
Development of a trigger system based

on FPGA logic

by

Henrik Matschat

Bachelor thesis submitted in

July 2016

to the

Faculty of Mathematics, Computer Science and Natural Science

Department of Physics

at

RWTH Aachen University

Thesis supervisor:

Prof. Dr. rer. nat. Jörg Pretz

Contents

1. Introduction 4

2. Theoretical and experimental background 5

2.1. Particle accelerators and storage rings . 5
2.1.1. Cyclotron . 5
2.1.2. Synchrotron . 6
2.1.3. Fixed target scattering for high precision physics 7

2.2. WASA at COSY . 8
2.3. Layout of the forward detector . 12

2.3.1. Window counter . 12
2.3.2. Trigger hodoscope . 13
2.3.3. Range hodoscope . 13
2.3.4. Additional parts . 14

3. Technical Components 15

3.1. Technical speci�cations and functions of the FPGA 15
3.1.1. "User" and "Bridge" FPGA . 15
3.1.2. Input channels and division of the detector 15
3.1.3. Clock . 17

3.2. Software . 17
3.2.1. VHDL . 17
3.2.2. Quartus II 11.0 . 19
3.2.3. Modelsim-Altera . 19

4. Functions of the FPGA Trigger 22

4.1. FIFO . 23
4.2. Trigger conditions . 25
4.3. Output signals . 26

5. Simulations 28

6. Tests with the developed �rmware 33

6.1. Devices and wiring . 33
6.2. Tests with a single output signal . 34
6.3. Tests using the FTH and FRH2 . 39
6.4. Tests using the �rst three range hodoscopes 42

7. Conclusion 46

Appendices 51

2

Contents

A. VHDL code 52

B. Screenshots from the simulations 67

C. Symbols and constants 71

D. Acknowledgments 72

E. Statutory declaration 73

3

1. Introduction

This thesis describes the programming and testing of a trigger system that is designed
to run on a �eld-programmable gate array, often abbreviated as FPGA. The trigger sys-
tem uses the logical blocks available on the FPGA to evaluate signals from a particle
detector and generates an output signal if certain conditions are met. The output signal
contains information about the characteristics of the particle penetration. The trigger is
speci�cally designed for the WASA detector at the cooler synchrotron and storage ring
COSY in Juelich.

Currently, the WASA detector is prepared for upcoming experiments that aim at building
a polarimeter database for pC and dC scattering1. The plan is to use the trigger system
to evaluate the trajectory of scattered particles by categorizing them into four directions
and select which events shall be saved. The database is then built by using the results
from the o�ine analysis.

The following chapters describe the design of the trigger system in compliance with
the WASA2 detector by giving an overview of the detector layout and how the signals
from the detector are evaluated in order to generate a corresponding trigger signal. Dif-
ferent functions of the trigger system are described and the processing of the signals is
illustrated. A FIFO, a special data bu�er that stores signals from di�erent clock pulses,
is implemented to allow the user to set up individual delays in the evaluation process.

Computer simulations of the trigger system are used to assure that the signals are evalu-
ated and processed as desired. Eventually, the trigger system is transferred to the FPGA
and multiple tests are performed that ascertain the correct functionality of the FPGA
trigger system.

1proton-carbon respectively deuteron-carbon
2Wide Angle Shower Apparatus

4

2. Theoretical and experimental

background

2.1. Particle accelerators and storage rings

One way to cause and observe particle scattering and decays is the acceleration of parti-
cles. This acceleration can be achieved in various ways. Two constructions are used in the
focus of this thesis. One is the cyclotron and the other one the synchrotron. Therefore,
a short overview of these methods to accelerate particles shall be given at this point.

2.1.1. Cyclotron

A cyclotron consists of a cylindrical vacuum chamber in the x-y-plane between a magnet
that creates a static magnetic �eld in z-direction. The cylinder is separated into two
equal halves with a gap in between as shown in �g. 2.1. Between the two halves a
radio frequency voltage is applied. The positive ions are inserted in the middle between
the two halves and the electric �eld causes them to move towards the negative half.
Additionally, the magnetic �eld causes movement along a semi-cycle inside the halves,
which are made of metal so that the electric �eld does not in�uence the particle trajectory.

By equating the Lorentz force and the centripetal force one �nds that the radius of
the semi-cycle amounts to

r =
mv

qB
(2.1)

and the frequency is

ω =
2π

t
=
qb

m
. (2.2)

By setting the frequency of the electric �eld UE between the two halves to match the
cyclotron frequency 2.2, it is possible to switch the polarity of the electric �eld simulta-
neously with the particle leaving one of the two halves. Therefore, the frequency of the
electric �eld has to be

fc =
ω

2π
=

qb

2πm
. (2.3)

This con�guration has the e�ect that the particles will be accelerated whenever they
cross the gap between the two half-cylinders. The acceleration will increase the radius
of the semi-cycles and, therefore, the trajectory forms a spiral. At some point, however,
the radius reaches the rim of the half-cylinders. At this point the particles leave the
cyclotron and can be used in the further experimental setup. In the non-relativistic case
the energy gain is

Ekin =
1

2
·m · v2 =

q2

2m
· (rmax ·B)2 (2.4)

5

2. Theoretical and experimental background

where rmax is the largest possible radius the particles can reach inside the cyclotron.
When considering higher energies and therefore relativistic e�ects, a deviation between
the frequency of the electric �eld and the frequency with which the particles arrive at
the gap between the half-cylinders occurs. To avoid this problem, the frequency of the
electric �eld is constantly reduced to match the reduced frequency of the particles [1].

Figure 2.1.: A cyclotron with its spiral particle trajectory (dotted line) and the mag-
netic �eld (black arrows) as well as pulses representing the change in the
polarization of the electric �eld. [2]

2.1.2. Synchrotron

Another way to accelerate particles is the synchrotron. As shown before, with a cyclotron
it is necessary to increase the magnetic �eld or the radius in order to reach higher
energies. A di�erent concept is used in a synchrotron. The particles are injected into
the synchrotron tangentially to the trajectory, on which they will later circulate with
a given velocity. Resting particles can not be accelerated with a synchrotron due to
its structure and technical restrictions, among others hysteresis. The arcs, as shown in
�g. 2.2, house magnets which direct the particle beam. Similar to the cyclotron, electric
�elds are applied between at least one of the arcs to accelerate the particles. Additionally,
quadrupole magnets can be used to focus the beams. To ensure that the particles will
stay on track while they are accelerated, the magnetic �eld strength is adjusted according
to the energy of the particles [3]. Using formula 2.1 with relativistic energies, it can be
shown that a particle with a momentum of p = mv moving along a circular path will
need a radius of

r =
mv

qB
=
m0c

qB
·
√(Ekin

m0c2

)2
+ 2

Ekin
m0c2

=
Ekin
qBc

·

√
1 + 2

m0c2

Ekin
(2.5)

to stay on track. For relativistic energies, where Ekin � m0c
2, the approximation

r ≈ Ekin
qBc

(2.6)

6

2. Theoretical and experimental background

is suitable to describe the radius of the particle trajectory. Taking into consideration that
the radius of the synchrotron as well as the charge of the particles shall be constant, it
can easily be found that the magnetic �eld strength has to be proportional to the energy
of the particle:

r = const. =
Ekin
qBc

→ Ekin ∼ B. (2.7)

Therefore, the magnetic �eld and the energy have to be synchronized to ensure that
particles with increasing velocities do not leave the ring. The radio frequency facc of
the acceleration voltage also requires an adjustment depending on the velocity of the
particles. These two dependencies lead to a relation between the frequency and the
magnetic �eld:

f =
k

2π

√(
r
c

)2
+
(
m0
qrB

)2 , (2.8)

where k is harmonic number of the frequency. Thus, a synchronization between the fre-
quency of the electric �eld and the magnetic �eld strength is required [1].

Let U be the acceleration voltage and φ the phase of the electric �eld, the energy gain
of the particles is described by:

∆E = q · U · sin(φ)−∆Eloss. (2.9)

Taking into consideration the �nancial and technical limitations, synchrotron radiation
limits the achievable energy to about 100 GeV for electrons1, while for protons and other
heavier particles energies of more than 1000 GeV can be achieved2 [3].

2.1.3. Fixed target scattering for high precision physics

In order to generate scattering and decays, two major experimental setups can be used.
The particle beam can be directed onto a �xed target or two particle beams can be
collided head-on with each other. The �xed target brings along the advantage that the
target can be chosen from a wide range of materials. Furthermore, the thickness of the
target can be adjusted more �exible. The luminosity of �xed target experiments is a
product of the thickness of the target and the beam intensity and can therefore reach
high values. The energies available in such experiments is, however, much lower than
in a colliding beam experiment, because a lot of the energy of the beam is lost in the
movement of the center-of-mass frame.

The center-of-mass energy is de�ned as

√
s =

√((
E1

~p1

)
+

(
E2

~p2

))2

. (2.10)

1Reached by the LEP
2for instance with the LHC

7

2. Theoretical and experimental background

Figure 2.2.: The layout of a synchrotron with four magnets, the injection at the left-hand
side as well as an indicated ejection at the lower right arc [1, p. 75]

In case of colliding beams, where both beams have the same energy E and collide head-on,
the center-of-mass energy amounts to

√
s =
√

4 · E2 = 2E, (2.11)

whereas the energy using a �xed target with a mass of m is

√
s =

√((
E

~p

)
+

(
m
~0

))
=

√(
E +m

~p

)
=
√

2mE + 2m2. (2.12)

If the mass is neglected, the center-of-mass energy of a �xed target experiment is

√
s =
√

2mE. (2.13)

An essential part of the energy goes into moving forward the particles that resulted from
the impact. For the experiments at hand, it is reasonable to use �xed targets.

2.2. WASA at COSY

A trigger can be used to compare signals from, in this case, particle detectors to pre-
de�ned conditions and generate an output signal if the conditions are met. The output
signal can in turn be used to run further processes in the evaluation of the signals. By
using the trigger, accidental or unwanted signals can be sorted out and only the desired
signals will be evaluated. The name trigger refers to the function of starting, i.e. trig-
gering, further steps in the evaluation process if the conditions are met.

8

2. Theoretical and experimental background

The trigger at-hand shall be used as part of experiments with the WASA detector at
the COoler SYnchrotron and storage ring COSY in Juelich, shown in �g. 2.3. The
particle beams produced in COSY consist of deuterons or protons. The cyclotron JULIC
serves as a �rst accelerator and injector for the particles into the storage ring. An ion
source supplies JULIC with H− and D−. The cyclotron accelerates the protons and
deuterons to an energy of 0.3 GeV/c respectively 0.54 GeV/c.

Further acceleration of the proton and deuteron beams takes place in the storage ring,
where the beams are guided by dipole magnets in the curves and focused by quadrupole
magnets. Additionally, corrector magnets, which are small dipols, arranged vertically
as well as horizontally, are used to adjust the position of the beam. The beams in-
side the storage ring can be polarized or unpolarized and their momentum ranges from
0.3 GeV/c to 3.7 GeV/c. The cooling of the beams in phase-space is done by way of
electron cooling at injection energy and stochastic cooling at high energies, which start
at a momentum of the particle beam of at least 1.5 GeV/c [5]. The electron cooling is
based on merging the accelerated particle beam with an electron beam that consists of
preferably mono-energetic electrons which match the average speed of the particle beam.
In the coordinate system in which the average speed of the accelerated particle beam is
zero, this mingling of the two beams equates a system of two gases, namely the electron
gas and either the proton or the deuteron gas. In this system, the temperature of the
particles only increases with the masses. Therefore, the proton or deuteron gas is cooled
by the electrons [6].

