
Bachelor Thesis
Physics

RWTH Aachen University

Physics Institute III B

Real Time Integration of a MHz Signal
using a Fast Programmable Gate Array

Taline Kehlenbach

Aachen, May 25, 2020

Eigenhändigkeitserklärung

Diese Arbeit ist von mir selbstständig angefertigt und verfasst. Es sind keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt worden.

(Ort, Datum) (Taline Kehlenbach)

Diese Arbeit wurde betreut von:

1. Prüfer: Prof. Dr. Jörg Pretz (RWTH Aachen)
2. Prüfer: Prof. Dr. Oliver Pooth (RWTH Aachen)

Sie wurde angefertigt im Institut für Kernphysik (IKP-4) des
Forschungszentrums Jülich GmbH

Abstract

Real-time beam diagnostic systems play a significant role in particle accelerator
physics. Digital processing of signals is often part of the diagnostic systems. At
Cooler Synchrotron (COSY) at Forschungszentrum Jülich the alternating part of the
beam current is measured with a Fast Current Transformer (FCT).
The signal processing from the FCT is done with a Field Programmable Gate Array
(FPGA) board. Here, an algorithm for real time integration of the alternating part of
the beam current for detected particle bunch at COSY is presented. This algorithm
has been constructed to specifically meet the requirements of the signal and will be
implemented in the already existing structure of the signal processing using FPGA
at COSY. The task is to construct an algorithm in Hardware Description Language
(HDL) that can be used to integrate over the described signal and handle the chal-
lenges posed by the high orbital frequency up to 2MHz of the beam bunches, which
affect the baseline detection of the beam current. Furthermore the possibility of mul-
tiple distinct beam bunches inside the synchrotron at the same time needed to be
considered.
The developed algorithm serves as a foundation for further improvements of the in-
tegration process and is therefore fairly minimal and separated in several modules to
simplify changes in the future. Finally, possible areas of improvement for the designed
algorithm are pointed out and discussed.

Contents

List of Acronyms

.

iii

List of Symbols

.

iv

List of Figures

.

vi

List of Tables

.

vii

1. Introduction

.

1

2. Theory and Setup

.

3
2.1. The Cooler Synchrotron

.

. 3
2.2. Principle of Fast Current Transformers

.

. 3
2.2.1. Beam current measurement at COSY

.

. 7
2.3. Basics of FPGA technology

.

. 8
2.3.1. The Red Pitaya Board

.

. 8
2.3.2. Programming with Verilog

.

. 9

3. Implemented Design

.

13
3.1. Overall module

.

. 13
3.2. Exponential moving average

.

. 15
3.2.1. Analysis of the algorithm for the Exponential Moving Average

(EMA)

.

. 15
3.2.2. Verilog module for the EMA

.

. 17
3.3. Peak detector

.

. 19
3.4. Simple moving average

.

. 19
3.4.1. Analysis of the algorithm for the Simple Moving Average (SMA)

.

19
3.4.2. Verilog module for the SMA

.

. 22
3.5. Baseline detector

.

. 23
3.6. Integrator

.

. 23
3.7. Simulation and testing

.

. 24
3.7.1. Signal simulation

.

. 24
3.7.2. Simulation results

.

. 25
3.7.3. Implementation and testing on hardware

.

. 29

4. Results and Outlook

.

33

i

Contents

Bibliography

.

35

A. Appendix

.

A 1
A.1. Verilog modules

.

. A 1
A.1.1. Structural module new_integration.v

.

. A 1
A.1.2. EMA filter module ema.v

.

. A 3
A.1.3. Peak detection module peak_detector.v

.

. A 4
A.1.4. SMA filter module sma.v

.

. A 5
A.1.5. Baseline detection module baseline_detector.v

.

. A 7
A.1.6. Integration module integration.v

.

. A 8
A.2. Bash script

.

. A 10

ii

List of Acronyms

API Application Programming Interface
COSY Cooler Synchrotron
EMA Exponential Moving Average
FCT Fast Current Transformer
FPGA Field Programmable Gate Array
HDL Hardware Description Language
IKP Nuclear Physics Institute (Institut für Kernphysik)
JULIC Jülich Light Ion Cyclotron
LUT Lookup Table
RF Radio Frequency
SMA Simple Moving Average

iii

List of Symbols

Symbol Physical quantity Unit See chapter
B Magnetic field T 2

.

C2 Stray capacitances in secondary circuit F 2

.

H Transfer function 3

.

I2 Current in secondary circuit of transformer A 2

.

I2 Secondary current in FCT A 2

.

Ib Beam current A 2

.

L1 Magnetic inductance of coil in primary circuit H 2

.

L2 Magnetic inductance of coil in secondary circuit H 2

.

N Maximum time index 3

.

N1 Number of turns of primary transformer circuit 2

.

N2 Number of turns of secondary transformer circuit 2

.

R2 Ohmic resistance in secondary circuit of trans-
former

Ω 2

.

Ts Sampling interval s 3

.

U2 Voltage induced in secondary transformer circuit V 2

.

Vr Voltrange of ADC connector V 3

.

Vin Voltage input of ADC connector V 3

.

Z Impedance of FCT Ω 2

.

∆t Time step for integration s 3

.

Ω Normalized angular frequency 3

.

Φ1 Magnetic flux caused by beam current Wb 2

.

Φ2 Magnetic flux caused by current in secondary
transformer circuit

Wb 2

.

Φt Total magnetic flux inside FCT torus Wb 2

.

α Weighting factor for EMA 3

.

δ Dirac impulse 3

.

λN Number of particles per unit length A 2

.

µ Magnetic permeability H/m 2

.

iv

List of Symbols

Symbol Physical quantity Unit See chapter
ω Angular frequency 1/s 2

.

ωhigh Higher cutoff frequency 1/s 2

.

ωlow Lower cutoff frequency 1/s 2

.

τ Time constant of FCT s 2

.

τdroop Droop time of FCT s 2

.

τrise Rise time of FCT s 2

.

a Inner radius of FCT torus m 2

.

b Lowest signal input (baseline) 3

.

b Outer radius of FCT torus m 2

.

d Dumping width for EMA 3

.

fi Frequency of the input signal 3

.

h Width of FCT torus m 2

.

h Impulse response 3

.

i14 14-bit integer 3

.

k Number of averaged values for SMA 3

.

n Time index 3

.

nbunches Number of bunches detected by the integration
module

3

.

nskipped Number of skipped bunches in between integrated
bunches

3

.

q Particle charge C 2

.

r Radius m 2

.

s Laplace variable 1/s 2

.

t Time s 2

.

tint Runtime of integration module s 3

.

v Particle velocity m/s 2

.

x Time-discrete signal 3

.

y Filtered signal 3

.

v

List of Figures

2.1. Layout of the accelerator complex Cooler Synchrotron (COSY)

.

. 4
2.2. a) Transfer impedance of the FCT with dependence of the angular

frequency ω on a logarithmic scale and marked bandwidth b) Response
of the FCT to a step-function

.

. 6
2.3. a) Gaussian bunch shape (blue graph), b) Sine-like bunch shape (blue

graph), c) Overlapping bunch shape (blue graph)

.

. 8
2.4. Redpitaya STEMLab hardware [

.

10

.

]

.

. 9

3.1. Block diagram of the overall module

.

. 14
3.2. Impulse response of EMA for various weighting factors

.

. 16
3.3. Frequency response of EMA for α = 1/64

.

. 18
3.4. Block diagram of EMA (red: recursive paths)

.

. 19
3.5. Impulse response of SMA for k = 8

.

. 21
3.6. Frequency response of SMA for k = 4

.

. 21
3.7. Various filtered versions of a simulated ADC input using both the EMA

and SMA

.

. 22
3.8. Signal generated with Pyhton script for three different signal shapes

.

. . 25
3.9. Simulation results for sinusoidal input, SMA with k = 3 and no skipped

bunches (row 1: reset signal, row 2: ADC input signal, row 3: EMA
output, row 4: peak detector output, row 5: SMA output, row 6:
baseline detector output, row 7: current value of one integral while it
is calculated, row 8: averaged integration result, row 9: bunch counter)

.

26
3.10. Simulation results for gauss shaped input, SMA with k = 3 and no

skipped bunches (row 1: reset signal, row 2: ADC input signal, row 3:
EMA output, row 4: peak detector output, row 5: SMA output, row 6:
baseline detector output, row 7: current value of one integral while it
is calculated, row 8: averaged integration result, row 9: bunch counter)

.

27
3.11. Simulation results for signal shape with two peaks, SMA with k = 3

and no skipped bunches (row 1: reset signal, row 2: ADC input signal,
row 3: EMA output, row 4: peak detector output, row 5: SMA output,
row 6: baseline detector output, row 7: current value of one integral
while it is calculated, row 8: averaged integration result, row 9: bunch
counter)

.

. 27

vi

3.12. Simulation results right after reset signal for sinusoidal input, SMA
with k = 3 and no skipped bunches, visible deviation of the baseline
value in row 5 and lower end results for integration in row 6 for the
first signal period (row 1: reset signal, row 2: ADC input signal, row 3:
EMA output, row 4: peak detector output, row 5: SMA output, row 6:
baseline detector output, row 7: current value of one integral while it
is calculated, row 8: averaged integration result, row 9: bunch counter)

.

28
3.13. Simulation results for signal shape with two peaks, SMA with k = 3 and

every second bunch skipped (row 1: reset signal, row 2: ADC input
signal, row 3: EMA output, row 4: peak detector output, row 5: SMA
output, row 6: baseline detector output, row 7: current value of one
integral while it is calculated, row 8: averaged integration result, row
9: bunch counter)

.

. 29
3.14. Bunch counter output from tests on the Redpitaya board showing linear

behavior as expected

.

. 31

List of Tables

2.1. FCT specifications [

.

8

.

]

.

. 7
2.2. STEMLab 125-14 hardware [

.

10

.

]

.

. 9
2.3. STEMLab 125-14 specifications for Radio Frequency (RF) connectors

[

.

10

.

]

.

