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Abstract

The Jülich Electric Dipole Investigation (JEDI) collaboration aims at the mea-

surement of a charged particle Electric Dipole Moments (EDM) for protons and

deuterons with a statistical sensitivity of ∼ 10−29 e cm in a storage ring based ex-

periment. This should be achieved by an interaction of the EDM with a radial

electric field that causes a vertical polarization build-up in a previously vertically

polarized, coherent beam. To measure this minuscule polarization build-up, a des-

ignated polarimeter based on heavy LYSO crystals was developed. The polarimetry

reaction employed to measure the polarization is the elastic scattering of polarized

particles off an unpolarized carbon target. The measured scattering asymmetry

can be related to the beam polarization if the analyzing power of the reaction is

known. This work consists of two major parts. In the first part, the analysis of

the database experiment, which aimed at the measurement of the vector analyz-

ing power for the deuteron carbon elastic scattering reaction using seven different

beam energies, will be presented. This experiment was performed at the Cooler

Synchrotron (COSY) accelerator facility at the Forschungszentrum Jülich in Ger-

many. Different methods for the extraction of the scattering asymmetry will be

presented and the result for the extracted deuteron carbon vector analyzing power

and the unpolarized differential cross section for this reaction will be given. In the

second part, the iterative development process of the designated polarimeter will

be described in detail. For this device, a modular approach was chosen based on

individual detector modules. These modules consist of an inorganic LYSO scintilla-

tor crystal that is optically coupled to a SiPM array that converts the scintillation

light into an electric signal that can be processed by fast flash-ADC. Multiple prop-

erties of these modules such as resolution or linearity were tested and proved the

concept to be well suited for the final designated polarimeter.
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Chapter 1

Motivation

Our whole world is made from ordinary (baryonic) matter. As far as we can tell this

is the case for our whole solar system, our galaxy and probably for the entire universe.

The ratio between matter and anti-matter in the universe can be estimated using the

baryon asymmetry parameter η defined as follows:

η =
NB −NB̄

Nγ
≈ NB −NB̄

NB +NB̄

, (1.1)

with NB being the number of baryons, NB̄ the number of anti-baryons and Nγ the

number of photons. For a certain period after the big bang, the temperature was high

enough for the pair creation and annihilation to be in thermal equilibrium. When the

temperature dropped below the threshold of pair creation, the vast majority of the

matter annihilated with the anti-matter into photons and hence NB + NB̄ ≈ Nγ . It

is possible to estimate η from the Cosmic Microwave Background (CMB) spectrum

and the analysis of the distribution of chemical elements in the Intergalactic Medium

(IGM). The results of both methods are compatible and suggest a value of η ≈ 6 ·10−10

[1]. However, this result is not in agreement with the Standard Model of Particle

Physics (SM) combined with the standard model of cosmology (SCM) which predicts

a value of η ≈ 10−18 [2].

To explain the asymmetry between matter and anti-matter, Andrei Sakharov in 1967

defined three conditions that have to be fulfilled [3]:

1. Baryon number violation. Without this violation, it would not be possible for a

system to evolve from a state with no baryons into a state with baryons, as the

system initially was in a state with a baryon number B = 0.

2. C and CP violation: If C and CP invariance were fully conserved, for each process

that created a particle another process that created an antiparticle with the exact

same probability would exist, and therefore also no baryon asymmetry could have

developed.

3. Deviation from thermal equilibrium. In thermal equilibrium, the expected value

of all physical quantities, are stable and it would be impossible for the system to

transit from a B = 0 into a B 6= 0 state.

5



6 CHAPTER 1. MOTIVATION

The SM does fulfill these requirements up to a certain extent, but the amount of CP
violation is too small to account for the observed baryon asymmetry. This means that

other sources of CP invariance have to be found. This is where the Electric Dipole

Moment (EDM) of particles such as neutrons and protons enter the stage.

The EDM is classically defined as two charges q and −q separated at a distance ~r and

therefore represents a vectorial quantity. In the framework of quantum mechanics, the

EDM of a fundamental particle is defined as follows:

~d = d · ~s with d = η
qh̄

2mc
, (1.2)

where the particle’s charge is given by q and its mass by m. The electric dipole is

denoted by the dimensionless quantity η. To retain the vector nature of the EDM, it

has to be aligned with the spin ~s as this represents the only quantization axis available.

The EDM is defined in analogy to the Magnetic Dipole Moment (MDM) of a particle

that is given by:

~µ = µ · ~s with µ = g
qh̄

2m
, (1.3)

and is aligned with the spin as well. The factor g is the dimensionless magnetic dipole

(also called “g-factor”). The existence of EDMs would break the P and the T invariance

and as a consequence of the latter the CP invariance as well (see Section 2.1.2). This

can be seen by applying the P and the T transformation (see Section 2.1.1 for more

details about these symmetries) on the Hamiltonian that describes the EDM and the

MDM in external electric ~E and magnetic ~B fields for a particle at rest:

Ĥ = −d · ~s · ~E − µ · ~s · ~B (1.4)

P : Ĥ = +d · ~s · ~E − µ · ~s · ~B (1.5)

T : Ĥ = +d · ~s · ~E − µ · ~s · ~B (1.6)

The parity transformation in Equation (1.5) inverts the direction of the electric field
~E but leaves the magnetic field ~B and the spin ~s unchanged. The sign of the EDM

term changes but the MDM term remains the same. Therefore, one can state that the

EDM violates the P invariance while the MDM preserves the parity. The same is true

for the time reversal transformation of Equation (1.6) where the spin and the magnetic

field are inverted while the electric field remains the same.

The CP symmetry breaking property of the EDM makes it an interesting candidate

for an additional source of CP violation that is needed according to Sakharov’s 2nd

condition. However, the SM predicts the EDM to be very small or even zero. Recent

measurements on the neutron EDM have found an upper limit of 3× 10−26 e cm. For

charged particles such as protons and deuterons, no direct measurements have been

performed yet. The Jülich Electric Dipole Investigation (JEDI) collaboration aims at

the measurement of such a charged particle EDM for protons and deuterons. A lot of

effort has been put into the research and development of the tools needed to perform

this measurement using a designated all-electric storage ring. A precursor experiment is

planed to be conducted at the Cooler Synchrotron (COSY) accelerator facility located
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at the Forschungzentrum Jülich in Germany. A detailed review of the activity of the

JEDI collaboration can be found in [4].

To measure the EDM of charged particles in a storage ring, one starts with coherently

horizontally polarized particles that are kept in the ring. It will in this sense act

similar to the magnetic traps used in the neutron EDM measurements, but for charged

particles and with the advantage of the large number of particles that can be stored

like this. The particles will interact with a radial electric field that couples to the EDM

and cause a small vertical polarization build-up which is proportional to the magnitude

of the EDM. Special effort is needed to assure that there are no radial magnetic fields

present as they will couple to the MDM and create a vertical polarization build-up

that can be mistaken for an EDM signal. To measure the polarization build-up, a

precise and very stable polarimeter is needed. The main objective of this thesis is

the development of such a device. Chapter 5 describes the requirements imposed on

such a polarimeter together with the development and test process. The polarimetry

reaction needed to measure the beam polarization is provided by elastic scattering off a

carbon target. This scattering reaction produces a left/right asymmetry in the number

of recorded events in the polarimeter. This asymmetry is proportional to the product

of beam polarization and a quantity called analyzing power, which is a property of the

target material, beam energy, and scattering angle. Chapter 2 will provide a theoretical

introduction to the analyzing power and Chapter 4 is fully designated to measure the

deuteron carbon analyzing power for different beam energies.

The development of a designated polarimeter and the measurement of the deuteron

carbon analyzing power needed to extract the beam polarization will add a small piece

to the huge endeavor that is undertaken by the JEDI collaboration to measure an

EDM of charged particles and approach a statistical sensitivity of ∼ 10−29 e cm. They,

in turn, take all of this effort with the objective to add a small share to the answers of

the most fundamental questions of nature and our very existence.





Chapter 2

Theoretical Introduction

2.1 Symmetries and Symmetry Violation

Symmetries play a crucial role in physics as they are connected with the fundamental

conservation laws that have been found in nature. The conservation of quantities such

as energy, momentum, or charge build the base of our understanding of the universe

and are therefore interwoven in all physics models. For a long time, these symmetries

were assumed to hold in every case but in the last 60 years, it was experimentally

found that there exist situations where symmetry can be violated. In this section, a

brief overview of these symmetries and the symmetry violations will be given.

2.1.1 Symmetries and Conservation Laws

The conservation of energy, momentum and angular momentum was known to be valid

for a long time and was an integral part of the formal description of the classical me-

chanics formulated by Joseph-Louis Lagrange or William Rowan Hamilton. In 1918,

the mathematician Emmy Noether found a formal connection between the conservation

of a physical quantity and the invariance of the according system under a transforma-

tion which defines a symmetry. She found that the energy conservation was a result

to the invariance of a system to a time transformation, the momentum conservation

is connected to the translation invariance and the rotation invariance defines the con-

servation of angular momentum. These invariances under a given transformation are

called continuous symmetries.

With the development of quantum mechanics at the beginning of the 20th century, the

Noether-theorem was adapted to this theory, and it proved to be consistent with this

new formalism. With the rise of particle physics, new discrete symmetries were found,

which are described by a corresponding transformation operator that can be applied to

the quantum system: The Parity transformation describes the inversion of all spatial

coordinates. Polar vectors such as the momentum or the position will be inverted

by this transformation but axial vectors such as spin and angular momentum are not

affected. For the eigenstates of the parity operator P, one needs to distinguish between

intrinsic and non-intrinsic parity. The parity eigenvalue π for a system of particles

that is described by a wave function which is given in terms of spherical harmonics

9



10 CHAPTER 2. THEORETICAL INTRODUCTION

(e.g. the H-atom), one finds π = (−1)l with l being the quantum number for the

orbital angular momentum. This is an example of a non-intrinsic parity eigenvalue.

For single particles, the intrinsic parity was assigned by convention: Fermions were

set to π = +1, and the photon was assigned to π = −1. The parity of all the other

particles was determined experimentally by the analysis of their decay products.

Another new symmetry of the quantum world is the Charge Conjugation C. Applying

the C-transformation replaces a particle with its antiparticle. Therefore, only particles

which are their own antiparticle (i.e. the π0-meson) have a well defined C-eigenvalue

η. Charge conjugation inverts additive quantum numbers such as charge, baryon and

lepton number or strangeness but does not affect spin, momentum, mass or lifetime of a

particle. As the charge gets inverted, the magnetic and electric fields will change their

sign under a C-transformation. The conservation of the charge conjugation can explain

why certain decay modes are not observed, even if they would be allowed according to

other conservation laws: The π0 (ηπ0 = +1) decays into two γ particles (ηγ = −1).

This reaction conserves the charge conjugation: ηπ0 = +1 = ηγ · ηγ . However, the

decay π0 → 3γ has not been observed even if momentum conservation would allow it.

The charge conjugation for this reaction is not conserved and would, therefore, violate

the C-symmetry.

The third symmetry in quantum mechanics is the so-called Time Reversal -symmetry

T . As the name implies, a T -transformation mirrors a system on the time axis, i.e.

t→ −t. The macroscopic world is obviously not invariant under such a transformation,

as the direction of time is connected to the increase of entropy. A T -invariance would

violate the 2nd law of thermodynamics. However, on a microscopic level, the time

invariance was found to be true. The T operator inverts the spin and the momentum

but has no effect on the position vector. As there are no observable eigenstates of the

T operator, no statements about T -allowed or T -forbidden transitions can be made.

2.1.2 Symmetry Breaking

Up until the mid-1950s, it was assumed that these symmetries are universal and will

hold in all cases. This certainty started to crumble in 1956, when Tsung-Dao Lee

and Chen-Ning Yang studied the decay of two newly discovered particles Θ+ and τ+

(Θ-τ -puzzle). These particles were found to be identical from the experimental point

of view, i.e., they had the same mass, spin, charge, and lifetime, but according to

their decay products had a different parity. They suggested that these two particles

were identical, but their decay would violate the parity conservation. It turned out

that they were right and the allegedly two particles were indeed both K+ mesons.

Their findings motivated Chien-Shiung Wu to perform her famous experiment on 60Co

which produced the experimental proof of the parity violation in the weak interaction.

Another significant result of this experiment considers the neutrinos. It was found that

neutrinos have a negative helicity (i.e., projection of the spin axis on the momentum

vector) while anti-neutrinos have a positive helicity. In this context, it is common to

refer to neutrinos as left-handed and to anti-neutrinos as right-handed. Even though

it is theoretically possible to have right-handed neutrinos, so fare no evidence of their

existence was found. As a consequence, the distinct handedness of neutrinos does
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break the C invariance. A C transformation converts a neutrino into an anti-neutrino

but leaves the spin and the momentum unchanged. Therefore a left-handed neutrino

would be transformed into a left-handed anti-neutrino, and since such a particle was

not found yet, the C symmetry is assumed to be broken as well.

As a consequence of the parity violation, a new combined CP symmetry was defined.

The CP operator successively applies the parity transformation followed by the charge

conjugation. Using this weaker symmetry, it could be shown, that the reaction studied

by Wu was invariant under the CP transformation and it was thought, that this new

symmetry would hold. E.g., a CP transformation does convert the left-handed neutrino

into a right-handed anti-neutrino. In 1964, James Cronin and Val Fitch conducted an

experiment on kaons which showed that their decay also violates the CP symmetry,

which means that this symmetry does not hold either in the weak interaction. The weak

interaction eigenstates of the quarks differ from their mass eigenstates, and the mixing

of the latter is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The

elements of the CKM matrix specifies the coupling of charged current to the different

quark flavors. It is possible to extract a measure for the amount of CP violation

included in the SM from this matrix. However the predicted upper level is around

three orders of magnitude larger than has been found in all experiments so far [5].

For the strong interaction, the QCD Lagrangian of the standard model allows for the

addition of a CP violating term (so-called Θ term) which can be related to an EDM of

the nucleons. From the theoretical side, there is no explanation why the Θ term has to

be very small or even vanish, but no experimental evidence for a CP violation in the

strong interaction has been found so far. This discord between theory and experiment

is called the strong CP problem.

An even weaker symmetry was introduced at that point using all three symmetries

combined. This is called the CPT theorem and is deeply linked into the quantum

field theory. More precisely, any quantum field theory that is Lorentz-invariant, follows

the principle of locality (no “spooky action at the distance”) and uses a normally

ordered hermitian Hamiltonian is by definition CPT invariant. This means that by

successively applying the C, P and T transformation to a system it will be found to

be in its initial state. So far, this theorem has proven to be true, and no violating

cases have been discovered. Stability of the CPT theorem has consequences on other

symmetry violating processes: If a reaction violates the time reversal symmetry, the

CP symmetry is violated as well if the CPT theorem holds, i.e., ��T ≡��CP. As the CP
symmetry was experimentally found to be broken, the T invariance is violated as well.

Table 2.1 gives an overview of the preserved physical quantities and the violation of

the corresponding symmetry. The information needed to give this brief overview has

been found in [6].
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Quantity Strong Weak EM

Energy 3 3 3

Momentum 3 3 3

Angular Momentum 3 3 3

Charge 3 3 3

Lepton Number 3 (3)1 (3)1

Baryon Number 3 (3)1 (3)1

Parity (3)2 7 3

Charge Conjugation (3)2 7 3

Time Reversal (3)2 7 3

CP-Symmetry (3)2 7 3

CPT 3 3 3

Table 2.1: Overview of the conserved physical quantities and the violation of the cor-
responding symmetries. 1 could be broken according to a static, non-stable solution
of the electroweak field equations of the SM (Sphaleron particle, see [7]) but have not
been observed. 2 could be broken by adding a term to the QCD Lagrangian (“strong
CP problem”) but have not been observed

2.2 Polarization

z

m = +1/2

m = -1/2

s = 1/2
(a) Spin- 12 configuration.

z

m = +1

m = -1

m = 0

s = 1
(b) Spin-1 configuration.

Figure 2.1: Spin configurations for spin-1
2 particles such as the proton and spin-1

particles such as the deuteron.

Since the main task of this works is designated to the development of a polarimeter, i.e.,

a device that can measure the polarization of a particle beam, it is of great importance

to give a formal definition of the polarization here.

The spin of elementary particles such quarks or electrons, as well as composite particles
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such as neutrons, protons or even nuclei, can be described as an intrinsic angular

momentum and its value is given in (full- or half-integers) multiples of the reduced

Planck constant h̄. Particles with half-integer spin are called fermions. Hence all

quarks and leptons are fermions. Particles with integer spin are called bosons. In a

quantum system, the spin defines the only quantization axis which means that other

vectorial properties of such a system like the magnetic moment or the electric dipole

moment have to be aligned with this axis. The spin itself is given by the quantum

number s. For a proton, which is a fermion, one has s = 1
2 , and for a deuteron, which

is composed of a proton and a neutron and hence is a boson, one has s = 1. The spin

can have different configuration relative to its quantization axis which is by convention

called the z-axis. For a particle with a spin of s, (2s + 1) different configurations can

be found. These configurations are defined by the quantum number m, which can

take the following values: m ∈ [s, s − 1, ..,−s + 1,−s]. A schematic picture of these

configurations for a spin-1
2 and spin-1 particle is given in Figure 2.1.

In a beam of one species of particles, it makes no sense to talk about the spin, as this

is a property of the individual particle. Instead one needs a statistical measure that is

proportional to the probability of finding a particle with a specific spin configuration

in the beam. This beam property is called Polarization and can be defined as follows:

Assume a beam of spin-1
2 particles with N↑ particles in the configuration m = +1

2 and

N↓ particles in the configuration m = −1
2 . The vector polarization is defined in the

following way:

Py =
N↑ −N↓

N↑ +N↓
= p↑ − p↓, (2.1)

where p↑ and p↓ denote the probability of finding a particle with m = +1
2 and m =

−1
2 , respectively. For a beam of spin-1

2 particles, the vector polarization can take the

following value:

− 1 ≤ Py ≤ +1, (2.2)

which means that values of the vector polarization between -100 % and +100 % are

possible.

For spin-1 particles, the beam can consist of the following fractions: N↑ particles in

the configuration m = +1, N↓ particles in the configuration m = −1 and N0 particles

in the configuration m = 0. The vector polarization is defined in the same way as for

the spin-1
2 particles:

Py =
N↑ −N↓

N↑ +N↓ +N0
= p↑ − p↓. (2.3)

Since the spin-1 particles have a total of three configurations, an additional polarization

has to be defined; the tensor polarization:

Pyy =
N↑ − 2N0 +N↓

N↑ +N↓ +N0
= p↑ − 2p0 + p↓ = 1− 3p0. (2.4)

The vector polarization can take the same values as for the spin-1
2 particles, but the

tensor polarization can take the following values:

− 2 ≤ Pyy ≤ +1. (2.5)
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Due to their definition, the vector and the tensor polarization for the spin-1 particles

are connected. This leads to the following restriction of the possible values for the

vector polarization in a beam with no tensor polarization:

Pyy = 0⇒ −2

3
≤ Py ≤ +

2

3
, (2.6)

as can be seen by setting Pyy = 0 in Equation (2.4) which fixes p0 = 1
3 and leads to the

expression given above.

All the data that was analyzed in this work was measured using pure vector polarized

deuteron beams, which means that the maximum achievable polarization was ±66.66 %.

During the database experiment, some measurements with tensor polarized beams were

performed as well, but this data was not processed by the author. In all the beam

times for the polarimeter development, no tensor polarized beams were used at all. In

the subsequent sections, tensor polarization dependent quantities such as the tensor

analyzing power will not be discussed as it would go beyond the scope of the thesis.

The definitions for the polarization used in this section was taken from [8].
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2.3 Asymmetries From Elastic Scattering

In this section, an attempt of an explanation for the spin dependence of the elastic

scattering of a polarized particle off an unpolarized nucleus will be given. As a first

step, the observation of this dependence found in double scattering experiments, that

led to the concept of analyzing and polarizing power respectively, will be presented.

In a second step, the spin dependence of elastic scattering will be explained using a

semi-classical approach.

2.3.1 Analyzing Power and Double Scattering

N0
N0 1

2
N0ρ(

1 - 
A)

N0ρ(
1 + 

A)

N0ρ
2 (1

 -
 A
)(
1 
- 
A)

N0ρ
2 (1

 +
 A
)(
1 
+ 
A)

N0ρ
2(1 - A)(1 + A)

N0ρ
2(1 + A)(1 - A)

N0ρ(1 + A)N0ρ(1 - A)

Figure 2.2: Schematic representation of a double scattering experiment. A beam of
unpolarized particles scatters elastically off an unpolarized target at position 1. The
outgoing particles for a certain scattering angle Θ are scattered a second time off an
unpolarized target 2 of the same material as the first one. The angular distribution for
the second scattering is recorded.

Assume a double scattering experiment with the following experimental setup: A beam

of unpolarized protons was scattered elastically off an unpolarized nucleus such as

carbon (12C). For a certain scattering angle Θ, another target of the same material

was installed, and the protons would undergo a second elastic scattering reaction. The

angular distribution was measured after the second scattering. Figure 2.2 shows a

schematic drawing of such an experiment. From previous single scattering experiments

with unpolarized proton beams scattering of unpolarized nuclei it was found that the

number of particles scattered to the left (NL(Θ),Θ > 0) was equal to the number of

particles scattered to the right (NR(Θ),Θ < 0) as expected from the Φ-symmetry of the

experimental setup. However, for the double scattering experiment, this was not any

longer the case [9], i.e., NL(Θ) 6= NR(Θ). To quantify this inequality, an asymmetry ε

can be defined as follows:

ε(Θ) =
NL(Θ)−NR(Θ)

NL(Θ) +NR(Θ)
. (2.7)
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From first scattering, this asymmetry was found to be ε1 = 0 but for the second

scattering ε2 6= 0.

This result can be explained by adding a spin-dependent term to the elastic cross

section. In Figure 2.2, the unpolarized beam is approximated by a beam with N0

particles in a spin-up configuration relative to the plain of scattering (denoted by �)

and the same amount N0 particles in a spin-down configuration (denoted by ⊕). The

probability for a spin-up particle to scatter to the left (Θ > 0) is larger compared to the

probability of the same particle to scatter to the right (Θ < 0). This can be expressed

in the expected number of spin-up particles to be found on the left (N�L ) or the right

side (N�R ) respectively, using the following expression:

N�L = N0ρ(1 +A)

N�R = N0ρ(1−A) (2.8)

with ρ = σ0 · ρa,

with the unpolarized cross section σ0 and the areal target density ρa. For simplicity, the

Θ dependence the quantities N�L,R, ρ and A are where omitted. Rotating the scattering

plane by 180° around the incident beam axis would transform the spin-down into spin-

up particles, and thus the same formalism with reversed signs can be used for the

spin-down particles:

N⊕L = N0ρ(1−A)

N⊕R = N0ρ(1 +A) (2.9)

This modification of the cross section for the elastic scattering is compatible with the

result of the single scattering as can be seen by calculating the asymmetry ε from

Equation (2.7):

ε1 =
NL −NR

NL +NR
=

(N�L +N⊕L )− (N�R +N⊕R )

(N�L +N⊕L ) + (N�R +N⊕R )
= 0. (2.10)

This means from an experimental point of view, the modification cannot be estimated

directly. However if one calculates the polarization of the beam that was scattered to

the left according to Equation (2.1), one finds:

PL =
N�L −N

⊕
L

N�L +N⊕L
= A. (2.11)

The scattered beam at Θ gets polarized to a value of A which in this context is called

polarization power.

Using the same modification for the expected number of scattered spin-up (N�LL,LR)

and spin-down particles (N⊕LL,LR) from the second scattering, one finds the following

expression:

N�LL = N0ρ(1 +A)ρ(1 +A) = N0ρ
2(1 +A)2,

N�LR = N0ρ(1 +A)ρ(1−A) = N0ρ
2(1−A2), (2.12)

N⊕LL = N0ρ(1−A)ρ(1−A) = N0ρ
2(1−A)2,

N⊕LR = N0ρ(1−A)ρ(1 +A) = N0ρ
2(1−A2).
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To obtain these expressions, a few assumptions have to be made. The targets used in

the first and the second have to be identical. Further, it was assumed that the energy

loss in the first scattering was negligible. This allows to set ρ1 = ρ2 = ρ. The scattering

angles have to be identical as well such that A1 = A2 = A as indicated in Figure 2.2.

By calculating the asymmetry according to Equation (2.7)

ε2 =
NL −NR

NL +NR
=

(N�LL +N⊕LL)− (N�LR +N⊕RL)

(N�LL +N⊕LL) + (N�LR +N⊕LR)
= A2 > 0, (2.13)

the value of A and therefore the magnitude of the polarization after the first scat-

tering can be found. In this context, A is called analyzing power even if it describes

the same property of spin dependence in the elastic scattering off unpolarized nuclei.

Subsequently, it will be referred to A as the analyzing power.

This double scattering experiment can be summarized as follows: An unpolarized beam

gets elastically scattered off an unpolarized nucleus. The fraction of the beam that

gets scattered under an angle of Θ gets polarized to a value of P = A. Scattering

this polarized beam a second time elastically off an unpolarized nucleus results in a

left right asymmetry in the number of detected events which is dependent on A. The

second scattering analyzed the polarization produced in the first scattering reaction. In

this experiment where A1 = A2 = A, the value of A represents the beam polarization

after the first scattering as well as the analyzing power which does depend on the beam

energy, scattering angle and the target material.

This experiment can now be generalized to a polarized beam that is elastically scattered

of an unpolarized target. The cross section of such a reaction was found to be:

σpol ∼ σ0(1± PA), (2.14)

where P denotes the beam polarization, σ0 unpolarized cross section, and A the ana-

lyzing power. The latter two depend on the scattering angle Θ, the beam energy as well

as on the target material. The + in front of the term PA describes the cross section on

the left side and the − on the right side. A more detailed description of the polarized

cross section is given in Equation (4.4). For a proton beam, which consists of spin-1
2

particles, only vector polarization is possible and therefore, A is the vector analyzing

power and will be denoted as Ay. For a deuteron beam, that consists of spin-1 parti-

cles, an additional tensor analyzing power describes the tensor polarization dependence

of the elastic scattering. As stated in the previous section, the tensor polarization is

outside of the scope of this work and will be omitted here. The introduction of the

analyzing power described in this section followed the arguments given by Emilio Segrè

in [10].
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2.3.2 Spin Dependence of Elastic Scattering
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Figure 2.3: Nuclear potential described as a Woods-Saxon potential well (see Equa-
tion (2.15)). The red line represents the potential of the strong interaction. A spin-orbit
coupling distorts this potential depending on which side of the nucleus the impinging
particle was scattered. This is represented with the blue line.

In the previous section, the phenomenon of the spin dependence observed in double

scattering was introduced. In this section, an attempt for an explanation of this effect

will be given based on a semi-classical approach. The elastic scattering of deuterons

and protons with kinetic energies in the order of a few hundred MeV off a carbon target

are already dominated by the strong interaction rather than the electromagnetic force,

especially for small scattering angles. It is therefore important to understand how

the strong nuclear force interacts with the impinging particles in an elastic scattering

reaction. According to the shell model of the nucleus, the strong interaction can be

modeled as a rotationally symmetric potential well with a negative sign as it describes

an attractive force. Depending on the model, this potential is described with a boxcar -

function (rectangular function), meaning that the edges of this well are of infinite

steepness or it is described by a Woods-Saxon potential which allows for smoother

edges. The latter is defined as follows:

V (r) =
−V0

1 + e
r−r0
a

. (2.15)

Here V0 defines the maximal potential, r0 describes the radius of the nucleus and a char-

acterizes how fast the potential approaches zero. Typical values for these parameters

can be found in [10]:

V0 = (20− 60) MeV,

a = (0.5− 0.7) fm,

r0 = (1.15− 1.35) ·A
1
3 fm,

where A denotes the mass number of the nucleus, e.g A = 12 for 12C resulting in

r0 = (2.63− 3.1) fm. The Woods-Saxon potential for carbon is given in Figure 2.3 by

the red line.

A particle that enters the nuclear matter gets deflected towards the center of the nucleus

due to the attractive strong force. On the other hand, the deeper the impinging particle
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enters the nucleus, the less of the central force will act on it because the sources of the

strong interaction are the nucleons which will attract the particles from all sides. In

such a case, the particle dissipates energy in the nuclear matter rather than being just

deflected. It should be noted here, that this model for the elastic scattering cannot be

used for full head-on collisions as they cannot be considered elastic anymore and the

particles would rather be absorbed by the nucleus in an inelastic fashion. For particles

that scatter at a reasonable distance from the center, elastic scattering can still be

assumed, but some part of the particle flux gets removed from the elastic channel

due to inelastic processes. This is described by the use of an optical model where an

imaginary term is added to the nuclear potential. Solving Schrödinger’s Equation, the

imaginary term of the potential leads to an imaginary part in the wave vector of the

particles wave function that can be translated into a damping term. Since the square of

the absolute value of the wave function describes the portability density, the damping

term decreases the particle flux. V0 in Equation (2.15) will be modified:

V0 → V0(1 + iξ). (2.16)

According to [10], typical values for ξ are in the range of 0.13 to 0.7.

So far the effect of the spin of the impinging particle was not taken into account.

However, the shell model of the nucleus introduces a spin-orbit coupling term in analogy

to the spin-orbit coupling found to be responsible for the Zeeman effect in the shell

model of the atom. This spin-orbit interaction can be expressed as a potential as

follows:

V so ∼ 1

r

∂V (r)

∂r
~l~s, (2.17)

with V (r) the nuclear potential as given in Equation (2.15), ~l and ~s the orbital and

spin angular momenta, respectively. In the elastic scattering reaction, this spin-orbit

potential is generated by the scattering particle when it interacts with the target nucleus

and can be described by:

V so = V so
0 (∇V (r)× ~p ) · ~s = V so

0

(
~r

r

∂V (r)

∂r
× ~p

)
· ~s =

V so
0

r

∂V (r)

∂r
(~r × ~p ) · ~s. (2.18)

Here V (r) is the nuclear potential as given in Equation (2.15), ~p and ~s the momentum

and spin angular momentum of the incoming particle, respectively. The vector ~r points

from the center of the nucleus to the point of interaction with the impinging particle,

see Figure 2.4. It can be assumed that ~r is orthogonal to ~p and therefore the orbital

angular momentum ~l = ~r × ~p is perpendicular to the plane of scattering. This allows

for Equation (2.18) to be simplified to:

V so = ±V so
0

∂V (r)

∂r
· p · s · cos(αs). (2.19)

αs denotes the angle between the spin of the scattering particle and the normal vector of

the plane of scattering. For the subsequent discussion, this angle can be either αs = 0

(spin-up particles), or αs = π (spin-down particles). The sign of Equation (2.19)

depends on which side the particle scatters off the nucleus. Assume a spin-up particle

scattering off the left side of the nucleus. According to the right-handed rule of the cross
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product, the resulting orbital angular momentum vector will point down, i.e., into the

plane of scattering. As defined before, the spin of the particle points up, i.e., out of the

plane of scattering and therefore the scalar product between spin and orbital angular

momentum will be equal to −1. For a particle that scatters off the right side of the

nucleus, the angular momentum points out of the plane of scattering which results in

the + sign of Equation (2.19). If the sign of the nuclear potential (see Equation (2.15))

is taken into account, it can be seen that spin-up particles that scatter on the left side

of the nucleus will cause the effective nuclear potential to be increased and for spin-up

particles that scatter on the right side, it will be decreased. The blue line in Figure 2.3

shows this deformation of the nuclear potential caused by the spin-orbit coupling of

the impinging particles. This asymmetry in the attractive nuclear potential affects by

how much an incoming particle gets deflected from its initial straight path depending

on which side of the nucleus it scattered. This asymmetry can eventually be observed

in the cross section of the elastic scattering of polarized particles off an unpolarized

nucleus. The vector analyzing power is, therefore, an experimentalist’s measure for the

deformation of the nuclear potential.
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Figure 2.4: Schematic image of the side dependent elastic scattering reaction. The
incident particles Pi have a momentum of p and will scatter either on the left or on
the right side of the nucleus. The spin of the particles is oriented perpendicular to
the plane of scattering and is pointing out of the plane. The scattering process occurs
at the fringe of the nucleus and can, therefore, be considered elastic. The scattered
particles Pf will have the same magnitude of momentum p as the incident particles,
i.e., the recoil momentum on the nucleus is neglected. The gray vectors Pf represent
the elastic scattering of a fully symmetrical nuclear potential as given by the red line
in Figure (2.3). The blue vectors account for the asymmetry in the nuclear potential
that depends on the spin-orbit coupling and is shown as the blue line in Figure (2.3).

In a paper by Enrico Fermi [11], he derived a spin-dependent expression for the elastic

scattering of protons of nuclei. His approach is based on the considerations given above

and will be presented here.