The stochastic cooling is done by reading a particle's motion with a so-called "pickup"
and compensating the dissipation force of a particle with a "kicker" that moves the par-
ticle back to the middle of the beam. It is referred to as stochastic cooling as di�erent
particles are a�ected by this process every time and only on average the entire beam will
be cooled down.[7].

WASA, short for Wide Angle Shower Apparatus, originally comprised a pellet-target sys-
tem as well as two detector parts for measurements. At this point, only the forward part
from the original WASA detector will be used. The forward part is designed to measure
charged target-recoil particles as well as scattered projectiles whereas the central part
was used to measure meson decay products [9]. The trigger will be based upon the layout
of the forward detector and will use its signals to generate an output if certain trigger
conditions are met.

Major studies conducted with the WASA detector are already completed and the de-
tector shall now be used to search for electric dipole moments. For this new task, it is
necessary to study the trajectory of scattered particles. After the particles scattered at
the target, the spin of the particles causes a movement into di�erent directions. Taking
this polarization into consideration, the cross section for the scattered particles at the
WASA detector can be written as

σ(φ, θ) = σ0(θ) · (1 + P ·A(φ, θ)), (2.14)

9

2. Theoretical and experimental background

Figure 2.3.: Floorplan of the COSY complex, showing the Cyclotron JULIC, where the
poliarized and unpolarized beams originate, and the WASA detector. [8,
p. 4]

where σ0 is the unpolarized cross section, P is the polarization and A is the analyzing
power, which depends on the used target, the energy of the beam and the accelerated
particles, in this case either protons or deuterons. As A ∝ cos(φ) for particles with
spin 1

2 , where only the vector polarization has to be considered, 2.14 can be simpli�ed to

σ(φ, θ) = σ0(θ) · (1 + P ·A(θ) · cos(φ)). (2.15)

When it comes to deuterons, the tensor polarization also has to be considered. As shown
in �g. 2.4, dividing the detector into four quarters allows to di�erentiate between four
major directions the particle can scatter towards. Using this division, the ratio between,
for instance, the left and the right quarter is given by

nR − nL
nR + nL

∝ σ0(1 + P ·Aθ)− σ0(1− P ·Aθ)
σ0(1 + P ·Aθ) + σ0(1− P ·Aθ)

= P ↑ ·Aθ(φ = 0, π). (2.16)

Thus, it is reasonable to base the trigger on this quartering of the detector and catego-
rize events according to the quarter they occurred in. By measuring the polarizations
and di�erent analyzing powers, a polarimeter database will be built that can be used
to produce Monte Carlo simulations of detector responses and estimate systematic error
e�ects in any EDM ring polarimeter [11].

The detector comprises multiple scintillators which are used to detect particles. A scintil-
lator consists of a luminescent material that will emit photons when struck by a particle.
The amount of the emitted photons depends on the energy of the absorbed particle. By

10

2. Theoretical and experimental background

Figure 2.4.: A rough illustration of the scattering and the division into four quarters later
used to design the trigger system. The detector is quartered into Left, Right,
Up and Down. The z-axis is pointing towards the beam direction.

using a photomultiplier tube, the photons can be absorbed at the photocathode and, as
part of the photoelectric e�ect, electrons will be emitted that are multiplied inside the
tube. This allows to measure an electric signal at the anode [1]. Fig. 2.5 shows a sketch
of a scintillator and a photomultiplier. Before the signals from the detector are evaluated
by the FPGA trigger, a discriminator is used to digitize the signals. The discriminator

Figure 2.5.: The basic layout of a scintillator and a photomultiplier. The photomultiplier
includes multiple dynodes that are used to multiply the electrons as well as
a focusing electrode that is used to direct the electons onto the �rst dynode.
[10]

will generate an electric pulse if the signal from the photomultiplier exceeds a predeter-
mined amplitude. The width of the electric pulse can be set by the user. In this way, the
discriminator will generate a normalized pulse whenever a particle with a certain energy
was detected by one of the scintillators. Thus, the logical connectives of the trigger will
be based on the evaluation of truth values in the form of 0 for no particle detected and
1 for particle detection. The width of the digitized signals should at least match the
periodicity of the clock of the FPGA board to ensure that all signals will be processed
correctly. An overview of the forward detector is given in �g. 2.6

11

2. Theoretical and experimental background

Figure 2.6.: The forward detector of the WASA with its di�erent layers as well as the
target crosses at the left-hand side. [11, p. 3]

2.3. Layout of the forward detector

The forward detector consists of multiple radially symmetrically arranged layers of plastic
scintillators in combination with four layers of straw tubes. In order to generate a trigger
signal, up to 216 scintillators of the forward detector are evaluated. Those scintillators are
located in three di�erent areas of the detector. The forward detector covers a scattering
angle between 3◦ and 17◦ [9].

2.3.1. Window counter

The �rst two layers shape the window counter. This is the closest part of the detector to
the target position and comprises 24 scintillators per layer. The two layers of scintillators
are rotated in an angle of ∆ΦFWC = 7.5◦ with respect to each other which will later
become important when the FPGA evaluates whether all necessary trigger conditions
are met. Each layer of the window counter has a thickness of dFWC = 3 mm. A rough
sketch of the window counter can be found in �g. 2.7. The layer closer to the target
position is henceforth referred to as FWC1 while the rear layer is referred to as FWC2.
The rotation between the two layers is also depicted in this sketch.

12

2. Theoretical and experimental background

Figure 2.7.: The two window counters that comprise 24 scintillators each and are rotated
7.5◦ relatively to each other.

2.3.2. Trigger hodoscope

The window counter is followed by four layers of straw tubes that will, however, not
be used for the trigger. The straw tubes are used for a precise determination of the
scattering angle. The next layer that will count towards the trigger is the so-called trig-
ger hodoscope. The trigger hodoscope consists of 48 scintillators and is dFTH = 5 mm
thick. With 48 elements3, the trigger hodoscope has the highest granularity of all layers
evaluated by the FPGA. Similar to the window counter, the scintillators of the trigger
hodoscope, henceforth abbreviated as FTH, are also arranged in a rotationally symmetric
shape. The size of each element of the FTH equals the size of the intersection of two
elements of the FWC1 and FWC2. That means that each element covers an angle of
Φ = 7.5◦.

2.3.3. Range hodoscope

The next part of the detector is the range hodoscope. It comprises �ve layers of 24
scintillators each. There is no rotation between the scintillators of the di�erent layers,
wherefore the layout of each layer looks alike. The shape matches the shape of the
FWC1 as shown in �g. 2.9. The range hodoscope will primarily be used to determine
the penetration depth of a particle, as the position of a particle can more precisely be
ascertained by the FTH or overlapping elements of the FWC1 and FWC2.

While the �rst three layers of the range hodoscope are each dRH,front = 10 cm thick, the
two layers at the back-end have a thickness of dRH,back = 15 cm each. Aside from its use
as part of the trigger, the range hodoscope is used to identify particles and determine
their energy by evaluating the pattern of deposited energy in the di�erent detector planes.

3The term element refers to any one of the scintillators on the layer. The rotational symmetry of each
layer prompts to call the layer "pizza shaped".

13

2. Theoretical and experimental background

Figure 2.8.: A sketch of the trigger hodoscope. The trigger hodoscope comprises twice
as many scintillators as each of the window counters.

Figure 2.9.: The �ve layers of the range hodoscope all match this layout, which is equiv-
alent to the �rst window counter.

2.3.4. Additional parts

The last part of the detector is the veto hodoscope. This hodoscope consists of 24 vertical
bars. The signals from the veto hodoscope will, as is the case for the straw tubes, not
be considered for the trigger signal generation. The intended use of the veto hodoscope
is to reject or select particles punching through the range hodoscope.

The layout as described above constitutes the current draft for the forward detector.
The FPGA trigger will entirely be based on the con�guration described above, wherefore
the original con�guration of the WASA detector will not be discussed at this point.

14

3. Technical Components

A major requirement for the trigger is the ability to process and evaluate all necessary
signals from the forward detector and generate an output signal if certain scintillators
show a particle passage. These signals are evaluated by passing logical connectives and,
if prede�ned conditions, referred to as trigger conditions, are met, the trigger will in
turn send an output signal that can be used to start the process that will store the
data on disk. A device that ful�lls these requirements particularly well is a so-called
FPGA, short for Field-Programmable Gate Array, a semi-conductor device that not only
allows to be reprogrammed after manufacturing to the desired application or functionality
requirements, but can also be partially recon�gured while una�ected parts of the FPGA
keep running. In order to be able to evaluate the signals from the detector, the FPGA
brings along �a matrix of con�gurable logic blocks (CLBs) connected via programmable
interconnects� [12].

3.1. Technical speci�cations and functions of the FPGA

The device used to build the trigger is a V1495 by CAEN S.p.A., which is a general
purpose VME board that includes a user customisable FPGA Unit1.

3.1.1. "User" and "Bridge" FPGA

The "User" FPGA manages the front I/O channels and can be run with a custom
�rmware. The FIFO depth is adjusted via the VME interface, which means without
having to remove the board from the experimental setup or turning o� the crate. The
centerpiece of the FPGA trigger, the logical connectives to evaluate the signals and
compare them to the trigger conditions, will be retained on the board, but di�erent
parameters can be freely adjusted at any time. Aside from the "User" FPGA, another
FPGA is also included on the board. The so-called "Bridge" FPGA2 is used for the
VME interface and communicates with the "User" FPGA via a proprietary local bus.
The "User" FPGA is set up as a slave of the "Bridge" FPGA and, therefore, the "Bridge"
FPGA manages the programming via VME of the "USER" FPGA. An overview of the
entire board including the "Bridge" and "User" FPGA is given in �g. 3.2.

3.1.2. Input channels and division of the detector

The board has 64 permanent input channels, that handle LVDS, ECL and PECL3 signals,
and 32 output channels that send LVDS signals. The input channels are split into two

1Cyclone EP1C20F400C6N
2Cyclone EP1C6Q2408N
3Standards for logic signals: LVDS: Low Voltage Di�erential Signal, ECL: Emitter Coupled Logic,
PECL: Positive Emitter Coupled Logic

15

3. Technical Components

32 pin ports, referred to as port A and port B. The output is referred to as port C. By
using up to three additional mezzanine boards, another 96 channels are added. These
96 channels are evenly split into three ports of 32 pins each, referred to as ports D, E
and F. These three ports can be used as input as well as output ports. For this design,
the ports D and E will be used as ECL input ports and port F will be used as an ECL
output port. The mezzanine boards are available for ECL, PECL, LVDS, NIM as well as
TTL signals4. Another two channels can be used for NIM and TTL signals only, referred
to as port G. Therefore, the board provides a total of 194 channels [13]. This means
that a single board can not cover the entire forward detector, which requires in total 216
input channels. To make sure that all signals of the scintillators can be evaluated, it is
necessary to use two boards. Those two boards will run independently of each other.
The division of the detector will be done by splitting each of the eight evaluated layers
into two parts along the same axis. This is demonstrated in �g. 3.1. As shown in the
graphic, the detector is divided into two equally large halves. Each layer of the range
hodoscope is divided exactly like the FWC 1.

Figure 3.1.: The window counter and the trigger hodoscope divided into two halves by a
red line, representing the division of the detector for the two FPGAs.

By dividing each layer in half and with respect to the amount of scintillators per layer as
described in section 2.3, 108 input channels have to be covered per FPGA. Another 15
input channels come from the two closest scintillators at the boundaries that are located
in the otherwise not covered half of each FPGA. This means that at both borders of

4TTL: Transistor-Transistor Logic, NIM: Nuclear Instrumentation Module

16

3. Technical Components

each half one scintillator of the other half will be evaluated by both FPGAs to ensure
that the detector will entirely be covered even if an overlap of, for instance, one element
of the FWC1 from the upper-left half and one boundary element5 of the FWC2 from
the lower-right half occurs. All in all, the amount of input channels needed to evaluate
all signals can be reduced to 123 per FPGA, as the calculation above shows, when two
FPGAs are used.