. 9

3.1. Different signals and settings used for testing

.

. 31
3.2. Averaged testing results for different signals with their percentage-wise

deviation form the expected value

.

. 32

vii

1. Introduction

Ever since the early 20th century scattering experiments have been an integral part
of particle physics to study the building blocks of the universe. Nowadays these
experiments have developed into particle accelerators which are able to accelerate
and collide different particles at very high energies.
Since these tasks demand all accelerator components to function with high precision,
diagnostic systems for the parameters of the particle beam are essential to ensure the
functionality of any particle accelerator. At the Nuclear Physics Institute (Institut für
Kernphysik) (IKP) and more specifically COSY at Forschungszentrum Jülich there
are many data acquisition systems and real-time processing systems that ensure the
performance of the facility. One of these important beam measurements is the beam
current, since it carrys information regarding the longitudinal charge distribution of
the beam [1

.

, p. 3]. At COSY, the beam current is measured with a FCT. The real
time signal processing is accomplished with Field Programmable Gate Array (FPGA)
technology.
In this thesis, a way to implement a bunch-wise integration over the detected beam
current for FPGAs is presented. The resulting data can give further insight into the
amount of particles per beam bunch. In order for the algorithm to be useful, it has
to be:

• applicable to the Red Pitaya STEMLab 125-14 measurement board,

• able to periodically skip particle bunches in the beam in the case of multiple
distinct particle bunches inside the ring,

• integrate over one particle bunch in real-time

The thesis covers the basic setup of FPGAs and the measurement process for beam
currents. Additionally, the fundamentals of FPGAs and Hardware Description Lan-
guages (HDL) and the hardware used at COSY are introduced. Consequentially, the
layout of the algorithm will be explained and discussed regarding its strengths and
weaknesses and possible room for improvement.

1

2. Theory and Setup

In this chapter the fundamental knowledge about the different parts of signal gen-
eration and acquisition leading up to the implemented design is elucidated. This
includes the basic setup of the Cooler Synchrotron and the physical principles be-
hind the Fast Current Transformer to explain the typical output signal of the device.
Afterwards the focus will lie on the signal processing electronics that are based on
FPGA technology and the programming software to configure said electronics.

2.1. The Cooler Synchrotron

Since the results of this thesis are to be applied at the COSY operated by the IKP,
a few details about the facility are introduced as context.
The particle accelerator and storage ring COSY is used in fundamental research in the
fields of hadron, particle and nuclear physics [2

.

, p.2]. The ring has a circumference of
183.47 m with two 40 m long linear sections. It is connected to the Jülich Light Ion
Cyclotron (JULIC) for preacceleration [3

.

, p.7] and an extraction beam line leading to
external experiments. A layout of the accelerator complex can be seen in Figure 2.1

.

.
At COSY, one is able to accelerate polarized and unpolarized proton and deuteron
beams in the momentum range between 300 MeV/c and 3.65 GeV/c [3

.

, p.6]. A
fairly unique feature of COSY are the cooling units: COSY offers electron as well as
stochastic cooling [2

.

, p.2].
The FCT can be found in the straight section after the injection beamline [5

.

]. Since
the developed algorithm processes the FCT signal, the setup and functionality of a
FCT are elucidated in the following section.

2.2. Principle of Fast Current Transformers

In order to measure the beam current at COSY a FCT is used. Therefore, a basic
explanation of the functionality of FCTs is needed to put the programming, that is
to be discussed, into physical context.
Since the FCT only relies on the electromagnetic field emitted by the particle beam,
it is a non-destructive method to measure the beam current [1

.

, p.2]. Basically the
FCT works with similar principles as a loaded current transformer.

3

2. Theory and Setup

Figure 2.1.: Layout of the accelerator complex COSY

The circular beam current Ib is the primary winding of the transformer and can be
described as

Ib = q ⋅ λN ⋅ v (2.1)

with q the particle charge, λN the number of particles per unit length and v the
velocity of particles [1

.

, p.3]. The secondary winding is connected to the beam current
by a highly permeable torus to guide the field lines and to increase the inductance L
[7

.

, p.11]. The beam current creates a magnetic field B(r) according to the Biot-Savart
law

B(r) =
µ ⋅ Ib
2πr (2.2)

with r the distance from the beam and Ib beam current. Accordingly, the magnetic
flux Φ1 caused by the beam current inside the torus with width h, the inner radius
from the particle beam a and the outer radius b is given by the equation

Φ1 = ∫ B⃗ ⋅ dA⃗ = µ
hN1 Ib

2π ln a
b

(2.3)

with N1 = 1 number of turns of the primary winding (i.e. the particle beam). Any
change of the beam current results in a change of the total magnetic flux Φt which
induces a voltage U2 inside the secondary winding according to Faraday’s law of
induction:

U2 = −N2
dΦt

dt
(2.4)

4

2.2. Principle of Fast Current Transformers

with N2 the number of turns of the secondary circuit. Because of the electric load of
the secondary circuit, a current I2 is able to flow:

I2 = U2/R2 = −
N2

R2

dΦt

dt
(2.5)

with R2 the ohmic resistance of the secondary circuit. This current results in a
magnetic flux

Φ2 = ∫ B⃗ ⋅ dA⃗ = µ
hN2 I2

2π ln a
b
. (2.6)

The total flux is then given by

Φt = Φ1 +Φ2 =
L1 I1

N1
+
L2 I2

N2
(2.7)

with L1 = µ
hN2

1
2π ln a

b the inductance of the primary winding and L2 = µ
hN2

2
2π ln a

b the
one of the secondary winding. The relation between the beam current and the cur-
rent in the secondary circuit is typically derived using the Laplace-transformation on
equations 2.5

.

and 2.7

.

:

Φt = L1 I1 +
L2 I2

N2
(2.8)

I2 = −s
N2 Φt

R2
(2.9)

The Laplace variable here is s = iω and N1 = 1 has already been equated. The solution
of these equation leads to

I2 =
s τ

1 + s τ
Ib
N2

(2.10)

with τ = L2/R2. Typically the resistance R2 is very small compared to the inductivity
L2 [7

.

, p.11] so that equation 2.10

.

can be simplified as

I2 ≈ Ib/N2 (2.11)

which is the formula for the ideal current transformer. Since instead of the current of
the secondary circuit typically the voltage U2 with U2 =

R2
N2
⋅ Ib is measured, the value

R2
N2

is referred to as the sensitivity of the transformer. [1

.

, pp.10-11]
To examine the frequency response of the FCT, some stray capacitances C2 between
the turns of the coil and the cables of the secondary circuit in general have to be
taken into account. Together with the ohmic resistance and the inductivity of the
coil this leads to the following impedance of the circuit:

1
Z

=
1

iωL2
+

1
R2
+ iωC2 . (2.12)

5

2. Theory and Setup

Typically the Voltage over this impedance is measured as the output value of the
FCT. Equation 2.12

.

shows, that the output of the FCT is influenced by the angular
frequency of excitation. The possible cases are:

• ω ≪ R2/L2
In this case the impedance becomes Z → 1/(iωL2) which clarifies again that no
direct currents can be measured.

• ω ≫ 1/(R2C2)

Here, the impedance can be approximated by Z → 1/(iω C2) meaning the cur-
rent is mainly influenced by the capacitances and in return leads to a low voltage
output.

• R2/L2 ≪ ω ≪ 1/(R2C2)

This case is also known as the working region of the FCT for which Z ≈ R is
true which leads to optimal measurement conditions for the beam current.

The bandwidth of the working region from the lower cutoff frequency ωlow = R2/L2
to the upper cutoff frequency ωhigh = 1/(R2C2) is shown in Figure 2.2

.

. These cutoff
frequencies are connected to the rise and droop times of the FCT which are character-
istic for the time response of the device. Given the example of a simple step function
as a signal, the output of the FCT would rise proportional to 1 − e−t/τrise with the
rise time τrise = 1/ωhigh = R2 ⋅ C2. Afterwards the signal would drop proportional to
e−t/τdroop with τdroop = 1/ωlow = L2/R2 since the direct current component of the step
function is cannot be consistently measured by the FCT. [7

.

, pp.12-13]
The modeled response to a step function is also shown in Figure 2.2

.

.

10 3 10 1 101

 [1/s]

0

20

40

|Z
| [

Oh
m

]

Transfer impedance of FCT

low

high

(a)

Time

Vo
lta

ge

FCT response to step function

(b)

Figure 2.2.: a) Transfer impedance of the FCT with dependence of the angular fre-
quency ω on a logarithmic scale and marked bandwidth b) Response of
the FCT to a step-function

In conclusion, the output of the FCT is dependent on a number of properties of the
circuit. Firstly, the amount of turns N2 has a direct effect on the sensitivity R2/N2

6

2.2. Principle of Fast Current Transformers

from equation 2.11

.

. A high number of turns will lead to a low output amplitude which
is to be avoided. To achieve a long droop time, the inductance L2 should be large,
which is difficult to achieve via a large amount of turns since that would interfere
with the last point. Therefore, the permeability can be increased by choosing the
right material for the torus of the transformer. Lastly, the rise time can be minimized
by keeping the stray capacitances small. [7

.

, pp.14-15]
Another interference with the measurement of the FCT is the wall current that is
induced into the conductive beam pipe and would cancel the magnetic field created
by the beam current since the wall current is the opposite image of the beam current.
The solution is to guide the wall current around the torus of the FCT by installing a
highly permeable metallic shield around the whole device and putting a ceramic gap
in the beam pipe, where the FCT is installed. This way the wall current has almost
no impact on the voltage measured by the transformer. [7

.

, p.15]

2.2.1. Beam current measurement at COSY

The FCT installed at COSY is manufactured by bergoz instrumentation and has the
properties shown in Table 2.1

.

. The torus consists of a CoFe amorphous alloy.

Table 2.1.: FCT specifications [8

.