The nuclear potential used for this calculation was given by a simple boxcar model

rather than by a Woods-Saxon potential:

V (r) =

{
−V0(1 + iξ) for r < r0

0 for r > r0

(2.20)

therefore, the derivative of this potential as used in Equation (2.18) was replaced by:

∂V (r)

∂r
= −V0δ(r − r0). (2.21)

The matrix element of the scattering matrix,

Mif = 〈Ψf |V + V so|Ψi〉 , (2.22)
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was calculated in the Born approximation, i.e., Ψi and Ψf were assumed to be plane

waves. Further, it was assumed that the beam consists only of protons in a spin-up

configuration. The scattering angle Θ was defined such that a positive angle corre-

sponds to scattering to the left and a negative angle to scattering to the right. Using

Fermi’s Golden Rule No. 2, the cross section was calculated:

dσ

dΩ
=

m2
p

4π2h̄4 · |Mif |2

⇒ (2.23)

dσ

dΩ
=

4mp

h̄4 r6
0V

2
0

{
sin(q)

q3
− cos(q)

q2

}1 +

(
ξ +

15

2

(
p

mpc

)2

sin(Θ)

)2
 ,

with mp being the proton mass and the momentum transfer q given by:

q =
2pr0

h̄
sin

(
Θ

2

)
. (2.24)
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Figure 2.5: Elastic cross section for a polarized beam calculated according to Equa-
tion 2.23 for particles that have been scattered to the left or the right, respectively.
The left/right asymmetry calculated according to Equation (2.7) is given in the lower
section.

The differential cross section given in Equation (2.23) was plotted in Figure 2.5, upper

section. The values for the scattering to the left are slightly larger than the values on the

scattering to the right. This result is in agreement with the deformed nuclear potential

in Figure 2.3 which has a lower value on the right (i.e., is more attractive) which means

that more particles are scattered to the left and vice versa. The unpolarized elastic cross
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section was calculated as the superposition of the cross sections for spin-up and spin-

down. As expected, it lies between the two polarized cross sections. The oscillating

structure in the cross section origins in the scattering off the nuclear potential and

is not a direct consequence of the spin-orbit coupling but is rather generated by the

{sin(q)/q3 − cos(q)/q2} term in Equation 2.23. Figure 4.28 in Section 4.3.2.4 shows

the measured unpolarized deuteron carbon cross section normalized to the Rutherford

cross section. In this figure, a slight oscillating structure is visible as well but much

less prominent than in the model shown in Figure 2.5.

Calculating the asymmetry as defined in Equation (2.7) reveals that this model for

the cross section does produce a left/right asymmetry as observed in the experiments,

see Figure 2.5, lower section. In general, it is important that this is a very simplified

model that is not capable of reproducing the measurements presented in this work. The

parameters that were entered into Equation (2.23) to produce Figure 2.5 have not been

adapted to match the measurements. However, this simple model is able to produce a

satisfactory explanation for the observed left/right asymmetry in the experiments and

for the vector analyzing power, that will be used to measure the beam polarization

with the designated polarimeter whose development is presented in this work.





Chapter 3

The Cooler Synchrotron COSY

The Cooler Synchrotron COSY accelerator facility is located at the Forschungzentrum

Jülich in Germany. It consists of three main parts: A source that can produce polarized

and unpolarized hydrogen H− and deuterium D− ion beams. They are transferred into

the injector cyclotron JULIC (Jülich Isochronous Cyclotron). This machine accelerates

the ion beam to kinetic energies up to 45 MeV for H− beams and up to 76 MeV for D−

beams [12]. From there they are transferred via an injection beam line into the main

cooler synchrotron storage ring COSY. On the injection beam line, a small polarimeter

(referred to as the Low Energy Polarimeter (LEP)) is installed that can measure the

ner

Stochartic
Cooler

JULIC

Big Karl

LEP

WASA

E-Cooler

Dipoles

Quadrupoles

RF Cavity

JePo

Figure 3.1: Overview sketch of the COSY accelerator facility located at the
Forschungzentrum Jülich in Germany. The device labeled JePo indicates where the
LYSO based polarimeter will be installed, see Section 6.2.
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beam polarization, see [13]. At the injection, the two electrons from the ions are

removed by a stripping reaction in a thin carbon foil. COSY can accelerate deuterons

and protons up to a momentum of 3.7 GeV[12] which equals kinetic energies of ∼
2.8 GeV for protons and ∼ 2.2 GeV for deuterons. The accelerator has a circumference

of 184 m. Two straight sections with a length of 40 m are located between two arc

section with a radius of 16.5 m[14]. The magnets that keep the beam in orbit are

normal-conducting water cooled dipoles that can reach magnetic fields up to 1.58 T

[15]. Groups of four quadrupole magnets in a row form the beam optics. The actual

acceleration takes place in a radio wave (RF) driven accelerator cavity installed in the

center of a straight section.

What makes COSY unique is its ability to cool the beam. Cooling in this context

means that the phase space of the beam gets reduced by removing transversal momen-

tum components from the particles in the beam. This is achieved using two different

methods: Electron Cooling for beam momentum up to 600 MeV and Stochastic Cooling

staring from a beam momentum of 1.4 GeV[16]. Two electron coolers are installed, one

in each straight section. A beam of electrons of the same velocity as the main beam is

injected in a short section of the ring. The electrons scatter elastically with the beam

particles and thereby reduce the transversal momentum components of their scatter-

ing partners. The electrons are either scattered out of the beam or get removed from

the beam at the end of the electron cooler. The stochastic cooling samples the beam

positions in very fine packages as they enter through a so-called pick-up detector. For

each package, the deviation from the ideal orbit is measured, and this information is

transferred via a waveguide diagonally across the ring to a device called the kicker. The

particle package had to travel all the way through the beam pipe, and when it enters

the kicker, a correction signal proportional to the deviation measured at the pick-up is

applied. This method allows for the reduction of the phase space both in transversal

as well as in the longitudinal direction of the beam.

The straight section allows for the installation of experiments in the ring. The WASA

detector (see Chapter 4) is installed in such a straight section. The target that is used

to produce the elastic scattering reactions can be moved into the beam pipe in front

WASA. The beam orbit is set such that it will pass just below the target during the

acceleration. When the beam is brought to its final energy, it is excited which causes

the beam to be broadened. A small fraction of the beam does now hit the target and

scatters into the detector. A feedback loop between the detector rate and the excitation

assures that the full beam is slowly extracted on the target.

Another option that COSY provides is to extract the accelerated beam using a magnetic

septum and transfer it via the extraction beam line to one of three external experiment

places. The whole LYSO based polarimeter development was done at an external

beam line in the Big Karl experimental hall. At the beginning of 2016, the old Big

Karl spectrometer was removed which created space for experiments using an extracted

beam.
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Database Experiment

The Database Experiment was performed from the 2. to 28. November 2016 using the

WASA forward detector installed at the COSY facility. In this chapter, the experimen-

tal setup, the data analysis procedure, and the results obtained from this experiment

will be discussed.

4.1 Detector Setup

4.1.1 WASA Detector

The WASA (Wide Angle Shower Apparatus) is actually a rather old device, and there

is quite a history attached to it. Originally it was developed and built at the Department

of Radiation Sciences of the University of Uppsala in Sweden in 1996 [17]. It was then

installed at the cooler accelerator and storage ring CELSIUS. Its designed purpose was

to detect light mesons such as the π0 or the η. It consisted of two main parts. A central

detector that was able to cover a solid angle of almost 4π, which was referred to as the

calorimeter as it was built from CsI crystal scintillators. In the downstream direction

of the beam, the forward detector part was installed. It consisted of multiple layers of

plastic scintillators and four layers of gas-filled mylar tubes proportional counters (straw

tubes). These straw tube arrays - the Forward Proportional Chamber (FPC) - were

sandwiched between a thin (0.3 cm) layer of plastic scintillators, the Forward Window

Counter (FWC) and three layers of slightly thicker (0.5 cm) plastic scintillator, the

Forward Trigger Hodoscope (FTH) and eventually followed by another four 11 cm

thick plastic scintillator layers, the Forward Range Hodoscopes (FRHs). The layers of

plastic scintillator layer are segmented into pizza-shaped detector elements with a PMT

attached to their ends. The FWC and the FRHs consist of 24 of these elements each,

and the FTH of 48 elements. The first two layers of the FTH were constructed from

counter-rotating archimedean spirals which together with the straight element formed

a pixel like structure.

27
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Range Hodoscope:
3 x 24 Elements (10 cm)
2 x 24 Elements (15 cm)
Pizza Shaped

Trigger Hodoscope:
1 x 48 Elements (5 mm)
Pizza Shaped

Straw Tubes:
4 x 4 Layers
0°, 90°, 45°, -45°

Window Counter:
2 x 24 Elements
Pizza Shaped

Target Position:
- Carbon Target
- CH2 Target Angular Coverage:

θ: 2° - 17°
Φ: 0° - 360°

Figure 4.1: Schematic view of the WASA forward detector.

In 2006 the whole WASA detector including its micro-sphere hydrogen pellet target

[18] was moved to the COSY accelerator facility of the Forschungszentrum Jülich in

the WASA at COSY campaign [19], and some upgrades for higher energies and higher

count rates were installed. The first layer of the FRH was removed to create more space

for the FPC and two additional thicker (15 cm) layers of FRHs were installed after the

three remaining original ones. The second layer of window counter was installed as

well. In this configuration, the WASA detector was operational and being used for

many experiments until 2014.

Between 2014 and end of 2016, the whole detector including the pellet target was

removed from COSY and only the forward detector part was then reinstalled, but the

first two layers of the FTH (spirals) were not put back. The FPGA based trigger system

described below was also developed for this new configuration. The detector elements

of the window counter have shown some strange signals and were therefore brought to

the lab where they were tested, and some needed a repacking as they were not light

tight anymore. The target system needed for the Database Experiment was developed

just before the actual experiment took place and is described in the next section.

The final detector setup for the Database Experiment was the following: Two layers of

forward window counters (FWC1 and FWC2) with 24 elements each. They are followed

by four layers of straw tubes (FPC). These layers of tubes were subsequently rotated

by 45◦ which allowed for a scattering angle resolution of 0.2◦ [19]. Next, a single layer

of the froward trigger hodoscope (FTH) is mounted. It consists of 48 elements which

are rotated by 3.75◦ with respect to the other detector modules. This means, that
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(a) Forward window counters (b) Forward proportional chamber

(c) Forward trigger hodoscope (d) Forward range hodoscope

Figure 4.2: Pictures of the different layers of the WASA forward detector when they
were being installed.

each detector module overlaps with three elements of the FTH allowing for finer track

reconstruction. The final part of the detector consists of the five layers of the forward

range hodoscope with 24 elements in each layer. The first three layers (FRH1, FRH2,

and FRH3) are made from 11 cm, and the latter two (FRH4 and FRH5) from 15 cm

thick plastic scintillators. A schematic overview of the WASA forward detector is given

in Figure 4.1, and the pictures of the individual layers are shown in Figure 4.2.

4.1.2 Target Controller

In the old WASA setup, a hydrogen micro-sphere target was used. It was removed for

the Database Experiment because it did not suit the experiment as the aim was to

measure properties of the elastic deuteron carbon scattering reaction. Hence, a new

target needed to be installed in the old interaction point of the pellet target. What

was available was a gear rack driven arm in a vacuum-tight enclosure that could be

mounted horizontally to the cross flange of the interaction point, see Figure 4.4a. A

non-standard stepper motor to drive the rack was already attached to the device, but

the motor controller was missing. In order to use this device, a custom made stepper

motor driver had to be created, see Figure 4.3.
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Figure 4.3: Opened housing for the custom made stepper motor driver circuit. The
Raspberry Pi running the control software can be seen on the right.
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Most of the standard stepper motors use two pairs of coils and can therefore easily be

driven with many off-the-shelf driver circuits. However, the stepper motor that was

attached to the device, intended to be used to bring the targets into the beam, was a

five-coil type which meant that no driver for a reasonable price could be found. The

circuit that was built to drive the motor used an ATmega328 [20] microcontroller to

generate the step sequence needed to drive the motor. The driving signals were fed

into five individual MOSFET half-bridge ICs capable of handling the current needed

to energize each coil. With this driver, an accuracy of ∼0.1 mm was achieved. The

firmware on the microcontroller was designed such that it would calculate a trapezoidal

speed profile for each movement in order to minimize fast acceleration and jerking of

the gear rack and the targets. Further, it would check the limit switches and prevent

movements that could damage the vacuum enclosure of the gear rack. The driver

circuit was connected via the I2C bus to a Raspberry Pi which would run a small web

server. The target control software was written in Python and could be accessed from

any computer connected to the same network via its browser-based user interface.

On the end of the gear rack, three targets were installed. Two strips of polyethylene

foils (CH2) and one diamond slab tapered into a very fine tip. Each of the targets had

a length of 19 mm, and they were 2 cm spaced apart, see Figure 4.4b. To use one of

these targets in the experiment, the gear rack driven arm was moved into the target

chamber positioning the target on the center line of the detector. To avoid hitting the

target in the acceleration phase of each cycle, a local bump was created at WASA using

the steerer magnets of COSY to plunge the beam below the targets. When the beam

had reached the desired energy, it was excited in such a way that a tiny fraction would

hit the target tip and undergo an elastic scattering reaction. The amount of beam

excitation was adjusted to keep the rate in the detector constant and extract as much

beam as possible in each cycle.

To be able to install the targets on the arm of the driver, the vacuum enclosure had to

be opened. Therefore a shutter was installed between the tube containing the target

arm and the cross flange of the target chamber. When this shutter was closed, the

tube of the target arm could be opened, and the targets could be installed. Evidently,

a separate vacuum pump was needed to recreate the vacuum before the shutter could

be opened and the targets could be moved into the chamber. This shutter was part of

an interlock system created by the electronics workshop of the IKP. In order to open

the shutter, the pressure on both sides of it had to be close to each other. This should,

on the one hand, assure that the shutter was not opened accidentally resulting in a

catastrophic venting of the COSY beam pipe and on the other hand even if the target

arm pipe was sealed, too big of a pressure gradient could ”blow” the targets from their

mounting points. The interlock system would further prevent the closing of the shutter

while the target arm was not fully retracted in order not to damage the arm and/or

shutter. Finally, this system would cut the power of the driver circuit as long as the

shutter was closed to prevent accidental crushing the target arm into the closed shutter.

A second Raspberry Pi connected to a webcam that was used to visually monitor the

movements of the target arm via another web interface. An array of LEDs controlled

by the same Raspberry Pi was used to illuminate the target chamber when needed.
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(a) Target arm installed at the WASA target chamber.

(b) The three strip targets installed for the Database Experiment

Figure 4.4: Targets for the Database Experiment
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The target controller was upgraded after the experiment in order to control a second

target consisting of a carbon block mounted to a rod. Using a magnetic feed-through

mechanism, a linear motor could move this block target into the beam from the top.

4.2 Calibration

In order to use the measurements from the WASA detector, the raw data had to be

calibrated. The main part of this task was done by Maria Żurek when she was employed

as a post-doc at IKP-2. She did the whole Monte-Carlo simulation, track reconstruction

and the majority of the calibration. The author assisted her with some small tasks,

but all the credit for the whole calibration process belongs to her. As a consequence,

the calibration will not be described in a very detailed manner, but an overview of the

individual steps will be presented.

The trigger requirements for the WASA detector were set in a designated hardware

module based on multiple FPGAs that was developed by Volker Hejny. Each detector

module of WASA was connected to a fast discriminator that created a logic signal if the

signal exceeded a certain threshold. These logic signals were fed into the FPGA-based

trigger logic that would create a trigger signal for the ADC if an uninterrupted track

was recorded. Here, a track is characterized as a series of subsequent detector elements

that have reached the signal threshold in a given time window. For this experiment,

the requirement for a trigger was a track reaching FRH1 or further.

The first step of the calibration was to reconstruct connected tracks and consolidated

them into event-based ROOT trees. One event could consist of multiple tracks, but

most of the events contained only a single track. In order to reconstruct a track, it

needed to be checked if the detector modules that had triggered could be connected by

a straight line. This was done by testing if the modules of interest were located in a

row and if no gaps were present in the track. If a connected track was found, its polar

and azimuthal angles were calculated from the straw tube array and attached to the

event tree. At least three out of the four straw tube layers have to have created a valid

signal, otherwise, the event was rejected. After this step, a ROOT tree was created

for each run file, containing the following pieces of information: Number of tracks per

event, polar and azimuthal angle, a timestamp, the associated beam energy, and the

polarization state. Further, the deposited energy in each detector module associated

with the track was stored in raw ADC units.

The second step of the calibration was to perform an energy calibration for each layer.

For the beam energy of 380 MeV, the deuterons would reach up to the FRH4 layer

representing the most penetrating tracks for this experiment. Therefore this energy

was used to do the main calibration, as it covers the energy depositions for all the

other beam energies as well. For each layer, a two-dimensional histogram for deposited

energy ∆E versus the polar angle Θ was created. In order to transform the raw energy

information into a physical quantity, it was compared to a Monte-Carlo simulation. To

create a linear calibration from such a simulation, a distinct point in the spectra has

to be found that could unambiguously be identified in both, data and simulation. This

point in the data spectrum can then be scaled to match the Monte-Carlo spectrum. The
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Figure 4.5: Calibrated range hodoscopes for 380 MeV. The elastic peak position from
the Monte-Carlo (black points) is plotted on top of the calibrated data to visualize how
well the data matches the simulation.

peak from the elastic dC scattering was therefore chosen as a reference. It is represented

as a band structure in the ∆E vs. Θ spectra which were sliced along the Θ axis, and

the position of the elastic peak was fitted for each Θ-bin individually. This procedure

was repeated for the Monte-Carlo simulation and resulted in Θ-depended energy of

the peak for elastically scattered deuterons from the simulation as well as from the

measured data, see Figure 4.5. From these sets, a Θ-depended linear calibration factor

was obtained. The detector modules that make up the WASA detector have a triangular

shape (pizza shape, see Figure 4.1) and cover an azimuthal range of 15◦ for the range

hodoscopes (FRHx) and 7.5◦ for the trigger hodoscope (FTH), respectively. To account

for the different gains of each of the detector elements, the linear calibration factor

was calculated for each detector element individually. Applying this Θ and element

dependent factor calibrates the value of the deposited energy along with both angular

directions. Figure 4.6 shows an example of a ∆E vs. ∆E spectrum before and after

the linear calibration was applied.

The next step in the calibration procedure was to compensate time dependence of the

gain of the individual detector elements. The calibration described above was done for

one particular run with a beam energy of 380 MeV. As the gain is not necessarily stable

throughout the whole experiment, the elastic peak for Θ = 3.75◦ bin was scaled for each

run file and each detector element to the corresponding position from the Monte-Carlo

simulation. For each beam energy and each detector layer, this process was repeated

to obtain a flat time dependence among all the runs. The result of this run-dependent

correction is shown in Figure 4.7

So far, all the calibration steps were anchored to the elastic peak in the 380 MeV

data. To evaluate the quality of the calibration, another Monte-Carlo simulation of
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(a) Before the calibration was applied. (b) After the calibration was applied. Now
elastic peak as well as deuteron (upper) and
proton (lower) bands get visible.

Figure 4.6: Effect of the linear calibration by way of example of the ∆E FRH2 vs. ∆E
FRH1 spectra for 380 MeV.
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(a) Position of the 380 MeV elastic peak at
Θ = 3.75◦ as a function of the run number for
the FRH3. Each color corresponds to a partic-
ular detector module. This plot was obtained
before the correction was applied.
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(b) Same situation as described above, but
this plot was obtained after the correction was
applied.

Figure 4.7: Effect of run-dependent correction at a polar angle of Θ = 3.75◦ on FRH3
at 380 MeV

deuterons and protons hitting the detector with a uniform energy distribution was

created. From this simulation, subsequent ∆E vs. ∆E plots were generated for all

layers. The deuteron and proton band were fitted and parametrized such that they

could be plotted on top of the corresponding ∆E vs. ∆E plots created from the

measured data, see Figure 4.9a. This revealed that there was a mismatch between

data and simulation. To overcome this issue, an additional non-linear calibration was

applied on top of the linear one. The deuteron bands in the ∆E vs. ∆E plots from the

data were fitted and parametrized as well. Non-linear functions were then defined to

describe these bands. A third order polynomial function for the FTH and fourth order

polynomial functions for the FRHs were assumed. Fixing these functions to the elastic

peak (∆EFRH1(∆EFTH) ≡ ∆Eel.FRH1 and ∆EFRHx(∆EFRH(x−1)) ≡ ∆Eel.FRHx) as well

as to the origin (∆EFTH,FRHx(0) = 0) reduced the number of parameters to two for

the FTH and to three for the FRHs, respectively. Thus, the correction functions were
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(a) Non-linear correction function for FTH,
see Equation (4.1)

(b) Non-linear correction function for FTH,
see Equation (4.2)

Figure 4.8: Non-linear correction functions for FTH and FRH1 in red. In black, the
linear calibration function is given. The black dot indicates the elastic peak position
that is used as a fix-point in both, the linear as well as the non-linear calibration.

defined as follows:

fFTHcorr (E) = (1− p1(∆Eel.FTH)− p2(∆Eel.FTH)2)E

+ p1E
2 + p2E

3, (4.1)

fFRHxcorr (E) = (1− p1(∆Eel.FRHx)− p2(∆Eel.FRHx)2 − p3(∆Eel.FRHx)3)E

+ p1E
2 + p2E

3 + p3E
4. (4.2)

Using this correction functions, a χ2-sum was defined as follows:

χ2 =

[
fFTHcorr (∆EFTH)− fFTHMC. (fFRH1

corr (∆EFRH1))
]2

σ2
FTH

+

3∑
x=1

[
fFRHxcorr (∆EFRHx)− fFRHxMC. (f

FRH(x+1)
corr (∆EFRH(x+1)))

]2

σ2
FRHx

. (4.3)

Where fFTH,FRHxMC. denote the parametrized Monte-Carlo bands and σFTH,FRHx the

width of each point of the parametrized deuteron bands from data. Minimizing Equa-

tion (4.3) equals to matching the data to the Monte-Carlo simulation in all five layers

simultaneously by determining all 14 free parameters of the correction functions Equa-

tion (4.1) and (4.2). For the range hodoscopes, the deviation from the linear calibrations

was rather small, but for the trigger hodoscope, the effect of the correction was signif-

icant, see Figure 4.8. The non-linear correction was then applied to the data, and the

deuteron band was now in alignment with the Monte-Carlo simulation as can be seen

in Figure 4.9b.

The full calibration was applied to the ROOT tree files created from the raw data for

all seven beam energies. This resulted in a new set of calibrated ROOT tree files that

were used for further data analysis.
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(a) Before the non-linear correction was ap-
plied. A mismatch between the data and the
simulation is clearly visible, especially for the
lower energy range of FRH1.

(b) Non-linear correction applied. The differ-
ence between data and Monte-Carlo has van-
ished.

Figure 4.9: Effect of the non-linear calibration by way of example of the ∆E FRH1 vs.
∆E FTH spectra for 380 MeV. The deuteron (red) and proton (blue) bands obtained
from the Monte-Carlo simulation are drawn on top of the data.

4.3 Results

The elastic cross section for the elastic deuteron carbon scattering with vector polarized

deuterons is given by:

σdCpol.(Θ,Φ, Ay, Py) = σdCunpol.(Θ)(1 +
3

2
Ay(Θ)Py cos(Φ)) (4.4)

where Θ denotes the polar and Φ the azimuthal angle respectively [8]. The vector

analyzing power Ay(Θ) is a property of the carbon target, and Py describes the vector

polarization of the incoming deuteron beam. For a deuteron beam, there is an addi-

tional factor of 3
2 in the equation. For a proton, beam this factor is 1

2 . In the subsequent

sections, the approach to extract the unpolarized deuteron carbon cross section (σdCunpol.
in Equation (4.4)) as well as the vector analyzing power Ay from the data measured

during the beam-time of the Database Experiment will be presented.

4.3.1 Vector Analyzing Power

4.3.1.1 Elastic Event Selection

To obtain the vector analyzing power, the deuteron peaks for the elastic deuteron

carbon scattering have to be identified. The elastic deuteron peak was identified by

producing a ∆E vs. ∆E plot for each Θ-bin of 1◦ in the stopping layer of the corre-

sponding beam energy (see Table 4.1).

In order to remove as much of the non-elastic background contribution as possible, a

two dimensional Gaussian was fitted to the elastic deuteron peak in each Θ-bin. The

elastic deuteron peak is located on the stopping band and is, therefore, neither parallel

to the X- nor to the Y-axis of the plot, but slightly rotated (see Figure 4.10). For this

reason, the X- and the Y-component of the Gaussian are correlated, and the following
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Figure 4.10: Two-dimensional correlated Gaussian fit on the elastic deuteron peak in
the ∆E FRH2 vs. ∆E FRH3 plot for 270 MeV.

Figure 4.11: Elliptical cuts in each Θ-bin of the ∆E FRH2 vs. ∆E FRH3 plot obtained
from the correlated two-dimensional Gaussian fit using Equations (4.6), (4.7) and (4.8).
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Energy Stopping Layer Deuteron Stopping Layer Proton

170 MeV FRH1 FRH2
200 MeV FRH2 FRH2
235 MeV FRH2 FRH3*
270 MeV FRH3 FRH3
300 MeV FRH3 FRH4
340 MeV FRH4 FRH4
380 MeV FRH4 FRH5

Table 4.1: Stopping layers for deuterons and protons for the different beam energies.
Note that for 235 MeV, for most of the Θ-bins, the protons are stopped between FRH2
and FRH3.

formula is needed to describe the peak:

f(x′, y′, A0, σx, σy, ρ) = A0 · e
−
x′2
σ2
x

+
y′2

σ2
y
− 2ρx′y′
σxσy

2(1−ρ2)

with

x′ = x− x0 and y′ = y − y0

(4.5)

The position of the Gaussian (x0, y0), the widths (σx, σy), the height A0 as well as the

correlation parameter ρ was extracted from the fit. These parameters were then used

to calculate a rotated ellipse with a 1σ width relative to the Gaussian:

β =
1

2
arctan

(
2ρσxσy
σ2
y − σ2

x

)
(4.6)

a =

√
4(1− ρ2)σ2

xσ
2
y cos(2β)

cos(2β)(σ2
x + σ2

y)− (σ2
x − σ2

y)
(4.7)

b =

√
4(1− ρ2)σ2

xσ
2
y cos(2β)

cos(2β)(σ2
x + σ2

y) + (σ2
x − σ2

y)
(4.8)

Here a denotes the semi-major and b the semi-minor axis, respectively, and β denotes

the rotation of the ellipse. These ellipse parameters were extracted for ∆E vs. ∆E

plots in each Θ-bin and converted into a graphical cut (see Figure 4.11). Hence, the

elastically scattered deuteron had to fulfill the following condition to be taken into

account for the calculation of the cross ratio:

1. Only one track per recorded event.

2. The Θ-angle of the track is between 2.45◦ and 16.45◦.

3. The track has to reach the stopping layer.

4. In the stopping layer, the track has to be inside of the elliptical cut.
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4.3.1.2 Cross Ratio Method

The asymmetry, the vector analyzing power, the cross sections as well as the number

of extracted events described in this section are functions of the polar angle Θ and

will eventually be evaluated in individual Θ-bins. For the sake of readability of the

subsequent equations, the explicit Θ-dependence will be omitted.

From Equation (4.4), the asymmetry ε is defined as follows:

ε =
3

2
AyPy. (4.9)

By limiting Φ to the range of [−90◦,+90◦] and exploiting the azimuthal symmetry of

the polarized cross section and the fact that P ↑y = −P ↓y the following abbreviations can

be defined:

σ↑L = σ0(1 +
2

3
AyP

↑
y cos(Φ)) (4.10)

σ↑R = σ0(1− 2

3
AyP

↑
y cos(Φ)) (4.11)

σ↓L = σ0(1− 2

3
AyP

↓
y cos(Φ)) (4.12)

σ↓R = σ0(1 +
2

3
AyP

↓
y cos(Φ)) (4.13)

⇒

σL ≡ σ↑L = σ↓R (4.14)

σR ≡ σ↑R = σ↓L (4.15)

where ↑ denotes an upwards polarized beam, ↓ a downwards polarized beam, and 0 an

unpolarized beam, respectively. By calculating the difference over sum (cross ratio) of

Equation (4.14) and (4.15), the asymmetry can be calculated:

ε =
σL − σR
σL + σR

. (4.16)

Hence, the asymmetry can be calculated from the cross sections in the left and the

right side of the detector. With the knowledge of the vector polarization, the vector

analyzing power can be calculated from the asymmetry:

Ay =
2

3

ε

Py
=

2

3Py

σL − σR
σL + σR

. (4.17)

The cross section as a function of the number of particles N is defined as follows:

σ =
N

αLint
(4.18)

with the detector acceptance α and the integrated luminosity Lint. If the assumption

holds that the same α can be used for both (left and right) sides of the detector, and

Lint does not change for both polarizations, Equation (4.16) can be simplified to:

ε =
N↑L −N

↑
R

N↑L +N↑R
=
N↓L −N

↓
R

N↓L +N↓R
. (4.19)
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However, this assumption is often not valid, and it is, therefore, more convenient to

use the full cross ratio εCR:

εCR =
1− r
1 + r

with r2 =
σ↑Lσ

↓
R

σ↓Lσ
↑
R

. (4.20)

This method has the significant advantage of being insensitive to differences in α and

Lint as can be shown by plugging Equation (4.18) into Equation (4.20) which yields to:

r2 =
N↑L ·N

↓
R · αLL

↓
int · αRL

↑
int

αLL↑int · αRL
↓
int ·N

↓
L ·N

↑
R

=
N↑LN

↓
R

N↓LN
↑
R

(4.21)

The full cross ratio method does assume both vector polarization states P ↑y and P ↓y to

have the same magnitude, i.e., |P ↑y | = |P ↓y |. If the two polarization states do not have

the same magnitude, the full cross ratio is not a valid measure for the asymmetry.

An alternative approach to remove the dependence of the asymmetry ε on the detector

acceptance α and the integrated luminosity Lint is to use the half cross ratio method.

If the unpolarized elastic scattering is measured as well it will not show any asymmetry

as defined in Equation (4.16):

ε0 =
σ0
L − σ0

R

σ0
L + σ0

R

!
= 0⇒ σ0

L = σ0
R. (4.22)

Using the relation from Equation (4.22), the half cross ratio is defined as follows:

ε↑HCR =
1− r↑

1 + r↑
with r↑ =

σ↑Lσ
0
R

σ↑Rσ
0
L

=
N↑LN

0
R

N↑RN
0
L

(4.23)

ε↓HCR =
1− r↓

1 + r↓
with r↓ =

σ↓Rσ
0
L

σ↓Lσ
0
R

=
N↓RN

0
L

N↓LN
0
R

(4.24)

Figure (4.12) shows a comparison between the asymmetries extracted using the full

cross ratio as well as with half cross ratio method. It is clear that the magnitude of

the polarization |P | is not the same in the two polarization states and therefore it is

not justified to use the full cross ratio to extract the asymmetry.
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Figure 4.12: Comparison of the asymmetry extracted using the full cross ratio and the
half cross ratio method on the 270 MeV data. As the half cross ratio method depends
on one polarization state only, it can be stated that as the asymmetries for the up
and down polarization states differ from each other and hence the magnitude of the
polarization is not equal for both states.

4.3.1.3 Asymmetry Extraction using Weighted and Unweighted Cross

Ratios

Using Equation (4.18) as well as Equations (4.10) to (4.13) the following expression

can be derived:

Np
s = Lpσ0αs(1± εp cos(Φ)) (4.25)

where p ∈ [↑, ↓, 0] denotes the polarization state and s ∈ [L,R] the side of the detector.