3.1.3. Clock

The build-in clock of the board runs at a frequency of fFPGA = 40 MHz, which cor-
responds to a periodicity of t = 25 ns. This means that the digitized signals from the
discriminator need to have a width of at least t = 25 ns to ensure that a signal is not send
during the insensitive time of the FPGA and vanishes before the next clock pulse starts.
This, however, can easily be achieved as the signal width coming from the discriminator
can individually be adjusted by the user. Choosing a proper width guarantees that all
signals will be registered and evaluated. When it comes to the expected event rate, the
frequency of 40 MHz is also by far high enough to ensure that all events will be evaluated
as even the highest event rates at COSY with the best possible luminosity never exceeded
2 · 106 events per second. For the planned measurements the event rate is expected to
be smaller than 106 events per second.

3.2. Software

To write and later on simulate code for the FPGA certain software tools are necessary.
In this chapter, the used language, VHDL, as well as the used programs to build and
simulate the design are described.

3.2.1. VHDL

The coding language used to program the FPGA is called VHDL, short for VHSIC 6

Hardware Description Language, a hardware description language that is nowadays com-
monly used in Europe. VHDL gives the user the opportunity to describe how a design
shall be structured into sub-designs and how these sub-designs shall be connected. The
function of a design can be speci�ed by using a language that resembles common pro-
gramming languages, particularly Ada. An upside of VHDL is the opportunity to run
simulations of the program before it is integrated into the hardware. This allows the user
to test and adjust the program without having to build a hardware prototype. Special
simulation tools allow the user to construct so-called testbenches, with which input sig-
nals can be emulated in order to check the correct processing of signals by the design [14].

The design is separated into so-called entities. They contain a list of signals and con-
stants that will be used within the particular entity. Each entity is able to process a set
of signals, which are for their part divided between inputs and outputs. It is also possible
to declare inouts and bu�ers. Those signals can not only be read but also written to

5"boundary element" refers to the two elements that overlap the separating line, as shown in 3.1
6Very High Speed Integrated Circuits, a U.S. government program from the 1980s.

17

3. Technical Components

Figure 3.2.: A block diagram showing the V1495 General Purpose VME Board including
the input ports A and B, the output port C as well as the three inout ports D,
E and F, which can be added by using mezzanine boards. The two additional
ports for NIM and TTL signals, referred to as port G, are located at the lower
left side of the board. The "USER" FPGA is connected to the ports and via
a local bus to the "Bridge" FPGA, located at the upper right side. A VME
bus is used for the communication with the FPGA. [13, p. 8]

at the same time. All of those signals are categorized as ports. They are declared in a
dedicated segment at the beginning of an entity. Similarly, constants are declared in a
segment called generic. It is possible to call and execute an entity from another entity.
In this case, it is necessary to tell the design which ports from the mother entity shall
constitute which ports of the called entity. This step is called port mapping.

Within an entity one has to instantiate the architecture. Inside the architecture of an
entity further signals, variables and constants can be declared, which, however, need to
be sent to a designated output port to have them available at an output of the FPGA.
Additionally, the declarations made at this point are only available inside the architec-
ture. The main part of the architecture contains concurrent statements that will instruct
how the signals will be processed. VHDL provides a large range of Boolean operators to
construct logical connectives, which can process the input signals and generate output
signals. The logic synthesis as part of the compilation of the design is also able to detect
logical connectives between signals, even if they are not expressed by conventional op-
erators, and tries to build the optimal hardware implementation, using, for instance, as
few transistors as possible. In order to keep the architecture of the entity neat, so-called
procedures can be declared, which are similar to functions in programming languages.
Within such procedures, another set of declarations has to be incorporated. These dec-
larations have to cover all variables that will be used within the procedure. Similar to

18

3. Technical Components

the architecture, the procedure includes a main part in which sequential statements are
made, telling the hardware how to process the signals. Procedures can be called from
the architecture by stating the name and de�ning all variables that shall be passed to
the procedure, similar to the way another entity is called from within an entity.

3.2.2. Quartus II 11.0

The software used to design the trigger is Quartus II 11.0 Web Edition, a design software
for programmable logic devices. The producer Altera Corporation used to be a company
specialized in the production of programmable logic devices. In 2015 Altera was acquired
by Intel. The software Quartus II not only allows to write VHDL code and compile it,
but also brings along useful tools for the production of a design. An integrated RTL7

viewer provides the option to generate a model of the digital circuit, which shows a
schematic realization of the logical connectives by the use of hardware registers. Similar
tools like the Chip Planer or the TimeQuest Timing Analyzer allow the user to check
how the in- and outputs of the design will be arranged on the device and how it will
perform in regards to processing time, delays and suchlike. The compiler comes along
with an analyzer, synthesizer, �tter, assembler as well as multiple other tools to evaluate
the design and its performance. Quartus II also features links to simulation tools which
can be used to test the design. Hence, the design can easily be loaded into a simulation
tool, like Modelsim-Altera.

3.2.3. Modelsim-Altera

To make sure that the design works as planned and all signals and logical connectives
are correctly processed, one can simulate the design in special simulation tools, like
Modelsim-Altera. Modelsim-Altera is as the name suggests also developed by Altera
and can simulate HDL designs written in Quartus II and other programs. By writing
so-called testbenches it is possible to simulate incoming signals and check whether the
signals created within the architecture match the expectation. All signals, variables and
constants declared in the design are listed in Modelsim and can be set to speci�c values.
It is possible to create waves and periodic signals to simulate a change of the signals. A
screenshot of the software is shown in �g. 3.3

In regards to the FPGA trigger, the ports containing the incoming signals from the de-
tector would be set to display a particle strike and would then be used to check whether
the logical connectives are correctly processed and, if all necessary conditions are met,
whether the output signal shows the desired values. This makes it possible to test dif-
ferent con�gurations of signals and ensure that all con�gurations that should trigger a
signal are indeed properly processed. The generated output can be examined in regards
to the correct processing of signals. Furthermore, this approach makes it possible to
check whether signals which do not meet the conditions will not accidentally trigger an
output signal. It is also possible to set a periodicity, the width of the signals and integrate
delays between the di�erent signals.

7Register-transfer level

19

3. Technical Components

Figure 3.3.: The screenshot shows the main window of Modelsim. It includes signals
similar to those that will later be used to simulate the trigger inside the
frame at the right-hand side. The middle frame titled "Objects" includes a
list of all signals, variables and constants used in the design.

To make sure that every single signal does not have to be entered individually, the user
can import entire �les, which contain values for all signals included in a design. To write
such a �le for the trigger at hand, it is reasonable to write a tool that can generate
signals based on the trigger design. This makes it possible for the user to display the
signals, as the bits used in Modelsim are not in the least descriptive of which layers of
the detectors are struck. Thus, a simple tool is implemented in the scripting language
Autohotkey. It includes a graphical representation of the WASA forward detector. Dif-
ferent con�gurations can be set up and will graphically be displayed in the tool. Once
the desired con�guration of signals is set up, the con�guration is saved to a �le and then
imported into Modelsim, where the simulation can be run. Aside from basic signals,
the tool also provides the opportunity to generate delays between the signals arriving at
di�erent layers of the detector and adjust which entries of the FIFO shall be read. A
screenshot of the tool can be found in �g. 3.4.

20

3. Technical Components

Figure 3.4.: The tool written in Autohotkey which includes, from left to right, the bits
sent to Modelsim representing incoming signals from the detector, delays
between the layers, a graphical representation of the detector and a list that
allows the user to set which entries of the FIFO shall be evaluated.

21

4. Functions of the FPGA Trigger

The trigger is supposed to send an output signal containing information about the events
that are registered in the detector, like the position of the particle and the penetration
depth, if certain trigger conditions are met. The signals coming from the detector are
stored in a FIFO1 before they are evaluated. The signals will be divided into four quar-
ters, representing the left, right, upper and lower part of the detector. As the signals
coming from the detector are already separated into the upper left and lower right part,
due to the use of two FPGAs, it is only necessary to split the remaining 123 input signals
of each FPGA into two halves, as illustrated in �g. 4.1. This division of the detector into
four quarters allows to examine the polarization for online evaluation of the asymmetries
and the analyzing powers, as described in section 2.2.

Figure 4.1.: The quartering of the detector. The division always takes place along the
same axes and also applies for the �ve range hodoscopes.

1First in �rst out, a type of data bu�er described in section. 4.1

22

4. Functions of the FPGA Trigger

The signals from the detector are send to the ports A, B, D and E of the VME board, all
of which are ECL inputs. The ports D and E are made available by adding mezzanine
boards to the VME board. The output is send to port F, which is also added to the
VME board by using a mezzanine board. Each port consists of 32 pins, wherefore the
123 signals from the detector have to be apportioned between the 4 input ports. As can
be seen in the following excerpt, the signals from the two window counters are send to
port A, the signals from the trigger hodoscope are send to port B, the signals from the
�rst four range hodoscopes are send to ports D and E and the �fth range hodoscope is
split between the remaining pins of the four ports. The term Speichen2 represents the
amount of scintillators forming the �rst window counter.

APort <= not A(0 to Speichen-1);

BPort <= not A(Speichen to 2*Speichen-2);

CPort <= not B(0 to 2*(Speichen-1)-1);

DPort <= not D(0 to Speichen-1);

EPort <= not D(Speichen to 2*Speichen-1);

FPort <= not E(0 to Speichen-1);

GPort <= not E(Speichen to 2*Speichen-1);

HPort(0 to 4) <= not A(2*Speichen-1 to 31);

HPort (5 to 10) <= not B(2*(Speichen-1) to 31);

HPort (11 to 13) <= not D(2*Speichen to 2*Speichen+2);

The eight layers of the detector are referred to as A to H, meaning that signals starting
with an A are associated with the �rst window counter and signals starting with a H are
associated with the �fth range hodoscope. Since the incoming signals are inverted by the
FPGA, meaning that a pulse is registered as a logical 0 whereas no pulse is considered
to be a logical 1, the logical complement is built to use a pulse as a logical 1. These
values are then stored in the FIFO before the trigger conditions are checked and, if all
necessary conditions are met, the output signal is generated.

4.1. FIFO

To make sure that delays between the di�erent layers will be covered by the trigger,
a FIFO that stores the signals from all eight layers of the detector per clock pulse is
implemented. Due to the versatility of the FPGA, thousands of signals can potentially
be stored in the FIFO. The current �rmware is designed to store signals from ten clock
pulses in the FIFO, which amounts to an interval of TFIFO = 250 ns, meaning that over
a span of 250 ns signals will be kept available for evaluation. Per clock pulse the 123
signals registered at the input ports of the board are added to the end of a vector called
Data that can carry 1230 logical values. These newly added values replace the oldest 123
values, meaning the values from the clock pulse 250 ns ago:

Data <= Data(DATA_WIDTH to DATA_WIDTH*FIFO_DEPTH-1)&APort&BPort&CPort&DPort

&EPort&FPort&GPort&HPort; -- new signals are added to FIFO

2Speichen is a constant used in the design to adjust the amount of scintillators the FWC1 comprises.
Every layer is based on this amount of scintillators, meaning that increasing Speichen by one would
also add a scintillator to the FWC2 and so on.

23

4. Functions of the FPGA Trigger

This feature of the trigger does not only allow the user to compensate for the time it
takes particles to travel through the detector, but also compensate for cable delays in
case the experimental setup does not include means to compensate such delays before
the signals arrive at the FPGA. Furthermore, the FIFO can be used to implement delays
between the registration of signals at the input ports and the generation of the output
signal.