]
Turns 5 Units
Sensitivity 5 V/A
Rise time (typical) 500 ps
Droop time 5 µs
Upper cutoff frequency (typ.) 700 MHz
Lower cutoff frequency ł32 kHz
Outer radius 15.24 cm
Inner radius 14.76 cm
Length 4 cm

The output signal, i.e. the respective bunch shapes of the particle beam, depends
on the operation mode of the accelerator, e.g. beam cooling etc. The bunches that
are detected at COSY are mostly Gaussian or comparable to a sine wave. But also
a signal with two "overlapping" peaks is possible. Examples for these bunch shapes
are given in Figure 2.3

.

. With contrast to the beam current shown in these figures,
the length of the beam bunch compared to the period of circulation at COSY is too
large, so that there is no significant downtime in between two bunches, which has to
be considered in the algorithm. The frequency of the bunches inside the synchrotron
and therefore the frequency of the beam current signal ranges from ≈ 500kHz right
after an injection up to 2MHz.

7

2. Theory and Setup

(a) (b) (c)

Figure 2.3.: a) Gaussian bunch shape (blue graph), b) Sine-like bunch shape (blue
graph), c) Overlapping bunch shape (blue graph)

2.3. Basics of FPGA technology

The output of the FCT is transferred to a STEMLab 125-14 unit and subsequently
the FPGA board as the main component of the unit. Therefore, the following para-
graph will provide a concise introduction into FPGA technology.
A Field Programmable Gate Array (FPGA) can be used in a vast number of ap-
plications since it is highly customizable and offers the benefit of parallelization of
processes [9

.

, p.10]. The reason behind this is its structure. FPGAs are basically
arrays of programmable logic blocks embedded in a then again programmable inter-
connect. At the edges of this so called "logic fabric", programmable I/O blocks can
be found to interface the fabric signals with external appliances [9

.

, p.5]. These three
are the main components of a FPGA.
The programmable interconnect is formed by wires that can be connected to any two
logic blocks leading to arbitrary logic networks to be designed by the user. Embedded
into this set of wires are the programmable logic blocks. These consist of one or more
logic function in the form of a Lookup Table (LUT) and other components like carry
chains for high-performance adders and registers that can all be configured by the
user. [9

.

, p.6]

2.3.1. The Red Pitaya Board

The FPGA board that will be used for this thesis is a Red Pitaya or more specif-
ically a STEMLab 125-14. It is a FPGA-based open-source project that functions
as a versatile measuring and controlling device to replace more expensive laboratory
equipment.
The hardware specifications of the board are listed in Table 2.2

.

. A Linux operating
system can be installed on a Micro SD card and run on the system processor of the
board. Next to the FPGA board of the Red Pitaya, the Radio Frequency (RF) con-
nectors have a high relevance for the discussed application, since the signal from the
FCT is connected to the ADC-input port of the Red Pitaya. The most important pa-
rameters to be considered during the design implementation are the ADC resolution

8

2.3. Basics of FPGA technology

of 14 bit and the sample rate of 125 MHz. The other parameters are shown in Table
2.3

.

.

Figure 2.4.: Redpitaya STEMLab hardware [10

.

]

Table 2.2.: STEMLab 125-14 hardware [10

.

]
Processor Processor DUAL CORE ARM CORTEX A9
FPGA FPGA Xilinx Zynq 7010 SOC
RAM 512MB (4Gb)
System memory Micro SD up to 32GB
Power consumption 5V, 2A max

Table 2.3.: STEMLab 125-14 specifications for RF connectors [10

.

]
RF input channels 2
Sample rate 125 MHz
ADC resolution 14 bit
Input impedance 1MΩ
Full scale voltage range ±1V (LV) ±20 (HV)
Absolute max. input voltage range 30V

2.3.2. Programming with Verilog

The configuration of FPGA boards can be accomplished with Hardware Description
Languages (HDLs) such as VHDL or Verilog, which apart from some syntax conven-
tions are very similar. The software architecture for this project is built in Verilog
and the software used for editing and implementing is Vivado 2016.4.

9

2. Theory and Setup

A data type in Verilog can take on four values:

• The value "0" is a logic zero or a false condition.

• A logic one or a true condition is given by the value "1".

• The value "x" or "X" is taken on by uninitialized variables.

• Lastly, the value "z" or "Z" depicts a high impedance value for tri-state elements.

The two variable types that can take on this set of values are "net data types" which
model interconnections between components and "variable data types" that can hold
values until their next assignment.
The most common net data type is called "wire", i.e. a simple connection. There are
other net data types that are of no concern for the required task. A wire variable
needs to be driven in order to lead to a sensible output. It does not store data over
time.
Opposed to this are the variable data types. The most common type here is called
"reg" (short for register), which models logic storage.
The discussed data types are mostly one bit in length by default. In order to handle
signals with more than one bit, Verilog supports vectors, i.e. one-dimensional arrays
of elements. The ADC input of the Red Pitaya board for example is 14 bit long.
In order to include these data types in a verilog design they have to be part of a Ver-
ilog module. Any Verilog design is stored in a single file ("example.v"). Inside this file,
the description of the design is given inside a module. This module typically consists
of a port list and port definitions declaring, the port type "input", "output" or "inout"
and the data type as discussed above and the port name. Afterwards the module
contains the declarations and operations necessary to perform the task required by
the user. It is common, to create lower-level modules inside a top-module, to create
the desired design and structure the code in a hierarchy.[11

.

, p.14 ff.]
The operators used in Verilog are mostly very similar to the Operators used in the
programming language C. However, the keyword "assign" can be used to define a
continuous assignment to model combinational logic or time-independent logic. The
right-hand side of such an assignment serves as the input for the left-hand side and any
change to the input will result in an update of the left-hand side. Several successive
continuous assignments in Verilog will result in separate logic circuits and therefore
in a concurrent execution of the assign-statements.[11

.

, p.23]
Furthermore, Verilog allows for procedural assignments that are triggered by an event.
The possible procedural blocks are "initial" and "always". The inital block is not syn-
thesizable and therefore only used for behavioral simulations. The statements inside
an inital block are executed at one time at the beginning of a simulation. Opposed
to this, the always block is executed forever (or the duration of the simulation). A
procedural block is often followed by a sensitivity list that state the possible trigger
for their execution, e.g. a clock signal.

10

2.3. Basics of FPGA technology

Inside a procedural block two types of assignments can be used: blocking and non-
blocking assignments. A blocking assignment is simply denoted by a "=" symbol and
leads to a immediate assignment of the right-hand side to the left-hand side, before
the next statement is executed. However, with a non-blocking assignment (denoted
by "=>") the assignment of update of the left-hand side is delayed until the next
blocking assignment occurs while the right-hand side value is cached. This assign-
ment can be used to model sequential logic, where the output depends on the input
history. [11

.

, p.65 ff]
To implement a design, the written code is put through a design flow. The Xilinx
design flow consists of the following steps:
Firstly, the design entry is naturally defined by the creation of a project with various
modules and constraints. This step is followed by the design synthesis that outputs a
simple netlist listing all connections between the different logic gates etc. This netlist
is then mapped onto the specific device during the design implementation. Finally,
a bitstream can be generated that is then used to program the FPGA board. Addi-
tionally, Verilog provides several verification tools in between the described steps to
simulate the several stages of the desig. [12

.

]
In this project mostly behavioral simulations are used to test the design. These simu-
lations require a typical Verilog module called a testbench, that calls the module that
is to be tested and executes various input conditions for that module [13

.

, p.127].

11

3. Implemented Design

In this chapter, the various modules designed for the defined task and their interde-
pendencies are described and discussed. Furthermore, the implemented algorithms
in each module will be explained. The Verilog code for the modules can be found
in section A.1

.

of the appendix. Finally the process of simulating and testing the
designed modules will be explained shortly and the testing results will be discussed.

3.1. Overall module

The module described in this section, serves as the top module in the hierarchy of
the integration algorithm. It is supposed to be purely structural, i.e. only serves
to instantiate and interconnect sub-modules. However, some behavioral statements
such as signal assignments etc. are still found in this module for testing purposes and
potential debugging until the full functionality outside of simulations is confirmed.
The module inputs are the clock signal generated by the FPGA to time the procedural
blocks, a reset signal, the actual input from the ADC connector and two parameters
that can be modified by the user to vary the impact of the filter on the signal and to
skip incoming bunches if necessary.
Inside the module, five sub-modules are instantiated. Two of these modules are filters.
One is only for lightly filtering out noise of the signal to achieve a more exact value for
the minimum of the signal or the baseline in this case. This filter operates according
to the Simple Moving Average (SMA) which will be elaborated later on. The impact
of the filter on the raw signal can be determined by the parameter mentioned previ-
ously. The other module is heavily filtering the input signal to facilitate the detection
of noise-independent minima in the signal later on. In this case, the filter used is
the Exponential Moving Average (EMA). The filter modules output a filtered version
of the input signal each. The output of the SMA-module serves as the input to the
module for baseline detection, while the output of the EMA-module is connected to
the input port of the peak detection-module. The peak detector outputs a start/stop-
signal with each negative peak detected in the output of the EMA-module. This is
essential to the integration of the input signal, since it provides a start and stop signal
for processes in two other modules. Firstly, the baseline detector has to correct the
baseline of the input signal with the beginning of each new bunch, since the ADC
input usually has an arbitrary baseline and the minimum of the FCT-signal typically
lies near zero. Secondly, the integration has to begin and end with each new bunch.
Therefore, the output of the peak detector is connected to two separate modules.
However, the output of the baseline detector has to be connected to the integration

13

3. Implemented Design

as well to shift the before mentioned arbitrary baseline back to zero. Finally, the last
module integrates the raw input data and averages over a few integration results. The
integration can be skipped for a specific amount of bunches by setting the respective
input variable, mentioned in the beginning of this section, to the desired number of
integration cycles to be skipped. The average integral is the output of the overall
module. To monitor the functionality of the module on the FPGA, it also outputs
the baseline value from the baseline detector and a counter, to see how many bunches
have been integrated. Additionally, the clock signal is connected to every sub-module
as an input to trigger the procedural assignments inside the modules. The reset sig-
nal is connected to the sub-modules in the same way. The interconnections of the
modules are visualized in Figure 3.1

.

