoretical framework; the method with several submethods; MATLAB,

Python, and Mathematica source code; calculations and their results; and an a posteriori error

analysis.

The use of conformal mapping methods for the calculation of the main field has the advantage

of an analytic, fully Maxwellian formula and allows rapid recalculations with adjustments to the

geometry and mispowered plates.

The submethods represent different approaches and their implementations to obtain the inverse

conformal mapping in order to calculate the multipole expansion of the electrostatic potential: (1)

taking the DA inverse of the conformal mapping or (2) solving an ODE (explicitly or implicitly)

to obtain the inverse conformal mapping from an analytic expression for the first derivative of the

conformal mapping. For the “COSY INFINITY DA” submethod, we developed a COSY INFINITY

program that uses the SC Toolbox to calculate the parameters of the conformal mapping from a
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rectangle to a polygonal representation of the cross-sectional geometry and then calculates the DA

inverse of the conformal mapping to obtain the multipole terms.

Apart from the geometrical approximation of the polygonal model, the error analysis indicates

that “COSY INFINITY DA” and “MATLAB Fourier” submethods are the most accurate compared

to the other considered submethods.

In the general case of mispowered plates or geometric asymmetries, we applied the common

practice of approximation of the geometry to obtain a simply-connected polygon. To minimize the

impact on the multipole terms, we performed the approximation by connecting the plates with the

rectangular enclosure in the middle of each plate’s back side.

It may be possible to obtain a method similar to the method presented with an analytic formula

for a conformal mapping from a canonical domain to a multiply-connected region. In that case, it

would no longer be necessary to approximate the cross section by a simply-connected polygon for

mispowered-plates calculations. See, e.g., [22] for the current state of the theory of conformal maps

to multiply-connected regions.

To improve the accuracy of the polygonal model, a script or a software program may be

developed to automatically generate the polygonal model data from a CAD drawing of the cross

section of the quadrupole.

Calculations in case of geometric asymmetries often fail in the SC Toolbox due to the crowd-

ing phenomenon [6]. To expand the functionality to geometric asymmetries, we considered an

adaptation of the cross ratios of the Delaunay triangulation (CRDT) algorithm, as described in

[30, 31, 7].

We implemented the geometric asymmetries functionality by treating plate distance errors as

perturbations and using linear interpolation based on geometric asymmetries calculations that were

successful in the SC Toolbox despite the crowding phenomenon.

This section presented a method for calculation of 2D main field of the Muon g-2 collaboration

quadrupole, including rapid recalculation capability for geometric asymmetries and mispowered

plates.
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3.3 Fringe Field

3.3.1 Coordinate System

To study the fringe field of the Muon g-2 collaboration quadrupole, we used a Cartesian laboratory

coordinate system based on a specific local Frenet–Serret frame with a horizontal x axis and a

vertical y axis in the transversal section and a z axis tangent to the curvilinear reference trajectory

coordinate line s. We approximated the internal geometry of the quadrupole by a z-invariant model,

considering the relatively large radius of curvature R0 = 7112 mm of the quadrupole. The reference

orbit is straight in this model, and, therefore, coordinates s and z are here practically equivalent. We

will use s and z interchangeably, depending on the context.

The origin of coordinate lines x and y is the intersection of the cross-sectional plane with

the reference trajectory. The origin of the coordinate line z is aligned with the exit edge of the

quadrupole element. Coordinates z > 0 are outside the quadrupole, and coordinates in the range

z < 0 are inside the quadrupole.

In the x–y plane, we will alternatively use the polar coordinate system with radial coordinate r

and angular coordinate θ . The following relations between (x,y,z) and (s,r,θ) apply: x = r cosθ ,

y = r sinθ , and z = s.

3.3.2 Multipole Terms

We begin the discussion with the Taylor–Fourier expansion of the potential ϕ [13, p. 50]

ϕ (r,θ ,s) =
+∞

∑
k=0

+∞

∑
l=0

Mk,l (s)cos
(
lθ +θk,l

)
rk. (3.4)

Furthermore, we compare it with the Fourier expansion

ϕ (r,θ ,s) =
a0 (r,s)

2
+

+∞

∑
l=0

al (r,s)cos(lθ +θl) .

We can assume the constant parts in these expansions to be zero, considering the gauge invariance

of the electrostatic potential.
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Multipole terms Mk,l (s) vanish for k < l and k = l +1, l +3, . . . in the general case. If the field

is s-independent, multipole terms Mk,l (s) vanish for all k 6= l [13, p. 52].

The fringe field is s-dependent, and, respectively, multipole terms Mk,l (s) for k> l do not entirely

vanish. To obtain multiple terms Mk,l (s) using Fourier analysis, an equivalent of considering the

Fourier modes at all radii r > 0 would be necessary. In practice, this approach presents challenges,

and a reasonable approximation is to perform the Fourier expansion at a finite set of radii.

For simplicity of notation, going forward, we omit the coordinate s, writing Mk,l and al (r)

instead of Mk,l (s) and al (r,s), respectively.

Thus, for a set of radii r j for j = 1,2, . . . ,N,

al
(
r j
)
=

+∞

∑
m=0

Ml+2m,lr
l+2m
j . (3.5)

An approximation of the terms Mk,l , where k = l, l +2, · · · , l +2(N−1), [57] is the solution of

the matrix equation
al (r1)

...

al (rN)

=


rl
1 · · · rl+2(N−1)

1
... . . . ...

rl
N · · · rl+2(N−1)

N




Ml,l
...

Ml+2(N−1),l

 .

The falloffs of the multipole strengths Ml,l (s) can be computed by solving this matrix equation

at a grid-point set of coordinates s. Along the coordinate line s, the gradient of the electrostatic

potential is the highest near the edge of the element. Accordingly, for computational efficiency, the

grid-point set should have a higher density near the edge of the element than elsewhere in the set.

This method, as described here, uses electrostatic potential data. However, the method can be

adapted to use electrostatic field data by taking the gradient or a partial derivative of the electrostatic

potential, e.g., ∂ϕ

∂ r , in the multipole and Fourier expansions [57].

3.3.3 STEP Files

In this method, we generate 3D model data from a polygonal model of the cross-sectional geometry

in the STEP file format (ISO 10303-242 [55]), and we cross-checked our resulting STEP format
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3D model data files by importing to CATIA, Autodesk Inventor, IDA-STEP (developed by LKSoft,

http://www.ida-step.net/), and STEP File Analyzer (developed by Robert Lipman, http:

//go.usa.gov/yccx).

We developed a software program called STEP File Generator (or stepfg). This program

produces 3D STEP files from polygonal models specified by vertices. Compared to performing this

process manually in CAD software, our software has workflow efficiency advantages. The resulting

STEP file can be used in many general 3D, including BEM (or FEM) solver, programs. In our case,

we feed the output file to COULOMB.

This software was implemented as a Mathematica notebook and as a Python script. The Python

script is listed in App. G.

3.3.4 STEP Model of the Quadrupole

For the purposes of calculating the multipole strength falloffs and the EFB, the length L of the

model representing the quadrupole is chosen to be sufficient to cover the fringe field falloff area but

as short as possible for computational efficiency. The STEP File Generator effectively extruded a

polygonal model of a 90◦ section of the full cross section, specified in the x–y plane, to span the

z >−L/2 half of the full model along the z axis, i.e., the range −50≤ z≤ 0 cm.

The following STEP File Generator input produces the STEP-formatted 3D part as shown in

Fig. 3.30.

[ [ [ [ 0 , 5 . 3 ] , [ 2 . 3 5 , 5 . 3 ] , [ 2 . 3 5 , 5 ] , [ 0 , 5 ] ] , [ [ 5 , 0 ] , [ 5 , 2 . 3 5 ] , [ 5 . 3 , 2 . 3 5 ] ,

[ 5 . 3 , 0 ] ] , [ [ 0 , 7 ] , [ 0 , 8 ] , [ 8 , 8 ] , [ 8 , 0 ] , [ 7 , 0 ] , [ 7 , 5 . 5 9 7 9 2 ] ,

[ 5 . 8 7 9 9 0 0 0 4 2 2 0 1 5 7 1 2 5 3 , 5 . 5 9 7 9 2 ] ,

[ 4 . 7759 37526 3759 83 , 4 .493 9574 84174 412 ] ,

[ 4 . 4939 57484 1744 12 , 4 .775 9375 26375 983 ] ,

[ 5 . 5 9 7 9 2 , 5 . 8 7 9 9 0 0 0 4 2 2 0 1 5 7 1 2 5 3 ] , [ 5 . 5 9 7 9 2 , 7 , 0 ] ] ] , [ 0 , 5 0 ] , 1 0 ]
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Figure 3.30: Input for the Muon g-2 collaboration quadrupole model: rendering of the resulting
STEP-formatted 3D part.

3.3.5 Grid-Point Set for Approximated Potential

We discretized concentrically in the radial direction with every 0.3cm in the range 1.8≤ r≤ 4.5cm,

considering that n-th Fourier modes of the potential are asymptotically equivalent to rn as r→ 0.

On the z axis, we discretized the range −50≤ z≤ 150 cm into a set of 605 points. As justified

above and as Fig. 3.31 shows, this is relatively dense near the edge of the quadrupole.

The 3D grid was obtained as combinations of the (x,y) and z coordinates from the respective

discretizations. Considering the cross-sectional symmetries, it sufficed to only include points on the

circles within an arc of central angle 45◦.
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Figure 3.31: Coordinate grid for calculation of Fourier modes of the electrostatic potential, with
605 grid points: z discretization size4z. The discretization size4z, as a function of z, was set in an
iterative discretization process by the mesh refinement function f (z) = 1/

(
1+9exp

(
−0.006z2

))
.

Initially,4z was set to 10 cm uniformly in the range −50≤ z≤ 150 cm. The grid simplexes were
then bisected until the condition4z(z)≤ f (z) was met.

3.3.6 Calculations in COULOMB

The full geometry of the model was reconstructed in COULOMB (see sec. 2.4.1) by specifying the

four-fold rotational symmetry in the cross section and the longitudinal reflection symmetry. Such

geometrical symmetries are also utilized by COULOMB’s BEM solver.

Calculations were performed as detailed above.

3.3.7 The Enge Function and the EFB

Applying a fast Fourier (FFT) transform to the electrostatic potential at grid points along circles at

z =−50cm, we obtained the multipole terms of the internal electrostatic potential of the quadrupole.

The multipole terms are listed in Table 3.8 (compare to multipole terms of the quadrupole calculated
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Order n Multipole Terms

1 0
2 20214.96881114685
3 0
4 −4.894473818198626×10−13

5 0
6 −116.75916539917267
7 0
8 1.3760505820154435×10−12

9 0
10 −360.85446229120816
11 0
12 3.767315759511883×10−13

13 0
14 49.42528231242991
15 0
16 −3.5694866918021975×10−12

17 0
18 20.0146160932168
19 0
20 1.8421872795880613×10−11

21 0
22 −7.123965949192845
23 0
24 −4.643530388208997×10−12

Table 3.8: Multipole terms Mn,n obtained from the 3D electrostatic potential data calculated in
COULOMB, using an FFT transform along the circle of the radius Rref = 3.6 cm at z = −50 cm,
scaled to R = 4.5 cm.

from the cross section using conformal maps, listed in sec. 3.2).

We obtained an approximation of the multipole strengths Mn,n (z) in the discretized range

−50≤ z≤ 150 cm using the multipole terms method as above. Because our approximation uses

the first several orders of the multipole expansions, it is necessary to minimize the effect of higher

orders. Therefore, we omitted the r > 3 cm part.

Fig. 3.32 shows the falloff of the multipole strength M2,2. The EFB is zEFB = 1.2195 cm.

Table 3.9 lists the Enge function coefficients fitted, using the Levenberg–Marquardt

Gauss–Newton method and the least-squares variance function, to the falloff of the multipole
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Figure 3.32: Falloff of the multipole strength M2,2, normalized to M2,2 = 1 well inside the element.
The origin of the z axis is aligned with the quadrupole edge. The vertical gridline denotes the EFB
zEFB = 1.2195 cm.

strength M2,2.

We produced plots of the Enge function and its 2nd and 4th derivatives, shown in Fig. 3.33,

using the FP command in the following COSY INFINITY [68] code. A set of such plots is useful

for visual analysis of an Enge function, including the Enge function’s asymmetry relative to the

intersection of the Enge function and its EFB gridline.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

VARIABLE A1 1 ; VARIABLE A2 1 ; VARIABLE A3 1 ;

VARIABLE A4 1 ; VARIABLE A5 1 ; VARIABLE A6 1 ;

OV 7 2 0 ;

A1 := 0.14389528689809122 ; A2 := 6 .85939850586528 ;

A3 := −1.8709693628345963 ; A4 := 0 .8015805270725156 ;

A5 := −0.4070432571162661 ; A6 := 0 .06588881367640281 ;
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Coefficient Value

a1 0.14389528689809122
a2 6.85939850586528
a3 −1.8709693628345963
a4 0.8015805270725156
a5 −0.4070432571162661
a6 0.06588881367640281

Table 3.9: Enge function coefficients for the falloff of the multipole strength M2,2.

FC 2 1 2 A1 A2 A3 A4 A5 A6 ;

FP 2 1 2 ’Muon g−2 Quad ’ 0 −10 ;

FP 2 1 2 ’Muon g−2 Quad ’ 2 −10 ;

FP 2 1 2 ’Muon g−2 Quad ’ 4 −10 ;

ENDPROCEDURE ;

RUN ;

END ;

3.3.8 Comparison with Wu Data

We performed the same calculations as in sec. 3.3.7 for electrostatic field data obtained using

Opera-3d’s FEM field solver [1] by Wanwei Wu (FNAL and University of Mississippi) [116].

The model, shown in Fig. 3.34, approximates the full cage, chamber, and plates geometry of the

Muon g-2 collaboration quadrupole. The plates span the polar angles 0◦ through 13◦, measured

from the center of curvature of the quadrupole, whereas the cage and the chamber have a longer

length and span polar angles −5◦ through 20◦. The field data comprises three parts: 3D data at

the downstream (−1◦ to 1◦) and upstream ends (12◦ to 14◦), and, considering the approximate

longitudinal translational symmetry of the main field, cross-sectional 2D data for the middle (1◦ to
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(a) Enge function.

(b) Second derivative of the Enge function (c) Fourth derivative of the Enge function.

Figure 3.33: Enge function and its 2nd and 4th derivatives, for the falloff of the multipole strength
M2,2, plotted using the FP command in COSY INFINITY.
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Figure 3.34: Muon g-2 collaboration high voltage quadrupole geometry used by Wu for field
data calculations using Opera-3d. (Adapted by permission from Wanwei Wu, 3D Electric Field
Map From Opera 3D, G-2 Experiment Document GM2-doc-4490, Muon g-2 Collaboration, Fermi
National Accelerator Laboratory, Batavia, IL, Oct. 2016.)

12◦). For the end parts, electrostatic field and potential data is provided for a grid-point set with

2 mm steps from 701.4 cm to 721.0 cm in radius r, 1 mm steps from −6.4 cm to 6.4 cm in vertical

coordinate z, and 0.01◦ steps in polar angle θ .

For each cross section in the downstream field data set, we interpolated the field data and applied

the multipole terms method as in secs. 3.3.2 and 3.3.7. Additionally, we fitted a nonlinear model

defined as the multipole expansion to the raw field data in each cross section and obtained similar

results.

Fig. 3.35 shows falloffs of 2nd order Fourier modes a2
(
r j
)

calculated at radii

r = 1.8,2.1,2.4,2.7,3.0 cm

from Wu’s field data. We note that the 2nd order Fourier modes a2 (r) alone fall off more quickly

than the true quadrupole strength M2,2, as Fig. 3.36 shows. This is because the second derivative of

M2,2 (s) is negative in the beginning of the fringe field and positive on the outside, impacting the

additional terms based on the second derivative of M2,2 in eq. 3.5.
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Figure 3.35: Falloffs of 2nd order Fourier modes a2
(
r j
)

calculated at radii r = 1.8, 2.1, 2.4, 2.7,
3.0 cm from Wu’s field data. Curves with larger magnitudes correspond to larger radii.

Figure 3.36: Fourier modes a2
(
r j
)

(dashed plot style) versus the true quadrupole strength M2,2
(solid red), all scaled to 1 well inside the quadrupole.
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Figure 3.37: The falloff of the multipole term M2,2 agrees well between calculations based on
Soltner–Valetov field data (zEFB = 1.2195 cm; solid blue) and field data by Wu (zEFB = 1.1233 cm;
dashed red).

Although the geometric models used for Soltner–Valetov and Wu field data calculations, in

COULOMB and Opera-3d, respectively, differ a little in that in Soltner–Valetov data, the exterior

cage is not considered and the element is assumed to be straight, there is a remarkable agreement in

the field falloffs obtained from these data sets, as Fig. 3.37 shows.

The EFBs zEFB = 1.2195 cm and zEFB = 1.1233 cm obtained from Soltner–Valetov and Wu

field data, respectively, agree quite well, and so do the tunes calculated based on them. The Muon

g-2 ring linear tunes calculated based on Soltner–Valetov field data and the respective results of this

section are listed in [71].

3.3.9 Fringe Field Conclusion

We obtained the quadrupole strength falloff and the EFB for the Muon g-2 collaboration

quadrupole by calculating Fourier modes of its electrostatic potential at a set of radii in the transver-

sal plane. The respective electrostatic potential data was obtained using COULOMB’s BEM field

solver by Helmut Soltner from a 3D model of the quadrupole.
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In the context of this study, we developed a code called stepfg to automatically generate a 3D

model in STEP file format from cross-sectional geometry represented by a polygon. We used this

code to produce a 3D model of the Muon g-2 collaboration quadrupole from its cross-sectional

geometry.

For a confirmatory comparison, we applied the same method of calculating multipole strengths

to the electrostatic field data obtained for the Muon g-2 collaboration quadrupole using Opera-3d’s

FEM field solver by Wanwei Wu. The field falloffs and the EFBs obtained from Soltner–Valetov

and Wu field data are in good agreement, validating the Muon g-2 ring tunes calculated based on

the quadrupole EFB calculated from Soltner–Valetov field data.
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CHAPTER 4

SYMPLECTIFICATION METHODS, AND SIMULTANEOUS SYMPLECTICITY AND
ENERGY CONSERVATION

4.1 Symplecticity and Symplectification of Transfer Maps

In classical physical systems with coordinates~q as the position and ~p as the conjugate momen-

tum, if the Hamiltonian H (~q,~p) exists, the equations of motion are [11, p. 22]

d
dt

 ~q

~p

= Ĵ

 ∂H/∂~q

∂H/∂~p

 .

The matrix Ĵ is defined as [11, p. 21]

Ĵ =

 0 In

−In 0

 , (4.1)

where In is an n×n identity matrix and n is the phase space dimension.

Such systems are subject to the condition of symplecticity, which we introduce here. Deviation

from symplecticity arises in calculations due to approximation and machine precision errors.

In COSY INFINITY, the phase space coordinates are grouped pair-wise as

z =



x

a = px
p0

y

b =
py
p0

l =−(t−t0)voγ

1+γ

δK =
K−K0

K0


,

where each canonical position q j = x, b, or l is immediately followed by the respective conjugate

momentum p j = a, b, or δK . That is, the coordinates are ordered as

z = (q1, p1 . . . ,qn, pn) ,
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where q j is the j-th canonical position and p j is the j-th conjugate momentum. We call coordinates

arranged in this order type I coordinates.

However, for the purpose of studying symplecticity, it is useful to reorder the coordinates as

z̃ = (q1, . . . ,qn, p1, . . . , pn) ,

which, for COSY INFINITY’s beamline coordinate system, yields

z̃ = (x,y, l,a,b,δK) .

We call coordinates arranged in this order type II coordinates.

A linear transfer matrix M is the Jacobian of the respective linear transfer map M [11, p. 37]:

M = Jac(M ) =

 ∂ ~Q/∂~q ∂ ~Q/∂~p

∂~P/∂~q ∂~P/∂~p

 ,

where~q = (q1, . . . ,qn) and ~Q = (Q1, . . . ,Qn) are the initial and final canonical position coordinates

and ~p = (p1, . . . , pn) and ~P = (P1, . . . ,Pn) are the initial and final conjugate momentum coordinates,

respectively.

Consider a linear transfer matrix M, which transforms the initial phase space coordinates vector

xi into final coordinates zf = Mzi.

The linear transfer matrix M is called symplectic if it satisfies the condition [11, p. 37]

M · Ĵ ·MT = Ĵ. (4.2)

There are two possibilities: either (1) the transfer matrix M is expressed in type II coordinates, and

the matrix Ĵ is as defined in eq. 4.1; or (2) the transfer matrix M is expressed in type I coordinates;

and the matrix Ĵ is transformed or defined accordingly.

In the general case of a nonlinear transfer map, symplecticity is defined by the same eq. 4.2,

where M is the Jacobian Jac(M ) of the transfer map M . A transfer map M with a symplectic

Jacobian Jac(M ) is called symplectic.
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4.1.1 Symplecticity Norm

We define the symplecticity function Ψ as

Ψ(M) = M · Ĵ ·Mt − Ĵ,

where M is the transfer map Jacobian.

Further, we consider a symplecticity norm for a transfer map Jacobian M as

‖Ψ(M)‖=
2n

∑
k,l=1

ABS [(Ψ(M))kl ] ,

where the summation reflects the standard matrix norm; and ABS is the max norm of the DA

coefficients, as in COSY INFINITY.

4.1.1.1 Weighted Symplecticity Norm

In practical applications, we are interested in performing symplectification for a relevant region E

in the phase space, somewhat larger than the beam envelope. Let this region be

E = ([−a1,a1] , [−a2,a2] , . . . , [−a2n,a2n]) .

In that case, we can use the weighted symplecticity norm

‖Ψ(M)‖=
2n

∑
k,l=1

ABS [(Ψ(M)◦W )kl ] ,

where W is the linear weight function that transforms each independent variable x j as

W
(
x j
)
= a−1

j x j.

4.1.2 Symplectification Methods

Symplectification methods render the transfer map, or the motion they represent, symplectic, while

attempting to make the changes as small as possible. Thus, whereas the exact transfer map is

generally not known, the result is a symplectic transfer map that is close to the exact transfer map.
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Symplecticity preserves phase space volume and is useful for approximate long-term tracking,

as it tends to preserve radial information and to produce realistic-looking tracking pictures [11, p.

295].

Commonly used symplectification methods include symplectification using generating functions

(including symplectification using Lie algebra methods), Gram–Schmidt symplectification, Miguel

Furman’s iterative symplectification, and Healy’s symplectification [36, pp. 5331–5352][11, 66].

Additionally, we considered symplectification by applying the method of gradient descent to the

weighted symplecticity norm introduced above.

4.1.2.1 Block-Wise Symplectification

If the transfer map Jacobian M is a block-diagonal matrix

M =



a1 b1

c1 d1 0

·

·

0 an bn

cn dn


in type I coordinates, the block-diagonal form should be preserved by symplectification. Further-

more, symplectification can be performed for the blocks independently, which is essential if the

nonsymplecticity of the transfer map is mostly in one phase space dimension, while being mostly

symplectic in other phase space dimensions. Thus, if high precision in some phase space dimensions

is already achieved, that precision is preserved.

If a transfer map represents stable motion, that is, if all tunes are real and mutually distinct, there

exists a basis where the linear part of its Jacobian has a block-diagonal form [11, Ch. 7]. Block

diagonalization may be performed by writing the Jacobian in its eigenvector basis, or by performing

step-wise block diagonalization.
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The symplecticity condition for a block-wise matrix is essentially that each block has a determi-

nant equal to one.

4.1.2.2 The Gram–Schmidt Method

The Gram–Schmidt symplectification method is useful for symplectification of the linear part of a

nonlinear transfer map Jacobian. Let ~m j be the j-th column of the transfer map Jacobian, that is

[36, p. 5350],

M =
(
~m1, . . . ,~m2n

)
,

where n is the phase space dimension.

The symplecticity condition can be expressed through the columns ~m j as〈
~mi,~m j

〉
= Ji j,

where 〈 , 〉 is the antisymmetric scalar 〈
~mi,~m j

〉
= ~miTJ~m j.

The symplectified transfer map Jacobian is given by the formula [36, pp. 5350–5351]

Ms =

 ~m1〈
~m1,~m2

〉1
2
,

~m2〈
~m1,~m2

〉1
2
, · · · , ~m2n−1〈

~m2n−1,~m2n
〉1

2
,

~m2n〈
~m2n−1,~m2n

〉1
2

 (4.3)

in type I coordinates.

In case the transfer map Jacobian can be brought to the block-diagonal form, the

Gram–Schmidt symplectification method performs symplectification independently for each block.

Assuming that the original transfer map Jacobian is almost symplectic, the distance between the

symplectified and the original transfer map Jacobians is almost zero.

The symplectified transfer map Jacobian preserves the block-diagonal structure, if one is

present, as well as any other symmetries, as the formula in eq. 4.3 only divides each element of the

matrix by the respective antisymmetric scalar. For a matrix, we define a symmetry as an element or

elements of the matrix being equal to zero.
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4.1.2.3 Miguel Furman’s Iterative Method

Miguel Furman’s iterative symplectification method [36, p. 5351][38] obtains an improved transfer

map Jacobian

M j+1 =

(
1− 1

2
E j

)
M j

in each iteration, where

E j =−M jĴMT
j Ĵ−1

and M0 is the original transfer map Jacobian.

In case of a block-diagonal transfer map Jacobian, each element is only multiplied by a respective

expression from E j, thus preserving the block-diagonal structure. Similarly, the method preserves

any other transfer map Jacobian symmetries.

4.1.2.4 The Gradient Descent Method

Let M0 be an approximate transfer map Jacobian. We can use the method of gradient descent to

converge to a local minimum Mlm of the weighted symplecticity norm F (M) = ‖Ψ(M)‖. Since the

transfer map Jacobian M0 approximates an exact, symplectic transfer map Jacobian Mexact, there is

at least one transfer map Jacobian in a small neighborhood of M0 that is symplectic and solves the

equation F (M) = 0.

Applying the gradient descent method to M0, each successive approximation M j+1 is obtained

from the previous approximation M j as

M j+1 = M j− ε j
∂F (M)

∂M

∣∣∣∣
M=Mj

, (4.4)

where ε j may be set using the line search algorithm or its modification.

Following the approach in [67, pp. 107–109], the matrices in eq. 4.4 can be viewed as vectors,

including the interpretation
∂F (M)

∂M
=

(
∂F (M)

∂M

)
k
=

=
∂F (vec M)

∂ (vec M)k
,
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where vec M is the vector representation of matrix M. Reverting back to matrix notation, we have

∂F (M)

∂M
=

(
∂F (M)

∂M

)
kl
=

=
∂F (M)

∂Mkl
.

The derivative ∂F (M)/∂M can be found using DA differentiation or, alternatively, using

numerical differentiation.

4.1.2.5 Symplectification by Generating Functions

Transfer maps are often symplectified using generating functions of canonical transformations. At

least one such generating function exists for a transfer map Jacobian. This method requires the

transfer map Jacobian to be invertible; however, symplectic transfer maps are always invertible, and

this method is generally applicable if the linear part of the transfer map Jacobian is approximately

symplectic.

The four generating functions F1 (~qi,~qf), F2 (~qi,~pf), F3 (~pi,~qf), and F4 (~pi,~pf) defined by [11, p.

164][10, p. 290]

(~pi,~pf) =
(
~∇~qi

F1,−~∇~qf
F1

)
,

(~pi,~qf) =
(
~∇~qi

F2,~∇~pf
F2

)
,

(~qi,~pf) =
(
−~∇~pi

F3,−~∇~qf
F3

)
,

(~qi,~qf) =
(
−~∇~pi

F4,~∇~pf
F4

)
,

where (~qi,~pi) are the initial and (~qf,~pf) are the final canonical coordinates, are traditionally intro-

duced in the theory of generating functions, and are commonly used to symplectify transfer maps.

Additional generating functions can be constructed, inter alia, as combinations of the generating

functions F1–F4.

To illustrate transfer map symplectification using generating functions, consider a transfer map

M , for which the generating function F2 exists.
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Let Q and P be the position and momentum parts of the symplectified version of the transfer

map M , respectively, and Iq and Ip the position and momentum parts of the identity map.

Then [11, p. 165][10, p. 292] ~pi

~qf

=

 Ip

Q

◦
 P

Iq


−1 ~pf

~qi

 .

At the same time,  ~pi

~qf

=

 ~∇~qi
F2 (~qi,~pf)

~∇~pf
F2 (~qi,~pf)

 ,

hence  Ip

Q

◦
 P

Iq


−1 ~pf

~qi

=

 ~∇~qi
F2 (~qi,~pf)

~∇~pf
F2 (~qi,~pf)

 . (4.5)

The symplectification of the transfer map M is obtained by solving eq. 4.5 for Ip

Q

◦
 P

Iq


−1

,

and further for Q and P [11, p. 165].

Alternatively to symplectifying the transfer map, a fixed-point iteration or a Newton iteration

[11, p. 293] may be used to find the final canonical coordinates (~qf,~pf) that correspond to the initial

canonical coordinates(~qi,~pi) and one of the generating functions, as in COSY INFINITY’s tracking

procedure TR [12, pp. 41–42]. The initial coordinates (~qi,~pi) pushed by the non-symplectified

transfer map should be used as the initial guess in the iterative method.

As shown in [33], the EXPO (Extended Poincaré) generating function provides an optimal

symplectification by minimizing Hofer’s metric, which is an “essentially unique intrinsic bi-invariant

Finsler metric for compactly supported Hamiltonian symplectic maps” [33, p. 114302-1]. Hofer’s

metric is defined as the distance

ρ (M ,N ) = inf
φ0=M ,φ1=N

� 1

0
‖Ht‖dt
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between the approximate transfer map M and its symplectification N , where the Ht are the

Hamiltonians generating the smooth paths {φt}, t ∈ [0,1] in Hamc
(
R2n

)
from φ0 =M to φ1 =N ;

and ‖Ht‖ = supHt (z)− infHt (z), z ∈ R2n is the oscillation norm [33, p. 114302-2]. EXPO

symplectification is usually the preferred symplectification method in COSY INFINITY.

4.2 Simultaneous Symplecticity and Energy Conservation

4.2.1 Feasibility of Simultaneous Symplecticity and Energy Conservation

For some time, it was an established opinion that it is not possible for tracking codes to simultane-

ously enforce symplecticity and energy conservation. This may be traced to [117], which stated that

approximate symplectic algorithms cannot conserve energy for nonintegrable systems:

Let H be a Hamiltonian which has no other conserved quantities (in a given class

K , for example analytic functions) other than functions of H. That is, if {F,H}= 0,

then F (z) = F0 (H (z)) for a function F0. Let Φ4t be an algorithm which is defined for

small4t and is smooth. If this algorithm is symplectic and conserves H exactly, then

it is the time advance map for the exact Hamiltonian system up to a reparametrization

of time. In other words, approximate symplectic algorithms cannot preserve energy for

nonintegrable systems.

Subsequently, it was shown [81, pp. 142–143][75, pp. 177–179][58] that approximate symplectic

algorithms with variable time steps can preserve energy.

As an alternative that can be implemented with minor changes to an existing transfer

map–based tracking code, we propose that simultaneous symplectification and energy correc-

tion can be applied to an already computed one-turn transfer map. This can be done using an

iterative algorithm with alternating symplectification and energy correction steps. An algorithm

acting on a one-turn transfer map is defined for a specific, relatively large time ∆t = T , where T

is the revolution period, and is not defined for times ∆t < T . Thus, the statement from [117] does
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not apply to such an algorithm up to the precision to which the iterative correction schemes are

executed.

4.2.2 Concept of Iterative Symplectification and Energy Correction

Due to finite computation order and machine precision errors, the transfer map M computed in

COSY INFINITY, while order-by-order symplectic up to machine precision, slightly differs from the

respective exact transfer map Mexact and is generally not exactly symplectic.

Suppose, for the sake of argument, that the computed transfer map M slightly deviates from

both symplecticity and energy conservation.

DA variables can be viewed as representations of Taylor expansions. Lagrange’s form of the

remainder of the multivariable Taylor series gives the truncation error a DA variable of computation

order n as

∑
|β |=n+1

Rβ (x)(x− y)β ,

with the uniform estimate ∣∣∣Rβ (x)
∣∣∣≤ 1

β !
max
|β |=n+1

sup
y∈B

∣∣∣Dβ f (y)
∣∣∣∀x ∈ B,

where B is a closed ball, the function f approximated by the DA variable is of differentiability class

Cn+1 in B, and β is the multi-index defined by conventions xα = ∏
v
j=1 x

α j
j , α! = ∏

v
j=1 α j!, and

|α|= ∑
v
j=1 α j.

Thus, the transfer map M is approximately symplectic and energy conserving, and it is located

in a small neighborhood of the exact symplectic and energy-conserving transfer map Mexact. As

the exact transfer map Mexact is generally unknown, a good symplectification or energy correction

method will minimize the distance d (A,M ) or d (B,M ) between the approximate transfer map

M and the set A of all symplectic maps or the set B of all energy-conserving maps, respectively.

Same applies to symplectification or energy correction that acts on the final coordinates zf = M (zi)

instead of the transfer map M itself.
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If an iterative method z j+1 = T
(
z j
)

in a metric space is contracting in the sense that, for all

j ∈ N,

d
(

T 2 (z j+1
)
,T
(
z j
))
≤ kd

(
T
(
z j+1

)
,z j
)
, (4.6)

where k < 1, then, utilizing parts of the classic proof [80, pp. 68–69] of the Banach fixed-point

theorem, z j a Cauchy sequence and converges to a fixed point zfp.

An iterative symplectification method tends to converge to a fixed point zs near the initial point

z0 in steps with decreasing sizes. With some care, we can assume the iterative symplectification

method to be contracting in the sense of eq. 4.6. The same applies to an iterative energy correction

method.

Consider iterative symplectification and energy correction methods z j+1 = Ts
(
z j
)

and z j+1 =

Tec
(
z j
)
, respectively. Because symplectification and energy correction methods should achieve their

objectives while minimizing other effects, we assume the symplectification and energy conservation

methods to be effective in the sense that

d
(
(Tec ◦Ts)

2 (z j+1
)
,(Tec ◦Ts)

(
z j
))
≤ k̃d

(
(Tec ◦Ts)

(
z j+1

)
,z j
)

for some k̃ < 1.

In that case, the combined iterative method z j+1 = (Tec ◦Ts)
(
z j
)

with alternating application

of Ts and Tec converges to a fixed point zecs. Unless it happens that Ts (zecs) = T−1
ec (zecs) but

Ts (zecs) 6= zecs, which is unlikely, we have Ts (zecs) = zecs, and the combined iterative method

performs simultaneous symplectification and energy correction.

We note that, having made a number of assumptions, we only demonstrated that the simultaneous

symplectification and energy correction method is likely to work and not that it would definitely

work in all cases. However, as we will show below, we can achieve simultaneous symplecticity and

energy conservation in COSY INFINITY without relying on these assumptions.
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4.2.3 Energy Conservation in COSY INFINITY

The Hamiltonian of a relativistic charged particle is

H = c
√

m2c2 +(P−qA)2 +qϕ =

= E +qϕ,

where m is the mass, P is the canonical momentum, q is the charge, and E is the relativistic energy

of the particle. A is the magnetic vector potential, and ϕ is the electric scalar potential.

In COSY INFINITY’s beamline coordinate system, the relativistic energy of a charged particle is

E = mc2 +mc2
η0 (1+δK)−qϕ,

where η0 = K0/mc2, δK is the particle’s relative kinetic energy offset coordinate

δK = (K−K0)/K0 (in zero electrostatic potential), and K0 is the reference kinetic energy.

Hence, the Hamiltonian is expressed simply as

H = mc2 +mc2
η0 (1+δK) ,

and

Φ(δK) =
∣∣∣δK−δ

0
K

∣∣∣
may be used as the energy conservation measure.

To enforce energy conservation in COSY INFINITY, as well as in our in-house eighth order

Runge–Kutta–Verner tracking code MSURK89 (see sec. 5.6), which uses COSY INFINITY’s

beamline coordinate system, it is sufficient to perform calculations only in the x–a and y–b planes,

without calculations in the l–δK plane. This conserves energy during both transfer map integration

and tracking, with Φ(δK) = 0. Tracking in the l–δK plane is not necessary if one wishes to enforce

energy conservation when tracking an energy-conserving lattice.

4.3 Conclusion

We introduced the concept of symplecticity, described several symplectification methods, and

identified the role of symplecticity in long-term tracking.
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Whereas there was an established opinion that approximate symplectic algorithms cannot

conserve energy, we cited the possibility of that with variable time steps and suggested that

enforcing symplecticity and energy conservation on a one-turn map is an alternative. In particular,

an iterative algorithm with alternating symplectification and energy correction steps can be used.

In COSY INFINITY and MSURK89, energy conservation is equivalent to the δK coordinate

being constant. Thus, if necessary, energy conservation may be achieved by performing calculations

in the x–a and y–b planes but not in the l–δK plane. This conserves energy both at transfer map

integration time and during the transfer map tracking. For simultaneous energy conservation and

symplecticity, it is then sufficient only to perform symplectification.

In case an RF cavity is used for energy averaging, calculations in the l–δK plane are necessary to

simulate the off-energy effects; however, energy errors are also subject to the RF energy averaging.
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CHAPTER 5

ORBITAL TRACKING USING COSY INFINITY AND A CONVENTIONAL
RUNGE–KUTTA INTEGRATOR

5.1 Introduction

Storage rings for sub-ppm measurement of EDM and anomalous MDM present a new frontier

in tracking code accuracy requirements [77, 51, 65].

In [77], considering that many tracking codes ignore or inaccurately account for nonlinear

effects, Metodiev et al. proposed to benchmark tracking code accuracy by tracking a homogeneous

magnetic dipole and an electrostatic cylindrical deflector.

Particle orbits in electrostatic spherical deflectors and homogeneous magnetic dipoles are

known in analytic form. In these cases, except for relativistic motion through electrostatic spherical

deflectors, the orbital transfer map is identity, that is, particles return to the same position after each

turn.

Tracking particles through electrostatic spherical deflectors and homogeneous magnetic dipoles

is a simple benchmark for tracking code integrators and particle optical element representations.

Despite the simplicity, this benchmark is effective in assessing tracking code limitations, which

already become apparent at this level of complexity.

Here, we will perform this benchmark for COSY INFINITY and MSURK89. MSURK89 is an

in-house eighth order Runge–Kutta–Verner tracking code we developed in the context of this study.

Furthermore, we will describe and perform the direct computation of the DA transfer map of

an electrostatic spherical deflector in a laboratory coordinate system (LCS) using simple ODEs

and Kepler’s theory. We will compare the results with transfer maps of the electrostatic spherical

deflector obtained using the built-in elements of COSY INFINITY and GIOS [114].

Finally, we will use MSURK89 and COSY INFINITY to analyze, model, and track a variant [78]

of the Proton EDM Long Spin Coherence Time (LSCT) lattice [3].
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5.2 Bending Elements

5.2.1 Homogeneous Magnetic Dipole

A homogeneous magnetic dipole is defined as a particle optical element with homogeneous magnetic

field By in the vertical y direction.

The reference particle trajectory is in the horizontal x–s plane, and the reference particle moves

along an arc of radius

R0 =
p

ZeBy
,

where p is the particle momentum and Z is the particle charge in terms of the elementary charge

e. Because the magnetic rigidity χm = p
Ze and the curvature h = 1/R0 of the reference orbit often

have a precedence as known or specified quantities in lattice design, including in COSY INFINITY,

we express the magnetic field as (
Bx,By,Bz

)
= (0,hχm,0) .

5.2.2 Electrostatic Spherical Deflector

We consider an electrostatic spherical deflector with inner and outer shells of radii R1 and R2,

respectively, such that the reference particle orbit is a circular orbit of radius R0. For the relevance

of the analysis, we assume that the motion, including the reference trajectory, is inside the deflector

(at R1 < r < R2).