So far, the number of events Np
s was given for one particular azimuthal angle Φ, i.e.,

Np
s = f(Φ). In reality, the number of events equals the integral over a certain Φ-range

and hence its expected value 〈·〉 is given by:

〈Np
s 〉 = Lpσ0

∫ +∆Φ

−∆Φ
αs(1± εp cos(Φ))dΦ. (4.26)

If the acceptance is assumed to be constant within one side of the detector, i.e., ∂α(Φ)
∂Φ =

0, this equation can be evaluated to be:

〈Np
s 〉 = 2∆Φ · Lpσ0αs(1± εp

sin(∆Φ)

∆Φ
) = 2∆Φ · Lpσ0αs(1± εp〈cos(Φ)〉). (4.27)
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Using the expected value for the number of events, the full cross ratio given in Equa-

tion (4.21) gets slightly modified to:

εCR =
1

〈cos(Φ)〉
1− r
1 + r

with r2 =
〈N↑L〉〈N

↓
R〉

〈N↓L〉〈N
↑
R〉
. (4.28)

The same modification of the half cross ratio defined in Equation (4.23) and (4.24)

yields to:

ε↓,↑HCR =
1

〈cos(Φ)〉
1− r↓,↑

1 + r↓,↑
with r↓,↑ =

〈N↓,↑R 〉〈N0
L〉

〈N↓,↑L 〉〈N0
R〉
. (4.29)

Experimentally, the expected value of the number of events is just the sum of elastically

scattered events in the azimuthal range defined by −∆Φ to +∆Φ:

〈Np
s 〉 =

ev(p,s)∑
i

1 = Np
s . (4.30)

This means that the statistical error on the number of events is given by ∆Np
s =

√
Np
s

and using error propagation the uncertainty for the cross ratio is given by:

∆εCR =
1

〈cos(Φ)〉
r

(1 + r)2

√
1

〈N↑L〉
+

1

〈N↑R〉
+

1

〈N↓L〉
+

1

〈N↓R〉
(4.31)

∆ε↓,↑HCR =
1

〈cos(Φ)〉
2 · r↓,↑

(1 + r↓,↑)2

√
1

〈N↓,↑L 〉
+

1

〈N↓,↑R 〉
+

1

〈N0
L〉

+
1

〈N0
R〉

(4.32)

As can be seen from Equation (4.4), the asymmetry term gets smaller and finally

vanishes for Φ → ±90◦. Therefore, by increasing the range of integration ∆Φ, the

information content about the asymmetry gets diluted at some point even though the

number of events increases and subsequently the statistical increases.

In Section 4.3.1.5, an error comparison between different methods of asymmetry cal-

culation will be given. As it turns out, choosing an integration range of ∆Φ > 66.77◦

leads to an increase in the error. To overcome this issue, each event i can be weighted

with the cos(Φi) of the corresponding track. This leads to the following expected value

for the measurement:

〈Np
s cos(Φ)〉 =

ev(p,s)∑
i

cos(Φi). (4.33)

Adding the weight to Equation (4.25) and following the same argument for the detector

acceptance αs yields to:

〈Np
s cos(Φ)〉 = Lpσ0

∫ +∆Φ

−∆Φ
αs cos(Φ)(1± εp cos(Φ))dΦ

= 2 sin(∆Φ) · Lpσ0αs(1± εp[
∆Φ + sin(∆Φ) cos(∆Φ)

2 sin(∆Φ)
)

= 2 sin(∆Φ) · Lpσ0αs(1± εp
〈cos2(Φ)〉
〈cos(Φ)〉

). (4.34)
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Plugging this relation into the definitions of the cross ratios given in Equation (4.21),

(4.23) and (4.24) one gets:

εCR =
〈cos(Φ)〉
〈cos2(Φ)〉

1− r
1 + r

with r2 =
〈N↑L cos(Φ)〉〈N↓R cos(Φ)〉
〈N↓L cos(Φ)〉〈N↑R cos(Φ)〉

, (4.35)

ε↓,↑HCR =
〈cos(Φ)〉
〈cos2(Φ)〉

1− r↓,↑

1 + r↓,↑
with r↓,↑ =

〈N↓,↑R cos(Φ)〉〈N0
L cos(Φ)〉

〈N↓,↑L cos(Φ)〉〈N0
R cos(Φ)〉

. (4.36)

From Equation (A.4) in Appendix A.1, it can be seen that the error for the expected

value given in Equation (4.33) is given by:

∆〈Np
s cos(Φ)〉 =

√√√√ev(p,s)∑
i

cos2(Φi) =
√
〈Np

s cos2(Φ)〉. (4.37)

The following uncertainty is calculated using simple error propagation:

∆εCR =
〈cos(Φ)〉
〈cos2(Φ)〉

r

(1 + r)2

·

√√√√〈N↑L cos2(Φ)〉
〈N↑L cos(Φ)〉2

+
〈N↑R cos2(Φ)〉
〈N↑R cos(Φ)〉2

+
〈N↓L cos2(Φ)〉
〈N↓L cos(Φ)〉2

+
〈N↓R cos2(Φ)〉
〈N↓R cos(Φ)〉2

(4.38)

∆ε↓,↑HCR =
〈cos(Φ)〉
〈cos2(Φ)〉

2 · r↓,↑

(1 + r↓,↑)2

·

√√√√〈N↓,↑L cos2(Φ)〉
〈N↓,↑L cos(Φ)〉2

+
〈N↓,↑R cos2(Φ)〉
〈N↓,↑R cos(Φ)〉2

+
〈N0

L cos2(Φ)〉
〈N0

L cos(Φ)〉2
+
〈N0

R cos2(Φ)〉
〈N0

R cos(Φ)〉2
(4.39)
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4.3.1.4 Asymmetry Extraction using χ2-Fit

All the cross ratio methods discussed above depend on the assumption that the ac-

ceptance α is constant in Φ within each side of the detector. However, this is not

necessarily the case. To take a Φ-dependence of the detector acceptance α into ac-

count, another method using event weighting and a χ2 minimization can be utilized,

see [21]. The Φ-dependent detector acceptance α(Φ) can be expressed into a Fourier

series with a period of 2π:

α(Φ) = a0 +
∞∑
n=1

an cos(n · Φ) + bn sin(n · Φ). (4.40)

By applying this acceptance and cosn Φ weights to Equation (4.25) one can calculate

the theoretical expected values from the model:

〈Np〉mod. =
1

2π
Lpσ0

∫ 2π

0
α(Φ)(1 + εp cos(Φ))dΦ

=
Lpσ0a0

2π

∫ 2π

0
(1 +

∞∑
n=1

an
a0

cos(n · Φ) +
bn
a0

sin(n · Φ)) · (1 + εp cos(Φ))dΦ

= Lpσ0a0

(
1 +

1

2

a1

a0
εp
)
, (4.41)

〈Np cos(Φ)〉mod. =
1

2π
Lpσ0

∫ 2π

0
cos(Φ)α(Φ)(1 + εp cos(Φ))dΦ

=
Lpσ0a0

2

(
a1

a0
+ εp

(
1 +

1

2

a2

a0

))
, (4.42)

〈Np cos2(Φ)〉mod. =
1

2π
Lpσ0

∫ 2π

0
cos2(Φ)α(Φ)(1 + εp cos(Φ))dΦ

=
Lpσ0a0

2

(
1 +

1

2

a2

a0
+
εp

4

(
a3

a0
+ 3

a1

a0

))
. (4.43)

Here, p ∈ [↑, ↓, 0] denotes the polarization state. Equations (A.5) to (A.14) in Ap-

pendix A.2 show the relations needed to evaluate these integrals. As stated in Equa-

tion (4.22) ε0 = 0, hence:

〈N↓,↑〉mod. = p↑,↓0

(
1 +

1

2
p1ε
↓,↑
)
, (4.44)

〈N↓,↑ cos(Φ)〉mod. =
1

2
p↓,↑0

(
p1 + ε↓,↑

(
1 +

1

2
p2

))
, (4.45)

〈N↓,↑ cos2(Φ)〉mod. =
1

2
p↓,↑0

(
1 +

1

2
p2 +

ε↓,↑

4
(p3 + 3p1)

)
, (4.46)

〈N0〉mod. = p0
0, (4.47)

〈N0 cos(Φ)〉mod. =
1

2
p0

0p1, (4.48)

〈N0 cos2(Φ)〉mod. = p0
0

(
1

2
+

1

4
p2

)
. (4.49)

This leads to 9 equations with 8 free parameters: p↓,↑0 = L↓,↑σ0a0, p0
0 = L0σ0a0, p1 = a1

a0
,

p2 = a2
a0
, p3 = a3

a0
and ε↓,↑. Together with the observed weighted expected values from
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Figure 4.13: Asymmetries for both polarization states extracted using the χ2-fit method
for all seven beam energies.
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the experiment

〈Np cosn(Φ)〉obs. =

ev(p)∑
i

cosn(Φi) with n ∈ [0, 1, 2], (4.50)

the χ2 sum can be calculated:

χ2 = (~yobs. − ~ymod.)C−1(~yobs. − ~ymod.)T (4.51)

with

(~yobs. − ~ymod.) =



〈N↑〉obs. − 〈N↑〉mod.
〈N↑ cos(Φ)〉obs. − 〈N↑ cos(Φ)〉mod.
〈N↑ cos2(Φ)〉obs. − 〈N↑ cos2(Φ)〉mod.

〈N↓〉obs. − 〈N↓〉mod.
〈N↓ cos(Φ)〉obs. − 〈N↓ cos(Φ)〉mod.
〈N↓ cos2(Φ)〉obs. − 〈N↓ cos2(Φ)〉mod.

〈N0〉obs. − 〈N0〉mod.
〈N0 cos(Φ)〉obs. − 〈N0 cos(Φ)〉mod.
〈N0 cos2(Φ)〉obs. − 〈N0 cos2(Φ)〉mod.


(4.52)

Because of the weighted expected values from the experiment, 〈·〉obs. are statistically

correlated, and the covariance matrix C is composed of three blocks describing the

covariance between the weighted events from the same polarization state:

C =


Cov[↑] 0 0

0 Cov[↓] 0

0 0 Cov[0]

 . (4.53)

The full covariance matrix C is given in Appendix A.3, Equation (A.15) to (A.17).

Minimizing the χ2-sum given in Equation (4.51) in each Θ-bin results in an asym-

metry ε↓,↑ (see Figure (4.13)) that is independent of the detector acceptance α. The

acceptance can be extracted from the fit as well, as shown in Figure (4.14).
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Figure 4.14: The parameters p0 to p3 resulted from the χ2 minimization of the 270 MeV
data. The upper left plot shows parameter p0 which describes the total number of ac-
cepted events for all three polarization states, including the zero order detector accep-
tance a0. The number of accepted events is almost identical for the different polarization
states. This indicates that the integrated luminosity remained constant, independent
of the polarization as a0 depends on the detector only and σ0 does not depend on the
polarization per definition. The other three graphs display the higher orders of the de-
tector acceptance. Especially the first order of the detector acceptance a1 is definitely
not negligible as it reaches orders of 20%. The second and third orders are relatively
small compared to the first order.

4.3.1.5 Asymmetry Extraction: Results and Comparison

In the previous section, three methods to extract the asymmetry were presented. In

Figure (4.16), the asymmetries extracted with these methods are plotted together for

the 270 MeV data. Generally speaking, the results do not differ a lot between the

different methods, especially considering the line-shape as a whole. Nevertheless, there

are variations most prominently visible for lager azimuthal angle Θ where both cross

ratio methods seem to underestimate the asymmetry compared to the χ2-fit method.

Both cross ratio approaches assume a flat detector acceptance in Φ but as can be seen

in Figure (4.14) the higher orders of the detector acceptance decrease from the flat

acceptance (an>0 = 0 in Equation (4.40)). Most of all, this is the case for the first

order parameter a1 which leads to a lower detector acceptance for larger Θ angles.

The lowering of the detector acceptance explains the underestimation of the cross ratio

methods.

To investigate the influence on the Φ-range of integration on the statistical error of the

three methods one can make the following assumptions:
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Figure 4.15: Geometry of the WASA detector. The red areas indicate the azimuthal
integration range for a given value of ∆Φ. The beam moves along the z-axis, i.e., into
the plane.

1. The asymmetry is small, i.e., ε � 1 ⇒ r → 1 for r from Equation (4.23) and

(4.24).

2. The total number of events is given by N = N↓,↑ +N0.

3. The number of events in the polarized and unpolarized states are approximately

the same. i.e., N↓,↑ ≈ N0.

4. As a consequence of the first assumption the number of event in both sides of the

detector is almost the same, i.e., NL ≈ NR.

Using these assumptions, the error on the unweighted half cross ratio given in Equa-

tion (4.32) can be simplified to:

∆εHCR ≈
2

〈cos(Φ)〉
√
N
≡ ∆ε0. (4.54)

For the weighted half cross ratio one can use Equation (A.3) to disentangle the expected

values for the number of events 〈N〉 from the Φ-dependent 〈cosn(Φ)〉 part. Hence,

Equation (4.39) can be rewritten to:

∆εHCR ≈
2√

〈cos2(Φ)〉 ·N
≡ ∆εw. (4.55)
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Figure 4.16: Asymmetry extracted using the regular half cross ratio, the weighted half
cross ratio and the χ2-fit method on the 270 MeV data. All three methods used the
whole Φ-range of the detector.

In order to compare the Φ-dependence of the error, it is convenient to define a Figure

of Merit (FoM) in the following way:

FoM(ε) ≡ 1

(∆ε)2
. (4.56)

Applying this definition to Equation (4.54) and (4.55) yields:

FoM(ε0) =
N · 〈cos(Φ)〉2

4
, (4.57)

FoM(εw) =
N · 〈cos2(Φ)〉

4
. (4.58)

The Figure of Merit for the χ2-fit method was calculated in Appendix A.4 and is given

in Equation (A.29). A small asymmetry as stated above (i.e., ε↓,↑ ≈ 0) leads to:

FoM(εχ2) =
N ′ · 〈cos2(Φ)〉

3
. (4.59)

Attention has to be paid to the number of events N ′ in this equation. Per definition, N ′

in Equation (4.59) is given as the sum of all polarization states (i.e., N ′ = N↑+N↓+N0,

see Appendix A.4), whereas in Equation (4.57) and (4.58), N is given as N = N↓,↑+N0.

To be able to compare the Figure of Merit among the different asymmetry extraction

methods, N in Equation (A.28) has to be scaled by a factor of 3
2 which leads to:

FoM(εχ2) =
N · 〈cos2(Φ)〉

4
. (4.60)
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Figure 4.17: Comparison of the Figure of Merit for the three different methods of
extracting the asymmetry as a function of the azimuthal integration range ∆Φ. The
FoMs are normalized to the total number of events N0

One has

〈cos(Φ)〉 =

∫ +∆Φ
−∆Φ cos(Φ)dΦ

2∆Φ
=

sin(∆Φ)

∆Φ
, (4.61)

〈cos2(Φ)〉 =

∫ +∆Φ
−∆Φ cos2(Φ)dΦ

2∆Φ
=

∆Φ + sin(∆Φ) cos(∆Φ)

2∆Φ
. (4.62)

If N0 denotes the total number of events recorded by the full Φ-range of the detector,

one finds this expression for the number of events N recorded in a ±∆Φ fraction of the

detector:

N(∆Φ) = N0 ·
2∆Φ

π
. (4.63)

Putting this relation in the Equations (4.57), (4.58) and (4.60) given above, one gets

the following analytic expressions for the Figure of Merit:

FoM(ε0) = N0 ·
sin2(∆Φ)

2π ·∆Φ
, (4.64)

FoM(εw) = N0 ·
∆Φ + sin(∆Φ) cos(∆Φ)

4π
, (4.65)

FoM(εχ2) = N0 ·
∆Φ + sin(∆Φ) cos(∆Φ)

4π
. (4.66)

Figure 4.17 compares these three FoMs as a function of the integration range ∆Φ.

The Figure of Merit for the unweighted half cross ratio increases until it reaches a
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maximum. If the integration range is further increased, the Figure of Merit starts

to decrease again and subsequently the error increases. This maximum is found to be

∆Φ ≈ 1.1655 rad ≈ 66.77◦ by taking the first derivative of Equation (4.64) with respect

to ∆Φ. This behavior can be explained as follows: By increasing the integration range,

more events from the top and the bottom of the detector (i.e., Φ → ±90◦) enter the

asymmetry calculation. According to Equation (4.4) these events carry little to no

information about the asymmetry and hence dilute the cross ratio. The FoM for the

weighted half cross ratio and the χ2-fit method (Equation (4.58) and (4.60)) take this

fact into account by assigning a weight according to its Φ angle to each event. Therefore,

events from the top and bottom of the detector contribute less to the calculation of the

asymmetry compared to events from the left and right side of the detector. This leads

to a further increase of the FoM by extending the integration to the full detector range

as can be seen in Figure 4.17.

The error of the weighted half cross ratio and the χ2-fit method behave the same

with respect to the Φ integration range. However, as stated above, the χ2-fit method

accounts for a non-flat detector acceptance which is implied by the cross ratio methods.

Therefore, of the three approaches to extract the asymmetry the χ2-fit method was

found to be the optimal one and will be used to calculate the asymmetries to be used

for the extraction of the analyzing power.

4.3.1.6 Vector Analyzing Power Extraction

The connection between the asymmetry ε and the vector analyzing power Ay is given in

Equation (4.9). This equation shows that the magnitude of the vector polarization Py
has to be known in order to disentangle the asymmetry and the vector analyzing power.

For the database experiment, it was intended to measure this polarization using the Low

Energy Polarimeter (LEP) which is installed on the injection line of COSY after the

cyclotron pre-acceleration stage, see Figure 3.1. The LEP consists of two times three

crystal scintillator based detectors that measure asymmetries in elastic dC scattering

at the injection energy of 76 MeV (see [13]). As the analyzing power for this energy is

known, the polarization in each cycle can be measured. Ideally, the polarization should

have been measured on a regular basis, and the values should have been sent via MQTT

to a server where they would have been stored. Unfortunately, the storage server was

not active during the whole beam time, and therefore no polarization measurement

values have been saved. A few screenshots of the LEP graphical user interface were

saved into the electronic logbook but they are the result of different arrangement tests

of the LEP’s detector modules, and hence cannot be used to determine the polarization.

In summary, it can be stated that no polarization data from the LEP is available for

the entire beam time and therefore another method to calculate the polarization from

the measured data had to be found.

A way to calculate the polarization from a measured asymmetry is to fit it to a published

reference vector analyzing power for the same energy. From the scaling factor of the fit,

the polarization can be extracted. Such a reference for the vector analyzing power for

deuteron carbon scattering is available for a 270 MeV deuteron beam by Satou et al. in

[22] and another one for 200 MeV by Kawabata et al. in [23]. For 270 MeV, the WASA
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Figure 4.18: Measured asymmetry for the upwards ε↑ (blue) and downwards ε↓ (black)
polarized beam. The asymmetries were fitted to the reference data (red) by Satou et
al. [22] and Kawabata et al. [23] to obtain the beam polarization. The 270 MeV data
was measured in two parts that were fitted individually.
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Energy P ↑ [%] P ↓ [%]

200 MeV 62.50± 0.6 41.67± 0.4
270 MeV Part I 53.66± 0.3 36.84± 0.3
270 MeV Part II 49.90± 0.3 33.66± 0.2

Average 55.35± 6.5 37.39± 4.0

Table 4.2: Results from the polarization value extraction for the up state P ↑ and the
down state P ↓. The errors for the individual energies were taken from the fits. The
error for the average was calculated as the unbiased sample standard deviation from
the individual results.

data was taken once at the beginning of the beam time and then again in the middle of

the experiment. An overview of the asymmetries measurements as a function of the time

and the beam energy is given in Figure A.2. Comparing the asymmetries obtained from

these two measurement blocks indicate that the beam polarization was not completely

stable over the curse of the beam time. For this reason, it was decided to extract

the polarization from both measurement blocks individually and later calculate an

average. Figure 4.18 shows the result of fitting the asymmetries ε↑ and ε↓ obtain using

the method described in Section 4.3.1.4 to the published reference data for 200 MeV

and 270 MeV. The resulting vector polarization is given in Table 4.2. The results of

the fits indicate that the line-shape of the asymmetries for 200 MeV as well as for

270 MeV are in good agreement with the published data. The theoretical limit of the

magnitude for a pure vector polarized spin-1 particle is 2
3 . The vector analyzing power

given in [22] for 270 MeV exceeds the theoretical value of Amaxy = 1.0 in the range of

ΘLab ≈ 20◦−22◦ which supports the assumption that this published analyzing power is

slightly too large. According to Equation (4.9) this leads to an underestimation of Py
when fitting the asymmetry to this vector analyzing power. This might explain why the

values for Py resulting from this fit have a relative deviation of ∼ 15% from the results

of the fit obtained for the 200 MeV data given in [23]. For the 200 MeV reference,

there is no way of judging the absolute values of the published vector analyzing power

but the result for P ↑y = 62.50±0.6% which is close to the theoretical limit hints for the

published value being rather too low than too large. In general, one cannot tell which

of the results for Py describes the real beam polarization best, especially because it is

not even clear if the polarization was stable during the experiment. For this reason,

the best approach is to take the average polarization from the three fits to normalize

the asymmetries for all energies and obtain the vector analyzing powers. The unbiased

sample standard deviation from the three results was taken to describe the error. This

results in a relative error in the order of ∼ 15% that enters the normalized vector

analyzing power as a systematic error as described below.

Using the extracted values for the polarization, the vector analyzing power could be

calculated from the asymmetries by solving Equation (4.9) for Ay. For each energy,

this leads to two values for Ay from the two asymmetry-polarization pairs (ε↑, P ↑) and
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(ε↓, P ↓). They were averaged using:

Ay =
1

3

(
ε↑

P ↑
+
ε↓

P ↓

)
. (4.67)

As the two values for the asymmetries were obtained from a common fit, they are

correlated and the statistical error ∆Astat.y on Ay is given by

∆Astat.y =
1

3

√(
∆ε↑

P ↑

)2

+

(
∆ε↓

P ↓

)2

+ 2 · ∆ε↑

P ↑
· ∆ε↓

P ↓
· ρ↑↓. (4.68)

Ay, ∆Astat.y were calculated for each Θ-bin and the uncertainties ∆ε↑ and ∆ε↓ as well

as the correlation coefficient ρ↑↓ were taken from the χ2-fit described in Section 4.3.1.4.

The uncertainties in the polarization introduce a systematical error ∆Asys.y that affects

Ay as a whole (no direct Θ-dependence) and is given by

∆Asys.y =
1

3

√(
ε↑∆P ↑

(P ↑)2

)2

+

(
ε↓∆P ↓

(P ↓)2

)2

. (4.69)

The values for polarization and its error were taken from the average section in Ta-

ble 4.2. The resulting vector analyzing powers for all seven energies are given in Fig-

ure 4.19. The statistical errors are drawn on the points using error bars and the

systematic uncertainties from the polarization extraction are marked as a red region.
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4.3.2 Unpolarized Elastic Cross Section

Multiple steps are needed to calculate the unpolarized deuteron carbon elastic cross

section. First of all, the number of elastically scattered deuterons have to be identified

and extracted. To get the real number of elastic events, the extracted number of

deuterons has to be corrected by the detector acceptance which was calculated from

a Monte-Carlo simulation. Since it was not possible to place an additional detector

to measure the flux of the beam directly, the luminosity could not be calculated from

the measured deuteron carbon scattering data. Using the polyethylene target (CH2),

the elastically scattered deuterons off the hydrogen in this target were extracted as

well. For the energies above 170 MeV, reference data for the unpolarized elastic proton

deuteron scattering is available. By scaling the acceptance corrected deuteron proton

data to these references, the luminosity could be calculated and used to normalize

the acceptance corrected deuteron carbon data in order to obtain the elastic deuteron

carbon cross section. For a beam energy of 170 MeV, no proton deuteron reference

data was available and an analytical model describing the elastic deuteron carbon cross

section had to be used to normalize the extracted events. In the following sections, the

process used to obtain the unpolarized elastic deuteron carbon cross section will be

described in detail.

4.3.2.1 Elastically Scattered Deuteron Extraction

The first step was to identify the elastically scattered deuteron events in the data.

For the asymmetry extraction described above, having tight cuts around the elastic

events is not problematic as long as the same cuts are applied for the whole azimuthal

range. This works because of the ratio-like nature of the asymmetry which is a relative

quantity. For the cross section, on the other hand, it is essential to get the real number of

events. An underestimation due to tight cuts would lead to an overall underestimation

of the cross section because it is an absolute quantity. For this reason, applying the

same elliptical cuts as for the asymmetry extraction (see Section 4.3.1.1) is not feasible

for the cross section calculation.

So-called band cuts were used to select the elastically scattered deuterons. From the

Monte-Carlo simulations that were used to do the non-linear calibration (see Sec-

tion 4.2) the parametrized position of the deuteron band in the ∆E vs. ∆E plots

was available for all layers. From this function, a cut around the deuteron band could

be defined. In each ∆E vs. ∆E plot, one can distinguish between two types of deuteron

bands: A stopping band and a punch-through band. Each ∆E vs. ∆E plot describes

the energy loss in two succeeding detector layers. The energy loss in the first layer

is given on the Y-axis and the energy loss of the second layer is given on the X-axis.

The stopping band starts in the top left corner of the plot and moves down and to the

right, see Figure 4.6b. This band describes all the deuterons that were stopped in the

second layer. Particles that fall in the top left region of this band had a high energy

loss in the first layer, but only little energy was left to lose in the second layer. The

point at the end of the stopping band describes particles that were more energetic and

therefore would lose less energy in the first layer but being slowed down such that they

would lose all of their remaining kinetic energy in the stopping layer. Particles with
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an even higher kinetic energy will fall in the punch-through band starting from the

end of the stopping band and curving back down to the bottom left corner of the plot.

Particles in the beginning of the punch-through band have just enough kinetic energy

not to be stopped by both layers, but their total energy loss in both layers is maximal.

The energy loss in matter for ions such as deuterons or protons as a function of their

kinetic energy is governed by the Bethe-Bloch-Equation as shown in Figure 5.15 and

described in Section 5.3.1.1.

The selection criteria for elastically scattered deuterons were the following: For each

energy, the particle had to reach the stopping layer as defined in Table 4.1. Next, for

all the layers before the stopping layer, the particle had to be inside of the deuteron

punch-through band. This criterion assures that the particle is a deuteron but does not

yet select only elastics. The last criterion was that in the stopping layer, the particle

would be inside of the deuteron stopping band. Purely elastically scattered deuterons

will have kinetic energies that are very close to the initial energy of the beam. This

means that in the stopping layer, particles that have survived all the previous cuts and

remain in the stopping band have to be almost entirely elastically scattered deuterons.

From all the deuterons that were recorded, the elastics will always have the largest

kinetic energy as process could create particles with higher energy. From the events

that have passed all these cuts, the energy loss in all layers was summed up and filled

into individual histograms for each polar angle Θ-bin. A bin width of ∆Θ = 1◦ was

chosen in the range of 3◦ to 16◦.

Each of these histograms was fitted with a signal + background fit. The signal (i.e.,

the elastic events) was assumed to be a Gaussian, and the background was modeled as

a polynomial with a cut-off described by Gauss error function (Erf ). As argued above,

the background remaining after the band cuts has to be on the low energy side relative

to the elastic peak. The fit was therefore restricted such that the Erf cut-off has to

be to the left of the elastic peak. Both, the signal and the background functions were

initialized independently before the combined fit was performed, see Figure 4.20a. The

number of elastically scattered deuterons was then given as the integral of the signal

Gaussian divided by the bin width of the energy spectrum. This resulted in the non

acceptance corrected number of elastically scattered deuterons as a function of Θ for

each beam energy, see Figure 4.20b.

The exact same procedure was then applied to the Monte-Carlo simulation. By di-

viding the number of events obtained by applying the cuts and fits on the simulation,

by the total number of generated events, the deuteron acceptance was calculated for

each energy, see Figure 4.21. The WASA Monte-Carlo (WMC) simulation is based on

GEANT 3 [24] which is written in FORTRAN. The simulation does include a geometri-

cal model of the WASA forward detector as well as interactions with active and passive

detector components like energy losses, multiple scattering, secondary particle decays,

and photon conversion [25]. The Monte-Carlo was maintained by Maria Żurek, and the

author was running it only as a user. Therefore his understanding of all the settings

and configuration is very limited. What the simulation did not include was the energy-

dependent resolution of the individual detector layers. To add this to the simulation,

the elastic peak in each layer was fitted and from the widths of the peaks, a smearing
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Figure 4.20: Example for the elastic deuteron extraction at a beam energy of 270 MeV.
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parameter was calculated that was added to the simulation. This resulted in a more

realistic Monte-Carlo for energy deposition. In many discussions with experts of the

WMC Maria Żurek and Volker Hejny, many doubts on the reliability of the simulation

were expressed. One major concern was the extremely convoluted configuration files

for WMC and the fact that nobody was an expert in FORTRAN. In any case, all the

results obtained from the WMC - especially the acceptance - have to be taken with a

grain of salt.

4.3.2.2 Proton Extraction from Elastic Deuteron Proton Scattering

The WASA forward detector is installed around the COSY beam pipe and the beam

cycles through the target chamber countless times, and therefore no additional detector

can be installed in the beam path to measure the flux. The whole beam would have to

pass through this detector, and the induced energy loss would destroy the beam orbit.

The luminosity needed for the calculation of the deuteron carbon cross section depends

on the flux and hence could not be measured with the existing experimental setup. To

overcome this issue, a CH2 target was used to measure elastically scattered deuteron

proton events off the hydrogen in the target. The recoil protons from this reaction were

used to calculate the luminosity using published elastic proton deuteron cross sections

as described in Section 4.3.2.3.

The method to extract the recoil protons is almost identical with the elastic deuteron

extraction described in the previous section with a few adjustments. The calibration

that is explained in Section 4.2 was applied for each energy up to the deuteron stopping

layer (see Table 4.1). The succeeding layers were not calibrated for this energy. For

some beam energies, the recoil proton from the elastic deuteron proton scattering would

be stopped in the last layer as well. This was the case for a beam energy of 200 MeV,
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Figure 4.22: ∆E FRH2 vs. ∆E FRH1 punch-through plot of each Θ-bin. A graphical
box cuts around the elastic recoil proton peak from deuteron proton scattering at
270 MeV was applied.

270 MeV, and 340 MeV. For 170 MeV, 300 MeV, and 380 MeV, the protons were

stopped in the layer after the deuteron stopping layer. 235 MeV is a special case

because there the protons were mainly stopped between two layers and has, therefore,

be treated specially, see Section 4.3.2.4. To keep the analysis as consistent as possible,

it was decided to use the last punch-through layer for the proton extraction because

their stopping layer was not accessible for all energies.

The first step was to restrict the analysis to unpolarized events and allowing only one

particle track per event. Further, it was required for the particles to reach the stopping

layer of the protons, see Table 4.1. From the events that have fulfilled these criteria,

∆E vs. ∆E spectra from the subsequent layers were generated. Next, a graphical box

cut was applied around the elastic proton peak in the last punch-through layer for each

Θ-bin. For low theta angles, the proton peak was sometimes obstructed by the deuteron

band, and therefore these bins were omitted in the analysis. Figure 4.22 shows the box

cuts that were applied for the 270 MeV data. In all spectra from both, the pure carbon

as well as the polyethylene target, protons are present. This is due to the break-up

reaction of a deuteron into a proton and a neutron inside the carbon target or in the

detector itself. From such a break-up, the proton can pick up an arbitrary fraction

of the kinetic energy of the original deuteron and hence, the protons are spread over
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Figure 4.23: Fitting the proton contribution (template) from deuteron break-up for
270 MeV. The proton templates (blue) were measured from the pure carbon target and
then fitted to the spectrum of the CH2 target (black). The elastic recoil proton peak
(red) was individually described by a Gaussian in each Θ-bin and fitted together with
a common scaling factor for the template.

the whole energy spectrum. In the case of the recoil proton from the elastic deuteron

proton scattering, its kinetic energy equals almost the kinetic energy of the incoming

deuteron beam, especially for smaller scattering angles. The proton peak from elastic

deuteron proton scattering is therefore located at the high-energy end of the proton

band in a ∆E vs. ∆E spectrum. Looking at a punch-through spectrum, the elastic

proton peak is located at the bottom left end of the proton band.

To disentangle the protons from break-up reactions from the recoil protons, the same

box cut was first applied to the spectra of the pure carbon scattering. This resulted in

a template describing the proton contribution from the carbon inside the CH2 target.

This template was matched to the spectra obtained after the box cut was applied to

the CH2 data. A fitting function was created that consisted of an individual Gaussian

for the recoil protons in each Θ-bin and a common scaling factor that was applied to

the template. Figure 4.23 shows the result of this combined fit for all Θ-bins of the 270

MeV data.

After the contribution from the deuteron break-up off carbon was determined, it was

subtracted from the CH2 data, resulting in proton spectra consisting of mainly recoil
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protons from elastic deuteron proton scattering and some background. The spectrum

was described by a fit consisting of a Gaussian signal part and a polynomial background

with an Erf-cutoff, see Figure 4.24a. This proton background cannot be shifted to

larger kinetic energies as the recoil protons from the deuteron proton scattering. The

fit to extract the recoil protons took this into account by restricting the background

contribution to the low kinetic energy side of the spectrum. Because this fit was

performed on punch-through spectra, the low kinetic energy part results in larger energy

losses in this detector layer and is therefore located on the right side of the elastic peak.

The number of recoil protons from the elastic deuteron proton scattering was obtained

from the integral of the signal part of the fit divided by the bin width of the histogram,

see Figure 4.24b.

The detector acceptance for the deuteron proton scattering was obtained exactly like

the acceptance for the deuteron carbon scattering described in the previous section. The

same cuts and fits as for the data were applied to the proton Monte-Carlo simulation

and the result divided by the total number of generated protons led to the acceptance.

