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Abstract

Assuming that the CPT theorem holds, an Electric Dipole Moment (EDM) is also a
source of CP violation, which is needed to explain the matter-antimatter asymmetry.
Measuring an EDM at a higher value than the SM prediction would therefore provide
an additional CP violation and would be a strong indication for physics beyond the
SM.
The JEDI-Collaboration (Jülich Electric Dipole moment Investigations) is planning
to use the storage rings COSY (COoler SYnchrotron) for high precision proton beam
EDM experiments. In order to achieve a sufficient statistical sensitivity, it is necessary
to have a long Spin Coherence Time (SCT).
In this thesis, spin tracking simulations were performed with the software library
Bmad to investigate the sextupole contributions. By using the FFT/NAFF algorithm
that reduces the modulation of synchrotron oscillations, the spin tune can be precisely
calculated. Simulations were performed to verify the linear relationship between some
important parameters of the proton beam and the inverse of the SCT. Based on the
assumption of a linear system of equations, the optimal setup for the three families
of sextupoles in an ideal lattice is found via spin tracking simulations. This made it
possible to achieve a long SCT for proton beams.
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1. Introduction

The inability of the Standard Model (SM) to explain the matter-antimatter asymme-
try in the universe is one of the most challenging problems in modern physics. The
Electric Dipole Moment (EDM) of a subatomic particle is predicted by the SM and
provides simultaneous violation of parity (P) and time reversal (T ). EDM is a source
of CP violations when the CPT theorem is assumed to be valid. This is the key to
explaining the problem of matter-antimatter asymmetry. Therefore, measuring the
EDM at a value higher than that predicted by the SM would indicate an additional
CP violation and would be evidence of physics beyond the SM.

Optimization of the Spin Coherence Time (SCT) plays a central role in storage ring
EDM experiments, since a long SCT is required to achieve the statistical sensitivity for
an EDM measurement. After a sufficient long SCT was achieved for deuteron beams,
the JEDI-Collaboration (Jülich Electric Dipole moment Investigations) in Jülich is
preparing a similar measurement for the SCT for protons at the storage ring COSY
(COoler SYnchrotron).[ 22 ]
Many parameters indicate that for proton beams, the optimization procedure to re-
alize long SCT is more difficult than for deuteron beams. On the one hand, the
anomalous gyromagnetic g-factor G of the proton is more than an order of magnitude
larger than that of the deuteron. On the other hand, the intrinsic spin resonances are
much higher in number and intensity. As shown in previous simulations, this leads to
a significant reduction in the SCT, which must be very finely optimised by sextupole
corrections.[ 23 ]

The task of this thesis is to perform spin tracking simulations for investigating the
sextupole’s contributions. Firstly the model of COSY needs to be implemented into
the software library Bmad. Next the dependences of important beam parameters
such as the emittance and the momentum spread on the SCT should be checked.
Furthermore, an optimal sextupole setting needs to be found to achieve the longest
SCT. In this thesis, the COSY lattice used is the ideal model without misalignment.

This thesis is structured as follows: Chapter 2 provides the scientific motivation
and the theoretical background of the EDM measurements. The basic concepts and
equations of beam dynamics and spin dynamics are described in chapters 3 and 4. In
chapter 5 an introduction to the accelerator facility COSY is given, a description of
how the model is implemented in the simulation software is explained, and different
algorithms for calculating spin tune are also discussed. In Chapter 6, the beam
parameters and particle distribution used in the simulations are investigated, the
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1. Introduction

linear dependence of emittance and momentum spread on SCT is verified, and the
scan studies of chromaticity are shown. The methods used to optimise the spin
coherence time and the results obtained for a long SCT are presented in Chapter 7.
Chapter 8 summarises the results in this thesis and gives an outlook.
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2. Scientific motivation

2.1. Matter antimatter asymmetry

Why there is more matter than antimatter after the big bang? It is a big question
in modern physics. This excess of matter can be expressed by the baryon-to-photon
density ratio, also known as baryon asymmetry:

η =
nb − nb̄
nγ

= (6.129 ± 0.039) × 10−10, (2.1)

where η refers to the baryon asymmetry, nb, nb̄ and nγ are the baryon, antibaryon and
photon densities respectively.[ 28 ] However, the current Standard Model of Cosmol-
ogy theory only predict 10−18 for the same number.[ 12 ] So there is a big discrepancy.
One possible explanation is that the antimatter was annihilated in asymmetric pro-
cesses during the evolution of the Universe, and this requires the fulfilment of three
conditions proposed by Sakharov.[ 5 ]

• Baryon number violation: There exists interactions that violate the baryon
number, since the net baryon number of the universe must vary with time.