The possibility to communicate with the FPGA using registers allows the user to choose
which entries of the FIFO shall be evaluated per clock pulse. A ten bit logical vector3

is used to tell the FPGA which entries are to be used in the evaluation process. Every
one of the ten bits represents an entry in the FIFO, beginning with the oldest entry
associated with the �rst bit and ending with the youngest entry associated with the
tenth bit. For instance, the following vector would mean that the FIFO shall use the
�rst two youngest as well as the fourth youngest entries to determine whether the trigger
hodoscope detected a particle that will count towards the trigger conditions4

Cread <= "0000001011";.

Using this feature the selection of signals is completely adjustable for all eight layers of
the detector. The entries used for the evaluation between the di�erent layers can vary at
will. If at least one of the entries selected for evaluation contains a logical 1, the trigger
will count it as an registered event.

The table 4.1 shows which register addresses are used to adjust which entries of the
FIFO shall be used to generate a trigger signal. The listed register addresses are referred
to the base address of the board, which means that the they have to be added to the
board base address [13].

Detector layer Register

FWC1 1010

FWC2 1014

FTH 1018

FRH1 101C

FRH2 1020

FRH3 1024

FRH4 1028

FRH5 102C

Table 4.1.: The table shows which register addresses are linked to which layers of the
detector when it comes to con�guring the FIFO.

3meaning that it can either contain a logical 1 or 0, referred to in vhdl as std_logic or std_logic_vector
(standard logic)

4This is just an example used to explain the adjustment of the FIFO and does not represent a suitable
setup for the experiments conducted in COSY.

24

4. Functions of the FPGA Trigger

4.2. Trigger conditions

The most basic condition that has to be met is an overlap of the scintillators of the �rst
two window counters a particle penetrates. As the window counters consist of 24 scin-
tillators each and the two layers are shifted ∆ΦFWC = 7.5◦, a particle that registers on
overlapping elements of both layers hits an intersection of Φint = 7.5◦. After the particle
struck a scintillator of the FWC1 (1), it can either hit the scintillator to the left (2a) or
the right (2b), as shown in �g. 4.2.

Figure 4.2.: The particle hits the FWC1 and can either hit the scintillator to the left (2a)
or to the right (2b), building an intersection of Φint = 7.5◦.

As soon as this condition is met, an output signal is generated. The calculated particle
position, which is part of the output signal, is based on the intersection Φint. From
this point on, it is possible to tell which quarter of the detector has been hit. If the
particle travels even further and reaches the FTH, the output signal will be based upon
the position determined by the FTH, as this layer has the highest granularity. In case
of a straight penetration, it is non-relevant whether the position is based on the overlap
of the two window counters or the struck element of the FTH, as the two-times higher
granularity of the FTH ensures that every single one of the possible 48 intersections
between the two window counters has a corresponding element of the FTH. However, a
particle drift within one element to the left or two the right of the intersection of the
window counters shall also count as a proper event and therefore cause an output sig-
nal. This feature allows a particle drift of up to Φdrift = 15◦ to also be evaluated and
cause a trigger signal. If such an event occurs, the position determined by the FTH will
determine which quarter of the detector will be associated with the penetration. This is
speci�cally important at the boundaries of the four quarters, as the element of the FTH
registering a particle could be located in another quarter as the penetrated intersection
of the window counters. Larger deviations than those described above will not count
towards the trigger conditions and therefore not cause a trigger output. The last �ve
layers, the range hodoscopes, will not in�uence the determined particle position as only

25

4. Functions of the FPGA Trigger

straight penetrations through the range hodoscopes will be counted towards the pene-
tration depth. Struck scintillators from the range hodoscopes will only be considered if
they are located behind the struck layer of the trigger hodoscope or the intersection of
the window counters. A straight penetration as well as a two penetrations with particle
drifts are displayed in the Autohotkey tool in �g. 4.3.

Figure 4.3.: Three particle penetrations are shown that will all cause a trigger signal. As
the trigger hodoscope has been struck within Φdrift = 15◦ of the intersec-
tion of the window counters, the position will always be determined by the
struck element of the trigger hodoscope. The last three layers of the range
hodoscope are not displayed in order to shorten the picture.

4.3. Output signals

As soon as overlapping elements of the two window counters register a particle penetra-
tion, an output signal is generated. The output signal contains 18 bits and is sent to port
F of the VME board. The �rst two bits represent the Quarter5, the next eight bits show
how deep the particle traveled into the detector (Depth) and the last eight bit show the
Maximal Penetration Depth. The Quarter is determined as described in 4.2. Each of the
two FPGAs shows which half of the respective FPGA has been struck. A logical 1 as the
�rst bit means that the left half was penetrated while a logical 1 as the second bit means
that the right half was penetrated.6 Of course, it is also possible that both halves are

5which of the four quarters, as shown in �g. 4.1, was hit
6In this case left and right half refers to the separation as shown in �g. 3.4.

26

4. Functions of the FPGA Trigger

struck at the same time. The next eight bits, the Depth, show how far the penetration
reached into the detector. If a trigger signal is sent, at least the �rst two of these eight
bits have to be set to 1 as the trigger will only sent a signal if the two window counters
detect a particle. As soon as the trigger hodoscope is reached, the third bit will be set to
1 as well. The �ve range hodoscopes will be set to 1 according to the penetration depth.
The code where the penetration depth is calculated is part of the main examination of
the signals and can be found in the appendix. Once the Depth is examined, a procedure
called maximal depth will calculate the last layer that was penetrated by the particle and
set the bit representing this layer to 1 while the seven remaining bits are set to 0. This
signal can be used in the further evaluation of the experiment, in case only the maximal
depth is required instead of an eight bit vector showing all penetrated layers. The 18
signals are sent to the �rst 18 pins of the port F and can then be passed on to the further
readout setup. A scheme of port F is shown in table 4.2.

Pin Information Segment

01 Quarter 1
Quarter

02 Quarter 2

03 Hit FWC1

Depth

04 Hit FWC2
05 Hit FTH
06 Hit FRH1
07 Hit FRH2
08 Hit FRH3
09 Hit FRH4
10 Hit FRH5

11 Max. depth is FWC1

Maximal penetration depth

12 Max. depth is FWC2
13 Max. depth is FTH
14 Max. depth is FRH1
15 Max. depth is FRH2
16 Max. depth is FRH3
17 Max. depth is FRH4
18 Max. depth is FRH5

Table 4.2.: The �rst 18 pins of the output F. The remaining pins (19 to 32) of the output
F are not used.

27

5. Simulations

Using a simulation tool like Modelsim-Altera allows to test the design at various stages
to make sure that the code works as expected. Therefore, multiple simulations are run in
the process of designing the trigger to check whether newly added features actually work.
At this point, a couple of simulations run with the �nal version of the trigger design,
before the �rmware is transferred to the FPGA, are shown and explained in order to
demonstrate the functionality of the design.

All simulations are run using signals from the Autohotkey tool as shown in �g. 3.4.
For the di�erent particle penetrations, delays and FIFO setups, a screenshot of the tool
as well as the simulated signals in Modelsim-Altera are included. By testing the design
this way, the functionality can be checked without having to connect actual cables for
countless di�erent con�gurations. To ensure that the transferred �rmware nevertheless
runs on the actual board, some con�gurations are also tested with real signals. Those
test can be found in section 6.

The �rst simulation includes a straight penetration through the third element1 of the
two window counters and the �ve range hodoscopes. The trigger hodoscope is struck
right behind the intersection of the two window counters. There are no delays and the
FIFO is set to use only the latest signals. The result is shown in �g. 5.1. Larger versions
of the screenshots from the simulations are included in the appendix B.

1The numbering be clockwise

28

5. Simulations

Figure 5.1.: A straight penetration without any delays, the box at the right-hand side
shows the output F: 10111111110000000100000000000000.

As can be seen in the screenshot, the output signal is sent 37.5 ns after the input signals
are �rst sent and 25 ns after the input signals are stored in the FIFO at the next clock
pulse. This means that the output not only shows the correct quarter, namely the left
side of the detector half, as well as the correct penetration depth of eight layers, but also
that the FIFO is set up correctly to read the latest entry for all eight layers.

A second simulation depicts a scenario in which the particle hits overlapping scintillators
of the window counters right in the middle of the detector half, but the hit scintillator
from the FTH deviates one element to the right from the intersection of the window
counters. Furthermore, the �rst three range hodoscopes also show a penetration but an
increasing delay is set up that requires an adjustment of the FIFO. To make sure that all
six layers that show a penetration are evaluated at the same time, the FIFO is set up to
put out the second youngest entries from the �rst three layers and the youngest entries
from the �rst three range hodoscopes. As the position output is based on the location
determined by the FTH, and the deviating element of the FTH is located in the right
half, the output should display that the particle hit the right half of the detector half.
The signals are shown in �g. 5.2 and the results can be found in �g. 5.3.

29

5. Simulations

Figure 5.2.: Con�guration for a penetration with multiple delays and a deviation in the
FTH.

Figure 5.3.: Signals from a particle penetration with multiple delays and a deviation in
the FTH. The output F: 011111110000000100 (�rst 18 bits) matches the
expectations.

As can be seen in the screenshot, the particle is registered in the right half and struck
the �rst six layers. This matches the con�guration of input signals and shows that the
FIFO correctly compensates the delay between the di�erent layers.

In the next con�guration the particle strikes straight through overlapping scintillators of
the window counters, a scintillator of the FTH right behind this overlap and a scintillator
of the FRH1. There is a delay of 225 ns between the penetration of the �rst two layers
and the last two hit layers. The FIFO is set up to evaluate the two oldest entries for
the �rst two layers and the two youngest entries for the last two layers. The particle hit
the scintillator of the FWC2 that reaches into both halves of the detector but the struck
scintillator of the FTH is located in the right side, wherefore the output of the position
should display 01. The con�guration can be seen in �g. 5.4 and the signals from the

30

5. Simulations

simulation are included in appendix B2.

Figure 5.4.: Con�guration for a penetration with a long delay. The output
shows 011100000001000000 for the clock pulse starting at 262.5 ns and
011111000000010000 for the next clock pulse.

The �rst output signal shows a penetration of only the �rst two layers and is caused
by the con�guration of the FIFO, which is told to use the oldest entries of the �rst two
layers after 200ns and the youngest signals of the last two layers as they arrive as well
as for one more clock pulse after they arrived. Thus, it is ensured that the penetration of
all four layers will be evaluated but the second signal for the penetration of the �rst two
layers is also sent to the output port for the above-mentioned reasons. Such a con�gura-
tion can be used to ensure that a particle penetration that reaches the range hodoscope
generates a trigger signal despite long delays between the registration of the penetration
at di�erent layers.

The last simulation shows a scenario in which two particles hit the detector half but
the penetration depth varies between the two particles. There are no delays in this sce-
nario and the FIFO is set up to evaluate the latest signals. In both halves the struck
element of the FTH deviates from the intersection of the two window counters. In case
of the left half, the deviation amounts to only one element, wherefore it still counts to-
wards the trigger conditions, but the deviation in the right half exceeds the 15◦ which
are tolerated, as the struck scintillator deviates two elements from the intersection, and
accordingly this penetration is only considered to have reached the two window counters.
The settings are shown in �g. 5.5 and a screenshot can be found in �g. 5.63.

2The output shown in the screenshot is too small if placed within the text
3A larger version of the screenshot can also be found in the appendix B

31

5. Simulations

Figure 5.5.: Con�guration for two particles with di�erent penetration depths.

Figure 5.6.: Signals for two particles with di�erent penetration depths. The output shows
111111111000000010, which means that both halves have been hit and the
maximal penetration depth is determined by the left particle which traveled
all the way to the fourth range hodoscope.