.
Once a module is triggered by the clock signal, it performs the specific tasks in
that module and generates an output, as soon as it is done. This means, that the
integration module could be working on the current ADC input signal, while the
EMA-module might be a few clock signals behind. This leads to a shift of the inte-
gration interval, so it does not line up perfectly with the beginning and ending of one
beam bunch. Although this does not heavily affect the output of the module in the
behavioral simulation and the conducted hardware tests, timing and race conditions
for the sub-modules should be considered in further research.

structural module

clock signal/
reset signal

ADC input
(14-bit) EMA

baseline
detector

peak
detector

SMA

integration

filtered signal 1
(32-bit)

filtered signal 2
(32-bit)

start/stop

baseline
(32-bit)

averaged integral
(32-bit)

bunch counter
(32-bit)

signal baseline
(32-bit)

filter strength

skip bunches

Figure 3.1.: Block diagram of the overall module

14

3.2. Exponential moving average

3.2. Exponential moving average

The first sub-module to be described has three input signals: the 14-bit long ADC
input, the clock signal and the reset signal. The output is a 32-bit filtered version
of the ADC input-signal. The behavioral elements contain a filter based on an EMA
which is applied to discrete-time systems [14

.

, pp.28-29].

3.2.1. Analysis of the algorithm for the EMA

The algorithm serves as a digital low-pass filter to simplify the subsequent algorithm
necessary for the peak detection-module.
The input of this filter is the ADC signal x[n] with n ∈ N0 that is sampled in intervals
of Ts = 8ns. For example a basic sine-function with frequency f can be represented
as a digital signal with

x[n] = sin(2π ⋅ Ts ⋅ n), Ω = 2π ⋅ Ts[14

.

, p.30]. (3.1)

The parameter n is the time index and Ω is the dimensionless angular frequency.
Compared to a continuous signal, the time t and time index n are connected by
t = n ⋅ Ts. The recursive formula of the filter is

y[n] = αx[n] + (1 − α)y[n − 1]. (3.2)

Here, x[n] is the current state of the system, y[n] is the current filtered state, y[n−1]
is the previous filtered state and α ∈ (0,1] is the weighting factor (no filtering for α = 1)
and in part the cutoff frequency. The weighting factor is chosen out of negative powers
of two to simplify the identification of the bit-shift operators which will be introduced
in the following. When computing the recursive formula 3.2

.

, one can identify the
exponential behavior of the filter, since the weighting factor of the previous filter
states decreases exponentially:

y[n] = α∑
n

k=0(1 − α)
kx[n − k]. (3.3)

This leads to the most recent input value to have the most significance when calcu-
lating the filtered state.
To analyze and describe the EMA, the impulse response, frequency response and
phase response will be discussed.
The impulse response is the response of the filter to a Dirac impulse

δ[n] =

⎧⎪⎪
⎨
⎪⎪⎩

1 n = 0
0 n ≠ 0

. (3.4)

Applied to equation 3.3

.

this leads to the impulse response

h[n] = α(1 − α)n. (3.5)

15

3. Implemented Design

The impulse response in Figure 3.2

.

visualizes the exponential behavior of the filter for
different weighting factors. It can be seen, that this filter lowers the signal amplitude.
Therefore, its output is not suitable as input for the baseline detector-module.

0 20 40 60 80
Time [ns]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Vo
lta

ge
 [U

]

Impulse response of EMA filter

 = 1
8

 = 1
16

 = 1
32

Figure 3.2.: Impulse response of EMA for various weighting factors

To calculate the frequency response of the EMA, the transfer function H(z) of the
filter is necessary. Luckily, the Z-transformation of the impulse response equals the
transfer function [14

.

, pp.152, 218-219]: As a result, the Z-transformation of the re-
cursive formula 3.2

.

is

H(z) = ∑
∞

n=0 h[n]z
−n z ∈ Z (3.6)

= ∑
∞

n=0α(1 − α)
nz−n (3.7)

=
α

1 − (1 − α) z−1 . (3.8)

As one can see, the transfer function has a pole at z = 1 − α. This impacts the
frequency response of the system.
The frequency response of the filter is then given by

H(ei⋅Ω) = α

1 − (1 − α) e−i⋅Ω (3.9)

16

3.2. Exponential moving average

with the dimensionless frequency Ω = ωTs, since it models the transfer behavior of
the filter for signals with arbitrary frequency Ω, amplitude one and phase shift zero
[14

.

, p.152]. The modulus of the frequency response

∣H(ei⋅Ω)∣ = α
√

1 − 2(1 − α) cosω + (1 − α)2
(3.10)

is the amplitude response for different frequencies. It is typically given in decibels

− log10(∣H(ei⋅Ω)∣)dB. (3.11)

The cutoff frequency is connected to this value being the frequency, for which the am-
plitude of the filtered signal is half the amplitude of the original signal [14

.

, pp.149-150].
This corresponds to approximately −3dB. For the implemented filter, a weighting fac-
tor of α = 1/64 with cutoff frequency ≈0.31MHz is chosen. The reason for this low
cutoff frequency compared to the beam bunch frequency (see subsection 2.2.1

.

) is the
high sensitivity of the beam detection-module. Noise should be almost completely
filtered out, while the resulting low amplitude of the filtered signal does not affect the
beam detection. However, for future tests of the algorithm, that are not part of this
thesis, a re-evaluation of the weighting factor should be considered. One should also
notice, that the beam detection will likely work best, for higher bunch frequencies.
The phase response is given by the argument of equation 3.9

.

and shows, how the
phase of a signal is shifted regarding the input frequency. The combination of graphs
for the modulus and the argument of the complex frequency response is called a Bode
plot, which is shown in Figure 3.3

.

. One can see, that the phase response is non-linear,
which leads to a distortion of the signal [14

.

, pp.149-150]. This does however not inter-
fere with the desired detection of peaks of the filtered signal, since general upward and
downward trends of the signal are still recognizable for the chosen weighting factor.

3.2.2. Verilog module for the EMA

Next, the Verilog module for the EMA is to be discussed.
Like all the sub-modules, this module mainly consists of an always block which begins
with the behavioral code in case the reset signal is triggered. This part basically
sets all necessary parameters to zero. Afterwards the actual EMA is implemented.
The interesting part here is that the recursive formula 3.2

.

consists of an addition
and a subtraction but also a multiplication with a decimal number, which is not
time-efficient compared to the other two operations and would require floating-point
arithmetic. Now the definition of α as a negative power bears the opportunity for a
simpler option. The weighting factor will be defined as α = 1/2d with the dumping
width d. The multiplication of a number by a negative power of two is equal to a
bit shift of said number by the exponent. Therefore, if equation 3.2

.

is multiplied
by 2d (i.e. "shifted" to the left by d bits), then the multiplications remaining are

17

3. Implemented Design

0.0 0.5 1.0 1.5 2.0 2.5 3.0
40

20

0
In

te
ns

ity
 [d

B]

Bode plot of EMA

Cutoff frequency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dimensionless angular frequency [rad/sample]

75

50

25

0

Ph
as

e
[°

]

Cutoff frequency

Figure 3.3.: Frequency response of EMA for α = 1/64

multiplications by positive integers:

y[n] = y[n − 1] − αy[n − 1] + αx[n] ∣ ⋅ 2d (3.12)
2d ⋅ y[n] = 2d ⋅ y[n − 1] − y[n − 1] + x[n]. (3.13)

This equation can be easily implemented without floating-point arithmetic. However,
it is important, that as a last step, the result is scaled back to its actual value by
shifting it d bits to the right before the variable is connected to the output of the
module. This process is also shown in Figure 3.4

.

. To avoid an overflow of the variables,
when implementing a larger scale of the original recursive formula, one has to account
for at least d extra bits in every variable related to the algorithm inside the module.
For the 14-bit ADC-input and α = 1/26, this means that, the variables need to be at
least 20 bits long.

18

3.3. Peak detector

EMA module

–

+ 2d ∙y[n]x[n]

y[n-1]

>> d
y[n]

2d ∙ y[n-1]

Figure 3.4.: Block diagram of EMA (red: recursive paths)

3.3. Peak detector

Directly connected to the EMA-module, the Peak Detector uses the output of the
previous module to signal the beginning and ending of a detected beam bunch. Here,
the filtered signal from the EMA-module should be specifically mentioned as an input.
Other inputs are, again, the clock signal and the reset signal. The output of this
module is a 1-bit signal that serves as a start or stop signal for the baseline detector
and the integration module.
Since the algorithm used is fairly simple, no block diagram is provided for this section.
Basically, the algorithm detects, whether the input signal is currently rising or falling
and sets the start/stop-signal to one, when the edge switches from falling to rising.
Otherwise the output is zero. Therefore every local negative peak leads to output
one. Since the previously discussed low-pass filter is very effective, a simple algorithm
like this can work in this context. However, it is prone to errors such as the detection
of noise peaks that are not canceled by the filter. A more stable option could be
working with a threshold which proved to be difficult, since the signal amplitude
changes depending of the state of the accelerator, i.e. beam cooling or no beam
cooling etc.
Therefore,further research into more stable options could improve this module later
on.

3.4. Simple moving average

In this section, the second filter will be discussed.

3.4.1. Analysis of the algorithm for the SMA

In contrast to the Exponential Moving Average, the Simple Moving Average (SMA)
is a finite impulse response-filter. That means, that there are no recursive elements.
The noteworthy input ports are the ADC signal and a variable to declare the strength

19

3. Implemented Design

of the filter.
The principle behind the SMA is the arithmetic mean of a shift register. The entries
of this shift register are signal values from x[n] to x[n−k − 1] with k as the length of
the shift register. This is summarized in the following equation:

y[n] =
1
k
∑

k−1
j=0 x[n − j]. (3.14)

Similarly to the weighting factor of the EMA, k has to be a power of two, to simplify
the calculation of the mean using bit shifting operators.
The impulse response of this filter clearly shows its finiteness:

h[n] =
1
k
∑

k−1
j=0 δ[n − j]. (3.15)

The graph can be seen in Figure 3.5

.