Initially, it was assumed that the detector setting in WMC would be independent of

the particle species, but it turned out that the simulated protons could not be brought

into alignment with the data even though the simulation of deuterons was in good

agreement with the measurements. Maria Żurek was able to solve this problem by

manually adjusting the quenching parameter (they describe the relation between the

deposited energy and the light yield of a scintillator) for the proton Monte-Carlo.
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(a) Extraction of the elastically scattered recoil protons from the template subtracted spectra
using a combined signal + background fit (red). The fits were performed for each Θ-bin
individually. The integral of the signal part (blue) equals to the number of elastics. The
background function is given in green.
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Figure 4.24: Example for the elastic proton extraction at a beam energy of 270 MeV.
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4.3.2.3 Scaling the Elastic Events Using Luminosity
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Figure 4.25: Elastic proton deuteron reference cross section boosted into the reference
frame of the proton.

The integrated luminosity for the elastic deuteron proton scattering Lintdp can be calcu-

lated if the elastic deuteron proton cross section σdp is known:

Lintdp =
N el
p

αdpσdp
, (4.70)

where αdp denotes the detector acceptance for deuteron proton scattering. N el
p equals to

the number of recoil protons from the elastic deuteron hydrogen scattering calculated

in the previous section. There exists reference data for elastic proton scattering off

deuteron targets for 98 MeV by K. Hatanaka [26] and for 150 MeV, 170 MeV and

190 MeV by K. Ermisch [27]. These reference cross sections were transformed into

the laboratory frame of deuteron scattering off protons. For 270 MeV, K. Sekiguchi

et al. [28] have published a direct measurement for elastically scattered deuterons off

protons. This means that reference cross sections for elastic deuteron proton scattering

are available for the 200 MeV, 270 MeV, 300 MeV, 340 MeV, and 380 MeV data,

see Figure 4.25. Using Equation 4.70, The integrated luminosity Lintdp was calculated

for these energies for each Θ-bin of the extracted number of scattered recoil protons

from the WASA data, see Figure 4.26. In the perfect case, the luminosity should be

completely flat as it does not depend on the scattering angle Θ, but unfortunately,

this is not the case. Various sources of error might explain this: The recoil proton

extraction method described above suffers from a large break-up proton background

even though it was tried as good as possible to remove it using the carbon templates.

The Monte-Carlo simulation used to calculate the acceptance is affected by the same

issues as mentioned in Section 4.3.2.1. Finally, all the uncertainties in the reference

data enter the calculation as well. To account for this uncertainties, the luminosity was

calculated as the average over the available Θ-range, and the standard deviation from

this average enters the subsequent cross section calculations as a systematical error.
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Figure 4.26: Integrated luminosity from the reference dp cross section. It was cal-
culated in the Θ-range were the number of elastically scattered proton as well as the
corresponding reference cross section was available. The average over the whole Θ-range
is indicated by a dashed line.

The luminosity as a function of the flux f is defined as follows:

L = l · ρN · f, (4.71)

with the length l and the number density ρN (i.e., the number of scattering centers

per volume) of the target. The flux does not depend on the actual reaction and hence

as the integrated luminosity is known for hydrogen from the data measured using the

CH2 target, it needs to be scaled to match the data measured with the pure carbon

target. The integrated luminosity for the elastic deuteron carbon scattering is therefore

given by:

LintdC =
1

2

Lintdp
ηCH2→C

. (4.72)

The factor 1
2 scales the luminosity calculated for the scattering off hydrogen to the

luminosity off carbon in CH2, and ηCH2→C describes the scaling from the carbon in

the CH2 target to the pure carbon target. The latter factor was obtained by fitting

the elastic deuteron peak from the CH2 data to the elastic deuteron peak from the

pure carbon data simultaneously in all Θ-bins. For the lower Θ-bins in the CH2

data, the elastic deuteron peak off carbon is superimposed by the elastic deuteron

peak off hydrogen and therefore these bins were skipped in the fit. The result is

shown if Figure 4.27. Typical values for the scaling factor were found to be around

ηCH2→C ≈ 0.7.

4.3.2.4 Scaling the Elastic Events Using an Analytical Model

The method of scaling the acceptance-corrected number of events with the luminos-

ity obtained from deuteron proton scattering could not be applied for 170 MeV and
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Figure 4.27: Fit to obtain the luminosity scaling factor for integrated luminosity for the
pure carbon target data (red) from the CH2 target data (black). The elastic deuteron
peak off carbon from pure carbon data was fitted simultaneously in all Θ-bins to the
elastic deuteron peak from the CH2 data.

235 MeV. For 170 MeV, no reference cross section was available to extract the lumi-

nosity, and for 235 MeV, the recoil proton extraction was not possible as, for most of

the Θ-bins, the protons were stopped in the dead material between two detector layers.

For this reason, another method of normalizing the acceptance-corrected number of

deuterons Nd(Θ) had to be employed to be able to calculate the cross section.

Edward Stephenson from the University of Indiana and member of the JEDI collabo-

ration has developed an analytical model for the elastic deuteron carbon cross section

based on measurements for beam energies from 45 MeV up to 270 MeV. The model

describes the dependence of the elastic deuteron carbon cross section as a function of

the scattering angle Θ and the beam energy. A detailed description of the model and

its parameters can be found in Appendix A.5. The model is purely analytical in the

sense that it does not attempt to add any physics to describe the cross sections but

uses a phenomenological function that can be fitted to the data points resulting in a

smooth representation of the Θ dependence of the cross section. Further, it can be used

to interpolate elastic deuteron carbon cross sections for beam energies where no such

data was measured. However, it is not suited to do an extrapolation to energies above

270 MeV because it is only anchored to point at lower energies which means that it
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can predict the cross section between measurements of different energies, but there is

no argument to why it should produce reasonable results outside of its sampling range.

Both data points for 170 MeV as well as 235 MeV are located within the sampling

range of the model, and therefore it can be used to obtain the normalization factor to

get the elastic deuteron carbon cross section from Nd(Θ). The normalization resulted

from fitting Nd(Θ) to the analytic model. As the cross section drops exponentially for

larger scattering angle Θ, a direct fit can cause problems. By just applying a fit to such

a steep function it tends to overestimate the first points over the latter ones because

the first values are by orders of magnitude larger than the latter ones. By calculating

the χ2-sum for the fit, even small deviations from the first points generate a huge

weight especially since the difference between points enters the χ2-sum quadratically.

To reduce the steepness of the fit, Nd(Θ) was divided by the Rutherford cross section

given by: (
dσ

dΩ

)
Rf.

=

(
Z1Z2αh̄c

4Ekin sin2(Θ
2 )

)2

, (4.73)

with the charge number Z1 of the projectile and Z2 of the target, respectively. α

denotes the fine structure constant and Ekin the non-relativistic kinetic energy of the

projectile. The sin−4(Θ
2 )-term flattens the model drastically and allows for the fit to

be optimized over the whole Θ-range. Figure 4.28 shows the Rutherford-normalized

model and cross sections for all seven energies. For 170 MeV and 235 MeV, the result of

the fit is shown and especially for 235 MeV, the accordance is very good. For 200 MeV

and 270 MeV, it can be seen that normalizing the deuteron carbon cross section using

the luminosity as described in the previous section produces a result that is in good

agreement with the analytical model. For the energies above 270 MeV, it is obvious

that extrapolating the model does not make sense as the result of the cross sections

deviate the more from the model prediction the larger the distance in energy from the

last anchor point gets.
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Figure 4.28: Fit to get the normalizing factor for 170 MeV and 235 MeV. The
acceptance-corrected number of deuterons, as well as the analytical model, are scaled
by the Rutherford cross section. The 170 MeV and 235 MeV data are fitted to the an-
alytical model (green) to get the normalization factor to calculate the elastic deuteron
carbon cross section for these energies. To judge the model, the cross sections obtained
using the luminosity extraction method are given as well. For 200 MeV and 270 MeV,
the cross sections are within the well-defined range of the model (red). For the energies
above 270 MeV, the model needs to be extrapolated (blue) and it does not match the
measured cross sections anymore.
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4.3.2.5 Unpolarized Differential Elastic Deuteron Carbon Cross Section

The unpolarized elastic deuteron carbon cross section was now calculated for all seven

energies using the intermediate results from the previous sections. The aim was to

obtain the differential elastic cross section as a function of the scattering angle Θ which

means that as a final step, the solid angle coverage of each Θ-bin had to be taken into

account. As the WASA forward detector covers the full polar range in Φ, the fraction

of of solid angle dΩ represents a ring around the central Θ-value for each bin and was

calculated as follows:

dΩn =

∫ 2π

0

∫ Θn+ dΘ
2

Θn− dΘ2
sin(Θ)dΘdΦ

= 2π

(
cos(Θn −

dΘ

2
)− cos(Θn +

dΘ

2
)

)
, (4.74)

where n denotes the index of the Θ-bin and dΘ its width.

The differential elastic deuteron carbon cross section was calculated using the following

equation: (
dσ(E,Θ)

dΩ

)el.
dC

=
N el
dC(E,Θ)

αdC(E,Θ) · LintdC(E) · dΩ(Θ)
, (4.75)

with the number of elastically scattered deuterons N el
dC(E,Θ), and the detector ac-

ceptance αdC(E,Θ) calculated as described in Section 4.3.2.1. The luminosity for

200 MeV, 270 MeV, 300 MeV, 340 MeV, and 380 MeV was calculated using the refer-

ence elastic deuteron proton scattering as described in Section 4.3.2.3, and for 170 MeV

and 245 MeV, it was obtained from the fit to the analytical model described in Sec-

tion 4.3.2.4. The result for all energies is given in Figure 4.29. The error bars on

the points origin form the statistical uncertainties and the red shaded area describes

the systematical uncertainties given by the mean of the deviation from the analytical

model for 170 MeV and 235 MeV. For the other energies the systematics origin from

the normalization by the luminosity.

Measuring a cross section is in general not an easy task as it is an absolute quantity.

This means all its contributions have to be determined very precisely and the accep-

tance of the whole detector setup needs to be known. In comparison to the asymmetry

measurement which is a relative quantity and by its nature can cancel many uncer-

tainties directly, i.e., the detector acceptance. In the case of the database experiment,

two main challenges made the cross section measurement especially difficult. First of

all, the fact that the particle flux was not known. There exist other methods of exper-

iments were each incoming particle can be tagged (labeled) and therefore the flux is

precisely known. In the case of our experiment, such a measurement was not possible

and methods depending on measurements of other people had to be used. This means

that much less control over these references is possible. Secondly, the quality of the

Monte-Carlo simulation tool is very hard to judge. For example, it is not entirely clear

why the detector acceptance (see Figure 4.21) differ so much for different beam energies

and does not follow a clear trend as a function of energy. Rewriting the WMC using

the newer Geant4 simulation framework would definitely improve the situation here.
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Figure 4.29: Differential elastic deuteron carbon cross section for all seven beam ener-
gies. For better readability, the results are subsequently scaled by a factor of four. The
statistical uncertainties are smaller than the symbol size. The systematic error due to
the luminosity or model normalization respectively is given by the red shaded area.
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Figure 4.30: Ratio between the measured and the published elastic deuteron cross sec-
tion for 200 MeV [23] and 270 MeV [22]. The red shaded area represents the systematic
error. The systematic error for reference of 270 MeV was estimated to be ∼ 10% in
[22] and none was given for 200 MeV in [23]. The statistical uncertainty is too small
to be visible.
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To check the result, the ratio between the measured and the published elastic deuteron

carbon cross section for 200 MeV [23] and 270 MeV [22] was calculated, see Figure 4.30.

Assuming the published cross section to be correct, a flat line would indicate a perfect

reproduction of the result by our measurement. This comparison reveals a rather flat

behavior of the ratio over the whole Θ-range and an overall agreement in the order of

∼ 15%. With the tools at our disposal, this seems to be an acceptable result.

4.3.3 Figure of Merit of the Polarization

The statistical error of the EDM scales with the statistical error of the vector polar-

ization ∆Py, as described in [29]. The aim of a designated polarimeter is therefore to

minimize this quantity. As shown in Section 4.3.1.5 it is convenient to define a Figure

of Merit (FoM) as the inverse square of the error that should get minimized, hence a

FoM for the vector polarization is defined as follows:

FoMPy ≡
1

(∆Py)2
. (4.76)

For the vector polarization Py, the underlying distribution function is given by Equa-

tion (4.4) which can be rewritten to:

nL,R(Θ,Φ) = αdetL
(
dσ(Θ)

dΩ

)(
1± 3

2
Ay(Θ)Py cos(Φ)

)
, (4.77)

where nL,R(Θ,Φ) denotes the number of scattered particles into an infinitesimal solid

angle region defined by (Θ,Φ) on the left or right side of the detector, respectively. In

this case, Φ is restricted to [−π
2 ,

π
2 ] and the side of the detector is defined by the ±

expression which is (+) for the left side and (−) for the left side, compare Figure 4.15.

Equation (4.77) has the form of a differential event distribution:

nL,R = α(x)(1± β(x)Py), (4.78)

with x = (Θ,Φ), α(x) = αdetL
(
dσ(Θ)
dΩ

)
and β(x) = 3

2Ay(Θ) cos(Φ). In [30] a detailed

discussion about the error on a parameter Py from a differential event distribution is

given. It is shown, that for an arbitrary weight w, the FoM as defined in Equation (4.76)

for a total number of events N is given by:

FoMPy ≈
〈wβ〉2

〈w2〉
N. (4.79)

The expected values for an arbitrary function f(x) is here defined to be

〈f〉 =

∫
∆Ω(∆x) f(x)α(x)dΩ∫

∆Ω(∆x) α(x)dΩ
=

∫
∆Ω(∆Θ,∆Φ) f(Θ,Φ)

(
dσ(Θ)
dΩ

)
dΩ∫

∆Ω(∆Θ,∆Φ)

(
dσ(Θ)
dΩ

)
dΩ

. (4.80)

Choosing a weight of w = 1 equals to the simplest method of calculating the vector

polarization based on the counting rate asymmetry with the following estimator P̂cnt:

P̂cnt =
NL −NR∑ev(L)

i βi +
∑ev(R)

i βi
, (4.81)
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with βi = β(xi), NL =
∑ev(L)

i the sum of events recorded in the left side, and NR =∑ev(R)
i in the right side of the detector. This method results in a FoM of:

FoMw=1
Py ≈ 〈β〉2N, (4.82)

with N = NL + NR. In [30] it is shown that the statistical limit on the error can be

reached by choosing a weight of w = β, i.e., weighing each event by the corresponding

vector analyzing power. The estimator for the vector polarization P̂β of this method is

found to be:

P̂β =

∑ev(L)
i βi −

∑ev(R)
i βi∑ev(L)

i β2
i +

∑ev(R)
i β2

i

, (4.83)

with a FoM of:

FoMw=β
Py
≈ 〈β2〉N. (4.84)

Similar to the calculation of the asymmetries described in Section 4.3.1.3, choosing an

integration range ∆Θ where the vector analyzing power Ay is low in order to calculate

the vector polarization Py can result in a larger statistical error for the simple counting

rate method (Equation (4.81)) compared to the one obtained by choosing the right

weight (Equation (4.84)). The explanation is again that by simply counting, events

carrying little information about the polarization (low Ay) are treated equally to events

with a high information content (big Ay). This leads to a dilution of the measurement

even if the total number of events increases. By applying a weight that is proportional

to the information content about the polarization (i.e., w ∼ Ay), the statistical error

gets minimized.

It is important to note that in the previous discussion, the vector polarization was

calculated from the difference in the left and the right side of the detector assuming a

stable polarization. Alike the asymmetries, the vector polarization can be calculated

using only one side of the detector but having two data samples; one measured with a

downwards polarized beam (↓) and the second sample of an upwards polarized beam (↑)
of the same polarization magnitude. In this case, all the observable with the label (L,R)

would be replaced with the corresponding polarization states (↓, ↑) (e.g. NL → N↓).

Defining the FoM as done in Equation (4.76) has the advantage that when combining

multiple sets of vector polarization measurements, their FoMs can be directly summed

up. If on the other hand, a comparison between the FoMs of different energies has to

be done, it is more convenient to define a Figure of Merit as follows:

FoMPy =
〈wβ〉2

〈w2〉
σ ∼ 1

(∆Py)2
. (4.85)

Maximizing for this FoM still results in minimizing the statistical error of the vector

polarization ∆Py but using the integrated cross section σ instead of the total number

of events N , accounts for the difference in luminosity at different beam energies. By

employing the definition of the integrated cross section to be:

σ =

∫
∆Ω(∆Θ,∆Φ)

(
dσ(Θ)

dΩ

)
dΩ =

∫
∆Θ

∫
∆Φ

(
dσ(Θ)

dΩ

)
sin(Θ)dΦdΘ, (4.86)



4.3. RESULTS 75

200 250 300 350
Beam Energy [MeV]

2

4

6

8

10

12

14
Fi

gu
re

 o
f M

er
it 

[m
b]

Figure of Merit for Polarization Determination from dC Scattering
FoMw =

Py

FoMw = 1
Py

Figure 4.31: FoM for all seven beam energies for a Θ-range from 3.5◦ to 15.5◦ using
the simple counting method (blue) and the weighting method (red) to calculate the
deuteron vector polarization.

and using the full azimuthal detector coverage ∆Φ = 2π, Equation (4.82) for the simple

counting method can be expressed as a function of the polar integration range ∆Θ to

be:

FoMw=1
Py (∆Θ) =

18

π
·

[∫
∆ΘAy(Θ) sin(Θ)

(
dσ(Θ)
dΩ

)
dΘ
]2

∫
∆Θ sin(Θ)

(
dσ(Θ)
dΩ

)
dΘ

. (4.87)

Equation (4.84) describing the weighing method can be rewritten to be:

FoMw=β
Py

(∆Θ) =
9π

4
·
∫

∆Θ

Ay(Θ)2 sin(Θ)

(
dσ(Θ)

dΩ

)
dΘ. (4.88)

Using the vector analyzing power Ay from Section 4.3.1 and the unpolarized elastic

cross section
(
dσ(Θ)
dΩ

)
from Section 4.3.2, The Figure of Merit for the deuteron vector

polarization can be calculated using the two formulas given in Equation (4.87) and

(4.88). Figure 4.31 shows this calculation for a polar range of ∆Θ = [3.5◦, 15.5◦] for

all seven beam energies. It can be seen that using the weighting method to extract the

vector polarization lead to a larger FoM for all seven energies and hence a to a smaller

statistical error ∆Py. The maximum FoM was found at a deuteron beam energy of

300 MeV, see Figure 4.32. The lower limit of the integration range is fixed to 3.5° and

cannot be reduced further due to the geometry of the WASA detector. With another

detector geometry, it would be possible to measure at even lower angles, but as can be

seen in Figure 4.19, the vector analyzing power for these small angles is very low, and

therefore it does not make sense to include them in the measurement.

To decide for the ideal configuration of a polarimeter for a given beam energy or

selecting the ideal beam energy for a polarimeter with a given geometry, a map of the

FoM for the weighting method as a function of the beam energy and the integration

range is given in Figure 4.33. The beam energy is given on the y-axis and the start of
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Figure 4.32: FoM for the optimum beam energy of 300 MeV as function of the polar
integration range. The upper limit for this range was fixed to 15.5◦ and the lower limit
is given on the X-axis of the plot. The simple counting method is given in blue and
the weighting method in red.

the integration range on the x-axis starting from 3.5◦. The end of the integration range

is fixed to 15.5◦. Figure 4.31 represents a cut of this map along the y-axis at x = 3.5◦.

For a given combination of integration range and beam energy, the corresponding FoM

can be found on this map.
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Figure 4.33: FoM as a function of the beam energy and the start of the Θ integration
range. The end of the integration range is set to 15.5◦. The FoM was calculated for
the optimal weighting method of extracting the deuteron vector polarization.

4.3.4 Polarimeter Efficiency Factor

The statistical uncertainty for a storage ring based EDM measurement of charged

particles such as deuterons or protons was found to be [29]:

σEDM ≈
2h̄

PEτA
√
Nf

, (4.89)

with the polarization P , the electric field E, a spin coherence time τ , the analyzing

power A, the number of particles in the storage ring N , and the polarimeter efficiency

factor f . Note that Equation (4.89) describes the statistical error for one measurement

cycle, i.e., one fill of the storage ring with N particles, horizontally polarized to a

degree of P which can keep their spin rotations synchronized for the time τ . During

this period, the electric field E will couple to the EDM of the particles and cause a

vertical polarization build-up. The particles will be successively extracted on a target

that scatters them elastically and their vertical polarization will be calculated using

the analyzing power A.

The statistical uncertainty given in Equation (4.89) can be related to the Figure of

Merit discussed in the previous section and, therefore, to the statistical error of the

polarization using Equation (4.76):

σEDM ≈
2h̄

PEτ
·∆P with ∆P =

1

A
√
Nel.

. (4.90)

In this case, ∆P denotes the statistical uncertainty of the polarization calculation using

the simple counting method. This leads to a definition for the polarimeter efficiency
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factor:

f =
Nel

N
. (4.91)

The polarimeter efficiency factor f described the fraction of the total beam that can

be used for the polarization determination using an elastic scattering reaction. It is

possible to approximate this factor from the total elastic cross section for a given

detector geometry (assuming 100 % detection efficiency):

σel =
Nel

L
⇔ Nel = σelL = Nlρσel

⇒ (4.92)

f =
Nel

N
= lρσel.

Here, l denotes the target length and ρ the target number density, i.e., the number of

scattering centers per unit volume. The detector geometry enters this formula via the

total elastic cross section σel , see Equation (4.86). For a detector such as WASA which

features full azimuthal coverage, it is given by:

σel = 2π

Θmax∫
Θmin

(
dσel(Θ)

dΩ

)
sin(Θ)dΘ. (4.93)

To give an estimate for the values that polarimeter efficiency factor can take, a tar-

get length of 1 cm is assumed. The mass density of amorphous carbon is ∼ 2 g/cm3

[31] which equals a number density of ρ = 1.003× 1023 cm−3. Figure 4.34 shows the

polarimeter efficiency factor f for a 270 MeV deuteron beam scattering off a carbon

target as a function of the polar coverage of a detector with full azimuthal coverage

like WASA. Figure 4.35 displays the polarimeter efficiency factor of the WASA detec-

tor (i.e., Θ = 3.5◦ − 15.5◦) for the seven deuteron beam energies used in the database

experiment. The differential cross section used to calculate the polarimeter efficiency

factor was taken from Section 4.3.2.5.

It is tempting to assume, that the efficiency of the polarimeter could be increased by

increasing the target length l as, according to Equation (4.92), the efficiency scales

with the target length. This is not possible as this formula assumes a thin target, i.e.,

the energy loss in the target has to be negligible. A longer target would also increase

the probability of multiple scattering and consequently break the basic assumptions

that the polarization can be extracted by the use of an asymmetry method and the

knowledge of the analyzing power. Extending the detector coverage towards lower

polar angles is not useful either, as the analyzing power approaches zero in this range

and the cross section will be dominated by Coulomb scattering that cannot be used to

determine the polarization.
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Figure 4.34: Polarimeter efficiency factor for 270 MeV deuteron beam as a function of
the polar coverage of the detector.
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Figure 4.35: Polarimeter efficiency factor as a function of the deuteron beam for a polar
coverage of 3.5° to 15.5°.





Chapter 5

LYSO Module Development

5.1 LYSO Modules

This section will describe the concept and design of the LYSO detector modules de-

veloped to be used in the designated polarimeter for the future EDM investigation.

Additionally an introduction into inorganic scintillators will be given and the proper-

ties of LYSO will be discussed. Since Silicon Photon Multiplierers (SiPMs) are used

in the final version of the modules, an overview over this photon detector technology

will be provided.

5.1.1 LYSO Scintillator Material

LYSO (Lu1.8Y0.2SiO5 : Ce) is a Cerium-doped Lutetium based scintillation crystal and

therefore belongs to the family of inorganic scintillators. This type of scintillator is built

from a crystalline complex and hence forms a band structure in the energy-momentum-

space. An ionizing particle striking this crystal can excite an electron from the valence

band into the conduction band and, consequently, a hole is left in the valence band.

It takes around three times the energy of the band gap to create one electron-hole

Impurity traps

Conduction
band

Exciton band

Exciton

Valence
band

Figure 5.1: Band structure of an inorganic scintillator crystal in the energy-momentum-
space. Ionizing particles produce free electrons and free holes which can recombine using
the intermediate energy states in the band gap (traps) that are produced by impurities
in the crystal lattice. Slightly bound electron-hole pairs called excitons can be formed
as well. Since they move as pairs, the recombination occurs faster.

81
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pair [32]. In general, the electrons and holes can move freely in their corresponding

bands. If a recombination (i.e., the electron jumps back into the valence band) occurs,

a photon is emitted from the scintillator. This mechanism (scintillation) converts the

deposited particle energy into light. The photons that are generated by a direct de-

excitation from the conductive into the valence band are usually in the ultraviolet

spectrum. However, an electron and a hole can only recombine if their individual

momentum vectors sum up to zero (momentum conservation). In a pure crystal this

could lead to a recombination half-life that renders the scintillator unusable for high

rates. To overcome this issue, impurities or dopants are added to the crystal. They

add intermediate energy levels in the band gap between the valence and conduction

band. These trap states can capture a hole from the valence band and keep it until

an electron with a matching momentum vector can be trapped and form a neutral but

excited state [32]. The de-excitation of this state will produce photons that are, if the

dopant material is chosen correctly, in the visible spectrum and can be detected by a

photon detector. The most important consequence of this effect is that the absorption

and emission spectrum of the scintillator will not overlap and it is therefore transparent

for its own scintillation light. Sometimes an electron can be excited into the so-called

exciton band where it forms a slight bound system together with the hole which is

referred to as an exciton (See Figure (5.1)). If an exciton gets caught by an impurity

trap, it can recombine instantaneously which decreases the over-all decay constant of an

inorganic crystal even further. Inorganic scintillator are in general still slow compared

to organic scintillators such as plastics. A typical plastic scintillator like the NE 104

has a decay constant of 1.9 ns compared to 230 ns for a NaI(Tl) crystal [31].

The main advantages of inorganic scintillator over other type of scintillators such as

organic plastics, gaseous, liquids or glasses are the greater stopping power due to the

high density of the crystal and the largest light output among all the scintillator types.

Unfortunately most of the older types of inorganic scintillator crystal like NaI, CsF,

LiI(Eu) and KI(Tl) are hygroscopic and must therefore be carefully enclosed to protect

them from the moisture of the air. Other (newer) crystals such as BGO, BaF2 as well

as LYSO don’t suffer from this problem and can be handled with more ease.

Naturally occurring lutetium is composed by 97.41% from the stable isotope 175
71 Lu and

by 2.59 % from the isotope 176
71 Lu [33]. The latter is a long-lived radioisotope witch

undergoes a β−-decay with a half-life of 37.6× 109 y into 176
72 Hf [34]. This decays are

visible in the low energy spectra of the LYSO crystals (see Figure 5.22) but since the

endpoint energy of the electron from the β-decay is 1193 keV, this background does not

interfere with measurements of deuterons in the hundreds of MeV range.

LYSO is a rather new (patented 2003, see [35]) non-hygroscopic inorganic single crystal

scintillator with outstanding properties such as short decay constant, high density, high

light yield and a spectral response which matches the sensitivity curve of PMTs with

bialkali photocathodes, as well as SiPMs. Further, it is a very radiation hard material.

Irradiation test on LYSO samples using gamma radiation doses up to 10 kGy found to

cause light output losses at the level of 12% which is considerably less than for other

crystal scintillators used in high energy physics. Further is was shown that 300 ◦C

thermal annealing recovers the radiation induced losses. This recovery takes place



5.1. LYSO MODULES 83

Density 7.1 g/cm

Wavelength of emission (max) 420 nm

Refractive index @ max emission 1.81

Decay time 36 ns

Light yield 33 200 photons/MeV

Table 5.1: Properties of LYSO crystals from Saint-Gobain [37].

even at room temperature but significantly slower [36]. The properties of the LYSO

crystals produced by Saint-Gobain are listed in Table 5.1. All these features make the

LYSO scintillator crystal an ideal choice to build compact detector modules as will be

described Section 5.1.3.

5.1.2 Silicon Photon Multipliers

The foundation of all silicon-based semiconductor photon detectors is the photo-diode.

A photo-diode or PIN-diode is built on a silicon wafer that is doped positively on one

side (p-layer) and negatively on the other one (n-layer). The center (intrinsic) layer

is not or only slightly doped. Contrary to the regular operation principle of a diode,

the PIN-diode is reverse biased which creates an electric field in the intrinsic layer. If

a photon penetrates the diode through the thin top p-layer and deposits its energy in

the intrinsic layer, electron-hole pairs are created. These pairs travel to the opposing

poles of the diode along the electric field lines and therefore generates a current that

is proportional to the energy of the photon.

An advancement of the PIN-diode is the Avalanche Photo-Diode (APD). This type

of photo-diode is composed of a strongly doped positive layer (p+-layer) on the top

side and a strongly doped negative layer (n+-layer) on the opposing side. Just in

front of the n+-layer less strongly positive layer (p-layer) is located. The intrinsic

layer is sandwiched between the p+-layer and the p-layer. Under reverse bias, this

configuration creates a small electric field gradient in the intrinsic layer (drift region)

and a strong field gradient between the p-layer and the n+-layer (avalanche region)

(See Figure 5.2). As in the PIN-diode, the penetrating photon creates electron-hole

pairs in the drift region. The electrons drift along the electric field gradient towards

the avalanche region. Due to the high field gradients in this region, the electrons get

accelerated until they gain enough energy to create secondary electron-hole pairs which

again get accelerated and produce even more electron-hole pairs. This results in an

avalanche of charges, and the resulting current is substantially larger compared to a

simple PIN-diode. The gain in signal strength of an APD can be hundreds of times

larger compared to a PIN-diode [32]. The actual value of the gain is proportional

to the reverse voltage applied to the APD. In allusion to gas detectors, the gain is

divided into two ranges. In the proportional gain range, the signal produced by the

APD is proportional to the number of photons while in the Geiger-mode each photon

creates the maximal possible current through the diode independent on its energy. In

this mode, the current flow remains once triggered by a photon. Therefore a so-called
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Figure 5.2: Schematic illustration of an APD. Upper figure: Cross section to display
the different layers. Lower figure: Electric field inside of the diode.

quenching resistor needs to be added in series with the APD. The current flow through

this resistor induces a voltage drop in the reverse bias voltage that subsequently reduces

the internal field gradients in the APD which stops the avalanche effect and resets the

APD back into an operational state. Since the quantum efficiency of an APD is quite

large (around 80% [32]) it makes for an excellent photon detector.

SiPMs consists of a two-dimensional array of tiny cells of APDs (down to 15 µm edge

length, see [38]), referred to as microcells. The anodes and cathodes of the individual

APDs are connected in parallel, and each APD has a quenching resistor in connected

series. The reverse bias voltage applied to the APDs set them into Geiger-mode. In

this configuration, each photon that hits a microcell causes it to go into the full current

breakdown. The signal from a SiPM is composed of the sum of the signals from each

microcell and is therefore proportional to the number of triggered cells and subsequently

to the number of registered photons. The number of photons created in a LYSO crystal

is proportional to the deposited energy, hence a LYSO scintillator optically coupled to

a SiPM creates an assembly that produces a signal that is linearly dependent on the
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amount of deposited energy within the crystal. The signal created by a SiPM is a

current that can be transformed into a voltage signal by adding a resistor in series with

the SiPMs, see Figure 5.4b.

In the development of the LYSO modules, different types of SiPMs were used: Two

versions from the SensL company and two versions from Ketek. Table B.1 shows the

specifications of the different types of SiPMs that were used. All of the SiPMs used in

the LYSO based detector module development have in common that they are composed

of 8x8 array SiPMs each with an area of 3 mm x 3 mm.

5.1.3 LYSO Module Description

The LYSO detector modules were designed with the following criteria in mind:

• Simplicity of the detector modules:

→ The fewer components used to build the modules, the less error-prone are

they. Following the same argument, a single detector layer design was chosen as

it simplifies the data analysis if the whole energy information is obtained from

one single layer.

• Interchangeability:

→ The modules should be exchanged easily in case one fails. This also means

that there should be only one type of module in the final polarimeter assembly.

• High resolution:

→ Since the primary purpose of a polarimeter is to identify elastically scattered

particle and count them, a high resolution helps to distinguish between elastics

and other particles. For the same reason, it was decided against using an absorber

in front of the module which would allow using a shorter scintillator but would

worsen the resolution.

• Long term stability:

→ As this polarimeter is intended to measure the polarization in a high precision

long-running experiment, it is crucial that its performance will not change over

time. Therefore LYSO was chosen as a scintillator. It offers excellent radiation

hardness and its temperature dependent loss in light yield of 0.28 % ◦C−1 in the

range of 25 ◦C to 50 ◦C is small [37].