A particle with beamline coordinates (x,y) is at radius

r =
√
(R0 + x)2 + y2.

By Gauss’s law, considering the spherical symmetry, the electrostatic field of the electrostatic

deflector has the magnitude

E (r) =
Q

4πε0r2 ,

where Q is the charge of the deflector’s inner shell, and is aligned with the radius vector. For the

direction of particle beam deflection to agree with the electrostatic spherical deflector’s geometry,
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charges Q and Ze must be of the opposite sign, where Ze is the charge of a particle in the particle

beam.

Hence, we obtain the electrostatic potential inside the spherical deflector as

ϕ (r) =
Q

4πε0r
+ const.

The voltage of the electrostatic spherical deflector is

|∆V |= |ϕ (R2)−ϕ (R1)|=

=
|Q|

4πε0

R2−R1
R1R2

.

The electrostatic field and potential can be expressed in terms of the voltage using

|Q|
4πε0

= |∆V | R1R2
R2−R1

.

Let E0 be the radial component Er (R0) of the electrostatic field at radius r = R0, which is, by

Newton’s second law, E0 =−hχe, where χe is the electric rigidity χe =
pv
Ze .

The radial component of the electrostatic field at any radius r < RS can then be expressed as

Er (r) = E0
R2

0
r2 . (5.1)

In vector form, the electrostatic field is(
Ex,Ey,Es

)
= E0

R2
0

R2

(
R0 + x

R
,

y
R
,0
)
.

Following the convention of electrostatic potential as zero at the reference orbit, the electrostatic

potential is

ϕ (r) =
Q

4πε0

(
1
r
− 1

R0

)
=

= E0R2
0

(
1
r
− 1

R0

)
.

5.2.2.1 Representations in COSY INFINITY

There is a specialized particle optical element ESP in COSY INFINITY to represent an electrostatic

spherical deflector. For small beam envelopes, the inhomogeneous combined function electrostatic

deflector element ES can be alternatively used as an approximation.
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The inhomogeneity indices in ES are specified by a 5-vector n, defined by the following

expansion of electrostatic field E (x) in the x–s plane [12, p. 19]:

E (x) = E0

(
1−

5

∑
k=1

ni

(
x

R0

)k
)
+O

(
x6
)
, (5.2)

where E0 is electrostatic field at the reference orbit and R0 is the curvature radius. From eq. 5.1, we

obtain for the electrostatic spherical deflector the expansion

E (x) = E0

(
1−

5

∑
k=1

(−1)k+1 (k+1)
(

x
R0

)k
)
+O

(
x6
)
,

resulting in the inhomogeneity coefficients

n = (2,−3,4,−5,6) .

For comparison, the inhomogeneity coefficients of an electric cylindrical deflector can be

similarly obtained as n = (1,−1,1,−1,1) [12, p. 19].

Additionally, COSY INFINITY has the inhomogeneous combined function electrostatic element

EC. The EC element differs from ES by taking the inhomogeneity indices as a vector of any dimension

and using the resulting expansion of electrostatic field E (x) to the respective order.

5.3 Off-Midplane Terms of the Potential

In many cases, the electrostatic potential ϕ is known in the midplane, e.g., as an expansion

ϕ (x) |y=0 arising from eq. 5.2. Then, ϕ|y=0 may be used as a boundary condition for the Laplace

equation to obtain off-midplane terms of the electrostatic potential.

To that end, we assert the general Laplace equation

4ϕ = a1
∂

∂x

(
a2

∂ϕ

∂x

)
+b1

∂

∂x

(
b2

∂ϕ

∂x

)
+ c1

∂

∂x

(
c2

∂ϕ

∂x

)
= 0

in the fixed-point form [70] as

ϕ = F (ϕ) = ϕ|y=0 +

� y

0

1
b2

[(
b2

∂ϕ

∂y

)∣∣∣∣
y=0

]
dy−

−
� y

0

1
b2

� y

0

(
a1
b1

∂

∂x

(
a2

∂ϕ

∂x

)
+

c1
b1

∂

∂ z

(
c2

∂ϕ

∂ z

))
dydy, (5.3)
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where ai, bi, and ci are functions of x, y, and z determined by the coordinate system.

The boundary conditions ϕ|y=0 and
(

b2
∂ϕ

∂y

)∣∣∣
y=0

are set as DA values.

Eq. 5.3 satisfies the DA fixed-point theorem, and the sequence ϕk+1 = F (ϕk), for k = 0,1, . . .,

converges to a fixed point ϕ – the electrostatic potential with off-midplane terms – in a finite number

of steps [70][11, pp. 96–100].

5.4 Equations of Motion

Unless otherwise stated, we use equations of motion in COSY INFINITY’s beamline coordinate

system. Here, we will list the relativistic and non-relativistic equations of motion in this beamline

coordinate system.

The standard distribution of COSY INFINITY includes COSY.FOX, its advanced particle beam

dynamics simulation package, which uses relativistic equations of motion. In the context of

this study, we developed a non-relativistic version COSYNR.FOX of COSY.FOX. In MSURK89, we

implemented both relativistic and non-relativistic equations of motion, and the user can switch

between them by toggling the variable RELATIVISTIC.

As and where applicable, we use appropriate relativistic or non-relativistic expressions for

physical quantities such as kinetic energy and momentum.

Quantity name Relativistic Non-relativistic

Kinetic energy K = (γ−1)mc2 K = p2
2m

Momentum p = γmv p = mv

Let h be the curvature of the reference orbit, η = [K0 (1+δK)−ZeV ]/mc2 a relativistic measure,

p the particle momentum, and ζ = ps/p0. We denote electric and magnetic rigidities by χe = pv/Ze

and χm = p/Ze, respectively. The index 0 refers to the reference particle. We use the convention of

the electrostatic potential V as zero for the reference particle. Hence, η0 = K0/mc2.

The relativistic equations of motion are as follows [69, p. 1].
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x′ = a(1+hx) 1
ζ
, a′ = (1+hx)

(
1+η

1+η0
1
ζ

Ex
χe0
− By

χm0
+b 1

ζ

Bs
χm0

)
+hζ ,

y′ = b(1+hx) 1
ζ
, b′ = (1+hx)

(
1+η

1+η0
1
ζ

Ey
χe0

+ Bx
χm0
−a 1

ζ

Bs
χm0

)
,

δ ′K = 0, l′ =− γ

1+γ

[
(1+hx) 1+η

1+η0
1
ζ
−1
]
.

Expressing the magnitude p of momentum through the vector components and dividing by p0,

we obtain

ζ =
ps
p0

=

√(
p
p0

)2
−
(

px
p0

)2
−
(

py

p0

)2
=

√(
p
p0

)2
−a2−b2.

Since E = (1+η)mc2, we have E2 =
(

1+2η +η2
)

m2c4, and, thus, p = mc
√

η (η +2).

Therefore,

ζ =
ps
p0

=

√
η (η +2)

η0 (η0 +2)
−a2−b2. (5.4)

In the non-relativistic limit, we have η → 0, and

lim
γ→1

η +α

η0 +α
= 1

for any constant α 6= 0.

Thus, the non-relativistic limit of 5.4 is

ζ =
ps
p0

=

√
η

η0
−a2−b2. (5.5)

Similarly, the non-relativistic version of the above relativistic equations of motion is as follows,

with non-relativistic ζ from eq. 5.5.

x′ = a(1+hx) 1
ζ
, a′ = (1+hx)

(
1
ζ

Ex
χe0
− By

χm0
+b 1

ζ

Bs
χm0

)
+hζ ,

y′ = b(1+hx) 1
ζ
, b′ = (1+hx)

(
1
ζ

Ey
χe0

+ Bx
χm0
−a 1

ζ

Bs
χm0

)
,

δ ′K = 0, l′ =−1
2

[
(1+hx) 1

ζ
−1
]
.

5.5 Tracking in COSY INFINITY

In COSY INFINITY, the equations of motion are integrated, once for each particle optical element

comprising the lattice, in phase space represented as a vector space (nDv)
v over a differential
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algebra nDv [11, pp. 86–100], where n is the computation order and v is the number of phase space

coordinates. The result is a transfer map M that expresses the final coordinates zf of any ray as

zf = M (zi), where zi are the initial coordinates [11, Chs. 4–5].

The phase space dimension is set by the command OV, where the phase space dimension

argument N specifies that motions (x–a,y–b, l–δK) j for 1≤ j ≤ N should be computed [12, p. 9].

The equation zf = M (zi) can be viewed as a multi-variable Taylor expansion of vector zf to the

order n in terms of vector zi. Respectively, the accuracy of computation depends on the computation

order n.

The procedure TR performs tracking, in essence, by repetitively applying the transfer map to a

set of particle rays. Every specified number NR of turns up to the specified total number N of turns,

TR draws projections of ray positions on the specified phase plane [12, p. 41]. There are several

symplectification methods in COSY INFINITY, with a choice of the four conventional generating

functions F1, F2, F3, F4 [11, pp. 37–59] and the EXPO generating function [102]. Here, we will

use the EXPO generating function, which results in the most accurate symplectification.

5.6 MSURK89 Tracking Code

We developed an in-house tracking code, MSURK89, which integrates the equations of motion

using an 8th order Runge–Kutta–Verner method (“RK89”) [111] in the phase space represented as a

vector space Rv over R, where v is the number of phase space coordinates.

As in COSY INFINITY, the phase space dimension in MSURK89 comprises three dimensions:

namely, the x–a, y–b, and l–δK planes.

In MSURK89, particle trajectories are individually integrated (as a vector, for computational

efficiency) in every tracking turn. This has accuracy advantages, especially for rays far from the

reference orbit, but has the disadvantage of a substantially slower tracking speed.

Tracking is performed using the MITR procedure, which is analogous to COSY INFINITY’s

tracking procedure TR, by repetitively applying one-turn integration of the equations of motion to a

set of particle rays. Procedure MITR produces phase space plots, with particle ray coordinates drawn
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every specified number of turns.

Symplectification functionality was not implemented in MSURK89.

Particle rays are set by calling the procedure SETRAY, an analogue of COSY INFINITY’s ray-

setting procedure SR.

5.6.1 Particle Optical Elements

We implemented several particle optical elements in MSURK89, including a homogeneous magnetic

dipole MIDI, an electrostatic spherical deflector MIESP, and a drift MIDL, analogous to COSY

INFINITY’s elements DI, ESP, and DL, respectively. We also implemented the command MITA – a

tilt of momentum, analogous to COSY INFINITY’s tilt of the optic axis TA.

5.6.1.1 Homogeneous Magnetic Dipole MIDI

A homogeneous magnetic dipole in MSURK89 is computed using the command “MIDIR0 α”, where

radius R0 is in meters and angle α is in degrees.

The path length of the reference particle through the element is4s =
(

2π

360◦
)

R0α .

The interior electrostatic field and potential are
(
Ex,Ey,Es

)
= (0,0,0) and ϕ = 0, respectively.

The interior magnetic field is (
Bx,By,Bs

)
= (0,hχm,0) .

5.6.1.2 Electrostatic Spherical Deflector MIESP

An electrostatic deflector in MSURK89 is computed using the command “MIESPR0 α”, where radius

R0 is in meters and angle α is in degrees.

The path length of the reference particle through the element is4s =
(

2π

360◦
)

R0α .

The interior electrostatic field at point (x,y,s) is

(
Ex,Ey,Es

)
=

(
R0 + x

R0
E,

y
R0

E,0
)
,
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where E = E0R2
0/r2 is the magnitude of the electrostatic field and

r =
√
(R0 + x)2 + y2

is the distance from the center of the electrostatic spherical deflector. The interior electrostatic

potential is

ϕ = E0R2
0

(
1
r
− 1

R0

)
,

and the interior magnetic field is
(
Bx,By,Bs

)
= (0,0,0) .

For any angle α (corresponding to a sector of the full geometry of an electrostatic spherical

deflector), the electrostatic field within a MIESP element is the same as it would be if the angle were

360◦ (full electrostatic spherical deflector geometry). Of course, an actual standalone sector of an

electrostatic sphere deflector, e.g., in free space, would have a different proper electrostatic field. In

that sense, if α/360◦ is not an integer, MIESP is an artificial element, unless (1) a system of MIESP

elements of the same radius and the total angle 360◦ or (2) some method of particle ray injection

and extraction is assumed or implemented.

5.6.1.3 Drift MIDL

A drift in MSURK89 is computed using the command “MIDLL”, where length L is in meters.

The path length of the reference particle through the element is4s = L.

The interior electrostatic field, electrostatic potential, and magnetic field of the element are all

zero: E = 0, ϕ = 0, and B = 0, respectively.

5.6.1.4 Momentum Tilt MITA

In MSURK89, the momentum can be tilted using the command “MITAαx αy”, by angle −αx in the

x direction and angle −αy in the y direction, specified in degrees.

A positive angle results in momentum tilt in the negative direction of the respective transversal

axis in MITA. This is consistent with a positive angle resulting in optic axis tilt in the positive

direction of the respective transversal axis by COSY INFINITY’s axis tilt procedure TA.
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The coordinate transformation equations are

a′ = (a cos(αx)−ζ sin(αx))cos
(
αy
)
+b sin

(
αy
)
,

b′ = b cos
(
αy
)
−
√

ζ 2 +a2 sin
(
αy
)
,

where ζ = ps/p0, ps is the s component of momentum p, and p0 is the momentum of the reference

particle.

5.6.2 Integration Step Size

5.6.2.1 Automatic Step-Size Adjustment

The integrator RK89 in MSURK89 has an automatic step-size adjustment functionality. In case the

integration interval [s1,s2] is known ab initio, RK89 trivially sets the length of the last integration

sub-interval to end the integration at exactly s2.

However, when s2 is determined in the course of integration by reaching a boundary, e.g., the

particle trajectory reaching an edge of the particle optical element, an iterative process is used to set

the length of the last integration sub-interval to ensure the integration ends at that boundary.

In a lattice consisting of 16 particle optical elements as 22.5◦ sectors of the Proton EDM LSCT

lattice from [78] (see below), the reference orbit was ab initio unknown, and, therefore, the length of

the integration interval was ab initio unknown. For that case, we implemented a “G-stop”1 function

TF that returns the distance to the nearest edge of the element. When the TF value becomes smaller

than the current integration step size, the step size is optimized to stop the integration precisely at

the element boundary.

5.6.2.2 Initial Step Size

Decreasing the integration step size improves numerical integration accuracy until this effect is

overtaken by the loss of significance in floating-point operations when step size becomes excessively

1The term “G-stop” for such functions traces back to JPL’s numerical integrator program DVDQ

[61], written in FORTRAN IV and V.
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Figure 5.1: RK89 numerical integration error ε versus initial step size h, in a 100-turn integration
of a radius R = 10.1 m circular orbit inside an electrostatic spherical deflector. Non-relativistic
equations of motion were used. The dashed red line of slope 8.14 is a least-squares fit to the linear
pattern. The gridlines separate the linear regime from the part dominated by the floating-point loss
of significance, corresponding to initial step size h' 1 m.

small.

Whether or not there is an automatic step-size adjustment, it is desirable to study the effect of

fixed or initial step size on calculation accuracy, as applicable. It is good practice to optimize step

size using an integrand that is reasonably typical for the category of problems to be solved.

Non-relativistic Kepler orbits in a gravitational or electrostatic field, as well as circular orbits in

a magnetic field, are closed and analytically known trajectories and are useful for testing integrators

and calibrating integrator step sizes.

To calibrate the initial step size in RK89, we integrated a circular Kepler orbit of radius

R = 10.1 m (as ∼ 10 m is a quite realistic radius of curvature for a lattice; the initial particle

position was (x,a,y,b, l,δK)i = (0.1 m,0,0,0,0,0) with the reference orbit at R0 = 10 m), through

a spherical electrostatic deflector for 100 full turns. The distance

ε = ‖(x,a,y,b, l,δK)f− (x,a,y,b, l,δK)i‖2 (5.6)

between the initial and final positions in the six phase space coordinates was used as the error

function. Calculation results for a range of initial step sizes are shown in Fig. 5.1 and indicate a
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Figure 5.2: RK4 numerical integration error ε versus initial step size h, in a 100-turn integration
of a radius R = 10.1 m circular orbit inside an electrostatic spherical deflector. Non-relativistic
equations of motion were used. The dashed red line of slope 4.07 is a least-squares fit to the linear
pattern. The gridlines separate the linear regime from the part dominated by the floating-point loss
of significance, corresponding to step size h' 10−2 m.

reasonable initial step size of h ' 1 m. For comparison, see the results in Fig. 5.2 for the same

procedure applied to a 4th order Runge–Kutta integrator (“RK4”) with fixed step size, with a

resulting reasonable step size of h' 10−2 m.

The particle tracked for the initial step size calibration had the kinetic energy 1 MeV, mass

1 amu, and charge 1 e (in COSY INFINITY, this may be set by the command RP111). However,

changing the kinetic energy to, e.g., 500 MeV, did not substantially affect the calibration results.

This makes sense, as (1) the element MIESP is specified by the reference orbit geometry and (2)

the equations of motion are expressed in terms of arc length s as the independent variable. Thus,

changing the kinetic energy did not affect the non-relativistic Kepler orbit in the beamline coordinate

system.

Replacing the electrostatic deflector by a magnetic dipole in the step size calibration procedure

yielded practically identical results. This illustrates that the initial step size of h' 1 m is suitable

for integration of both electrostatic and magnetic elements.

At the initial step size h = 1 m in RK89 and the step size h = 0.01 m in RK4, respectively, the
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Figure 5.3: RK89 numerical integration error measure ε versus the number of turns n, in the
integration of a radius R = 10.1 m circular orbit inside an electrostatic spherical deflector, using
non-relativistic equations of motion, with initial step size h = 1.1 m, up to 105 turns.

error function values were both at ∼ 10−12. However, the calculation CPU times were 0.651 s and

14.7 s, respectively, which illustrates the computational speed advantage of a higher-order integrator.

The numerical integration error ε is related to step size h and integrator order n as ε = ahn, where

a is a constant, except for the nonlinear effects at extreme values of h, including the floating-point

loss of significance. This is illustrated by Fig. 5.1, where the line slope of the linear pattern is 8.14.

5.6.2.3 Growth of Integrator Errors

Numerical integration errors tend to grow as functions of the number of turns through a lattice. To

illustrate this, we tracked for 105 turns the same RP111 particle as in the initial step size calibration

of RK89, using non-relativistic equation of motion, through the same spherical electrostatic deflector,

with a circular Kepler orbit of radius R = 10.1 m and initial step size h = 1.1 m.

The growth of the error measure ε defined in eq. 5.6 as a function of the number of turns n is

shown in Fig. 5.3. As expected, the growth of ε is linear.

The energy error ∆E was zero in the tracking run, which illustrates that the equations of motion

and the beamline coordinate system used in COSY INFINITY and MSURK89 are fundamentally
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energy conserving for energy conserving lattices by design.

5.7 Magnetic Dipole and Spherical Deflector Tracking Test Cases

5.7.1 Homogeneous Magnetic Dipole

We analyzed particle motion inside a homogeneous magnetic dipole, and we performed particle

tracking through the element in COSY INFINITY and MSURK89.

5.7.1.1 Analytic Representation of Motion

We consider a particle of mass m in a magnetic field B that is perpendicular to the particle’s initial

velocity. The Lorenz force F acting on the particle, transversal to the particle velocity v, is

F = ZevB,

resulting in circular motion. We denote the radius of the particle’s circular trajectory as R.

Newton’s second law yields, for the centrifugal force counterbalancing the Lorenz force,

γmv2

R
= ZevB.

Simplifying the equation, we obtain

R =
p

ZeB
.

This relation is valid as both relativistic and non-relativistic.

If the homogeneous magnetic dipole is specified by the curvature radius R of the reference

orbit, the magnetic field is set as B = p/ZeR. In that case, the trajectory is identical for relativistic

equations of motion and their non-relativistic limit.

A particle launched in a homogeneous magnetic dipole with a horizontal transversal offset x

relative to the reference particle (that is, with an initial beamline coordinate x) has, by translational

symmetry, a circular orbit of the same radius as the reference particle, as Fig. 5.4(a) illustrates.
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(a) Homogeneous magnetic deflector, comprising sixteen
22.5◦ sectors.

-1 1 1.4

(b) Electrostatic spherical deflector, comprising sixteen
22.5◦ sectors.

Figure 5.4: The reference orbit (dashed red) and an orbit with initial horizontal offset xi = 0.4 m
(solid blue), in a system of sixteen 22.5◦ sectors. (Images source: Kyoko Makino, Eremey Valetov,
& Martin Berz, Computation of Nonlinear Fields and Orbit and Spin Transfer Maps of Electrostatic
Elements Using Differential Algebras, In Proc. of International Computational Accelerator Physics
Conference (ICAP’15), Shanghai, China, 12–16 October 2015, JACoW, Geneva, Switzerland, 2016;
use permitted under the Creative Commons Attribution License CC BY 3.0.)

5.7.1.2 Tracking results

We tracked a set of particles with kinetic energy 1 MeV, mass 1 amu, and charge 1 e (in COSY

INFINITY script, set by RP111) through a homogeneous magnetic dipole specified by radius

R0 = 1 m and angle α = 22.5◦, in COSY INFINITY and MSURK89, for 160,000 turns.

The phase space position projection to the x–a plane was drawn every 111 turns. The turn step

of 111 was chosen to be ∼ 100 and a coprime of 16, the number of 22.5◦ sectors in the full physical

lattice, thereby moderating the number of data points but still drawing the system state at each of

the 16 sectors.

The initial particle ray coordinates were

(x,a,b,y, l,δK) = (k ·0.07 m,0,0,0,0,0)

for k = 1,2, . . . ,10.
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In COSY INFINITY, the computation order was 19, the highest possible for this system without

exhaustion of COSY INFINITY’s internal variables.

Fig. 5.5 shows the tracking pictures produced in COSY INFINITY, with and without symplectifi-

cation. Fig. 5.6 shows a tracking picture produced in MSURK89.

As expected, there was no visual difference in tracking pictures between relativistic and non-

relativistic equations of motion.

The tracking pictures are in accord with the particles having circular orbits in the midplane. For

example, the tracking pictures demonstrate that, after passing through eight 22.5◦ sectors (a total

angle of 180◦) from the initial position, the x particle ray coordinates change sign but are of the

same magnitude as the initial x coordinates.

There is no visible distortion in the MSURK89 tracking pictures, except for slight smearing of

the outer orbits.

The smearing was significant in the outer orbit in COSY INFINITY without symplectification,

with particles flying off to infinity. There was some visible smearing in the second outermost orbit.

Turning on symplectification in COSY INFINITY decreased the smearing effect.

The CPU times are specified in the respective figure captions. As expected, calculations take

significantly longer in MSURK89, as the integration of ODEs in MSURK89 is performed in each

tracking turn, whereas DA integration of ODEs in COSY INFINITY is performed for one turn to

obtain the transfer map prior to tracking. Symplectification in COSY INFINITY increased the CPU

time compared to no symplectification by an order of magnitude, but the CPU time was still an

order of magnitude lower than in MSURK89.

5.7.2 Electrostatic Spherical Deflector

We analyzed particle motion inside an electrostatic spherical deflector, and we performed particle

tracking through the element in COSY INFINITY and MSURK89.
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(a) Tracking without symplectification. Calculation CPU time: 2.7 s.

(b) Tracking with EXPO symplectification. Calculation CPU time: 36.5 s.

Figure 5.5: Homogeneous magnetic dipole: the x–a projections of particles tracked in COSY
INFINITY for 160,000 turns. Particles were launched horizontally, with initial x offsets up to 0.7 m,
through a homogeneous magnetic dipole of angle 22.5◦ and radius R0 = 1 m.
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Figure 5.6: Homogeneous magnetic dipole: the x–a projections of particles tracked in MSURK89
for 160,000 turns. Particles were launched horizontally, with initial x offsets up to 0.7 m, through a
homogeneous magnetic dipole of angle 22.5◦ and radius R0 = 1 m. Calculation CPU time: 314.5 s.

5.7.2.1 Analytic Representation of Non-Relativistic Motion

Following [62, pp. 30–39], we will show that the non-relativistic motion of a particle inside an

electrostatic spherical deflector forms an ellipse.

In a central field, the Lagrangian of a particle of mass m is

L =
1
2

m
(

ṙ2 + r2
θ̈

2
)
−U (r) , (5.7)

where (r,θ) are the polar coordinates of the particle in the plane of its motion and U (r) is the

particle’s potential energy in the central field.

Because the Lagrangian L in eq. 5.7 does not depend on θ (i.e., ∂L
∂θ

= 0), by Euler–Lagrange’s

equation for coordinate θ , the angular momentum is conserved:

M = mr2
θ̇ = const. (5.8)

Substituting eq. 5.8 into the expression for full energy E , we obtain

E =
1
2

mṙ2 +Ueff (r) ,
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where Ueff is the effective potential energy

Ueff (r) =U (r)+
M2

2mr2 .

Consider the electrostatic potential U (r) inside an electrostatic sphere:

U (r) =−α

r
,α > 0.

Now, therefore,

E =
1
2

mṙ2− α

r
+

M2

2mr2 .

Expressing ṙ through r, we obtain

dr
dt

=

√
2
m

(
E +

α

r

)
− M2

mr2 .

However, from conservation of the angular momentum,

dθ

dt
=

M
mr2 ,

so, applying the chain rule, we obtain θ as a function of r:

θ =

�
Mdr

r2
√

2m
(
E + α

r
)
− M2

r2

.

Performing analytic integration yields

θ = arccos

 M
r −

mα
M√

2mE + m2α2
M2

+ const.

We rotate the coordinate system so that the integration constant is zero. The result is the equation

of an ellipse in polar form, with a focus as the origin [62, p. 36]:

p
r
= 1+ ecosθ ,

where p is the focal parameter

p =
M2

mα
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and e is the eccentricity

e =

√
1+

2E M2

mα2 .

We will now demonstrate that the origin is indeed a focus of the ellipse. In Cartesian coordinates,

a parametric form of the ellipse equation is [62, pp. 36–38] x

y

=

 a(cosθ − e)

a
√

1− e2 sinθ

 ,

where a = p/
(

e2−1
)

is the major semi-axis of the ellipse.

The leftmost point of the ellipse is (x,y) = (−a−ae,0), and the rightmost point is (a−ae,0).

If the origin is a focus of the ellipse, then the other focus is, by symmetry, at point (−2ae,0).

The sum of distances from each supposed focus point to a point on the ellipse is

L = l1 + l2 =

= a
√

1−2ecosθ + e2− e2 sin2 θ +a
√

1+2ecosθ + e2− e2 sin2 θ =

= a(1− ecosθ)+a(1+ ecosθ) =

= 2a = const,

which satisfies the two-center bipolar coordinate equation l1 + l2 = 2a and the definition of the foci

of an ellipse.

5.7.2.2 Analytic Representation of Relativistic Motion

In the relativistic case, the angular momentum of a particle is

M = pr = γmrv,

where p and v are the particle’s momentum and velocity components perpendicular to the radius-

vector, respectively.

The angular momentum M can be expressed in polar coordinates (r,θ) as

M =
mr2θ̇√

1− ṙ2+r2θ̇2
c2

.
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The total energy E of the particle in Coulomb field U (r) =−α/r is

E =

√
p2c2 +m2c4− α

r
.

As shown in [63, pp. 100–102][15], there are three cases:

1. Mc > |α|. The particle trajectory equation is

(
c2M2−α

2
) 1

r
= c
√
(ME )2−m2c2

(
M2c2−α2

)
cos

θ

√
1− α2

M2c2

+E α

and has the visual appearance of “rosettes”. Whereas in the non-relativistic case the trajectory

is a closed elliptical orbit, the trajectory in the relativistic case with Mc > |α| is an elliptical

trajectory with relativistic precession, which is no longer closed.

2. Mc < |α|. The particle trajectory equation is

(
α

2− c2M2
) 1

r
=±c

√
(ME )2−m2c2

(
M2c2−α2

)
cosh

θ

√
α2

M2c2 −1

−E α,

where the sign at the beginning of the right-hand side is the same as the sign of α . Trajectories

in this case spiral into the center, out of the center, or both.

3. Mc = |α|. The particle trajectory equation is [63, pp. 100–102]

2E α

r
= E 2−m2c4−θ

2
(

E α

Mc

)2
.

Only the Mc > |α| case has a qualitatively similar correspondence in the non-relativistic limit. The

other cases Mc≤ |α| degenerate into a straight-line orbit [15].

For particles such as the proton and the deuteron, Mc > |α|, which, inter alia, makes their use

in electrostatic storage rings possible.

5.7.2.3 Reference and Non-Reference Trajectories

In an electrostatic spherical deflector, we choose the reference trajectory as a circular orbit. We

obtain the voltages of the inner and outer spherical shells of the deflector corresponding to the
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particle kinetic energy and the orbit radius by solving Newton’s second law equation for zero radial

acceleration. Alternatively, this can be done by solving for zero orbital eccentricity.

A particle launched in an electrostatic spherical deflector has an elliptic orbit, as Fig. 5.4(b)

illustrates. Particle orbits are subject to the physical aperture limitation.

5.7.2.4 Tracking Results

We tracked a set of particles with kinetic energy 1 MeV, mass 1 amu, and charge 1 e (in COSY

INFINITY script, set by RP111) through an electrostatic spherical deflector sector specified by

radius R0 = 1 m and angle α = 22.5◦, in COSY INFINITY and MSURK89, for 160,000 turns.

The phase space position projection to the x–a plane was drawn every 111 turns. The turn step

of 111 was chosen to be ∼ 100 and a coprime of 16, the number of 22.5◦ sectors in the full physical

lattice, thereby moderating the number of data points but still drawing the system state at each of

the 16 sectors.

The initial particle ray coordinates were

(x,a,b,y, l,δK) = (k ·0.04 m,0,0,0,0,0)

for k = 1,2, . . . ,10.

In COSY INFINITY, the computation order was 19, the highest possible for this system without

exhaustion of COSY INFINITY’s internal variables.

Tracking pictures produced in COSY INFINITY, using non-relativistic and relativistic equations

of motion, are shown in Figs. 5.7 and 5.9, respectively. Each set of COSY INFINITY tracking

pictures comprises versions with and without symplectification. Tracking pictures produced in

MSURK89, using non-relativistic and relativistic equations of motion, are shown in Figs. 5.8 and

5.10, respectively.

The tracking pictures illustrate that Kepler orbits are (1) closed with one-turn periodicity under

non-relativistic equations of motion and (2) are not closed and perform relativistic orbital precession

under relativistic equations of motion.
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(a) Tracking without symplectification. Calculation CPU time: 3.4 s.

(b) Tracking with EXPO symplectification. Calculation CPU time: 39.2 s.

Figure 5.7: Electrostatic spherical deflector: the x–a projections of particles tracked in COSY
INFINITY for 160,000 turns, with non-relativistic equations of motion. Particles were launched
horizontally, with initial x offsets up to 0.4 m, through an electrostatic spherical deflector sector of
angle 22.5◦ and radius R0 = 1 m.
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Figure 5.8: Electrostatic spherical deflector: the x–a projections of particles tracked in MSURK89
for 160,000 turns, with non-relativistic equations of motion. Particles were launched horizontally,
with initial x offsets up to 0.4 m, through an electrostatic spherical deflector sector of angle 22.5◦.
Calculation CPU time: 1579.9 s.

There was no visible distortion in MSURK89 or COSY INFINITY with symplectification on,

except for slight smearing in the outer orbits in Fig. 5.7(b).

Distortion was somewhat significant in the outer orbit in COSY INFINITY with non-relativistic

equations of motion and no symplectification. Turning on symplectification in COSY INFINITY

decreased the distortion.

Calculation CPU times were similar for the electrostatic spherical deflector and the homogeneous

magnetic dipole.

5.7.2.4.1 Effect of the Computation Order on Accuracy

Figs. 5.11 and 5.12 illustrate the effect of the computation order on accuracy with and without

symplectification, respectively. The motion is linear and consists of ellipses in the x–a plane for

computation order 1. Comparison with higher orders up to 19 illustrates how accuracy increases

with computation order. Whereas accuracy varies strongly between orders without symplectification,
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(a) Tracking without symplectification. Calculation CPU time: 3.6 s.

(b) Tracking with EXPO symplectification. Calculation CPU time: 39.4 s.

Figure 5.9: Electrostatic spherical deflector: the x–a projections of particles tracked in COSY INFIN-
ITY for 160,000 turns, with relativistic equations of motion. Particles were launched horizontally,
with initial x offsets up to 0.4 m, through an electrostatic spherical deflector sector of angle 22.5◦

and radius R0 = 1 m.
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Figure 5.10: Electrostatic spherical deflector: the x–a projections of particles tracked in MSURK89
for 160,000 turns, with relativistic equations of motion. Particles were launched horizontally, with
initial x offsets up to 0.4 m, through an electrostatic spherical deflector sector of angle 22.5◦ and
radius R0 = 1 m. Calculation CPU time: 416.0 s.

with symplectification the visual difference between orders is generally insignificant, demonstrating

how effective symplectification can be for the generation of realistic tracking pictures.

Computation CPU times, listed in the figure captions, illustrate their monotonous increase with

computation order due to the increasing complexity of the underlying basic DA operations.

5.7.2.4.2 An Additional Benchmark Example

We performed particle tracking through the same electrostatic spherical deflector configuration as

detailed above and illustrated in Figs. 5.7–5.10, but with particles launched with initial y offsets up

to 0.4 m instead of initial x offsets up to 0.4 m. Again, computation order 19 was used.

Figs. 5.13 and 5.14 show tracking results in y–b and x–a planes, respectively. In both figures,

tracking pictures produced in COSY INFINITY and MSURK89 are visually indistinguishable.

In COSY INFINITY, computations in the 2D phase space (x–a and y–b canonical coordinate

pairs) are more computation-intensive than in the 1D phase space (x–a only). Accordingly, without
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Figure 5.11: For odd computation orders 1 to 19 (computation order specified in the pictures), the
x–a projections of particles tracked in COSY INFINITY, for 160,000 turns, without symplectification,
with relativistic equations of motion. Particles were launched horizontally, with initial x offsets
up to 0.4 m, through an electrostatic spherical deflector sector of angle 22.5◦ and radius R0 = 1 m.
Calculation CPU times: 0.4s, 0.5s, 0.6s, 0.9s, 1.2s, 1.5s, 1.9s, 2.4s, 2.9s, and 3.6s, respectively.
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Figure 5.12: For odd computation orders 1 to 19 (computation order specified in the pictures), the
x–a projections of particles tracked in COSY INFINITY, for 160,000 turns, with EXPO symplec-
tification, with relativistic equations of motion. Particles were launched horizontally with initial
x offset up to 0.4 m through an electrostatic spherical deflector sector of angle 22.5◦ and radius
R0 = 1 m. Calculation CPU times: 1.0 s, 7.6 s, 9.8 s, 12.9 s, 16.2 s, 19.9 s, 25.1 s, 30.5 s, 34.9 s,
39.4 s, respectively.
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Figure 5.13: Electrostatic spherical deflector: the y–b projections of particles tracked in COSY
INFINITY (left) and MSURK89 (right), for 160,000 turns, with non-relativistic (top) and relativistic
(bottom) equations of motion. Particles were launched horizontally, with initial y offsets up to 0.4m,
through an electrostatic spherical deflector sector of angle 22.5◦ and radius R0 = 1 m.

symplectification, tracking with y offset particles completed in ∼ 140 s, whereas tracking with x

offset particles completed in∼ 7s. With symplectification, tracking with y offset particles completed

in ∼ 950 s, whereas tracking with x offset particles completed in ∼ 40 s.

5.8 Spherical Deflector Transfer Map Test Cases

In this section, we will describe and perform computation of the non-relativistic DA transfer

map of an electrostatic spherical deflector in a laboratory coordinate system using two conventional

methods: (1) by integrating the ODEs of motion using an 8th order Runge–Kutta–Verner integrator

and (2) by computing analytically and in closed form the properties of the respective elliptical orbits

from Kepler theory. We will compare the resulting transfer maps with (3) the DA transfer map of

the non-relativistic version of COSY INFINITY’s built-in electrostatic spherical deflector element

ESP and (4) the transfer map of the electrostatic spherical deflector computed using the program

GIOS [114].
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Figure 5.14: Electrostatic spherical deflector: the x–a projections of particles tracked in COSY
INFINITY (left) and MSURK89 (right), for 160,000 turns, with non-relativistic (top) and relativistic
(bottom) equations of motion. Particles were launched horizontally, with initial y offsets up to 0.4m,
through an electrostatic spherical deflector sector of angle 22.5◦ and radius R0 = 1 m.

5.8.1 Integration of the ODEs in Polar Laboratory Coordinates

Consider a bunch of non-relativistic charged particles launched with kinetic energy K0 = mv2
0/2 and

zero potential energy, where m is the particle mass and v0 is the reference velocity. Suppose that a

circular reference orbit of radius r0 is defined for the particle bunch in an electrostatic spherical

deflector. Now, for concreteness, consider one particle in this bunch. Following the convention of

the potential energy as zero at the reference orbit, we calibrate the potential energy of the charged

particle to

U (r) =−α

r
+

α

r0
.

By energy conservation, an off-reference particle at initial radius ri would upon entering the

deflector have an initial velocity magnitude vi such that

K0 =
mv2

i
2

+U (r) =
mv2

i
2
− α

ri
+

α

r0
,
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from where we obtain

vi =

√
v2

0−
2α

m

(
1
r0
− 1

ri

)
, (5.9)

or, expressing α in terms of the particle charge q = Ze, the reference orbit radius r0, and the electric

rigidity χe =
pv
Ze as α = Zeχer0,

vi =

√
v2

0−
2
m

Zeχe

(
1− r0

ri

)
. (5.10)

COSY INFINITY’s horizontal transversal coordinate x is defined relative to the circular reference

orbit as x = r− r0, where r is the length of the projection of a particle’s radius vector on the plane

of the reference particle’s orbital motion. COSY INFINITY’s horizontal momentum component

a = px/p0 can be, in the non-relativistic case, expressed as a = vx/v0, where vx is the x component

of a particle’s velocity and v0 is the reference velocity.

Now, let (xi,ai) be the initial beamline coordinates of the particle in the electrostatic spherical

deflector. In reality, the deflector would have a fringe field; in this model, we approximate the fringe

field by an instant jump in the electrostatic potential from zero to the electrostatic potential of the

electrostatic spherical deflector at radius ri = r0 + xi. Thus, all particles in a bunch experience a

“step down” from kinetic energy K0 to a kinetic energy K = K0−U (r) at time t = 0.

Similarly, at the end of the element, the particle will experience a "step up" due to the change

of the potential energy back to zero. Note that these changes of energy are essential even in the

absence of a true fringe field treatment to preserve the actual beam energy.

For calculations, we will use the polar laboratory coordinate system (r,θ), with particles

launched at polar angle θ = 0. Additionally, we will use the Cartesian laboratory coordinate system

(x̃, ỹ) = r (cosθ ,sinθ) .

In this Cartesian laboratory coordinate system, the particle has the initial position

~ri = (r0 + xi,0) (5.11)

and the initial velocity

~vi =

(
aiv0,

√
v2

i − (aiv0)
2
)
, (5.12)
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where vi is the initial particle velocity magnitude at the initial radius ri obtained using eq. 5.10.

From Newton’s second law, the radial acceleration of the particle in the electrostatic spherical

deflector is
d2

dt2 r =− µ

r2 +ω
2r,

where µ = α/m and ω is the particle’s angular velocity.