.
Moving into the discussion of the filter’s frequency response, the transfer function is
given by

H(z) = ∑
∞

n=0 h[n]z
−n z ∈ Z (3.16)

= ∑
∞

n=0
1
k
∑

k−1
j=0 δ[n − j]z

−n (3.17)

=
1
k
∑

k−1
n=0 z

−n (3.18)

=
1
k
⋅
1 − z−k
1 − z−1 . (3.19)

The transfer function has a pole at z = 0 and zeros at z = ei2πn/k with n ∈ [1, k − 1].
Analogous to the EMA this leads to the Bode plot shown in Figure 3.6

.

. Since the
phase response is mostly linear with phase jumps at the zeros of the transfer function,
the filtered signal is less distorted than with the use of the EMA.

The reason for using this filter additionally to the EMA is that it enables a much
more exact way of filtering noise especially regarding the distortion of the signal
amplitude. Since the objective of this filter is to get a more exact baseline value that
is not systematically shifted to a lower value by noise, the subsistence of the amplitude
is relevant. In Figure 3.7

.

it is shown, how a simulated signal is filtered with the EMA
for the smallest weighting factors compared to filtering with the SMA for the smallest
parameters k. One can see, that both filters shift the signal amplitude to a lower
value, as expected. However, the SMA distorts the original signal less and enables a
finer adjustment of the filter for the possible filter parameters. As a result, the SMA
is more suitable for the subsequent baseline detection.

20

3.4. Simple moving average

0 20 40 60 80
Time [ns]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Vo
lta

ge
 [U

]
Impulse response of SMA filter

 k = 8

Figure 3.5.: Impulse response of SMA for k = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
60

40

20

0

In
te

ns
ity

 [d
B]

Bode plot of SMA

Cutoff frequency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Dimensionless angular frequency [rad/sample]

100

50

0

50

Ph
as

e
[°

]

Cutoff frequency

Figure 3.6.: Frequency response of SMA for k = 4

21

3. Implemented Design

0 200 400 600 800 1000 1200 1400
0.25

0.00

0.25

0.50
U

in
 V

EMA ADC-input
= 1/22

= 1/24

0 200 400 600 800 1000 1200 1400
t in mu-seconds

0.25

0.00

0.25

0.50

U
in

 V

SMA ADC-input
k = 4
k = 16

Figure 3.7.: Various filtered versions of a simulated ADC input using both the EMA
and SMA

3.4.2. Verilog module for the SMA

The Verilog module consists of two always blocks. The first one contains the dec-
laration and update of a shift register, which is implemented by using non-blocking
assignments. This register contains the 32 most recent input signals. Since the shift
register can save 32 inputs, the parameter k for the calculation of the mean can be
32,16,8,4 or 2, since k should be a power of two. The calculation of the mean is
handled in a separate always block to avoid errors when mixing non-blocking and
blocking assignments. Here, the sum of the variables inside the shift register is calcu-
lated. However, the shift register has a fixed length of 32 variables. But depending
on the user input, one might only want to average the most recent eight or four
ADC-input signals. Therefore, the sums over the first 2,4,8,16 and 32 register entries
are calculated separately. Then the desired sum is chosen, depending on the user
input. This sum is then shifted by the amount of bits given by the user input signal.
Again, the advantages of substituting a division with a bit shift are used. This value
then serves as the overall output of the module, which is connected to the baseline
detector. Since this implementation takes up more resources on the FPGA, the EMA
is more efficient, where severe filters are necessary, i.e. the peak detection.

22

3.5. Baseline detector

3.5. Baseline detector

This module serves the purpose of defining a new baseline of the ADC signal since
the baseline of the raw input signal is arbitrary while it should be near the lowest
point of the signal. In a noisy signal the minimum is systematically shifted to a lower
value due to noise minima. In order to reduce this shift of the minimum, the input
for this module is the signal that is filtered using a SMA. The strength of the filter
can be adjusted according to the amount of noise. Over the course of the operating
time of the accelerator, the baseline of the ADC signal can shift slightly, which affects
the value of the integral later on. As a result, the baseline, i.e. the global minimum
of the signal, is evaluated separately for every beam bunch. Therefore, this module
is connected to the output of the peak detector which signals the ending of one beam
bunch and the beginning of the next one.
The module simply works by comparing current input of the filtered signal to the lat-
est assumed minimum. If the current input is smaller than that assumed minimum,
the minimum is replaced by that input. When the peak detector signals the begin-
ning of a new bunch, the current minimum is set as the output of the module and
afterwards the cycle begins anew with the current filtered input as the new assumed
minimum. This way, the algorithm finds global minima of the filtered ADC signal in
the interval for one beam bunch.
To get feedback on the functionality of this module while it is running on the Red-
pitaya board, the baseline value is also connected to an output port of the overall
module. This way, the detected baseline of the signal can be compared to the one of
the test signal by monitoring the respective registers of the board.

3.6. Integrator

The Integrator is the Verilog module that joins the results from all previous sub-
modules to integrate the ADC signal. This module has the most input ports out
of all other sub-modules Firstly, the obligatory clock and reset signal, then the raw
ADC input, the start/stop-signal from the peak detector, the baseline signal from
the baseline detector and the skip signal to skip over beam bunches as required. The
output is an averaged integration result. For tests of the module on the Redpitaya
board, a bunch counter, that is not relevant for the functionality of the module, is
added as an output.
The algorithm used to integrate the signal follows the rectangle method. With this
method, the overall time interval of the integral, i.e. the period length of the beam
bunch, is divided into smaller intervals ∆t each the length of the sampling time of
8ns. The arbitrary baseline of the signal is corrected by subtracting the baseline value
b from the raw input. Since all modules are triggered by the same clock signal, the
baseline value that is used to correct the integral is the one from the previous beam
bunch. However, the baseline shift is supposed to be a lot slower than the actual
beam current so using the baseline value of the last full beam bunch when calculating

23

3. Implemented Design

the integral of the current beam bunch does not pose a problem. The area in between
the current and the last ADC input is approximated by a rectangle the height of the
current ADC input. The formula for this method can be written as

t1

∫
t0

x(t)dx ≈ ∆t∑N

n
(x[n] − b) (3.20)

with the start and end time of the beam bunch t0 and t1, the ADC signal input x[n],
the baseline value b, the time index n and the maximum time index N for which
t1 = N ⋅∆t is true. For the Redpitaya, where the signal is sampled at 125MHz, the
time step ∆t equals 8ns.
In addition to the integration itself, there are two other conditional blocks in place.
One is to skip as many bunches as are given by the user (default is zero), the other
is to track how many bunches have been integrated and output an average of the
last eight integration results, once eight bunches have been integrated. This last step
serves to decimate the data that needs to be saved, since the integration result of a
single beam bunch will not be relevant for later data analysis.
The number of integration results to be averaged should be adjusted, depending on
the read-out frequency of the output. For example, if the whole module has a runtime
of tint without averaging the end result and the output is only read with a frequency
of 1/(100 ⋅ tint), the number of results to be averaged should, in this case, be as close
to 100 as possible. This would lead to more integration results having an influence on
the read-out value. But since the timing conditions of the module are not part of this
thesis, the average of eight integration results is chosen, to improve the readability of
the simulated output of the integration module in section 3.7.2

.

.

3.7. Simulation and testing

In this section, the simulation and testing results of the overall module are shown.

3.7.1. Signal simulation

To recreate a signal similar to the one of the actual FCT at COSY, a python program
that outputs Verilog code to simulate various signals is used.
This program takes the desired amplitude, period length, signal form, noise ratio etc.
as inputs and calculates the respective ADC input, in which such a signal could result.
To do this, the actual volt range Vr of the ADC connector of −1V to 1V has to be
scaled to fit the range of a 14-bit signed integer. The equation to convert the Voltage
input Vin to the respective 14-bit integer i14 is given by

i14 =
214

Vr
⋅ Vin [2

.

, p.28]. (3.21)

Some examples for possible signals are shown in Figure 3.8

.

. The program delivers a
file with one period of the desired signal as Verilog code that can be copied into the

24

3.7. Simulation and testing

testbench for the integration module to simulate the module. The simulation results
are shown in the next section.

0 100 200 300 400 500 600
1.0

0.5

0.0

0.5
Sine peak with noise

without noise

0 100 200 300 400 500 600

0.50

0.25

0.00

0.25

U
in

 V

Gauss peak with noise
without noise

0 100 200 300 400 500 600
t in nanoseconds

0.50

0.25

0.00

0.25

0.50 Two peaks

with noise
without noise

Figure 3.8.: Signal generated with Pyhton script for three different signal shapes

3.7.2. Simulation results

To verify the functionality of the module without having to generate a bitstream for
the FPGA, which is time consuming and does not enable an easy way to monitor the
variables of the module like simulation does. For the simulation of the integration
module, the simulation tool from the Vivado Design Suite has been used.
Figures 3.9

.

, 3.10

.

and 3.11

.

show the simulation results for the three signal shapes. In

25

3. Implemented Design

these figures, the two graphs at the top represents the reset signal and the simulated
ADC input. Under that are, in the following order, the Exponential Moving Average,
the output of the peak detector, the Simple Moving Average and the output of the
baseline detector. The graph below that shows the current value of one integral while
it is calculated which is only monitored during simulation. The last two graphs are
the averaged integration result and the bunch counter that is used to monitor the
module when it is tested on the FPGA. The signals are set to have a frequency of
1.5MHz and noise in the range of ±0.2V . The SMA filter averages over the last eight
ADC inputs and every bunch is to be integrated.
In all three figures, it can be observed that the graph for the current integral value
follows the expected behavior of the integral of a sine wave or the other signal shapes
which are offset to have their minimum at zero. Furthermore, the averaged integral
is only updated to a non-zero result after the first eight bunches, since only then, the
average is written to the output. However, the scaling of the graphs is not shown
in the figures. For example, for Figure 3.11

.

the minimum of the raw signal is −4226
(−0.52V). As expected, the SMA has a higher minimum at −3083 (−0.38V). But the
highest minimum is found for the EMA at 192 (0.02V). Here, it becomes clear again
that the output from the EMA module is not suitable for baseline detection.