• Simplicity of the whole detector setup:

→ In order to keep the whole detector assembly and data acquisition (DAQ)

system at a minimum, care was taken that no signal amplifiers were needed

between the photon detector and the analog-to-digital converters (ADC) as they

were a possible source of noise and non-linearity. Further SiPMs were finally

favored over PMTs as the latter would require an individual high-voltage source

for each module.

In the process of developing the modules, two different versions were investigated.

The first version (see Figure 5.3) was using the dual channel photomultiplier tube
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(PMT) R1548-07 from Hamamatsu [39]. To fulfill the interchangeability criterion, it

was decided that the module must have a square shaped front face. The R1548-07 tube

was ideal for that purpose as its photo-cathode is squared with an edge size of 24 mm

which fitted nicely on the first batch of LYSO crystal which had the dimensions of

30 mm x 30 mm x 100 mm. The PMT’s photo-cathode was fixed to a 24 mm x 24 mm

x 48 mm light guide using a special optical glue. The high voltage divider circuit

board for the base of the PMT was designed by Tanja Hahnraths - von der Gracht

from the electronic workshop of IKP. The R1548-07 tube provides two channels as the

photo-cathode is divided along the center line and it needs a high voltage of 1250 V

to operate. The light guide, PMT and the high voltage divider were inserted into a

steel tube with the appropriate square cross section and a total length of 185 mm. To

avoid any internal reflections, this tube was spray-painted with a dull black color. The

high voltage divider was mounted in a 3D-printed designated holder to prevent short

connections to the steel tube.

The whole module is held together by a spring-loaded tension device in the 3D-printed

end cap of the module. This notched end cap sits on the end of the steel tube, and two

wave springs are mounted on either side of it. A hollow nylon screw extends the end

cap. It serves as a mounting point of the whole module, a guide for the outer spring

and allows the signal and high voltage cables to be lead out of the module. The inner

spring pushes on the high voltage divider PCB which in turn presses on the base of the

PMT. This mechanism assures a tight fit of the light guide on the LYSO crystal. The

outer spring applies a force on a frustum of a pyramid onto which two perpendicular

loops of Kapton strips are glued. These two loops revolve around the steel tube and

the LYSO crystal and press them together firmly. An additional cap tightened by a

nylon nut prevents these strips to get loose. A thin 3D-printed plastic frame is mounted

around the rim of the steel tube and the light guide and protects the LYSO crystal

from the sharp edge of the steel tube. The scintillator is connected to the light guide

using a designated optical grease.

The LYSO crystal was wrapped in two layers. The inner layer was applied to create

a surface that reflects most of the photons that leave the crystal back inside. Differ-

ent materials were tested such as Teflon and Tyvek paper to create a white diffusive

surface and metalized Mylar in a wrinkled and flat form to create a shiny, mirror-like

surface. The outer layer was made of 20 µm thick black Tedlar film to prevent any light

from entering the crystal from outside. Special care was taken to keep the number of

overlapping layers as small as possible to avoid dead (non-scintillating) material and

still retain light-tightness. To light-seal the sides of the interface between the crystal

and the light guide, black electrical insulation tape was used as it proved to be very

light tight. In the subsequent test, no differences in the energy spectra were found that

could be related to the difference in the reflective wrapping. For the first beam time,

four PMT based modules were buily (See Section 5.2.1).

The second version of the LYSO module (see Figure 5.5) was developed after the first

beam time and incorporated results that were obtained then. The analysis of the

maximal penetration depth (See Section 5.3.1.1) led to the conclusion that a length

of 80 mm instead of 100 mm was sufficient. A first experiment using four SiPM arrays
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(a) CAD model of the PMT based LYSO module by Nils Demary.

(b) First version of the LYSO detector module using PMTs

Figure 5.3: The first version of the LYSO detector module based on a dual channel
PMT.

instead of the PMT was very promising and led to te decision of using SiPMs over

PMTs in the new version of the LYSO modules.

Hence the biggest change compared to the previous version affected the scintillation

photon detection. As stated in Section 5.1.2, four different SiPM arrays were used

throughout the following experiments. The usage of the SiPMs allowed for the cre-

ation of a much shorter housing of 40 mm and therefore decreased the overall length

significantly. There was no need for a high voltage divider board anymore as the SiPMs

can be supplied with a reverse bias voltage in the order of 30 V. The SiPM arrays were

delivered with a special connector on their backside that allowed for the access of the

common anodes and cathodes of each of the 64 SiPMs. Luca Barion from the University

of Ferrara, Italy developed a designated PCB of the same size as the SiPM array where

it could be directly plugged, see Figure 5.4a. The circuit is much simpler compared

to the previous one for the PMT. The SiPM array and the PCB were installed in an

aluminum housing that was painted black on the inside to avoid internal reflections,

and one layer of Kapton was stuck in to prevent any electrical connection between the



88 CHAPTER 5. LYSO MODULE DEVELOPMENT

(a) Picture the adapter board devel-
oped by Luca Barion.
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(b) Schema of the adapter board.

Figure 5.4: The adapter board (picture on the left) provides a connector for the SiPM
arrays and a few passive components (see schema on the right). The positive reverse
bias supply is connected to the cathodes of the SiPM through a series resistor of 100 Ω
that acts as a current limiter. The supply voltage is stabilized by four parallel 2.2 µF
capacitors (drawn as a single capacitor in the schema). The dashed box represents a
single pixel of a SiPM symbolized as a photo-diode and the serial quenching resistor.
The anodes of each SiPM pixel are tied together and connected via a 50 Ω resistor to
ground. This resistor has a dual purpose: The current from the SiPM creates a voltage
drop on this resistor which crates the voltage signal at the output. The value of 50 Ω
was chosen to create a proper termination of the coaxial wire that is used to transmit
the signal to the ADC, and therefore prevent reflections.

SiPM array, the PCB and the aluminum housing. On the front side of the housing, all

four edges taper to a sharp tip. On the LYSO modules, the rear edges are chamfered

such that they fit snugly to the edges of the housing. This creates a rigid joint between

the two. The spring load mechanism on the end cap was adjusted to the new PCB. To

create an optical interface between the SiPM and LYSO crystal, a flexible silicone pad

was used. Besides the optical connection is has the advantage of even out any sight

height differences among the 64 SiPMs of the array.
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(a) CAD model of the SiPM based LYSO module by Nils Demary.

(b) Second version of the LYSO detector module using PMTs

Figure 5.5: The second version of the LYSO detector module based on a 8x8 SiPM
array.



90 CHAPTER 5. LYSO MODULE DEVELOPMENT

5.2 Experiments

In order to test and develop the LYSO detector modules, a total of five experiments were

performed in the Big Karl experimental hall at the COSY accelerator facility. Each of

them was using an extracted deuteron beam with different energies. Three iterations

of experimental setups were developed an used. In the subsequent section, these setups

will be described. The experimental setups were designed to be cost-efficient while

retaining high accuracy. The general concept was to use high quality, state-of-the-art

components in the detector modules such as SiPM arrays and LYSO scintillator crystals

and modern Flash-ADC data acquisition modules but do not waste resources on the

experimental setup that might be used for just one experiment. Whenever possible, it

was tried to employ open source and open hardware components instead of proprietary

solutions which are much more expensive and forces the usage closed source software

that is often not flexible and restricted to the Windows operating system. Additionally,

many scrap parts and leftover from old experiments were used.

5.2.1 1st Iteration

Start Counters / Trigger

Forward Veto
Beam Exit
Window

Positioning Table

LYSO ModulesSide Vetos

Figure 5.6: Schematic overview of the 1st iteration of the polarimeter development.

The 1st iteration of the LYSO module test setup was used in the beam time from 29.

February to 20. March 2016. The main goal of this beam time was to test the concept

of the LYSO based detector modules by directly positioning them in a deuteron beam.

Therefore, four different beam energies (100 MeV, 200 MeV, 235 MeV, and 270 MeV)
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(a) Experimental table. (b) Full setup at exit window.

(c) PMT based LYSO modules and SiPM
based side vetos.

(d) Start counters, forward veto and exit win-
dow.

Figure 5.7: Pictures of the experimental setup of the 1st iteration of the polarimeter
development installed in the Big Karl area.

were utilized at the extracted beam experimental hall Big Karl, see Chapter 3. In this

experiment, only unpolarized beams were used.

To test the modules, four PMT-based versions were built for this experiment. Two

modules were equipped with the 30 mm x 30 mm x 100 mm LYSO crystal produced

by Saint-Gobain [37] and one module used a LYSO crystal of the same dimensions

produced by Epic-Crystal [40]. The fourth module was built from two LYSO crystals

with a dimension of 15 mm x 30 mm x 100 mm each. These scintillators were arranged

side by side and connected to a split light guide that was, in turn, mounted to the

PMT in such a way, that the light from each crystal was guided to its own channel of

the PMT. This dual channel module was very useful to measure the stopping power of

LYSO. In the analysis of the energy spectra obtained from the LYSO crystal produced

by Epic-Crystal and Saint-Gobain, there was no difference visible. As the Saint-Gobain

crystals are produced in France, it was much easier to order from them as from a seller

outside of the European Union. Therefore the crystals for the next iteration were all

bought from Saint-Gobain.

The experimental setup consisted of a table frame that could be moved up and down
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using a hand remote control. David Mchedlishvili built a transistor based adapter

that allowed for an Arduino to control the position of the table. The original remote

control only allowed to move the table and since it was driven by a DC motor rather

than a stepper motor, there was no absolute positioning possible at all. To overcome

this issue, a linear potentiometer that could be read by the Arduino was added to the

system in order to create a closed-loop feedback system for the vertical positioning

of the table. On top of the table, a linear horizontal rail system was installed using

extruded aluminum profiles. A stepper motor driven shaft moves a slider along this rail.

A rotatable disk was installed on the slider. This disk can be rotated using a second

stepper motor. This horizontal rail system including the rotatable disk was a leftover

from an old experiment and was provided together with the designated stepper driver

by the electronic workshop. Additional limit switches from an old server housing had to

be installed using 3D-printed holder in order to provide absolute positioning with the

stepper motors. An acrylic mount that holds the four detector modules was mounted

on the turning disk. This setup allowed to remotely position each individual module

relative to the exit window of the beam pipe and turning the modules enabled to direct

the beam not only on to the face of the modules but also to penetrate them at different

angles. The closed-loop DC motor driven positioning in the vertical direction as well

as the stepper motor driven open-loop positioning along the vertical axis allowed for a

positioning accuracy of less than 1 mm. The modules could be rotated with a resolution

of less than 1°.

The experimental table was controlled by a designated piece of software that was writ-

ten for this purpose and was running on a RaspberryPi. This is a single board mini-

computer running a Linux operating system, and it comes for a very reasonable price

tag of around e35 (version 2B, see [41]). The peripherals such as the stepper drivers

and the high voltage NIM-module (ISeg 6 channels high voltage PMT driver, NHS

6201p, see [42]) were connected via USB to this computer and the communication with

the Arduino was implemented using the UART serial interface that was available on the

general purpose input/output (GPIO) pins on the RaspberryPi. The software that con-

trolled all the actuators was written in Python3. As intended by the object-oriented

programming paradigm, an individual module was written for each of the hardware

components such that they had a software representation in the control program. The

main code that controlled all the hardware modules was written using the Flask [43]

and socket.io [44] libraries which allows writing interactive browser-based user inter-

faces. This has the huge advantage, that the remote control software was available on

any computer that was connected to the same network as the RaspberryPi. By using

the WebSocket based technology provided by Socket.io, the position and status of the

high voltage could be displayed on all connected clients without the need to reload the

interface webpage.

The four LYSO modules were mounted in the acrylic holder in a 2x2 square configu-

ration, see Figure 5.7c. On four sides of this packet (top, bottom, left, right), 5 mm

thick plastic scintillators were attached to serve as a side veto for particles that enter

or leave the scintillator crystals from the side. All four top edges of these scintillators

were chamfered, and a small SiPM was glued there using an optical glue. The side
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Number of channels 16

Resolution [bits] 14

Sampling speed [MS/s] 250

Programmable input voltage range [V] 2 or 5

Programmable analog input offset [V] ±2 or ±5

Total DDR3 memory [GByte] 2

Memory buffer per channel [kByte] 128

Additional inputs
3: external clock,
external trigger,
programmable

Additional outputs 3: programmable

Trigger
Internal, external or

daisy-chaining between
multiple modules

Readout
Gigabit Ethernet or

Multi-Gibabit optical link

Table 5.2: Key features of the Struck SIS3316-250-14 flash-ADC converter, used in all
iterations of the polarimeter development. Information was taken from [45].

vetos were wrapped in Teflon foil to increase reflectivity and in a second layer of Tedlar

for light-tightness. The four SiPMs of each veto module were connected in parallel and

their signals were amplified through a simple non-inverting operational amplifier circuit

build for this purpose, see Appendix B.2. Directly after the exit window of the beam

pipe, an additional veto module was installed. An plastic scintillator paddle that was

mounted to a PMT by a light guide was utilized. This scintillator was already properly

wrapped, and the only change that had to be done was to remove some wrapping from

the center and drill a 10 mm hole into the plastic scintillator. This module was sealed

again to make it light-tight using electric tape. This veto module was then mounted

such that all the deuteron that passed through the hole would not create any signal

in the scintillator, but particles that would leave the exit window off axis would hit

the scintillator and create a signal that could be used to veto this event in the data

acquisition. The veto paddle was mounted between two additional plastic scintillators

attached to a PMT. These scintillators had an area of 20 mm x 18 mm and were 2 mm

thick. They were used to generate a trigger signal for the data acquisition and were

referred to as start counters. They could be moved in and out of the beam depending

on the test that was performed. When inserted into the beam, they were used to tag

each deuteron before it entered the LYSO modules.

To digitize the signals from the LYSO modules, vetos and start counters two high-speed

flash analog to digital converter (SIS3316-250-14, [45]) were used. They are produced

by the Struck company, and their key features are given in Table 5.2. The flash-ADC

technology employs an array of fast comparators (one for each bit) on each channel
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Figure 5.8: Typical signal shape of a LYSO based detector module recorded with the
flash-ADC in sampling mode. The ten integration gates are drawn on top of the signal.
The first two gates are used to extract the baseline of the signal and the subsequent
eight are used to integrate the signal in order to obtain the energy information of the
corresponding event.

which allows for much higher sampling rates compared to other ADC types such as

the successive approximation controller used in other ADCs. The Struck SIS3316-250-

14 can be operated in two basic modes: Sampling mode and integration mode. In

the sampling mode, each sample is transferred to the data storage server, and in the

offline analysis, the samples can be combined to obtain the waveform of the signal.

This mode provides a maximum of information about the signals but creates a lot of

data that needs to be transferred to the storage servers which reduces the maximal

achievable trigger rate. The information about the energy deposited in the scintillator

is represented by the integral of the signal rather than its shape. Therefore, the Struck

SIS3316-250-14 offers to do the integration of the signal shape within the module itself

on a fast FPGA chip. To retain some information about the waveform, this module of-

fers to set multiple time bins (integration gates or accumulators, see Figure 5.8) relative

to the trigger and does the integration of the signal in each of this bins individually.

The accumulator will be transferred to the storage server, and the integrated signal can

be obtained by summing them up. Further, this module allows setting a pre-trigger

time. One accumulator can be set such that it will be filled before the actual signal ar-

rives. This bin will, therefore, contain the information about the baseline (i.e., the DC

offset). This baseline can be obtained by dividing the content of the first accumulator

by its width. This means each event will be recorded including its own baseline and

shifts in the baseline that can occur over time are automatically corrected. In the first

beam time, the flash-ADC was operated in sampling mode only, as the software for

the integration mode was not ready to be used yet but starting from the second beam

time the flash-ADC was operated in the integration mode. The Struck SIS3316-250-14
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(a) SiPM array used for the first test in
3D-printed housing.
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(b) Energy spectrum of a PMT based module in
comparison with the SiPM test module.

Figure 5.9: The first test using four 2x2 SiPM arrays (left picture) as a light sensor for
a LYSO crystal. A direct comparison of the energy spectrum obtained from the two
different light sensors, motivated the usage of SiPM arrays for the next iteration of the
LYSO based detector modules.

offers different trigger methods: An external signal can be used to trigger the data

acquisition on all channel, or the trigger can be generated internally using the timing

stable constant fraction discriminator (CFD) method. This internal CFD can be set to

trigger each channel independently or generate a trigger signal that causes all channels

to start recording simultaneously. In this beam time, only the external triggers from

the start counters were used.

Using this first experimental setup, several different properties of the LYSO module,

such as the linearity of the energy response, resolution, stopping power of LYSO and

the deuteron break-up probability could be examined. The results are discussed in

Section 5.3. At the end of this beam time, one of the LYSO modules was disassembled,

and the first prototype of a SiPM based module was assembled and tested, see Fig-

ure 5.9. The steel base was removed and replaced by a 3D-printed plastic housing that

contained four 2x2 6 mm (type: ARRAYC-60035-4P-EVB, see Table B.1) edge length

SiPM arrays that were mounted to DIP sockets soldered to a prototyping PCB. The

resulting energy spectrum of this prototype was so promising (see Figure 5.9b) that

the decision was made to switch to SiPM as the photon detector in the next version of

the LYSO modules.

5.2.2 2nd Iteration

The 2nd iteration of the LYSO module test setup was used in the beam time from 5.

to 18. December 2016 and again from 13. to 26. March 2017. After evaluating the
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Figure 5.10: Schematic overview of the 2nd iteration of the polarimeter development.
CAD model by Nils Demary.

results from the first beam time, it was decided to build a total of 24 LYSO modules

using SiPMs (type: ARRAYJ-30020-64P-PCB, see Table B.1) for the photon detection

as described in Section 5.1.3. These new modules were tested in a new experimental

setup.

This setup was designed to test the modules in a configuration where they would serve

as a polarimeter. As a consequence, this meant that a polarized beam and a target for

elastic scattering had to be used. The experimental setup consisted of two parts. A

gate and a two-armed module holder. The gate was built from 8 cm x 16 cm extruded

aluminum profiles and was 2.0 m high and 2.65 m wide. It was mounted ∼ 40 cm away

from the exit window with the external beam pipe in the center. To guaranty its

stability, it was screwed to the floor of the experimental hall. On the top of this gate,

a plate mounted on roller bearings was installed. An adjustable collimator made from

iron blades was attached to this plate. It was intended to use it to reduce off-axis

particle hits in the detector, but unfortunately, it introduced a lot of scattering surface

that led to a very unclean energy spectrum recorded by the modules. Therefore it was

decided not to use this collimator at all, and it was moved out of the beam path. In

the center of the gate, a motor driven target holder was installed, referred to as the

target flower. It consisted of an acrylic disk with eight holes. In each of these holes, a

different target disk could be mounted on a 3D-printed holder. The target flower was
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(a) Full setup. (b) Target flower with installed targets.

(c) Front view of the two arms with installed
modules.

(d) Back view of one arm with slotted alu-
minum plate to mount the modules.

Figure 5.11: Pictures of the experimental setup of the 2nd iteration of the polarimeter
development installed in the Big Karl area.

mounted on the hub of a stepper motor driven geared device produced by OWIS ([46],

[47]) that was incorporated in the second version of the slow control and hence each

target could be moved into the beam remotely. The following target materials were

installed in the target flower: Silicon (5 mm), Carbon (5 mm and 10 mm), Aluminum

(5 mm) and Magnesium (5 mm).

The two-armed module holder was mounted to another extruded aluminum profile that

was fixed to the base of the gate on the floor. The Y-shaped two-armed module holder

was attached to this profile. The two arms had a common pivot point, and the loose end

of each arm was supported on a rubber wheel that allowed the arm to move on a semi-

circle. Each of the arms was connected to a DC motor driven linear actuator produced

by Rose&Krieger (LZ60P [48]). An encoder built into this actuators in combination

with a powerful RoboClaw [49] driver allowed to position each arm with a precision of

less than 1° relative to the beam axis. To mount the LYSO modules, another extruded

aluminum profile was mounted perpendicular to each arm. This vertical part of the

arm consisted of two parts. The lower part was rigidly mounted to the horizontal part

of the arm. The second part of the vertical arm was attached to a linear actuator that

allowed to set the height of the module holder individually on each arm. This actuator
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and its designated driver were produced by Pololu. A slotted aluminum plate was

installed on top of the vertical part of the arm. This plate allowed to slide-in the LYSO

modules in 3 different configurations: 2x6, 3x4 and 4x3. This whole setup enabled

to position the modules at different azimuthal and polar angles relative to the beam

and the configuration of the modules made different angular range coverage possible.

Further, it was possible to position each individual module directly in the beam path

in order to do the energy calibration. The length of the arms was chosen such, that the

faces of the LYSO modules were at a distance of 1 m from the target point. The control

of all four linear actuators was included in the slow control software, and therefore the

position of each arm could be set remotely.

One of the start counters from the 1st iteration of the module test was added to measure

the luminosity needed for a cross section calculation, see the thesis of Simone Basile [50].

This start counter was removed for the calibration runs as well as for the asymmetry

measurements.

Similar to the side vetos from the first beam time, two types of plastic scintillator

based ∆E detector were built. One version with a thickness of 1 cm and the other one

with a thickness of 2 cm. Four SiPMs (PM6660TP-SB0, see Table B.1) were installed

on each long side of the plastic scintillator instead of the edges. The wrapping and

the signal amplification was done in the same way as for the side vetos. Mounting

these ∆E detectors in front of the LYSO modules allowed for the creation of a particle

identification plot as shown in Section 5.3.2.1.

The SiPMs used in the LYSO modules and the ∆E detectors needed a very stable

reverse bias voltage of around 30 V in order to work properly. For this purpose, a

designated voltage supply was developed by David Mchedlishvili, Otari Javakhishvili,

Mikael Gagoshidze, and Dito Shergelashvili (see his PhD-Thesis). This custom modular

power supply consists of a mainboard with a very precise and stable voltage reference

and 120 slots for bias voltage generating modules, see Figure 5.12a. For each LYSO

module, an individual card is plugged into the mainboard that provides an adjustable

voltage. Additionally, each card can be enabled and disabled remotely via an SPI

interface on the mainboard. When enabled, the voltage ramps up slowly in order to

avoid large currents due to the capacitive nature of the SiPMs. If the bias voltage for one

module gets disabled, the SiPMs are discharged in a controlled manner. Figure 5.12b

shows an enable/disable trace for a such a bias voltage card. The SPI control interface

was connected to the Raspberry Pi that was running the slow control software and

hence each module’s bias voltage could be turned on and off remotely. A diagnosis line

from each card runs through an analog multiplexer IC to a common output connector.

A precision digital voltmeter is connected to this diagnosis port of the mainboard, and

the voltage on each card is subsequently read. This allows for a continues bias voltage

monitoring of all SiPMs. Having a very stable bias voltage is of particular importance

as measurements showed that a variation of ∼100 mV changes the voltage gain of the

SiPMs in the order of 5 %, see Figure 5.24. Measurements performed during the last

beam time on these bias voltage generator board showed that the required stability can

be achieved, see Figure 5.23.

Staring from the first beam time using the 2nd iteration of the experimental setup,
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(a) Custom voltage supply
generator modules used to
create the reverse bias sup-
ply for the SiPM version
of the LYSO based detec-
tor modules. The Voltage of
each module can be set on
the blue/gray potentiome-
ter.

(b) On / off ramp that can be generated for each channel of
the custom voltage supply generator. The slow up-ramping
of the voltage limits the inrush current due to the capacitive
behavior of the SiPMs as well as the actual voltage stabilizing
capacitors on the adapter board, see Figure 5.4b. The slow
turn-off process ensures a save discharge of these capacitors.

Figure 5.12: A stable supply voltage for the reverse bias voltage for the SiPM arrays is
an integral part for of the successful operation of the LYSO based detector modules. A
multi-channel supply voltage generator was developed for this purpose. Each detector
module is connected to an individual channel of this generator and can be turned on
and off via a server that is running on a Raspberry Pi.

David Mchedlishvili improved the DAQ-software in such a way that the flash-ADC

could be operated in the integration mode which reduced the amount of data that had

to be transmitted to the storage server drastically and therefore increased the maximum

trigger rate. Further, it was possible to trigger from each LYSO module individually

or switch back to get the trigger signal from the start counter instead.

With the 2nd iteration of the experiment, properties of the SiPM based LYSO modules

such as resolution and linearity could be analyzed. It was proven that the new version

on the detector modules based on the shorter (8 cm) LYSO crystal and the SiPM

arrays as the photon detector performed well. The custom made power supply for

the reverse bias voltage was able to provide stable operation of the LYSO modules.

The mechanical two-arms setup allowed to investigate the performance of the LYSO

modules in a polarimeter configuration and with the materials mounted in the target

flower, it was possible to measure asymmetries for different target materials at different

beam energies. By mounting the ∆E detectors in front of the LYSO modules, it was

possible to generate a ∆E vs. E spectrum for each module that allows for clean particle

identification. The results of these measurements are given in Section 5.3.2.1. David

Mchedlishvili was able to test his new version of the online analysis software that is not

only capable of displaying the energy spectrum of each LYSO module but can calculate

the asymmetry in a continuous manner.
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5.2.3 3rd Iteration

x-,y-,z-Position Table

Mounting Platform
for 120 Modules
(52 installed)

Figure 5.13: Schematic overview of the 3rd iteration of the polarimeter development.
CAD model by Nils Demary.

The 3rd iteration of the LYSO modules test setup was used in the beam time from 4.

to 17. December 2017 and again from 30. April to 13. May 2018. The evaluation of

the performance of the SiPM based LYSO detector module has shown that they are

suitable to be used in the final polarimeter setup. Hence it was decided to build a total

of 52 LYSO modules. Forty-eight were using the SiPM arrays by SensL used in the 2nd

iteration, but since Ketek introduced a new series of SiPMs with the same form factor

as the ones by SenseL, it was decided to build four additional modules using the new

PA3325-WB-0808 and PA3315-WB-0808 type SiPM arrays by Ketek for comparison.

The new model by Ketek promised a better resolution due to the smaller microcell size

and a reduced ”dead” (non-active) area between the individual SiPMs, see Table B.1.

The experimental setup for this iteration was updated as well. It consisted of a 23 mm

thick aluminum disk with a diameter of 480 mm. Since this disk is intended to be used

in the final polarimeter it can be separated into two half, and there is a central hole

with a diameter of 90 mm to be able to mount it around the beam pipe. There are 120

holes drilled into the disk that allow to install the LYSO modules by sliding them in

and fix them with a nylon nut, see Figure 5.14c. This disk allows for the arrangement

of the LYSO modules in different patterns in the final polarimeter assembly. For this
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(a) Full polarimeter equipped with ∆E detec-
tors.

(b) Target flower with all six targets, used for
asymmetry measurement, installed.

(c) LYSO based detector module support disk
made form aluminum. (d) Designated SiPM bias voltage generator.

Figure 5.14: Pictures of the experimental setup of the 3rd iteration of the polarimeter
development installed in the Big Karl area.
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iteration, the modules were arranged in a regular cross pattern with 12 modules in each

arm of the cross. The additional four Ketek based LYSO modules were installed in the

edges of the cross close to the central hole (C prefix, see Figure 5.40).

The disk was mounted on a new table made from extruded aluminum profiles installed

again in the Big Karl experimental hall in front of the external beam pipe exit window.

On the experimental table, a DC motor driven carriage was installed that could be

moved perpendicularly with respect to the beam pipe (X-axis). On top of it, a second

sled was installed that would allow movements towards the exit window (Z-axis) using

another DC linear actuator. On top of this, a frame made from extruded aluminum

profiles was mounted perpendicular to the table. A slider on roller bearings could be

moved up and down (Y-axis) with a third DC linear motor. The disk holding the LYSO

modules was attached to this slider. Figure 5.13 shows the final setup. Being able to

move the disk in all three spatial dimensions allowed to position each module directly in

the beam path for energy calibration. By moving the disk to the center, i.e., align the

central hole of the disk with the exit window of the external beam pipe, the modules

could cover different polar angle ranges by moving along the Z-axis. The staff from

the IKP’s mechanical workshop used optical triangulation to carefully align the whole

experimental table with respect to the external beam pipe. The table was precisely

leveled using set-screw feet. Two of the DC linear actuator were reused from the 2nd

iteration experimental setup, and the third one of the same type had to be ordered.

They were again controlled by RoboClaw drivers and integrated into the third version

of the slow control software.

The gate that was installed for the 2nd iteration experimental setup was used to mount

the target flower in front of the exit window. For this iteration, the following target

materials with a thickness of 5 mm were installed: Nickel, carbon, tin, aluminum,

silicon, magnesium, and CH2 made from multiple layers of polyethylene foil. Between

the exit window and the target flower, the PMT-based start counter was installed again.

It was attached to a stepper motor driven linear rail that allowed to remotely insert

and remove the start counter to/from the beam. The stepper was driven by a custom

driver board attached to an Arduino that was in turn connected to the Raspberry Pi

running the slow control software.

The disk that holds the LYSO modules was designed to be rotatable. It was mounted

on an aluminum gear that was attached via a Teflon bushing to the horizontal slider.

The whole disk was intended to be remotely turned using a stepper motor that was

belted to the gear behind the disk. Unfortunately, the Teflon bushing was not well

chosen to support moment load (angular force relative to the plane of the bushing).

Therefore, the bearing would oscillate back and forth between static and sliding friction

resulting in strong vibrations of the disk and the LYSO modules attached to it. As

this posed a non-tolerable danger to the modules, it was decided to fixate the disk and

discard the possibility of rotating it completely.

During the first beam time with this experimental setup in December 2017, the four

arms of the cross were equipped with the 2 cm thick plastic scintillator ∆E detectors

built for the 2nd iteration of the polarimeter development. Using a polarized deuteron

beam, asymmetries on different target material were measured. These tests were of
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particular importance as the LYSO module design as well as the disk for mounting the

modules will be used in the final polarimeter setup. For these measurements, the DAQ

system consisted of four Struck flash-ADC modules tested in the previous beam times.

With this system, it is possible to use up to 64 channels in parallel on a single VME

bus. It was crucial to check that all four flash-ADC modules could be synchronized

and that the trigger system could be distributed among them. It was possible to set up

the modules in such a way that a hit in one LYSO module would trigger the readout of

this particular channel or instead cause the digitization of all channels simultaneously.

Further, the online analysis system had to be updated to be able to handle all the

modules together and calculate the asymmetries as a function of time. All the test

were successful and created confidence that the LYSO modules and the DAQ-system

were ready to be used in the final polarimeter setup.

However, what the beam time in December revealed was the fact that a finer spatial

resolution of the polarimeter would be preferable. In order to keep the final device as

compact as possible, the distance between the target and the faces of the LYSO crystal

is limited. This means that one crystal face covers a rather large solid angle (see

Figure 5.41) and due to the Θ-dependence of the analyzing power, the asymmetry can

vary substantially within the coverage of one LYSO face. To overcome this issue, it was

decided to test whether it is possible to build a ∆E detector that would not only provide

energy loss information but could be used to improve the spatial resolution as well.

Hence the concept of triangular plastic scintillator bars as described in Section 5.3.2.2

was investigated in the second beam time with this iteration of the experimental setup

in May 2018. The plan for this last beam time was to test the triangular ∆E detectors

and repeat some asymmetry measurements as well as to test some changes in the DAQ-

system. Unfortunately, there were problems to cope with during this beam time. First

of all, there were delays in the delivery of the 3D-printed mounting holds that would

attach the triangular plastic scintillators and their custom-made signal amplifier PCBs

to the aluminum frame. These parts only arrived in the middle of the beam time, and

it was not possible to fully assemble both layers of the detector. Nevertheless, some

very promising results were obtained in the last days of the experiment as presented

in Section 5.3.2.2. The second problem was that the polarized beam source was not

working during the entire beam time. This meant that no asymmetry measurement

was possible at all. As there was more time for the energy calibration available, it was

possible to understand the origin of the double-peak structure that was observed since

the first tests of the LYSO modules but could neither be distinctively reproduced nor

be explained. Until then it seemed to occur randomly. The result of the double-peak

investigation is given in Section 5.3.1.7.

5.3 Results

5.3.1 LYSO Module and Polarimeter Properties

From the data that was measured in the five beam times, different properties of the

individual LYSO based modules and the polarimeter as a whole were calculated. The

following sections will present these results and the way they were obtained.
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5.3.1.1 Bragg-Peak Measurement

When a particle travels through matter, different processes lead to an energy loss of

this particle. These processes depend on the type of particle as well as on the absorber

material type. In this section, the discussion of the energy loss of particles will be

limited to charged particles heavier than electrons in an absorber material with the

average mass of the nuclei larger than the one of the particle. For example: A deuteron

that travels through a LYSO scintillator crystal.