Considering eqns. 5.11 and 5.12, the conservation of the angular momentum can be expressed

in terms of massless angular momentum

h = ωr2 = |~r×~v|

as
h = |~ri×~vi|= |(~ri)1 (~vi)2− (~ri)2 (~vi)1|=

=

∣∣∣∣(r0 + xi)
√

v2
i − (aiv0)

2−0 ·aiv0

∣∣∣∣=
= (r0 + xi)

√
v2

i − (aiv0)
2.

(5.13)

Taking the time derivative of ω = h/r2, we obtain

d2

dt2 θ =−2
h
r3 vr.

The final position~rf and velocity~vf can be obtained by integrating the ODEs of motion in the

polar coordinates

d
dt



r

vr

θ

ω


=



vr

− µ

r2 +ω2r

ω

−2 h
r3 vr


, (5.14)

with the initial condition 

r

vr

θ

ω


0

=



(~ri)1

(~vi)1

0

(~vi)2 /(~ri)1


.
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Considering that dθ/dt = ω , applying the chain rule, this system of ODEs can be expressed in

terms of polar angle θ as the independent variable as

d
dθ



r

vr

θ

ω


=



vr
ω

− µ

r2
1
ω
+ωr

1

−2 h
r3

vr
ω


(5.15)

with the same initial condition.

Having obtained the final position

~rf = rf (cosθf,sinθf)

and velocity~vf, the final (x,a) coordinates are

(xf,af) =

(
rf− r0,

~vf ·~rf
v0rf

)
.

We calculated the DA transfer map of the electrostatic spherical deflector, in (x,a) beamline

coordinates, with reference orbit radius r0 = 1 m, by integration of the ODEs of motion in polar

laboratory coordinates using an 8th order Runge–Kutta–Verner integrator. This transfer map is

listed in sec. 5.8.3.

To obtain a DA-valued transfer map, we set the initial phase space coordinates as

(xi,ai) = (d1,d2) = (DA(1),DA(2)) ,

the respective DA generators [11, pp. 86–96]. We performed the calculations with the computation

order 3.

A version of the COSY INFINITY program that uses a 4th order Runge–Kutta integrator to

obtain the transfer map by solving the ODEs of motion in polar laboratory coordinates is listed in

App. H.1. Additionally, App. H.2 lists a Mathematica program that integrates the ODEs in polar

laboratory coordinates for an individual orbit, plots one turn of the orbit, and outputs the final (x,a)

coordinates.
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Figure 5.15: Orbit of a particle launched counter-clockwise at polar angle fi = 0 with initial
beamline coordinates (xi,ai) = (0.3,0) through an electrostatic spherical deflector (blue). The
reference orbit (red) has the radius r0 = 1 m. The plot illustrates the basis vectors

(
~ie,~ip

)
of the

heliocentric coordinate system in relation to the orbit geometry. The plot was generated by the
Mathematica notebook for integration of the ODEs for individual orbits in the polar laboratory
coordinate system listed in App. H.2.

5.8.2 Kepler Theory Transition Matrix and Lagrange Coefficients

Motion in a central field with a potential energy of the form U (r) =−α/r+ const is described by

conventional Kepler theory; in particular, by the equation of orbit

r =
p

1+ ecos f
, (5.16)

where p is the focal parameter, e is the orbit eccentricity, and polar angle f is called the true anomaly

[9, p. 117]. True anomaly f = 0 corresponds to the direction of the perihelion, that is, the point of

the orbit nearest to the orbital focus at the origin of the polar coordinate system (r, f ).

The particle position~r is expressed as

~r =~ier cos f +~ipr sin f , (5.17)
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in terms of polar coordinates (r, f ) and the basis vectors
(
~ie,~ip

)
of the heliocentric coordinate

system, where~ie is a unit vector in the direction of perihelion and unit vector~ip is chosen so that

~ie×~ip is codirectional with the vector of the angular velocity of the particle, as Fig. 5.15 illustrates.

According to Newton’s second law, zero radial acceleration at the reference orbit requires

mv2
0

r0
=

α

r2
0
.

Thus, the parameter µ = α/m can be expressed as

µ =
α

m
= v2

0r0 (5.18)

in terms of the reference velocity v0 and the reference orbit radius r0.

The focal parameter p can be expressed in terms of µ and the massless angular momentum

h = |~r×~v| as

p =
h2

µ
, (5.19)

which is obtained in course of a standard derivation of the equation of orbit, eq. 5.16, as in [9, pp.

114–116].

We note that taking the time derivative of both sides of eq. 5.16 gives

ṙ = ḟ r
esin f

1+ ecos f
. (5.20)

Considering eqns. 5.20 and 5.19 and conservation of massless angular momentum h = ḟ r2,

taking the time derivative of the position vector~r in eq. 5.17 yields for the particle velocity

~v =~ie
(
ṙ cos f − r ḟ sin f

)
+~ip

(
ṙ sin f + r ḟ cos f

)
=

=~ie
h
r

(
esin f

1+ ecos f
cos f − sin f

)
+~ip

h
r

(
esin f

1+ ecos f
sin f + cos f

)
=

=~ie
h
r

(
− sin f

1+ ecos f

)
+~ip

h
r

(
e+ cos f

1+ ecos f

)
=

=−~ie
µ

h
sin f +~ip

µ

h
(e+ cos f ) .

(5.21)

Rewriting eqns. 5.17 and 5.21 in matrix form, we have ~r

~v

= A

 ~ie

~ip

 , where A =

 r cos f r sin f

−µ

h sin f µ

h (e+ cos f )

 . (5.22)
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We note that the determinant of the matrix A is, considering eq. 5.19,

detA = r
µ

h
(e+ cos f )cos f + r

µ

h
sin2 f =

= r
µ

h
(1+ ecos f ) = r

µ

h
p
r
= h.

(5.23)

Let fi be the initial true anomaly of a particle in the spherical electrostatic deflector. Then, from

the equation of orbit in eq. 5.16,

ecos fi =
p
ri
−1, (5.24)

where ri is the initial radius.

Taking the scalar product of initial position~ri and initial velocity~vi, we obtain from eq. 5.22

that

~ri ·~vi =−ri
µ

h
sin fi cos fi + ri

µ

h
sin fi (e+ cos fi) =

= ri
µ

h
esin fi.

Hence,

esin fi =
√

pσ0
ri

, (5.25)

where σ0 is defined as [9, p. 130]

σ0 =
~ri ·~vi√

µ
.

Let θ = ff− fi be the true anomaly difference between the final and initial positions. Applying

eqns. 5.24 and 5.25 to the equation of orbit in eq. 5.16 yields the final radius

rf =
p

1+ ecos ff
=

p
1+ ecos( fi +θ)

=

=
p

1+ cosθ cos fi− sinθ sin fi
=

=
p

1+
(

p
ri
−1
)

cosθ −
√

pσ0
ri

sinθ

=

= ri
p

ri +(p− ri)cosθ −√pσ0 sinθ
.

(5.26)

Solving eq. 5.22 for the basis vectors
(
~ie,~ip

)
of the heliocentric coordinate system in terms of

the initial position~ri, velocity~vi, and true anomaly fi, considering that detA = h according to eq.

177



5.23, we have ~ie

~ip

= A−1
i

 ~ri

~vi

=
1

detA

 µ

h (e+ cos fi) −ri sin fi
µ

h sin fi ri cos fi


 ~ri

~vi

=

=

 µ

h2 (e+ cos fi) −
ri
h sin fi

µ

h2 sin fi
ri
h cos fi


 ~ri

~vi

 .

(5.27)

An analytic expression of the final position~rf and velocity~vf in terms of the initial position~ri

and velocity~vi is obtained by inserting eq. 5.27 in eq. 5.22, which gives ~rf

~vf

= AfA
−1
i

 ~ri

~vi

=

 rf cos ff rf sin ff

−µ

h sin ff
µ

h (e+ cos ff)

 ·
·

 µ

h2 (e+ cos fi) −
ri
h sin fi

µ

h2 sin fi
ri
h cos fi


 ~ri

~vi

=

=

 F G

Ft Gt


 ~ri

~vi

 .

(5.28)

The matrix on the left is usually referred to as the transition matrix. Note that this is not the same as

the so-called transfer matrix of beam physics, because the transition matrix contains all nonlinear

effects by virtue of its elements on orbit parameters. Specifically, we obtain for the transition matrix

elements: the transition matrix element F is

F =
µ

h2 rf [cos ff (e+ cos fi)+ sin ff sin fi] =

=
µ

h2 rf (ecos ff + cosθ) =

=
µ

h2 rf

[(
p
rf
−1
)
+ cosθ

]
=

= 1− rf
p
(1− cosθ) ,

the transition matrix element Ft is

Ft =
µ2

h3 [−sin ff (e+ cos fi)+(e+ cos ff)sin fi] =
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=
µ2

h3 [e(sin fi− sin ff)− sinθ ] =

=
µ2

h3 [e(sin fi− sin fi cosθ − sinθ cos fi)− sinθ ] =

=
µ2

h3 [esin fi (1− cosθ)− sinθ (1+ ecos fi)] =

=
µ2

h3

[√
pσ0
ri

(1− cosθ)− p
ri

sinθ

]
=

=

√
µ

ri p
[σ0 (1− cosθ)−√psinθ ] ,

the transition matrix element G is

G =
1
h

rfri (−cos ff sin fi + sin ff cos fi) =

=
rfri
h

sinθ =
rfri√
µ p

sinθ ,

and the transition matrix element Gt is

Gt =
µ

h2 ri [sin ff sin fi +(e+ cos ff)cos fi] =

=
µ

h2 ri (ecos fi + cosθ) =

=
µ

h2 ri

[(
p
ri
−1
)
+ cosθ

]
=

= 1− ri
p
(1− cosθ) .

Thus, we obtained a transition matrix

Φ =

 F G

Ft Gt


that expresses the final coordinates (~rf,~vf) as a function of the initial coordinates (~ri,~vi) as ~rf

~vf

= Φ

 ~ri

~vi

 (5.29)

and comprises elements [9, pp. 128–131]

F (θ) = 1− rf
p
(1− cosθ) ,
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Ft (θ) =

√
µ

ri p
[σ0 (1− cosθ)−√psinθ ] ,

G(θ) =
rfri√
µ p

sinθ ,

Gt (θ) = 1− ri
p
(1− cosθ) .

The elements F , Ft , G, and Gt of the transition matrix Φ are called Lagrange coefficients. The

Lagrange coefficients Ft and Gt are simply time derivatives of F and G, respectively.

Applying the transfer matrix from eq. 5.29 to the initial position~vi and velocity ~pi from eqns.

5.11 and 5.12, we obtain the final position~rf and velocity~vf.

The final (x,a) coordinates are obtained from the final position

~rf = rf (cosθf,sinθf)

and velocity~vf as

(xf,af) =

(
rf− r0,

~vf ·~rf
v0rf

)
.

We calculated the DA transfer map of the electrostatic spherical deflector, in (x,a) beamline

coordinates, with reference orbit radius r0 = 1 m, using the transition matrix with elements as the

Lagrange coefficients in terms of the true anomaly difference. This transfer map is listed in sec.

5.8.3.

The transfer map only depends on reference orbit radius r0 and the central angle of the tracked

sector of the electrostatic spherical deflector. As long as the reference orbit radius r0 is kept the

same by adjusting the voltages of the inner and outer shells of the deflector, the transfer map does

not depend on the charged particle’s kinetic energy, mass, or charge. Indeed, considering eqns. 5.19,

5.13, 5.11, and 5.18, the focal parameter p is

p =
h2

µ
=
|~ri×~vi|2

v2
0r0

=

=
(r0 + xi)

2
[
v2

i − (aiv0)
2
]

v2
0r0

=

=
(r0 + xi)

2
[
v2

0−
2α
m

(
1
r0
− 1

r0+xi

)
− (aiv0)

2
]

v2
0r0

=
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=
(r0 + xi)

2
[
v2

0−2v2
0r0

(
1
r0
− 1

r0+xi

)
− (aiv0)

2
]

v2
0r0

=

=
(r0 + xi)

[
2r0−

(
1+a2

i

)
(r0 + xi)

]
r0

,

and the eccentricity e is [9, p. 116] such that, considering eqns. 5.11, 5.9, and 5.18,

1− e2 = p

(
2
r
− v2

µ

)
= p

(
2

r0 + xi
−

v2
i

µ

)
=

= p

 2
r0 + xi

−
v2

0−2v2
0r0

(
1
r0
− 1

r0+xi

)
v2

0r0

=

= p

 2
r0 + xi

−
1−2r0

(
1
r0
− 1

r0+xi

)
r0

=

= p
[

2
r0 + xi

− 2r0− (r0 + xi)

r0 (r0 + xi)

]
=

p
r0.

Thus, the focal parameter p and the eccentricity e depend only on reference orbit radius r0 and

initial beamline coordinates (xi,ai).

To obtain a DA-valued transfer map, we set the initial phase space coordinates as

(xi,ai) = (d1,d2) = (DA(1),DA(2)) ,

the respective DA generators [11, pp. 86–96]. We performed the calculations with the computation

order 3.

5.8.3 Transfer Maps of the Spherical Deflector and Comparison

Here, we list and compare the DA transfer maps for particles passing through a 45◦ sector of the

electrostatic spherical deflector, calculated

1. by integration of the ODEs of motion in polar laboratory coordinates using an 8th order

Runge–Kutta–Verner integrator;

2. using the Kepler theory transition matrix with Lagrange-coefficients elements in terms of the

true anomaly difference;
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3. for COSY INFINITY’s built-in electrostatic spherical deflector element ESP; and

4. using the code sequence ES in the program GIOS.

In all cases, the reference orbit radius is r0 = 1 m, and non-relativistic equations of motion were

used. For definiteness, the particles in the bunch were set to kinetic energy 1 MeV, mass 1 amu, and

charge 1 e; however, as noted above, this setting has no impact on the orbit geometry as long as the

reference orbit radius is kept the same by adjusting the voltages of the inner and outer spherical

shells of the electrostatic spherical deflector. For visual transfer map comparison purposes, the

computation order 3 was used in all cases, except for GIOS, where the computation order 2 was

used.

For each transfer map calculation case, we computed deviations from the conditions of symplec-

ticity [11, pp. 155–159][115] for the first and second order aberration coefficients and motion in the

x–a plane. These conditions of symplecticity are as follows:

g1 = (x|x)(a|a)− (a|x)(x|a)−1 = 0,

g2 = (x|x)(a|xa)− (a|x)(x|xa)+(x|xx)(a|a)− (a|xx)(x|a) = 0,

g3 = (x|x)(a|aa)− (a|x)(x|aa)+(x|xa)(a|a)− (a|xa)(x|a) = 0,

(5.30)

where an aberration coefficient
(

zi|z j1 · · ·z jn

)
is the partial derivative

(
zi|z j1 · · ·z jn

)
=

(
∂ n (M (z))i
∂ z j1 · · ·∂ z jn

)
z=0

of the i-th component of the respective transfer map M applied to a coordinate vector z=(z1 · · ·z2m),

and 2m is the number of phase space coordinates.

5.8.3.1 Integration of the ODEs in Polar Laboratory Coordinates

The transfer map from the integration of the ODEs of motion in polar laboratory coordinates using

an 8th order Runge–Kutta–Verner integrator is as follows.

182



TRANSFER MAP OBTAINED IN LAB COORDINATES

BY INTEGRATION OF THE ODEs OF MOTION

X_f

I COEFFICIENT ORDER EXPONENTS

1 0.7071067811878048 1 1 0 0

2 0.7071067811853606 1 0 1 0

3 − .4999999999982248 2 2 0 0

4 0.9999999999999907 2 1 1 0

5 0.2071067811860403 2 0 2 0

6 − .3535533905925685 3 3 0 0

7 0.6066017178148258E−01 3 1 2 0

8 0.2928932188134486 3 0 3 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A_f

I COEFFICIENT ORDER EXPONENTS

1 − .7071067811852640 1 1 0 0

2 0.7071067811878422 1 0 1 0

3 − .7071067811852740 2 0 2 0

4 − .3535533905924618 3 3 0 0

5 −1.060660171777971 3 1 2 0

DA coefficients with absolute values less than 10−11 are omitted.

The deviations g1, g2, and g3 from the conditions of symplecticity listed in eq. 5.30 in this case

were as follows:
g1 = 0.8881784197001252×10−15,

g2 =−0.2120476675655668×10−14,

g3 = 0.1217396563490169×10−14.

A 4th order Runge–Kutta integrator version of the COSY INFINITY code for calculation of this

transfer map by integration of the ODEs in the polar laboratory coordinates is listed in App. H.1.
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5.8.3.2 Kepler Theory Transition Matrix

The transfer map obtained in laboratory coordinates using the Kepler theory transition matrix with

Lagrange-coefficients elements is as follows.

TRANSFER MAP OBTAINED IN LAB COORDINATES

USING LAGRANGE COEFFICIENTS

X_f

I COEFFICIENT ORDER EXPONENTS

1 0.7071067811865475 1 1 0 0

2 0.7071067811865475 1 0 1 0

3 − .5000000000000000 2 2 0 0

4 1.000000000000000 2 1 1 0

5 0.2071067811865475 2 0 2 0

6 − .3535533905932737 3 3 0 0

7 0.6066017177982122E−01 3 1 2 0

8 0.2928932188134523 3 0 3 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A_f

I COEFFICIENT ORDER EXPONENTS

1 − .7071067811865475 1 1 0 0

2 0.7071067811865476 1 0 1 0

3 − .7071067811865475 2 0 2 0

4 − .3535533905932737 3 3 0 0

5 −1.060660171779821 3 1 2 0

DA coefficients with absolute values less than 10−11 are omitted.

The deviations g1, g2, and g3 from the conditions of symplecticity listed in eq. 5.30 in this case
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were as follows:
g1 =−0.1110223024625157×10−15,

g2 = 0.3119771259853192×10−16,

g3 = 0.1110223024625157×10−15.

5.8.3.3 COSY INFINITY’s Spherical Deflector Element

The transfer map of COSY INFINITY’s built-in electrostatic spherical deflector element ESP, ob-

tained using non-relativistic equations of motion, is as follows.

TRANSFER MAP OF COSY INFINITY ’ S ESP ELEMENT

X_f

I COEFFICIENT ORDER EXPONENTS

1 0.7071067811865475 1 1 0 0

2 0.7071067811865475 1 0 1 0

3 − .4999999999999999 2 2 0 0

4 1.000000000000000 2 1 1 0

5 0.2071067811865475 2 0 2 0

6 − .3535533905932738 3 3 0 0

7 0.6066017177982123E−01 3 1 2 0

8 0.2928932188134525 3 0 3 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A_f

I COEFFICIENT ORDER EXPONENTS

1 − .7071067811865475 1 1 0 0

2 0.7071067811865475 1 0 1 0

3 − .7071067811865475 2 0 2 0

4 − .3535533905932737 3 3 0 0

5 −1.060660171779821 3 1 2 0
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The deviations g1, g2, and g3 from the conditions of symplecticity listed in eq. 5.30 were as

follows:
g1 =−0.2220446049250313×10−15,

g2 = 0.2220446049250313×10−15,

g3 = 0.3330669073875470×10−15.

The COSY INFINITY code for calculation of this transfer map of the ESP element is listed in

App. H.4.

5.8.3.4 GIOS’s Spherical Deflector Element

The transfer map of the electrostatic spherical deflector computed using the code sequence ES in

the program GIOS is as follows.

TRANSFER MAP COMPUTED USING THE PROGRAM GIOS

X_f

I COEFFICIENT ORDER EXPONENTS

1 0.7071067812 1 1 0 0

2 0.7071067812 1 0 1 0

3 − .5000000000 2 2 0 0

4 0.2928932188 2 1 1 0

5 0.2071067812 2 0 2 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A_f

I COEFFICIENT ORDER EXPONENTS

1 − .7071067812 1 1 0 0

2 0.7071067812 1 0 1 0

3 − .5000000000 2 2 0 0

4 − .7071067812 2 1 1 0

5 − .2071067812 2 0 2 0
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The deviations g1, g2, and g3 from the conditions of symplecticity listed in eq. 5.30 were as

follows:
g1 = 0.3804934145534844×10−10,

g2 =−0.2928932188380493,

g3 = 0.7071067812000000.

We note that the deviations g2 and g3 are significant in magnitude and indicate error(s) in the

program GIOS.

We also note that these differences are not due to the fact that GIOS uses momentum-like

coordinates that differ from those of COSY INFINITY. The respective effects manifest themselves

only in order three in x and a terms, which we are not comparing here.

5.8.4 Calculation Results, Comparison, and Conclusion

The electrostatic spherical deflector transfer maps calculated in laboratory coordinates by integration

of the ODEs and using the Kepler theory transition matrix are in good agreement with the transfer

map of COSY INFINITY’s built-in electrostatic spherical deflector element ESP. The deviations from

the conditions of symplecticity g1, g2, and g3 were∼ 10−17 to∼ 10−16 in case of calculation using

the Kepler theory transition matrix, ∼ 10−16 in case of COSY INFINITY’s built-in electrostatic

spherical deflector element ESP, and ∼ 10−15 in case of integration of the ODEs in polar laboratory

coordinates.

The transfer map of the electrostatic spherical deflector computed using the program GIOS

significantly disagrees with the other three transfer maps. However, the deviations g2 and g3 in the

GIOS case were also significant in magnitude and indicate that the disagreement is due to error(s) in

the program GIOS.
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Figure 5.16: The Metodiev variant of the Proton EDM LSCT lattice. The lattice comprises 16
sections. Each section contains an electrostatic cylindrical deflector, denoted by the continuous
wide lines. Geometrical parameters: R1 = 39.985 m, R2 = 40.015 m, α = π/8−2θ , and L = 2 m.

5.9 Proton EDM Lattice

5.9.1 Lattice Geometry

A Proton EDM Long Spin Coherence Time (LSCT) was proposed by the Storage Ring EDM

collaboration in [3, incl. App. RingLat and LattParams]. Here, we consider a variant of this Proton

EDM LSCT lattice that was defined and studied by Eric Metodiev et al. [78].

The lattice uses protons at the magic momentum p0 = 0.7 GeV/c, at which, without an EDM

signal, the proton’s spin vector would be aligned with its momentum, and an EDM would rotate

the spin vector out of the midplane. The lattice, shown in Fig. 5.16, consists of 16 cylindrical

electrostatic deflectors with radial electrostatic field 10.5 MV/m, curvature radius R0 = 40 m, and

arc angle α = π/8−2θ , separated by drifts. Each drift is defined as two arcs of radius R0 = 40 m

and small angle θ , separated by a standard straight drift of length L = 2 m. The gap D between the

plates of the electrostatic cylindrical deflector, that is, the full aperture, is D = 3 cm, with the plates
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at radii R1 = 39.985 m and R2 = 40.015 m.

The arc-shaped drifts of small parametric angle θ were optimized to θ = 1 mrad in [78] to

account for the curvature of the reference orbit due to the fringe fields of the cylindrical electrostatic

deflectors. This is an alternative approach to the standard practice of delimiting particle optical

elements by their EFBs and not by their physical edges. COSY INFINITY conforms to this standard

practice and encapsulates the treatment of each element’s fringe field within that element.

5.9.2 Electrostatic Cylindrical Deflector

5.9.2.1 Semi-Circular Geometry

First, we consider an electrostatic cylindrical deflector with inner radius ρ = R1 and outer radius

ρ = R2, spanning the arc −π ≤ ψ ≤ 0 [78] in a polar coordinate system (ρ,ψ). Let −V0 and V0 be

the voltages of the inner and outer plates of this deflector, respectively.

To solve the Laplace equation and to obtain the electrostatic potential of the electrostatic

cylindrical deflector, we use the conformal mapping (ρ,ψ) = f (u,v) , [78, p. 2]

ρ =
√

R1R2 exp
[

1
2π

ln
R2
R1

(eu sinv+ v)
]
,

ψ =
1

2π
ln

R2
R1

(1+ eu cosv+u) (5.31)

from the canonical domain as the semi-infinite strip −∞ < u < ∞, −π ≤ v ≤ π to the physical

domain with the deflector geometry. This can be equivalently rewritten as

w =
1

2π
ln
(

R2
R1

)
(1+ z+ ez) , (5.32)

where w = ψ + i ln(ρ/
√

R1R2) and z = u+ iv.

Mapping the boundary conditions from the physical domain to the canonical domain, the voltage

at v = −π is −V0, and the voltage at v = π is V0. The solution of the Laplace equation in the

canonical domain is trivial: ϕ0 (v) =V0v/π .
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The inverse conformal mapping z= f−1 (w) is expressed, using the Lambert W function (defined

by z =W (z)exp(W (z))), as [78, p. 2]

z = g(w) =−1+
2πw

ln
(

R2
R1

) −Wκ(w)

exp

−1+
2πw

ln
(

R2
R1

)
 , (5.33)

where κ (w) is the branch of the Lambert W function

κ (w) =

ℑ

 w

ln
(

R2
R1

) − 1
2

 .
We obtain the electrostatic potential in the physical domain as

ϕ0 (w) =V0ℑ(g(w))/π,

with g from eq. 5.33 and with w = ψ + i ln(ρ/
√

R1R2).

5.9.2.2 Generalized Geometry

We now consider an electrostatic cylindrical deflector with inner radius ρ = R1 and outer radius

ρ = R2 (|R1−R2| � R1), spanning the arc −α ≤ ψ ≤ 0.

Well inside the deflector, the potential is practically s-independent, and the fringe field near the

edge of the deflector is mostly formed, due to the ∼ 1/r shape of the potential, by the nearby parts

of the deflector. Hence, the electrostatic potential ϕ (ρ,ψ) of the electrostatic cylindrical deflector,

near the reference orbit and the deflector, can be approximated by taking out a middle section of the

semi-circular electrostatic cylindrical deflector and gluing together the remaining parts as

ϕ (ρ,ψ) =


ϕ0 (ρ,ψ) ,−α/2≤ ψ ≤ δ ,

ϕ0 (ρ,ψ +α−π) ,−α−δ ≤ ψ ≤−α/2,

where ϕ0 is the electrostatic potential of a semi-circular electrostatic cylindrical deflector and

δ ∼ |R1−R2|.

However, for δ ∼ |R1−R2|, we would then have a significant, unphysical discontinuity at ψ = δ

and ψ =−α−δ of the potential ϕ or the electrostatic field E =−∇ϕ , depending on the adjacent
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elements. Because ϕ quickly falls off as the distance from the electrostatic cylindrical deflector

increases and becomes relatively insignificant well inside the adjacent deflector, we cut the potential

at δ = π−α/2.

5.9.2.3 Computation of the Scalar Value

In [78, p. 5], to avoid floating-point overflow or underflow, the value of W ◦ exp in eq. 5.33 was

obtained by

1. computing the Lambert W function using Haley’s method for ψ < 0 and R1 ≤ ρ ≤ R2; and

2. computing the Wright function ω =W ◦ exp using Newton’s method otherwise.

We had attempted this approach; however, we encountered same the type of floating-point issues it

is intended to address.

As a solution, we reverted from eq. 5.33 to solving eq. 5.32 directly using COSY INFINITY’s

optimization commands FIT, ENDFIT. We used the objective function

OBJ(w,z) =
∣∣∣∣w− 1

2π
ln
(

R2
R1

)
(1+ z+ ez)

∣∣∣∣ (5.34)

in the optimization.

The calculation of the electrostatic potential is thus performed for plate voltages ±1 V, and then

scaled to satisfy the radial electrostatic field of 10.5 MV/m well inside the electrostatic deflector.

We tested the computation accuracy of the scalar (non-DA) value of ϕ , for α = π/8, using this

method in COSY INFINITY against evaluation of ϕ using Mathematica’s built-in implementation

LambertW of the Lambert W function. In this accuracy test, the largest apparent error was of the

order of 10−13%.

5.9.2.4 Computation of the DA Value

For DA integration of the equations of motion or computation of the electrostatic field, it is useful

to compute the DA value of the electrostatic potential.
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To that end, we note that, from eq. 5.32,

1+ z+ ez =
2π

ln
(

R2
R1

)w,

thus

∇(1+ z+ ez) = (1+ ez)∇z = ∇

 2π

ln
(

R2
R1

)w

 .

Further, we express z in fixed-point form as follows:

z = G(z) = cons(z)+∇
−1

 1
1+ exp(z)

∇

 2π

ln
(

R2
R1

)w

 , (5.35)

where z and w are DA values; cons(z) is the scalar value of z calculated using FIT, ENDFIT as

detailed above; and ∇−1 is the DA inverse gradient, which computes a potential of its argument.

Eq. 5.35 satisfies the DA fixed-point theorem, and the sequence zk+1 = G(zk), for k = 0,1, . . .,

converges to a fixed point z – the DA value of z from eq. 5.33 – in a finite number of steps [11, pp.

96–100]. With computation order n, this calculation completes in n+1 steps.

We implemented this method of computing the DA value of the electrostatic potential of the

cylindrical electrostatic deflector in MSURK89 as the following COSY INFINITY–script function:

FUNCTION YLVDA PSI RHO F0 ;

VARIABLE LHS NM ; VARIABLE DVAR 1 ;

VARIABLE J 1 ;

VARIABLE F NM ; VARIABLE FD NM 2 ;

VARIABLE LHS1 NM ; VARIABLE LHS2 NM ;

F := F0 ;

DVAR := LOG( R2 / R1 ) ;

LHS := 2∗ PI ∗ ( PSI+ I ∗LOG(RHO/ SQRT( R2∗R1 ) ) ) / DVAR ;

LHS1 := DER( 1 ,LHS) ;

LHS2 := DER( 2 ,LHS) ;

LOOP J 1 ORDER+1 ;

CO J ;
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FD ( 1 ) := LHS1 / ( 1 + EXP1 ( F ) ) ;

FD ( 2 ) := LHS2 / ( 1 + EXP1 ( F ) ) ;

POTI FD 2 F ;

CO ORDER ;

F := F0 + F ;

ENDLOOP ;

ENDFUNCTION ;

5.9.3 Lattice Potential Model

Considering the ∼ 1/r falloff shape of the electrostatic potential, we modeled the Proton EDM

LSCT lattice by superposition of the electrostatic potentials of two nearest electrostatic cylindrical

deflectors at every point of the lattice.

For that purpose, we utilized a subsystem of two adjacent electrostatic cylindrical deflectors,

and implemented its representation in Mathematica and, as a COSY INFINITY script, in MSURK89.

The plates of one deflector (“primary deflector”) are placed at ρ ∈ {R1,R2}, and −π/8≤ ψ ≤ 0.

The other deflector (“adjacent deflector”) and its potential are obtained using appropriate coordinate

transformations, namely, a rotation, a translation, and a reflection. The subsystem comprising the

primary and the adjacent deflector is shown in Fig. 5.17, and a plot of this subsystem’s electrostatic

potential is shown in Fig. 5.18.

5.9.4 Tracking in MSURK89

We implemented tracking of the Proton EDM LSCT lattice in MSURK89. Fig. 5.19 shows a 16-turn

tracking picture for one sector of the lattice. Tracking begins and ends at the central cross section of

an electrostatic cylindrical deflector (points A and F in Fig. 5.17). The largest value of the objective

function ε = OBJ(w,z) from eq. 5.34 encountered in this tracking was ∼ 10−13, as Fig. 5.20 shows.
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Figure 5.17: The subsystem of two adjacent electrostatic cylindrical deflectors in the Proton EDM
LSCT lattice. The subsystem is bounded by the central cross sections of the deflectors. Geometrical
parameters: R1 = 39.985 m, R2 = 40.015 m, α = π/8−2θ , and L = 2 m.
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Figure 5.18: Electrostatic potential ϕ of the two-deflector subsystem, shown in Fig. 5.17. The
electrostatic potential is scaled to ±1 at the plates. The x–z coordinate system is the same as in Fig.
5.17.
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Figure 5.19: A particle launched with initial offset xi = 7.43682×10−4 m and momentum direction
angle θx = 5.67880× 10−4 rad through 16 sectors (16 one-sector turns, or one full turn) of the
Proton EDM LSCT lattice. The s coordinate is the distance along the path ABCDEF, and x is the
horizontal local transversal coordinate. The two vertical gridlines indicate element edges between
the arc-shaped drifts and the straight drift (approximately, the electrostatic cylindrical deflector
edges). The asymmetry of the x minima may be explained by the formal use of arc-shaped drifts in
the lattice model, whereas particles in drifts actually have straight-line trajectories.
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Figure 5.20: Values of the objective function ε = OBJ(w,z) from eq. 5.34 encountered in the particle
tracking shown in Fig. 5.19. The s coordinate is the distance along the path ABCDEF. The objective
function ε values are indicative of the electrostatic potential calculation accuracy.

The objective function values are indicative of the electrostatic potential calculation accuracy and

are ideally zero.

5.9.5 Lattice Implementation in COSY INFINITY

To implement the Proton EDM LSCT lattice in COSY INFINITY, we could consider specifying its

particle optical elements, that is, the cylindrical electrostatic deflectors and the drifts, in one-to-one

correspondence to the lattice specification from [78]. However, the issue with that approach is that

there are no arc-shaped drift elements in COSY INFINITY. Furthermore, particle optical elements

in COSY INFINITY are specified in Frenet–Serret beamline coordinates relative to the reference

orbit, and, in this representation, an arc-shaped drift would be unphysical. A particle in a drift has

a straight-line trajectory, and formally setting the reference trajectory in a drift as a circular arc

would not satisfy the definition of reference trajectory that is foundational in COSY INFINITY, thus

invalidating COSY INFINITY calculations for that element.

However, we can construct a custom particle optical element in COSY INFINITY by its specifying
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its fields and using a valid reference orbit. We would need to specify the entry point of the reference

trajectory for this element, which could be calculated in COSY INFINITY or otherwise. Following

this approach, we could make a particle optical element spanning the space between the central

cross sections of two adjacent electrostatic cylindrical deflectors. This would implicitly include the

curved drifts while abstracting from their problematic details.

Continuing to analyze our problem statement, we recall that the arc-shaped drifts in [78]

are used to account for fringe fields of the electrostatic cylindrical deflectors. However, COSY

INFINITY already has rigorous and fully Maxwellian fringe field–modeling functionality (fringe

field calculations mode FR3) that takes into account the impact of fringe fields on the reference

orbit. Element lengths in COSY INFINITY are from EFB to EFB, not from physical edge to physical

edge. It is a good idea to replace, not augment the arc-shaped drifts by COSY INFINITY’s built-in

fringe fields treatment.

Thus, we removed the arc-shaped elements from the model of the Proton EDM LSCT lattice,

leaving 16 electrostatic cylindrical deflectors of (EFB-to-EFB) angle α = π/8 separated by standard

straight-line drifts of length L = 2 m. This is in good agreement with the Storage Ring EDM

collaboration’s Proton EDM LSCT lattice description [3, app. RingLat and LattParams].

5.9.5.1 Fringe Field of Electrostatic Cylindrical Deflector

Whereas the path ABCDEF in Fig. 5.17 is not a true reference orbit, it is within ∼ 10−3 m of the

reference orbit, as Fig. 5.19 indicates, and provides a reasonable approximation of the fringe field

along the reference orbit. Fig. 5.21 shows the Ex component of the electrostatic field along the

BCDE part of the path ABCDEF (“path BCDE”).

As we intended to use separate particle optical elements for each of the electrostatic cylindrical

deflectors and for the drift, we modeled the fringe field of one electrostatic cylindrical deflector,

shown in Fig. 5.22. The EFB20 was sEFB/D = 0.920939 (see sec. 2.3.1 for definition of EFB

denoted as EFB20).

We note that this fringe field falloff is practically identical to the fringe field falloff of the
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Figure 5.21: Blue color denotes the horizontal transversal component Ex of the electrostatic field
of two adjacent electrostatic cylindrical deflectors along the path BCDE. The abscissa s/D is the
distance s along the path ABCDEF, scaled by the distance D between the plates, and with the origin
at point B (a deflector edge). The dashed-red curve is a reflection of the solid-blue curve relative
to the midpoint between the deflectors at s/D ≈ 34.7, demonstrating that the field satisfies the
reflection symmetry.

Figure 5.22: Fringe field of one electrostatic cylindrical deflector. The red vertical gridline at
sEFB/D = 0.920939 denotes the EFB20. The electrostatic field Ex is scaled to 1 well inside the
deflector. The abscissa s/D is the distance s along the path ABCDEF, scaled by the full aperture d,
and with the origin at point B (the deflector edge).
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(a) Fringe field falloffs of the electrostatic cylindrical deflector (solid blue) and a
semi-infinite capacitor with infinitely thin plates (dashed red).

(b) Difference between fringe field falloffs of (1) the electrostatic cylindrical deflec-
tor and (2) a semi-infinite capacitor with infinitely thin plates.

Figure 5.23: Fringe field falloffs of (1) the electrostatic cylindrical deflector and (2) a semi-infinite
capacitor with infinitely thin plates. The electrostatic fields Ex (s) are scaled to 1 well inside the
deflectors. The falloffs are horizontally offset by the EFB20.
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Coefficient Value

a1 1.0614024399605924
a2 1.6135741290714967
a3 −0.9401447081042862
a4 0.4781500036872176
a5 −0.14379986967718494
a6 0.017831089071215347

Table 5.1: Enge function coefficients of a semi-infinite capacitor with rounded edges of D/20
plate thickness. Here, we used these Enge function coefficients to model the fringe field of the
electrostatic cylindrical deflector in the Proton EDM LSCT lattice.

semi-infinite capacitor with parallel, infinitely thin plates, as Fig. 5.23 shows. Therefore, we can use

the results for fringe fields of semi-infinite capacitors to model the fringe field of the electrostatic

cylindrical deflector.

In [78], the electrostatic cylindrical deflectors were modeled by infinitely thin plates at radii

ρ = R1 and ρ = R2 in order to apply the conformal mapping specified in eq. 5.31. However, we had

already obtained, using conformal mapping methods, fringe field falloffs of semi-infinite capacitors

with plates of arbitrary thickness. The plate thickness of D/20 is quite realistic.

We used Enge function coefficients of a semi-infinite capacitor with rounded edges of D/20

plate thickness, listed in Table 5.1.

5.9.6 Tracking in COSY INFINITY

We encoded the Proton EDM LSCT lattice in COSY INFINITY as follows.

R := 40 ; PHI := 2 2 . 5 ; A := 0 .015 ;

N1 := 1 ; N2 := −1 ; N3 := 1 ;

N4 := −1 ; N5 := 1 ;

A1 := 1.0614024399605924 ; A2 := 1.6135741290714967 ;

A3 := −0.9401447081042862 ; A4 := 0.4781500036872176 ;
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A5 := −0.14379986967718494 ; A6 := 0.017831089071215347 ;

FC 1 1 2 A1 A2 A3 A4 A5 A6 ;

FC 1 2 2 A1 A2 A3 A4 A5 A6 ;

UM ;

LOOP J 1 16 ;

DL L / 2 ;

ES R PHI A N1 N2 N3 N4 N5 ;

DL L / 2 ;

ENDLOOP ;

Variables N1–N5 and A1–A6 are the electrostatic cylindrical deflector’s (1) inhomogeneity

coefficients and (2) Enge function coefficients listed in Table 5.1 and derived in sec. 2.6, respectively.

COSY INFINITY’s most accurate fringe field computations mode FR3 was used. The lattice begins

and ends at the midpoint of one of the drift elements.

We tracked protons at the magic momentum p0 = 0.7 GeV/c through this lattice for 16,000

turns, with computation order 7. Phase space position projections to the x–a plane were drawn every

11 turns (co-prime with the 16-fold rotational symmetry). Relativistic equations of motion were

used.

First, we tracked particle rays with initial x offsets within the physical aperture. The motion

was highly linear, and there was practically no visible difference between tracking picture without

symplectification and with EXPO symplectification.

To observe the nonlinear motion and the formal dynamic aperture, we eventually set the initial

particle ray coordinates as

(x,a,b,y, l,δK) = (k ·0.7 m,0,0,0,0,0) ,

for k = 1,2, . . . ,10.