Figure 3.9.: Simulation results for sinusoidal input, SMA with k = 3 and no skipped
bunches (row 1: reset signal, row 2: ADC input signal, row 3: EMA
output, row 4: peak detector output, row 5: SMA output, row 6: baseline
detector output, row 7: current value of one integral while it is calculated,
row 8: averaged integration result, row 9: bunch counter)

26

3.7. Simulation and testing

Figure 3.10.: Simulation results for gauss shaped input, SMA with k = 3 and no
skipped bunches (row 1: reset signal, row 2: ADC input signal, row 3:
EMA output, row 4: peak detector output, row 5: SMA output, row 6:
baseline detector output, row 7: current value of one integral while it is
calculated, row 8: averaged integration result, row 9: bunch counter)

Figure 3.11.: Simulation results for signal shape with two peaks, SMA with k = 3 and
no skipped bunches (row 1: reset signal, row 2: ADC input signal, row
3: EMA output, row 4: peak detector output, row 5: SMA output, row
6: baseline detector output, row 7: current value of one integral while it
is calculated, row 8: averaged integration result, row 9: bunch counter)

27

3. Implemented Design

On top of that, all three simulation results differ from the expected behavior at the
beginning of the simulation, right after the reset signal is triggered. A magnified
version of that can be seen in Figure 3.12

.

. Here one can see that specifically the
baseline detector and the EMA need several clock cycles to arrive at the desired
output. For the EMA the reason is that with a weighting factor of 1/64 the algorithm
needs at least 64 clock cycles à 8ns to adjust to the current signal input. For the
baseline detector the first baseline value is the minimum signal input up to the first
detected bunch. This is not a whole bunch and therefore the baseline is not correct.
This results in a different correction of the integration result. However, after a few
beam bunches, the output has adjusted to the actual input signal.

Figure 3.12.: Simulation results right after reset signal for sinusoidal input, SMA with
k = 3 and no skipped bunches, visible deviation of the baseline value
in row 5 and lower end results for integration in row 6 for the first
signal period (row 1: reset signal, row 2: ADC input signal, row 3:
EMA output, row 4: peak detector output, row 5: SMA output, row 6:
baseline detector output, row 7: current value of one integral while it is
calculated, row 8: averaged integration result, row 9: bunch counter)

The simulation for an integration, that should skip every second beam bunch is de-
picted in Figure 3.13

.

. One can clearly see, how only every second bunch is integrated
and also the bunch counter is only incremented for every second bunch.
In conclusion, the simulations show, that the module can handle the signal noise, find
the arbitrary baseline and can skip bunches if needed. Therefore, the design can be
implemented into the whole design architecture of the pre-existing top-module which
the integration module is a part of. Afterwards, the top-module with all the sub-
modules including the one for integration is synthesized and implemented so that a
bitstream can be generated. This bitstream can be loaded onto the Redpitaya board
for tests of the FPGA configuration on actual hardware. This will be discussed in the
next section.

28

3.7. Simulation and testing

Figure 3.13.: Simulation results for signal shape with two peaks, SMA with k = 3 and
every second bunch skipped (row 1: reset signal, row 2: ADC input
signal, row 3: EMA output, row 4: peak detector output, row 5: SMA
output, row 6: baseline detector output, row 7: current value of one
integral while it is calculated, row 8: averaged integration result, row 9:
bunch counter)

3.7.3. Implementation and testing on hardware

In this section, the progress of loading the bitstream on the FPGA and the results
are explained.
To test the FPGA configuration on the Redpitaya board, the following setup is used.
The Redpitaya board described in section 2.3.1

.

is connected to a laptop using a LAN
cable. An SMA cable is used to connect the DAC output A to the ADC input A of
the board. A 8GB Micro SD card with the latest stable image for STEMlab 125-14
written onto it is inserted into the respective slot and the power adapter is connected
to the Redpitaya and a power source.
Via the established Ethernet connection the .bin-file which contains the bitstream for
the top-module can be copied onto the SD card and used to configure the FPGA.
To generate the signal to test the FPGA configuration, the signal generation utility of
the Redpitaya board is used. This allows the user to generate a simple sinusoidal signal
with adjustable amplitude, period length and output channel (A or B). However,
the addition of a simulated noise to this signal is not possible. The Application
Programming Interface (API) has been adjusted so that the inputs and outputs of
the integration module can be accessed from certain addresses by using the monitor
command. Therefore, a small shell script that is saved on the SD card can monitor
these addresses and write the values in a separate file. This file then contains the
timestamp of the value, the averaged integral, beam count and baseline value at that
time as well as the user inputs for skipping bunches and the smoothing factor for the
SMA. Since only the ADC channel A is connected to the generated signal, only the
data for channel A will be analyzed.
The reason, why only the relatively constant or linear rising parameters are monitored,

29

3. Implemented Design

is that the monitor utility of the Redpitaya can read a register with approximately
30Hz which is too small to get meaningful information out of a signal with frequencies
up to 2MHz. The values that are suitable to give feedback on the functionality of
the module are, firstly, the baseline value and integral result which should be near
constant for a signal with constant amplitude. Secondly, the bunch counter should
rise in a linear fashion and with a slope equal to the frequency of the input signal.
The tested wave forms are listed in Table 3.1

.

and the testing results are listed in
Table 3.2

.

. For every signal type 50 samples of registers for channel A have been read
by the shell script. The 50 monitored values for the baseline and the integral have
been averaged, while the bunch count has been subjected to a linear fit with the slope
being the frequency of the input signal fi divided by the number of skipped bunches
nskipped in between the integrated bunches plus one:

nbunches =
fi

nskipped + 1 ⋅ t (3.22)

The calculated frequency of the signal, is shown in Table 3.2

.

and can be compared
to the configured input frequency. The linear behavior of the beam count can also
be seen in Figure 3.14

.

. The overall results show, that the algorithm works for the
chosen input signals as the baseline, frequency and integration result for each test
are close to the expected values. Especially the detected baseline for SMA-length 4
and amplitude 0.9 show a maximum deviation of 0.3%. Only for tests 5, 8 and 9,
the detected baseline deviates up to 5% from the actual value since either the SMA-
length is increased, resulting in heavier filtering of the input, or the signal amplitude
is decreased, so any form of noise that could be introduced from the SMA cable has
a larger impact on the baseline detection. Since the baseline value is used to cor-
rect the integration result, these effects can also be noticed in the integration results.
Furthermore, the expected influence of a lower signal frequency that is closer to the
cutoff frequency of the EMA on the integration result can be seen, as a slight increase
in deviation of the integration result form the expected value.
Overall, the module seems to be working as demanded. However, tests with signif-
icantly more noisy signals (simulated or technically induced noise) need to be con-
ducted, to thoroughly test the filters and the whole module. Unfortunately, that will
not be part of this thesis.

30

3.7. Simulation and testing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in s

0

200000

400000

600000

800000
Nu

m
be

r o
f b

un
ch

es

Figure 3.14.: Bunch counter output from tests on the Redpitaya board showing linear
behavior as expected

Table 3.1.: Different signals and settings used for testing
Test Amplitude [V] Frequency [MHz] Integral [V⋅ns] Skipping SMA-length
1 0.9 0.5 1800 0 4
2 0.9 1.0 900 0 4
3 0.9 1.5 600 0 4
4 0.9 2.0 450 0 4
5 0.5 1.5 333 0 4
6 0.9 1.5 600 3 4
7 0.9 1.5 600 6 4
8 0.9 1.5 600 0 8
9 0.9 1.5 600 0 16

31

3. Implemented Design

Table 3.2.: Averaged testing results for different signals with their percentage-wise
deviation form the expected value

Test Baseline [V] Dev. [%] Frequency [MHz] Dev. [%] Integral [V⋅ns] Dev. [%]
1 −0.8972 0.31 0.50001 0.002 1711.06 4.94
2 −0.9009 0.1 0.99999 0.001 859.32 4.52
3 −0.9019 0.22 1.50003 0.002 573.19 4.47
4 −0.9005 0.06 1.99999 0.0 429.57 4.54
5 −0.519 3.79 1.50003 0.002 317.72 4.68
6 −0.9008 0.09 1.50005 0.003 572.91 4.52
7 −0.9007 0.08 1.50002 0.001 573.08 4.49
8 −0.8963 0.41 1.49975 0.017 568.38 5.27
9 −0.8538 5.13 1.49996 0.003 541.19 9.8

32

4. Results and Outlook

In this last chapter the results of this thesis will be summarized and possible adjust-
ments will be discussed. This will be followed by a short outlook on the usefulness of
the developed algorithm.
To sum up the developed module, the required features, i.e. being able to integrate a
signal in MHz-range for each period and dealing with missing down times and noise
of the signal, have been considered while designing the algorithm. The simulations
show, that the module should also be able to handle noise. However, this still needs to
be verified with testing on the actual FPGA since with the current setup the code can
only be tested with signals with nearly no noise. The benefit of the used algorithm
is, that by integrating over the raw ADC input signal, possible distortions of the
signal from the added filters do not influence the integration result. Furthermore the
EMA that is used, requires very few memory space. Additionally, it is quite simple
to replace a sub-module in the case of a superior algorithm, e.g. another digital filter
or a more elaborate peak detector, being developed, since the module follows a clear
hierarchy defined by the structural module explained in section 3.1

.