For a heavy particle that travels through matter, the following processes lead to losses

of its kinetic energy: Inelastic collisions with the electrons of the target material atoms,

elastic scattering of the material nuclei, emission of Cherenkov radiation, nuclear re-

action and bremsstrahlung. From these processes, the first one contributes by far the

most to the energy loss of the particle and was used by Niels Bohr to define a classical

formula for the stopping power of a material. The stopping power of a material defines

how much energy a specific particle with given kinetic energy loses when it travels a

certain distance through this material. Often it is abbreviated as dE
dx with a unit of

energy per distance. Bohr’s calculation was then later modified by Hans Bethe, Felix

Bloch, and others to include relativistic and quantum mechanical effects which lead to

the famous Bethe-Bloch formula [31]:
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[
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Z

]
, (5.1)

with re the classical electron radius, me the electron mass, Na the Avogadro’s constant,

ρ the density of the absorbing material, Z the atomic number, and A the atomic weight

of the absorbing material. Further, z the charge number of the incident particle, I

the mean excitation potential and Wmax the maximum energy transfer in a single

collision. β and γ are the relativistic Lorentz factors of the incident particles (β = v
c

and γ = (1 − β2)−
1
2 ). The two correction factors δ (density correction) and C (shell

correction) are only of importance for very high and very low kinetic energies of the

incident particles. An extensive discussion of all the factors is given in [31].

For an intermediate energy range of 1 MeV to 100 GeV deuterons, Equation (5.1) can

be simplified to:
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because md � me and therefore Wmax ≈ 2meβ
2γ2. If the stopping power for a mixed

material (with a density ρ) such as LYSO has to be calculated, the following scaling

rule (Bragg’s Rule) can be used:

1

ρ
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+
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)
2

+ ... (5.3)

Here, wn describes the fraction of the individual components by weight and ρn the

individual densities. The weight fractions can be calculated as follows:

wn =
anAn
Atot

with Atot =
∑

anAn. (5.4)
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Figure 5.15: Stopping power for deuterons in a LYSO crystal and the plastic scintillator
BC-400 as a function of the kinetic energy of the deuteron calculated using the Bethe-
Bloch formula from Equation (5.2) and the Bragg rule from Equation (5.3).

an denotes the number of atoms with the atomic weight An in one molecule of the

absorber material. For LYSO, the number of atoms of its constituents is given in

Section 5.1.1.

To create a plot of the stopping power of deuterons in LYSO it is more convenient

to provide the deuteron kinetic energy T in terms of MeV rather than in terms of

β, i.e., using the relation β2 = 1 − md
md+T . Hence the stopping power of LYSO as a

function of the deuteron kinetic energy is given in Figure 5.15. For comparison, the

stopping power for a common type of plastic scintillator (BC-400), as used in the ∆E

detectors, is plotted as well. The plastic scintillator material consists mainly of carbon

and hydrogen with a H:C ratio of 1.103:1 [51]. The mean excitation potential I for the

different components was taken from [52].

The Bethe-Bloch formula has its minimum between 1 GeV and 10 GeV for both ab-

sorber materials. Particles in this energy range are called minimal ionizing particles.

If the particles kinetic energy gets larger, the stopping power starts to increase again

due to relativistic effects. Hence, the high energy range of the Bethe-Bloch formula

is referred to as the relativistic tail. On the left of the minimal ionization point, the

energy loss per unit length increases with the decrease of the kinetic energy until the

particle reaches a full stop.

When a particle with given energy enters an absorber material, the energy loss, in the

beginning, is low but it increases as the particle loses more and more of its kinetic

energy. By losing kinetic energy it moves up along the Bethe-Bloch curve, and the

subsequent loss increases even more. Shortly before the particle comes to a full rest,
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Figure 5.16: Stopping power for 270 MeV deuterons in a LYSO crystal and the plastic
scintillator BC-400 as a function of the penetration depth calculated using the Bethe-
Bloch formula from Equation (5.2). The point of maximal energy deposition is called
Bragg-Peak and the maximal penetration depth is estimated to be 61.3 mm in LYSO
and 261.4 mm in BC-400

the energy loss is maximal. If the energy loss per unit length is plotted against the

penetration depth, the point of maximal energy loss is called the Bragg-Peak and indi-

cates the maximum penetration depth of a particle with a given initial kinetic energy.

In Figure 5.16 the energy loss as a function of the penetration depth is calculated

from Equation (5.2). From this plot, the maximal penetration depth for a 270 MeV

deuteron in LYSO (∼61.3 mm) and BC-400 (∼261.4 mm) can be estimated. However,

calculating the maximum penetration depth just from the Bethe-Bloch formula does

oversimplify things a bit. Especially since it is assumed that the particle is just taking

a straight path which is known not to true due to range straggling , see Section 5.3.1.5.

What can be taken from this calculation is the fact that LYSO is a very good choice

for a scintillator that should fully stop deuterons. If one had used plastic scintillator

cuboid instead of LYSO, the modules would have been longer by a factor of ∼ 4.3 if

they should have been able to stop 270 MeV deuterons.

With the 1st iteration of the detector setup, it was possible to experimentally deter-

mine the maximal penetration depth of 270 MeV deuterons in LYSO. To perform this

measurement, the module with the split LYSO crystal was used. The module was

positioned in such a way in front of the exit window, that the beam would hit the scin-

tillator crystals at an angle (see Figure 5.17) that could be set from the slow control

software. The experimental table was moved as close as possible to the exit window

of the beam pipe, and a 10 mm x 10 mm x 2 mm plastic scintillator was used as the

trigger. By changing the angle α of the module relative to the beam, the effective path
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Figure 5.17: Schematic model of the experimental setup that was used to measure the
stopping power of 270 MeV deuterons in LYSO.

length of the deuteron in the LYSO crystal could be set. The module was positioned

such, that the beam would pass through the first followed by the second 15 mm thick

scintillator. For each value of the angle α, the deposited energy in the first crystal

could be measured simultaneously with the total deposited energy in both crystals.

The effective path length as a function of the rotation angle α was therefore given by:

x1.5cm =
1.5 cm

sin(α)
for the first crystal,

x3.0cm =
3.0 cm

sin(α)
for both crystals.

A total of 11 different angles in the range of 20◦ to 90◦ could be measured with this

setup. This would cover a range of penetration depths of 15 mm to 87.7 mm. For each

measurement i, two pairs of deposited energy and effective path length ([x1.5cm, E1.5cm]i
and [x3.0cm, E3.0cm]i) were obtained. By successively calculating the difference between

the deposited energy between the measurement i and i− 1, the stopping power could

be calculated as follows:(
∆E

∆x

)
i

=
Ei−1 − Ei
xi − xi−1

for i ∈ [1, 11]. (5.5)

In order to use the first point as well, point zero [x = 0 cm., E = 270 MeV]0 had to

be included as well. The stopping power according to Equation (5.5) was calculated

and is shown in Figure 5.18, for the first crystal only (blue markers) as well as for both

crystals together (red markers). The measurement showed that the Bragg-Peak and

therefore the maximal penetration depth for 270 MeV deuterons is located between

6 cm and 6.5 cm. Paul Maanen had created a GEANT4 Monte-Carlo simulation that

is plotted together with the real measurement in Figure 5.18 and they are in a good

agreement.

In the 1st iteration of the detector development, the LYSO crystals that were used had

a length of 10 cm. The result of the Bragg-Peak measurement motivated the decision

to use 8 cm LYSO crystals for the next iteration and the final modules as this new

length is sufficient to stop deuterons up to 270 MeV as experimentally proven.
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Figure 5.18: Measurement and Monte-Carlo simulation of the stopping power for 270
MeV deuterons in LYSO. The blue data points have been calculated from the first
(15 mm thickness) LYSO crystal and the red ones from both (30 mm total thickness)
LYSO crystals. The Monte-Carlo simulation was provided by Paul Maanen. The black
lines indicate the old crystal length (used in this measurement) and the new length
(used starting from the 2nd iteration of the detector development).

5.3.1.2 Energy Resolution

One of the most fundamental properties of any detector module is its energy resolution.

It decides on how well one can distinguish between different processes such as elastic

or inelastic scattering or identify different particle species hitting the detector. In the

case of a polarimeter, the main goal is to identify the type of particle as in the elastic

scattering process, the particle that is recorded by the detector should be of the same

type as the beam particle or the target in the case of inverse kinematics. The kinetic

energy of an elastically scattered particle off a given target does only depend on the

scattering angle, and thus it is known how much energy it will deposit in a module

that is located at a certain angle relative to the target and the beam axis. The LYSO

based detector modules were designed to completely stop the scattered particles (see

Section 5.3.1.1) and therefore the energy that is deposited in the scintillator crystal

equals the full kinetic energy of the particle at the moment of entering the detector

module.

The resolution of each detector module was measured by moving it directly into the

deuteron beam. The module was positioned as close to the exit window of the beam

pipe as the setup allowed. The target and the start counter were removed from the

beam path. This procedure was repeated for each installed module at each beam energy

that was available in the corresponding beam time. The resulting energy spectra should
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only contain one peak that corresponds to the deposited kinetic energy of the beam

particles. In the case of a deuteron beam, there is a background that is spread over

the whole spectrum and origins from deuteron break up reactions inside of the LYSO

crystal and is discussed in Section 5.3.1.6. The energy resolution defines how accurately

the energy of one particle can be measured, or more precisely whats the minimal energy

difference between two particles that can be distinguished by the detector. Hence the

resolution is proportional to the width of the peak and its position in the spectrum.

For the LYSO based detector modules it is defined as follows:

R =
FWHM

Epeak
∼ ∆E

E
. (5.6)

Here, FWHM denotes the full-width at half maximum and Epeak the position of the

calibration peak in the energy spectrum. For a Gaussian-shaped peak, the relation

between the FWHM and the σ is given by:

FWHM = 2
√

2 ln(2) · σ ≈ 2.355σ. (5.7)

In the case of a perfectly Gaussian-shaped calibration peak, the resolution could be

obtained by fitting a Gaussian to the peak and calculate the resolution from the fit

result. Unfortunately, this approach turned out to be impossible for the LYSO based

detector modules due to the double-peak issue discussed in Section 5.3.1.7. Therefore

another approach was chosen: A histogram was filled with all the events recorded for

a given calibration. The position of the calibration peak was given by the center of

the maximum bin in the spectrum. Starting from this position, the bin on the left and

the right of maximum was found where the peak decreased below half of the maximum

value for the first time. The distance between these two bins resulted in the FWHM

for this peak. This method worked for the clean peaks as well as for the broaden or

double-peaks. Figure 5.19 shows examples of the two calibration peak for a 150 MeV

deuteron beam in two different modules. Figure 5.19a is an example of a module with a

very clean peak where the resolution could have been extracted using a Gaussian fit ad

Figure 5.19b shows a module with a clear double-peak where even a double Gaussian

fit does not describe the shape well. The black lines indicate the FWHM range. For

modules that display a double-peak, this method of calculating the resolution does lead

to an underestimation of the actual resolution of the module. Another possibility would

have been to extract the resolution from only one of the two peaks, but it was decided

that the resolution extraction should reflect the actual situation when the modules are

used in the final polarimeter and in this case, it is better to describe the worst case

scenario.

The resolution was calculated for all LYSO based detector modules using all available

beam energies. Figure 5.20 shows the average of the energy-dependent resolution for

both versions of the LYSO based detector modules. Due to the difference in the peak

shape mentioned before, the spread of the resolution of the modules at the same energy

can be quite large which is reflected in the big error bars. The resolution of the SiPM

based detector modules is better than for the PMT based version. With an increase of

the beam energy, the value of the resolution decreases, i.e., the larger the energy, the

better the resolution gets. The measurement for both versions of detector modules was
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(a) Example of module a clean single peak.
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(b) Example of module with a double-peak.

Figure 5.19: Zoomed-in energy spectra for calibration peaks of two LYSO based de-
tector modules in a 150 MeV deuteron beam. The black lines indicate the region for
the FWHM. The red line shows the attempt to fit the peaks using a single and double
Gaussian fit, respectively.
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Figure 5.20: Mean of the energy resolution of both versions of the LYSO based detector
modules as a function of the deuteron beam energy. The solid lines represent a fit using
Equation (5.8). The error bars indicate the width of the distribution of the resolution.
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(b) Example of a double-peak.

Figure 5.21: Full energy spectra for calibration peaks of two LYSO based detector
modules in a 150 MeV deuteron beam.

fitted with the following formula for the energy dependent-resolution:

R(E) =
A√
E
⊕ B

E
⊕ C. (5.8)

This equation is usually used to describe the resolution of a calorimeter and can, there-

fore, be applied to the LYSO based detector modules as they can be considered to be

calorimeter modules since they absorb the whole energy of the detected particle. The

⊕ operator is an abbreviation for the quadratic sum. The parameters A, B and C

can be used to describe different properties of a calorimeter. A is called the stochastic

term and includes the statistical fluctuation of the detector module while B and C

are more influenced by the readout electronics and non energy-dependent contribution

such as noise. Analyzing the individual terms would go beyond the scope of this work.

However, the fits can be used to interpolate the resolution for beam energies between

the measured points.

The most important result of the resolution measurement is the fact that the SiPM

version of the LYSO based detector modules have a very high resolution of around or

less than 1% over the whole measured energy range. With this resolution, the main

task of the modules which is the identification and counting of elastically scattered

particles can be done without a problem. Even in the case of the modules that show

the double-peak behavior, particle identification is still possible without any issues. It

can be argued, that the double-peak issue could have only be discovered because of the

high resolution of the modules. Figure 5.21 show the calibration peaks from Figure 5.19

again but this time, not zoomed-in. The very narrow peaks illustrate how good the

resolution of the modules is.

Before a LYSO based detector module was used in the experimental setup, it was tested

for light tightness and general performance in the lab. David Mchedlishvili developed

a test setup based on a Red Pitaya data acquisition board [53]. After each module was

assembled, it was connected to this test setup, and a low energy spectrum was measured.

A LYSO crystal contains the radioactive lutetium 176Lu isotope which decays via a β−

decay into the hafnium 176Hf isotope. The emitted electron, as well as the γ-lines
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Figure 5.22: Low energy spectrum of a LYSO based detector module recorded in the
lab. Three γ-peaks from the 176Hf deexcitation as well as the continuous β tail are
clearly visible. The energy values are taken from [54]. In addition to the internal
radiation, a 22Na source was placed on the module. 22Na is a β+ emitter and the most
distinct peak in the spectrum comes from one of the photos created in the β+ + β−

annihilation and is therefore located at 511 keV. The 22Na decay creates one γ-line at
1274 keV [55] which is also clearly visible. Since the LYSO crystal provides a large
volume, the probability of catching multiple γ particles in the same event is rather
large and this leads to the peaks that represent the sum of multiple γ energies.

from the deexcitation of the 176Hf isotope, are visible in the low energy spectrum if

the module is light tight and the scintillator crystal is properly connected to the SiPM

array. In addition, a 22Na and 60Co source were used to test the modules. Figure 5.22

is an example of such a spectrum. If the module is not well packed or the interface

between the LYSO crystal is not perfect, it can be found out from this measurement,

and the module had to be taken apart and be reassembled. The structures in the low

energy spectrum that origin from the lutetium decay matches the description from the

LYSO crystal datasheet given in [37]. Performing this lab test, assured that the LYSO

based detector modules perform well in the actual experiments using the deuteron

beam and in all three iterations of the polarimeter development, no modules showed

any sign of light leakage. An evaluation of the low energy resolution of the LYSO based

detector module using the 511 keV peak results in a value of ∼ 15.3%. This explains

why no double-peaks structures can be seen in the low energy spectra.

5.3.1.3 Gain Stability of the LYSO Based Detector Modules

To quantify the requirement of long term stability of the LYSO based detector modules,

it is important to investigate the different sources that can influence the overall gain

of the modules. The main source of gain variation can come from the temperature

dependence of light yield of the LYSO scintillator and the gain of the SiPM arrays as
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Figure 5.23: Measurement of the environment temperature in the Big Karl area (black)
as well as the reverse bias voltage (blue) that was applied to the SiPM array of a LYSO
based detector module as a function of time. This graph comprises the eight days of
measurement done in the last beam time. The supply voltage for the SiPMs had to be
turned off several times in this period, hence the gaps in the measurement.

well as the gain dependence of the latter on the reverse bias voltage. According to the

manufacturer of the LYSO crystals, the variation in light yield accounts to −0.28 % K−1

in a temperature range of 25 ◦C to 50 ◦C. It is thereby one order of magnitude smaller

than comparable crystal scintillators such as BGO or LSO, see [37]. For SiPMs, the

gain dependence on the temperature is given by −0.8 % K−1 for the SenseL types

[56] and −0.3 % K−1 for the Ketek types, both at 21 ◦C. For a silicon-based sensor,

this is a very low value. The APD type that was used for the Crystal Barrel detector

upgrade at the ELSA accelerator has a temperature dependent gain variation of around

−2.3 % K−1[57]. The fact that the individual APD pixels in a SiPM are operated in

the Geiger-mode makes the whole device much less sensitive to temperature changes

compared to an APD that is operated in the proportional mode.

In the last beam time using the 3rd iteration of the experimental setup. The environ-

ment temperature in the Big Karl area was measured using a DS18B20 temperature

sensor with an accuracy of ±0.5 K and a resolution of ∼0.1 K [58]. Simultaneously, the

reverse bias voltage for the SiPM arrays of the LYSO based detector modules generated

by the designated power supply was measured as well. The result of the eight days

of temperature and voltage measurement is given in Figure 5.23. This measurement

showed an average temperature of 22.80± 0.65 ◦C with a peak-to-peak variation of

2.56 K. By comparing the curves for the temperature and the reverse bias voltage, a

correlation between the two is evident. The voltage was set to 29 V at the beginning of

the experiment and the measurement showed an average voltage of 29.0018± 0.0022 V

and a peak-to-peak variation of 9.842 mV. To put these numbers into perspective, one

needs to know by how much the gain of the SiPM array changes as a function of the

reverse bias supply voltage.

For this purpose, the gain of a SiPM array (type ARRAYJ-30020-64P-PCB, see Ta-

ble B.1) was measured as a function of the reverse bias voltage. The SiPM array was

placed in a light-tight box together with a green LED that was illuminating the array

through a diffusor foil. The LED was driven by a frequency generator that generated

10 ns flashes at a repetition rate of 10 kHz. The signals from the SiPM array were
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Figure 5.24: Measurement of the gain dependence of a SiPM array on the reverse bias
voltage (blue) and the corresponding relative gain change per 100 mV variation (black).
The data for this graph was measured in the lab using a green LED pulser with 10 ns
flashes at a repetition rate of 10 kHz.

captured with an oscilloscope, and the signal shape was integrated as a measure of

the gain of the SiPM. The reverse bias voltage was then successively increased from

25.3 V up to 31.8 V. The result is given in Figure 5.24. The relative gain change was

calculated for each voltage step by taking the derivative and is given in the same plot.

This measurement revealed that at 29 V, the relative gain change amounts to 4.3 % for

a voltage change of 100 mV. Applied to the voltage measurement given in Figure 5.23,

a peak-to-peak variation of 9.842 mV equals to a gain variation of 0.423 %. Comparing

this result to the temperature peak-to-peak variation of 2.56 K, a rough approximation

for the temperature dependent gain variation of the LYSO based detector modules

based on the temperature variation of the reverse bias supply generator can be given

by +0.165 % K−1.

The gain dependence of the final signal S on the deposited energy E can be described

as follows:

S = E ·GLY SO ·GSiPM ·GSupply, (5.9)

where the G factors denote the absolute gains of the LYSO crystal, the SiPM array,

and the SiPM dependence on the reverse voltage supply. The temperature dependent

relative gain variations (∆G) discussed above can be included in this equation:

S = E·
G0
LY SO(1 + ∆GLY SO∆T )·

G0
SiPM (1 + ∆GSiPM∆T )·

G0
Supply(1 + ∆GSupply∆T ), (5.10)
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where ∆T denotes the temperature changes relative to an absolute temperature T 0 at

which the gain G0 is defined. By factoring out Equation (5.10) and keeping only the

terms linear in ∆T , it can be simplified to:

S ≈ E ·G0
LY SOG

0
SiPMG

0
Supply·

(1 + [∆GLY SO + ∆GSiPM + ∆GSupply]∆T ) (5.11)

By combining temperature dependent effects as stated in Equation (5.11) to calculate

an overall temperature dependence of gain of the LYSO based detector modules, one

finds a value of approximately ∆G ≈ −0.915 % K−1 for the SensL based modules and

∆G ≈ −0.415 % K−1 for the Ketek based types. A 1 K temperature variation results

in less variation in the energy spectrum than expected from the energy resolution

of the modules. These results show that the LSYO based modules can be operated

without the need of active temperature regulation on the modules if it is possible to

keep the environment temperature stable within 1 K. If the environment temperature

varies more than that, it will affect the resolution of the LYSO based detector modules.

Nevertheless, even a variation in the order a few Kelvin is not enough to significantly

affect the ability of the polarimeter to identify elastic events. One option to make the

detector modules less sensitive to temperature changes is to add a feedback-loop to the

reverse bias voltage generator that would compensate the gain loss of the LYSO crystal

and SiPM with a temperature increase by increasing the bias voltage accordingly. This

option is being investigated at the moment by David Mchedlishvili at the SmartLab in

Tbilisi.

5.3.1.4 Linearity in Detector Response

In the last beam time in May 2018, a total of 52 detector modules have been installed.

All the modules in the four arms of the cross (see Figure 5.40) were equipped with 20 µm

SensL SiPM arrays, and the four edge modules (prefixed with C) used two versions of

Ketek arrays with a SiPM pixel size of 15 µm and 25 µm, respectively. The linearity of

the modules was specified by plotting the peak position as a function of the deuteron

beam energy, as shown in Figure 5.25. To perform this measurement, the module was

positioned such that the deuteron beam would penetrate it directly and all targets and

the start counter were removed from the beam path. In the case of a completely linear

module, the integral of the detected signal is directly proportional to the beam energy

and thus can be described by a linear fit. This works fine for the modules equipped with

a Ketek SiPM array, but in the case of the SenseL SiPM arrays, the module deviates

from a linear behavior for higher energies.

For the Ketek based modules, the linear fits were anchored at the origin and the

measurements at 150 MeV and 200 MeV for the 15 µm and at the origin and the

measurement at 200 MeV for the 25 µm version. The result of the linear fit was then

extrapolated up to a beam energy of 300 MeV, and it turned out that the extrapolated

function was in good agreement with the measurement at 300 MeV. This indicates that

these modules are very linear.

In the case of the SensL based modules, the linear fit (dashed line) was anchored at the

origin and at the measurement at 150 MeV. The extrapolation of this fit disclosed the
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Figure 5.25: Linearity of LYSO based detector modules equipped with different types
of SiPM arrays. The amplitude of the recorded signal is plotted as a function of the
deuteron beam energy. The relation between the amplitude and the beam energy can
be described by a linear function in the case of the Ketek based modules (solid line).
Note that the point at 150 MeV for the 25 µm Ketek based module was measured
with a bias voltage that was lowered by one volt compared to the other point and can
therefore not contribute to the linearity fit. The SensL based modules deviate from the
linear behavior (dashed line) with increasing beam energy. Plot by courtesy of Irakli
Keshelashvili.

non-linear trend for higher energies. The full range of the measurements done with the

SenseL version was fitted again with a quadratic function (solid line) that was able to

describe the energy dependence of these modules. At 300 MeV, the relative deviation of

the measurement from the linear function equals to ∼ 23% and evaluating the quadratic

fit function suggests that this module will be fully saturated (slope approaches zero)

at ∼400 MeV. The slight saturation of the SensL based detector module is a possible

explanation of the small increase of the resolution value at 300 MeV in Figure 5.20, as

48 of the 52 SiPM based detector modules were equipped with SensL sensors.

A possible explanation for this non-linear trend for the SensL arrays compared to the

Ketek SiPMs can be found in the difference in the PCB layout of the manufacturer. The

SensL SiPM array provides an additional, capacitive decoupled output (Fast Output)

on each of the individual pixels of their SiPMs, see [38]. On each of the 64 SiPM of

the array, all the anodes, cathodes as well as the fast outputs are tied together. The

SiPM array is equipped with two 80-pin connectors that allow for the connection to

the baseboard of the detector modules (see Figure 5.4a). A total of 160 pins is not

enough to provide an individual connection to all three inputs on each of the 64 SiPMs

on the array. SensL designed their array such that all the cathodes are interconnected

on the array itself (common cathode) and an individual path was provided for each

anode and fast output of each SiPM. The copper traces on the array are very thin and
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therefore their resistance is not as small as for the wider traces on the baseboard of the

modules. When a LYSO based detector module that is equipped with such a SensL

array is exposed to a high energy deuteron beam, the number of photons created by

the scintillator crystal can be quite large (33200 photons per MeV of deposited energy,

see [37]). This large number of photons trigger almost all SiPM pixels simultaneously,

and hence the current draw of the whole array can be rather large during a very short

time. The current enters the array through the common cathode and causes a voltage

drop on the trace itself. This voltage drop reduces the effective reverse bias voltage

of the individual pixels and eventually causes a reduced gain of the SiPM array as a

whole. In the case of the Ketek arrays, there is no fast output available. The array

uses the same 2 x 80 pins connector but provides an individual trace for both, anode

and cathode of each of the 64 SiPMs. When a large number of pixels fires in this array,

the current draw on one cathode is therefore reduced by a factor of 64 compared to

the common cathode of the SenseL arrays and the voltage drop on each cathode is too

small to cause a significant reduction of the gain.

This non-linear trend of the SensL based detector modules is unfortunate, but since they

are used as a polarimeter it should not affect their ability to identify elastically scattered

events. However, if in the future new modules will be added to the polarimeter, it makes

sense to use Ketek SiPM arrays over the ones from SensL.

5.3.1.5 Detection Efficiency

Due to the high density of the LYSO scintillator crystal, it is safe to assume that

whenever a particle hits the crystal, it will produce a scintillation flash. The large

number of photons being produced assures that the signal will be recorded by the SiPM

array especially due to the large quantum efficiency of each APD pixel and the densely

packed surface of the SiPM array. It can, therefore, be stated that a LYSO based

detector module has a detection efficiency of approximately 100% when a deuteron

hits the module straight in the center of the detector.

(a) Side view. (b) Front view.

Figure 5.26: GEANT4 simulation of 270 MeV deuterons being stopped in a LYSO
crystal by Giorgi Macharashvili

For particles that hit the fringe of a module, the situation is different. A particle that

hits the scintillator will not necessarily travel on a straight path within the crystal
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Figure 5.27: Schematic representation of the LYSO based detector module arrangement
and the two clusters that can be formed on each arm of the detector.

until it comes to a full stop, but instead can be deflected from its straight path due

to scattering off the nuclei of the crystal material. This process is known as range

straggling [31]. The expected value of the volume in which the particle is stopped

can be described by a cone with the tip pointing towards the point of entrance of the

particles. Figure 5.26 shows a GEANT4 simulation by Giorgi Macharashvili for the

paths of multiple 270 MeV deuterons being stopped in a LYSO crystal. If a deuteron

hits the scintillator crystal close to its fringe, it is possible that the particle leaves the

first module and enters a neighboring one. In this case, the first module will still record

parts of the kinetic energy of the particle, but this event will not be in the elastic peak

in the energy spectrum of this module and effectively reduce the number of detected

deuterons and therefore the detection efficiency.

To evaluate the magnitude of this effect, the number of events in one module was com-

pared to a cluster including this module and all of its direct neighbors, see Figure 5.27.

In the 2nd iteration of the experimental setup, the modules on each arm were arranged

such, that two center modules were surrounded by eight neighbor modules. This setup

allowed for the calculation of the ratio between the number of events in the center crys-

tal and the number of events of the corresponding cluster for all four center modules.

To assure that the entrance points of the deuterons were spread evenly over the whole

cluster, the data from runs with different targets were combined. Additionally, each

arm was moved to different positions to get an even more even coverage of the modules

with scattered deuterons. The result can be seen in Figure 5.28.

The center histograms contain all the events that have triggered this module. The

cluster histogram contains the energy sum of all modules of the corresponding cluster

when the center module generated a trigger. In the cluster histograms for Center Left

1 and Center Left 2, a high energy tail is visible. It is not clear why these tails are there

but they might origin from pile-up. In any case, the results from these modules have to

be treated with caution because additional events in the cluster histogram will lead to

a decrease of the fringe efficiency. The spectra of the Center Right 2 modules look very
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Figure 5.28: Comparison of the four spectra of the center crystals with their correspond-
ing clusters at a deuteron beam energy of 270 MeV. The ratio between the number of
events in the spectra of the center crystal and the clusters equals to the fringe effi-
ciency of the module, i.e., the fraction of events that are identified as deuterons when
the module face is evenly bombarded. The integration range to obtain the number of
events was the same for the center crystals and the clusters and is indicated by the red
lines.

reasonable, and the fringe efficiency from this module is also slightly larger than for the

other modules. On average, a fringe efficiency of ∼ 84.5% was measured at 270 MeV.

This means, when the scintillator face is evenly covered by deuteron hits, ∼ 84.5% are

within a region where they can be identified as deuterons by just applying a cut to the

energy spectrum. On the other hand, if the number of events within a specific cut is

known, the actual number can be obtained by applying this fringe efficiency correction.

Applied to the 30 mm x 30 mm face area of the LYSO based detector module, this

number can be translated into a geometrical fringe with a width of ∼1.2 mm around

the border of the module face.

In the case of a polarimeter with the detector modules at a fixed place, the previous

correction cannot be applied to calculate the actual number of events, because due

to the strong polar angle Θ dependence of the unpolarized cross section, the hits will

not be evenly spread over the face of the detector modules. However, the geometrical

interpretation of the fringe is still valid and it will reduce the effective covered area of

the modules. If the detector is used in its intended polarimeter application, the fringe

efficiency does not need to be known as it will cancel out if a cross ratio method is used

to calculate the polarization.
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5.3.1.6 Deuteron Reconstruction Efficiency

The deuteron is a very light bound system of a proton and a neutron. Its binding

energy amounts to 2.224 MeV [59] which is only ∼ 0.11% of its mass-energy of md =

1875.612 MeV [60]. When a deuteron scatters off another nucleus, it is rather likely

that it breaks-up into its constituents nuclei. In the case of a polarimeter that uses a

carbon target for the polarimetry reaction and a heavy scintillator crystal, there are

different places where such a break-up reaction can occur. The first place where this

reaction can take place is the target itself. Dependent on the setup, the deuteron beam

will pass the exit window of the beam pipe before it hits the target as was the case in

the different iterations of the polarimeter development in the Big Karl area. When the

polarimeter will be installed inside of the COSY accelerator, the target will be inside of

a vacuum chamber, and the scattered deuterons will pass the exit window before they

hit the LYSO based detector modules. In any case, a break-up reaction can take place

at the exit window as well. Finally, the deuteron will penetrate the scintillator crystal

and can break within the LYSO material.

When a deuteron undergoes a break-up reaction, the kinetic energy can be randomly

distributed between the proton and the neutron. The neutron is usually undetectable

with the detector modules of the polarimeter, but the proton on, the other hand,

can be detected. The energy spectrum of break-up protons is spread over the whole

energy range up to the endpoint energy equal to the kinetic energy of the projectile

deuteron. However, it is very unlikely that the proton takes the full kinetic energy of

the original deuteron and therefore the break-up proton peak does not or only slightly

overlap with the elastic deuteron peak. The angular distribution of the proton after

a break-up reaction does not reflect the original deuteron scattering angle anymore.

Generally speaking, a proton from the break-up reaction of a deuteron will not carry

the asymmetry information from the elastic deuteron carbon scattering anymore and

has to be removed from the analysis. Removing the proton contribution from the

energy spectrum of the elastic deuteron scattering can be done by either applying a

tight cut on the elastic deuteron peak or using a cut in the ∆E vs. E plot where the

deuterons and the protons occupy different bands, see Section 5.3.2.1.

For deuterons that break within the LYSO crystal, the situation is different. As they

enter the detector module as a deuteron, they carry the asymmetry information from

the polarimetry reaction and can be used to calculate the polarization as well. The

problem is the identification of these events. In the ∆E vs. E plot, they are located

on a band that overlaps the proton band from the break-up protons off the target and

cannot be disentangled. By applying a cut on the elastically scattered deuteron, the

break-up protons from inside of the scintillator are removed as well.