All in all, the simulations show the expected results in all four cases. Further sim-
ulations with similar con�gurations were run and in all cases the output matches the
particle penetration set up in the Autohotkey tool.

32

6. Tests with the developed �rmware

6.1. Devices and wiring

After the �rmware was transferred to the FPGA, further tests are run to check the func-
tionality of the trigger. For these tests a Dual Gate Generator is used to send a pulse
to a coincidence level used as FAN-IN and FAN-OUT, where the signals are forwarded
to a NIM-to-ECL converter, from where the ECL signals are sent to the ports of the
FPGA. Only a couple of ports are actually connected with cables from the converter and
the cables have to be reconnected in order to change the pretended particle penetration.
Permanent input signals are achieved by using the complement or-output of the coinci-
dence level which is not connected to any input signals and therefore permanently sends
an output signal. The setup is shown in �g. 6.1.

Figure 6.1.: The devices and wiring used to test the trigger.

A simpler test in which the two LEDs of the FPGA board are used to display a par-
ticle strike reaching an appointed layer of the detector is also run, but due to the lack
of demonstrative output, except for a �ashing LED, the results from those tests are not
included at this point. These tests are used to check whether a particle penetration up to
the �rst range hodoscope is correctly evaluated and the output signal contained a logical
1 for the respective quarter of the detector as well as for the �rst four values representing

33

6. Tests with the developed �rmware

the penetration depth. In this way, it is also possible to check whether a deviation of the
FTH is correctly evaluated, which is the case for all tested con�gurations.

6.2. Tests with a single output signal

Fig. 6.2 shows the incoming signals used for the �rst couple of tests.

Figure 6.2.: The signals used for the �rst tests of the transferred �rmware as they would
look like in the WASA detector.

The following �gures show signals displayed on an oscilloscope used to measure the
functionality of the FIFO and delays in the signal processing. The yellow signal is the
signal that is send to the input pin that will be connected to the second scintillator of the
�rst range hodoscope. The red signal is the �fth output pin of the trigger, which is the
third value of the eight bit output that represents the penetration depth and therefore
shows whether the particle reached the trigger hodoscope. The setup is also shown in �g.
6.3. By using this con�guration a pulse can be send to the trigger hodoscope and the
trigger should then send an output signal to the oscilloscope. As a �rst test the FIFO
is con�gured to use only the latest signals from all layers. Fig. 6.4 shows the signals as
they are displayed on the oscilloscope.

34

6. Tests with the developed �rmware

Figure 6.3.: The wiring used to run the �rst couple of tests.

Figure 6.4.: Signals from a test using the latest signals stored in the FIFO. The yellow
signal represents the signals sent to the FPGA and the red signal is the �fth
pin of the output F, as illustrated in �g. 6.3.

35

6. Tests with the developed �rmware

One can see that the trigger signal is sent t1 = 91.5 ns after the incoming signal. Up
to tjit,1 = 25 ns of t1 can derive from the jitter between the time the signal is sent and
the time the next clock pulse starts. The remaining delay derives from the time it takes
the FPGA to evaluate the signals and generate the output as well as cable delays. This
means that the latency in this measurement is somewhere between tlat,min = 66.5 ns
and tlat,max = 91.5 ns. Although the jitter does not cause any problems for the planned
experiments, it could be reduced even more by using an OR coincidence between the
trigger signal and the signal from the �rst hodoscope.

For a second test, using the same signals, the FIFO is set up to use only the oldest
entry. This means that the signal is sent with a delay of tdelay = 225 ns. Fig. 6.5
shows the signals displayed on the oscilloscope. The oscilloscope shows a delay of
t10 = 310 ns. tdelay = 225 ns derive from the delay due to the FIFO setup and the
remaining trem = 85 ns derive from the jitter and the processing time. Depending on
how large the jitter is, the latency for this measurement is between tlat,min = 60 ns and
tlat,max = 85 ns. This test shows that the readout of the FIFO can successfully be ad-
justed and the generated delay matches the expected duration.

Figure 6.5.: Signals from a test using the oldest signals stored in the FIFO. The yellow
and red signals again correspond to the con�guration shown in �g. 6.3.

36

6. Tests with the developed �rmware

In a third test the same signals are used but the FIFO is con�gured to evaluate all
ten entries for each layer. This means that the output signal should have a width of
tFIFO = 250 ns. The �g. 6.6 shows the resulting signals and the width of the red signal,
representing the output of the FPGA, amounts to toutput = 251 ns, which matches the
expected width perfectly1. The minimal deviation can originate from the distortion of
the output signal, which does not match a perfect square-wave signal.

Figure 6.6.: Signals from a test using the entire set of signals stored in the FIFO. The
markers show that the width of the signal matches the expected 250 ns
perfectly.

1Resolution: 1
250

= 0.4%

37

6. Tests with the developed �rmware

Additionally, the persistence mode of the oscilloscope is activated and the Gate Gen-

erator is adjusted to send periodical signals for an expanded period of time. This makes
it possible to see the overlap of numerous signals and the occurring jitter. As �g. 6.7
shows, the time between the arrival of the incoming signal at the ports of the FPGA and
the start of the next clock pulse �uctuates and causes a jitter of up to 25 ns.

Figure 6.7.: Multiple trigger signals recorded by using the persistence mode of the os-
cilloscope. The vertical white lines demonstrate that the jitter is limited to
25 ns

38

6. Tests with the developed �rmware

6.3. Tests using the FTH and FRH2

After these �rst tests are run and the output signals satis�ed the expectations, the input
signals are expanded to the �rst and second range hodoscope and relocated to the other
quarter covered by this FPGA to make sure that this part of the detector is also correctly
evaluated. Additionally to the pin showing whether the penetration reaches the trigger
hodoscope, a second output pin, namely the one showing a penetration of the second
range hodoscope, is connected and displayed on the oscilloscope, as shown in �g. 6.8.

Figure 6.8.: The wiring used for the next tests. A second output signal was added to test
further functions of the trigger system.

After the rewiring, a couple of con�gurations of the FIFO are tested with this new
setup. In a �rst test, the FIFO is con�gured to use the lastest signals from the trigger
hodoscope and the range hodoscope so that the output signals should match each other.
The results are shown in �g. 6.9 and correspond to the expectation that both signals
overlap.

39

6. Tests with the developed �rmware

Figure 6.9.: Signals from a test showing the penetration of the trigger as well as the
second range hodoscope. The three signals correspond to the con�guration
shown in �g. 6.8.

It is obvious that the output represents the chosen FIFO and input con�gurations.
To check whether the FIFO correctly distinguishes between the di�erent layers of the
detector, the FIFO is then adjusted to evaluate the latest entry from the FRH2 but the
two latest entries from the FTH. This means that the signal from the FTH should be
twice as wide as the signal from the FRH2. The results can be found in �g. 6.10. They
show the signals from the new con�guration as expected.

Figure 6.10.: Signals from a test showing the penetration of the FTH as well as the FRH2
with di�erent widths.

40

6. Tests with the developed �rmware

After the width of the output signal was successfully changed in the previous tests, a
last test is run that used the same signals from the FTH and FRH2 but now the FIFO
was set up to use all ten entries from the FTH and only the �rst two respectively last two
entries from the FRH2. This means that a signal with a width of tFRH2 = 50 ns should
be located at the beginning respectively the end of a signal with a width of tFTH = 250 ns
from the FTH. The �gures 6.11 and 6.12 show the output and in both cases the FPGA
evaluated the signals correctly.

Figure 6.11.: Signals from a test showing the penetration of the FTH as well as the FRH2
where the FIFO is set up to use the two youngest signals from the FRH2.

Figure 6.12.: Signals from a test showing the penetration of the FTH as well as the FRH2
where the FIFO is set up to use the two oldest signals from the FRH2.

41

6. Tests with the developed �rmware

6.4. Tests using the �rst three range hodoscopes

Next, the pretended particle penetration is expended to reach all the way to the third
range hodoscope and the output of the three struck range hodoscopes is displayed on
the oscilloscope. In this case, the red signals corresponds to the signal from the Depth
output of the FRH1, the green signal corresponds to the output of the FRH2 and the
blue signal to the FRH3. In a �rst, rather simple test, the FIFO is set to read the latest
signals from all layers of the detector.

Figure 6.13.: The wiring used for the last couple of tests with four signals displayed on
the oscilloscope. The three signals from the FPGA represent the �rst three
range hodoscopes.

The output can be found in �g. 6.14. As expected the signals from the three range
hodoscopes overlap each other and the width of every signal amounts to 25 ns.

42

6. Tests with the developed �rmware

Figure 6.14.: Signals from a test showing the penetration of the �rst three range
hodoscopes.

43

6. Tests with the developed �rmware

Additionally, the FIFO is recon�gured to evaluate the three youngest entries of the
�rst four layers and the second and third youngest entry of the �fth layer, the FRH2, as
well as the third youngest entry of the FRH3. The output should therefore show three
di�erently wide pulses, where the width decreases the deeper the particle traveled into
the detector. The output is shown in �g. 6.15. As can be seen, the signal of the FRH1
covers a width of 75 ns, the signal of the FRH2 covers the later 50 ns and the signal
from the FRH3 covers only the last 25 ns. This shows that the signals from the range
hodoscopes are evaluated without any problems and even more di�cult settings from the
FIFO are processed correctly.

Figure 6.15.: Signals from a test showing the penetration of the �rst three range ho-
doscopes with increasingly smaller signal widths.

44

6. Tests with the developed �rmware

Finally, the jitter that occurs for this con�guration of incoming signals and the last
FIFO setup is also recorded. The �g. 6.16 shows the results. The procedure corresponds
with the above-mentioned procedure to record the jitter. The jitter of each of the three
incoming signals can be seen with the expected o�set of 25 ns between the three layers,
due to the increasingly smaller signal width. As is expected, the right slope of all three
signals overlaps, corresponding to the way the FIFO is set up. The o�set of 25 ns between
the signals demonstrates the jitter of up to tjit,1 = 25 ns between the three channels as the
space between the afterglows of the FRH1 and FRH3 is entirely covered by the afterglow
of the FRH2.

Figure 6.16.: Display of the jitter for the con�guration used in �g. 6.15. Each signal has
a jitter of up to 25 ns. The three 25 ns intervals are o�set by one clock pulse
per layer.

All the tests match the expectations and in combination with the simulations run
in Modelsim-Altera no malfunctions of the FPGA trigger are found. Thus, the logical
connectives as well as the implemented FIFO seem to work without any problems.

45

7. Conclusion

The goal of this work was to design a trigger for the WASA detector at COSY. A FPGA
was used to implement the logical connectives necessary to evaluate the signals from the
detector. The trigger will be used for the search for electric dipole moments, wherefore
its design was speci�cally based on the necessary quartering of the detector.

All proposed functions were successfully implemented in the trigger system. The trigger
is based on the WASA detector and each FPGA will evaluate one of the two halves of the
detector. As planned, the trigger system can determine the position of the particle pen-
etration and the output signal will show which quarter of the detector was struck. The
eight layers will also be examined with respect to the penetration depth. Two eight bit
vectors will include information on how deep the particles traveled into the detector. The
FIFO allows completely individual adjustments for each layer of the detector. Signals
from up to ten clock pulses can be evaluated at the same time and, as the simulations
and tests with actual signals showed, the FIFO will indeed process all signals correctly
and the adjustment via an external computer works �uently.

Multiple possible scenarios were simulated using Modelsim-Altera by setting up par-
ticle penetrations and the results matched the expectations. Tests with the transferred
�rmware were run using actual electronic signals and the output was observed by using
the included LEDs of the VME board as well as an oscilloscope. The di�erent con�gu-
rations of incoming signals were correctly processed.