The resulting tracking pictures are shown in Fig. 5.24. In sub-figure (a), without symplectifica-

tion, the outer particles gently fly off to infinity. In sub-figure (b), EXPO symplectification results
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(a) Tracking without symplectification. Calculation CPU time: 14.7 s.

(b) Tracking with EXPO symplectification. Calculation CPU time: 13.2 s.

Figure 5.24: Proton EDM LSCT lattice: the x–a projections of particles tracked in COSY INFINITY,
for 16,000 turns, with relativistic equations of motion. Particles were launched horizontally, with
initial x offsets up to 7 m.
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in the outer particles having quite a linear motion and apparently closed orbits in the x–a projection.

5.10 Conclusion

We benchmarked COSY INFINITY and MSURK89 by tracking particles through an electrostatic

spherical deflector and a homogeneous magnetic dipole for 160,000 turns. MSURK89 is our in-

house eighth order Runge–Kutta–Verner tracking code that integrates individual orbits in each

tracking turn, and we developed MSURK89 in the context of this study. We studied integrator

errors in MSURK89 and optimized the initial integrator step size. Tracking was performed with

relativistic and non-relativistic equations of motion, as well as with EXPO symplectification and

without symplectification. The test-cases results are in good agreement with analytical solutions,

especially for COSY INFINITY with EXPO symplectification and for MSURK89.

We described and performed the direct computation of the DA transfer map of an electrostatic

spherical deflector LCS using simple ODEs and Kepler’s theory. The results agree well with transfer

maps of the electrostatic spherical deflector obtained using the built-in element of COSY INFINITY.

The deviations from the conditions of symplecticity g1, g2, and g3 were ∼ 10−17 to ∼ 10−16 in

case of calculation using the Kepler theory transition matrix, ∼ 10−16 in case of COSY INFINITY’s

built-in electrostatic spherical deflector element ESP, and ∼ 10−15 in case of integration of the

ODEs in polar laboratory coordinates. However, the transfer map of the electrostatic spherical

deflector computed using the program GIOS significantly disagrees with the other three transfer

maps. The deviations g2 and g3 in GIOS were also significant in magnitude and indicated that the

disagreement is due to error(s) in the program GIOS.

Finally, we modeled and tracked a variant [78] of the Proton EDM LSCT lattice [3]. In

MSURK89, we implemented a particle optical element representing a 22.5◦ sector of this lattice

that calculates the DA-valued electrostatic potential inside the element, and we tracked the lattice.

The lattice, as defined in [78], uses short arc-shaped drifts to account for fringe fields of its

electrostatic cylindrical deflectors. We replaced this construct by COSY INFINITY’s rigorous and

fully Maxwellian fringe field treatment, and we tracked the lattice for 16,000 turns.
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CHAPTER 6

INVESTIGATION OF SPIN DECOHERENCE AND SYSTEMATIC ERRORS IN
FROZEN SPIN AND QUASI-FROZEN SPIN LATTICES

6.1 Introduction

The quasi-frozen spin (QFS) method for measurement of the deuteron EDM was proposed by

Yurij Senichev [98] as a modification of the frozen spin (FS) method. Whereas the FS method

requires spin to be constantly aligned with momentum, the QFS method requires spin to be aligned

with momentum only on average. Another advantage of the QFS method is that existing storage

rings, such as the Cooler Synchrotron COSY at Forschungszentrum Jülich, can be adapted to satisfy

the QFS method conditions.

We considered one FS and two QFS lattices in COSY INFINITY. For the FS and QFS methods

to be feasible, the spin coherence time in the respective lattices must exceed the required EDM

signal measurement time of 103 s. Our spin decoherence study shows that, with an RF cavity and

optimized sextupole family strengths, the spin decoherence in these lattices often remains in the

same range for at least 4.2×105 turns. This range is of the same order in the FS and QFS lattices.

Systematic errors are a fundamental limiting factor for EDM signal detection and measurement.

Rotational magnet misalignments are especially relevant to EDM measurement, as Bx and Bz

magnetic field components that arise from them rotate the spin vector out of the midplane, creating

a fake EDM signal.

To address systematic errors due to rotational magnet misalignments, the following modification

can be added to the FS and QFS methods: (1) particle bunches are tracked through the lattice in

forward and reverse directions, using the horizontal plane to calibrate the magnetic field when

switching the tracking direction; and (2) the EDM signal is extracted by taking the half-sum of

the spin precessions in the vertical plane. This approach requires suppression of the Bz error

field component using additional trim coils. Additionally, it is necessary that the vertical spin
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decoherence due to systematic errors and the transversal and longitudinal beam emittance remain

sufficiently low for EDM signal extraction from vertical spin precession.

To simulate rotational magnet misalignments in the FS and QFS lattices, we applied normally

distributed spin kicks to the magnetic dipoles or the combined E+B field elements, as appropriate.

The spin kick values were generated from uniformly distributed random numbers1. Vertical spin

decoherence in the resulting lattices often remains in the same range (or grows within the range of a

related spin decoherence curve) for at least 4.2×105 turns, and it is comparable in the FS and QFS

structures.

6.2 Spin Coherence in Lattices for EDM

In beam physics, spin coherence refers to a measure or quality of preservation of polarization in

an initially fully polarized beam. Methods for EDM or MDM signal measurement using storage

rings, such as those introduced in Ch. 1, are based on the alignment of a particle’s spin vector with

its momentum if the measured quantity was zero, and they focus on spin dynamics relative to that

condition. Ideally, all particles in a bunch would have the same orientation; however, in reality, there

is always a spin decoherence effect. Consequently, it is necessary to minimize spin decoherence and

to ensure that it is small enough for a meaningful measurement to be made. For definiteness, we

generally consider spin polarization to be measurable if the spin decoherence is below 1 rad. The

time during which spin coherence meets the requirements is called the spin coherence time (SCT).

6.2.1 Spin Coherence Requirements

Consider the reference particle in a storage ring. Its spin has an s-dependent invariant spin axis n̄(s)

[90, p. 15][11, pp. 274–279], around which the spin precesses, and which is the stable direction

in terms of polarization. Storage ring experiments with polarized beams typically align the spin

vectors with n̄(s). In these cases, although the spin vectors relatively quickly decohere in terms of

1A random variable is called a random variate if it (1) satisfies a specific probability distribution
and (2) is generated from uniformly distributed random numbers [8, Ch. 5].
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phase in precessive motion around n̄(s), this does not affect the polarization along the n̄(s) vector,

which has a larger polarization lifetime [90, p. 15].

However, EDM and MDM storage ring methods require spin polarization along the momentum

vector, which is horizontal, whereas n̄(s) is vertical. Furthermore, not only spin coherence in terms

of the phase of polar coordinate θ in the horizontal plane is crucial for the experiment, but alignment

with the momentum vector needs to be maintained. This presents new challenges regarding spin

coherence and SCT [90, p. 16][45].

In an FS lattice for EDM, the spin vectors would be rotated out of the horizontal plane due to

EDM and a horizontal component Ex of the electrostatic field. According to the Thomas–BMT

equation (introduced in sec. 1.3), the horizontal component Ex of the electrostatic field would result

in a horizontal component ΩEDM,x of the spin vector’s EDM angular frequency,

ΩEDM,x = η
qEx
2mc

, (6.1)

where η is the EDM factor defined by

d = η
q

2mc
s,

which proportionally relates EDM d and spin s.

Considering that the target search region for neutron EDM has been narrowed down to

10−31 e·cm > |dn| > 10−26 e·cm [89][84, p. 21] and the order-wise approximate equivalency

of the deuteron EDM dD and neutron EDM dn according to dimensional analysis and SUSY con-

siderations [3, pp. 7–9], suppose that dD ' 10−29 e·cm. We remark that, likewise, the so-called

nominal EDM is defined as 10−29 e·cm in [106, Ch. 8, p. 9] for protons and electrons.

This yields

ηD =
2mDcdD
h̄sDqD

' 10−15,

where mD = 2.01 u is the deuteron mass, sD = 1 is the deuteron spin, and qD = 1 e is the deuteron

electric charge.
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According to Newton’s second law, for zero radial acceleration at the reference orbit, a cylindrical

electrostatic deflector with a realistic bending radius R0 = 42.17 m must have an electrostatic field

Ex =
γmDv2

0
qDR0

= 1.2×107 V
m
,

where v0 = 1.46×108 m/s is the velocity of a deuteron at kinetic energy of 270 MeV. The kinetic

energy of 270 MeV results in the maximal figure of merit (FOM; in this case, the product of the

cross section by the analyzing power) for deuteron scattering on a carbon target [94][104, Ch. 5].

The resulting x component ΩEDM,x of the spin vector’s angular velocity due to EDM is, applying

eq. 6.1,

ΩEDM,x = ηD
qDEx
2mDc

' 10−9 rad/s.

Therefore, the required SCT for deuteron spin to reach a measurable azimuthal angle ϕ = 1 µrad

would be T ' 1000 s. In contrast, the observation time in muon MDM experiments is limited by the

muon lifetime τµ = 2.2×10−6 s [43, p. 36], which is relativistically dilated to τµγ = 64.4×10−6 s

in the E989 Experiment [43, p. 515].

6.2.2 General Principles of Spin Decoherence Optimization

Integration of the orbital equations of motion through one turn around the lattice in phase space as a

vector space (nDv)
v over differential algebra nDv [11, pp. 84–117] results in an orbital transfer map

M ∈ (nDv)
v. The orbital transfer map M expresses the orbital motion as

zn = M (zn−1) ,

where zn−1 are the orbital coordinates at the beginning of the n-th turn around the lattice and zn are

the orbital coordinates at the end of said turn.

Similarly, integration of the Thomas–BMT equation results in a spin transfer map

S ∈ SO3 (nDv), a 3×3 special orthogonal matrix with nDv-valued elements, which expresses the

spin motion as

sn = S (zn−1)sn−1,
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where sn−1 is the spin vector at the beginning of the n-th turn around the lattice and sn is the spin

vector at the end of said turn.

Spin decoherence can be diminished by minimizing the injection-time beam size ∆z0 and spin

decoherence ∆s0, as well as by optimizing the transfer maps M and S via the lattice composition

and particle optical element parameters. The latter is achieved by first optimizing the first-order

DA (or Taylor series expansion) effects, then optimizing the second-order effects, and sequentially

proceeding to higher orders as necessary.

The sequential order of optimizing spin decoherence by effects of different orders is essential,

as electrostatic and magnetic multipoles of an order k typically have significant higher-order

components of orders k+ 1, k+ 2, and so on. On the other hand, lower-order components are

insignificant and ideally zero, except under the presence of alignment errors, in which case their

magnitude is typically still small in practice. Therefore, optimization of the k-th order of the

orbital transfer map generally affects the higher orders while not disrupting the already completed

optimization of the lower orders.

6.2.3 Suppression of Longitudinal Effects Using an RF Cavity

Radio-frequency (RF) cavities are particle optical elements, in which the electromagnetic field

oscillates as a function of time. Most RF cavities are variations of the cylindrical pillbox cavity,

with TMmnp (transverse magnetic, conventionally enumerated by m, n, and p) modes specifying

the electric field E and the transverse magnetic field B [13, pp. 241–242]. For example, in the

fundamental mode TM010 [13, p. 242],

(Er,Eθ ,Ez) =

(
0,0,E0J0

(
x01r
Rc

)
cos(ωt)

)
,

(Br,Bθ ,Bz) =

(
0,−E0

c
J1

(
x01r
Rc

)
sin(ωt) ,0

) (6.2)

in the cylindrical coordinates (r,θ ,z), where z is the longitudinal coordinate, the Frenet–Serret

coordinates are (x,y) = r (cosθ ,sinθ), Jm is the Bessel function of the first kind of order m, Rc is

the RF cavity radius, x01 = 2.405, and ω is the angular frequency of the RF cavity.
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Conventionally, RF cavities are used for beam acceleration or deceleration. However, RF cavities

are also instrumental in the suppression and averaging of longitudinal effects such as momentum

deviation. This is accomplished by synchronizing the particle beam and the RF cavity so that

the reference particle passes through the RF cavity when its electric field is zero, particles with

a positive longitudinal offset are decelerated by the electric field, and particles with a negative

longitudinal offset are accelerated by the electric field. Hence, the RF cavity’s angular frequency

is ω = hω0, where h is a natural number called the harmonic number and ω0 is the beam angular

frequency.

For example, consider a reference particle that passes through an RF cavity in the fundamental

mode TM010, with E and B fields as in eq. 6.2, at times t = π (2k−1/2)/ω , where k ∈ Z. An

off-reference particle of charge q and longitudinal offset l = −γv0∆t/(1+ γ), where v0 is the

reference velocity and ∆t = t− t0 is the time-of-flight offset, is acted upon by longitudinal electric

field

Ez (l) =−E0J0

(
x01r
Rc

)
sin
(
(1+ γ)ωl

γv0

)
.

Provided that qE0 > 0, the particle is accelerated (decelerated) in case of a small negative (positive,

respectively) longitudinal offset l.

This results in elliptic dynamics of particles in the longitudinal l–δK plane in the time-of-flight

range−π <ω∆t < π , where l is the longitudinal offset and δK =(K−K0)/K0 is the relative kinetic

energy offset, for particles sufficiently close to the reference particle. By translational symmetry

of period T = 2π/ω , elliptic dynamics also occur in the time-of-flight ranges −π +2πk < ω∆t <

π + 2πk for k ∈ Z other than k = 0. Another, qualitatively distinct regime is that if the relative

kinetic energy offset δK of a particle is too large, the particle has an unstable motion and eventually

slips away to |l|= ∞.

The boundary separating stable, elliptic dynamics of particles in the l–δK plane from other

modes of behavior is called the separatrix. An example of a separatrix is shown in Fig. 6.1 (see also

Figs. 9.5–7 in [113, pp. 269–271]).

The length of an RF cavity can be estimated [94] by the quarter wavelength L = c/4νRF. This
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Figure 6.1: The separatrix (blue) of the Senichev BNL FS lattice (introduced in sec. 6.3) with the RF
cavity voltage V = 100 kV, the RF cavity harmonic number h = 5, and fringe field calculations off.
Particles are launched with initial l offsets up to 12.45 m and tracked in the l–δK plane. Particles
within the separatrix (black) have ellipsoidal orbits centered at (l,δK) = (0,0), whereas the five
particles outside the separatrix (green), by translational symmetry in l, should have elliptic dynamics
centered at approximately (l,δK) = (17 m,0). However, these five particles appear to have unstable
motion because of the decreasing accuracy of a DA representation excessively far from the reference
orbit. The blue separatrix graph was obtained by tracking a particle very near the separatrix.

gives practical constraints on the harmonic number h determining the RF cavity revolution frequency

νRF, due to engineering and lattice configuration considerations.

6.2.4 Spin Decoherence Minimization Using an RF Cavity and Sextupoles

In this subsection, we will describe the theory of first- and second-order spin decoherence mini-

mization using an RF cavity and sextupoles.

6.2.4.1 Synchronous Acceleration Principle

A lattice using an RF cavity to suppress the longitudinal effects, as outlined above, satisfies the

synchronous acceleration principle (which is also called the phase stability principle [113, pp.

266–270]) independently proposed in 1945 by Veksler [110] and McMillan [76]. The longitudinal
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dynamics in such a system are described by the equations [100, p. 2579]

dϕ

dt
=−ωRFηδ ,

dδ

dt
=

qVRFωRF
2πhβ 2E

sinϕ,

where ϕ is the phase offset relative to the synchronous (reference) phase ϕ = 0; δ = ∆p/p0 is the

relative momentum deviation from the reference momentum; η is the slip factor; q is the particle

charge; VRF is the voltage gap of the RF cavity; ωRF is the angular frequency of the RF cavity; and

h is the harmonic number.

6.2.4.2 Orbit Lengthening Due to the Betatron Motion and Momentum Deviation

Let Trev be the revolution period of a particle in a system that utilizes the synchronous acceleration

principle to suppress the longitudinal effects. Senichev et al. demonstrated in [100, p. 2579] that

∆Trev
Trev

=
∆(L/v)

L/v
=

=

(
∆L
L

)
β

+

(
α0−

1
γ2

)
δ +

(
α1−

α0
γ2 +

1
γ4

)
δ

2 +O
(

δ
3
)
,

where L is the particle orbit length, v is the particle velocity, (∆L/L)β is orbit lengthening due to

the betatron motion, δ = ∆p/p0 is the relative momentum deviation, and α = α0 +α1δ +O
(

δ 2
)

is the first-order Taylor expansion of the momentum compaction factor.

Thus, every particle in the system has its own equilibrium-level momentum shift [100, p. 2580]

∆δeq =
γ2
0

γ2
0 α0−1

[
δ 2

m
2

(
α1−

α0
γ2
0
+

1
γ4
0

)
+

(
∆L
L

)
β

]
,

where δm is the particle’s amplitude of relative momentum deviation.

In a particle bunch, the maximal orbit lengthening due to the betatron motion can be expressed

as [100, p. 2580] (
∆L
L

)
β

=
π

2L

[
εxvx + εyvy

]
,

where εx and εy are horizontal and vertical beam emittances, respectively; and vx and vy are

horizontal and vertical tunes, respectively.
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Therefore, the beam has the following equilibrium momentum spread due to momentum

deviation and the betatron motion [100, p. 2581]:

∆δ̃eq =
γ2
0

γ2
0 α0−1

[
δ̃ 2

m
2

(
α1−

α0
γ2
0
+

1
γ4
0

)
+

π

2L

(
εxνx + εyνy

)]
,

where δ̃m is the amplitude of relative momentum deviation of the entire particle beam.

6.2.4.3 Orbit Lengthening Correction Using Sextupoles

The equilibrium momentum spread ∆δeq results in an equilibrium energy spread expressed as ∆γeq.

Since the spin tune is ν = γG, this results in a spin tune spread [100, p. 2581]

2π 〈∆ν〉N = 2πG
〈
∆γeq

〉
N

after N turns, which signifies spin decoherence growth.

To minimize the spin decoherence growth due to momentum deviation and the betatron motion,

sextupoles or octupoles may be used.

A sextupole of length lsext and strength

Ssext =
q
p

∂ 2By

∂x2 ,

where B is the magnetic field and χm is the magnetic rigidity, affects the second-order momentum

compaction factor as [100, p. 2581]

∆α1,sext =−
SsextlsextD3

0
L

,

where D0 is the momentum deviation–independent part of dispersion D(s,δ ) = D0 (s)+D1 (s)δ +

O
(

δ 2
)

. At the same time, it directly affects the orbit lengthening as [100, p. 2581][97, p. 3019](
∆L
L

)
sext

=∓
SsextlsextD0βx,yεx,y

L
,

where βx and βy are the horizontal and vertical beta functions, respectively; and minus and plus

refer to orbit lengthening due to horizontal and vertical plane effects, respectively.
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To minimize the spin decoherence by compensating the orbit lengthening, we can use three or

more families of sextupoles to solve the following system of equations [97, p. 3019]:

− εx
2L ∑

i
SilsiDxiβxi =

εx
2L

πνx,

εy

2L ∑
i

SilsiDxiβyi =
εy

2L
πνy,

−δ
2 1

L ∑
i

SilsiD
3
xi = δ

2
α1,

where lsi is the length and Dxi is the horizontal dispersion function of the i-th sextupole, respectively.

The sextupole strengths that solve this system of equations should be the smallest possible to

minimize other effects of the sextupoles, which in turn may have to be corrected if they become too

significant. To this end, sextupoles may be placed in the lattice at minima/maxima of Dx, βx, and βy

[100, p. 2581].

6.2.4.4 Chromaticity Correction Using Sextupoles

To minimize spin decoherence, in addition to correcting the orbit lengthening, it is necessary to

perform chromaticity correction. Chromaticity can be compensated by sextupole family strengths

that solve the system of equations [46][97, p. 3019][64, pp. 160–170]

∑
i

SilsiDxiβxi = ξx,

−∑
i

SilsiDxiβyi = ξy,

where horizontal and vertical chromaticities are defined as the derivatives

ξx,y =
∂vx,y

∂δ

∣∣∣∣
δ=0

of the betatron tunes νx and νy by the relative momentum deviation δ , respectively.

We remark that chromaticity is also often defined as derivatives of the betatron tunes νx and νy

by the relative offset of the particle’s kinetic energy δK = (K−K0)/K0. The conversion between

chromaticities defined through momentum and through kinetic energy can be obtained using the
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chain rule and the relativistic formula for the kinetic energy

K =

√
p2c2 +m2c4−mc2

or the non-relativistic formula K = p2/2m, as suitable. The two chromaticity definitions are essen-

tially equivalent (modulo this conversion), including for the purposes of chromaticity compensation.

6.2.4.5 Calculation of Chromaticity

Working with beamline coordinate systems that use the relative offset of the particle’s kinetic energy

δK , as in COSY INFINITY, it is convenient to define the horizontal and vertical chromaticities as the

derivatives of the betatron tunes νx and νy by δK , respectively.

To derive expressions for the chromaticities

ξx,y =
∂vx,y

∂δK

∣∣∣∣
δK=0

,

consider a transfer map M that acts on coordinate vector z:

M (z) = ∑
i≥1

∑
i1+···+i6=i

M j
i1···i6

z
i1
1 · · ·z

i6
6 ,

where M j
i1···i6

are the transfer map’s DA coefficients.

A particle with a sufficiently small energy offset δK = δ and zero longitudinal offset l = 0 will

have a closed orbit with a fixed point

z̊ = (z̊1, z̊2, z̊3, z̊4,0,δ ) .

Let M̃ be the re-expansion of the original transfer map M around the fixed point z̊ in coordinates

z̃ = z− z̊, and let M̃ j
i1···i6

be its DA coefficients:

M̃ (z̃) = ∑
i≥1

∑
i1+···+i6=i

M̃ j
i1···i6

z̃
i1
1 · · · z̃

i6
6 =

= ∑
i≥1

∑
i1+···+i6=i

M j
i1···i6

(z̃1 + z̊1)
i1 · · ·(z̃4 + z̊4)

i4 z̃
i5
5 (z̃6 +δ )i6− z̊.
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For the reference particle, the horizontal and vertical betatron tunes are

νx,y =
1

2π
arccos

[
tr
(
Mx,y

)
2

]
,

where Mx and My are the 2× 2 x and y submatrices of the linear part M of the transfer map M ,

respectively.

Let νx,y (δ ) be the betatron turns corresponding to the closed orbit for the energy offset δ . We

have the Taylor expansions

νx,y (δ ) = νx,y (0)+
∂νx,y

∂δ
(0)δ +O

(
δ

2
)
,

where

ξx,y =
∂νx,y

∂δ
(0)

are the chromaticities.

Expressing νx,y (δ ) in terms of the re-expanded transfer map,

νx,y =
1

2π
arccos

[
tr
(
M̃x,y

)
2

]
, (6.3)

where the 2×2 x and y submatrices M̃x,y of the linear part M̃ of the transfer map M̃ can be obtained

from the equation M (z)− z̊ = M̃ (z̃).

Because z̊ = 0 in case δ = 0, we have for z̊ that

z̊ =
∂ z̊
∂δ

δ +O
(

δ
2
)
.

In a lattice satisfying the midplane symmetry, it is sufficient to consider the coordinates

(z1,z2,z6) = (x,a,δK) ,

as the coefficients (y|δK) and (b|δK) vanish.

To obtain ∂ z̊/∂δ , we solve the equation
λ1δ

λ2δ

δ

= M


λ1δ

λ2δ

δ

 ,
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where

M =


M1

1 M1
2 M1

6

M2
1 M2

2 M2
6

0 0 1


is the linear part of the transfer map M in (x,a,δK) coordinates.

This can be rewritten as

IH


λ1

λ2

1

+


0

0

1

=


M1

1 M1
2 M1

6

M2
1 M2

2 M2
6

0 0 1




λ1

λ2

1

 ,

where

IH =


1 0 0

0 1 0

0 0 0

 .

This yields
∂ z̊
∂δ

= (λ1,λ2,1) , (6.4)

where 
λ1

λ2

1

= (M− IH)−1


0

0

1

 .

We note that

∂ (M (z))
∂δ

=
∂
(
M̃ (z̃)

)
∂δ

+
∂ z̊
∂δ

=

=
∂M̃

∂δ
(δ , z̃)+

∂M̃

∂ z̃
(δ , z̃)

∂ z̃
∂δ

+
∂ z̊
∂δ

= 0;

thus, considering eq. 6.4, we have

∂M̃X
∂δ

(z̃) =−∂M̃X
∂ z̃

(z̃)
∂ z̃
∂δ
− ∂ z̊

∂δ
=

=
∂M̃X

∂ z̃
(z̃)


λ1

λ2

1

−


λ1

λ2

1

 ,

(6.5)
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where
∂M̃X

∂ z̃
(z̃) =

(
∂
(
M̃X

)
i

∂ z̃ j
(z̃)

)
1≤i, j≤3

and M̃X is the (x,a,δK) part of the transfer map M̃ .

Further, writing out the transfer map coefficients for the 2×2 x submatrices M̃x and Mx of M̃

and M, respectively, we obtain

M̃x = Mx +

 2M1
11λ1 2M1

22λ2

2M2
11λ1 2M2

22λ2

δ+

+

 M1
12λ2 M1

21λ1

M2
12λ2 M2

21λ1

δ +

 M1
16 M1

26

M2
16 M2

26

δ +O
(

δ
2
) (6.6)

in terms of the first and second order DA coefficients of the transfer map M .

From eq. 6.3 the formula for the horizontal chromaticity is

ξx =
1

2π

∂

∂δ
arccos

[
1
2

tr
(
M̃x (δ )

)]∣∣∣∣
δ=0

.

Using eq. 6.6 to write out the transfer map coefficients, we have for the horizontal chromaticity

ξx =

[
2π

(
M1

2M2
1 −M1

1

(
M2

2 −1
)
+M2

2 −1
)√

4−
(
M1

1 +M2
2
)2]−1

·

·

[
M1

6

(
−M2

1

(
M1

12 +2M2
22

)
+2
(

M2
2 −1

)
M1

11 +
(

M2
2 −1

)
M2

12

)
+

+M1
2

(
M2

1

(
M1

16 +M2
26

)
−M2

6

(
2M1

11 +M2
12

))
+

+
(

M1
1 −1

)(
M2

6

(
M1

12 +2M2
22

)
−
(

M2
2 −1

)(
M1

16 +M2
26

))]
.

Using K∗PARA(1) to define the reference particle of kinetic energy K in COSY INFINITY,

essentially, solves the same problem, and gives the correct result for chromaticity as the first

derivative of the betatron tune by the parameter PARA(1). Calculating the chromaticity manually

using formulas above, we obtained the same numerical results as in COSY INFINITY.

217



Figure 6.2: The Senichev BNL FS lattice layout, a plot of its beta and dispersion functions, and
a diagram of the BNL E+B bending element used in its bending sections. (Image source: Yurij
Senichev, Serge Andrianov, Andrei Ivanov, Stanislav Chekmenev, Martin Berz, & Eremey Valetov,
Investigation of Lattice for Deuteron EDM Ring, In Proc. of International Computational Accelera-
tor Physics Conference (ICAP’15), Shanghai, China, 12–16 October 2015, pages 17–19, JACoW,
Geneva, Switzerland, 2016; use permitted under the Creative Commons Attribution License CC BY
3.0.)

6.3 Frozen Spin and Quasi-Frozen Spin Lattices

6.3.1 Senichev BNL Frozen Spin Lattice

The frozen spin (FS) lattice concept was introduced in Ch. 1. We implemented and studied

an FS lattice for deuteron EDM with combined E+B bending elements, where the entire MDM

angular velocity ΩMDM term in the Thomas–BMT equation vanishes, which is achieved by a radial

electrostatic field [2, p. 10]

E =
BcGβγ2

1−Gβ 2γ2 ≈ BcGβγ
2,

218



where B is the vertical magnetic field and G is the deuteron’s anomalous MDM. We call such E+B

bending elements “BNL elements”, as they were first proposed at BNL, and we codenamed this

lattice in our work as the Senichev BNL lattice.

The lattice, proposed by Senichev [96], is 145.85 m in length and uses deuterons at the kinetic

energy of 270 MeV. It comprises two E+B bending sections interposed by two straight sections.

The lattice is shown in Fig. 6.2.

An RF cavity is used to suppress first-order and, partially, second-order spin decoherence by

mixing the particles relatively to their equilibrium energies, averaging out the4γG for each particle.

The RF cavity is at voltage V = 100 kV, in the realistic range of ∼ 0.1 MV to ∼ 0.5 MV [94].

For good energy averaging, the RF cavity frequency must be one to two orders higher than ∆γG

[94]. The RF frequency is νRF = 5ν0, where v0 = 1.00 MHz is the beam revolution frequency,

providing synchronicity and good energy averaging. The remaining second-order component of

spin decoherence, due to the average of4γG being different for each particle, is suppressed by two

families of sextupoles with optimized strengths.

6.3.2 Quasi-Frozen Spin Lattices

6.3.2.1 The QFS Concept

The quasi-frozen spin (QFS) lattice concept is based on the FS concept, but the requirement that spin

needs to be aligned with momentum is relaxed: in QFS, spin is aligned with momentum on average

during each turn. The QFS condition to maintain an average alignment of spin with momentum is

θB +θE =0 [98, pp. 213–214], where θB and θE are the polar rotation angles of spin relative to

momentum in the magnetic field and electrostatic field, respectively.

According to the Thomas–BMT equation, the MDM angular frequency is

ΩMDM =
q
m

[
GB−

(
G− 1

γ2−1

)
E×β

c

]
. (6.7)

At the same time, the momentum precession of a particle in magnetic field B is

ωB =
q
m

B
γ
, (6.8)
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Figure 6.3: The ratio k of spin tune νE
s in the electrostatic field to spin tune νB

s in the magnetic field
as a function of kinetic energy K, from 75 MeV to 300 MeV, for the deuteron.

and the momentum precession of a particle in electrostatic field E is

ωE =
q
m

E×β

cβ 2γ
. (6.9)

Scaling spin precessions due to magnetic and electric fields in eq. 6.7 by momentum precessions

in eqns. 6.8 and 6.9, respectively, we obtain

θB = γGΦB (6.10)

and

θE = β
2
γ

(
1

γ2−1
−G

)
ΦE , (6.11)

where ΦB and ΦE are the total amplitudes of momentum rotation due to magnetic and electric

fields, respectively.

This yields the QFS condition in terms of momentum rotation as [98, pp. 213–214]

γGΦB +β
2
γ

(
1

γ2−1
−G

)
ΦE = 0. (6.12)
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Moreover, we obtain from eqns. 6.11 and 6.10 that the ratio k of spin tune νE
s = θE/ΦE in the

electrostatic field to spin tune νB
s = θB/ΦB in the magnetic field is

k =
νE

s
νB

s
=

=
β 2

G

(
G− 1

γ2−1

)
,

which decreases from k = 6.5 at kinetic energy of K = 75 MeV to k = 5.5 at kinetic energy of

K = 300 MeV for the deuteron [98, p. 214], as Fig. 6.3 shows.

Considering that the total momentum rotation in one turn around the lattice is ΦB +ΦE = 360◦,

eq. 6.12 uniquely defines the total amplitudes of momentum rotation ΦB and ΦE at a kinetic energy

K.

Because θE =−θB and spin is aligned with momentum on average, the maximum deviation of

spin relative to momentum is, at most, by angle θ/2 in the horizontal plane, where θ = |θE |= |θB|

is the total amplitude of spin rotation relative to momentum in the magnetic or electrostatic field.

With radial electrostatic field, the torque due to EDM rotating spin out of the horizontal plane is

proportional to the projection of spin on the momentum vector. Thus, the EDM signal growth in

the QFS concept is, at most, smaller than in the FS concept proportionally to the factor [98, pp.

213–215][96, p. 18]

J0 (θ)' 1− θ 2

4
,

where spin is aligned with momentum. Considering that the deuteron’s anomalous MDM is

G =−0.143, we expect the EDM signal to be reduced by, at most, only two percent [98, p. 215] in

a QFS lattice compared to an FS lattice.

6.3.2.2 Senichev 6.3 QFS Lattice

First, we considered a QFS lattice proposed by Senichev [98] and codenamed Senichev 6.3 QFS

lattice. The lattice uses separate electrostatic and magnetic bending elements with curvatures in

opposite directions to satisfy the QFS condition, and it has a characteristic “hourglass” shape. A
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Figure 6.4: The Senichev 6.3 QFS lattice layout, a plot of its beta and dispersion functions, and a
diagram of the curved electrostatic deflector used in this lattice. (Image source: Yurij Senichev, Serge
Andrianov, Andrei Ivanov, Stanislav Chekmenev, Martin Berz, & Eremey Valetov, Investigation
of Lattice for Deuteron EDM Ring, In Proc. of International Computational Accelerator Physics
Conference (ICAP’15), Shanghai, China, 12–16 October 2015, pages 17–19, JACoW, Geneva,
Switzerland, 2016; use permitted under the Creative Commons Attribution License CC BY 3.0.)

variation of this lattice can be implemented with relatively minor changes to a number of existing

lattices, including the Cooler Synchrotron COSY at Forschungszentrum Jülich.

The lattice is 166.67 m in length and uses deuterons at the kinetic energy of 270 MeV. It

comprises four magnetic bending sections, four electrostatic bending sections, and four straight

sections. The lattice is shown in Fig. 6.4.

An RF cavity is used to suppress first-order and, partially, second-order spin decoherence by

mixing the particles relatively to their equilibrium energies, averaging out the4γG for each particle.

The RF cavity is at voltage V = 100 kV or V = 200 kV, which are two cases in the realistic range of

∼ 0.1 MV to ∼ 0.5 MV [94]. Good energy averaging by an RF cavity is achieved if the resulting

longitudinal tune is one to two orders higher than the spin tune spread ∆γG [94]. The RF frequency
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Figure 6.5: The Senichev E+B QFS lattice layout, a plot of its beta and dispersion functions, and a
diagram of the straight E+B Wien filter element used in this lattice. (Image source: Yurij Senichev,
Serge Andrianov, Andrei Ivanov, Stanislav Chekmenev, Martin Berz, & Eremey Valetov, Investi-
gation of Lattice for Deuteron EDM Ring, In Proc. of International Computational Accelerator
Physics Conference (ICAP’15), Shanghai, China, 12–16 October 2015, pages 17–19, JACoW,
Geneva, Switzerland, 2016; use permitted under the Creative Commons Attribution License CC BY
3.0.)

is, for synchronicity and good energy averaging, νRF = 5ν0 or vRF = 6ν0, where v0 = 0.87 MHz is

the beam revolution frequency. The remaining second-order component of spin decoherence, due to

the average of4γG being different for each particle, is suppressed by six families of sextupoles

with optimized strengths.

6.3.2.3 Senichev E+B QFS Lattice

Next, we considered a QFS lattice by Senichev [96] codenamed Senichev E+B QFS lattice. This

lattice uses straight E+B static Wien filter elements instead of curved electrostatic deflectors to (1)

remove the nonlinear electrostatic field components due to curvature and (2) to simplify lattice from
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the engineering perspective.

The lattice is 149.21 m in length and uses deuterons at the kinetic energy of 270 MeV. It

comprises four magnetic bending sections, two E+B combined field sections, and two straight

sections. The lattice is shown in Fig. 6.5.

An RF cavity is used to suppress first-order and, partially, second-order spin decoherence by

mixing the particles relatively to their equilibrium energies, averaging out the4γG for each particle.

The RF cavity is at voltage V = 100 kV or V = 200 kV, two cases in the realistic range of ∼ 0.1 MV

to ∼ 0.5 MV [94]. The RF frequency is, for synchronicity and good energy averaging, νRF = 5ν0

or vRF = 6ν0, where v0 = 0.98 MHz is the beam revolution frequency. The remaining second-order

component of spin decoherence, due to the average of 4γG being different for each particle, is

suppressed by four families of sextupoles with optimized strengths.

6.3.3 Sextupole Family Nomenclature

In the Senichev FS and QFS lattices, the sextupole families are named SFPn, SDPn, SFNn, and

SDNn. The first letter S means sextupole; the second letter is either F or P, denoting focusing or

defocusing sextupoles, respectively; and the third letter is P or N, denoting positive or negative

dispersion, respectively. The optional number n distinguishes between different sextupole families

of the same type.

6.4 Spin Decoherence Study

We studied spin decoherence in the three FS and QFS lattices presented above, with optimization

of the spin decoherence by sextupole strengths and as a function of the number of tracking turns N.

In this study, we were concerned with the decoherence of polar angles of the spin vectors, which is

key to the feasibility of EDM signal measurement using these lattices and the FS and QFS methods.
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6.4.1 Computational Software

In the context of this chapter, we used COSY INFINITY [68] for various spin tracking calculations,

including:

1. the manual and automatic spin decoherence optimization by sextupole family strengths;

2. the investigation of spin decoherence growth as a function of the number of turns; and

3. the study of the effects of systematic errors on spin decoherence.

We used Wolfram Mathematica notebooks for:

1. the automated preparation of COSY INFINITY input files from templates using the specified

parameters, patterns, and markers in the template files; and

2. the storage, processing, quality assurance, and report generation using data from the COSY

INFINITY output files. All optimization and tracking plots in the remainder of this chapter

were generated using the report-generating Mathematica notebook.

6.4.2 Fringe Fields of Electrostatic Deflectors

For the fringe fields of the electrostatic deflectors (electrostatic dipoles) in the Senichev FS and QFS

lattices, we used the Enge function coefficients that we calculated in sec. 2.3 for a semi-infinite

electrostatic deflector with rounded edges and a realistic D/20 plate thickness, where D is the full

aperture of the electrostatic deflector. These Enge function coefficients are listed in Table 6.1.

6.4.3 Manual Optimization of Sextupole Strengths

As the first step in the optimization of the sextupole family strengths, we performed their manual

optimization. We tracked the three lattices for 2.5×104 turns with equidistant grid-point sets of

initial particle offsets in x–a, y–b, and l–δK planes, with the RF cavity off an on, and with the

various RF cavity frequencies and voltages as listed for each of the lattices.
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Coefficient Value

h0 1.0614024399605924
h1 1.6135741290714967
h2 −0.9401447081042862
h3 0.4781500036872176
h4 −0.14379986967718494
h5 0.017831089071215347

Table 6.1: Enge function coefficients of a semi-infinite capacitor with rounded edges of D/20
plate thickness. Here, we used these Enge function coefficients to model the fringe fields of the
electrostatic deflectors in the Senichev FS and QFS lattices.

As the spin decoherence objective function, we used the maximum spin vector’s polar angle θ

deviation from that of the reference particle:

OBJ= max
i
|θi−θ0| ,

where θi is the spin vector’s polar angle of the i-th particle in the particle bunch and index i = 0

denotes the reference particle.

In each manual-optimization tracking run, we obtained a set of objective function values OBJ

for a grid-point set of sextupole strengths assigned to a sextupole family. We performed manual

optimization with two iterations per sextupole family: the first iteration used a grid-point set of

the sextupole family strength with a large range to observe the general pattern of spin decoherence

as a function of the sextupole family strength, and the second iteration decreased the range of the

grid-point set to a neighborhood of the apparent spin decoherence minimum.

For the example of the Senichev 6.3 QFS lattice, with the RF cavity on and initial particle offsets

in the x–a plane, Fig. 6.6 shows a plot of objective function values OBJ (ordinate) as a function of

sextupole strengths (abscissa). Each plot marker color corresponds to a sextupole family – SFP1,

SFP2, SDP1, SDP2, SFN1, SDN1, or SDN2 – and the wide-range or a narrow-range set of sextupole

strengths, as denoted in the plot legend.