A possible approach to overcome this issue is to measure the fraction of deuterons

that undergo a break-up reaction within the LYSO scintillator in a setup were almost

no contamination from other protons exists. This was done in the 1st iteration of

the polarimeter development where the experimental setup allowed the LYSO based

detector modules to be placed close to the exit window of the beam pipe. A very thin

plastic scintillator with the dimensions of 10 mm x 10 mm x 2 mm was placed in front
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Figure 5.29: Energy spectrum for a LYSO based detector module in a 235 MeV deuteron
beam. The ranges for the calculation of the deuteron reconstruction efficiency are
indicated with the red lines.

of the detector module to act as a trigger. This trigger selected only deuterons that

hit the LYSO scintillator in the very center and removed events that would hit the

modules at the edges and assured that all deuterons would be stopped fully within

the crystal. The energy spectrum that was recorded with this setup consisted of only

deuterons and protons that underwent a break-up reaction inside the LYSO crystal.

Since the exit window consists of very thin (0.4 mm) stainless steel, its break-up proton

contribution can be neglected. Figure 5.29 shows this spectrum for 235 MeV deuterons.

It is dominated by a large deuteron peak at the energy of the beam and a rather

flat background from the break-up protons. To calculate the number of deuterons

that underwent a break-up reaction, the spectrum was divided into two ranges. The

deuteron peak was fitted with a Gaussian and the peak value was defined as 100%.

The signal range was defined as the range between 90% and +6σ of the Gaussian.

This assured that the whole peak was in the signal range. The 90% point as the lower

end is rather arbitrary, but as long as this definition is applied to the spectra of all

measured beam energies the results can be compared among each other. The second

range, the full range, was defined between the 0.5% point to exclude any pedestal

effects, up to the end of the signal range. By dividing the number of events in these

two ranges, the deuteron detection efficiency was defined and describes what fraction

of the deuteron did not break up when being stopped by the LYSO crystal. Like any

other efficiency correction, the deuteron detection efficiency can be multiplied with the

number of events after a cut on the elastically scattered deuterons was applied to obtain
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Figure 5.30: Deuteron reconstruction efficiency in LYSO as a function of the beam
energy. The measurements from the four PMT based detector modules are averaged
and the error bars represent the statistical variation and indicate that the number of
recorded events was not equal for all energies. The energy dependence can be described
by a quadratic fit function (solid line).

the actual number of deuterons that have hit the corresponding detector module.

This measurement was done for all four beam energies used in the first beam time, and

the result is given in Figure 5.30. The measurements can be described by a quadratic fit

(solid line). The measurements show that for increasing beam energy, the probability

for a break-up reaction within the LYSO material increases and therefore the deuteron

reconstruction efficiency decreases. As for any other module dependent efficiency cor-

rection, the deuteron reconstruction efficiency gets canceled when the polarization is

calculated using a cross ratio method. However, this efficiency could be used if the

LYSO based detector modules will be modeled in a GEANT4 simulation.

5.3.1.7 Double-Peaks

The double-peak issue became evident when the 2nd iteration of the LYSO based detec-

tor modules was tested in the deuteron beam. The modules started to show a double-

peak in the energy spectrum (see Figure 5.21b) in situations where only a single peak

was expected, i.e., when the module was placed directly in the beam for resolution

measurements. At first, it was thought that it would affect only certain modules, but

it turned out that all modules were affected by this issue under certain conditions. The

main problem was that it was not possible to figure out what settings in the detector

setup or the beam control would cause the double-peak to appear or disappear for a

given module.

Many different theories have been found to try to explain the problem. At first, it was

assumed that the deuterons would scatter or lose part of their energy in the iron from
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the collimator, that was intended to be used at the beginning of the 2nd iteration of

the detector development. The removal of this part did not change anything. What

made this problem very hard to figure out was the fact that there were two distinct

peaks visible. This ruled out a lot of possible sources such as variations in the gain of

the SiPMs and their supply voltages as well as any temperature dependent effects. If

any of these effects were present, it would have led to a broadening or smearing of the

peak as there was no obvious reason why the gain would jump between distinct values.

Analyzing the energy spectrum of a module showing a double-peak as a function of

time showed, that the double-peaks were present at any point of the measurement and

that there were no jumps from one peak to the other one visible. Another theory was

that there was some loose material inside the beam-pipe. If one part of the deuterons

would pass through this material they would lose part of their kinetic energy, and this

could explain the observed double-peaks.

The explanation of the issue was found accidentally during the last beam time. In

order to measure the resolution of the detector modules, the detector was moved as

close to the exit window of the beam-pipe as possible. The detector was then moved in

such a way that one module after another was positioned in the beam and an energy

spectrum was recorded. The exact same procedure was applied in the other beam

times as well with one small difference: In the other beam times, the data acquisition

was turned off while the detector was moving and one individual file was taken for

each module. In the last beam time, it was decided that the data acquisition could

be left running and the spectra of all modules could be stored in one file. After the

spectrum of the first module was recorded, the detector was moved to place the next

module in the beam. While the detector was moving the module through the beam,

one peak appeared on the online spectrum and as the detector was continuing to move

the module a second peak appeared. To confirm the observation, two spectra were

taken with the beam hitting either side of the module and one with the beam hitting

the center of the module. The first two spectra showed a single peak but at different

positions but the center spectrum had two peaks, each one on the position found in

the side spectra. This observation led to the decision to scan the face of the modules

with the beam and check how the module position affected the peak position.

The slow control software allowed to write a script that would automatically move

the modules in a way that the beam penetrated them on defined grid points and take

an energy spectrum measurement for each of the points. Each module was scanned

in a 5 x 5 grid with 5 mm distance between the points. From the spectra, the peak

position was extracted and filled into a two-dimensional histogram. This procedure

was repeated for the available beam energies of 150 MeV, 200 MeV, and 300 MeV.

Figure 5.31 shows an example for the maps that were measured using this procedure.

To see the how much the peak position differs for each grid point, the obtained positions

were scaled to the maximum peak position measured for this crystal and the individual

grid points show the relative deviation from the maximum peak position in percentage.

In addition, the summed spectrum for all the grid points is shown as well. For 150 MeV

and 200 MeV, the two peaks, origin from the two regions in the crystal, are clearly

visible. For 150 MeV this module showed variations in the upper half in the order of
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Figure 5.31: Left column: maps of the relative peak position in module L2 02 for
deuteron beam energies of 150 MeV, 200 MeV, and 300 MeV . The peak position for
each grid point was scaled to the maximum peak position and the values given for each
grid point represent the relative deviation from this maximum given in percentage.
Right column: summed histogram of all the individual grid points. These histograms
show the situation when the deuterons hit the crystal face evenly distributed.
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Module C1_04 at 300 MeV, Side View

Figure 5.32: Grid scan of the long sides of the module C1 04 with a 300 MeV deuteron
beam. 15 x 3 points were measured with a horizontal spacing of 5 mm and a vertical
distance of 10 mm. The peak position that was obtained from the energy spectrum
obtained in for each of the grid points was scaled to the maximum peak position, and
therefore each grid point shows the relative deviation from this maximum. The top
map was measured by scanning the bottom of the module, i.e., the long side pointing
downwards when the module is installed in the polarimeter. For the lower map, the
crystal was rotated by 90◦.

∼ 1.5% which leads to a broadening of the right peak in the summed spectrum. In the

lower half of the module, the variations between the grid points are smaller which is

reflected in a more narrow left peak in the summed spectrum. The same result can be

seen in the example at 200 MeV as well. At 300 MeV, there was no clear step measured

in the grid measurement of the crystal face and since most of the variations are in the

order of the module resolution, the summed spectrum shows only one peak. However,

the lowest row of the grid measurement shows a ∼ 2% deviation from the maximum,

and again a broadening on the low energy edge of the peak can be observed.

The map measurement was repeated for all 52 LYSO crystals at all three beam energies.

An all of them showed differences in the peak position as a function of the beam position

similar to the example shown in Figure 5.31. The LYSO crystal of module C1 04 was

measured along both long sides as well, see Figure 5.32. For this purpose, the module

was removed from the detector assembly and mounted on top of the experimental table

which allowed to move the module in the beam and scan the sides.

The conclusion from this measurement was that the LYSO crystals are inhomogeneous

in their light yield depending on the position of the volume inside the crystal where

most of the energy was deposited. As described in Section 5.3.1.1, the majority of the

energy is deposited in a rather small volume of the scintillator crystal. By using different
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energies, one probes different depths regions in the crystal. According to Equation (5.2),

150 MeV corresponds to a penetration depth of 22.1 mm, 200 MeV to 36.5 mm and

300 MeV to 73.5 mm. This measurement together with the side measurement shown in

Figure 5.32 indicates that the difference in light yield cannot be described by a simple

yield line dividing the crystal into two regions but that the inhomogeneities within the

LYSO scintillators follow a much more complicated three-dimensional pattern. It is

important to note that it can be excluded that the inhomogeneity origin from the SiPM

arrays for two reasons: First, the light that hits the SiPM array from the scintillator

consists only of a small fraction from a direct cast but most of it reaches the sensor

after multiple internal reflections. This means that the scintillation light is evenly

spread over the whole SiPM sensor independent of the origin of the light within the

scintillator. Second, this was also experimentally checked. For this purpose, one module

was opened after the map was measured and the SiPM array was rotated by 90◦ while

the LYSO crystal orientation remained unchanged. After the module was reassembled

with the SiPM array in its new orientation, the map was remeasured, and the result

was the same as before, i.e., the position dependence of the peak did not change with

the reorientation of the SiPM array.

The question that remains is, how does the double-peak issue affect the performance

of the LYSO based detector modules in the final polarimeter setup. It is obviously

not ideal, and there is nothing that can be done to remove these inhomogeneities from

the LYSO crystal nor would it make sense to order new crystals. One can argue, that

the issue was only visible because of the very high resolution of the SiPM array based

design of the modules. This means that by using another light detector this would have

never been disclosed and the crystals would have been used without someone knowing

that the light yield is not homogeneous throughout the whole scintillator. As the most

crucial part of the polarimeter is to identify and count elastically scattered particles,

this ability is not affected by the double-peaks. Instead of counting the number of

events in one peak one needs to integrate over both peaks to get the number of elastic

events from the spectrum. In theory, it would be possible to remove the double-peaks

by applying a position dependent calibration map to each of the modules. This would

require having a high-resolution angular tracker in front of the LYSO based detector

modules. The first measurements of the position reconstruction from the triangular

∆E detector (see Section 5.3.2.2) suggest a rather high spatial resolution of less then

5 mm that would be enough to create such a calibration map.

5.3.2 ∆E Detectors and Particle Identification

Having an additional layer of plastic scintillator mounted in front of the LYSO based

detector modules allows for the creation of ∆E vs. E spectra. From these spectra, the

type of the particle can be identified, and it is, therefore, an essential tool to select the

elastically scattered deuteron needed to calculate the polarization of the beam. In the

following sections, this method of particle identification will be discussed. Further, the

first result of a test using triangular ∆E detectors, that not only provide the information

for particle identification but can be used for position reconstruction of the tracks for

the individual events will be presented.
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(a) 2 cm ∆E detector installed in the 2nd it-
eration of the polarimeter development. The
custom pre-amplifier (see Appendix B.2) is in-
stalled in the red box.

(b) Two layers on triangular ∆E detectors as
tested in the last beam time using the 3rd iter-
ation of the experimental setup.

Figure 5.33: Examples of ∆E detectors used in the polarimeter development.

5.3.2.1 Particle Identification

A ∆E vs. E spectrum can be created when an additional detector is installed in front

of the detector that fully stops the particle. In the case of our polarimeter, plastic

scintillators were installed in front of the LYSO based detector modules. In the two-

armed version of the detector setup used in the 2nd iteration, one plastic scintillator

was used on each arm and in the 3rd iteration, a plastic scintillator for each quadrant

was installed. A particle travels through this scintillator and loses part of its kinetic

energy before it gets fully stopped in the following LYSO crystal.

For each event that is recorded by the detector, the energy loss in the plastic scintillator

can be plotted against the total kinetic energy deposited in the LYSO crystal in a

two-dimensional histogram. How much energy is deposited in the plastic scintillator

depends on the type of the particle as well as on its kinetic energy and is described by

the Bethe-Bloch formula given in Equation (5.1). Figure 5.34 shows such a ∆E vs. E

spectrum measured in the 2nd iteration with a 2 cm thick plastic scintillator mounted

in front a LYSO based detector module that was located at a polar angle Θ of 10◦

relative to the beam axis. A 10 mm carbon target was inserted into the beam path,

and the deuteron beam energy was 300 MeV. Independent on the kinetic energy of a

particle, its position on the ∆E vs. E spectrum is restricted to a particle specific band.

In the case of protons and deuterons, these bands resemble the shape of a banana

and are therefore sometimes referred to as the proton-banana and the deuteron-banana,

respectively. The heavier the particle, the more its corresponding band is shifted up-

right in the ∆E vs. E spectrum, as can be seen in Figure 5.34 where the deuteron

band is located above the proton band. The most energetic particles will be located at

the right end of their respective band and hence, elastically scattered deuterons off the

carbon target are located at the end of their band. All the other events located in this

band are deuterons as well, but they have not been elastically scattering off the target

but have lost their kinetic energy somewhere else before they hit the detector. A lot of

events are located in the proton band. The combination of a rather thick target, high
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Figure 5.34: ∆E vs. E spectrum measured for a 300 MeV deuteron beam and a 10 mm
carbon target.

energy and the large polar angle of the detector led to a lot of protons (from deuteron

break-up in the target) to be recorded. As stated in Section 5.3.1.6, the protons from

a break-up reaction can take any fraction of the initial kinetic energy of the deuteron

and are therefore spread over the whole proton band. The deuterons that undergo a

break-up reaction within the crystal are also visible in this spectrum. As they enter the

LYSO scintillator as deuterons, they are registered by the plastic scintillator as such.

When they break inside of the crystal, only the proton is detected and as the case

for the break-up protons from the target, the energy deposited by the internal break-

up protons is spread over the full energy range up to the kinetic energy of the initial

deuterons. In the ∆E vs. E spectrum, they occupy the region that the deuteron band

projects on the ∆E axis. Since the majority of internal break-up reactions origins from

elastically scattered deuterons, a band formed by the projection of the elastic peak

onto the ∆E axis is most pronounced. The last particle species that can be found

in this plot are neutrons from the deuteron break-up reaction in the target. Neither

LYSO nor plastic scintillators are suited to detect neutrons, but in a heavy material

such as LYSO, neutrons can deposit some energy mainly due to elastic scattering off

the crystal nuclei. The energy loss from these reactions is usually rather small, and

therefore the neutron events can be found at the lower end of the energy spectrum of

the LYSO scintillator. The energy deposition of a neutron in a plastic scintillator is

much smaller than in LYSO and therefore, the neutron event can be found only in the

lower left corner of the ∆E vs. E spectrum.

To select elastically scattered deuterons for the calculation of the polarization, having

an additional layer of plastic scintillator in front of the LYSO based detector module,

can be very useful. It is possible to select the elastically scattered deuterons only form
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the LYSO energy spectrum by applying a cut around the elastic peak. However, as can

be seen from Figure 5.34, the tail of the proton band reaches up to the elastic peak and

if only the projection of this spectrum on the abscissa is available. This is the case if no

∆E detector is installed. It is tricky to define the lower position of the cut if no elastic

deuteron events should be removed and still all protons have to be excluded. If a ∆E

vs. E spectrum can be used, a simple box cut around the elastic peak maximizes the

number of elastically scattered deuterons that enter the analysis while simultaneously

the proton contamination can be minimized. In addition, a second region around the

internal deuteron break-up band, on the left of the proton band, can be defined to

increase the number of valid events even further. Following these arguments, it is

evident that some form of ∆E detector has to be installed in the final polarimeter

setup.
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(a) Picture of the dual channel pre-amplifier.

V

(b) Model of the dual channel pre-amplifier.

Figure 5.35: Dual channel pre-amplifier that was custom designed for the triangular ∆E
detector by Kai Cremer from the company QS Electronics in Hückelhoven, Germany.
The SiPM arrays are colored in blue. In this model, they are drawn on the front side,
but they were eventually mounted on the back side of the PCB such that they could
be brought in contact with the plastic scintillators. The component that is colored in
red is a potentiometer that allowed to set the gain individually for each channel.

5.3.2.2 Triangular ∆E Detector

The angular coverage of each of the LYSO based detector modules is rather large as

can be seen in Figure 5.41. It would be desirable to have a smaller angular binning

for the calculation of the polarization because the unpolarized angular cross section is

assumed to be constant over the polar angle Θ range of one module, see Section 5.3.3.1.

For this reason, it would be good to have an additional tracking detector in front of

the LYSO based detector modules to obtain the angular information of each event.

Adding another detector layer to the polarimeter would be contrary to the basic design

requirement stated in Section 5.1.3 and is therefore not feasible. However, as discussed

in the previous section, a ∆E detector is needed in the final version of the polarimeter

and therefore the idea of having a combined ∆E and tracking detector was born.

This detector consists of two layers of plastic scintillator made from triangular bars

that are arranged in such a way that the form an even surface. The bars in the first

layer are oriented perpendicular to the ones in the second layer. The central bars in

both layers have to be shortened to allow the beam pipe to pass through. Two types

of triangular plastic scintillator bars will be used. One type features a cross section

of an equilateral triangle with a base length of 6 cm and a height of 2 cm while the

other type has a cross section of an oblique triangle with the base length of 3 cm and a

height of 2 cm as well. The length of both bars is 39 cm. The shorter bars will have to

be cut to length in order to fit around the beam pipe. Custom designed pre-amplifier

boards with a triangular cross section (see Figure 5.35) will be mounted on each face

of the bars. These boards provide two independent op-amp driven channels that can

be equipped with two SiPM arrays per channel. The sensors used are 6 mm x 6 mm

SiPM arrays from Ketek (PM6660TP-SB0, see Table B.1). The plastic scintillator bars

are covered in one layer of Teflon for the enhancement of internal reflection followed
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Figure 5.36: Schematic drawing of two triangular ∆E detectors to discuss the geomet-
rical consideration needed for the calculation of the position reconstruction. A particle
(red line) hits the first module at the incident position y and travels a distance of x1

in module 1 before it enters module 2 and travels a distance of x2. The dimensions of
the triangles are known: The height h is equal to 2 cm and the half of the base of the
triangle a amounts to 3 cm

by a second layer of Tedlar foil for light tightness. The faces of the bars are not

covered as the pre-amplifier boards with the SiPMs will cover them. A thin, white

3D-printed mask is sandwiched between the pre-amplifier board and the SiPM arrays

allowing them to sit flush in a reflective flat surface. The pre-amplifier with SiPMs are

mounted on an aluminum frame with a 3D-printed mount that allows the scintillator

bars to be pressure-fit between them. The optical interface between the SiPM arrays

and the triangular bars is implemented using a thin silicone pad which also prevents

the plastic scintillators from slipping out of the frame. The amplified SiPM signal from

each channel is fed out of the pre-amplifier using a LEMO connector while a common

voltage supply rail is attached on each side of the frame that allows to plug in each

of pre-amplifier to provide the necessary dual supply voltage. In the last beam time

of the 3rd iteration of the detector development, two frames each equipped with three

plastic scintillator bars were installed and tested.

To obtain the ∆E information needed for the particle identification, the energy loss

for each event in all the triangular bars can be summed. This means that all the

bars act as one solid layer of scintillator. The position information can be extracted

from the energy losses in the individual bars. The amount of deposited energy in one

scintillator depends on the position where the particle passed through the scintillator as

the triangular cross section of the bar leads to an incident position y dependent effective

path length x1 or x2 within the scintillators, see Figure 5.36. The beam hits the first

module and loses a fraction of its kinetic energy ∆E1 while traveling a distance x1 in

this module then it hits module 2 where it loses ∆E2 of its kinetic energy while traveling

a distance of x2. The amount of deposited energy is proportional to this distance and is
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described by the Bethe-Bloch formula given in Equation (5.1). The energy loss in the

plastic scintillator material is rather small, and the maximal path length is limited to

2 cm by the thickness of the triangular bars. Therefore, the distance-dependent energy

loss can be approximated to be a linear function of the path length given by:

∆En(x) ≈ kn · xn, (5.12)

where k describes the energy loss per distance and the index n ∈ [1, 2] denotes the first

or the second module as drawn in Figure 5.36. By assuming that the energy loss in

the first module is small compared to the total kinetic energy of the particle it can be

assumed, that the energy loss constant kn is the same for both modules, i.e., k1 ≈ k2.

Under these assumptions, one can build the following ratio from Equation (5.12):

η =
∆E1 −∆E2

∆E1 + ∆E2
=
x1 − x2

x1 + x2
. (5.13)

From the triangle shown in Figure 5.36, the following geometrical relation can be found

using the theorem of intersecting lines:

y

x1
=
a

h
⇔ x1 =

h

a
· y,

a− y
x2

=
a

h
⇔ x2 =

h

a
· (a− y),

=⇒
x1 − x2

x1 + x2
= y · 2

a
− 1. (5.14)

Combining Equation (5.13) and (5.14) the following expression for the incident position

y can be found:

y =
a

2
· (η + 1) =

a

2
·
(

∆E1 −∆E2

∆E1 + ∆E2
+ 1

)
. (5.15)

This means that the incident position of a particle can be reconstructed from the

deposited energy in two stacked triangular bars. The position that is found using this

method is given relative to the tip of the lower triangular bar (module 2), but since

its absolute position is known, the absolute position of the particle can be calculated

as well. Having one layer of triangular bars allows for the calculation of the incident

position along the axis that is perpendicular to the orientation of the bars and it is,

therefore, necessary to have two layers of triangular ∆E detectors to calculate incident

coordinates of a particle.

Figure 5.37 shows the measurement procedure that was applied during the last beam

time using the 3rd detector development setup. The first frame equipped with three

scintillator bars was fixed relative to the exit window of the beam pipe and positioned

such that the beam would penetrate the scintillators between the first (F 01) and the

second (F 02) module. The energy that was deposited in these two modules was plotted

against each other in a ∆E vs. ∆E spectrum as can be seen in the left two-dimensional

histogram of Figure 5.38. The 270 MeV deuteron beam used for this test showed some

angular dispersion even as the frames holding the scintillator bars were moved as close

as possible to the exit window. This resulted in a band structure in the left ∆E vs.
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Figure 5.37: Schematic model
of the measurement procedure
used to test the position re-
construction using the triangu-
lar ∆E detectors. Two frames
with three scintillator bars each
were mounted in the beam path.
The first frame (modules pre-
fixed with F) was fixed rela-
tive to the beam pipe while the
second frame (modules prefixed
with B) was mounted on the ex-
perimental table allowing it to
be moved vertically. The second
frame was moved to six different
positions with a vertical spacing
of 5 mm.

∆E spectrum rather than a single point. Each point in this spectrum corresponds to

a different incident position of a beam particle and therefore by applying a cut to this

spectrum (red lines) the range if incident positions was restricted. Only events that

were located in this cut region were considered in the second layer which effectively

created an almost point-like beam. The experimental table was then moved until only

a minimal number of events were recorded in the modules B 03 and B 01 and the

number of events in B 02 was maximal. This meant that the beam was hitting the tip

of the B 02 triangular bar. from this position, the detector was successively moved up

six times in 5 mm steps and a ∆E vs. ∆E spectrum was recorded at each position.

These spectra were then summed up, and the result is shown in the right histogram

of Figure 5.38. Each of the six measurements is represented by a distinct point in the

resulting band.

To prove that the individual detector positions could be resolved, the difference over

sum η was calculated as defined in Equation (5.13) for each of these spectra and the

result is given in Figure 5.39. Each of the measurement resulted in a clearly distinguish-
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Figure 5.38: ∆E vs. ∆E spectra for the deposited energy in module F 01 and F 02 for
the first, fixed layer on the left. The same spectrum is given for the second, movable
layer with the modules B 01 and B 02 on the right. The first layer acted as a filter
to narrow the beam. Only events located within the cut range (red lines) in the left
spectrum were considered in the right spectrum. This plot contains the measurements
taken at the six different vertical positions which is represented by the distinct points
in the band.
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Figure 5.39: The difference over sum ratio η as defined Equation (5.13) that can be
used for the position reconstruction. From this plot, it is clearly visible that the mea-
surements that were taken with a 5 mm spacing can be separated from each other. The
average reconstructed spacing between the peaks is indicated as well as the average
width of the peaks obtained from the Gaussian fits.
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able peak that was fitted with a Gaussian. The result of measurements that were taken

with the beam hitting the very edges of the module B 01 and B 02, respectively are

located at the leftmost (black peak) and rightmost (gray peak) position of Figure 5.39.

In these two cases, not all the particles that penetrated the second layer deposited

their energy in the modules B 01 and B 02, and this is reflected in a cut-off Gaussian

at these points. The other measurement showed a clear Gaussian peak shape. The

average width σ̄ obtained from the fits was calculated to be 1.46 mm. The incident

position for each peak was calculated according to Equation (5.15). The average of the

distance between the peak positions ∆̄y was found to be 4.78 mm.

The results from this first test look very promising and suggest that creating a combined

∆E and position detector is feasible. How accurate the position could be reconstructed

has to be further investigated. The accuracy in positioning the experimental table that

was used to perform these measurements did influence the result given for the average

peak distance, and there is for sure room for improvement. The width of the peaks

in Figure 5.39 is not only defined by the resolution of the plastic scintillator bars but

also by the width of the deuteron beam that was used. By narrowing the cut shown in

the left spectrum of Figure 5.38, the effective beam size could be decreased but would

cause a loss in statistics as the number of events would be decreased as well. This issue

could be overcome by increasing the measurement time for spectra that were taken

at each position of the experimental table. The performance of having both layers

installed has to be further investigated. If this detector should be installed at the final

polarimeter setup, the effect of having particles penetrating the surface at a certain

angle compared to this measurement where all the particles hit the scintillator surface

in a perpendicular fashion, has to be studied as well.

5.3.3 Asymmetry Measurements

In the first beam time with the 3rd iteration of the detector development setup, it was

possible to measure asymmetries using the final geometry of the polarimeter with all 52

LYSO based detector modules installed. The modules were arranged in a symmetrical

pattern, see Figure 5.40. Having identical detector modules installed on the left and

right, or on the top and bottom side of the polarimeter, respectively, is very important

to reduce the systematic error in the final polarization measurement, as the cross

ratio methods depend on this symmetries. In [61] it was shown, that this symmetric

arrangement allows to calculate and compensate up to second order error contribution

from beam misalignment, provided a proper detector calibration.

Due to some error in the event reconstruction section of the data acquisition system,

the four ∆E detectors could not be used for the asymmetry measurements. However,

it was possible to measure the asymmetries for the elastic scattering of 200 MeV and

270 MeV deuterons of a 5 mm carbon target with good statistical accuracy. In addition,

some lower statistic runs were taken for the elastic scattering of deuterons off different

target materials. In order to measure the asymmetries, the detector was moved as

close as possible to the exit window of the beam pipe which led to a distance between

the target and the center of the polarimeter of z = 360 mm. Figure 5.41 displays

the angular coverage of each LYSO based detector module in this detector setup. In



136 CHAPTER 5. LYSO MODULE DEVELOPMENT

200 150 100 50 0 50 100 150 200
X [mm]

200

150

100

50

0

50

100

150

200

Y 
[m

m
]

L1_01L2_01L3_01L4_01

L1_02L2_02L3_02L4_02

L1_03L2_03L3_03L4_03

C1_01

R1_01 R2_01 R3_01 R4_01

R1_02 R2_02 R3_02 R4_02

R1_03 R2_03 R3_03 R4_03

C1_03

U1_01

U2_01

U3_01

U4_01

U1_02

U2_02

U3_02

U4_02

U1_03

U2_03

U3_03

U4_03

C1_02

D1_01

D2_01

D3_01

D4_01

D1_02

D2_02

D3_02

D4_02

D1_03

D2_03

D3_03

D4_03

C1_04

Detector in Cartesian System

Figure 5.40: Arrangement and naming convention for the LYSO based detector modules
as used in the 3rd iteration of the polarimeter development. The names consist of a
prefix that indicates in which of the four arms the module is located. The prefixes can
be L (left), R (right), U (up), D (down) and C (central). The number following this
prefix indicates the Θ segment, i.e., defines how far from the center of the detector the
particular model is located. The number 1 means that the module is placed next to
the beam-pipe while the number 5 represents the outer most position where a LYSO
based detector module can be installed on the aluminum support disk. The number
that follows the underline denotes the Φ index. This number starts at 1 in each of the
four arms and is increased in a clockwise manner. Modules with the same Θ and Φ
index, and the opposing prefix form the pairs needed for symmetry calculation.
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Figure 5.41: Representation of the modules in the spherical coordinate system that is
used to describe the scattering process is given. The actual solid angle that is covered
by each module depends on the distance from the origin (the target) and is given for
z = 360 mm as was used in the asymmetry calculation described in Section 5.3.3.1.

the subsequent sections, the extraction of the beam polarization using the measured

asymmetry from the elastic deuteron carbon scattering will be presented as well as the

attempt to extract the vector analyzing power from the elastic deuteron scattering off

the different target materials.

5.3.3.1 Polarization Measurement

The first step in the asymmetry calculation was to extract the number of elastically

scattered events in each LYSO based detector module. The approach used here was

very minimalist as the exact same procedure should be possible to use in the online

analysis and calculation of the online asymmetries. For each module, the elastic peak

was identified by searching for the first peak starting from the high energy side of

the spectrum. This method assures that the actual deuteron peak was selected. By

defining the elastic peak as the maximum peak in the spectrum, for large Θ angles, the

proton peak from deuteron break-up reactions in the target might exceed the elastic

deuteron peak, and therefore this method should not be applied. When the location of

the elastic deuteron peak was found, a cut with a width of −5% and +15% relative to
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the peak location was defined. It was visually checked that this range would include

the full elastic deuteron peak in all modules. When this cut positions are defined, they

can be used to create a look-up table for each module and used for the online analysis.

To calculate the asymmetry, the half cross ratio method described in Section 4.3.1.3

was chosen. The deuteron beam was cycling through three polarization states: Up,

down and unpolarized. The up and the down polarization state represent pure vector

polarized states with an opposing sign. In theory, their magnitude should be the same,

but the experience from the WASA beam time suggested that this will not be the

case. Since unpolarized cycles were available, the half cross ratio method was the right

choice.

The LYSO based detector modules were assigned to either the left or the right side

of the polarimeter. The left side of the polarimeter included all modules with the L

prefix, the modules U1 01 to U4 01, D1 03 to D4 03 as well as C1 01 and C4 01. The

right side of the polarimeter included all modules with the R prefix, the modules U1 03

to U4 03, D1 01 to D4 01 as well as C2 01 and C3 01. The central modules U1 02 to

U4 02, and D1 02 to D4 02 cannot be assigned to either side and are therefore removed

from the analysis.

The asymmetry for each of the polarization state was calculated from the formula of

the half cross ratio given in Equation (4.29) for each pair of opposing LYSO detector

module, i.e., the modules with the same Φ index from both sides of the polarimeter.

By calculating the asymmetry individually for each pair of opposing modules, it can

be assured that the difference in acceptance origin from the module itself or from the

elastic cut would cancel out. The error according to Equation (4.32) was calculated as

well. The asymmetry from all the modules that cover the same Θ range were averaged

and the error of this average was calculated using simple error propagation. The result

for 200 MeV is given in Figure 5.42a and for 270 MeV in Figure 5.42b, respectively.

The vector analyzing power for 200 MeV as well as for 270 MeV was measured in

the database experiment, see Figure 4.19 and was used to calculate the polarization

from each Θ-bin individually, according to Equation (4.9). The resulting polarization

was fitted with a constant for both beam energies individually. The result is given in

Figure 5.43. The values obtained for the polarization were used to up-scale the vector

analyzing power functions measured by the WASA detector and plot them together

with the asymmetries measured by the LYSO polarimeter to check the line shapes, see

dashed lines in Figure 5.42.

The results of the fit for the polarization extraction differ by ∼ 4% for both polarization

states which is well in agreement with the uncertainties of the vector analyzing power.

Unfortunately, no direct measurement of the vector polarization was provided by the

Low Energy Polarimeter (LEP) during this beam time, but three measurements of

the asymmetry were provided. The asymmetry at the LEP is calculated using a simple

left/right method as described in Section 4.3.1.2 with the effect that any differences in

the acceptance between the left and the right detectors will not cancel. To compare

the results of the polarization obtained from the setup using the LYSO based detector

modules to the asymmetry measured by the LEP, the ratio between the asymmetries
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(a) Asymmetry measurement at 200 MeV.
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(b) Asymmetry measurement at 270 MeV.