Unfortunately, the trigger system could not be tested as part of the detector it was
designed for, the WASA detector in the cooler synchrotron COSY, as no beam time was
schedule for the period of this three month project. However, since the simulations and
test signals were based on the detector layout, the trigger system should also work in the
WASA detector.

All in all, the ideas behind the trigger system were successfully translated into a hard-
ware design, which was then transferred to the FPGA and tested without experiencing
any problems.

The trigger can now be used to search for electric dipole moments. With the integrated
conditions, events can be categorized and stored for the o�ine analysis. It is also possible
to trigger further online analysis of the signals. A third FPGA was already ordered and
will be used to evaluate the signals even further.

46

Bibliography

[1] Wolfgang Demtröder, Experimentalphysik 4, Kern-, Teilchen- und Astrophysik, 3rd
ed., 2010.

[2] C. Rod Nave, Cyclotron, 2012.

[3] Lutz Feld, Teilchen- und Astrophysik: Teilchenbeschleuniger, Aachen, 2015.

[4] William Brooks, Fixed-Target Electron Accelerators, 2001.

[5] Fabian Hinder, Upgrade of the readout electronics for the EDDA-Polarimeter at the
storage ring COSY, Aachen, October 14th, 2013.

[6] Gersh Itskovich Budker, An e�ective method of damping particle oscillations in pro-

ton and antiproton storage rings, May, 1967.

[7] John Marriner, Stochastic Cooling Overview, August 11th, 2003

[8] Paul Goslawski et al., High precision beam momentum determination in a syn-

chrotron using a spin-resonance method, December 28th, 2013.

[9] James Ritman, Proposal for the Wide Angle Shower Apparatus (WASA) at COSY-

Jülich �WASA at COSY�, Jülich, October 5th, 2004.

[10] Research Fundamentals - What are scintillator materials?, http://web.stanford.
edu/group/scintillators/scintillators.html, (accessed: 7/05/2016) Leland
Stanford Junior University.

[11] Volker Hejny, Irakli Keshelashvili, Edward J. Stephenson, Proposal EDM Polarime-

ter Database for Deuterons and Protons, Jülich, 2015.

[12] Xilinx Inc., Field Programmable Gate Array (FPGA). What is an FPGA?, http:
//www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm,
(accessed: 6/7/2016).

[13] CAEN Electronic Instrumentation, Technical Information Manual, revision n. 16,
June 15th, 2015.

[14] Peter J. Ashenden, The VHDL Cookbook, 1st ed., Adelaide, July, 1990.

47

http://web.stanford.edu/group/scintillators/scintillators.html
http://web.stanford.edu/group/scintillators/scintillators.html
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm

List of Figures

2.1. Basic layout of a cyclotron . 6
2.2. Basic layout of a synchrotron . 8
2.3. Overview of COSY . 10
2.4. Scattering and cross section used to built the database 11
2.5. Layout of a scintillator with photomultiplier 11
2.6. Layout of the forward detector and target crosses 12
2.7. Layout of the two layers of the window counter 13
2.8. Layout of the trigger hodoscope . 14
2.9. Layout of the range hodoscope . 14

3.1. Division of the detector . 16
3.2. Block diagram of the V1495 . 18
3.3. Layout of the simulation tool Modelsim 20
3.4. Additional simulation tool . 21

4.1. Quartering of the detector . 22
4.2. Particle penetration hitting the �rst two layers 25
4.3. Di�erent possible particle penetrations . 26

5.1. SIM 1: straight no delay . 29
5.2. SIM 2: drift with delay settings . 30
5.3. SIM 2: drift with delay . 30
5.4. SIM 3: drift with a long delay settings . 31
5.5. SIM 4: two particles settings . 32
5.6. SIM 4: two particles . 32

6.1. Setup for the measurements . 33
6.2. Signals for the �rmware test . 34
6.3. Setup for the �rst tests . 35
6.4. Test with simple readout of �rst FIFO entry 35
6.5. Test with a delay . 36
6.6. Test with entire FIFO . 37
6.7. Test showing jitter . 38
6.8. Second setup used for the tests . 39
6.9. Test with two outputs . 40
6.10. Test with two outputs with di�erent widths 40
6.11. Test with two outputs and wide signals, left end 41
6.12. Test with two outputs and wide signals, right end 41
6.13. Third setup used for the tests . 42
6.14. Test with three outputs, overlapping . 43

48

List of Figures

6.15. Test with three outputs, o�sets . 44
6.16. Test with three outputs, jitter . 45

49

List of Tables

4.1. Registers used for the FIFO . 24
4.2. Output F . 27

50

Appendices

51

A. VHDL code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use work.components.all;

entity Trigger is

Generic (

constant Reading_Depth : positive := 10; -- SELECT HOW

MANY ENTRIES OF THE FIFO CAN BE EVALUATED PER CLOCK PULSE↪→

constant DATA_WIDTH : positive := 123; -- SELECT HOW MANY

VALUES ARE SAVED IN THE FIFO PER ENTRY (=amount of input pins)↪→

constant FIFO_DEPTH : positive := 10; -- THE

AMOUNT OF ENTRIES IN THE FIFO↪→

constant Speichen : positive := 14 -- AMOUNT OF

SLICES THAT ARE EVALUATED PER FPGA FROM THE FWC 1↪→

);

Port (

-- Front Panel Ports

A : IN std_logic_vector (0 to 31);

-- In A (32 x LVDS/ECL) INVERSE↪→

B : IN std_logic_vector (0 to 31);

-- In B (32 x

LVDS/ECL) INVERSE

↪→

↪→

C : OUT std_logic_vector (0 to

31); -- Out C (32 x LVDS)

INVERSE

↪→

↪→

D : INOUT std_logic_vector (0 to 31);

-- In/Out D (I/O

Expansion) INVERSE

↪→

↪→

E : INOUT std_logic_vector (0 to 31);

-- In/Out E (I/O Expansion)

INVERSE

↪→

↪→

F : INOUT std_logic_vector (0 to 31) := (others => '0'); -- In/Out F

(I/O Expansion) INVERSE↪→

GIN : IN std_logic_vector (1 DOWNTO 0);

-- In G - LEMO (2 x NIM/TTL)↪→

GOUT : OUT std_logic_vector (1 DOWNTO 0);

-- Out G - LEMO (2 x NIM/TTL)↪→

-- Port Output Enable (0=Output, 1=Input)

nOED : OUT std_logic :='1'; -- Output Enable Port D

(only for A395D)↪→

nOEE : OUT std_logic :='1'; -- Output Enable Port E

(only for A395D)↪→

nOEF : OUT std_logic :='0'; -- Output Enable Port F

(only for A395D)↪→

nOEG : OUT std_logic :='1'; -- Output Enable Port G

-- Port Level Select (0=NIM, 1=TTL)

SELD : OUT std_logic; -- Output Level Select Port D

(only for A395D)↪→

52

A. VHDL code

SELE : OUT std_logic; -- Output Level Select Port E

(only for A395D)↪→

SELF : OUT std_logic; -- Output Level Select Port F

(only for A395D)↪→

SELG : OUT std_logic := '0'; -- Output Level Select Port G

-- Expansion Mezzanine Identifier:

-- 000 : A395A (32 x IN LVDS/ECL)

-- 001 : A395B (32 x OUT LVDS)

-- 010 : A395C (32 x OUT ECL)

-- 011 : A395D (8 x IN/OUT NIM/TTL)

IDD : IN std_logic_vector (2 DOWNTO 0); -- Slot D

IDE : IN std_logic_vector (2 DOWNTO 0); -- Slot E

IDF : IN std_logic_vector (2 DOWNTO 0); -- Slot F

-- Delay Lines

-- 0:1 => PDL (Programmable Delay Line): Step = 0.25ns / FSR = 64ns

-- 2:3 => FDL (Free Running Delay Line with fixed delay)

PULSE : IN std_logic_vector (3 DOWNTO 0); -- Output of the delay line (0:1

=> PDL; 2:3 => FDL)↪→

nSTART : OUT std_logic_vector (3 DOWNTO 2); -- Start of FDL (active low)

START : OUT std_logic_vector (1 DOWNTO 0); -- Input of PDL (active high)

DDLY : INOUT std_logic_vector (7 DOWNTO 0); -- R/W Data for the PDL

WR_DLY0 : OUT std_logic; -- Write signal for the PDL0

WR_DLY1 : OUT std_logic; -- Write signal for the PDL1

DIRDDLY : OUT std_logic; -- Direction of PDL data (0 =>

Read Dip Switches)↪→

-- (1 =>

Write from FPGA)↪→

nOEDDLY0 : OUT std_logic; -- Output Enable for PDL0 (active

low)↪→

nOEDDLY1 : OUT std_logic; -- Output Enable for PDL1 (active

low)↪→

-- LED drivers

nLEDG : OUT std_logic; -- Green (active low)

nLEDR : OUT std_logic; -- Red (active low)

-- Spare

-- SPARE : INOUT std_logic_vector (11 DOWNTO 0);

-- Local Bus in/out signals

nLBRES : IN std_logic;

nBLAST : IN std_logic;

WnR : IN std_logic;

nADS : IN std_logic;

LCLK : IN std_logic;

nREADY : OUT std_logic;

nINT : OUT std_logic;

LAD : INOUT std_logic_vector (15 DOWNTO 0)

);

end Trigger;

architecture behavioral of Trigger is

53

A. VHDL code

--SIGNALS FOR EACH LAYER OF SCINTILLATORS ARE GENERATED--

signal APort : std_logic_vector (0 to Speichen-1);

signal BPort : std_logic_vector (0 to Speichen-2);

signal CPort : std_logic_vector (0 to 2*(Speichen-1)-1);

signal DPort : std_logic_vector (0 to Speichen-1);

signal EPort : std_logic_vector (0 to Speichen-1);

signal FPort : std_logic_vector (0 to Speichen-1);

signal GPort : std_logic_vector (0 to Speichen-1);

signal HPort : std_logic_vector (0 to Speichen-1);

--SIGNALS FOR PENNETRATION DEPTH AND LOCATION ARE GENERATED--

shared variable Quarter : std_logic_vector (0 to 1);

shared variable Output : std_logic_vector (0 to 2*(Speichen-1)-1);

shared variable Depth : std_logic_vector (0 to 7);

shared variable MPD : std_logic_vector (0 to 7);

-----------------USED REGISTERS ARE DECLARED-----------------

signal REG_R6 : std_logic_vector(31 downto 0) :=

(others => 'Z');↪→

signal REG_RW1 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW2 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW3 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW4 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW5 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW6 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW7 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW8 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

signal REG_RW9 : std_logic_vector(31 downto 0) := (others =>

'Z');↪→

-----FIFO READING DEPTH FOR THE DIFFERENT LAYERS ARE SET-----

--signal Aread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Bread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Cread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

54

A. VHDL code

--signal Dread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Eread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Fread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Gread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

--signal Hread : std_logic_vector (0 to Reading_Depth-1) :=

"1000000000";↪→

signal Aread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Bread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Cread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Dread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Eread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Fread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Gread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

signal Hread : std_logic_vector (Reading_Depth-1 downto 0) := (others => 'Z');

----SIGNALS FOR FIFO OUTPUT ARE GENERATED FOR ALL LAYERS-----

shared variable Ain : std_logic_vector(0 to Speichen-1) :=(others =>

'0');↪→

shared variable Bin : std_logic_vector (0 to Speichen-2) :=(others =>

'0');↪→

shared variable Cin : std_logic_vector (0 to 2*(Speichen-1)-1) :=(others =>

'0');↪→

shared variable Din,Ein,Fin,Gina,Hin : std_logic_vector (0 to Speichen-1) :=(others =>