Compared with the x–a plane, in case of initial particle offsets in the y–b plane, the objective

function curves are more parabolic and lower in magnitude.
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Figure 6.6: Objective function OBJ as a function of sextupole family strengths in the Senichev 6.3
QFS lattice. Each plot marker color corresponds to a sextupole family – SFP1, SFP2, SDP1, SDP2,
SFN1, SDN1, or SDN2 – and the wide-range (‘a’) or a narrow-range (‘b’) set of sextupole strengths,
as specified within the plot legend codes. Tracking was performed for 2.5×104 turns with the RF
cavity on, particles launched with initial x offsets up to xi =±5×10−3 m, fringe field mode FR3,
RF cavity frequency ν = 4.4 MHz, and RF cavity voltage V = 100 kV.

6.4.4 Automatic Optimization of Sextupole Strengths

Having obtained the approximate global minima for the spin decoherence objective function OBJ

as a function of each of the sextupole family strengths, we further optimized the spin decoherence

using COSY INFINITY’s built-in Levenberg–Marquardt optimizer.

For the example of the Senichev 6.3 QFS lattice, with the RF cavity on and initial particle offsets

in the x–a plane, Fig. 6.7 shows the spin vector’s polar angle θ as a function of the initial x offset of

a tracked particle after 2.5×104 turns. Each plot marker color corresponds to a sextupole family –

SFP1, SFP2, SDP1, SDP2, SFN1, SDN1, or SDN2 – as denoted in the plot legend. We note that,

227



`RF`x`SFP1`S6p3FR3f4p4MHz100kVbn` `RF`x`SDP1`S6p3FR3f4p4MHz100kVbn`
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Figure 6.7: Spin vector’s polar angle θ after 2.5× 104 turns as a function of the initial x offset
of the tracked particle, after manual and automatic spin decoherence optimization by a sextupole
family strength in the Senichev 6.3 QFS lattice. Each solid curve color corresponds to a sextupole
family – SFP1, SDP1, SDP2, SFN1, SDN1, or SDN2 – as specified within the plot legend codes.
Optimization and tracking were performed with the RF cavity on, particles launched with initial x
offsets up to xi = 5×10−3 m, fringe field mode FR3, RF cavity frequency ν = 4.4 MHz, and RF
cavity voltage V = 100 kV. The curves appear to be bounded by two symmetric lines (dashed red).

with the RF cavity on, the polar angle θ vs. initial particle offset curves often appear to be bounded

by two symmetric slanted lines.

For implementation feasibility, it is necessary for the optimized sextupole strengths to have suffi-

ciently large neighborhoods, within which the objective function OBJ does not increase excessively.

Fig. 6.8 shows, on a log–log scale, the objective function OBJ versus deviation from the optimal

sextupole strengths. Considering that physical sextupoles strengths can be realistically set with the

accuracy of ∼ 0.1%, the thickness of the sextupole strength optimums is quite acceptable.

6.4.5 Spin Decoherence Analysis

At 2.5×104 turns, the spin decoherence in the FS and QFS lattices was sufficiently large for x = 5×

10−3 m or δK = 5 × 10−3 beam apertures to require the study of its longer-term
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Figure 6.8: Objective function OBJ as a function of sextupole family strengths in the Senichev 6.3
QFS lattice, in the neighborhoods of the respective optimal sextupole family strengths obtained
in the automatic optimization. The absolute value

∣∣∆B′′
∣∣ = 0 of sextupole family strength offset

corresponds to its optimal value. Each plot marker color corresponds to a sextupole family – SFP1,
SDP1, SDP2, SFN1, SDN1, or SDN2 – as specified within the plot legend codes. Optimization
and tracking were performed with the RF cavity on, particles launched with initial x offsets up to
xi =±5×10−3 m, fringe field mode FR3, RF cavity frequency ν = 4.4MHz, and RF cavity voltage
V = 100 kV.

behavior [109].

With optimized sextupole strengths and the RF cavity on, we tracked the FS and QFS lattices

for 4.2× 105 and, in some cases, for 106 turns. Normally, we tracked the lattices using COSY

INFINITY’s most accurate fringe field calculation mode FR3. For comparison, we additionally

performed tracking with the RF cavity off, as well as without fringe field calculations (fringe field

mode FR0). Spin decoherence objective function OBJ as a function of the number of tracked turns

N is shown in Figs. 6.9, 6.10, and 6.11 for the Senichev BNL, 6.3, and E+B lattices, respectively.

We found that spin decoherence suppression using an RF cavity and sextupole strengths often

results in the spin decoherence remaining in approximately the same range for at least 4.2×105

turns. Spin decoherence effects were similar in the three FS and QFS lattices. The calculation results
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Figure 6.9: Horizontal spin decoherence objective function OBJ as a function of the number N of
tracked turns in the Senichev BNL FS lattice, up to 4.2×105 turns. The spin decoherence remains
approximately in the same range below 7×10−4 during the tracking. Each curve color corresponds
to spin decoherence optimization by a sextupole family – SFP or SDP – as denoted in the plot
legend. Optimization and tracking were performed with the RF cavity on, particles launched with
initial x offsets up to xi =±5×10−3 m, fringe field mode FR3, RF cavity frequency ν = 3.5 MHz,
and RF cavity voltage V = 100 kV.

indicate that spin decoherence suppression using an RF cavity and sextupoles may be sufficient to

optimize spin decoherence to less than 1 rad in one billion turns, achieving the spin coherence time

(SCT) of 103 s required for the EDM signal measurement [109].

6.5 Systematic Errors Study

Systematic errors due to imperfections in the physical lattice, including particle optical element

misalignments [18, pp. 448–451] and geometric errors [60, ch. 13, pp. 73–76], are causative to a

fake EDM signal. Considering the Thomas–BMT equation, rotational magnet misalignments are

particularly problematic in this respect. We note that (1) the electrostatic deflector field strengths

are interdependent with the strengths of magnetic dipoles via the lattice structure and the QFS or FS

condition, as applicable, and that (2) the magnetic field direction needs to be accurately reversed for

reverse lattice traversal, whereas the electrostatic field remains unchanged.
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Figure 6.10: Horizontal decoherence objective function OBJ as a function of the number N of tracked
turns in the Senichev 6.3 QFS lattice, up to 4.2×105 turns. For three of the sextupole families, the
spin decoherence remains approximately in the same range below 2×10−3 during the tracking.
Each curve color corresponds to spin decoherence optimization by a sextupole family – SFP1, SDP1,
SDP2, SFN1, SDN1, or SDN2 – as denoted in the plot legend. Optimization and tracking were
performed with the RF cavity on, particles launched with initial x offsets up to xi =±5×10−3 m,
fringe field mode FR3, RF cavity frequency ν = 4.4 MHz, and RF cavity voltage V = 100 kV.

To extract the EDM signal in the presence of rotational magnet misalignments, Senichev

proposed a modification of the QFS and FS methods, where polarized particle bunches are tracked

in both clockwise (CW) and counterclockwise (CCW) directions [99].

Horizontal magnetic error field components Bx and Bz rotate spin in the vertical plane, causing a

fake EDM signal. On the other hand, a vertical magnetic error field component By results in rotation

in the horizontal plane, which has an impact on the satisfaction of the QFS or FS condition and on

spin decoherence but does not result in a fake EDM signal.

We studied spin dynamics in the QFS and FS lattices in the presence of rotational magnet

misalignments causing horizontal magnetic error field components Bx and Bz. In particular, we

studied spin decoherence and precession frequencies in the vertical plane.
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Figure 6.11: Horizontal decoherence objective function OBJ as a function of the number N of
tracked turns in the Senichev E+B QFS lattice, up to 4.2× 105 turns. The spin decoherence
remains approximately in the same range below 1.5×10−3 during the tracking. Each curve color
corresponds to spin decoherence optimization by a sextupole family – SFP, SDP, SFN, or SDN –
as denoted in the plot legend. Optimization and tracking were performed with the RF cavity on,
particles launched with initial x offsets up to xi =±5×10−3 m, fringe field mode FR3, RF cavity
frequency ν = 4.9 MHz, and RF cavity voltage V = 100 kV.

6.5.1 EDM Signal Extraction by Tracking in Opposite Directions

Considering the Lorentz force, the reversal of an orbital transfer map reverses the direction of the

magnetic field but does not affect the electrostatic field. At the same time, traversal of a lattice in

the reverse direction reverses the direction of the reference particle’s momentum. As a result, the

MDM angular velocity of the reference particle,

ΩMDM =
q
m

[
GB−

(
G− 1

γ2−1

)
E×β

c

]
,

in the Thomas–BMT equation reverses direction if the lattice is traversed in the reverse direction.

On the other hand, the EDM angular velocity of the reference particle,

ΩEDM =
q
m

η

2

[
E
c
+β ×B

]
,
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remains the same due to reverse traversal of the lattice. This can be seen by substituting −E for E

and −β for β in the ΩMDM and ΩEDM equations.

Therefore, with a sufficiently small transversal and longitudinal beam emittance, it is possible to

extract the EDM signal by tracking the lattice in CW and CCW directions and canceling out the

fake EDM signal due to magnet misalignments.

6.5.2 Reverse Spin Transfer Map

To perform spin tracking in a lattice traversed in the CCW direction, it is necessary to compute

the reverse orbital and spin transfer maps. COSY INFINITY’s built-in procedure MR computes the

reverse orbital transfer map for a given orbital transfer map. Additionally, if each particle optical

element in a lattice is symmetric relative to its central cross section, the reverse transfer map can be

obtained by merely reversing the order of the particle optical elements in the lattice model.

To complement the procedure MR, we developed a procedure called SMR that calculates the

reverse spin transfer map. The procedure SMR is as follows.

PROCEDURE SMR NAP LAP ; {REVERSES SPIN MAP NAP TO LAP}

VARIABLE COD 1 NV ; VARIABLE NUM 1 ;

VARIABLE I 1 ; VARIABLE J 1 ;

VARIABLE MM NM1 3 3 ;

VARIABLE T1 NM1 1 ; VARIABLE T2 NM1 1 ;

VARIABLE FLG 1 ;

NUM := MIN(TWOND, 4 ) ;

MATINV NAP MM ;

MM( 1 , 3 ) := −MM( 1 , 3 ) ; MM( 2 , 3 ) := −MM( 2 , 3 ) ;

MM( 3 , 1 ) := −MM( 3 , 1 ) ; MM( 3 , 2 ) := −MM( 3 , 2 ) ;

LOOP I 2 NUM 2 ; COD( I−1) := DD( I−1) ;

COD( I ) := −DD( I ) ; ENDLOOP ;

LOOP I NUM+1 NV ; COD( I ) := DD( I ) ; ENDLOOP ;

IF ND>2 ; COD( 5 ) := −DD( 5 ) ; ENDIF ;
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LOOP I 1 3 ; LOOP J 1 3 ;

T1 ( 1 ) := MM( I , J ) ;

POLVAL 1 T1 1 COD NV T2 1 ;

LAP( I , J ) := T2 ( 1 ) ;

ENDLOOP ; ENDLOOP ;

ENDPROCEDURE ;

Consider a spin transfer map S : (Xi,Zi)→ Xi+1, where Xi is the spin vector space and Zi is

the orbital phase space after the i-th turn around the lattice in the forward direction. For each turn i,

Xi is the 3D sphere S3 and Zi =R2v, where v is the phase space dimension. To take into account the

nonlinear terms, the elements of the 3×3 matrix S can be specified as DA values, which we assert

as S ∈ SO3 (nDv). In contrast, in the linear case or approximation, S is an element of SO3 (R).

The inverse spin transfer map S−1 :
(

Xi+1,R2v
)
→ Xi is the inverse matrix of the matrix S .

Time reversal changes signs of momentum coordinates a and b, the longitudinal offset l [11, p.

147], and the longitudinal component sz of the spin vector.

The reverse spin transfer map S R is obtained by applying the respective transformation to the

inverse spin transfer map:

S R = R̂S · (S−1 ◦ R̂) · R̂S, (6.13)

where

R̂ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


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acts on the phase space coordinates (x,y,δK ,a,b, l) and

R̂S =


1 0 0

0 1 0

0 0 −1


acts on the spin vector coordinates

(
sx,sy,sz

)
. To obtain eq. 6.13, we made use of the property

R̂−1
S = R̂S.

6.5.3 Error Field Implementation

Considering the Thomas–BMT equation, a small perturbation of the magnetic field acts with a first-

order perturbation correction as a small proportional rotation on the spin vector. In the systematic

errors study, we implemented rotational magnet misalignments as augmentation of the magnetic

dipoles or combined E+B elements, as appropriate, with small, normally distributed rotational spin

kicks.

For calculation of the spin kicks, we noted that magnetic error field components Bx and Bz in a

homogeneous magnetic dipole result in the following change to the MDM angular velocity:

4ΩMDM =
qG
m

(Bx,0,Bz) .

The total spin kick for a homogeneous magnetic dipole of angle α and radius R is then

t04ΩMDM =
αR
v0
4ΩMDM =

=
αGqR
mv0

(Bx,0,Bz) ,

where t0 is the time of flight of the reference particle with velocity v0 through the magnetic dipole.

We implemented the spin kicks in COSY INFINITY as elements RSX, RSY, and RSZ. The spin

kick elements rotate the spin vector by a specified angle ANG around the x, y, and z axes, respectively.

As a representative example, the RSX spin kick element is as follows.
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PROCEDURE RSX ANG ;

VARIABLE I 1 ; VARIABLE J 1 ;

{ S e t r o t a t i o n m a t r i x }

UMS ;

LOOP I 1 3 ; LOOP J 1 3 ; SSCR( I , J ) := 0∗DD( 1 ) ;

ENDLOOP ; ENDLOOP ;

SSCR ( 1 , 1 ) := 1 + 0∗DD( 1 ) ;

SSCR ( 2 , 2 ) := COS(ANG) + 0∗DD( 1 ) ;

SSCR ( 3 , 2 ) := −SIN (ANG) + 0∗DD( 1 ) ;

SSCR ( 2 , 3 ) := SIN (ANG) + 0∗DD( 1 ) ;

SSCR ( 3 , 3 ) := COS(ANG) + 0∗DD( 1 ) ;

LOCSET 0 0 0 0 0 0 ; CE := ’RSX’ ; DR := 0 ;

UPDATE 1 1 1 ; { Apply e l e m e n t }

ENDPROCEDURE ;

Our Mathematica notebook for automated preparation of COSY INFINITY input files from

templates based on specified settings (1) calculated the spin kick parameters and (2) inserted the

spin kick elements into the generated COSY INFINITY code.

6.5.4 Bx Magnetic Field Component Due to Systematic Errors

Consider the spin dynamics of the reference particle in an FS or a QFS lattice. Let the effective

EDM angular velocity be ΩEDM, aligned with the x axis and rotating the spin vector out of the

midplane. Traversing the lattice in the CW direction, a nonzero Bx magnetic field component arising

from systematic errors would add an effective MDM angular velocity ΩBx , for the total effective

angular velocity in the vertical plane [99, p. 3395–3396]

Ω
CW
x = ΩBx

CW +ΩEDM. (6.14)

Traversal of the lattice in the CCW direction would change the sign of the MDM angular
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velocity, leaving the angular velocity ΩEDM due to EDM unchanged:

Ω
CCW
x = ΩBx

CCW +ΩEDM ≈

≈−ΩBx
CW +ΩEDM.

(6.15)

In the horizontal plane, for the particle bunch, the average spin angular velocity can be expressed

as Ωy = 0+ 〈δΩdecoh〉, where 〈δΩdecoh〉 accounts for spin decoherence in the horizontal plane.

Considering eqns. 6.14 and 6.15, with Bx magnetic field components due to systematic errors,

angular velocity due to EDM can be extracted as [99, p. 3395–3396]

ΩEDM =
ΩCW

x +ΩCCW
x

2
−

ΩBx
CCW +ΩBx

CW

2
. (6.16)

Accordingly, to apply this EDM measurement method, it is necessary (1) to minimize the MDM

angular velocity decoherence σ
(
ΩBx

)
in the vertical plane using the same method as for spin

decoherence minimization in the horizontal plane, that is, using the RF cavity and by optimizing

the sextupole family strengths; (2) to minimize
∣∣∣ΩCW

Bx +ΩCCW
Bx

∣∣∣ by calibrating the magnetic fields,

which can be achieved by matching the spin precession frequencies in the horizontal plane [99, p.

3395–3396]; and (3) to minimize the transversal and longitudinal emittance.

6.5.5 Bz Magnetic Field Component Due to Systematic Errors

Now consider the Bz magnetic field component in a homogeneous magnetic dipole due to a rotational

misalignment. We denote the z component of the MDM angular velocity due to the Bz magnetic

error field component as Ωz = ΩBz , whereas the x and y components of the MDM angular velocity

are Ωx = 0 and Ωy = 0+δΩdecoh, where δΩdecoh accounts for spin decoherence in the horizontal

plane [99, p. 3396]. Hence, the MDM angular velocity is

ΩMDM =
(
0,δΩdecoh,ΩBz

)
.

Let the initial condition for the spin vector be s0 = (0,0,1). In this case, ΩMDM is tilted at an

angle α = arctan
(
ΩBz/δΩdecoh

)
from the vertical axis, and spin precesses in a circle of the unit

sphere centered at
(

0,sinα cosα,sin2 α

)
. The radius of the circle is cosα .
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We note that
sinα =

tanα√
1+ tan2 α

=

=
ΩBz√

Ω2
Bz +δΩ2

decoh

and
cosα =

1√
1+ tan2 α

=

=
δΩdecoh√

Ω2
Bz +δΩ2

decoh

.

The solution of the Thomas–BMT equation in this case is

s(t) =
(

0,sinα cosα,sin2
α

)
+

+ cosα (sin(|ΩMDM| t) ,−sinα cos(|ΩMDM| t) ,cosα cos(|ΩMDM| t)) =

=
1

|ΩMDM|2
(

δΩdecoh |ΩMDM|sin(|ΩMDM| t) ,

ΩBzδΩdecoh (1− cos(|ΩMDM| t)) ,Ω2
Bz +δΩ

2
decoh cos(|ΩMDM| t)

)
,

(6.17)

where |ΩMDM|=
√

Ω2
Bz +δΩ2

decoh (see also [99, p. 3396]).

Changing the lattice traversal direction from CW to CCW reverses the direction of spin vector’s

MDM angular velocity; however, it also reverses the direction of the z axis, which is why the same

eq. 6.17 applies to both CW and CCW traversal modulo the difference between the inverse and

the reverse spin transfer maps. Thus, the method of Bx magnetic error field component mitigation

described above is not applicable to the Bz case, and the solution is to minimize ΩBz using additional

trim coils [99, p. 3396].

6.5.6 EDM Measurement Accuracy with Rotational Magnet Misalignments

D. Eversmann et al. [34, 95, p. 3] presented a new method of spin tune measurement, which enables

measurement of spin angular frequency Ω with standard deviation

σΩ = 2δεA

√
6
N

1
T
,
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where N is the total number of recorded events, δεA is the relative error of polarization asymmetry

measurement, and T is the measurement duration.

The FS and QFS methods require the measurement duration to be at least ∼ 1000 s. We

assume realistic values of measurement duration T1 ' 1000 s and the number of particles per fill

N0 = 1011. Detector count events are aggregated into groups of 2000, resulting in δεA ≈ 0.03. With

beam exhaustion at measurement of 75% and polarimeter efficiency of R = 1%, the x components

ΩCW
x and ΩCCW

x of spin angular frequencies may be measured with standard deviation σ1
Ω
'

2.4×10−7 rad/s [95, p. 2277].

With a realistic annual accelerator beamtime of Tann ' 6000 h, the standard deviation of

σ
ann
Ω

=
σ1

Ω√
Tann/T1

' 1.6×10−9 rad/s

may be achieved. Considering that an EDM of ∼ 10−30 e · cm would, by eq. 6.1, result in an EDM

angular velocity of ΩEDM,x ' 10−8 rad/s, the standard deviation σann
Ω
' 1.6×10−9 rad/s would

enable EDM signal measurement using eq. 6.16 with an accuracy of 10−30 e · cm [95, p. 2277].

To maintain the EDM signal measurement accuracy of 10−30 e · cm, it is necessary, considering

eq. 6.17, to minimize the z component ΩBz of the MDM angular frequency due to rotational

magnet misalignment using trim coils to a substantially lower level than σann
Ω
' 10−9 rad/s, such

as ΩBz ' 10−10 rad/s [99, p. 3396].

Similarly, when changing the direction of the lattice traversal, the magnetic field must be

reversed with a sufficient accuracy for
∣∣∣ΩCW

Bx +ΩCCW
Bx

∣∣∣ to be at a substantially lower level than

σann
Ω
' 10−9 rad/s, such as

∣∣∣ΩCW
Bx +ΩCCW

Bx

∣∣∣' 10−10 rad/s.

6.5.7 Spin-Tracking Datasets

To assess the feasibility of EDM signal measurement by tracking the lattice in CW and CCW

directions and applying eq. 6.16, it is necessary to study spin dynamics and decoherence in the

vertical plane in the presence of rotational magnet misalignments.
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In the context of our systematic errors study, we produced more than 46 spin-tracking datasets.

These datasets include combinations of the following: (1) Senichev 6.3, E+B, and BNL lattices; (2)

optimization by the SFP, SDP, SFP1, and SDP2 sextupole families, as appropriate, as well as no

optimization; (3) −0.5x, 0x, 0.05x, 0.5x, 1x, and 2x corrective horizontal spin kicks, where 1x is

exactly satisfies the QFS/FS condition and 0x is the lack of a spin kick; and (4) normally distributed

random-variate rotational magnet misalignments with standard deviation σ (α) = 10−4 rad and, to

ensure that vertical spin decoherence is proportional to rotational magnet misalignments, σ (α) =

5×10−5 rad. As expected, the vertical spin decoherence was proportional to the rotational magnet

misalignments.

Each spin-tracking dataset comprises 24 COSY INFINITY output files, one for each combination

of the following: (1) Bx and Bz error fields and no error field; (2) CW and CCW lattice traversal

directions; (3) spin tracking in the horizontal and the vertical plane; and (4) particles launched with

equidistant initial x and δK offsets.

6.5.8 Spikes in the Horizontal Spin Decoherence Measure at the Poles

We often observed apparent horizontal spin decoherence spikes when the spin vectors of the particle

bunch passed through the poles of the spherical coordinate system at azimuthal angles φ =±π/2 ,

as illustrated in Fig. 6.12. These spikes are due to the use of spin decoherence measures σθ and σφ ,

where θ is the polar angle, and do not have a physical meaning.

To confirm that this interpretation is correct, we considered a minimal test case of three particles

with initial spin spherical coordinates (r,θ ,φ) = (1,−ε,0), (1,0,0), and (1,ε,0). We rotated the

three spins around the x axis in Mathematica, and observed the same pattern of spikes in the

horizontal spin decoherence σθ at azimuthal angles φ =±π/2.

The spikes were not a hindrance to our systematic errors study; however, we note that this spikes

effect can be avoided by using a different horizontal spin decoherence measure, such as σsxy , where(
sx,sy,sz

)
are the spin vector components in Cartesian coordinates (x,y,z) and sxy =

√
s2
x + s2

y .
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(a) Azimuthal angle φref of the reference particle’s spin as a function of
the number N of tracked turns.

(b) RMS of the spin polar angles Θ of the particle bunch as a function
of the number N of tracked turns.

Figure 6.12: In this example, the RMS of the spin polar angles Θ of the particle bunch (sub-figure
b) spikes when the azimuthal angle φref of the reference particle’s spin (sub-figure a) passes through
the poles φref = ±π/2. Particles were launched through the Senichev E+B lattice with initial x
offsets up to xi =±5×10−3 m. 1x corrective spin kicks were used. Tracking was performed in the
CCW direction, with a Bx magnetic error field component, in fringe field mode FR3, with the RF
cavity on. The RF cavity frequency was ν = 4.9 MHz, and the RF cavity voltage was V = 100 kV.
The horizontal spin decoherence objective function OBJ was pre-optimized by the SDP sextupole
family strength.
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6.5.9 Vertical Spin Decoherence Analysis

The plots in Fig. 6.13 show typical vertical spin decoherence as a function of the number of turns in

the Senichev E+B and Senichev BNL lattices in case of no corrective spin kicks. The plots in Fig.

6.14 show typical vertical spin decoherence as a function of the number of turns in the Senichev

E+B and Senichev BNL lattices in case of 1x corrective spin kicks.

Vertical spin decoherence often remains in the same range, or grows in case of CW lattice

traversal within the range bounding vertical spin decoherence for the CCW lattice traversal, for at

least 4.2×105 turns. This indicates that suppression of spin decoherence using an RF cavity and

optimized sextupole family strengths may be sufficient for a 103 s SCT in the vertical plane for the

EDM signal measurement via vertical spin precession frequencies and tracking particles through

the FS or QFS lattice in the opposite directions to be feasible.

6.6 Conclusion

Our spin decoherence study of FS and QFS lattices shows that, with an optimized sextupole

family strength, the spin decoherence often remained in the same range for at least 4.2×105 turns.

This is promising with respect to the requirement of maintaining a spin coherence time of 103

seconds to possibly build a measurable EDM signal. The QFS structure decoherence is similar to

that of the FS structure.

Furthermore, the systematic errors study shows that, for at least 4.2×105 turns, the vertical spin

decoherence due to rotational magnet misalignments often remained in the same range (or grew

within the range of the spin decoherence curve for tracking in the opposite direction) in both FS

(Senichev BNL) and QFS (Senichev E+B) lattices. The vertical spin decoherences in the FS and

QFS lattices were qualitatively very similar and quantitatively within about 1–2 orders between

each other. As the sextupole family strengths were optimized for the CW lattice traversal, vertical

spin decoherence is somewhat higher when tracking in the CCW direction than when tracking in

the CW direction.

We estimate for the QFS and FS lattices that one year of measurement statistics will result in an
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(a) Senichev BNL FS lattice.
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(b) Senichev E+B QFS lattice.

Figure 6.13: RMS of the vertical spin decoherence as a function of the number N of tracked turns
in the Senichev BNL and E+B lattices, up to 4.2×105 turns. No corrective spin kicks were used.
The vertical spin decoherence remains in approximately in the same range during the tracking for
the CCW lattice traversal and grows below the respective upper bound for the CW lattices. For the
CW direction, tracking with a Bx and Bz magnetic error field component is denoted by blue and
green curve colors, respectively. For the CCW direction, tracking with a Bx and Bz magnetic error
field component is denoted by orange and red curve colors, respectively. Particles were launched
with initial x offsets up to xi =±5×10−3 m. Tracking was performed with the RF cavity on, with
the spin decoherence function OBJ pre-optimized by the SDP sextupole family strength, and in
fringe field mode FR3. The RF cavity harmonic number was h = 5, and the RF cavity voltage was
V = 100 kV.
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(a) Senichev BNL FS lattice.
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(b) Senichev E+B QFS lattice.

Figure 6.14: RMS of the vertical spin decoherence as a function of the number N of tracked turns
in the Senichev BNL and E+B lattices, up to 4.2×105 turns. 1x corrective spin kicks were used.
The vertical spin decoherence remains in approximately the same range. For the CW direction,
tracking with a Bx and Bz magnetic error field component is denoted by blue and green curve colors,
respectively. For the CCW direction, tracking with a Bx and Bz magnetic error field component is
denoted by orange and red curve colors, respectively. Particles were launched with initial x offsets
up to xi =±5×10−3 m. Tracking was performed with the RF cavity on, with the spin decoherence
function OBJ pre-optimized by the SDP sextupole family strength, and in fringe field mode FR3.
The RF cavity harmonic number was h = 5, and the RF cavity voltage was V = 100 kV.

244



EDM signal measurement accuracy of ∼ 10−30 e · cm.

Possible further research directions include (1) optimizing lattice parameters to more precisely

satisfy the FS and QFS conditions; (2) optimizing spin decoherence for both CW and CCW lattice

traversals simultaneously; (3) performing spin tracking of the lattices for larger numbers of turns;

(4) using DA normal form methods to minimize spin decoherence in the FS and QFS lattices

simultaneously by all sextupole families, which is otherwise nontrivial to perform automatically due

to convergence to local minima; (5) performing spin tracking with 3D distribution of the launched

particles in phase space for spin decoherence and systematic errors analysis.
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APPENDIX A

CONFORMAL MAPPING METHODS

A.1 Elliptic Functions and Integrals

In Legendre’s notation, the incomplete integral of the first kind (or Legendre elliptic integral

of the first kind) is defined as

u = F(ϕ,k) =
�

ϕ

0

dt√
1− k2 sin2 t

,

where the parameter ϕ is called the Jacobi amplitude1.

Carlson’s elliptic integral of the first kind RF (x,y,z) is defined as

RF (x,y,z) =
1
2

� +∞

0

dt√
(t + x)(t + y)(t + z)

,

where x,y,z≥ 0.

The function F is equivalently expressed in terms of RF (x,y,z) as

F(ϕ,k) = sin(ϕ)RF

(
cos2 (ϕ) ,1− k2 sin2 (ϕ) ,1

)
.

The DA value of RF is calculated as the sum of the scalar value (i.e., the value in R) of RF and

the antiderivative of the DA value of the first derivative of RF. A numerical method to approximate

the scalar value of RF is described in [87, pp. 309–316].

The Jacobi elliptic functions sn, cn, and dn2 are defined as

sn(u|k) = sin
(

F−1 (u,k)
)
,

cn(u|k) = cos
(

F−1 (u,k)
)
, (A.1)

dn(u|k) =
√

1− k2 sin2 (F−1 (u,k)
)
,

1We use ϕ to denote the Jacobi amplitude only in the context of definitions of elliptic functions
and integrals. Otherwise, ϕ usually denotes an electrostatic potential (or voltage).

2Additional information on the Jacobi elliptic functions can be found at http://mathworld.
wolfram.com/JacobiEllipticFunctions.html.
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where 0 < k2 < 1 and k = mod u is the elliptic modulus.

A numerical method to approximate scalar values of sn, cn, dn, and ϕ as functions of u and k is

described in [26, sec. 22.20].

The DA values of sn, cn, and dn can be obtained by applying eqns. A.1 to the DA value of ϕ .

The DA value of ϕ can be calculated as follows:

1. Calculate the DA value of M = F(ϕ (cons(u) ,k) ,k), where cons takes the constant part of a

DA value3.

2. Calculate the inverse DA value of N = M − cons(M ).

3. The DA value of the Jacobi amplitude is the sum of the DA inverse of N and the constant

part cons(ϕ (cons(u) ,k)) of the Jacobi amplitude.

The complete elliptic integral of the first kind K(k) is defined as4

K(k) = F
(

1
2

π,k
)
,

where F(ϕ,k) is the incomplete elliptic integral of the first kind. Note that the incomplete elliptic

integral F can be also written as

K(k) =
π

2

+∞

∑
n=0

[
(2π−1)!!
(2n)!!

]2
k2n.

The parameter m = k2 is often used in lieu of the elliptic modulus k as an argument of the

Jacobi elliptic functions and the elliptic integrals; for example, sn(u|m) is equivalent to sn(u|k). In

effect, there are two versions of each elliptic function and integral: one takes the parameter m, the

other takes the elliptic modulus k as an argument, and whether m or k is supplied as that argument

determines the version to be used.

3In terms of [11, ch. 2], cons(a) has the same meaning as [a]0 for any DA value a.
4Additional information on the elliptic integral of the first kind can be found at

http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html.
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A.2 Laplace Equation and Conformal Mappings

The electrostatic potential inside a beam physics element can be obtained by solving the Laplace

equation4ϕ = 0 for electrostatic potential ϕ with Dirichlet boundary conditions as the voltages

at the boundaries, e.g., the plates and the rectangular enclosure of an electrostatic quadrupole. In

many cases, for the main field of a particle optical element, the problem may be accurately modeled

by 2D geometry. This also holds for the fringe field of a semi-infinite electrostatic capacitor. The

Laplace equation then has the 2D form

∂ 2ϕ

∂x2 +
∂ 2ϕ

∂y2 = 0.

The isomorphism (x,y)↔ z = x+ i y gives an equivalent representation of the 2D geometry in

R2 on the complex plane C.

If a complex function f (x+ iy) = u(x,y)+ i v(x,y) is complex-differentiable at every point of a

region R⊆ C, it is called holomorphic (or analytic) in the region R. In turn, a complex function f

is complex-differentiable at point z0 = x0 + i y0 if there exists a neighborhood U (z0) of z0 such

that (1) f ∈C1 (U (z0)), i.e., f has continuous first partial derivatives in U (z0); and (2) f satisfies

the Cauchy–Riemann equations

∂u
∂x

=
∂v
∂y

,
∂v
∂x

=−∂u
∂y

in U (z0).

Holomorphic functions satisfy the 2D Laplace equation, i.e.,

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0,

∂ 2v
∂x2 +

∂ 2v
∂y2 = 0.

A conformal mapping (or conformal map) is a transformation w = f (z) that is locally angle

preserving. A holomorphic function is conformal at point z if f ′ (z) 6= 0. Conformal maps are

also called biholomoprhic, which reflects that both a conformal mapping and its inverse are

holomorphic.

The domain of a conformal mapping is called the canonical domain, and the image of a

conformal mapping is called the physical domain.
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A Schwarz–Christoffel mapping is a conformal mapping from the upper half-plane as the

canonical domain to the interior of a polygon as the physical domain. The polygon is generalized in

the sense that it may have vertices at the complex infinity ∞ [29, 30].

Consider an n-sided polygon as the physical domain. The preimages z j = f−1 (w j
)

of the

polygon’s vertices w j, where j = 1,2, . . . ,n, are called prevertices. We use the notation πα j,

j = 1,2, . . . ,n, for the interior angles of the polygon. For finite vertices w j, the trivial condition

0 < α j ≤ 2 applies. For vertices at the complex infinity, i.e., w j = ∞, the respective α’s are in the

interval −2≤ α j ≤ 0 [30, pp. 1–3].

Variants of the Schwarz–Christoffel mapping include using a unit disk, a bi-infinite strip, or a

rectangle as the canonical domain. We will use the general term “conformal mapping” for variants

of the Schwarz–Christoffel mapping.

For canonical domains as the upper half-plane, a unit disk, a bi-infinite strip, or a rectangle, the

analytic expressions for the respective conformal maps f or their derivatives f ′ can be found in [30].

Those formulas contain prevertices z j as parameters, which can be obtained using optimization

methods.

The electrostatic potential for a cross section or a longitudinal section modeled by a generalized

polygon may be found by obtaining a conformal mapping from a suitable canonical domain to the

polygon. A bi-infinite strip is a suitable canonical domain if the polygon comprises two groups

of consecutive sides characterized by the same constant Dirichlet boundary condition, with two

constant values in total. A rectangular part of a bi-infinite strip is a suitable canonical domain

when the physical domain is a logical (or generalized) quadrilateral. In this context, a generalized

quadrilateral is a polygon comprising four groups of sides, where the groups are defined as follows:

1. the groups are sets of consecutive sides;

2. two consecutive sides are in different groups if and only if one has a Dirichlet boundary

condition and the other one has a von Neumann boundary condition; and

3. each Dirichlet boundary condition group is characterized by one constant value as the Dirichlet
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boundary condition.

If the solution of the Laplace equation in the canonical domain is φ , the solution of the Laplace

equation in the physical domain is ϕ = φ ◦ f−1. In practice, the electrostatic potential is usually the

appropriately selected, shifted, and scaled real or imaginary part of f−1.

The solution for the electrostatic potential obtained this way is fully Maxwellian in the sense that

the analytic formula for f ′ results in the solution for the potential satisfying the Laplace equation.

As described in [30, 108], inverse conformal mapping g = f−1 may be obtained by

1. solving the equation

f (g(w))−w = 0 (A.2)

using the Newton–Raphson or another numerical method; or

2. solving the ODE
dg(w)

dw
=

1
f ′ (g(w))

, g(w0) = z0. (A.3)

A.3 Schwarz–Christoffel Toolbox

There is a number of specialized software packages for Schwarz–Christoffel and conformal

mapping computations, including the FORTRAN packages SCPACK, DSCPACK, and CONFPACK,

as well as the MATLAB package Schwarz–Christoffel Toolbox (SC Toolbox) [28]. The SC Toolbox

may be downloaded from http://www.math.udel.edu/~driscoll/SC/. See its User’s Guide

[29] for usage details.

As described on the SC Toolbox’s website [27], “the SC Toolbox is a problem-solving envi-

ronment for computation and interaction with conformal maps to regions bounded by polygons,

including unbounded regions, logical quadrilaterals, and channels”. The interactive features of the

SC Toolbox include the optional interactive selection of polygon points and Dirichlet boundary

conditions (e.g., voltages).
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We use the SC Toolbox to obtain prevertices, strip length of the canonical domain, and other

information, as applicable, for conformal maps specified by vertices and interior angles of polygonal

models.

The function polygon(W,ALPHA) constructs a polygon object, which is the SC Toolbox repre-

sentation of a polygon in the physical domain. The parameter W is a complex vector

W= [w1, · · · ,wn]

that specifies the polygon vertices w j, j = 1,2, . . . ,n, in consecutive order; and the optional parame-

ter ALPHA is a real vector

ALPHA= [alpha1, · · · ,alphan]

that specifies the respective values α j, j = 1,2, . . . ,n, defined above, i.e., the interior angles at the

vertices divided by π . If the polygon has vertices at the complex infinity ∞, (1) the parameter ALPHA

is required, and (2) polygon vertices must be specified in the clockwise order5 [29].

Once a polygon object is created, e.g., by

p= polygon ( [ 0 , 1 , 2 + i / 2 , 1 + i , i ] )

a conformal mapping can be computed from a canonical domain to the interior of that polygon. For

example,

f = rec tmap ( p , [ 1 , 2 , 4 , 5 ] )

returns a conformal mapping f from the interior of a rectangle to the interior of the polygon p. Here,

the second parameter of the function rectmap specifies the indices j of the prevertices z j that are

the corners of the rectangle [29].

When called without a parameter from the MATLAB command line, the object f returns a list of

vertices, prevertices, α values, and other information.

5Sometimes, it may be necessary to rotate (shift) the order of the vertices of the polygon in the W
vector or insert a “guiding” degenerate vertex between a vertex at the infinity and another vertex. A
degenerate vertex has the internal angle of π and does not change the function graph of the polygon.
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By default, the parameter m is not in this list. Internally, the SC Toolbox calculates and uses the

strip length L instead of the parameter m. This serves to address the floating-point error in 1−m for

small values of the parameter m. Mathematica and similar software use highly accurate real number

representations similar to Unum [47], where this is not an issue. The parameter m is related to L as

m = exp(−2πL) .

The strip length L can be displayed for the object f, e.g., by the commands

z = p a r a m e t e r s ( f ) ;

d i s p ( num2s t r ( z . s t r i p L , ’%22.16 e ’ ) )

The constant c may be obtained as the quotient of (1) the values of evaldiff(f,z), which

returns f ′ (z) in the SC Toolbox; and (2) the respective values of the analytic expression of f ′ (z)

without the constant c.

To evaluate the inverse of a conformal mapping f, by default, the SC Toolbox solves the ODE

from eq. A.3 and then uses Newton iterations to improve the solution. Optionally, the SC Toolbox

can either only use the ODE solution or only solve eq. A.2 using Newton iterations.
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APPENDIX B

SC TOOLBOX POLYGONAL MODELS OF SEMI-INFINITE CAPACITORS

B.1 One Capacitor with Infinitely Thick Plates

The following is a polygonal model code representation of the semi-infinite capacitor with

infinitely thick plates in the SC Toolbox in terms of vertices w j and interior angles α jπ . Vertices 0

and 2i were added as guiding points for the SC Toolbox’s algorithm.

p1 = polygon ( [ i , I n f , 0 , I n f , 2∗ i ] , [ 3 / 2 , 0 , 1 , −1/2 , 1 ] )

B.2 One Capacitor with Plates of D/20 Thickness

The following is a polygonal model code representation of the semi-infinite capacitor with plates

of D/20 thickness in the SC Toolbox in terms of vertices w j and interior angles α jπ . Vertices 0 and

−1+1.1i were added as guiding points for the SC Toolbox’s algorithm.

p2 = polygon ( [ 1 . 1 i , i , I n f , 0 , I n f , −1+1.1 i ] , [ 3 / 2 , 3 / 2 , 0 , 1 , −1, 1 ] )

B.3 One Capacitor with Plates of D/20 Thickness and Rounded Edges

The following is a polygonal model code representation of the semi-infinite capacitor with plates

of D/20 thickness and rounded edges in the SC Toolbox in terms of vertices w j and interior angles

α jπ . Vertices 0 and −1+1.1i were added as guiding points for the SC Toolbox’s algorithm.

p2a = polygon ( [ 1 . 1 i , 0 .0037365+1 .09986 i , 0 .00745211+1 .09944 i , . . .