.
However, there are still aspects that might need adjustments as for a full validation
of the module, more elaborated tests on hardware are required. For example, the
weighting factor of the EMA might need to be increased, if the noise filtering does
not prove itself sufficient. Also, the weighting factor could be changed into an input
parameter for the user similar to the SMA-length. That would enable a more flexi-
ble adjustment of the filter to the noise-to-signal ratio. Regarding the timing of the
module, the FPGA timing for logic operations has to be checked and the possible
occurrence of race conditions has to be considered.
This module provides real time insight into the number of particles in one beam bunch
at COSY as required by the task of this thesis. The different sub-modules developed
for this thesis can also be used in different contexts, when handling other noisy signals
for example that are processed with a FPGA similar to the one used. The module
as a whole (with all sub-modules together) is likely only useful for signals similar to
the one this thesis is aimed at, since e.g. for a signal with longer downtime there are
simpler methods to detect a baseline.
As a whole, the module designed for this thesis can be seen as a basis for further
development that can be elaborated and improved as necessary.

33

Bibliography

[1] R.C. Webber. “Charged particle beam current monitoring tutorial”. In: The 6th
workshop on beam instrumentation. (Vancouver, British Columbia (Canada)).
Ed. by George H. MacKenzie, Bill Rawnsley, Jana Thomson. Vol. 333. AIP,
May 1994.

[2] Mathis Beyß. “Detection and Analysis of Recombination Rates during Electron
Cooling at COSY”. Master Thesis. RWTH Aachen III. Physikalisches Institut
B, 2019.

[3] P. Lenisa, F. Rathmann, L. Barion et al. “Low-energy spin-physics experiments
with polarized beams and targets at the COSY storage ring”. In: EPJ Tech-
niques and Instrumentation 6.2 (2019). doi: https://doi.org/10.1140/
epjti/s40485-019-0051-y

.

.
[4] H. Stockhorst, U. Bechstedt, J. Dietrich, R. Maier, S. Martin, D. Prasuhn, A.

Schnase, H.Schneider, R. Tölle. “The cooler synchrotron COSY facility”. In:
Proceedings of the 1997 Particle Accelerator Conference. (Vancouver, British
Columbia (Canada)). Ed. by M. Comyn, M.K. Craddock, M. Reiser, J. Thom-
son. Vol. 1. IEEE, May 1997.

[5] Y. Valdau, L. Eltcov, S. Trusov, S. Mikirtytchiants. “Development of High Res-
olution Beam Current Measurement System for COSY-Jülich”. In: Proceedings,
5th International Beam Instrumentation Conference (IBIC 2016) : Barcelona,
Spain, September 11-15, 2016. (Barcelona, Spain). Ed. by Isidre Costa et al.
JACoW, 2017. doi: 10.18429/JACoW-IBIC2016-TUPG41

.

.
[6] A. Lehrach. “Beam- and Spin Dynamics for Hadron Storage Rings”. In:

Microscopy and Microanalysis 21 (June 2015), pp. 24–28. doi: 10 . 1017 /
S1431927615013082

.

.
[7] Peter Forck. Lecture Notes on Beam Instrumentation and Diagnostics. 2011.
[8] Fast Current Transformer User’s Manual. Bergoz Instrumentation.
[9] “State-of-the-Art Programmable Logic”. In: Designing with Xilinx ® FPGAs.

Ed. by S. Churiwala. Springer International Publishing Switzerland, 2017, pp. 1–
15.

[10] Red Pitaya Documentation - 3.1.1. STEMlab boards comparison. 2017. url:
https://redpitaya.readthedocs.io/en/latest/developerGuide/125-
10/vs.html

.

(visited on 04/06/2020).
[11] Quick Start Guide to Verilog. Springer Nature Switzerland, 2019.

35

https://doi.org/https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/https://doi.org/10.1140/epjti/s40485-019-0051-y
https://doi.org/10.18429/JACoW-IBIC2016-TUPG41
https://doi.org/10.1017/S1431927615013082
https://doi.org/10.1017/S1431927615013082
https://redpitaya.readthedocs.io/en/latest/developerGuide/125-10/vs.html
https://redpitaya.readthedocs.io/en/latest/developerGuide/125-10/vs.html

Bibliography

[12] FPGA Design Flow Overview. 2008. url: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_
overview.htm

.

(visited on 04/06/2020).
[13] “Simulation”. In: Designing with Xilinx ® FPGAs. Ed. by S. Churiwala. Springer

International Publishing Switzerland, 2017, pp. 127–140.
[14] Digitale Signalverarbeitung mit MATLAB. Springer Vieweg, 2019.

36

https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm

A. Appendix

A.1. Verilog modules

A.1.1. Structural module new_integration.v

Listing A.1: test listing
module new_integrat ion (

input adc_clk_i ,
input adc_rstn_i ,
input s igned [14 −1 : 0] adc_i , //ADC

input
input [32 −1 : 0] skip , //number

o f bunches to p e r i o d i c a l l y sk ip (when mul t ip l e
beams are measured)

input [32 −1 : 0] pow ,
output s igned [32 −1 : 0] integra l_o ,

// i n t e g r a l output f o r each time step − s imu la t i on
only

output s igned [32 −1 : 0] mean_integral_o ,
// averaged i n t e g r a l output

// output dect_o ,
// aux i l i a r y − s imu la t i on only

output [32 −1 : 0] bc , // f o r t e s t i n g
output s igned [32 −1 : 0] base l ine_o // aux i l i a r y
− s imu la t i on and t e s t i n g only

// output s igned [32 −1 : 0] adc_filt_ema_o ,
// aux i l i a r y − smoothed s i g n a l f o r peak de t e c t i on −
s imu la t i on only

// output s igned [32 −1 : 0] adc_filt_sma_o
// aux i l i a r y − smoothed s i g n a l f o r b a s e l i n e
de t e c t i on − s imu la t i on only

) ;

loca lparam in t =32;
wire s igned [32 −1 : 0] f i l t_ema ;
wire s igned [32 −1 : 0] f i l t_sma ;

A 1

A. Appendix

wire count_dect ;
wire s igned [32 −1 : 0] b a s e l i n e ;
wire s igned [32 −1 : 0] adc_i_32_bit ;

a s s i gn adc_i_32_bit = adc_i ;

ema ema1(
adc_clk_i , // in
adc_rstn_i , // in
adc_i_32_bit , // in
f i l t_ema // out
) ;

peak_detector p1 (
adc_clk_i , // in
adc_rstn_i , // in
f i lt_ema , // in
//bc , // out
count_dect // out
) ;

sma sma1 (
adc_clk_i , // in
adc_rstn_i , // in
adc_i_32_bit , // in
//sma_delay , // in
pow , // in
f i l t_sma // out
) ;

ba s e l i n e_de t e c to r b1 (
adc_clk_i , // in
adc_rstn_i , // in
f i l t_sma , // in
count_dect , // in
ba s e l i n e // out
) ;

i n t e g r a t i o n i 1 (
adc_clk_i , // in
adc_rstn_i , // in
adc_i_32_bit , // in
bas e l i n e , // in
count_dect , // in

A 2

A.1. Verilog modules

skip , // in
// integra l_o , // Simulat ion only − out
mean_integral_o , // out
bc // out
) ;

a s s i gn base l ine_o=ba s e l i n e ;

/∗
// Simulat ion only
a s s i gn adc_filt_ema_o=fi l t_ema ;
a s s i gn adc_filt_sma_o=f i l t_sma ;
a s s i gn dect_o = count_dect ;
∗/

endmodule

A.1.2. EMA filter module ema.v

Listing A.2: test listing
module ema(

input adc_clk_i , //adc c l o ck
input adc_rstn_i , // r e s e t or

i n i t i a l i z a t i o n
input s igned [32 −1 : 0] adc_i , //raw input data
output s igned [32 −1 : 0] ad c_ f i l t //Smoothed

output data
) ;

loca lparam width=32;
reg s igned [width −1 : 0] f i l t ;
reg s igned [width −1 : 0] f i l t _ s t a t e ;

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i == 1 ’ b0) begin

f i l t <= 32 ’ h0 ;
f i l t _ s t a t e <= 32 ’ h0 ;

end e l s e begin
f i l t _ s t a t e <= f i l t _ s t a t e + adc_i − f i l t ;
f i l t <= f i l t _ s t a t e >>> 6 ;

end
end

a s s i gn adc_ f i l t = f i l t ;

A 3

A. Appendix

endmodule

A.1.3. Peak detection module peak_detector.v

Listing A.3: test listing
module peak_detector (

input adc_clk_i , //adc c l o ck
input adc_rstn_i , // r e s e t or

i n i t i a l i z a t i o n
input s igned [32 −1 : 0] adc_i , // f i l t e r e d

input data from ema module
output count_dect // S igna l f o r

when a pu l s e i s detec ted
) ;

reg s igned [32 −1 : 0] peak_p ;
reg s igned [32 −1 : 0] peak_n ;
reg dect ;
reg [32 −1 : 0] counter ;
reg arm ; // r i s i n g or

f a l l i n g arm

localparam RISING = 1 ’ b1 ;
localparam FALLING = 1 ’ b0 ;

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i==1’b0) begin

peak_p <= 32 ’ h0 ;
peak_n <= 32 ’ h0 ;
// counter <= −32 ’h0 ;
dect <= 1 ’ b0 ;
arm <= 1 ’ b0 ;

end e l s e begin
case (arm)

RISING :
// search f o r l a r g e s t va lue
i f (adc_i >= peak_p) begin

peak_p <= adc_i ;
dect <= 1 ’ b0 ;

end e l s e begin
arm <= FALLING;
peak_n <= peak_p ;

end
FALLING:

A 4

A.1. Verilog modules

// search f o r sma l l e s t va lue
i f (adc_i <= peak_n) begin

peak_n <= adc_i ;
dect <= 1 ’ b0 ;

end e l s e begin
dect <= 1 ’ b1 ;