'0');↪→

signal Data : std_logic_vector (0 to (FIFO_DEPTH -

1)*DATA_WIDTH+(DATA_WIDTH-1)) := (others => '0'); --FIFO Memory is generated↪→

shared variable counter : natural

:= 0; --

Counter that increases with each clock pulse

↪→

↪→

signal LED : natural; -- Counter that increases with each

clock pulse to show how long LED is turned on↪→

signal nLEDRV : std_logic := '0'; -- Signal that will link the

output channel of the LED with the procedures that evaluate the incoming signals↪→

-----PROCEDURE THAT WILL CALCULATE THE MAXIMAL PENETRATION DEPTH-----

procedure maximal_depth

(Depth : in std_logic_vector;

MPD : out std_logic_vector (0 to 7)) is

begin

MPD := (others => '0');

for i in 0 to 7 loop

if (Depth(i)='1') then

MPD := (i => '1', others => '0');

55

A. VHDL code

end if;

end loop;

end maximal_depth;

--

-----PROCEDURES THAT WILL CALCULATE THE PENETRATION DEPTH PER LAYER CONSIDERING

DRIFTS----↪→

--

procedure depth_straight

(Ain : in std_logic_vector (0 to Speichen-1);

Bin : in std_logic_vector (0 to Speichen-2);

Cin : in std_logic_vector (0 to

2*(Speichen-1)-1);↪→

Din : in std_logic_vector (0 to Speichen-1);

Ein : in std_logic_vector (0 to Speichen-1);

Fin : in std_logic_vector (0 to Speichen-1);

Gina : in std_logic_vector (0 to Speichen-1);

Hin : in std_logic_vector (0 to Speichen-1);

i : in natural;

Depth : out std_logic_vector (0 to 7)) is

begin

Depth(3 to 7) := (3 to 7 => '0');

if (Din(i)=Ain(i)) then -- Further layers are being evaluated to find the

maximal penetration depth: FRH 1↪→

if (Ain(i)=Ein(i)) then -- Further layers are being evaluated to find

the maximal penetration depth: FRH 2↪→

if (Ain(i)=Fin(i)) then -- Further layers are being evaluated to

find the maximal penetration depth: FRH 3↪→

if (Ain(i)=Gina(i)) then -- Further layers are being

evaluated to find the maximal penetration depth:

FRH 4

↪→

↪→

if (Ain(i)=Hin(i)) then -- Further layers are

being evaluated to find the maximal

penetration depth: FRH 5

↪→

↪→

Depth := (others => '1');

else

Depth(0 to 6) := (0 to 6 => '1');

end if;

else

Depth(0 to 5) := (0 to 5 => '1');

end if;

else

Depth(0 to 4) := (0 to 4 => '1');

end if;

else

Depth(0 to 3) := (0 to 3 => '1');

end if;

else

Depth(0 to 2) := (0 to 2 => '1');

end if;

end depth_straight;

procedure depth_shift_low

56

A. VHDL code

(Ain : in std_logic_vector (0 to Speichen-1);

Bin : in std_logic_vector (0 to Speichen-2);

Cin : in std_logic_vector (0 to

2*(Speichen-1)-1);↪→

Din : in std_logic_vector (0 to Speichen-1);

Ein : in std_logic_vector (0 to Speichen-1);

Fin : in std_logic_vector (0 to Speichen-1);

Gina : in std_logic_vector (0 to Speichen-1);

Hin : in std_logic_vector (0 to Speichen-1);

i : in natural;

Depth : out std_logic_vector (0 to 7)) is

begin

Depth(3 to 7) := (3 to 7 => '0');

if (Din(i)=Ain(i)) or (Din(i-1)=Ain(i)) then -- see above

if (Ain(i)=Ein(i)) or (Ain(i)=Ein(i-1)) then

if (Ain(i)=Fin(i)) or (Ain(i)=Fin(i-1)) then

if (Ain(i)=Gina(i)) or (Ain(i)=Gina(i-1)) then

if (Ain(i)=Hin(i)) or (Ain(i)=Hin(i-1)) then

Depth := (others => '1');

else

Depth(0 to 6) := (0 to 6 => '1');

end if;

else

Depth(0 to 5) := (0 to 5 => '1');

end if;

else

Depth(0 to 4) := (0 to 4 => '1');

end if;

else

Depth(0 to 3) := (0 to 3 => '1');

end if;

else

Depth(0 to 2) := (0 to 2 => '1');

end if;

end depth_shift_low;

procedure depth_shift_high

(Ain : in std_logic_vector (0 to Speichen-1);

Bin : in std_logic_vector (0 to Speichen-2);

Cin : in std_logic_vector (0 to

2*(Speichen-1)-1);↪→

Din : in std_logic_vector (0 to Speichen-1);

Ein : in std_logic_vector (0 to Speichen-1);

Fin : in std_logic_vector (0 to Speichen-1);

Gina : in std_logic_vector (0 to Speichen-1);

Hin : in std_logic_vector (0 to Speichen-1);

i : in natural;

Depth : out std_logic_vector (0 to 7)) is

begin

Depth(3 to 7) := (3 to 7 => '0');

if (Din(i)=Ain(i)) or (Din(i+1)=Ain(i)) then -- see above

if (Ain(i)=Ein(i)) or (Ain(i)=Ein(i+1)) then

if (Ain(i)=Fin(i)) or (Ain(i)=Fin(i+1)) then

if (Ain(i)=Gina(i)) or (Ain(i)=Gina(i+1)) then

57

A. VHDL code

if (Ain(i)=Hin(i)) or (Ain(i)=Hin(i+1)) then

Depth := (others => '1');

else

Depth(0 to 6) := (0 to 6 => '1');

end if;

else

Depth(0 to 5) := (0 to 5 => '1');

end if;

else

Depth(0 to 4) := (0 to 4 => '1');

end if;

else

Depth(0 to 3) := (0 to 3 => '1');

end if;

else

Depth(0 to 2) := (0 to 2 => '1');

end if;

end depth_shift_high;

-----PROCEDURE THAT WILL PROCESS AND GENERATE THE OUTPUT OF THE FIFO-----

procedure FIFO

(Reading_Depth : in positive;

DATA_WIDTH : in positive;

Data : in std_logic_vector;

Aread : in std_logic_vector;

Bread : in std_logic_vector;

Cread : in std_logic_vector;

Dread : in std_logic_vector;

Eread : in std_logic_vector;

Fread : in std_logic_vector;

Gread : in std_logic_vector;

Hread : in std_logic_vector;

Ain : out std_logic_vector (0 to Speichen-1);

Bin : out std_logic_vector (0 to Speichen-2);

Cin : out std_logic_vector (0 to

2*(Speichen-1)-1);↪→

Din : out std_logic_vector (0 to Speichen-1);

Ein : out std_logic_vector (0 to Speichen-1);

Fin : out std_logic_vector (0 to Speichen-1);

Gina : out std_logic_vector (0 to Speichen-1);

Hin : out std_logic_vector (0 to Speichen-1)) is

begin

Ain := (others => '0');

Bin := (others => '0');

Cin := (others => '0');

Din := (others => '0');

Ein := (others => '0');

Fin := (others => '0');

Gina := (others => '0');

Hin := (others => '0');

for i in 0 to (Reading_Depth-1) loop

--

FIFO is evaluted according to chosen READING DEPTH

↪→

↪→

58

A. VHDL code

for k in 0 to 7 loop

--

loop for all 8 scintillator layers

↪→

↪→

for j in 0 to Speichen-1

loop --

loop for each slice per layer

↪→

↪→

if (k=0) then

--

FWC 1 is evaluated

↪→

↪→

if (Data(j+i*DATA_WIDTH)='1') and

(Aread(9-i)='1') then -- IF MEMORY SLOT IS

ACTIVATED FOR READING IN AREAD...

↪→

↪→

Ain(j) := '1';

--

...VALUE IS WRITTEN INTO AIN

↪→

↪→

end if;

elsif (k=1) then -- FWC 2 is evaluated

if (j<Speichen-1) then

if (Data(j+i*DATA_WIDTH+Speichen*k)='1')

and (Bread(9-i)='1') then -- same

procedure as with FWC 1

↪→

↪→

Bin(j) := '1';

end if;

end if;

elsif (k=2) then -- FTH 1 is evaluated (SAME PROCEDURE

AS FOR THE FWC 1)↪→

if (j<Speichen-1) then

if

(Data(2*j+i*DATA_WIDTH+Speichen*k)='1')

and (Cread(9-i)='1') then

↪→

↪→

Cin(2*j+1) := '1';

elsif

(Data(2*j+i*DATA_WIDTH+Speichen*k-1)='1')

and (Cread(9-i)='1') then

↪→

↪→

Cin(2*j) := '1';

end if;

end if;

else -- FRH 1-5 are evaluated (SAME PROCEDURE AS FOR THE

FWC 1)↪→

if (Data(j+i*DATA_WIDTH+Speichen*(k+1)-3)='1')

then↪→

if (k=3) and (Dread(9-i)='1') then

Din(j) := '1';

elsif (k=4) and (Eread(9-i)='1') then

Ein(j) := '1';

elsif (k=5) and (Fread(9-i)='1') then

Fin(j) := '1';

elsif (k=6) and (Gread(9-i)='1') then

Gina(j) := '1';

elsif (k=7) and (Hread(9-i)='1') then

Hin(j) := '1';

end if;

end if;

end if;

end loop;

end loop;

59

A. VHDL code

end loop;

end FIFO;

begin

---------COMMUNICATION BETWEEN USER FPGA AND THE VME---------

Aread <= REG_RW1(Reading_Depth-1 downto 0); -- Values from Register 1 are written into

Aread - FIFO setup↪→

Bread <= REG_RW2(Reading_Depth-1 downto 0); -- Values from Register 2 are written into

Bread - FIFO setup↪→

Cread <= REG_RW4(Reading_Depth-1 downto 0); -- Values from Register 3 are written into

Cread - FIFO setup↪→

Dread <= REG_RW5(Reading_Depth-1 downto 0); -- Values from Register 4 are written into

Dread - FIFO setup↪→

Eread <= REG_RW6(Reading_Depth-1 downto 0); -- Values from Register 5 are written into

Eread - FIFO setup↪→

Fread <= REG_RW7(Reading_Depth-1 downto 0); -- Values from Register 6 are written into

Fread - FIFO setup↪→

Gread <= REG_RW8(Reading_Depth-1 downto 0); -- Values from Register 7 are written into

Gread - FIFO setup↪→

Hread <= REG_RW9(Reading_Depth-1 downto 0); -- Values from Register 8 are written into

Hread - FIFO setup↪→

-- REG_R6 --> | ------ 24 bit ------ --4bit--4bit-|

-- REG_R6 --> | ... obligatory '0' ... | 0 | 0 |

REG_R6(3 downto 0) <= "0001"; -- Firmware release

--REG_R6(7 downto 4) <= conv_std_logic_vector(1, 4); -- Demo number

REG_R6(31 downto 4) <= (others => '0');

instance_LB_INT: LB_INT

port map (

-- Local Bus in/out signals

nLBRES => nLBRES,

nBLAST => nBLAST,

WnR => WnR,

nADS => nADS,

LCLK => LCLK,

nREADY => nREADY,

nINT => nINT,

LAD => LAD,

-- Internal Registers

REG_R6 => REG_R6,

REG_RW1 => REG_RW1,

REG_RW2 => REG_RW2,

REG_RW3 => REG_RW3,

REG_RW4 => REG_RW4,

REG_RW5 => REG_RW5,

60

A. VHDL code

REG_RW6 => REG_RW6,

REG_RW7 => REG_RW7,

REG_RW8 => REG_RW8,

REG_RW9 => REG_RW9

);

APort <= not A(0 to Speichen-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FWC

1

↪→

↪→

BPort <= not A(Speichen to 2*Speichen-2);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FWC

2

↪→

↪→

CPort <= not B(0 to 2*(Speichen-1)-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FTH