0 .011126+1 .09875 i , 0 .0147378+1 .09778 i , 0 .0182671+1 .09654 i , . . .

0 .0216942+ 1 .09505 i , 0 . 0 2 5+ 1 . 0 9 3 3 i , 0 .028166+1 .09131 i , . . .

0 .0311745+ 1 .08909 i , 0 .0340086+1 .08665 i , 0 .0366526+1 .08401 i , . . .

0 .0390916+ 1 .08117 i , 0 .0413119+1 .07817 i , 0 .0433013+1 .075 i , . . .

0 .0450484+ 1 .07169 i , 0 .0465437+1 .06827 i , 0 .0477786+1 .06474 i , . . .
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0.0487464+ 1 .06113 i , 0 .0494415+1 .05745 i , 0 .0498602+1 .05374 i , . . .

0 .05+ 1 . 0 5 i , 0 .0498602+1 .04626 i , 0 .0494415+1 .04255 i , . . .

0 .0487464+ 1 .03887 i , 0 .0477786+1 .03526 i , 0 .0465437+1 .03173 i , . . .

0 .0450484+ 1 .02831 i , 0 .0433013+1 .025 i , 0 .0413119+1 .02183 i , . . .

0 .0390916+ 1 .01883 i , 0 .0366526+1 .01599 i , 0 .0340086+1 .01335 i , . . .

0 .0311745+ 1 .01091 i , 0 .028166+1 .00869 i , 0 . 0 2 5 +1 . 0 0 6 7 i , . . .

0 .0216942+ 1 .00495 i , 0 .0182671+1 .00346 i , 0 .0147378+1 .00222 i , . . .

0 .011126+ 1 .00125 i , 0 .00745211+1 .00056 i , 0 .0037365+1 .00014 i , . . .

0 . + 1 . i , i n f , 0 , i n f , −1+1.1 i ] , . . .

[ 8 5 / 8 4 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 8 5 / 8 4 , 0 , 1 , −1, 1 ] ) ;

B.4 One Capacitor with Infinitely Thin Plates

The following is a polygonal model code representation of the semi-infinite capacitor with

infinitely thin plates in the SC Toolbox in terms of vertices w j and interior angles α jπ . Vertices 0

and −1+ i were added as guiding points for the SC Toolbox’s algorithm.

p0 = polygon ( [ i , I n f , 0 , I n f , −1+ i ] , [ 2 , 0 , 1 , −1, 1 ] )

B.5 Adjacent Capacitors with Plates of 3D/4 Thickness, Symmetric Volt-
ages, and Rounded Edges

The following is a polygonal model code representation of the two adjacent semi-infinite

capacitors with plates of 3D/4 thickness, symmetric voltages, and rounded edges in the SC Toolbox

in terms of vertices w j and interior angles α jπ . Vertices 0, 6+2.5i, and −6+2.5i were added as

guiding points for the SC Toolbox’s algorithm.
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p3b = polygon ( [ −5 . + 2 . 5 i , −4.94395+2.4979 i , −4.88822+2.49162 i , . . .

−4.83311+2.4812 i , −4.77893+2.46668 i , −4.72599+2.44816 i , . . .

−4.67459+2.42573 i , −4.625+2.39952 i , −4.57751+2.36968 i , . . .

−4.53238+2.33637 i , −4.48987+2.29979 i , −4.45021+2.26013 i , . . .

−4.41363+2.21762 i , −4.38032+2.17249 i , −4.35048+2.125 i , . . .

−4.32427+2.07541 i , −4.30184+2.02401 i , −4.28332+1.97107 i , . . .

−4.2688+1.91689 i , −4.25838+1.86178 i , −4.2521+1.80605 i , . . .

−4.25+1.75 i , −4.2521+1.69395 i , −4.25838+1.63822 i , . . .

−4.2688+1.58311 i , −4.28332+1.52893 i , −4.30184+1.47599 i , . . .

−4.32427+1.42459 i , −4.35048+1.375 i , −4.38032+1.32751 i , . . .

−4.41363+1.28238 i , −4.45021+1.23987 i , −4.48987+1.20021 i , . . .

−4.53238+1.16363 i , −4.57751+1.13032 i , −4.625+1.10048 i , . . .

−4.67459+1.07427 i , −4.72599+1.05184 i , −4.77893+1.03332 i , . . .

−4.83311+1.0188 i , −4.88822+1.00838 i , −4.94395+1.0021 i , −5.+1. i , . . .

i n f , 0 , i n f , 5 . + 1 . i , 4 .94395+1 .0021 i , 4 .88822+1 .00838 i , . . .

4 . 83311+1 .0188 i , 4 .77893+1 .03332 i , 4 .72599+1 .05184 i , . . .

4 .67459+1 .07427 i , 4 .625+1 .10048 i , 4 .57751+1 .13032 i , . . .

4 .53238+1 .16363 i , 4 .48987+1 .20021 i , 4 .45021+1 .23987 i , . . .

4 .41363+1 .28238 i , 4 .38032+1 .32751 i , 4 .35048+1 .375 i , . . .

4 .32427+1 .42459 i , 4 .30184+1 .47599 i , 4 .28332+1 .52893 i , . . .

4 . 2688+1 .58311 i , 4 .25838+1 .63822 i , 4 .2521+1 .69395 i , 4 . 2 5 + 1 . 7 5 i , . . .

4 . 2521+1 .80605 i , 4 .25838+1 .86178 i , 4 .2688+1 .91689 i , . . .

4 .28332+1 .97107 i , 4 .30184+2 .02401 i , 4 .32427+2 .07541 i , . . .

4 . 35048+2 .125 i , 4 .38032+2 .17249 i , 4 .41363+2 .21762 i , . . .

4 .45021+2 .26013 i , 4 .48987+2 .29979 i , 4 .53238+2 .33637 i , . . .

4 .57751+2 .36968 i , 4 .625+2 .39952 i , 4 .67459+2 .42573 i , . . .

4 .72599+2 .44816 i , 4 .77893+2 .46668 i , 4 .83311+2 .4812 i , . . .

4 .88822+2 .49162 i , 4 .94395+2 .4979 i , 5 . + 2 . 5 i , 6 . + 2 . 5 i , i n f , . . .
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−6.+2.5 i ] , . . .

[ 8 5 / 8 4 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 8 5 / 8 4 , 0 , 1 , 0 , 8 5 / 8 4 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 8 5 / 8 4 , 1 , −1, 1 ] ) ;

B.6 Adjacent Capacitors with Plates of 3D/4 Thickness, Antisymmetric
Voltages, and Rounded Edges

The following is a polygonal model code representation of the two adjacent semi-infinite

capacitors with plates of 3D/4 thickness, antisymmetric voltages, and rounded edges in the SC

Toolbox in terms of vertices w j and interior angles α jπ . Vertices 0 and−6+ i were added as guiding

points for the SC Toolbox’s algorithm.

p6as1 = polygon ( [ −6 . + 2 . 5 i , −5.+2.5 i , −4.94395+2.4979 i , . . .

−4.88822+2.49162 i , −4.83311+2.4812 i , −4.77893+2.46668 i , . . .

−4.72599+2.44816 i , −4.67459+2.42573 i , −4.625+2.39952 i , . . .

−4.57751+2.36968 i , −4.53238+2.33637 i , −4.48987+2.29979 i , . . .

−4.45021+2.26013 i , −4.41363+2.21762 i , −4.38032+2.17249 i , . . .

−4.35048+2.125 i , −4.32427+2.07541 i , −4.30184+2.02401 i , . . .

−4.28332+1.97107 i , −4.2688+1.91689 i , −4.25838+1.86178 i , . . .

−4.2521+1.80605 i , −4.25+1.75 i , −4.2521+1.69395 i , . . .

−4.25838+1.63822 i , −4.2688+1.58311 i , −4.28332+1.52893 i , . . .

−4.30184+1.47599 i , −4.32427+1.42459 i , −4.35048+1.375 i , . . .
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−4.38032+1.32751 i , −4.41363+1.28238 i , −4.45021+1.23987 i , . . .

−4.48987+1.20021 i , −4.53238+1.16363 i , −4.57751+1.13032 i , . . .

−4.625+1.10048 i , −4.67459+1.07427 i , −4.72599+1.05184 i , . . .

−4.77893+1.03332 i , −4.83311+1.0188 i , −4.88822+1.00838 i , . . .

−4.94395+1.0021 i , −5.+1. i , −6+i , i n f , 0 , i n f ] , . . .

[ 1 , 8 5 / 8 4 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , . . .

4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 4 3 / 4 2 , 8 5 / 8 4 , 1 , 0 , . . .

1 / 2 , −1 / 2 ] ) ;

B.7 Adjacent Capacitors with Plates of D/2 Thickness at Different Voltages

The following is a polygonal model code representation of the two adjacent semi-infinite

capacitors with plates of D/2 thickness at different voltages in the SC Toolbox in terms of vertices

w j and interior angles α jπ . Vertices 0, −6+2i, and 6+2i were added as guiding points for the SC

Toolbox’s algorithm.

p3bm = polygon ( [ 0 , i n f , 5 . + 1 . i , 4 . 5 + 1 . 5 i , 5 . + 2 . i , 6 . + 2 . i , i n f , . . .

−6.+2. i , −5.+2. i , −4.5+1.5 i , −5.+1. i , i n f ] , . . .

[ 1 , 0 , 5 / 4 , 3 / 2 , 5 / 4 , 1 , −1, 1 , 5 / 4 , 3 / 2 , 5 / 4 , 0 ] ) ;
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APPENDIX C

SC TOOLBOX POLYGONAL MODELS OF THE MUON g-2 QUADRUPOLE

C.1 Nominal Symmetric Case (“SM”)

This material pertains to the calculation of the multipole terms the Muon g-2 quadrupole in the

SM case (sec. 3.2.4.1). The following MATLAB function returns the conformal mapping object f

for a conformal mapping from a rectangle to the interior of the polygon object p representing the

2D geometry.

f u n c t i o n [ p , f ] = i n i t q u a d 4

o p t i o n s = scmapopt ( ’ T o l e r a n c e ’ , 1e−16);

p = polygon ( [ 0 + 0 i , 0+5 i , −2.35+5 i , −2.35+5.3 i , 0+5 .3 i , 0+7 i , . . .

−5.59792+7 i , −5.59792+5.879900042201571253 i , . . .

−4.493957484174412+4.775937526375983 i , . . .

−4.634947505275196722+4.634947505275196722 i ] ) ;

f = rec tmap ( p , [ 6 , 1 , 2 , 5 ] , o p t i o n s ) ;

C.2 Non-Symmetric Case (“NSM”)

This material pertains to the calculation of the multipole terms the Muon g-2 quadrupole in the

NSM case (sec. 3.2.4.2). The following MATLAB function returns the conformal mapping object f

for a conformal mapping from a rectangle to the interior of the polygon object p representing the

2D geometry.
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f u n c t i o n [ p , f ] = i n i t q u a d 7

o p t i o n s = scmapopt ( ’ T o l e r a n c e ’ , 1e−16);

p = polygon ([−7−5 i , −5.25−5 i , −4.125−3.875 i , −3.875−4.125 i , −5−5.25 i , . . .

−5−7i , −0.25−7 i , −0.25−5.25 i , −2.35−5.25 i , −2.35−5 i , 2.35−5 i , . . .

2 .35−5.25 i , 0 .25−5.25 i , 0.25−7 i , 5−7i , 5−5.25 i , 3 .875−4.125 i , . . .

4 .125−3.875 i , 5.25−5 i , 7−5i , 7−0.25 i , 5 .25−0.25 i , 5 .25−2.35 i , . . .

5−2.35 i , 5+2 .35 i , 5 . 2 5 + 2 . 3 5 i , 5 . 2 5 + 0 . 2 5 i , 7+0 .25 i , 7+5 i , 5 .25+5 i , . . .

4 . 1 2 5 + 3 . 8 7 5 i , 3 . 8 7 5 + 4 . 1 2 5 i , 5+5 .25 i , 5+7 i , 0 .25+7 i , 0 . 2 5 + 5 . 2 5 i , . . .

2 . 3 5 + 5 . 2 5 i , 2 .35+5 i , −2.35+5 i , −2.35+5.25 i , −0.25+5.25 i , −0.25+7 i , . . .

−5+7i , −5+5.25 i , −3.875+4.125 i , −4.125+3.875 i , −5.25+5 i , −7+5i , . . .

−7+0.25 i , −5.25+0.25 i , −5.25+2.35 i , −5+2.35 i , −5−2.35 i , −5.25−2.35 i , . . .

−5.25−0.25 i , −7−0.25 i ] , . . .

[ 0 . 5 , 0 . 7 5 , 1 . 5 , 1 . 5 , 0 . 7 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , . . .

0 . 5 , 0 . 5 , 0 . 5 , 0 . 7 5 , 1 . 5 , 1 . 5 , 0 . 7 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 . 5 , 1 . 5 , . . .

1 . 5 , 1 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 7 5 , 1 . 5 , 1 . 5 , 0 . 7 5 , 0 . 5 , 0 . 5 , 0 . 5 , . . .

1 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 7 5 , 1 . 5 , 1 . 5 , 0 . 7 5 , 0 . 5 , . . .

0 . 5 , 0 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , 1 . 5 , 0 . 5 , 0 . 5 ] ) ;

f = rec tmap ( p , [ 5 0 , 55 , 56 , 4 9 ] , o p t i o n s ) ;
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APPENDIX D

MATLAB CODES FOR MUON g-2 QUADRUPOLE FOURIER MODES CALCULATION

D.1 Nominal Symmetric Case (“SM”)

This material pertains to the calculation of the multipole terms the Muon g-2 quadrupole in the

SM case (sec. 3.2.4.1). For the conformal mapping object f and a reference radius R, the following

MATLAB function calculates the discrete Fourier transform (DFT) dn and the Fourier modes a0,

an, bn of the electrostatic potential ϕ using a fast Fourier transform (FFT). The function returns

the DFT as the array dn, and it returns the Fourier modes as the scalar a0 and the arrays an, bn,

respectively. The function also returns the set of equidistant grid points discretizing the interval

[0,2π] as the array t, the values of the electrostatic potential ϕ at these grid points as the array

inseries, and, for quality assurance purposes, the inverse FFT transform of the forward FFT

transform of inseries as the array checkseries.

f u n c t i o n [ a0 , an , bn , cn , t , i n s e r i e s , c h e c k s e r i e s ] = f o u r i e r a n _ v 4 ( f , R)

Fs =1001;

T=2∗ pi / Fs ;

i f nargin <2

% By d e f a u l t , t h e r e f e r e n c e r a d i u s i s 4 . 5 cm

R= 4 . 5 ;

end

t =0 :T : 2∗ pi−T ;

z= p a r a m e t e r s ( f ) ;

f u n c t i o n f20 = func2 ( xin , y i n )

% Apply s y m m e t r i e s

f20=−(1− r e a l ( e v a l i n v ( f ,−abs ( x i n )+ abs ( y i n )∗1 i ) + . . .

z . p r e v e r t e x ( 1 ) ) / 2 / z . p r e v e r t e x ( 1 ) ) . ∗ ( abs ( y i n ) >= abs ( x i n ) ) . . .

+(1− r e a l ( e v a l i n v ( f ,−abs ( y i n )+ abs ( x i n )∗1 i ) + . . .
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z . p r e v e r t e x ( 1 ) ) / 2 / z . p r e v e r t e x ( 1 ) ) . ∗ ( abs ( y i n ) < abs ( x i n ) ) ;

end

i n s e r i e s = func2 (R∗ cos ( t ) ,R∗ s i n ( t ) ) ;

% p l o t ( i n s e r i e s )

o u t s e r i e s = f f t ( i n s e r i e s ) / l e n g t h ( t ) ;

a0 =2∗ o u t s e r i e s ( 1 ) ;

an =( o u t s e r i e s ( 2 : 1 : ( Fs / 2 ) ) + o u t s e r i e s ( Fs : −1 : ( Fs / 2 + 2 ) ) ) ;

bn=1 i ∗ ( o u t s e r i e s ( 2 : 1 : ( Fs /2) )− o u t s e r i e s ( Fs : −1 : ( Fs / 2 + 2 ) ) ) ;

cn= o u t s e r i e s ;

c h e c k s e r i e s = t r a n s p o s e ( a0 /2+ cos ( t r a n s p o s e ( t ) . ∗ ( 1 : l e n g t h ( an ) ) ) ∗ . . .

t r a n s p o s e ( an )+ s i n ( t r a n s p o s e ( t ) . ∗ ( 1 : l e n g t h ( 1 : l e n g t h ( bn ) ) ) ) ∗ . . .

t r a n s p o s e ( bn ) ) ;

% p l o t ( c h e c k s e r i e s )

end

D.2 Non-Symmetric Case (“NSM”)

This material pertains to the calculation of the multipole terms the Muon g-2 quadrupole in

the NSM case (sec. 3.2.4.2). For the conformal mapping object f and a reference radius R, the

following MATLAB function calculates the discrete Fourier transform (DFT) dn and the Fourier

modes a0, an, bn of the electrostatic potential ϕ using a fast Fourier transform (FFT). The function

returns the DFT as the array dn, and it returns the Fourier modes as the scalar a0 and the arrays

an, bn, respectively. The function also returns the set of equidistant grid points discretizing the

interval [0,2π] as the array t, the values of the electrostatic potential ϕ at these grid points as the

array inseries, and, for quality assurance purposes, the inverse FFT transform of the forward FFT

transform of inseries as the array checkseries.
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f u n c t i o n [ a0 , an , bn , cn , t , i n s e r i e s , c h e c k s e r i e s ] = f o u r i e r a n _ v 5 ( f , R)

Fs =1001;

T=2∗ pi / Fs ;

i f nargin <2

R= 4 . 5 ;

end

t =0 :T : 2∗ pi−T ;

i n s e r i e s = e v a l i n v ( f , R∗ cos ( t )+R∗ s i n ( t )∗1 i ) ;

z= p a r a m e t e r s ( f ) ;

i n s e r i e s = r e a l ( ( i n s e r i e s +z . p r e v e r t e x ( 1 ) ) / 2 / z . p r e v e r t e x ( 1 ) ) ;

% p l o t ( i n s e r i e s )

o u t s e r i e s = f f t ( i n s e r i e s ) / l e n g t h ( t ) ;

a0 =2∗ o u t s e r i e s ( 1 ) ;

an =( o u t s e r i e s ( 2 : 1 : ( Fs / 2 ) ) + o u t s e r i e s ( Fs : −1 : ( Fs / 2 + 2 ) ) ) ;

bn=1 i ∗ ( o u t s e r i e s ( 2 : 1 : ( Fs /2) )− o u t s e r i e s ( Fs : −1 : ( Fs / 2 + 2 ) ) ) ;

cn= o u t s e r i e s ;

c h e c k s e r i e s = t r a n s p o s e ( a0 /2+ cos ( t r a n s p o s e ( t ) . ∗ ( 1 : l e n g t h ( an ) ) ) ∗ . . .

t r a n s p o s e ( an )+ s i n ( t r a n s p o s e ( t ) . ∗ ( 1 : l e n g t h ( 1 : l e n g t h ( bn ) ) ) ) ∗ . . .

t r a n s p o s e ( bn ) ) ;
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APPENDIX E

MATHEMATICA NOTEBOOK FOR MUON g-2 QUADRUPOLE MULTIPOLE TERMS
CALCULATION

This material pertains to the calculation of the multipole terms the Muon g-2 quadrupole in the

NSM case (sec. 3.2.4.2). For the conformal mapping derivative f in the analytic form, the following

Mathematica notebook calculates the multipole terms a0, an, bn (trigonometric form), and cn

(exponential form) of the electrostatic potential ϕ using the DA method described in sec. 3.2.3.2.

The effective reference radius is Rref = 1 cm.

SetOpt ions [ Evaluat ionNotebook [ ] , P r i n t P r e c i s i o n −> 3 2 ] ;

V = 24 10 ^3 ;

\ [ Alpha ] = { 0 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 7 5 ‘ ,

1 . 5 ‘ , 1 . 5 ‘ , 0 . 7 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ ,

0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 7 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 0 . 7 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ ,

1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 7 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ ,

0 . 7 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ ,

0 . 5 ‘ , 0 . 7 5 ‘ , 1 . 5 ‘ , 1 . 5 ‘ , 0 . 7 5 ‘ , 0 . 5 ‘ , 0 . 5 ‘ } ;

zxm = 1.5707963267948974 ;

zx = Join [ Array [ zxm &, 6 ] , Array[−zxm &, 5 0 ] ] ;

zy = {0 , 4 .707844817895257 , 6 .1123226415433312 ,

12 .154244427584317 , 13 .558722251232082 , 18 .266567069128161 ,

18 .266567069128161 , 13 .274266140422423 , 12 .918629029969397 ,

11 .576281153221727 , 10 .948991934692465 , 10 .675215453051434 ,

10 .65269458697405 , 10 .604072782442005 , 10 .6027963210765 ,

10 .569241422270052 , 10 .476916632115067 , 9 .4896639886962486 ,

9 .4722605135357565 , 9 .4665721145687325 , 9 .4663618193493928 ,

9 .4586650413212396 , 9 .4552969316026854 , 9 .4223471739893334 ,

9 .3806007759118621 , 9 .3504541968427848 , 9 .3474996905761945 ,
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9 .3408322140301419 , 9 .3406516641648345 , 9 .3358001108809781 ,

9 .3213334522713787 , 8 .9452336168578217 , 8 .9307669582482223 ,

8 .9259154049643676 , 8 .9257348550990603 , 8 .9190673785530059 ,

8 .9161128722864156 , 8 .8859662932173382 , 8 .8442198951398652 ,

8 .8112701375265097 , 8 .8079020278079554 , 8 .8002052497797987 ,

8 .799994954560459 , 8 .794306555593435 , 8 .7769030804329375 ,

7 .7896504370136723 , 7 .6973256468586344 , 7 .6637707480521646 ,

7 .6624942866866617 , 7 .6138724821545702 , 7 .5913516160771657 ,

7 .3175751344358959 , 6 .6902859159059922 , 5 .347938039156598 ,

4 .9923009287031883 , 0 } ;

c = −1.1819869586349204 ‘∗^7 ;

n = 5 6 ;

i 0 = 1 ;

m = 2.1776166063953954 10^−15;

z p o i n t 0 = −9.486801376613026∗10^−1 + 9.133283534564583 I ;

J acob iSNSer [ z_ , o r d e r _ ?NumberQ , mpar_ : m] :=

S e r i e s [ JacobiSN [ z + t , mpar ] , { t , 0 , o r d e r } ] ;

JacobiCNSer [ z_ , o r d e r _ ?NumberQ , mpar_ : m] :=

S e r i e s [ JacobiCN [ z + t , mpar ] , { t , 0 , o r d e r } ] ;

JacobiDNSer [ z_ , o r d e r _ ?NumberQ , mpar_ : m] :=

S e r i e s [ JacobiDN [ z + t , mpar ] , { t , 0 , o r d e r } ] ;

f p r i m e [ z_ , o r d e r _ ?NumberQ , mpar_ : m] :=

c JacobiCNSer [ z , o r d e r , mpar ] JacobiDNSer [ z , o r d e r ,

mpar ] Product [ ( Jacob iSNSer [ z , o r d e r , mpar ] −

JacobiSN [ zx [ [ j ] ] + I zy [ [ j ] ] , mpar ] ) ^ ( \ [ Alpha ] [ [ j ] ] − 1 ) ,

{ j , 1 , n } ] ;

f p r i m e e x p a n s i o n = f p r i m e [ z p o i n t 0 , 2 5 ] ;

f e x p a n s i o n = I n t e g r a t e [ f p r i m e e x p a n s i o n , t ] ;

g e x p a n s i o n =
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I n v e r s e S e r i e s [ f e x p a n s i o n ] +

(−9.486801376613026 10^−1 + 9.133283534564583 I ) ;

g e x p a n s i o n = ( g e x p a n s i o n + zxm ) / 2 / zxm ;

c o e f f l i s t = C o e f f i c i e n t L i s t [ Normal [ g e x p a n s i o n ] , t ] ;

a0 = 2 Re [ c o e f f l i s t ] [ [ 1 ] ] ;

an = Re [ c o e f f l i s t ] [ [ 2 ; ; ] ] ;

bn = Re [ c o e f f l i s t I ] [ [ 2 ; ; ] ] ;

P r i n t [ " a0=" , a0 ] ;

P r i n t [ " an=" , an ] ;

P r i n t [ " bn=" , bn ] ;
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APPENDIX F

PYTHON VERSION OF MTERMS

The program mterms computes multipole terms of the Muon g-2 collaboration quadrupole with

optional geometrical asymmetries and/or mispowered plates specified by the user as plate distance

errors and plate voltages. mterms was implemented in COSY INFINITY and Python versions.

As Python does not have DA functionality, the Python version only uses a set of pre-calculated

multipole terms. The COSY INFINITY version, in addition to pre-calculated multipole terms, can

use the SC Toolbox and a DA method to calculate multiple terms de novo. Below, we describe the

Python version of the program and its package.

F.1 Package Contents

The program package includes mterms as a Python 3 script and as Linux and Windows standalone

executables.

1. readme.txt: the readme file.

2. mterms.fox: Python 3 source code.

3. mterms: Linux version (prepared and tested in Ubuntu 16).

4. mterms.exe: Windows version (prepared and tested in Windows 7).

5. quad.pdf: Plot of the quadrupole’s cross-sectional geometry with default distances.

F.2 Interactive Mode

Run the program and follow the prompts to enter calculation parameters. Resulting multipole

terms will be displayed on-screen and written to a file, which is named "mterms.txt" by default.
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F.3 Command-Line Arguments

mterms’s optional command-line arguments are

mterms [− i f i l e n a m e I n ] [−o f i l e n a m e O u t ] [−h ] [ / h ]

where

1. filenameIn is an input file with calculation parameters, detailed below;

2. filenameOut is an output file with calculation results (default: "mterms.txt"); and

3. −h or /h displays the help screen.

F.4 Input File Format

Optionally, the program accepts an input file specifying the calculation parameters. The file

format is ten lines of numbers as follows.

1. Scaling radius R for multipole terms [cm].

2. Nominal plate voltage magnitude ϕ [V].

3. 1st plate voltage coefficient V1.

4. 2nd plate voltage coefficient V2.

5. 3rd plate voltage coefficient V3.

6. 4th plate voltage coefficient V4.

7. 1st plate distance error D1 in centimeters.

8. 2nd plate distance error D2 in centimeters.

9. 3rd plate distance error D3 in centimeters.

10. 4th plate distance error D4 in centimeters.
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Plates are numbered counter-clockwise, starting from the left plate. Plate voltages are products of

the nominal plate voltage magnitude and the respective plate voltage coefficients. Plate distance

errors are errors in distances from the origin to the plates.

F.5 Program Listing

# ! / u s r / b i n / py t ho n

h e l p s t r = ’ ’ ’

T h i s Python program computes m u l t i p o l e t e r m s o f t h e Muon ( g−2) c o l l a b o r a t i o n

q u a d r u p o l e w i t h o p t i o n a l g e o m e t r i c a l a s y m m e t r i e s and / or mispowered p l a t e s

s p e c i f i e d by t h e u s e r as p l a t e d i s t a n c e e r r o r s and p l a t e v o l t a g e s .

INTERACTIVE MODE

Run t h e program and f o l l o w t h e prompts t o e n t e r c a l c u l a t i o n p a r a m e t e r s .

R e s u l t i n g m u l t i p o l e t e r m s w i l l be d i s p l a y e d on−s c r e e n and w r i t t e n t o a

f i l e , which i s " mterms . t x t " by d e f a u l t .

OPTIONAL COMMAND−LINE ARGUMENTS

mterms [− i f i l e n a m e I n ] [−o f i l e n a m e O u t ] [ / h ] [−h ]

f i l e n a m e I n I n p u t f i l e w i t h c a l c u l a t i o n parame ter s , d e t a i l e d below

f i l e n a m e O u t Outpu t f i l e w i t h c a l c u l a t i o n r e s u l t s

( d e f a u l t : " mterms . t x t " )

−h or / h Help i n f o r m a t i o n

INPUT FILE FORMAT

O p t i o n a l l y , t h e program a c c e p t s an i n p u t f i l e s p e c i f y i n g t h e c a l c u l a t i o n

p a r a m e t e r s . The f i l e f o r m a t i s 10 l i n e s o f numbers as f o l l o w s :

( 1 ) S c a l i n g r a d i u s R f o r m u l t i p o l e t e r m s [cm]

( 2 ) Nominal p l a t e v o l t a g e magni tude PHI [V]

( 3 ) 1 s t p l a t e v o l t a g e c o e f f i c i e n t V1

( 4 ) 2nd p l a t e v o l t a g e c o e f f i c i e n t V2

( 5 ) 3 rd p l a t e v o l t a g e c o e f f i c i e n t V3

( 6 ) 4 t h p l a t e v o l t a g e c o e f f i c i e n t V4

( 7 ) 1 s t p l a t e d i s t a n c e e r r o r D1 [cm]
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( 8 ) 2nd p l a t e d i s t a n c e e r r o r D2 [cm]

( 9 ) 3 rd p l a t e d i s t a n c e e r r o r D3 [cm]

( 1 0 ) 4 t h p l a t e d i s t a n c e e r r o r D4 [cm]

P l a t e s are numbered c o u n t e r−c l o c k w i s e , s t a r t i n g from t h e l e f t p l a t e . P l a t e

v o l t a g e s are p r o d u c t s o f t h e nomina l p l a t e v o l t a g e magni tude and t h e

r e s p e c t i v e p l a t e v o l t a g e c o e f f i c i e n t s . P l a t e d i s t a n c e e r r o r s are e r r o r s i n

d i s t a n c e s from t h e o r i g i n t o t h e p l a t e s .

’ ’ ’

_ _ a u t h o r _ _ = "E . V a l e t o v and M. Berz "

_ _ v e r s i o n _ _ = " 1 . 0 . 2 "

_ _ m a i n t a i n e r _ _ = "E . V a l e t o v "

__emai l__ = " valetove@msu . edu "

_ _ s t a t u s _ _ = " P r o d u c t i o n "

import s y s

from math import pi , cos , s i n , pow

from p a t h l i b import Pa th

def i s F l o a t ( v a l u e ) :

t r y :

f l o a t ( v a l u e )

re turn True

e xc ep t :

re turn F a l s e

def n o m i n a l c o e f f ( ) :

AN = [ ]

BN = [ ]

A0 = 0.3960514667124162002664889

AN. append (−0.6885669997872999326116172E−01)

AN. append (0 .1038549923778346421865404E−01)

AN. append (−0.1297913346966461569514939E−02)

AN. append (0 .1147644547501454185579883E−03)

AN. append (−0.8616667865527831779307380E−05)

AN. append (−0.8001982661547007625552443E−07)
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AN. append (0 .2082467167685008440847151E−06)

AN. append (−0.5650578854280667308819636E−07)

AN. append (0 .9493137805299051641279443E−08)

AN. append (−0.1178399055617841478965939E−08)

AN. append (0 .8674995375714368533264641E−10)

AN. append (0 .4744035300963714852169690E−11)

AN. append (−0.2078593716783584744931825E−11)

AN. append (0 .4148146248054382449300898E−12)

AN. append (−0.6336771062740538231062328E−13)

AN. append (0 .8490681557639771424240070E−14)

AN. append (−0.1872421797230359291328962E−14)

AN. append (0 .3426453476938451690633081E−15)

AN. append (−0.4796463381145525802394053E−16)

AN. append (0 .3673070349668451197684033E−17)

AN. append (0 .6047013893814340323967724E−18)

AN. append (−0.2935711731503183201970729E−18)

AN. append (0 .7048405345513463674564302E−19)

AN. append (0 .0000000000000000000000000E+00)

AN. append (0 .0000000000000000000000000E+00)

BN. append (0 .7766948107121075687303587E−10)

BN. append (0 .9084503808574815186009811E−09)

BN. append (−0.2740709784014760385675795E−09)

BN. append (0 .3211767800415641958410902E−10)

BN. append (0 .1212772388378897834820223E−11)

BN. append (−0.1566030408821507397282051E−11)

BN. append (0 .4348995470313623648896982E−12)

BN. append (−0.7724423871624272621235177E−13)

BN. append (0 .7215556636694773644521280E−14)

BN. append (0 .7337986574181112655162078E−15)

BN. append (−0.5034212659015152446443716E−15)

BN. append (0 .1296636147404973131491258E−15)

BN. append (−0.2062294257995577350069950E−16)

BN. append (0 .1665197708903231252482612E−17)

BN. append (0 .1802161180397575394110535E−18)

BN. append (−0.1036746736978828970543980E−18)

BN. append (0 .2483145366298546087471422E−19)

BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)
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BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)

BN. append (0 .0000000000000000000000000E+00)

re turn [ A0 , AN, BN]

def p e r t u r b c o e f f 1 ( D1 , A0 , AN, BN ) :

DAN = [ ]

DBN = [ ]

DA0 = −0.1444884897365176

DAN. append (0 .024848403415070462)

DAN. append (−0.0035964314565587524)

DAN. append (0 .0003975167425589697)

DAN. append (−0.000019027837440425757)

DAN. append (−2.6389842208771386 e−6)

DAN. append (1 .3200429446831776 e−6)

DAN. append (−3.336076829265742 e−7)

DAN. append (6 .623339431143421 e−8)

DAN. append (−1.041062666661125 e−8)

DAN. append (1 .2617566878151998 e−9)

DAN. append (−8.210887578907022 e−11)

DAN. append (−1.1765160099419854 e−11)

DAN. append (5 .596411607742279 e−12)

DAN. append (−1.3920004680873368 e−12)

DAN. append (2 .6920021350544594 e−13)

DAN. append (−4.29932669278841 e−14)

DAN. append (5 .745154992880337 e−15)

DAN. append (−4.983850750279471 e−16)

DAN. append (−2.0577218923151605 e−17)

DAN. append (2 .2283046912641997 e−17)

DAN. append (−6.547768415309331 e−18)

DAN. append (1 .3884321371806001 e−18)

DAN. append (−2.376780998696832 e−19)

DAN. append ( 0 . )

DAN. append ( 0 . )

DBN. append (3 .5484213725721443 e−6)

DBN. append (0 .000036014360182936215)
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DBN. append (−0.000010881035411630925)

DBN. append (1 .2753318430030797 e−6)

DBN. append (4 .819410386204099 e−8)

DBN. append (−6.220211484910526 e−8)

DBN. append (1 .727264556597449 e−8)

DBN. append (−3.0676944205138244 e−9)

DBN. append (2 .8646167242545424 e−10)

DBN. append (2 .9186368392854654 e−11)

DBN. append (−2.000518511207103 e−11)

DBN. append (5 .152243236370143 e−12)

DBN. append (−8.194149177053863 e−13)

DBN. append (6 .614926637530062 e−14)

DBN. append (7 .16612976746983 e−15)

DBN. append (−4.121119580780476 e−15)

DBN. append (9 .87224257084664 e−16)

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

A0 += D1 ∗ DA0

AN = l i s t (map ( lambda x1 , x2 : x1 + D1 ∗ x2 , AN, DAN) )

BN = l i s t (map ( lambda x1 , x2 : x1 + D1 ∗ x2 , BN, DBN) )

re turn [ A0 , AN, BN]

def p e r t u r b c o e f f 2 ( D2 , A0 , AN, BN ) :

DAN = [ ]

DBN = [ ]

DA0 = 0.02463158081389416

DAN. append (−0.0006531514532004401)

DAN. append (−0.0006519016577943848)

DAN. append (0 .000050219855279518)

DAN. append (7 .308752762074169 e−6)

DAN. append (−1.4847818318198809 e−6)

DAN. append (2 .7373194983682978 e−8)
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DAN. append (2 .575921941229351 e−8)

DAN. append (−5.371460655667032 e−9)

DAN. append (−2.0187850804427197 e−11)

DAN. append (1 .3699349709711163 e−10)

DAN. append (−1.4367069594248677 e−11)

DAN. append (−4.480616938928591 e−13)

DAN. append (4 .389622545399623 e−13)

DAN. append (−6.026734883546398 e−14)

DAN. append (−5.3789105734122435 e−15)

DAN. append (2 .5287025520619607 e−15)

DAN. append (−1.440333425607398 e−16)

DAN. append (−5.852426774904934 e−17)

DAN. append (1 .0732657190214119 e−17)

DAN. append (−3.371932262158921 e−19)

DAN. append (−2.696899131755618 e−19)

DAN. append (7 .290960456984063 e−20)

DAN. append (1 .5465718628549282 e−22)

DAN. append ( 0 . )

DAN. append ( 0 . )

DBN. append (0 .004291141557968972)

DBN. append (−0.00018121709368299234)

DBN. append (−0.00009307793575405624)

DBN. append (0 .000010575970230850742)

DBN. append (5 .56435100630618 e−7)

DBN. append (−2.7373406889299316 e−7)

DBN. append (3 .7729278212684966 e−8)

DBN. append (−7.810016388882003 e−10)

DBN. append (−6.805548960513614 e−10)

DBN. append (7 .860964185613506 e−11)

DBN. append (−5.91594881675488 e−12)

DBN. append (2 .3337007215824654 e−12)

DBN. append (−6.514714236739883 e−13)

DBN. append (1 .2302360401338842 e−13)

DBN. append (−6.670448858970904 e−15)

DBN. append (−4.141239834729562 e−15)

DBN. append (1 .3793259742916664 e−15)

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )
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DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

A0 += D2 ∗ DA0

AN = l i s t (map ( lambda x1 , x2 : x1 + D2 ∗ x2 , AN, DAN) )

BN = l i s t (map ( lambda x1 , x2 : x1 + D2 ∗ x2 , BN, DBN) )

re turn [ A0 , AN, BN]

def p e r t u r b c o e f f 3 ( D3 , A0 , AN, BN ) :

DAN = [ ]

DBN = [ ]

DA0 = 0.009376974330997085

DAN. append (0 .0016466903355588974)

DAN. append (0 .00025673876508554755)

DAN. append (0 .000034633068178518805)

DAN. append (3 .699119998049537 e−6)

DAN. append (4 .0035108069670176 e−7)

DAN. append (3 .1135075378037185 e−8)

DAN. append (−3.4013761560371777 e−10)

DAN. append (−8.329064640595302 e−10)

DAN. append (−1.9072194257427367 e−10)

DAN. append (−3.0553601098349 e−11)

DAN. append (−3.256616872039333 e−12)

DAN. append (−1.1364648285565948 e−13)

DAN. append (2 .8168736314034743 e−14)

DAN. append (1 .2258346799565113 e−14)

DAN. append (2 .6975760287450926 e−15)

DAN. append (5 .295885854313568 e−16)

DAN. append (9 .992654208203225 e−17)

DAN. append (1 .483293712681986 e−17)

DAN. append (1 .590520323241747 e−18)

DAN. append (−2.018229056940692 e−20)

DAN. append (−5.522461977746537 e−20)

DAN. append (−1.7833523207981785 e−20)

DAN. append (−3.607909453318381 e−21)

DAN. append ( 0 . )
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DAN. append ( 0 . )

DBN. append (2 .6012561396628937 e−6)

DBN. append (−3.264427228831575 e−7)