• C and CP violation: Only if C and CP are asymmetric will the baryon
production rate not be equal to the anti-baryon production rate, so that a net
baryon number can be generated.

• Departure from thermal equilibrium: The process that violates the baryon
number must be out of thermal equilibrium. Otherwise, the CPT symmetry at
equilibrium would prevent the baryon number from being generated.

2.2. Electric dipole moment

The EDM originates from the permanent separation of positive and negative charges
within the particle. In particle physics, the EDM d⃗ and Magnetic Dipole Moment
(MDM) µ⃗ are fundamental properties of particles. By definition, dipole moments
must be either parallel or antiparallel with respect to the spin direction. The non-
relativistic Hamiltonian of a corresponding particle in electromagnetic fields can be
written as:

H = −µ⃗ ⋅ B⃗ − d⃗ ⋅ E⃗, (2.2)

3



2. Scientific motivation

where E⃗ is the electric field and B⃗ is the magnetic field.
Under the parity P transformation, only the electric field E⃗ inverts its sign, while the
magnetic field B⃗ and spin (i.e. µ⃗ and d⃗) remain unchanged. In the case of a time
reversal T transformation, the magnetic field B⃗ and the spin vector flip their signs
while the electric field E⃗ does not change. [ 23 ], Above transformations are illustrated
by the Equations  2.3 and Figure  2.1 .

P ∶H = −µ⃗ ⋅ B⃗ + d⃗ ⋅ E⃗,

T ∶H = −µ⃗ ⋅ B⃗ + d⃗ ⋅ E⃗.
(2.3)

Figure 2.1.: The schematic shows a particle undergoing parity and time-reversal trans-
formations in an electromagnetic field. The EDM term violates the P and
T symmetries, according to the CPT theorem also violates the CP sym-
metry. Taken from [ 32 ]

Assuming the CPT theorem holds, since the EDM term d⃗ ⋅ E⃗ breaks P and T sym-
metry, therefore it is also a source of CP violation. The Standard Model predicts the
nuclear EDMs are of order 10−31 to 10−33 e cm.[  25 ] Measurements of higher values of
the EDM will be interpreted as a sign of new physics beyond the Standard Model.

4



3. Beam dynamics in storage rings

The proposed EDM measurement of charged particles can be realized at a storage
ring. In this chapter a brief introduction to the basic concepts and equations of beam
dynamics will be given. The brief descriptions presented here are mainly taken from
[ 11 ], [  21 ] and [ 31 ].

3.1. Charged particles motion

A beam describes an ensemble of charged particles in very similar state of motion.
These particles have almost the same momentum and are spatially concentrated. In a
storage ring, the charged particles travel on a circular orbit. The angular divergences
as well as the momentum deviation of the individual particles inside the beam are a
potential cause of their loss on this orbit. In order to correct the trajectory of the
particles, one needs to guide them back to the reference orbit. In general, this is
achieved by electromagnetic fields applied to the charged particles:[  11 ]

F⃗ = q ⋅ (E⃗ + v⃗ × B⃗) (3.1)

Equation  3.1 shows the Lorentz force where a particle of charge q and velocity v⃗
experiences a force F⃗ due to an electric field E⃗ and a magnetic field B⃗.

3.2. Coordinate system

In order to observe and describe the motion of a particle, a coordinate system needs
to be established. In this thesis a co-moving coordinate system (shown in Figure  3.1 )
is used, where the origin of the coordinates is always fixed on the reference particle.
Therefore, the origin of the coordinates follows the orbit of the reference particle.
This orbit is called the ideal or reference orbit and generally consists of straight and
curved segments. Usually, one assume that the ideal orbit lies on the same horizontal
plane, which is called the orbital plane.
The three axes of the coordinate system are orthogonal to each other. In this thesis,
the s-axis is always along the ideal orbit, pointing in the moving direction of the
reference particle. The x-axis is in the plane of the storage ring, perpendicular to
the s-axis, pointing out of the ring. The y-axis is perpendicular to the orbital plane
and is positive above. With this coordinate system, the position of an arbitrary
particle at any given moment can be marked by the three coordinate variables x, y
and s. Additional information is provided by the three components of its momentum,
representing the instantaneous rate of change of each of the three position variables.
One can assume that the coordinate system is only rotated around the y-axis. When
rotated by the angle ϕ, the coordinate basis vectors from point A to point B are