Figure 5.42: Asymmetries measured from the elastic deuteron carbon scattering at
200 MeV and 270 MeV for the polarization state up (blue) and down (black). The
dashed lines represent the vector analyzing power measured in the database experiment
up-scaled by the polarization that was extracted for each state, see Figure 5.43
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Figure 5.43: Extraction of the vector polarization according to the Equation (4.9)
for each Θ-bin using the measured asymmetry given in Figure 5.42 and the vector
analyzing power measured in the database experiment, see Figure 4.19. The individual
polarization values from each Θ-bin were fitted with a constant (dashed line) to obtain
the average polarization for each state.
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for the up and down polarization state measured by the LEP can be compared to the

ratio of the polarization values obtained in this section. This is possible because the

LEP measures the asymmetry at one angle and therefore the ratio

r =
ε↑

ε↓
=

3
2AyP

↑
y

3
2AyP

↓
y

=
P ↑y

P ↓y
, (5.16)

can be calculated using Equation (4.9). The average ratio from the LEP is given by

r̄LEP = 2.106 and for the LYSO polarimeter by r̄LY SO = 1.893 which means that

they differ by ∼ 10%. It is worth mentioning that the ratio rLEP can vary in the

order of ∼ 2.5% from one measurement to another. It is not clear why there is this

difference between the two detectors. There can be a source of systematic error in the

asymmetry calculation done by the LEP as well as by the LYSO polarimeter. Using

the ∆E detector to improve the cuts on the elastic peak is definitely a good idea.

Another issue is that the measurements at the LEP were not done simultaneously with

the LYSO polarimeter measurements. Even if the beam polarization is assumed to be

stable over time, the database experiment has shown that this is not entirely the case.

Overall, this first test of the performance of the final setup with the LYSO based

detector modules as a polarimeter is very promising and the final conclusion can only

be made once the polarimeter gets installed at its final place inside of the COSY ring

equipped with the designated target and ∆E detectors.

5.3.3.2 Vector Analyzing Power for Different Target Materials

As mentioned before, some additional measurements were made using different targets

materials during this beam time. The materials that were examined were aluminum,

magnesium, silicon, nickel, and tin. A disk with a thickness of 5 mm and a diameter of

50 mm made from each of these materials was installed in the target flower and could

be remotely positioned in the deuteron beam.

For each of these targets, the elastically scattered deuterons were extracted in the same

way as described in the previous section. The asymmetry was then calculated and by

using the average beam polarization of P ↑y = 0.489 ± 0.0190 and P ↓y = 0.255 ± 0.0114

obtained from the carbon runs, the vector analyzing power was extracted. The results

for 200 MeV and 270 MeV are given in Figure 5.44. The error bars were omitted in

this plot as they were in the order of 20% and would, therefore, obstruct the plot.

The measurement of these analyzing powers suffers from a few issues: First of all, the

statistics for each of the target is much too low to create a meaningful result. Second,

the geometry of the LYSO polarimeter in the configuration used in this beam time led to

a much too big binning in Θ. To resolve the structure of the vector analyzing power for

the different materials, a much finer binning is necessary, e.g., the one available at the

WASA detector. If the line shape of the vector analyzing power is known for a specific

reaction, like deuteron carbon scattering, the results from the LYSO polarimeter can be

compared to this line shape. From this comparison, it is possible to state whether the

LYSO polarimeter is able to reproduce the vector analyzing power as it was the case

in Figure 5.42. However, if the line shape of the vector analyzing power is completely

unknown, Figure 5.44 is a perfect example of undersampling. This means that it can
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Figure 5.44: Vector analyzing power for elastically scattered deuterons off different
target material. The analyzing power was extracted from the asymmetries measured
with a 200 MeV and 270 MeV deuteron beam. The vector polarization calculated from
elastic deuteron carbon scattering was used to normalize these asymmetries.

not be known how the line shape behaves between the measurement point and the

assumption that it follows a straight line is not valid. Despite these issues, the results

of the vector analyzing power for these various materials in this energy range are novel

and therefore interesting.

The initial question that led to these test was the following: Does choosing a target

material other than carbon, lead to a much higher vector analyzing power and therefore

increase the FoM (assuming a cross section similar to one for elastic deuteron carbon

scattering) of the polarization measurement (see Section 4.3.3) or should the beam

energy be used to find an optimum FoM? Despite the uncertainties in the plots given

in Figure 5.44, this question can be somewhat answered. It seems to be the case that

for the same deuteron beam energy, the vector analyzing powers of the different target

materials are rather similar. At 200 MeV, this is even more the case than at 270 MeV

where aluminum shows a significant increase in the vector analyzing power for larger

angles and tin is located below all the other materials in the whole angular range. On

the other hand, it is quite evident that by going from 200 MeV to 270 MeV, the vector

analyzing power can be increased more than by choosing another target material and

staying at the same energy.

For the development of the polarimeter, a good strategy seems to be to use carbon as

the target that provides the polarimetry reaction and adjust the energy to optimize the

FoM. Independent of this strategy, it would be interesting to examine the analyzing

power of other material using a designated detector setup and to collect enough statis-

tics especially as aluminum shows this large increase in the vector analyzing power for

larger angles.
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Discussion

6.1 Summary and Conclusion

The aim of this work was to present the development of a designated polarimeter to be

used in an EDM measurement of deuterons and protons that aims to reach a statistical

sensitivity down to 10−29 e cm. This EDM experiment will be performed on polarized

beams in a storage ring. The thesis is structured in two main parts. The first part

described the measurement of the vector analyzing power and differential cross section

in elastic deuteron carbon scattering that was performed in the database experiment

using the WASA forward detector installed at COSY at the Forschungszentrum Jülich.

The knowledge of these quantities is crucial as they provide the physical base that is

needed to measure the beam polarization which is needed to calculate the EDM. The

second part was devoted to the development and hardware testing of a polarimeter

based on LYSO crystal scintillator modules. This polarimeter is designed to provide

the stability and accuracy that is needed to measure an EDM.

6.1.1 Database Experiment

The database experiment was conducted with the intention of creating a solid set of

vector analyzing powers for the deuteron carbon elastic scattering. This was achieved

for seven different beam energies between 170 MeV and 380 MeV. The data was taken

using the well served WASA detector installed in the COSY ring. A lot of detail work

went into the preparation and calibration of the measured data. The multilayer design

of the WASA detector did, on the one hand, allow for careful selection of the elastic

events but complicated the whole analysis and calibration process.

Different approaches for the asymmetry extractions have been discussed and exam-

ined. The final method used, employed a sophisticated procedure that took advantage

of the full Φ coverage of the WASA detector and accounted for the amount of asym-

metry information associated with each event. This was accomplished by adding a

Φ-dependent weight to each event and then perform a combined fit on the polarized

and unpolarized data simultaneously, see Section 4.3.1.4. The resulting asymmetry

was a very smooth function of the scattering angle Θ, and its line shape was in good

agreement with reference data that was available for 200 MeV[23] and 270 MeV[22].

143
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To calculate the vector analyzing powers, the beam polarization has to be known. Un-

fortunately, this information was not available for this experiment, due to the lack of

continues measurements from the LEP. To circumvent this issue, it was decided to use

the reference vector analyzing power for 200 MeV and 270 MeV to extract the beam

polarization that could, in turn, be used to obtain the vector analyzing power for the

other energies. Even though this worked, it also introduced a quite large systematic

error into the resulting analyzing power measurements, see Figure 4.19.

A general description of the methods to be used to measure a charged particle EDM

in a storage ring are given in [62], and the statements made in this paragraph are

related to this source. Generally, it can be stated that a non-zero EDM would cause

the polarization of a proton or deuteron beam to oscillate at a frequency ΩEDM when

interacting with a properly aligned electric field. The frequency of this oscillation is

directly proportional to the value of the EDM and the strength of the electric field. If

the experiment designed such, that multiple full oscillations could be observed, ΩEDM

could be calculated from the zero-crossing of this oscillation without the need to know

the actual value of the beam polarization. However, the design parameters for the

designated prototype ring predict a value for ΩEDM in the order of a few nHz for a

proton EDM of 10−29 e cm. This means that in the actual EDM experiment, a small

polarization build-up will be measured in order to calculate ΩEDM , and, therefore,

the uncertainties in the polarization determination will enter the result for the EDM

directly. In both cases, the error on the polarization has to be taken into account for

the estimation of the uncertainties of the EDM itself.

This work concentrated solely on the elastic deuteron carbon scattering to extract an

asymmetry that can be used to calculate the vector polarization. There exists other

reactions that could potentially be used to measure the polarization. These reactions

belong to the group of inelastic reactions. The proton and the neutron that compose

the deuteron can undergo a quasi-free reaction with nucleons of the carbon target that

produce light mesons. E.g., p + p → d + π+, n + n → d + π− or p + n → d + π0.

From these mesons, the π± feature a decay length of ∼7.8 m [63] that would allow

them to reach the polarimeter and could be detected directly. However, even for the

380 MeV deuteron beam, the production energy threshold cannot be reached, and

therefore these mesons are not available for a polarimeter reaction. Another inelastic

reaction is given by the excitation of the carbon nucleus by the impinging deuterons.

In [64], an overview over the excited states of 12C is given. The states at 4.433 MeV

and 9.36 MeV can be produced by deuteron scattering. Both of these states should

be visible in the energy spectra where they would form peaks that are shifted towards

lower energies relative to the elastic peak. The excited state at 4.433 MeV is so close

to the elastic peak that it is not possible to disentangle them with the WASA detector.

The LYSO based polarimeter should be able to resolve it due to its resolution of ∼1 %

but the double peak issue (see Section 5.3.1.7) would obscure the peak anyway. In any

case, since the peak of this state is located so close to the elastic peak, it is very likely

that it is included in the latter when the number of elastic events was extracted. The

second peak which is located 9.36 MeV away from the elastic peak could be resolved

in both detectors but no visible peak was found in any spectra of neither the WASA
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nor the LYSO based detector. This indicates that the cross section for the excitement

of this state is very small compared to the elastic scattering cross section. The third

inelastic reaction is given by the deuteron break-up in the target. The protons from this

reaction contribute significantly to the total number of recorded events. Therefore, it

would make sense to measure the analyzing power of the break-up protons to see if they

could be used measure the polarization. The data from the database experiment would

allow for the extraction of this quantity but it would be more complicated than for the

deuterons as the break-up protons do not form a discrete peak but are distributed over

the whole energy range.

The extraction of the differential deuteron carbon cross sections was much more sensi-

tive to the calibration of the data as they are absolute quantities. In comparison to the

asymmetries, where the detector acceptance cancels from the calculation, it needs to be

known for the differential cross sections. To obtain these acceptances, a Monte-Carlo

simulation of the WASA detector was used. This simulation software is rather old and

written in FORTRAN which makes it hard to judge its quality. There are concerns

about the accuracy of the detector description built into this software. A further dif-

ficulty was imposed on the analysis by the fact that the experimental setup would not

allow for a direct measurement of the luminosity of the beam. The elastic deuteron

proton scattering reaction was therefore used to calculate the luminosity by comparing

the extracted number of events from this reaction to published proton deuteron cross

sections, see Section 4.3.2.3. This procedure was applied for five out of the seven beam

energies, but for 170 MeV and 235 MeV, the final cross sections were calculated by the

usage of a normalization factor obtained from an analytical model, see Section 4.3.2.4.

Despite all these difficulties, the results, given in Figure 4.29 were still comparable in

the order of ∼ 15 % with published cross sections, see Figure 4.30.

Using the differential cross sections together with the vector analyzing power, it was

possible to calculate a Figure of Merit as a measure of the statistical error of the

polarization extraction as a function of different angular coverage of a polarimeter and

the beam energy. The result from this calculation states, that the lowest statistical

uncertainties on the polarization are to be achieved at a beam energy of 300 MeV

with an angular coverage of 3.5° ≤ Θ ≤ 15.5°, see Figure 4.33. This result, has to

be taken with a grain of salt because only a certain angular range was accessible

due to the geometry of the WASA detector and Figure 4.31 indicates that the FoM

could potentially further increase with increasing beam energies. A strong effect of

the statistical error of the polarization was found by employing the weighting method

described in [30]. This increases the FoM just by choosing a smart weight as a function

of the scattering angle Θ. It is also important to notice that in the framework of

an experiment designed to measure an EDM, parameters such as the beam energy

cannot be selected solely by considerations to optimize the FoM of the polarization

measurement but will rather depend on the design of the designated storage ring.

6.1.2 LYSO Based Polarimeter Development

The development of a polarimeter started with a list of requirements that such a device

had to fulfill (see Section 5.1.3) in order to be used in the framework of the EDM
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investigation. The key requirements were simplicity, long term stability as for the final

EDM experiment a year of continuous data taking is intended to reach the required

statistical accuracy[29]. For this reason, it was decided to create a polarimeter that

follows a simple design that would still allow a provide a high resolution. The later is

important because an elastic scattering reaction off a carbon target will produce the

polarimetry reaction and therefore the clean selection of elastically scattered particle

is the most important feature of the polarimeter. The best solution was found to use

an inorganic crystal scintillator such as LYSO to fully stop the particles and obtain

the kinetic energy information. An additional layer of plastic scintillator in front of

the LYSO crystals would allow for the selection of a particle species using ∆E vs. E

particle identification plots.

The basic element of the polarimeter is a LYSO based detector module with a SiPM

array to convert the energy-dependent scintillation light into an electric signal that

can be in turn digitized by a fast flash-ADC. Using a modular approach allows for an

arrangement of the LYSO based detector modules that can be adapted to the require-

ment of the final experiment. The modules and the final structure of the polarimeter

were developed, tested and improved in an iterative process that involved a total of

five experiments with deuteron beams of different energies at the external beam place

in the Big Karl hall. During these experiments, different types of light sensors such as

PMTs and SiPM arrays, different lengths of the LYSO crystals, various arrangements

of the modules as well as different target materials have been tested and evaluated.

This experiments allowed for the characterization of the modules by measuring dif-

ferent properties of the entire module like energy resolution or linearity. The LYSO

crystal was further analyzed by measuring its stopping power and deuteron break-up

probability. Two different ∆E detectors were tested. A simple version consisting of

a single layer of plastic scintillator was used to demonstrate the particle identification

ability of the polarimeter setup. A more sophisticated prototype, made from triangular

plastic scintillator bars, was tested as well. This type would not only provide a ∆E

information but in addition, can be used to obtain position information for each track.

This would allow for a much finer granularity of the final polarimeter compared to

position information that can be obtained only from the LYSO modules.

The whole development process was done in close collaboration with the SmartLab in

Tbilisi, Georgia. Their members developed a custom made power supply that creates

a very stable reverse bias supply voltage that is needed to maintain the gain stability

of the SiPM arrays. For the final iteration, a total of 52 LYSO based detector modules

have been built and tested. An aluminum disk used in the last iteration provides the

base for the LYSO based detector modules and allows them to be arranged in different

configurations. Each module is connected to an individual channel on a flash-ADC and

has an individually controllable supply voltage channel. The status of the polarimeter

at the moment of writing is such that it is almost ready to be installed and tested in the

COSY ring. The LYSO based detector modules, their mounting base, the simple version

of the ∆E detectors as well as the custom power supply and the data acquisition system

are prepared and ready to use. The main mounting structure including the vacuum

flight chamber with a thin exit window is being assembled at the moment.
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In general, the development of the polarimeter was quite successful. However, there was

one major issue present in the LYSO based detector modules. The energy spectrum of

all of the modules showed a double-peak structure in situations where from the physics

it was clear that only a single peak should be present, see Section 5.3.1.7. It took until

the last beam time to figure out that this issue was caused by inhomogeneities of the

light yield inside of the LYSO crystals. Taking a grid-based set of measurements with a

deuteron beam on the surface of the crystal revealed that depending on the position of

penetration of the beam, the LYSO crystals produce a different amount of scintillation

light. There are regions of similar light yield within the crystals which produced the

distinct double-peaks. This issue cannot be solved directly as it is connected to the

LYSO crystals itself. On the other hand, this problem was most probably only disclosed

because the general resolution of the SiPM arrays is so good that the separation between

the two peaks is visible. This also means that the double-peak issue does not affect

the ability of the polarimeter to identify elastically scattered particles. Once it is

known that both peaks origin from particles with the same energy, both peaks can

be used when counting the number of elastics. A theoretical possibility to circumvent

this issue would depend on a fine position resolution from the triangular ∆E detector.

By creating a position dependent calibration, i.e., having multiple different calibration

functions depending on the position of an event on each crystal face, the position

dependence of the gain could be compensated.

6.2 Outlook

The database experiment described in this work did only measure the vector analyzing

power of the deuteron carbon scattering. Of course, it is also very desirable to have

measurements of the proton carbon vector analyzing power as well. For this reason,

the WASA proton database experiment was conducted in August 2019 at COSY using

again the WASA detector. The following proton beam energy where used: 160 MeV,

190 MeV, 200 MeV, 210 MeV, 232.8 MeV and 250 MeV. From the experiences of the

deuteron database analysis, a few things were improved significantly in this experiment.

Most importantly, the polarization of the beam at the injection energy was monitored

on a regular base using the LEP. This will allow getting much smaller errors on the

analyzing power compared to the deuteron results. Hoyong Jeong from the “Center for

Axion and Precision Physics Research” at the Institute of Basic Research in Daejeon,

Korea who is a member of the JEDI collaboration is working on the analysis of the

proton run data. He is currently developing a new version of the Monte-Carlo software

that was used to calculate the calibration of the WASA detector. His new version

is called WASA Monte-Carlo 4 (WMC4) and, as the name implies, will be written

fully in Geant 4 which is not using FORTRAN anymore. If this new software will

be successfully used in the analysis of the proton data, there would be the option to

re-analyze the deuteron data using the new WMC4 to calculate the calibration and

the detector acceptance. This would probably allow getting rid of a few issues in the

previous analysis such as the detector acceptance calculation. The results from the

deuteron and proton database experiments will form a solid base for the polarimetry

at various energies.



148 CHAPTER 6. DISCUSSION

LYSO Modules

ΔE Detectors

Flight Chamber

Target Chamber
Exit Window

Rogowski Coil
Beam Position
Monitors

Target Arms

Figure 6.1: Model of the final polarimeter (working title: JEDI Polarimeter (JEPO))
that will be installed in the COSY ring by the end of the summer of 2019. CAD drawing
by Berthold Klimczok

On the polarimeter side, a lot of future activity can be expected. For the end of the

summer of 2019, it is planned to install the polarimeter in the ring of COSY and perform

the first experiment. The individual components of the polarimeter are already and at

our disposal. The 0.8 mm steel exit window is welded in a frame that can be attached to

the vacuum flight chamber, see Figure 6.1. The vacuum parts are assembled and being

tested at the moment of writing. A clone of the carbon block target system developed

for WASA will be used for the first experiment. The PhD thesis of Otari Javakhishvili

will be about the development of a diamond-pellet target that should allow for the

measurement of a polarization profile of the beam. Nicola Canale just started his

PhD with the intent to continue the development of the triangular ∆E detectors and

Dito Shergelashvili and David Mchedlishvili will work on further improvement of the

stability of the reverse bias supply for the SiPM arrays. All in all, a continuous rate of

improvements on the LYSO based polarimeter can be expected until it will be used in

the final EDM experiment.



Appendix A

Database Experiment

A.1 Variance and Covariance of Weighted Sums

In order to calculate the statistical error and the covariance of weighted sums, the

subsequent consideration can be made. Assuming an arbitrary function f(x) with x

distributed according to a probability density function n with 〈N〉 =
∫
n(x)dx. Thus,

the expected value of f is given by:

〈f〉 =

∫
f(x)n(x)dx∫
n(x)dx

=
1

〈N〉

∫
f(x)n(x)dx. (A.1)

For a discrete values of xi with fi = f(xi), the following substitution can be made:∑
fi ≈

∫
f(x)n(x)dx

and Equation (A.1) can be rewritten:

〈f〉 =

∑
fi

〈N〉
⇒ 〈f〉〈N〉 =

∑
fi

⇒ 〈
∑

fi〉 = 〈〈f〉〈N〉〉 = 〈f〉〈N〉 (A.2)

where the last equal sign implies statistical independence between f and n, which can

be assumed without loss of generality. From the expected value given in Equation (A.2)

an expression for the covariance can be derived. Let fi and gi be two statistically inde-

pendent functions distributed according to the probability density function n defined

above. For the covariance one gets:

Cov
(∑

fi,
∑

gi

)
= 〈
(∑

fi

)(∑
gi

)
〉 − 〈

∑
fi〉〈
∑

gi〉

= 〈
∑
i=j

fi · gj +
∑
i 6=j

fi · gj〉 − 〈N〉2〈f〉〈g〉

= 〈N〉〈fg〉+ (〈N(N − 1)〉)〈f〉〈g〉 − 〈N〉2〈f〉〈g〉
= 〈N〉〈fg〉+ (〈N2〉 − 〈N〉2 − 〈N〉)〈f〉〈g〉

with N from a counting experiment, i.e., being Poisson-distributed, one can use

〈N2〉 − 〈N〉2 = 〈N〉
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and therefore

Cov
(∑

fi,
∑

gi

)
= 〈N〉〈fg〉 =

∑
fi · gi. (A.3)

From this equation, one can directly derive the error on a weighted sum by choosing

f = g:

∆2
(∑

fi

)
= Cov

(∑
fi,
∑

fi

)
=
∑

f2
i . (A.4)

A.2 Identities for the χ2 Calculation

In order to calculate the integrals from Section 4.3.1.4, Equations (4.41) to (4.43) the

following identities are used:

∫ 2π

0
cos(x) dx = 0 (A.5)∫ 2π

0
cos2(x) dx = π (A.6)∫ 2π

0
cos3(x) dx = 0 (A.7)∫ 2π

0
cos4(x) dx =

3

4
π (A.8)∫ 2π

0
cos(x) cos(2x) dx = 0 (A.9)∫ 2π

0
cos2(x) cos(2x) dx =

1

2
π (A.10)∫ 2π

0
cos2(x) sin(2x) dx = 0 (A.11)∫ 2π

0
cos(nx) cos(mx) dx = δnmπ (A.12)∫ 2π

0
sin(nx) sin(mx) dx = δnmπ (A.13)∫ 2π

0
cos(nx) sin(mx) dx = 0 (A.14)
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A.3 Covariance Matrix for the χ2 Calculation

The full version of the covariance matrix given in Section 4.3.1.4, Equation (4.53) was

calculated using the expression given in Equation (A.3):

C =


Cov[↑] 0 0

0 Cov[↓] 0

0 0 Cov[0]



with

Cov[↑] =


∑ev(↑)

i 1
∑ev(↑)

i cos(Φi)
∑ev(↑)

i cos2(Φi)∑ev(↑)
i cos(Φi)

∑ev(↑)
i cos2(Φi)

∑ev(↑)
i cos3(Φi)∑ev(↑)

i cos2(Φi)
∑ev(↑)

i cos3(Φi)
∑ev(↑)

i cos4(Φi)

 (A.15)

Cov[↓] =


∑ev(↓)

i 1
∑ev(↓)

i cos(Φi)
∑ev(↓)

i cos2(Φi)∑ev(↓)
i cos(Φi)

∑ev(↓)
i cos2(Φi)

∑ev(↓)
i cos3(Φi)∑ev(↓)

i cos2(Φi)
∑ev(↓)

i cos3(Φi)
∑ev(↓)

i cos4(Φi)

 (A.16)

Cov[0] =


∑ev(0)

i 1
∑ev(0)

i cos(Φi)
∑ev(0)

i cos2(Φi)∑ev(0)
i cos(Φi)

∑ev(0)
i cos2(Φi)

∑ev(0)
i cos3(Φi)∑ev(0)

i cos2(Φi)
∑ev(0)

i cos3(Φi)
∑ev(0)

i cos4(Φi)

 (A.17)

A.4 Error Calculation of the χ2-Fit Method

The statistical errors on the asymmetries ε↓,↑, calculated using the method of least

squares given in Equation (4.51), can be calculated using the approach described in [63].

A similar method using only polarized states is described in [21]. As in section 4.3.1.5

some assumptions have to be made:

1. The number of events in all three polarization states is equal: N↑ ≈ N↓ ≈ N0 ≈
N
3 .

2. The acceptance of the detector is flat: an = 0 ∀n > 0 in Equation (4.40).

3. The asymmetry is small: ε↓,↑ � 1.
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As a first step, the expected values given in Equation (4.41) to (4.43) have to be

recalculated as a function of the azimuthal integration range ∆Φ. Note: For each value

of ∆Φ there are two sectors (one on the left and one on the right side of the detector,

see Figure (4.15) with a size of 2 ·∆Φ each. Hence:

〈Np cosn〉 =
`p

4 ·∆Φ
·[ ∫ +∆Φ

−∆Φ
cosn(Φ) + εp cosn+1(Φ)dΦ

+

∫ π+∆Φ

π−∆Φ
cosn(Φ) + εp cosn+1(Φ)dΦ

]
,

(A.18)

with the polarization state p = [↓, ↑, 0] and `p = Lpσ0a0. One has

cosn(π + x) =

{
+ cosn(x) for even n,

− cosn(x) for odd n.
(A.19)

Using this relation, Equation (A.18) reduces to:

〈Np cosn〉 =


`p for n = 0,

`pεp〈cosn+1(∆Φ)〉 for odd n > 0,

`p〈cosn(∆Φ)〉 for even n > 0.

(A.20)

As a next step, these equations have to be linearized. This is done using the first order

Taylor expansion T [·] around (`p0, ε
p
0):

T [〈Np cosn(Φ)〉] =


`p0 + ∆`p for n = 0,

`p0ε
p
0cn+1 + ∆`pεp0cn+1 + `p0∆εpcn+1 for odd n > 0,

`p0cn + ∆`pcn for even n > 0,

(A.21)

where ∆`p = `p − `p0, ∆εp = εp − εp0 and cn = 〈cosn(∆Φ)〉.

By defining a parameter vector (note that ε0 = ε00 = 0 ⇒ ∆ε0 = 0)

~xpar. =
[
∆`↑,∆`↓,∆`0,∆ε↑,∆ε↓

]T
, (A.22)

one can rewrite the linearized version of ~ymod. from Equation (4.51) as follows:

~ymod. = A~xpar. + ~y0 (A.23)

with

A =



1 0 0 0 0

ε↑0c2 0 0 `↑0c2 0

c2 0 0 0 0

0 1 0 0 0

0 ε↓0c2 0 0 `↓0c2

0 c2 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 c2 0 0


, (A.24)



A.4. ERROR CALCULATION OF THE χ2-FIT METHOD 153

and

~y0 =
[
`↑0, `

↑
0ε
↑
0c2, `

↑
0c2, `

↓
0, `

↓
0ε
↓
0c2, `

↓
0c2, `

0
0, 0, `00c2

]T
. (A.25)

The third step is to transform the covariance matrix given in Equation (4.53) into a

linearized form. The weighted sums in the blocks described by Equation (A.15) to

(A.17) can be replaced by their expected values as stated in Equation (4.50) and their

linearized form given in Equation (A.21), respectively. As defined in the 1. assumption

at the beginning of this section, the number of events is considered equal in all three

polarization states. Since `p = Np, the following substitution is valid: `↑ = `↓ = `0 =
N
3 . Further, it was assumed that ∆`p

`p0
≈ 0 as well as ∆εp ≈ 0 in the covariance matrix.

This yields to:

Clin. =
N

3
·



1 ε↑0c2 c2 0 0 0 0 0 0

ε↑0c2 c2 ε↑0c4 0 0 0 0 0 0

c2 ε↑0c4 c4 0 0 0 0 0 0

0 0 0 1 ε↓0c2 c2 0 0 0

0 0 0 ε↓0c2 c2 ε↓0c4 0 0 0

0 0 0 c2 ε↓0c4 c4 0 0 0

0 0 0 0 0 0 1 0 c2

0 0 0 0 0 0 0 c2 0

0 0 0 0 0 0 c2 0 c4


(A.26)

Now one can calculate the covariance matrix of the parameters as follows:

Cpar. = (ATC−1
lin.A)−1

=



N
3 0 0 0 0

0 N
3 0 0 0

0 0 N
3 0 0

0 0 0
3

(
c2−

(
ε↑0

)2
c4

)
Nc22

0

0 0 0 0
3

(
c2−

(
ε↓0

)2
c4

)
Nc22


. (A.27)

The diagonal of this matrix denotes the variance and the off-diagonal entries show the

covariance among the parameters. On sees that all the parameters are non-correlated.

The variance for ∆`p is given by the expression N
3 witch is in agreement with a Pois-

sonian error ∆N =
√
N . As the quantities ∆`p and ∆εp represent just a shift by a

constant value (`p0, ε
p
0) from the original observable (`p, εp), the variance of ∆`p repre-

sents the variance of `p and ∆εp of εp, respectively. Thus, the error for ε↑,↓ as a function

of the azimuthal integration range ∆Φ is given by:

∆ε↑,↓(∆Φ) =

√√√√√3

(
〈cos2(∆Φ)〉 −

(
ε↑,↓0

)2
〈cos4(∆Φ)〉

)
N〈cos2(∆Φ)〉2

, (A.28)

and the Figure of Merit by:

FoM(ε↑,↓,∆Φ) =
N

3
· 〈cos2(∆Φ)〉2

〈cos2(∆Φ)〉 −
(
ε↑,↓0

)2
〈cos4(∆Φ)〉

. (A.29)
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A.5 Analytical Model of the Elastic Deuteron Carbon

Cross Section
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Figure A.1: Analytical model of the elastic deuteron carbon cross section (red) as a
function of the deuteron beam energy and the scattering angle Θ. There reference
data used as the input to the model is given in blue, from top to bottom for 45 MeV,
49 MeV, 54 MeV, 65 MeV, 70 MeV, 76 MeV, 113 MeV, 133 MeV, 140 MeV, 170 MeV,
200 MeV and 270 MeV. Each cross section is subsequently scaled down by a factor of
four for better readability.

The analytical model of the elastic deuteron carbon cross section developed by Edward

J. Stephenson uses reference data for this cross sections for the following energies:

45 MeV, 49 MeV, 54 MeV, 65 MeV and 70 MeV from [65], 76 MeV from [66], 113 MeV

from [66] and [67], 133 MeV from [67], 140 MeV from [68], 170 MeV from [69], 200 MeV

from [23] and 270 MeV from [22]. The energy and scattering angle dependent cross

section is described by:

σ(E,Θ) = 10x with

x = a1 + a2q + (1 + a5q) [a3 sin(a6q) + a4 cos(a6q)] . (A.30)

Here q = q(E,Θ) denotes the momentum transfer and is given in units of GeV/c. a1

to a6 are polynomials of w = ln(E) with E given in MeV. The parameters of these

polynomials were to be determined using a minimization on all reference data points

simultaneously and the result is given in Table A.1. A comparison of the model and

the reference data is given in Figure A.1.
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p0 p1 p2 p3

a1 -74.99 43.96 -8.111 0.4966
a2 53.76 -23.02 2.073 0.0
a3 -25.22 12.65 -1.905 0.07993
a4 17.78 -6.375 0.5565 0.0
a5 -3.822 0.2481 0.0 0.0
a6 14.37 2.772 0.0 0.0

Table A.1: Parameters for the polynomials a1 to a6 in Equation (A.30). Each of this
polynomials has the form ax = p0 + p1w + p2w

2 + p3w
3 with w = ln(E)

A.6 Time-Based dC Asymmetries
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Appendix B

LYSO Module Development

B.1 Overview of SiPMs used in the Polarimeter

Development
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(a) Picture of the ∆E pre-amplifier.
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(b) Schema of the ∆E pre-amplifier.

Figure B.1: ∆E pre-amplifier being tested using a signal generator on the left and its
schema on the right.

B.2 Pre-Amplifier for the ∆E Detectors

The signals created by the SiPMs that were glued to the plastic scintillators used in

all three iterations of the polarimeter development, were to small to be directly fed

to the ADC. For this reason, a simple pre-amplifier had to be developed. A simple

design based on a non-inverting op-amp was chosen for this purpose. By having a

non-inverting configuration, the pre-amplifier could be designed using a single supply

voltage. The reverse bias voltage for the SiPMs of the ∆E detectors was taken from

the same designated power supply that was used to generate the bias for the LYSO

based detector modules and was, therefore, a positive voltage. The circuit was designed

around the MAX4213 op-amp, see [75]. This op-amp was chosen for its high speed

of up to 300 MHz, its large slew rate of 600 V µs−1 and its single supply rail-to-rail

capability. Rail-to-rail means that the output can go up to the positive supply voltage

rail and in the case of the single supply operation down to the ground rail. The circuit

was designed by the author as a sketch which was given to Tanja Hahnraths - von der

Gracht from the electronic workshop of IKP who created a PCB layout that was then

ordered. The schema of the pre-amplifier is shown if Figure B.1b. The gain of the pre-

amplifier can be set to a value between 5.2 and 25.9 using a potentiometer. The output

is terminated with 50 Ω series resistor and can, therefore, drive a standard coaxial line.

The input is 50 Ω terminated as well which allows the connection of coaxial wires at the

input which can be directly connected to the anode of a positive reverse biased SiPM.

The MAX4213 allows a supply voltage of up to 12 V but was connected to the 6 V rail

of a NIM crate.
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The SiPMs that were glued to the plastic ∆E detectors were connected all in parallel

using a very thin coaxial cable that was then connected to the pre-amplifier that was

secured in a 3D-printed box and mounted next to the detectors.
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