DBN. append (1 .6219024479853696 e−8)

DBN. append (−9.301485458960886 e−11)

DBN. append (4 .875609189517354 e−11)

DBN. append (−3.020687618033502 e−11)

DBN. append (−2.008207049699983 e−12)

DBN. append (8 .618373852593456 e−13)

DBN. append (−5.025368408773574 e−13)

DBN. append (1 .7929831598457703 e−13)

DBN. append (−4.6486252361772815 e−14)

DBN. append (9 .821321480592008 e−15)

DBN. append (−1.6317932526659849 e−15)

DBN. append (8 .621596651502531 e−17)

DBN. append (3 .3157898412483947 e−17)

DBN. append (−1.2810764392090319 e−17)

DBN. append (3 .821237355640557 e−18)

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

A0 += D3 ∗ DA0

AN = l i s t (map ( lambda x1 , x2 : x1 + D3 ∗ x2 , AN, DAN) )

BN = l i s t (map ( lambda x1 , x2 : x1 + D3 ∗ x2 , BN, DBN) )

re turn [ A0 , AN, BN]

def p e r t u r b c o e f f 4 ( D4 , A0 , AN, BN ) :

DAN = [ ]

DBN = [ ]

DA0 = 0.02463156389964638

DAN. append (−0.0006572106163680683)

DAN. append (−0.0006509517704236568)

DAN. append (0 .00005008041481332758)
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DAN. append (7 .311960481097025 e−6)

DAN. append (−1.4832042664218915 e−6)

DAN. append (2 .686993667956254 e−8)

DAN. append (2 .582815475252795 e−8)

DAN. append (−5.375006788041004 e−9)

DAN. append (−2.216645711303911 e−11)

DAN. append (1 .3763870154246403 e−10)

DAN. append (−1.447182447679387 e−11)

DAN. append (−4.4261541328000695 e−13)

DAN. append (4 .424264496060864 e−13)

DAN. append (−6.138744911938371 e−14)

DAN. append (−5.159127712706641 e−15)

DAN. append (2 .5039160264365163 e−15)

DAN. append (−1.4456449599913898 e−16)

DAN. append (−5.772285926076793 e−17)

DAN. append (1 .0509489396965041 e−17)

DAN. append (−2.984829601057637 e−19)

DAN. append (−2.7466074284149757 e−19)

DAN. append (7 .314845072502751 e−20)

DAN. append (1 .5397501179808952 e−22)

DAN. append ( 0 . )

DAN. append ( 0 . )

DBN. append (−0.0042923438435735)

DBN. append (0 .00021791378621024795)

DBN. append (0 .00008211499671272027)

DBN. append (−9.294389673533813 e−6)

DBN. append (−5.079774526104112 e−7)

DBN. append (2 .1139313062627526 e−7)

DBN. append (−2.0388970595219676 e−8)

DBN. append (−2.29940758712421 e−9)

DBN. append (9 .6889886221242 e−10)

DBN. append (−4.9679879227888535 e−11)

DBN. append (−1.406671943084948 e−11)

DBN. append (2 .8163816961828453 e−12)

DBN. append (−1.677183835725091 e−13)

DBN. append (−5.678868964822446 e−14)

DBN. append (1 .3795447987588035 e−14)

DBN. append (3 .2602077248549906 e−17)

DBN. append (−3.9333149423065704 e−16)
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DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

DBN. append ( 0 . )

A0 += D4 ∗ DA0

AN = l i s t (map ( lambda x1 , x2 : x1 + D4 ∗ x2 , AN, DAN) )

BN = l i s t (map ( lambda x1 , x2 : x1 + D4 ∗ x2 , BN, DBN) )

re turn [ A0 , AN, BN]

def c a l c S e t ( D1 , D2 , D3 , D4 ) :

[ A0 , AN, BN] = n o m i n a l c o e f f ( )

[ A0 , AN, BN] = p e r t u r b c o e f f 1 ( D1 , A0 , AN, BN)

[ A0 , AN, BN] = p e r t u r b c o e f f 2 ( D2 , A0 , AN, BN)

[ A0 , AN, BN] = p e r t u r b c o e f f 3 ( D3 , A0 , AN, BN)

[ A0 , AN, BN] = p e r t u r b c o e f f 4 ( D4 , A0 , AN, BN)

re turn [ A0 , AN, BN]

def r o t a t e F o u r i e r A N (AN, BN, PHI , J ) :

re turn AN ∗ cos ( J ∗ PHI ) − BN ∗ s i n ( J ∗ PHI )

def r o t a t e F o u r i e r B N (AN, BN, PHI , J ) :

re turn AN ∗ s i n ( J ∗ PHI ) + BN ∗ cos ( J ∗ PHI )

def s u p e r I m p o s e F o r i e r A 0 ( A01 , A02 , A03 , A04 , V1 , V2 , V3 , V4 ) :

re turn V1 ∗ A01 + V2 ∗ A02 + V3 ∗ A03 + V4 ∗ A04

def supe r ImposeFour i e rAN (AN1, BN1 , AN2, BN2 , AN3, BN3 , AN4, BN4 , V1 , V2 , V3 ,

V4 , J ) :

re turn V1 ∗ AN1 + V2 ∗ r o t a t e F o u r i e r A N (AN2, BN2 , p i / 2 , J ) + \

V3 ∗ r o t a t e F o u r i e r A N (AN3, BN3 , pi , J ) + \
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V4 ∗ r o t a t e F o u r i e r A N (AN4, BN4 , 3 ∗ p i / 2 , J )

def supe r ImposeFour i e rBN (AN1, BN1 , AN2, BN2 , AN3, BN3 , AN4, BN4 , V1 , V2 , V3 ,

V4 , J ) :

re turn V1 ∗ BN1 + V2 ∗ r o t a t e F o u r i e r B N (AN2, BN2 , p i / 2 , J ) + \

V3 ∗ r o t a t e F o u r i e r B N (AN3, BN3 , pi , J ) + \

V4 ∗ r o t a t e F o u r i e r B N (AN4, BN4 , 3 ∗ p i / 2 , J )

def m u l t i p o l e T e r m s (R , Rref , f i l eOutName ) :

o u t p u t A r r a y = [ ]

o u t p u t S t r i n g = ’ \ nCALCULATION RESULTS \ n ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ M u l t i p o l e te rms , s c a l e d t o R = ’ + s t r (R) + ’ cm ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ Nominal p l a t e v o l t a g e PHI = ’ + s t r (V) + ’ V’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e v o l t a g e c o e f f i c i e n t s : ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 1 : V1 = ’ + s t r ( V1 )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 2 : V2 = ’ + s t r ( V2 )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 3 : V3 = ’ + s t r ( V3 )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 4 : V4 = ’ + s t r ( V4 )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e d i s t a n c e e r r o r s : ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )
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o u t p u t S t r i n g = ’ P l a t e 1 : D1 = ’ + s t r ( D10 ) + ’ cm ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 2 : D2 = ’ + s t r ( D20 ) + ’ cm ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 3 : D3 = ’ + s t r ( D30 ) + ’ cm ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ P l a t e 4 : D4 = ’ + s t r ( D40 ) + ’ cm ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’A0 = ’ + s t r (

V ∗ s u p e r I m p o s e F o r i e r A 0 ( A01 , A02 , A03 , A04 , V1 , V2 , V3 , V4 ) )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ \nAN = ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

f o r J , i t em in enumerate (AN1 ) :

o u t p u t S t r i n g = s t r (

V ∗ pow ( ( R / Rre f ) , ( J + 1 ) ) ∗ supe r ImposeFour i e rAN (AN1[ J ] , BN1[ J ] ,

AN2[ J ] , BN2[ J ] ,

AN3[ J ] , BN3[ J ] ,

AN4[ J ] , BN4[ J ] ,

V1 , V2 , V3 , V4 ,

J + 1 ) )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t S t r i n g = ’ \ nBN = ’

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

f o r J , i t em in enumerate (AN1 ) :

o u t p u t S t r i n g = s t r (

V ∗ pow ( ( R / Rre f ) , ( J + 1 ) ) ∗ supe r ImposeFour i e rBN (AN1[ J ] , BN1[ J ] ,

AN2[ J ] , BN2[ J ] ,
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AN3[ J ] , BN3[ J ] ,

AN4[ J ] , BN4[ J ] ,

V1 , V2 , V3 , V4 ,

J + 1 ) )

p r i n t ( o u t p u t S t r i n g )

o u t p u t A r r a y . append ( o u t p u t S t r i n g )

o u t p u t A r r a y = [ i + " \ n " f o r i in o u t p u t A r r a y ]

wi th open ( f i leOutName , ’w+ ’ ) a s f i l e _ o u t :

f o r i t em in o u t p u t A r r a y :

f i l e _ o u t . w r i t e ( "%s " % i t em )

V = 24000

R = 4 . 5

Rre f = 1 . 0

( V1 , V2 , V3 , V4 ) = 1 , −1, 1 , −1

( D10 , D20 , D30 , D40 ) = 0 , 0 , 0 , 0

f i l eOutName = ’ mterms . t x t ’

u s e I n p u t F i l e = F a l s e

i n p u t A r r a y = [ ]

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’ )

p r i n t ( ’ Muon ( g−2) C o l l a b o r a t i o n High V o l t a g e Quadrupo le ’ )

p r i n t ( ’ M u l t i p o l e Terms C a l c u l a t i o n ( " mterms " ) ’ )

p r i n t ( ’ E . V a l e t o v & M. Berz ’ )

p r i n t ( ’ Muon ( g−2) C o l l a b o r a t i o n ’ )

p r i n t ( ’ C r e a t e d 16−Apr−2017 ’ )

p r i n t ( ’ Email : valetove@msu . edu ’ )

p r i n t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n ’ )

i f l e n ( s y s . a rgv ) > 1 :

sysArgv = s y s . a rgv [ 1 : ]

whi le l e n ( sysArgv ) > 0 :

sysArgvNext = sysArgv . pop ( 0 ) . l ower ( )

i f ( sysArgvNext == ’−h ’ ) or ( sysArgvNext == ’ / h ’ ) :

p r i n t ( h e l p s t r )

s y s . e x i t ( )

e l i f sysArgvNext == ’−o ’ :

i f l e n ( sysArgv ) == 0 :

281



p r i n t ( " [ERROR] Outpu t f i l e name expec t ed , n o t found . " )

s y s . e x i t ( )

f i l eOutName = sysArgv . pop ( 0 )

e l i f sysArgvNext == ’− i ’ :

i f l e n ( sysArgv ) == 0 :

p r i n t ( " [ERROR] I n p u t f i l e name expec t ed , n o t found . " )

s y s . e x i t ( )

f i l e I n N a m e = sysArgv . pop ( 0 )

i f not Pa th ( f i l e I n N a m e ) . i s _ f i l e ( ) :

p r i n t ( " [ERROR] I n p u t f i l e ’ " + f i l e I n N a m e + " ’ doesn ’ t e x i s t . " )

s y s . e x i t ( )

u s e I n p u t F i l e = True

wi th open ( f i l e I n N a m e ) as f i l e I n :

f o r l i n e in f i l e I n :

i f not ( i s F l o a t ( l i n e ) ) :

p r i n t ( " [ERROR] NaN i n i n p u t f i l e . " )

s y s . e x i t ( )

i n p u t A r r a y . append ( f l o a t ( l i n e ) )

i f l e n ( i n p u t A r r a y ) != 1 0 :

p r i n t (

" [ERROR] I n p u t f i l e l e n g t h i s n o t 10 l i n e s o f numbers . " )

p r i n t ( " \ n [ INFO ] Help s c r e e n . " )

p r i n t ( h e l p s t r )

s y s . e x i t ( )

R = i n p u t A r r a y . pop ( 0 )

V = i n p u t A r r a y . pop ( 0 )

V1 = i n p u t A r r a y . pop ( 0 )

V2 = i n p u t A r r a y . pop ( 0 )

V3 = i n p u t A r r a y . pop ( 0 )

V4 = i n p u t A r r a y . pop ( 0 )

D10 = i n p u t A r r a y . pop ( 0 )

D20 = i n p u t A r r a y . pop ( 0 )

D30 = i n p u t A r r a y . pop ( 0 )

D40 = i n p u t A r r a y . pop ( 0 )

e l s e :

p r i n t (

" [ERROR] I n v a l i d command− l i n e p a r a m e t e r ’ " +

sysArgvNext + " ’ . " )

p r i n t ( " \ n [ INFO ] Help s c r e e n . " )
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p r i n t ( h e l p s t r )

s y s . e x i t ( )

i f not ( u s e I n p u t F i l e ) :

p r i n t (

’ D e f a u l t e r r o r s i n d i s t a n c e s from t h e o r i g i n t o t h e p l a t e s ’ +

’ a r e 0 , 0 , 0 , 0 [ cm ] . ’ )

p r i n t (

’ P l a t e s a r e numbered c o u n t e r−c l o c k w i s e , s t a r t i n g from t h e l e f t p l a t e . ’ )

p r i n t ( " E n t e r ’Y’ t o change t h e v a l u e s o f t h e p l a t e d i s t a n c e e r r o r s . " )

p r i n t ( " E n t e r ’N’ o r <CR> t o keep t h e d e f a u l t v a l u e . " )

u s e r I n p u t = ’− ’

whi le not ( u s e r I n p u t [ : 1 ] . l ower ( ) in [ ’ y ’ , ’ n ’ , ’ ’ ] ) :

u s e r I n p u t = input ( ’ [ y /N] > ’ )

i f u s e r I n p u t [ : 1 ] . l ower ( ) == ’ y ’ :

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 1 s t p l a t e d i s t a n c e e r r o r D1 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

D10 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 2nd p l a t e d i s t a n c e e r r o r D2 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

D20 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 3 rd p l a t e d i s t a n c e e r r o r D3 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

D30 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 4 t h p l a t e d i s t a n c e e r r o r D4 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

D40 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’− ’

p r i n t ( ’ D e f a u l t nomina l p l a t e v o l t a g e magn i tude i s PHI = 24000 V. ’ )

p r i n t ( ’ E n t e r a new v a l u e o f PHI . ’ )

p r i n t ( "To keep t h e d e f a u l t v a l u e o f PHI , e n t e r ’D’ o r <CR> . " )
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whi le not ( ( u s e r I n p u t [ : 1 ] . l ower ( ) in [ ’ d ’ , ’ ’ ] ) or ( i s F l o a t ( u s e r I n p u t ) ) ) :

u s e r I n p u t = input ( ’ [D / ( Rea l number ) ] > ’ )

i f i s F l o a t ( u s e r I n p u t ) :

V = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’− ’

p r i n t ( ’ D e f a u l t p l a t e v o l t a g e c o e f f i c i e n t s a r e 1 , −1, 1 , −1. ’ )

p r i n t (

’ P l a t e v o l t a g e s a r e p r o d u c t s o f t h e nomina l p l a t e v o l t a g e magni tude ’ )

p r i n t ( ’ and r e s p e c t i v e p l a t e v o l t a g e c o e f f i c i e n t s . ’ )

p r i n t (

’ P l a t e s a r e numbered c o u n t e r−c l o c k w i s e , s t a r t i n g from t h e l e f t p l a t e . ’ )

p r i n t ( " E n t e r ’Y’ t o change t h e v a l u e s o f t h e p l a t e v o l t a g e c o e f f i c i e n t s . " )

p r i n t ( " E n t e r ’N’ o r <CR> t o keep t h e d e f a u l t v a l u e . " )

whi le not ( u s e r I n p u t [ : 1 ] . l ower ( ) in [ ’ y ’ , ’ n ’ , ’ ’ ] ) :

u s e r I n p u t = input ( ’ [ y /N] > ’ )

i f u s e r I n p u t [ : 1 ] . l ower ( ) == ’ y ’ :

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 1 s t p l a t e v o l t a g e c o e f f i c i e n t V1 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

V1 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 2nd p l a t e v o l t a g e c o e f f i c i e n t V2 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

V2 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 3 rd p l a t e v o l t a g e c o e f f i c i e n t V3 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

V3 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’ ’

p r i n t ( ’ E n t e r t h e 4 t h p l a t e v o l t a g e c o e f f i c i e n t V4 . ’ )

whi le not i s F l o a t ( u s e r I n p u t ) :

u s e r I n p u t = input ( ’> ’ )

V4 = f l o a t ( u s e r I n p u t )

u s e r I n p u t = ’− ’

p r i n t ( ’ D e f a u l t s c a l i n g o f m u l t i p o l e c o e f f i c i e n t s i s t o R = 4 . 5 cm . ’ )

p r i n t ( ’ E n t e r a new v a l u e o f R . ’ )
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p r i n t ( "To keep t h e d e f a u l t v a l u e o f R , e n t e r o r ’D’ o r <CR> . " )

whi le not ( ( u s e r I n p u t [ : 1 ] . l ower ( ) in [ ’ d ’ , ’ ’ ] ) or ( i s F l o a t ( u s e r I n p u t ) ) ) :

u s e r I n p u t = input ( ’ [D / ( Rea l number ) ] > ’ )

i f i s F l o a t ( u s e r I n p u t ) :

R = f l o a t ( u s e r I n p u t )

[ A01 , AN1, BN1] = c a l c S e t ( D10 , D20 , D30 , D40 )

[ A02 , AN2, BN2] = c a l c S e t ( D20 , D30 , D40 , D10 )

[ A03 , AN3, BN3] = c a l c S e t ( D30 , D40 , D10 , D20 )

[ A04 , AN4, BN4] = c a l c S e t ( D40 , D10 , D20 , D30 )

m u l t i p o l e T e r m s (R , Rref , f i l eOutName )
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APPENDIX G

STEP FILE GENERATOR

STEP File Generator (stepfg) converts a list of polygons in the x–y plane specified by vertices into

a STEP file1 containing a 3D part obtained by extrusion of the interior regions of these polygons

along the z axis.

G.1 Package Contents

The program package includes STEP File Generator as a Python script and as Linux and

Windows standalone executables.

1. readme.txt: the readme file.

2. stepfg.py: Python source code.

3. stepfg: Linux version (prepared and tested in Ubuntu 16).

4. stepfg.exe: Windows version (prepared and tested in Windows 7).

5. part_geometry.txt: input file containing the representation of the Muon g-2 collaboration

quadrupole detailed in sec. 3.3.4.

G.2 Command-Line Arguments

STEP File Generator’s command-line arguments are

s t e p f g [ f i l e n a m e _ i n [ f i l e n a m e _ o u t ] ] [−h ] [ / h ]

where

1. filename_in is the input file containing 2D geometry data (default:

"part_geometry.txt");

1For syntax and rules for STEP files, please refer to ISO 10303-242 [55].
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2. filename_out is the output STEP file with resulting 3D part (default: "part_out.stp");

and

3. −h or /h displays the help screen.

G.3 Input File Format

The input file format is three parameters as follows:

[ F i r s t _ a r g u m e n t ,

Second_argument ,

T h i r d _ a r g u m e n t ]

First_argument: List of polygon specifications [p1, p2, . . . , pn]. Each polygon specification is

a sequential list [v1,v2, . . . ,vm] of the polygon’s vertices in the x–y plane. Each vertex is specified

as a list [x,y] or [x,y,0].

Second_argument: z coordinate interval [z1,z2] that the resulting 3D part should span.

Third_argument: Geometric proportionality coefficient. The output unit of length in the STEP

file is mm, so use 10 if the 2D geometry is specified in cm.

G.4 Program Listing

The following is a program listing of STEP File Generator as a Python 3 script.

# ! / u s r / b i n / py t ho n

h e l p s t r = ’ ’ ’

T h i s program c o n v e r t s a l i s t o f p o l y g o n s i n t h e x−y p l a n e s p e c i f i e d by

v e r t i c e s i n t o a STEP f i l e c o n t a i n i n g a 3D p a r t o b t a i n e d by e x t r u s i o n o f t h e

i n t e r i o r r e g i o n s o f t h e s e p o l y g o n s a long t h e z a x i s .

s t e p f g [ f i l e n a m e _ i n [ f i l e n a m e _ o u t ] ] [−h ] [ / h ]

f i l e n a m e _ i n I n p u t f i l e c o n t a i n i n g 2D geomet ry da ta

( d e f a u l t : " p a r t _ g e o m e t r y . t x t " )

f i l e n a m e _ o u t Outpu t STEP f i l e w i t h r e s u l t i n g 3D p a r t

( d e f a u l t : " p a r t _ o u t . s t p " )

−h or / h T h i s i n f o r m a t i o n
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The i n p u t f i l e f o r m a t i s t h r e e p a r a m e t e r s as f o l l o w s :

[ F i r s t _ a r g u m e n t ,

Second_argument ,

Th i rd_argumen t ]

F i r s t _ a r g u m e n t : L i s t o f po l ygon s p e c i f i c a t i o n s [ pol1 , pol2 , . . . , po ln ] . Each

po lygon s p e c i f i c a t i o n i s a s e q u e n t i a l l i s t [ v e r t 1 , v e r t 2 , . . . , v e r tm ] o f t h e

po lygon ’ s v e r t i c e s i n t h e x−y p l a n e . Each v e r t e x i s s p e c i f i e d as a l i s t

[ x , y ] or [ x , y , 0 ] .

Second_argument : z c o o r d i n a t e i n t e r v a l [ z1 , z2 ] t h a t t h e r e s u l t i n g 3D p a r t

s h o u l d span .

Th i rd_argumen t : Geometr i c p r o p o r t i o n a l i t y c o e f f i c i e n t . The o u t p u t u n i t o f

l e n g t h i n t h e STEP f i l e i s mm, so use 10 i f t h e 2D geomet ry i s s p e c i f i e d

i n cm .

A sample i n p u t f i l e , " p a r t _ g e o m e t r y . t x t " c o n t a i n i n g a r e p r e s e n t a t i o n o f t h e

Muon g−2 c o l l a b o r a t i o n quadrupo le , i s s u p p l i e d w i t h t h i s program .

’ ’ ’

_ _ a u t h o r _ _ = "E . V a l e t o v and M. Berz "

_ _ v e r s i o n _ _ = " 1 . 0 . 1 "

_ _ m a i n t a i n e r _ _ = "E . V a l e t o v "

__emai l__ = " valetove@msu . edu "

_ _ s t a t u s _ _ = " P r o d u c t i o n "

import r e

import math

import o p e r a t o r

import a s t

import s y s

import d a t e t i m e

from numbers import Number

from p a t h l i b import Pa th

def l i n e _ i n d e x ( l i n e ) :

s e a r c h _ r e s u l t = r e . s e a r c h ( ’ # ( . + ? ) = ’ , l i n e )
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re turn 0 i f s e a r c h _ r e s u l t i s None e l s e i n t ( s e a r c h _ r e s u l t . g roup ( 1 ) )

def r o t a t e ( l i s t _ i n , x ) :

re turn l i s t _ i n [−x : ] + l i s t _ i n [:−x ]

def i t e m _ e x i s t s _ q ( s t r i n g _ i n ) :

i f not w o r k _ a r r a y :

re turn F a l s e

s e a r c h _ r e s u l t = [ i f o r i , i t em in enumerate ( w o r k _ a r r a y ) i f

i t em . e n d s w i t h ( s t r i n g _ i n ) ]

re turn F a l s e i f not s e a r c h _ r e s u l t e l s e True

def e x i s t i n g _ i t e m _ l n ( s t r i n g _ i n ) :

i f not w o r k _ a r r a y :

re turn F a l s e

i f not i t e m _ e x i s t s _ q ( s t r i n g _ i n ) :

re turn F a l s e

s e a r c h _ r e s u l t = [ i t em f o r i t em in w o r k _ a r r a y i f i t em . e n d s w i t h ( s t r i n g _ i n ) ]

re turn l i n e _ i n d e x ( s e a r c h _ r e s u l t [ 0 ] )

def new_item ( s t r i n g _ i n ) :

g l o b a l c u r r e n t _ i n d e x

g l o b a l w o r k _ a r r a y

i f i t e m _ e x i s t s _ q ( s t r i n g _ i n ) :

r e t u r n _ i n d e x = e x i s t i n g _ i t e m _ l n ( s t r i n g _ i n )

e l s e :

w o r k _ a r r a y . append ( ’ # ’ + s t r ( c u r r e n t _ i n d e x ) + ’= ’ + s t r i n g _ i n )

r e t u r n _ i n d e x = c u r r e n t _ i n d e x

c u r r e n t _ i n d e x += 1

re turn r e t u r n _ i n d e x

def t o _ c o o r d ( c l i s t ) :

i f l e n ( c l i s t ) != 3 :

p r i n t ( ’ t o _ c o o r d : E r r o r . C o o r d i n a t e s n o t 3D. ’ )
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s y s . e x i t ( )

re turn s t r ( c l i s t [ 0 ] ) + ’ , ’ + s t r ( c l i s t [ 1 ] ) + ’ , ’ + s t r ( c l i s t [ 2 ] )

def t o _ s t e p _ l i s t ( s l i s t ) :

i f not i s i n s t a n c e ( s l i s t , l i s t ) :

s l i s t 1 = ’ # ’ + s t r ( s l i s t )

e l s e :

s l i s t 1 = ’ ’

f o r j in range ( 0 , l e n ( s l i s t ) − 1 ) :

s l i s t 1 += ’ # ’ + s t r ( s l i s t [ j ] ) + ’ , ’

s l i s t 1 += ’ # ’ + s t r ( s l i s t [−1])

re turn s l i s t 1

def f o r t _ b o o l ( b o o l _ i n ) :

re turn ’ . T . ’ i f ( b o o l _ i n == True ) or ( b o o l _ i n == ’ . T . ’ ) e l s e ’ . F . ’

def n o r m a l i z e ( v e c t o r _ i n ) :

i f l e n ( v e c t o r _ i n ) != 3 :

p r i n t ( ’ n o r m a l i z e : E r r o r . C o o r d i n a t e s n o t 3D. ’ )

s y s . e x i t ( )

magn i tude = math . s q r t ( sum ( [ i ∗∗ 2 f o r i in v e c t o r _ i n ] ) )

re turn [ x / magn i tude f o r x in v e c t o r _ i n ]

def c r o s s _ p r o d u c t ( x , y ) :

re turn [−x [ 2 ] ∗ y [ 1 ] + x [ 1 ] ∗ y [ 2 ] , x [ 2 ] ∗ y [ 0 ] − x [ 0 ] ∗ y [ 2 ] ,

−x [ 1 ] ∗ y [ 0 ] + x [ 0 ] ∗ y [ 1 ] ]

def p o i n t ( c o o r d _ i n ) :

re turn new_item ( "CARTESIAN_POINT ( ’ ’ , ( " + t o _ c o o r d ( c o o r d _ i n ) + " ) ) ; \ n " )

def l i n e ( o r i g i n , d i r e c t i o n ) :

c o o r d _ l n = new_item (

"CARTESIAN_POINT ( ’ O r i g i n Line ’ , ( " + t o _ c o o r d ( o r i g i n ) + " ) ) ; \ n " )
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d i r _ l n = new_item ( "DIRECTION ( ’ Ve c t o r D i r e c t i o n ’ , ( " + t o _ c o o r d (

n o r m a l i z e ( d i r e c t i o n ) ) + " ) ) ; \ n " )

v e c _ l n = new_item ( "VECTOR( ’ Line D i r e c t i o n ’ ,# " + s t r ( d i r _ l n ) + " , 1 . ) ; \ n " )

re turn new_item (

"LINE ( ’ Line ’ ,# " + s t r ( c o o r d _ l n ) + " ,# " + s t r ( v e c _ l n ) + " ) ; \ n " )

def v e r t e x ( c o o r d _ i n ) :

c o o r d _ l n = new_item (

"CARTESIAN_POINT ( ’ Ve r t e x ’ , ( " + t o _ c o o r d ( c o o r d _ i n ) + " ) ) ; \ n " )

re turn new_item ( "VERTEX_POINT( ’ ’ , # " + s t r ( c o o r d _ l n ) + " ) ; \ n " )

def e d g e _ c u r v e ( v e r t e x 1 _ l n , v e r t e x 2 _ l n , l i n e _ c o o r d _ l n , same_sense =True ) :

re turn new_item (

"EDGE_CURVE( ’ ’ , # " + s t r ( v e r t e x 1 _ l n ) + " ,# " + s t r (

v e r t e x 2 _ l n ) + " ,# " + s t r ( l i n e _ c o o r d _ l n ) + " , " + f o r t _ b o o l (

same_sense ) + " ) ; \ n " )

def edge_cu rve_0 ( v e r t e x 1 , v e r t e x 2 , same_sense =True ) :

re turn e d g e _ c u r v e ( v e r t e x ( v e r t e x 1 ) , v e r t e x ( v e r t e x 2 ) , l i n e (

[ x / 2 f o r x in l i s t (map ( o p e r a t o r . add , v e r t e x 1 , v e r t e x 2 ) ) ] ,

l i s t (map ( o p e r a t o r . sub , v e r t e x 2 , v e r t e x 1 ) ) ) ,

f o r t _ b o o l ( same_sense ) )

def o r i e n t e d _ e d g e ( e d g e _ c u r v e _ l n , same_sense =True ) :

re turn new_item (

"ORIENTED_EDGE( ’ ’ ,∗ ,∗ , # " + s t r ( e d g e _ c u r v e _ l n ) + " , " + f o r t _ b o o l (

same_sense ) + " ) ; \ n " )

def edge_ loop ( l i n e s ) :

re turn new_item ( "EDGE_LOOP( ’ ’ , ( " + t o _ s t e p _ l i s t ( l i n e s ) + " ) ) ; \ n " )

def edge_ loop_0 ( v e r t i c e s ) :

re turn edge_ loop ( l i s t (
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map ( lambda x1 , x2 : o r i e n t e d _ e d g e ( edge_curve_0 ( x1 , x2 ) ) , v e r t i c e s ,

r o t a t e ( v e r t i c e s , −1) ) ) )

def f a c e _ o u t e r _ b o u n d ( edg e_ lo op_ ln , same_sense : True ) :

re turn new_item (

"FACE_OUTER_BOUND( ’ ’ , # " + s t r ( e d g e _ l o o p _ l n ) + " , " + f o r t _ b o o l (

same_sense ) + " ) ; \ n " )

def edge_ loop_1 ( v e r t i c e s , same_sense : True ) :

re turn f a c e _ o u t e r _ b o u n d ( edge_ loop_0 ( v e r t i c e s ) , same_sense )

def a x i s 2 _ p l a c e m e n t _ 3 d ( o r i g i n _ c o o r d , d i r e c t i o n 1 , d i r e c t i o n 2 ) :

o r i g i n _ l n = new_item ( "CARTESIAN_POINT ( ’ Axis2P3D L o c a t i o n ’ , ( " + t o _ c o o r d (

o r i g i n _ c o o r d ) + " ) ) ; \ n " )

d i r e c t i o n 1 _ l n = new_item (

"DIRECTION ( ’ Axis2P3D Z D i r e c t i o n ’ , ( " + t o _ c o o r d ( d i r e c t i o n 1 ) + " ) ) ; \ n " )

d i r e c t i o n 2 _ l n = new_item (

"DIRECTION ( ’ Axis2P3D X D i r e c t i o n ’ , ( " + t o _ c o o r d ( d i r e c t i o n 2 ) + " ) ) ; \ n " )

re turn new_item (

"AXIS2_PLACEMENT_3D( ’ P l a n e Axis2P3D ’ ,# " + s t r ( o r i g i n _ l n ) + " ,# " + s t r (

d i r e c t i o n 1 _ l n ) + " ,# " + s t r (

d i r e c t i o n 2 _ l n ) + " ) ; \ n " )

def p l a n e ( a x i s 2 _ p l a c e m e n t _ 3 d _ l n ) :

re turn new_item ( "PLANE( ’ ’ , # " + s t r ( a x i s 2 _ p l a c e m e n t _ 3 d _ l n ) + " ) ; \ n " )

def p l a n e _ 0 ( o r i g i n _ c o o r d , d i r e c t i o n 1 , d i r e c t i o n 2 ) :

re turn p l a n e ( a x i s 2 _ p l a c e m e n t _ 3 d ( o r i g i n _ c o o r d , d i r e c t i o n 1 , d i r e c t i o n 2 ) )

def a d v a n c e d _ f a c e ( f a c e _ o u t e r _ b o u n d _ l n , p l a n e _ l n , s a m e _ s e n s e _ p l a n e =True ) :

re turn new_item (

"ADVANCED_FACE( ’ Par tBody ’ , ( " + t o _ s t e p _ l i s t (

f a c e _ o u t e r _ b o u n d _ l n ) + " ) , # " + s t r ( p l a n e _ l n ) + " , " + f o r t _ b o o l (
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s a m e _ s e n s e _ p l a n e ) + " ) ; \ n " )

def a d v a n c e d _ f a c e _ 0 ( v e r t i c e s , z a x i s , same_sense_1 =True , same_sense_2 =True ) :

i f l i s t (map ( o p e r a t o r . add , n o r m a l i z e ( z a x i s ) , n o r m a l i z e (

c r o s s _ p r o d u c t ( l i s t (map ( o p e r a t o r . sub , v e r t i c e s [ 2 ] , v e r t i c e s [ 1 ] ) ) ,

l i s t (map ( o p e r a t o r . sub , v e r t i c e s [ 2 ] ,

v e r t i c e s [ 0 ] ) ) ) ) ) ) == [ 0 , 0 , 0 ] :

a f _ l n = a d v a n c e d _ f a c e ( edge_ loop_1 ( v e r t i c e s , same_sense_1 ) , p l a n e (

a x i s 2 _ p l a c e m e n t _ 3 d ( v e r t i c e s [ 0 ] , n o r m a l i z e ( z a x i s ) ,

n o r m a l i z e ( l i s t (map ( o p e r a t o r . sub , v e r t i c e s [ 1 ] ,

v e r t i c e s [ 0 ] ) ) ) ) ) ,

same_sense_2 )

e l s e :

a f _ l n = a d v a n c e d _ f a c e (

edge_ loop_1 ( l i s t ( r e v e r s e d ( v e r t i c e s ) ) , same_sense_1 ) , p l a n e (

a x i s 2 _ p l a c e m e n t _ 3 d ( v e r t i c e s [ 0 ] , n o r m a l i z e ( z a x i s ) , n o r m a l i z e (

l i s t (map ( o p e r a t o r . sub , l i s t ( r e v e r s e d ( v e r t i c e s ) ) [ 1 ] ,

l i s t ( r e v e r s e d ( v e r t i c e s ) ) [ 0 ] ) ) ) ) ) , same_sense_2 )

re turn a f _ l n

def a d v a n c e d _ f a c e _ 1 ( v e r t i c e s , same_sense_1 =True , same_sense_2 =True ) :

re turn a d v a n c e d _ f a c e ( edge_ loop_1 ( v e r t i c e s , same_sense_1 ) ,

p l a n e ( a x i s 2 _ p l a c e m e n t _ 3 d ( v e r t i c e s [ 0 ] , n o r m a l i z e (

c r o s s _ p r o d u c t ( l i s t (

map ( o p e r a t o r . sub , v e r t i c e s [ 2 ] , v e r t i c e s [ 1 ] ) ) ,

l i s t (map ( o p e r a t o r . sub , v e r t i c e s [ 1 ] ,

v e r t i c e s [ 0 ] ) ) ) ) , n o r m a l i z e (

l i s t (map ( o p e r a t o r . sub , v e r t i c e s [ 1 ] ,

v e r t i c e s [ 0 ] ) ) ) ) ) , same_sense_1 )

def c l o s e d _ s h e l l ( a d v a n c e d _ f a c e _ l n _ l i s t ) :

re turn new_item ( "CLOSED_SHELL( ’ Closed S h e l l ’ , ( " + t o _ s t e p _ l i s t (

a d v a n c e d _ f a c e _ l n _ l i s t ) + " ) ) ; \ n " )

def m a n i f o l d _ s o l i d _ b r e p ( c l o s e d _ s h e l l _ l n ) :
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g l o b a l p a r t _ b o d y _ i n d e x

msb = new_item (

"MANIFOLD_SOLID_BREP( ’ Par tBody . " + s t r ( p a r t _ b o d y _ i n d e x ) + " ’ ,# " + s t r (

c l o s e d _ s h e l l _ l n ) + " ) ; \ n " )

p a r t _ b o d y _ i n d e x += 1

re turn msb

def a d v a n c e d _ b r e p _ s h a p e _ r e p r e s e n t a t i o n ( m a n i f o l d _ s o l i d _ b r e p _ l i s t , i n i t _ l n = 4 5 ) :

re turn new_item (

"ADVANCED_BREP_SHAPE_REPRESENTATION( ’NONE ’ , ( " + t o _ s t e p _ l i s t (

m a n i f o l d _ s o l i d _ b r e p _ l i s t ) + " ) , # " + s t r (

i n i t _ l n ) + " ) ; \ n " )

def s h a p e _ r e p r e s e n t a t i o n _ r e l a t i o n s h i p ( a d v a n c e d _ b r e p _ s h a p e _ r e p r e s e n t a t i o n _ l n ,

s h a p e _ r e p r e s e n t a t i o n _ l n = 4 8 ) :

re turn new_item ( "SHAPE_REPRESENTATION_RELATIONSHIP ( ’ ’ , ’ ’ , # " + s t r (

s h a p e _ r e p r e s e n t a t i o n _ l n ) + " ,# " + s t r (

a d v a n c e d _ b r e p _ s h a p e _ r e p r e s e n t a t i o n _ l n ) + " ) ; \ n " )

def z f a c e ( v e r t e x 1 , v e r t e x 2 , g e o m _ d e p t h _ l i s t ) :

z_neg = g e o m _ d e p t h _ l i s t [ 0 ]

z_pos = g e o m _ d e p t h _ l i s t [ 1 ]

re turn a d v a n c e d _ f a c e _ 0 (

[ l i s t (map ( o p e r a t o r . add , v e r t e x 1 , [ 0 , 0 , z_neg ] ) ) ,

l i s t (map ( o p e r a t o r . add , v e r t e x 2 , [ 0 , 0 , z_neg ] ) ) ,

l i s t (map ( o p e r a t o r . add , v e r t e x 2 , [ 0 , 0 , z_pos ] ) ) ,

l i s t (map ( o p e r a t o r . add , v e r t e x 1 , [ 0 , 0 , z_pos ] ) ) ] ,

n o r m a l i z e ( c r o s s _ p r o d u c t ( l i s t (map ( o p e r a t o r . sub , v e r t e x 2 , v e r t e x 1 ) ) ,