5



3. Beam dynamics in storage rings

Figure 3.1.: Co-moving Cartesian coordinate system to illustrate the beam motion
relative to the reference particle. ês, êx and êy are coordinate base vectors
at one point, respectively. ϕ refers to the angle between the particle
and the reference particle. ρ is the radius of curvature of the trajectory.
Inspired by [ 11 ].

transformed as follows [ 11 ]:

êx,B = cosϕêx,A + sinϕês,A

êy,B = êy,A

ês,B = −sinϕêx,A + cosϕês,A

(3.2)

The relationship between arc length ds and the radius of curvature of the trajectory ρ
is ds = ρϕ. Then one can calculate the time derivatives of the coordinate basis vectors
as:

˙̂ex =
dêx
dϕ

dϕ
dt =

ṡ

ρ
ês

˙̂ey =
dêy
dϕ

dϕ
dt = 0

˙̂es =
dês
dϕ

dϕ
dt = −

ṡ

ρ
êx

(3.3)

3.2.1. Field expansion

When a particle is moving on a circular orbit, the Lorentz force provides the cen-
tripetal force if there is only a transverse magnetic field. This results in the following
relation [ 11 ]:

1
ρ(x, y, s)

=
q

p
By(x, y, s). (3.4)

6



3.3. Transverse motion

In Equation  3.4 the quantity p is the particle’s momentum whereas ρ is the radius of
the orbit.
Considering that the radius of curvature of the particle trajectory is much larger than
the dimension of the beam, one can perform a Taylor expansion of the magnetic field
along the vicinity of the ideal orbit [ 11 ]:

q

p
By(x) =

q

p
By(0) +

q

p

∂By

∂x
x +

1
2!
q

p

∂2By

∂x2 x
2 +...

=
1
ρ

+kx +
1
2!mx

2 +...

Dipole Quadrupole Sextupole ...

Bending Focusing Correction ...

(3.5)

Equation  3.5 displays that the effects of the dipole term is beam steering, the quadrupole
term is beam focusing and the sextupole term is chromaticity correcting. Higher mul-
tipoles occur due to field errors or field compensation. The linear beam optics consist
of only the two lowest multipoles terms, namely the dipole term and quadrupole term.

3.3. Transverse motion

In this section, the equations of transverse motion will be discussed. For linear beam
optics, the bending dipoles keep the particle’s trajectory on a closed orbit, while the
quadrupoles keep the particle motion stable through their transverse focusing and
defocusing.
3.3.1. Hill’s differential equations

Assuming that only dipole and quadrupole fields exist, one can use x(s) and y(s)
to denote the horizontal and vertical displacement of the particle from the reference
orbit, respectively. The transverse motion equations of particles in periodic fields are
described by the Hill’s differential equations [ 11 ]:

x′′(s) + (
1

ρ2(s)
− k(s))x(s) =

1
ρ(s)

∆p
p

y′′(s) + k(s)y(s) = 0
(3.6)

where momentum deviation ∆p is very small compared to the particle’s reference
momentum p. The bending radius in the dipole field ρ(s) and the quadrupole strength
k(s) are functions of the s-coordinate on a closed orbit, one period is defined as the
circumference of the circular accelerator C0. Since a quadrupole magnet is always
focused in one plane and defocused in the other plane, in this thesis, we choose the
negative sign of k as focusing and vice versa.
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3. Beam dynamics in storage rings

3.3.2. Betatron oscillation and betatron tune

Consider the case without momentum deviation ∆p
p = 0 and a negligible weak focusing

contribution 1
ρ(s) = 0. The Hill’s differential quations ( 3.6 ) can be rewritten as:

x′′(s) − k(s)x(s) = 0
y′′(s) + k(s)y(s) = 0

(3.7)

As the two equations are similar in structure, only the horizontal direction x is dis-
cussed. The oscillation of a particle around a reference orbit, so called the betatron
oscillation, is described by the function x(s). One can make the following ansatz for
the solution of the equations above:

x(s) = Au(s) cos (Ψ(s) + φ) (3.8)
where A denotes the constant amplitude factor of the oscillation, Ψ(s) the phase
advance and φ the initial phase.
The emittance ε is a constant parameter throughout the whole beam transport system.
Introducing the amplitude beta function β(s) ≡ u2(s), then Equation  3.8 can be
expressed as:

x(s) =
√
ε
√
β(s) cos (Ψ(s) + φ) (3.9)

with

Ψ(s) =

s

∫
0

dσ

β(σ)
. (3.10)

The betatron tune of the accelerator is defined as the number of oscillations per
revolution [ 30 ]:

Qx,y =
∆Ψ
2π =

1
2π ∮

ds

β(s)
(3.11)

where x, y denote respectively the horizontal and vertical directions, ∆Ψ is the phase
advance for a full turn.
3.3.3. Phase space ellipse

In simulations and experiments, it is often difficult to calculate the trajectory for every
single particle. For a better description of the whole particle beam’s motion, one can
use the phase space ellipse to observe their dynamics.[ 21 ] In a two-dimensional phase
space, the coordinates are the position x and the angle x′ in the horizontal direction.
The derivative of Hill’s equation solution can be expressed as:

x′(s) = −

√
ε

√
β(s)

[α(s) cos (Ψ(s) + φ) + sin (Ψ(s) + φ)] (3.12)

with
α(s) ≡ −

β′(s)

2 . (3.13)
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3.3. Transverse motion

Figure 3.2.: The invariant phase space ellipse for horizontal plane at a fixed position
s. The extreme values and zero crossings are Courant–Snyder (Twiss)
parameters. Adapted from [  21 ].

One can define a parameter:
γ(s) ≡

1 + α2(s)

β(s)
(3.14)

then Equation ( 3.12 ) can be expressed in the form [ 11 ]:

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ε. (3.15)

This equation describes an ellipse (see Figure  3.2 ) in the (x − x′) horizontal plane,
α,β and γ are called Courant–Snyder (Twiss) parameters. The area of the ellipse
is F = πε. According to Liouville’s theorem, the volume of the phase space stays
constant when the beam in the accelerator is only affected by conservative forces.
The shape of the phase space ellipse changes but its area remains constant as the
particle travels around the accelerator.
Since the two directions in the transverse plane are uncoupled, the above discussion
also applies to the vertical plane.
3.3.4. Beam emittance

For a single particle, the amplitude of its betatron oscillation in a magnetic field
structure can be defined as envelope E(s) =

√
εβ(s). One can see that the emittance

ε is a constant value, while the betatron function β(s) is position dependent especially
with regard to focusing/defocusing magnets. This can be used to control the beam
size at special locations.[ 21 ]

9



3. Beam dynamics in storage rings

For a beam of many particles, one need a definition for the average beam emittance.
Here one can assume that the distribution of the particle beam in the transverse phase
space to be a Gaussian distribution:

ρ(x, y) =
Ne

2πσxσy
exp(−

x2

2σ2
x

−
y2

2σ2
y

) (3.16)

where N is the number of particles, σx and σy are the horizontal and vertical standard
deviations of the particle distribution.
The definition of emittance εSTD for the entire beam is [ 11 ]:

εSTD =
σ2(s)

β(s)
. (3.17)

3.3.5. Dispersion

In the previous sections, only the homogenous solution of hills differential equations
was discussed, as the momentum deviation was neglected. In a real accelerator, the
particle beam is usually consisted of many off-momentum particles. Assuming that
only the dipole field exists and the bending radius is ρ, then Equation ( 3.6 ) can be
expressed as:

x′′ +
1
ρ2x =

1
ρ

∆p
p
. (3.18)

When ∆p/p = 1, the above Equation  3.18 defines the dispersion equation D(s) [ 11 ]

D′′(s) +
1
ρ2D(s) =

1
ρ
. (3.19)

The complete equation solution xg(s) includes the general solution x(s) of the as-
sociated homogeneous differential equation and the particular solution xD(s) of the
non-homogeneous term:

xg(s) = x(s) + xD(s) = x(s) +D(s)
∆p
p

(3.20)

where x(s) describes the betatron oscillation and xD(s) is the offset due to a relative
momentum deviation ∆p/p = 1. [ 11 ]
3.3.6. Chromaticity and its compensation

For the particles with momentum deviations, similarly to the dispersion, the quadrupole
field acts differently on each particle. Assuming that ∆p is very small, a particle with
momentum p = p0 +∆p will experience a modified quadrupole field [  11 ]

k(p) = −
q

p
g = −

q

p0 +∆pg ≈ −
q

p0
(1 − ∆p

p0
)g = k0 −∆k. (3.21)
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3.3. Transverse motion

One can write the contribution of the momentum deviation effect to the quadruple
error ∆k as:

∆k = ∆p
p
k0. (3.22)

The quadrupole error leads to a betatron tune shift dQ:

dQ =
∆p
p

1
4πk0β(s)ds. (3.23)

Therefore, one can define a dimensionless quantity natural chromaticity ξ via:

ξ ≡
∆Q

∆p/p =
1

4π ∮ k(s)β(s)ds. (3.24)