1

↪→

↪→

DPort <= not D(0 to Speichen-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH

1

↪→

↪→

EPort <= not D(Speichen to 2*Speichen-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH

2

↪→

↪→

FPort <= not E(0 to Speichen-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH

3

↪→

↪→

GPort <= not E(Speichen to 2*Speichen-1);

-- INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH

4

↪→

↪→

HPort(0 to 4) <= not A(2*Speichen-1 to

31); -- INPUT SIGNALS ARE SPLIT ACCORDING TO

LAYER OF SCINTILLATORS: FRH 5 Pins 1 to 5

↪→

↪→

HPort (5 to 10) <= not B(2*(Speichen-1) to 31); --

INPUT SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH 5 Pins 6 to 11↪→

HPort (11 to 13) <= not D(2*Speichen to 2*Speichen+2); -- INPUT

SIGNALS ARE SPLIT ACCORDING TO LAYER OF SCINTILLATORS: FRH 5 Pins 12 to 14↪→

process begin

wait until rising_edge(LCLK);

Data <= Data(DATA_WIDTH to

DATA_WIDTH*FIFO_DEPTH-1)&APort&BPort&CPort&DPort&EPort&FPort&GPort&HPort;

-- new signals are added to FIFO

↪→

↪→

FIFO(Reading_Depth, DATA_WIDTH, Data, Aread, Bread, Cread, Dread, Eread,

Fread, Gread, Hread, Ain, Bin, Cin, Din, Ein, Fin, Gina, Hin); --

FIFO is read out

↪→

↪→

if (Counter > LED+20000000) then -- RED LED is turned off after flashing

for half a second↪→

nLEDR <= '1';

end if;

if (Ain(0 to Speichen-1)=(Ain'range => '0')) or (Bin(0 to

Speichen-2)=(Bin'range => '0')) then -- If particle doesn't reach

FWC 2, no event shall be registered

↪→

↪→

61

A. VHDL code

Depth := (others => '0'); -- In the above-mentioned

case, the depth is set to 0...↪→

Quarter := (others => '0'); -- ...and the Position is

not evaluated↪→

else -- B TRIGGERED

Depth := (others => '0'); -- In the above-mentioned

case, the depth is set to 0...↪→

Quarter := (others => '0');

for i in 0 to Speichen-1 loop -- Loop for each of the 14

evaluated scintillators of FWC 1↪→

if (i=0) then -- particle is registered on the edge of

the layer↪→

--lower(nLEDRV, LED, counter, Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin, Quarter, Output,

Depth);

↪→

↪→

if (Ain(i)='1') and (Bin(i)='1') then -- The

position of the particle on FWC 1 & FWC 2

matches

↪→

↪→

nLEDR <= '0'; -- RED LED is turned on

LED <= counter;

Quarter(0) := '1';

if (Cin(2*i)='1') then -- Particle

struck FTH 1 on lower slice(ON THE

SAME LEVEL AS THE STRUCK SLICE OF

THE FWC 1)

↪→

↪→

↪→

Output(2*i) := '1'; -- Output

signal is set according to

the evaluated position

↪→

↪→

depth_straight(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i+1)='1') then -- particle

struck FTH 1 on upper slice (ONE

SLICE ABOVE THE STRUCK SLICE OF THE

FWC 1)

↪→

↪→

↪→

Output(2*i+1) := '1'; --

Penetration depth is set to

display that particle hit

at least FWC 1 & 2 & FTH 1

↪→

↪→

↪→

Depth(0 to 1) := (0 to 1 =>

'1'); -- Penetration depth

is set to display that

particle hit at least FWC 1

& 2 & FTH 1

↪→

↪→

↪→

↪→

depth_shift_high(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

else -- Particle did not reach FTH 1

Output(2*i) := '1'; --

Positional Output is set↪→

Depth(0 to 1) := (0 to 1 =>

'1'); -- Penetration depth

is set to display that

particle hit FWC 1 & 2

↪→

↪→

↪→

62

A. VHDL code

end if;

end if;

elsif (0<i) and (i<(Speichen-1)) then -- PARTICLE IS

REGISTERED SOMEWHERE IN THE MIDDLE OF THE LAYER↪→

if (Ain(i)='1') and (Bin(i)='1') then -- The

particle went straight through FWC 1&2 by

striking the upper overlapping slice of the

FWC 2

↪→

↪→

↪→

nLEDR <= '0'; -- RED LED is turned on

LED <= counter;

if (Cin(2*i)='1') then --

The particle went straight through

FWC 1&2 and FTH 1

↪→

↪→

if (2*i<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i) := '1';

depth_straight(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i-1)='1') then -- The

particle went through FWC 1&2 as

welll as FTH 1 but the struck slice

on the FTH 1 deviates +1 towards

the lower edge

↪→

↪→

↪→

↪→

if (2*i-1<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i-1) := '1';

Depth(0 to 1) := (0 to 1 =>

'1');↪→

depth_shift_low(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i+1)='1') then -- The

particle went through FWC 1&2 as

welll as FTH 1 but the struck slice

on the FTH 1 deviates +1 towards

the upper edge

↪→

↪→

↪→

↪→

if (2*i+1<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i+1) := '1';

Depth(0 to 1) := (0 to 1 =>

'1');↪→

depth_shift_high(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

63

A. VHDL code

else -- The particle went straight

through FWC 1&2 but did not reach

FTH 1

↪→

↪→

if (i<Speichen/2) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Depth(0 to 1) := (0 to 1 =>

'1');↪→

end if;

end if;

if (Ain(i)='1') and (Bin(i-1)='1') then -- The

particle went straight through FWC 1&2 by

striking the lower overlapping slice of the

FWC 2

↪→

↪→

↪→

nLEDR <= '0'; -- RED LED is turned on

LED <= counter;

if (Cin(2*i)='1') then

-- Evaulation process is equal to

the above-mentioned case only

shifted one slice down on the FWC 2

and FTH 1

↪→

↪→

↪→

↪→

↪→

if (2*i<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i) := '1';

depth_straight(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i-1)='1') then -- see above

if (2*i-1<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i-1) := '1';

Depth(0 to 1) := (0 to 1 =>

'1');↪→

depth_straight(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i-2)='1') then -- see above

if (2*i-2<Speichen-1) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Output(2*i-2) := '1';

Depth(0 to 1) := (0 to 1 =>

'1');↪→

64

A. VHDL code

depth_shift_low(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

else

if (i<Speichen/2) then

Quarter(0) := '1';

else

Quarter(1) := '1';

end if;

Depth(0 to 1) := (0 to 1 =>

'1');↪→

end if;

end if;

else

-- PARTICLE IS REGISTERED ON THE OTHER EDGE OF THE

LAYER

↪→

↪→

--upper(nLEDRV, LED, counter, Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin, Quarter, Output,

Depth);

↪→

↪→

if (Ain(i)='1') and (Bin(i-1)='1') then --

Particle struck overlapping slices of the

FWC 1&2 on the edge

↪→

↪→

nLEDR <= '0'; -- RED LED is turned on

LED <= counter;

Quarter(1) := '1';

if (Cin(2*i-1)='1') then --

particle went straight through

overlapping slices of FWC 1&2 and

FTH 1

↪→

↪→

↪→

Output(2*i-1) := '1';

depth_straight(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

elsif (Cin(2*i-2)='1') then

-- Struck

slice of FTH 1 deviates -1 from the

overlapping slices of FWC 1&2

↪→

↪→

↪→

Depth(0 to 1) := (0 to 1 =>

'1');↪→

Output(2*i-2) := '1';

depth_shift_low(Ain, Bin, Cin,

Din, Ein, Fin, Gina, Hin,

i, Depth);

↪→

↪→

else -- FTH 1 was not struck

Output(2*i-1) := '1';

Depth(0 to 1) := (0 to 1 =>

'1');↪→

end if;

end if;

end if;

end loop;

end if;

if (Cin=(Cin'range => '0')) then --Depth from FTH

onwards is set to 0 if no particle was registered by the FTH↪→

65

A. VHDL code

Depth(2 to 7) := (2 to 7 => '0');

elsif (Din=(Din'range => '0')) then --Depth from the

respective FRH onwards is set to 0 if no particle was regsitered by

the respective FRH

↪→

↪→

Depth(3 to 7) := (3 to 7 => '0');

elsif (Ein=(Ein'range => '0')) then

Depth(4 to 7) := (4 to 7 => '0');

elsif (Fin=(Fin'range => '0')) then

Depth(5 to 7) := (5 to 7 => '0');

elsif (Gin=(Gin'range => '0')) then

Depth(6 to 7) := (6 to 7 => '0');

elsif (Hin=(Hin'range => '0')) then

Depth(7) := '0';

end if;

counter := counter + 1; -- counter

increasesx with each clock pulse↪→

maximal_depth(Depth, MPD); -- Maximal penetration depth is

calculated↪→

F(0 to 17) <= Quarter&Depth&MPD; -- Output signal for FPGA Port is set

end process;

end behavioral;

66

B. Screenshots from the simulations

Simulation 1:

67

B. Screenshots from the simulations

Simulation 2:

68

B. Screenshots from the simulations

Simulation 3:

69

B. Screenshots from the simulations

Simulation 4:

70

C. Symbols and constants

r radius m

t time s

m mass kg

v velocity m/s

q charge C

B magnetic �eld T

ω angular frequency rad/s

Ekin kinetic energy GeV/c

U voltage V

c speed of light 299,792,458 m/s

71

D. Acknowledgments

I wish to express my sincere thanks to Prof. Dr. Jörg Pretz for giving me the opportunity
to work on this thesis as well as for his support and advice throughout the entire project.

I would also like to show gratitude to Dr. Volker Hejny who gave me an understanding
of COSY, the WASA detector and all necessary technical devices used in the course of
this project. I also want to give thanks to him for his expert input when it comes to the
features of the trigger system and all of his additional support.

I wish to thank Fabian Hinder for his many explanations of the FPGA and all of his
help during this project as well as for reading and improving this thesis.

Furthermore, I would like to thank Fabian Trinkel for also reading and enhancing my
thesis.

Last but not least, I wish to thank all the men and women who work at the IKP for
their kindness and the good atmosphere. I really enjoyed working with every single one
of you.

72

E. Statutory declaration

Henrik Matschat (Matrikelnummer: 330778)

I declare that I have authored this bachelor thesis independently and without any unau-
thorized support. I have not used any other than the declared sources and resources.
In case that this thesis is also submitted electronically, I declare that the printed and
the digital version are completely identical. This thesis has not been submitted to any
department before.

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Bachelorarbeit selbst-
ständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich
auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektro-
nische Form vollständig übereinstimmt. Die Arbeit hat in gleicher oder ähnlicher Form
noch keiner Prüfungsbehörde vorgelegen.

Aachen, 12. Juli 2016

Henrik Matschat

73

	Introduction
	Theoretical and experimental background
	Particle accelerators and storage rings
	Cyclotron
	Synchrotron
	Fixed target scattering for high precision physics

	WASA at COSY
	Layout of the forward detector
	Window counter
	Trigger hodoscope
	Range hodoscope
	Additional parts

	Technical Components
	Technical specifications and functions of the FPGA
	"User" and "Bridge" FPGA
	Input channels and division of the detector
	Clock

	Software
	VHDL
	Quartus II 11.0
	Modelsim-Altera

	Functions of the FPGA Trigger
	FIFO
	Trigger conditions
	Output signals

	Simulations
	Tests with the developed firmware
	Devices and wiring
	Tests with a single output signal
	Tests using the FTH and FRH2
	Tests using the first three range hodoscopes

	Conclusion
	Appendices
	VHDL code
	Screenshots from the simulations
	Symbols and constants
	Acknowledgments
	Statutory declaration