// s i g n a l peak de t e c t i on when
negat ive peak i s found

// counter <= counter +
32 ’ h1 ;

arm <= RISING ;
peak_p <= peak_n ;

end
endcase

end
end

a s s i gn count_dect = dect ;

endmodule

A.1.4. SMA filter module sma.v

Listing A.4: test listing
module sma(

input adc_clk_i , //adc c l o ck
input adc_rstn_i , // r e s e t or

i n i t i a l i z a t i o n
input s igned [32 −1 : 0] adc_i , //raw input data
input [32 −1 : 0] pow , // l ength o f

s h i f t r e g i s t e r f o r smoothing in powers o f two
output s igned [32 −1 : 0] ad c_ f i l t //Smoothed

output data
) ;

reg s igned [32 −1 : 0] sh i f t_r eg [3 2 − 1 : 0] ;
reg s igned [32 −1 : 0] f i l t_32 ;
reg s igned [32 −1 : 0] f i l t_16 ;
reg s igned [32 −1 : 0] f i l t_ 8 ;
reg s igned [32 −1 : 0] f i l t_ 4 ;
reg s igned [32 −1 : 0] f i l t_ 2 ;
reg s igned [32 −1 : 0] f i l t ;
i n t e g e r i = 0 ;
i n t e g e r j = 0 ;

A 5

A. Appendix

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i == 1 ’ b0) begin

f o r (i =0; i < 32 ; i = i +1)
sh i f t_r eg [i] <= 32 ’ h0 ;

end e l s e begin
sh i f t_r eg [0] <= adc_i ;
f o r (i =0; i < 32 ; i = i +1)

sh i f t_r eg [i +1] <= sh i f t_r eg [i] ;
end

end

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i == 1 ’ b0) begin

f i l t_32 = 32 ’ h0 ;
f i l t_16 = 32 ’ h0 ;
f i l t_ 8 = 32 ’ h0 ;
f i l t_ 4 = 32 ’ h0 ;
f i l t_ 2 = 32 ’ h0 ;
f i l t = 32 ’ h0 ;

end e l s e begin
f i l t_32 = 32 ’ h0 ;
f i l t_16 = 32 ’ h0 ;
f i l t_ 8 = 32 ’ h0 ;
f i l t_ 4 = 32 ’ h0 ;
f i l t_ 2 = 32 ’ h0 ;
f o r (j =0; j < 32 ; j = j+1)

f i l t_32 = f i l t_32 + sh i f t_r eg [j] ;
f o r (j =0; j < 16 ; j = j+1)

f i l t_16 = f i l t_16 + sh i f t_r eg [j] ;
f o r (j =0; j < 8 ; j = j+1)

f i l t_ 8 = f i l t_8 + sh i f t_r eg [j] ;
f o r (j =0; j < 4 ; j = j+1)

f i l t_ 4 = f i l t_4 + sh i f t_r eg [j] ;
f o r (j =0; j < 2 ; j = j+1)

f i l t_ 2 = f i l t_2 + sh i f t_r eg [j] ;
i f (pow == 32 ’ d5) begin

f i l t = f i l t_32 >>> pow ;
end e l s e i f (pow == 32 ’ d4) begin

f i l t = f i l t_16 >>> pow ;
end e l s e i f (pow == 32 ’ d3) begin

f i l t = f i l t_8 >>> pow ;
end e l s e i f (pow == 32 ’ d2) begin

f i l t = f i l t_4 >>> pow ;

A 6

A.1. Verilog modules

end e l s e i f (pow == 32 ’ d1) begin
f i l t = f i l t_2 >>> pow ;

end
end

end

a s s i gn adc_ f i l t = f i l t ;

endmodule

A.1.5. Baseline detection module baseline_detector.v

Listing A.5: test listing
module ba s e l i n e_de t e c to r (

input adc_clk_i , // ADC c lock
input adc_rstn_i , // ADC r e s e t
− a c t i v e low

input s igned [32 −1 : 0] f i l t , // ADC input
data f i l t e r e d with SMA

input dect , // pu l s e
detec ted

output s igned [32 −1 : 0] b a s e l i n e // Base l i n e
output va lue

) ;

reg s igned [32 −1 : 0] base_1 ; // s to rage
f o r p re l im inary ba s e l i n e

reg s igned [32 −1 : 0] base_2 ; // f i n a l
b a s e l i n e value

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i == 1 ’ b0) begin

base_1 <= 32 ’ h0 ;
base_2 <= 32 ’ h0 ;

end e l s e begin
i f (dect == 1 ’ b0) begin

i f (f i l t < base_1) begin // search f o r
sma l l e s t va lue in f i l t e r e d s i g n a l
base_1 <= f i l t ;

end
end e l s e begin // i f Peak i s found , ouput

ba s e l i n e value and r e s e t pre l im inary ba s e l i n e
va lue
base_2 <= base_1 ;

A 7

A. Appendix

base_1 <= f i l t ;
end

end
end

a s s i gn ba s e l i n e = base_2 ;

endmodule

A.1.6. Integration module integration.v

Listing A.6: test listing
module i n t e g r a t i o n (

input adc_clk_i ,
input adc_rstn_i ,
input s igned [32 −1 : 0] adc_i ,

//ADC input
input s igned [32 −1 : 0] ba s e l i n e ,

// ba s e l i n e va lue (from ba s e l i n e de t e c t o r)
input dect ,

//bunch detec ted (from peak de t e c t o r)
input [32 −1 : 0] skip ,

//number o f bunches to sk ip between measurements
// output s igned [32 −1 : 0] i n t e g r a l ,

// a u x i l i a r y i n t e g r a l output a f t e r each c l o ck
(s imu la t i on only)

output s igned [32 −1 : 0] mean_integral_o ,
// I n t e g r a l output

output [32 −1 : 0] pulse_cnt
//Pulse counter − f o r t e s t i n g

) ;

loca lparam in t =32;
reg s igned [int −1 : 0] s i n g l e_ i n t e g r a l ;
reg s igned [int −1 : 0] mean_integral ;
reg s igned [int −1 : 0] mean_integral_fin ;
// reg s igned [32 −1 : 0] per_count ;
reg [3 −1 : 0] i n t e g r a t ed ; // counter f o r

i n t e g r a l s r e g i s t e r e d (a f t e r 8 i n t e g r a t ed bunches the
averaged i n t e g r a l i s g iven out)

reg [32 −1 : 0] sk ipped ; // counter f o r
skipped bunches

reg [32 −1 : 0] counter ;
// reg last_MSB ;

A 8

A.1. Verilog modules

// a s s i gn b l_cor rec t = adc_i − ba s e l i n e ;

always@ (posedge adc_clk_i) begin
i f (adc_rstn_i == 1 ’ b0) begin // r e s e t a l l r e g i s t e r s

to zero
s i n g l e_ i n t e g r a l = −32 ’h0 ;
mean_integral = −32 ’h0 ;
mean_integral_fin = −32 ’h0 ;
//per_count = −32 ’h0 ;
i n t e g r a t ed = 3 ’ b000 ;
sk ipped = 32 ’ b0 ;
counter = 32 ’ h0 ;

end e l s e begin
i f (sk ipped == sk ip) begin // check i f r equ i r ed

bunches have been skipped
i f (dect == 1 ’ b1) begin // wr i t e i n t e g r a l

and s t a r t new i n t e g r a l when peak i s
detec ted
s i n g l e_ i n t e g r a l = s i n g l e_ i n t e g r a l ;

// d iv id e f i n a l
i n t e g r a l va lue f o r the averaged
i n t e g r a l

counter = counter + 1 ;
skipped = 32 ’ b0 ;

// r e s t a r t counter f o r skipped bunches
i f (i n t e g r a t ed < 3 ’ b111) begin

// averag ing cond i t i on
//mean_integral_fin = −32 ’h0 ;

// to make s imu la t i on output
e a s i e r to read

mean_integral =
mean_integral + s i n g l e_ i n t e g r a l ;

i n t e g r a t ed = in t eg r a t ed +
3 ’ b001 ;

end e l s e begin
mean_integral_fin =

(mean_integral + s i n g l e_ i n t e g r a l)
>>> 3;// ouput o f f i n a l , averaged
i n t e g r a l va lue

mean_integral = −32 ’h0 ;
// r e s t a r t

averag ing

A 9

A. Appendix

i n t e g r a t ed = 3 ’ b000 ;
end
s i n g l e_ i n t e g r a l = adc_i − ba s e l i n e ;

end e l s e begin // ongoing
i n t e g r a l c a l c u l a t i o n when no peak i s
detec ted
s i n g l e_ i n t e g r a l = s i n g l e_ i n t e g r a l

+ adc_i − ba s e l i n e ; // i n t e g r a t i o n
with ba s e l i n e c o r r e c t i o n

end
end e l s e begin // sk ip cur rent bunch

i f (dect == 1 ’ b1) begin // i n c r e a s e
skipped bunch counter
skipped = skipped + 1 ;

end
end

end
end

// a s s i gn i n t e g r a l = s i n g l e_ i n t e g r a l ; // Simulat ion only
a s s i gn mean_integral_o = mean_integral_fin ;
a s s i gn pulse_cnt = counter ;

endmodule

A.2. Bash script

Listing A.7: test listing
#!/bin /bash

read −p " I n s e r t number o f data po in t s : " l en

touch . . / tmp/ l o c a l _ f i l e
>../tmp/ l o c a l _ f i l e

f o r ((i =0; i<l en ; i++))
do

echo " $ (date +%S%N) $ (monitor 0x40101150) $ (monitor
0x40101158) $ (monitor 0x40101160) $ (monitor
0x40101168) $ (monitor 0x4010116C) " >>
. . / tmp/ l o c a l _ f i l e

done

A 10

	Contents
	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Theory and Setup
	The Cooler Synchrotron
	Principle of Fast Current Transformers
	Beam current measurement at COSY

	Basics of FPGA technology
	The Red Pitaya Board
	Programming with Verilog

	Implemented Design
	Overall module
	Exponential moving average
	Analysis of the algorithm for the ema
	Verilog module for the ema

	Peak detector
	Simple moving average
	Analysis of the algorithm for the sma
	Verilog module for the sma

	Baseline detector
	Integrator
	Simulation and testing
	Signal simulation
	Simulation results
	Implementation and testing on hardware

	Results and Outlook
	Bibliography
	Appendix
	Verilog modules
	Structural module new`integration.v
	EMA filter module ema.v
	Peak detection module peak`detector.v
	sma filter module sma.v
	Baseline detection module baseline`detector.v
	Integration module integration.v

	Bash script