[ 0 , 0 , −( z_pos − z_neg ) ] ) ) )

def x y f a c e ( v e r t e x _ l i s t , dep th , z d i r ) :

re turn a d v a n c e d _ f a c e _ 0 ( l i s t (

map ( lambda x : l i s t (map ( o p e r a t o r . add , x , [ 0 , 0 , d e p t h ] ) ) , v e r t e x _ l i s t ) ) ,

z d i r )
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def a f2d3d ( v e r t e x _ l i s t , g e o m _ d e p t h _ l i s t ) :

t a f l i s t = [ ]

z_neg = g e o m _ d e p t h _ l i s t [ 0 ]

z_pos = g e o m _ d e p t h _ l i s t [ 1 ]

t a f l i s t . append ( x y f a c e ( v e r t e x _ l i s t , z_pos , [ 0 , 0 , 1 ] ) )

t a f l i s t . append ( x y f a c e ( v e r t e x _ l i s t , z_neg , [ 0 , 0 , −1]))

t a f l i s t += l i s t (

map ( lambda x1 , x2 : z f a c e ( x1 , x2 , g e o m _ d e p t h _ l i s t ) , v e r t e x _ l i s t ,

r o t a t e ( v e r t e x _ l i s t , −1)))

re turn t a f l i s t

def a f _ l i s t _ 2 _ a s s e m b l y ( a f _ l i s t ) :

re turn s h a p e _ r e p r e s e n t a t i o n _ r e l a t i o n s h i p (

m a n i f o l d _ s o l i d _ b r e p ( c l o s e d _ s h e l l ( a f _ l i s t ) ) )

def a f _ l i s t _ 2 _ p a r t ( a f _ l i s t ) :

re turn m a n i f o l d _ s o l i d _ b r e p ( c l o s e d _ s h e l l ( a f _ l i s t ) )

def p a r t _ 2 _ a s s e m b l y ( p a r t _ l i s t ) :

re turn s h a p e _ r e p r e s e n t a t i o n _ r e l a t i o n s h i p (

a d v a n c e d _ b r e p _ s h a p e _ r e p r e s e n t a t i o n ( p a r t _ l i s t ) )

def g e n e r a t e _ p a r t ( v e r t _ l i s t , geom_depth , c l o c k w i s e _ p =True ) :

re turn a f _ l i s t _ 2 _ p a r t (

a f2d3d ( v e r t _ l i s t , geom_depth ) ) i f c l o c k w i s e _ p e l s e a f _ l i s t _ 2 _ p a r t (

a f2d3d ( r e v e r s e d ( v e r t _ l i s t ) , geom_depth ) )

def c o n v e r t _ 3 d ( e l e m e n t _ i n ) :

i f ( i s i n s t a n c e ( e l e m e n t _ i n , l i s t ) ) and ( l e n ( e l e m e n t _ i n ) ) == 2 and (

i s i n s t a n c e ( e l e m e n t _ i n [ 0 ] , Number ) ) and (

i s i n s t a n c e ( e l e m e n t _ i n [ 1 ] , Number ) ) :

re turn [ e l e m e n t _ i n [ 0 ] , e l e m e n t _ i n [ 1 ] , 0 ]

e l s e :
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re turn e l e m e n t _ i n

def c o n v e r t _ t o _ c l o c k w i s e ( p a r t _ l i s t ) :

pol_sum = sum ( l i s t (

map ( lambda x1 , x2 : ( x2 [ 0 ] − x1 [ 0 ] ) ∗ ( x2 [ 1 ] + x1 [ 1 ] ) , p a r t _ l i s t ,

r o t a t e ( p a r t _ l i s t , 1 ) ) ) )

i f pol_sum == 0 :

p r i n t (

" [ FAILED ] \ n c o n v e r t _ t o _ c l o c k w i s e : E r r o r . Polygon i s " +

" n e i t h e r c l o c k w i s e nor c o u n t e r−c l o c k w i s e . " )

s y s . e x i t ( )

e l i f pol_sum > 0 :

re turn r e v e r s e d ( p a r t _ l i s t )

e l s e :

re turn p a r t _ l i s t

def g e n e r a t e _ a s s e m b l y ( l i s t _ v e r t _ l i s t , g e o m _ d e p t h _ l i s t , p _ c o e f f = 1 ) :

p r i n t ( " G e n e r a t i n g assembly . . . " , end=" " )

i f not i s i n s t a n c e ( p _ c o e f f , Number ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . NaN s u p p l i e d f o r " +

" p r o p o r t i o n a l i t y c o e f f i c i e n t . " )

s y s . e x i t ( )

i f p _ c o e f f == 0 :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . Zero s u p p l i e d as " +

" t h e p r o p o r t i o n a l i t y c o e f f i c i e n t . " )

s y s . e x i t ( )

i f not i s i n s t a n c e ( g e o m _ d e p t h _ l i s t , l i s t ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . z−c o o r d i n a t e i n t e r v a l " +

" [ z1 , z2 ] expec t ed , s c a l a r s u p p l i e d . " )

s y s . e x i t ( )

i f not g e o m _ d e p t h _ l i s t :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . z−c o o r d i n a t e i n t e r v a l " +

" [ z1 , z2 ] expec t ed , empty l i s t s u p p l i e d . " )
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s y s . e x i t ( )

f o r d e p t h _ e l e m e n t in g e o m _ d e p t h _ l i s t :

i f not i s i n s t a n c e ( d e p t h _ e l e m e n t , Number ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . NaN found i n t h e " +

" z−c o o d i n a t e i n t e r v a l . " )

s y s . e x i t ( )

i f g e o m _ d e p t h _ l i s t [ 0 ] == g e o m _ d e p t h _ l i s t [ 1 ] :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . z2 must be d i f f e r e n t " +

" from z1 i n t h e z−c o o r d i n a t e i n t e r v a l [ z1 , z2 ] . " )

s y s . e x i t ( )

i f g e o m _ d e p t h _ l i s t [ 0 ] > g e o m _ d e p t h _ l i s t [ 1 ] :

t v a r = g e o m _ d e p t h _ l i s t [ 0 ]

g e o m _ d e p t h _ l i s t [ 0 ] = g e o m _ d e p t h _ l i s t [ 1 ]

g e o m _ d e p t h _ l i s t [ 1 ] = t v a r

i f not i s i n s t a n c e ( l i s t _ v e r t _ l i s t , l i s t ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . L i s t o f v e r t i c e s l i s t s " +

" expec t ed , s c a l a r s u p p l i e d . " )

s y s . e x i t ( )

i f not l i s t _ v e r t _ l i s t :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . Empty l i s t o f v e r t i c e s " +

" l i s t s . " )

s y s . e x i t ( )

f o r p a r t _ e l e m e n t in l i s t _ v e r t _ l i s t :

i f not p a r t _ e l e m e n t :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . Empty l i s t o f " +

" v e r t i c e s . " )

s y s . e x i t ( )

i f not i s i n s t a n c e ( p a r t _ e l e m e n t , l i s t ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . L i s t o f v e r t i c e s " +

" expec t ed , s c a l a r s u p p l i e d " )

s y s . e x i t ( )

f o r v e r t e x _ e l e m e n t in p a r t _ e l e m e n t :

i f not v e r t e x _ e l e m e n t :
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p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . Empty l i s t o f " +

" v e r t e x c o o r d i n a t e s . " )

s y s . e x i t ( )

i f not i s i n s t a n c e ( p a r t _ e l e m e n t , l i s t ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . L i s t o f v e r t e x " +

" c o o r d i n a t e s expec t ed , s c a l a r s u p p l i e d " )

s y s . e x i t ( )

i f ( l e n ( v e r t e x _ e l e m e n t ) < 2) or ( l e n ( v e r t e x _ e l e m e n t ) > 3 ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . Number o f v e r t e x " +

" c o o r d i n a t e s s h o u l d be 2 or 3 , " + s t r (

l e n ( v e r t e x _ e l e m e n t ) ) + " c o o r d i n a t e s s u p p l i e d . " )

s y s . e x i t ( )

f o r c o o r d i n a t e _ e l e m e n t in v e r t e x _ e l e m e n t :

i f not i s i n s t a n c e ( c o o r d i n a t e _ e l e m e n t , Number ) :

p r i n t (

" [ FAILED ] \ n g e n e r a t e _ a s s e m b l y : E r r o r . NaN i s s u p p l i e d " +

" f o r a v e r t e x c o o r d i n a t e . " )

s y s . e x i t ( )

l i s t _ v e r t _ l i s t = [

[ c o n v e r t _ 3 d ( v e r t e x _ e l e m e n t ) f o r v e r t e x _ e l e m e n t in p a r t _ e l e m e n t ] f o r

p a r t _ e l e m e n t in

l i s t _ v e r t _ l i s t ]

l i s t _ v e r t _ l i s t = [ c o n v e r t _ t o _ c l o c k w i s e ( x ) f o r x in l i s t _ v e r t _ l i s t ]

l i s t _ v e r t _ l i s t = [

[ [ p _ c o e f f ∗ 1 . 0 ∗ c o o r d i n a t e _ e l e m e n t f o r c o o r d i n a t e _ e l e m e n t in

v e r t e x _ e l e m e n t ] f o r v e r t e x _ e l e m e n t in

p a r t _ e l e m e n t ] f o r p a r t _ e l e m e n t in l i s t _ v e r t _ l i s t ]

g e o m _ d e p t h _ l i s t = [ p _ c o e f f ∗ 1 . 0 ∗ i f o r i in g e o m _ d e p t h _ l i s t ]

p a r t _ l i s t = [ g e n e r a t e _ p a r t ( x , g e o m _ d e p t h _ l i s t ) f o r x in l i s t _ v e r t _ l i s t ]

p a r t _ 2 _ a s s e m b l y ( p a r t _ l i s t )

r e s u l t i n g _ a r r a y = f i l e _ a r r a y [ : i nd ex 1 ] + w o r k _ a r r a y + f i l e _ a r r a y [

in de x1 + 1 : ]

p r i n t ( " [DONE] " )

p r i n t ( " W r i t i n g STEP f i l e . . . " , end=" " )

wi th open ( f i l e _ o u t _ n a m e , ’w+ ’ ) a s f i l e _ o u t :

f o r i t em in r e s u l t i n g _ a r r a y :

298



f i l e _ o u t . w r i t e ( "%s " % i t em )

p r i n t ( " [DONE] " )

f i l e _ i n 2 _ n a m e = ’ p a r t _ g e o m e t r y . t x t ’

f i l e _ o u t _ n a m e = ’ p a r t _ o u t . s t p ’

p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )

p r i n t ( " STEP F i l e G e n e r a t o r ( ’ s t e p f g ’ ) " )

p r i n t ( " E . V a l e t o v and M. Berz " )

p r i n t ( " Michigan S t a t e U n i v e r s i t y " )

p r i n t ( " C r e a t e d 03−Feb−2017 " )

p r i n t ( " Email : valetove@msu . edu " )

p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )

i f ( l e n ( s y s . a rgv ) > 1 ) :

i f ( ( s t r ( s y s . a rgv [ 1 ] ) == ’−h ’ ) or ( s t r ( s y s . a rgv [ 1 ] ) == ’ / h ’ ) ) :

p r i n t ( h e l p s t r )

s y s . e x i t ( )

f i l e _ i n 2 _ n a m e = s t r ( s y s . a rgv [ 1 ] )

i f ( l e n ( s y s . a rgv ) > 2 ) :

i f ( ( s t r ( s y s . a rgv [ 2 ] ) == ’−h ’ ) or ( s t r ( s y s . a rgv [ 2 ] ) == ’ / h ’ ) ) :

p r i n t ( h e l p s t r )

s y s . e x i t ( )

f i l e _ o u t _ n a m e = s t r ( s y s . a rgv [ 2 ] )

p r i n t ( " Use command− l i n e o p t i o n −h or / h f o r h e l p . \ n " )

p r i n t ( " Reading 2D geomet ry f i l e " + f i l e _ i n 2 _ n a m e + " . . . " , end=" " )

i f not Pa th ( f i l e _ i n 2 _ n a m e ) . i s _ f i l e ( ) :

p r i n t (

" [ FAILED ] \ n E r r o r . 2D geomet ry f i l e " + f i l e _ i n 2 _ n a m e +

" doesn ’ t e x i s t . " )

s y s . e x i t ( )

w i th open ( f i l e _ i n 2 _ n a m e , ’ r ’ ) a s f i l e _ i n :

d a t a = a s t . l i t e r a l _ e v a l ( f i l e _ i n . r e a d ( ) )

i f not i s i n s t a n c e ( da t a , l i s t ) :

p r i n t ( " [ FAILED ] \ n E r r o r . I n p u t d a t a i s n o t a l i s t . " )

s y s . e x i t ( )
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i f l e n ( d a t a ) != 3 :

p r i n t (

" [ FAILED ] \ n E r r o r . The top− l e v e l l e n g t h o f t h e i n p u t d a t a l i s t i s n o t " +

" 3 . " )

s y s . e x i t ( )

i n _ a r r a y = d a t a [ 0 ]

i n _ d e p t h = d a t a [ 1 ]

i n _ c o e f f = d a t a [ 2 ]

p r i n t ( " [DONE] " )

p r i n t ( " I n i t i a l i z i n g STEP f i l e d a t a . . . " , end=" " )

d = d a t e t i m e . d a t e t i m e . now ( )

f i l e _ a r r a y = [ " ISO−10303−21; " ,

"HEADER; " ,

"FILE_DESCRIPTION ( ( ’ none ’ ) , ’ 2 ; 1 ’ ) ; " ,

" " ,

"FILE_NAME( ’ " + f i l e _ o u t _ n a m e + " ’ , ’ none ’ , ( ’ none ’ ) , ( ’ none ’ ) , " +

" ’ none ’ , ’ none ’ , ’ none ’ ) ; " ,

" " ,

"FILE_SCHEMA ( ( ’ CONFIG_CONTROL_DESIGN ’ ) ) ; " ,

" " ,

"ENDSEC; " ,

"DATA; " ,

" #1=APPLICATION_CONTEXT( ’ c o n f i g u r a t i o n c o n t r o l l e d 3D d e s i g n of " +

" m e c h a n i c a l p a r t s and a s s e m b l i e s ’ ) ; " ,

" #2=MECHANICAL_CONTEXT( ’ ’ , # 1 , ’ m e c h a n i c a l ’ ) ; " ,

" #3=DESIGN_CONTEXT( ’ ’ , # 1 , ’ d e s i g n ’ ) ; " ,

" #4=APPLICATION_PROTOCOL_DEFINITION ( ’ i n t e r n a t i o n a l s t a n d a r d ’ , " +

" ’ c o n f i g _ c o n t r o l _ d e s i g n ’ , 1 9 9 4 , # 1 ) ; " ,

" #5=PRODUCT( ’ P a r t 1 ’ , ’ ’ , ’ ’ , ( # 2 ) ) ; " ,

" #6=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE ( ’ ’ , ’ ’ " +

" , # 5 , .NOT_KNOWN. ) ; " ,

" #7=PRODUCT_CATEGORY( ’ p a r t ’ , $ ) ; " ,

" #8=PRODUCT_RELATED_PRODUCT_CATEGORY( ’ d e t a i l ’ , $ , ( # 5 ) ) ; " ,

" #9=PRODUCT_CATEGORY_RELATIONSHIP( ’ ’ , ’ ’ , # 7 , # 8 ) ; " ,

" #10=COORDINATED_UNIVERSAL_TIME_OFFSET ( 0 , 0 , .AHEAD. ) ; " ,

" #11=CALENDAR_DATE( " + s t r ( g e t a t t r ( d , ’ y e a r ’ ) ) + " , " + s t r (

g e t a t t r ( d , ’ month ’ ) ) + " , " + s t r (

g e t a t t r ( d , ’ day ’ ) ) + " ) ; " ,
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" #12=LOCAL_TIME( " + s t r ( g e t a t t r ( d , ’ hour ’ ) ) + " , " + s t r (

g e t a t t r ( d , ’ minu te ’ ) ) + " , " + s t r (

g e t a t t r ( d , ’ second ’ ) ) + " . , # 1 0 ) ; " ,

" #13=DATE_AND_TIME( # 1 1 , # 1 2 ) ; " ,

" #14=PRODUCT_DEFINITION ( ’ ’ , ’ ’ , # 6 , # 3 ) ; " ,

" #15=SECURITY_CLASSIFICATION_LEVEL ( ’ u n c l a s s i f i e d ’ ) ; " ,

" #16=SECURITY_CLASSIFICATION ( ’ ’ , ’ ’ , # 1 5 ) ; " ,

" #17=DATE_TIME_ROLE( ’ c l a s s i f i c a t i o n _ d a t e ’ ) ; " ,

" #18=CC_DESIGN_DATE_AND_TIME_ASSIGNMENT( # 1 3 , # 1 7 , ( # 1 6 ) ) ; " ,

" #19=APPROVAL_ROLE( ’APPROVER ’ ) ; " ,

" #20=APPROVAL_STATUS( ’ n o t _ y e t _ a p p r o v e d ’ ) ; " ,

" #21=APPROVAL( # 2 0 , ’ ’ ) ; " ,

" #22=PERSON( ’ ’ , ’ ’ , ’ ’ , $ , $ , $ ) ; " ,

" #23=ORGANIZATION( ’ ’ , ’ ’ , ’ ’ ) ; " ,

" #24=PERSONAL_ADDRESS( ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ , " +

" ’ ’ , ’ ’ , ’ ’ , ( # 2 2 ) , ’ ’ ) ; " ,

" #25=PERSON_AND_ORGANIZATION( # 2 2 , # 2 3 ) ; " ,

" #26=PERSON_AND_ORGANIZATION_ROLE( ’ c l a s s i f i c a t i o n _ o f f i c e r ’ ) ; " ,

" #27=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT( # 2 5 , # 2 6 , " +

" ( # 1 6 ) ) ; " ,

" #28=DATE_TIME_ROLE( ’ c r e a t i o n _ d a t e ’ ) ; " ,

" #29=CC_DESIGN_DATE_AND_TIME_ASSIGNMENT( # 1 3 , # 2 8 , ( # 1 4 ) ) ; " ,

" #30=CC_DESIGN_APPROVAL( # 2 1 , ( # 1 6 , # 6 , # 1 4 ) ) ; " ,

" #31=APPROVAL_PERSON_ORGANIZATION( # 2 5 , # 2 1 , # 1 9 ) ; " ,

" #32=APPROVAL_DATE_TIME( # 1 3 , # 2 1 ) ; " ,

" #33=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT( # 2 5 , # 3 4 , " +

" ( # 6 ) ) ; " ,

" #34=PERSON_AND_ORGANIZATION_ROLE( ’ d e s i g n _ s u p p l i e r ’ ) ; " ,

" #35=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT( # 2 5 , # 3 6 , " +

" ( # 6 , # 1 4 ) ) ; " ,

" #36=PERSON_AND_ORGANIZATION_ROLE( ’ c r e a t o r ’ ) ; " ,

" #37=CC_DESIGN_PERSON_AND_ORGANIZATION_ASSIGNMENT( # 2 5 , # 3 8 , " +

" ( # 5 ) ) ; " ,

" #38=PERSON_AND_ORGANIZATION_ROLE( ’ des ign_owner ’ ) ; " ,

" #39=CC_DESIGN_SECURITY_CLASSIFICATION ( # 1 6 , ( # 6 ) ) ; " ,

" " ,

" #40=PRODUCT_DEFINITION_SHAPE ( ’ ’ , ’ ’ , # 1 4 ) ; " ,

" #41=(LENGTH_UNIT ( ) NAMED_UNIT( ∗ ) SI_UNIT ( . MILLI . , . METRE . ) ) ; " ,

" #42=(NAMED_UNIT( ∗ ) PLANE_ANGLE_UNIT ( ) SI_UNIT ( $ , . RADIAN . ) ) ; " ,
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" #43=(NAMED_UNIT( ∗ ) SI_UNIT ( $ , . STERADIAN . ) SOLID_ANGLE_UNIT ( ) ) ; " ,

" #44=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE( 0 . 0 0 5 ) , # 4 1 , " +

" ’ d i s t a n c e _ a c c u r a c y _ v a l u e ’ , ’CONFUSED CURVE" +

" UNCERTAINTY ’ ) ; " ,

" #45=(GEOMETRIC_REPRESENTATION_CONTEXT ( 3 ) " +

"GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT ( ( # 4 4 ) ) " +

"GLOBAL_UNIT_ASSIGNED_CONTEXT( ( # 4 1 , # 4 2 , # 4 3 ) ) " +

"REPRESENTATION_CONTEXT( ’ ’ , ’ ’ ) ) ; " ,

" " ,

" #46=CARTESIAN_POINT ( ’ ’ , ( 0 . , 0 . , 0 . ) ) ; " ,

" #47=AXIS2_PLACEMENT_3D( ’ ’ , # 4 6 , $ , $ ) ; " ,

" #48=SHAPE_REPRESENTATION( ’ ’ , ( # 4 7 ) , # 4 5 ) ; " ,

" #49=SHAPE_DEFINITION_REPRESENTATION ( # 4 0 , # 4 8 ) ; " ,

" " ,

" /∗ P a r t S p e c i f i c a t i o n ∗ / " ,

" " ,

"ENDSEC; " ,

"END−ISO−10303−21; " ]

f i l e _ a r r a y = [ i + " \ n " f o r i in f i l e _ a r r a y ]

in de x1 = f i l e _ a r r a y . i n d e x ( " /∗ P a r t S p e c i f i c a t i o n ∗ / \ n " )

i n i t i a l _ w o r k _ a r r a y = l i s t ( f i l t e r ( lambda k : k . s t a r t s w i t h ( ’ # ’ ) , f i l e _ a r r a y ) )

h i g h e s t _ i n d e x = l i n e _ i n d e x ( s o r t e d ( i n i t i a l _ w o r k _ a r r a y , key= l i n e _ i n d e x ) [ −1] )

c u r r e n t _ i n d e x = h i g h e s t _ i n d e x + 1

p a r t _ b o d y _ i n d e x = 1

w o r k _ a r r a y = [ ]

p r i n t ( " [DONE] " )

g e n e r a t e _ a s s e m b l y ( i n _ a r r a y , i n _ d e p t h , i n _ c o e f f )
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APPENDIX H

CODES FOR SPHERICAL DEFLECTOR TRANSFER MAP AND ORBIT
CALCULATIONS

H.1 COSY INFINITY Code for Transfer Map Calculation Using ODEs in
Laboratory Coordinates

The following is a COSY INFINITY code that calculates the transfer map of a 45◦ sector of the

electrostatic spherical deflector in (x,a) beamline coordinates by integrating the ODEs of motion in

polar laboratory coordinates. This version of the code uses a 4th order Runge–Kutta integrator with

fixed step size. The voltages of the inner and outer spherical shells of the electrostatic spherical

deflector are set to result in a circular reference orbit of radius r0 = 1 m. The DA computation order

3 is used.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

VARIABLE Y1 4000 8 ; VARIABLE YT 4000 8 ;

VARIABLE XX0 4000 ; { I n i t i a l DA−v a l u e d x c o o r d i n a t e }

VARIABLE XX1 4000 ; { F i n a l DA−v a l u e d x c o o r d i n a t e }

VARIABLE AA0 4000 ; { I n i t i a l DA−v a l u e d a c o o r d i n a t e }

VARIABLE AA1 4000 ; { F i n a l DA−v a l u e d a c o o r d i n a t e }

VARIABLE NM 1 ; {DA v a r i a b l e s i z e }

VARIABLE MU 1 ; {mu}

VARIABLE HPAR 4000 ; {h}

PROCEDURE FNC F X T ;

{FUNCTION F (X, T ) DEFINING THE ODEs OF MOTION

X COORDINATES VECTOR

T TIME (OR ARC LENGTH) }
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F ( 1 ) := X ( 2 ) / X( 4 ) ; { r ’ }

F ( 2 ) := −MU/X ( 1 ) / X ( 1 ) / X( 4 ) + X( 1 )∗X( 4 ) ; { v_r ’ }

F ( 3 ) := 1 ; { t h e t a ’ }

F ( 4 ) := −2∗HPAR/X ( 1 ) / X ( 1 ) / X( 1 ) ∗ X ( 2 ) / X( 4 ) ; {omega ’ }

ENDPROCEDURE ;

PROCEDURE RK4A N X0 X1 Y0 NS Y1 ;

{FOURTH ORDER RUNGE KUTTA INTEGRATOR}

VARIABLE I 1 ; VARIABLE J 1 ; VARIABLE T 1 ;

VARIABLE Z1 NM 8 ; VARIABLE Z2 NM 8 ;

VARIABLE Z3 NM 8 ; VARIABLE Z4 NM 8 ;

VARIABLE Z5 NM 8 ; VARIABLE F NM 8 ;

VARIABLE HS1 1 ;

T := X0 ;

HS1 := ( X1−X0 ) / NS ;

LOOP J 1 N ; Y1 ( J ) := Y0 ( J ) ; ENDLOOP ;

LOOP I 1 NS ;

FNC F Y1 T ;

LOOP J 1 N ; Z1 ( J ) := HS1∗F ( J ) ; ENDLOOP ;

LOOP J 1 N ; Z5 ( J ) := Y1 ( J ) + Z1 ( J ) / 2 ; ENDLOOP ;

FNC F Z5 T+HS1 / 2 ;

LOOP J 1 N ; Z2 ( J ) := HS1∗F ( J ) ; ENDLOOP ;

LOOP J 1 N ; Z5 ( J ) := Y1 ( J ) + Z2 ( J ) / 2 ; ENDLOOP ;

FNC F Z5 T+HS1 / 2 ;

LOOP J 1 N ; Z3 ( J ) := HS1∗F ( J ) ; ENDLOOP ;

LOOP J 1 N ; Z5 ( J ) := Y1 ( J ) + Z3 ( J ) ; ENDLOOP ;

FNC F Z5 T+HS1 ;

LOOP J 1 N ; Z4 ( J ) := HS1∗F ( J ) ; ENDLOOP ;

LOOP J 1 N ;

Y1 ( J ) := Y1 ( J ) + ( 1 / 6 ) ∗ ( Z1 ( J )+2∗Z2 ( J )+2∗Z3 ( J )+ Z4 ( J ) ) ;

ENDLOOP ;

T := T + HS1 ;

ENDLOOP ;
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ENDPROCEDURE ;

PROCEDURE KEPLERODEPOLAR R00 PHI X0 A0 X1 A1 ;

{ Th i s p r o c e d u r e c a l c u l a t e s t h e t r a n s f e r map of t h e e l e c t r o s t a t i c

s p h e r i c a l d e f l e c t o r i n ( x , a ) c o o r d i n a t e s by i n t e g r a t i n g t h e

ODEs of mot ion i n l a b o r a t o r y c o o r d i n a t e s u s i n g a Runge−K u t t a

i n t e g r a t o r .

I n p u t p a r a m e t e r s :

R00 Rad ius o f t h e c i r c u l a r r e f e r e n c e o r b i t

PHI C e n t r a l a n g l e o f t r a c k e d s e c t o r o f t h e d e f l e c t o r

X0 I n i t i a l x c o o r d i n a t e

A0 I n i t i a l a c o o r d i n a t e

X1 F i n a l x c o o r d i n a t e

A1 F i n a l a c o o r d i n a t e }

VARIABLE R0 NM 2 ; { I n i t i a l r a d i u s v e c t o r }

VARIABLE W0 NM 2 ; { I n i t i a l v e l o c i t y v e c t o r }

VARIABLE R1 NM 2 ; { F i n a l r a d i u s v e c t o r }

VARIABLE W1 NM 2 ; { F i n a l v e l o c i t y v e c t o r }

VARIABLE DOT NM ; {A s c a l a r p r o d u c t }

VARIABLE R0S NM ; { I n i t i a l r a d i u s magn i tude }

VARIABLE RS NM ; { F i n a l r a d i u s magn i tude }

VARIABLE SIGMA0 NM ; { sigma_0 }

VARIABLE P NM ; { F o c a l p a r a m e t e r }

VARIABLE F NM ; VARIABLE G NM ; { Lagrange c o e f f i c i e n t s F , G}

VARIABLE FT NM ; VARIABLE GT NM ; { Lagrange c o e f f i c i e n t s FT , GT}

VARIABLE V0 NM ; { R e f e r e n c e v e l o c i t y }

VARIABLE V1 NM ; { I n i t i a l v e l o c i t y magn i tude }

VARIABLE V2 NM ; { F i n a l v e l o c i t y magn i tude }

VARIABLE CHIE 1 ; { E l e c t r i c r i g i d i t y }

PHI := PHI∗DEGRAD ;

V0 := CONS(SQRT(2∗ETA)∗CLIGHT) ;

R0 ( 1 ) := X0 + R00 ; R0 ( 2 ) := 0 ;

CHIE := AMU∗RE(M0)∗V0∗V0 / Z0 /EZERO ; {R00∗CHIE}
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V1 := SQRT( V0^2−2∗Z0∗EZERO∗CHIE∗(1−R00 / ( R0 ( 1 ) ) ) /AMU/ RE(M0) ) ;

W0( 1 ) := A0∗V0 ; W0( 2 ) := SQRT( V1∗V1−W0( 1 )∗W0( 1 ) ) ;

MU := R00∗CONS( V1)^2 ;

HPAR := R0 ( 1 )∗W0( 2 ) ;

YT( 1 ) := R0 ( 1 ) ;

YT( 2 ) := W0( 1 ) ;

YT( 3 ) := 0 ;

YT( 4 ) := W0( 2 ) / YT( 1 ) ;

{RK8A 4 0 PHI YT HS Y1 1e−5 RESCODE ; }

RK4A 4 0 PHI YT 1 e6 Y1 ;

X1 := Y1 ( 1 ) − R00 ;

V2 := SQRT( Y1 ( 2 )∗Y1 ( 2 ) + Y1 ( 1 )∗Y1 ( 1 )∗Y1 ( 4 )∗Y1 ( 4 ) ) ;

A1 := Y1 ( 2 ) / CONS( V2 ) ;

ENDPROCEDURE ;

OV 3 1 0 ;

RP 1 1 1 ;

NM := 4000 ;

XX0 := DA( 1 ) ; AA0 := DA( 2 ) ;

KEPLERODEPOLAR 1 45 XX0 AA0 XX1 AA1 ;

WRITE 6 ’TRANSFER MAP OBTAINED IN LAB COORDINATES’ ;

WRITE 6 ’BY INTEGRATION OF THE ODEs’ ;

WRITE 6 ’ X_f ’ XX1 ’ A_f ’ AA1 ;

ENDPROCEDURE ; RUN ; END ;
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H.2 Mathematica Code for Integration of the ODEs in Laboratory Coordi-
nates

The following is a Mathematica notebook that integrates the ODEs of motion of a particle with

specified initial beamline coordinates (x,a) through the electrostatic spherical deflector in polar

laboratory coordinates, plots one turn of the orbit, and outputs the final beamline coordinates at true

anomaly difference θ = 45◦. The voltages of the inner and outer spherical shells of the electrostatic

spherical deflector are set to result in a circular reference orbit of radius r0 = 1 m.

(∗ I n t e g r a t i o n o f t h e ODEs of mot ion f o r a c h a r g e d \

p a r t i c l e o f k i n e t i c en e r gy 1 MeV, mass 1 amu , and \

c h a r g e 1 e i n an e l e c t r o s t a t i c s p h e r i c a l d e f l e c t o r \

w i th t h e i n n e r s p h e r e c h a r g e such t h a t t h e p a r t i c l e \

would have a c i r c u l a r r e f e r e n c e o r b i t o f r a d i u s 1 m. ∗ )

v00 = 13891388 .79714028 ; (∗ R e f e r e n c e v e l o c i t y ∗ )

r00 = 1 ; (∗ R e f e r e n c e o r b i t r a d i u s ∗ )

x = −0.5; (∗ I n i t i a l x b e a m l i n e c o o r d i n a t e ∗ )

a = 0 . 5 ; (∗ I n i t i a l a b e a m l i n e c o o r d i n a t e ∗ )

r0 = {x + r00 , 0 , 0 } ; (∗ I n i t i a l r a d i u s v e c t o r ∗ )

v0 = { a v00 , v00 S q r t [1 − a ^ 2 ] , 0 } ; (∗ I n i t i a l v e l o c i t y v e c t o r ∗ )

mu = r00 v00 ^ 2 ; (∗ mu ∗ )

v r0 = v0 [ [ 1 ] ] ;

r r 0 = r0 [ [ 1 ] ] ;

omega0 = v0 [ [ 2 ] ] / r r 0 ; (∗ omega_0 ∗ )

t h e t a 0 = 0 ; (∗ I n i t i a l p o l a r a n g l e ∗ )

sys tem = { (∗ ODEs and t h e i n i t i a l c o n d i t i o n ∗ )

vr ’ [ t ] == −mu / ( omega [ t ] ( r r [ t ] ) ^ 2 ) + r r [ t ] omega [ t ] ,

r r ’ [ t ] == vr [ t ] / omega [ t ] ,

omega ’ [ t ] == −2 r r 0 v0 [ [ 2 ] ] v r [ t ] / ( omega [ t ] ( r r [ t ] ) ^ 3 ) ,

t h e t a ’ [ t ] == 1 ,

v r [ 0 ] == vr0 ,

r r [ 0 ] == r r 0 ,

omega [ 0 ] == omega0 ,
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t h e t a [ 0 ] == t h e t a 0

} ;

s o l = NDSolve [ system , { vr , r r , omega , t h e t a } , { t , 0 , 2 \ [ P i ] } ] ;

r s o l [ t _ ] = F i r s t [ E v a l u a t e [ r r [ t ] / . s o l ] ] ;

(∗ Radius magn i tude as a f u n c t i o n o f p o l a r a n g l e t h e t a ∗ )

v s o l [ t _ ] = F i r s t [ E v a l u a t e [ v r [ t ] / . s o l ] ] ;

(∗ V e l o c i t y magni tude as a f u n c t i o n o f p o l a r a n g l e t h e t a ∗ )

P r i n t [ P o l a r P l o t [

r s o l [ t ] , { t , 0 , 2 \ [ P i ] } ] ] ; (∗ P l o t one t u r n o f t h e o r b i t ∗ )

x1 [ t _ ] = r s o l [ t ] − r00 ; (∗ x c o o r d i n a t e a t p o l a r a n g l e t h e t a ∗ )

a1 [ t _ ] = v s o l [ t ] / v00 ; (∗ a c o o r d i n a t e a t p o l a r a n g l e t h e t a ∗ )

P r i n t [ " x_f =" , x1 [ P i / 4 ] ] ;

P r i n t [ " a _ f =" , a1 [ P i / 4 ] ] ;

H.3 COSY INFINITY Code for Transfer Map Calculation Using the Kepler
Theory Transition Matrix

The following is a COSY INFINITY code that calculates the transfer map of a 45◦ sector

of the electrostatic spherical deflector in (x,a) beamline coordinates using the Kepler theory

transition matrix with Lagrange-coefficients elements. This version of the code uses a 4th order

Runge–Kutta integrator with fixed step size. The voltages of the inner and outer spherical shells of

the electrostatic spherical deflector are set to result in a circular reference orbit of radius r0 = 1 m.

The DA computation order 3 is used.

INCLUDE ’COSY’ ;

PROCEDURE RUN ;

VARIABLE XX0 4000 ; { I n i t i a l DA−v a l u e d x c o o r d i n a t e }

VARIABLE XX1 4000 ; { F i n a l DA−v a l u e d x c o o r d i n a t e }

VARIABLE AA0 4000 ; { I n i t i a l DA−v a l u e d a c o o r d i n a t e }

VARIABLE AA1 4000 ; { F i n a l DA−v a l u e d a c o o r d i n a t e }
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VARIABLE NM 1 ; {DA v a r i a b l e s i z e }

PROCEDURE KEPLERANALYTICPOLAR R00 PHI X0 A0 X1 A1 ;

VARIABLE R0 NM 2 ; { I n i t i a l r a d i u s v e c t o r }

VARIABLE W0 NM 2 ; { I n i t i a l v e l o c i t y v e c t o r }

VARIABLE R1 NM 2 ; { F i n a l r a d i u s v e c t o r }

VARIABLE W1 NM 2 ; { F i n a l v e l o c i t y v e c t o r }

VARIABLE MU NM ; {mu}

VARIABLE DOT NM ; {A s c a l a r p r o d u c t }

VARIABLE R0S NM ; { I n i t i a l r a d i u s }

VARIABLE RS NM ; { F i n a l r a d i u s }

VARIABLE SIGMA0 NM ; { sigma_0 }

VARIABLE P NM ; { F o c a l p a r a m e t e r p}

VARIABLE F NM ; VARIABLE G NM ; { Lagrange c o e f f i c i e n t s F and G}

VARIABLE FT NM ; VARIABLE GT NM ; { Lagrange c o e f f i c i e n t s F_ t and G_t }

VARIABLE V0 NM ; { I n i t i a l v e l o c i t y a t z e r o p o t e n t i a l }

VARIABLE V1 NM ; { I n i t i a l v e l o c i t y }

VARIABLE V2 NM ; { F i n a l v e l o c i t y }

VARIABLE CHIE 1 ; { E l e c t r i c r i g i d i t y }

PHI := PHI∗DEGRAD ;

V0 := CONS(SQRT(2∗ETA)∗CLIGHT) ;

R0 ( 1 ) := X0 + R00 ; R0 ( 2 ) := 0 ;

CHIE := AMU∗RE(M0)∗V0∗V0 / Z0 /EZERO ; {R00∗CHIE}

V1 := SQRT( V0^2 − 2∗Z0∗EZERO∗CHIE∗(1−R00 / ( R0 ( 1 ) ) ) /AMU/ RE(M0) ) ;

W0( 1 ) := A0∗V0 ;

W0( 2 ) := SQRT( V1∗V1−W0( 1 )∗W0( 1 ) ) ;

MU := R00∗CONS( V1)^2 ;

DOT := R0 ( 1 )∗W0( 1 ) + R0 ( 2 )∗W0( 2 ) ;

SIGMA0 := DOT/ SQRT(MU) ;

P := ( ( R0 ( 1 )∗R0 ( 1 ) + R0 ( 2 )∗R0 ( 2 ) ) ∗ (W0( 1 )∗W0( 1 ) +W0( 2 )∗W0(2))−DOT∗DOT) / MU ;

R0S := R0 ( 1 ) ;

RS := P∗R0S / ( R0S+(P−R0S )∗COS( PHI)−SQRT( P )∗SIGMA0∗SIN ( PHI ) ) ;

F := 1 − ( RS / P)∗(1−COS( PHI ) ) ;
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G := (RS∗R0S / SQRT(MU∗P ) ) ∗ SIN ( PHI ) ;

FT := (SQRT(MU) / R0S / P ) ∗ (SIGMA0∗(1−COS( PHI))−SQRT( P )∗ SIN ( PHI ) ) ;

GT := 1 − ( R0S / P)∗(1−COS( PHI ) ) ;

R1 ( 1 ) := F∗R0 ( 1 ) + G∗W0( 1 ) ; R1 ( 2 ) := F∗R0 ( 2 ) + G∗W0( 2 ) ;

W1( 1 ) := FT∗R0 ( 1 ) + GT∗W0( 1 ) ; W1( 2 ) := FT∗R0 ( 2 ) + GT∗W0( 2 ) ;

X1 := (COS( PHI )∗R1 ( 1 ) + SIN ( PHI )∗R1 ( 2 ) ) − R00 ;

V2 := SQRT(W1( 1 )∗W1( 1 ) +W1( 2 )∗W1( 2 ) ) ;

A1 := (COS( PHI )∗W1( 1 ) + SIN ( PHI )∗W1( 2 ) ) / CONS( V2 ) ;

ENDPROCEDURE ;

OV 3 1 0 ;

RP 1 1 1 ;

NM := 4000 ;

XX0 := DA( 1 ) ; AA0 := DA( 2 ) ;

KEPLERANALYTICPOLAR 1 45 XX0 AA0 XX1 AA1 ;

WRITE 6 ’TRANSFER MAP OBTAINED IN LAB COORDINATES’ ;

WRITE 6 ’USING LAGRANGE COEFFICIENTS ’ ;

WRITE 6 ’ X_f ’ XX1 ’ A_f ’ AA1 ;

ENDPROCEDURE ; RUN ; END ;

H.4 COSY INFINITY Code for Transfer Map Calculation of the Built-in
Spherical Deflector Element

The following is a COSY INFINITY code that uses our non-relativistic version COSYNR.FOX

of its beam physics macro package COSY.FOX to compute the transfer map of a 45◦ sector of

the electrostatic spherical deflector. The voltages of the inner and outer spherical shells of the

electrostatic spherical deflector are set to result in a circular reference orbit of radius r0 = 1 m. The

DA computation order 3 is used.
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INCLUDE ’COSYNR’ ; {Non− r e l a t i v i s t i c v e r s i o n o f COSY.FOX}

PROCEDURE RUN ;

OV 3 1 0 ;

RP 1 1 1 ;

UM ;

ESP 1 45 10 ; { E l e c t r o s t a t i c s p h e r i c d e f l e c t o r }

WRITE 6 ’TRANSFER MAP OF COSY INFINITY ’ ’ S ESP ELEMENT’ ;

WRITE 6 ’ X_f ’ MAP( 1 ) ’ A_f ’ MAP( 2 ) ;

ENDPROCEDURE ; RUN ; END ;
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