It represents the total tune shift integrated along all the accelerator’s quadrupoles.
Since the optical function β(s) in a focusing magnet is always larger than that in
a defocusing magnet in a ring with strong focusing lattice, the natural chromaticity
caused only by the quadrupole fields is always negative. [ 30 ]
The chromaticity effect caused by momentum deviations leads to tune shifts, which
may eventually cause damaging resonances. In order to achieve stable operation,
sextupole magnets are used in the accelerator to compensate for chromaticity. The
sextupole’s focusing strength is position-dependent:

q

p
B⃗sext =mxyêx +

1
2m(x2 − y2)êy, (3.25)

then given the following focusing strength k depending on dispersion D in x- and
y-axes respectively [ 30 ]

kx =
q

p

∂By

∂x
=mx =mD

∆p
p

ky =
q

p

∂Bx

∂y
=mx =mD

∆p
p
.

(3.26)

Figure  3.3 is a demonstration of how a sextupole is operating. One placed the sex-
tupole magnet after the quadrupole magnet. When a reference particle without mo-
mentum deviation ∆p/p = 0 passes through, it travels in the reference orbit. since the
centre of a sextupole is field-free, so the sextupole doesn’t have any effect on it. For
a particle with momentum deviation ∆p/p ≠ 0, its orbit deviates from the nominal
orbit by a horizontal offset of x due to the dispersion D. This leads to an additional
quadrupole strength of the sextupole

ksext =mx =mD
∆p
p

(3.27)

where m is the sextupole strength. [ 11 ]
Adding the contribution of all sextupoles, then obtain the total chromaticity

ξtot =
1

4π ∮ [m(s)D(s) + k(s)]β(s)ds. (3.28)
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3. Beam dynamics in storage rings

Figure 3.3.: The correcting sextupole magnet is placed to compensate the chromatic-
ity. In regions where the dispersion is not zero, the offset particles are
not passing through the magnet at the centre. The sextupole magnet
produces quadrupole fields to correct for the chromaticities depending on
the position of the particle. Adapted from [ 11 ].

3.4. Longitudinal motion

The previous sections are all about the transverse motion of particles in the accelera-
tor. This section describes the longitudinal motion affected by the cavity. The cavity
generates a longitudinally oscillating electric field that changes the particle’s energy
as it passes through the cavity. In order to keep the particle beam in a phase that is
relatively stable with respect to the reference phase of the cavity, one need to adopt
the method of phase focusing.
3.4.1. Momentum compaction

Consider an off-momentum particle travelling in a circular accelerator, where the
bending magnet will cause the particle’s trajectory to deviate from the ideal orbit.
The total path length of this off-momentum particle will differ from the reference
particle’s path length and can be described by:

L = L0 +∆L = ∮ rdϕ = ∮
ρ + xD
ρ

= ∮ ds +
∆p
p ∮

D(s)

ρ(s)
ds (3.29)

where L0 stands for the path length of the reference particle.
Then one can obtain the path length change due to momentum deviation:

∆L =
∆p
p ∮

D(s)

ρ(s)
ds. (3.30)
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3.4. Longitudinal motion

The momentum compaction factor α, defined as the ratio of the relative change in path
length ∆L/L0 to the relative difference in momentum ∆p/p for a circular accelerator,
is given by [ 11 ]:

α =
∆L/L0

∆p/p =
1
L0
∮

D(s)

ρ(s)
ds. (3.31)

3.4.2. Phase focusing

According to the definition, the revolution time is the path length divided by the
particle’s velocity T = L/v. Using the momentum compaction factor α, the relative
time difference can be derived as [ 11 ]:

∆T
T0

=
∆L
L0
−

∆v
v0

= (α −
1
γ2 )

∆p
p0
. (3.32)

Introducing the slip factor η:
η = α −

1
γ2
tr

, (3.33)

where the γtr is the transition energy when η is zero. Its value is only dependent on
the momentum compaction factor α:

γtr =
1

√
α
. (3.34)

For a non-relativistic particle with the energy less than γtr, the orbital length does
not change much and the change in velocity dominates the relative time difference
(Equation  3.32 ). Above the transition energy, especially for ultra relativistic particles,
the velocity of the particle is almost constant and the orbital length dominates.

Figure  3.4 shows that for relativistic particles, phase focusing is happened on the
falling flank. One can define a synchronous particle, which always arrives at the
cavity when the field is at the same phase. When the phase of the cavity ϕs is set to
π, a synchronous particle does not gain or lose energy while passing through the RF
cavity. When a particle has less momentum than the synchronous particle ∆p/p < 0,
it travels on a shorter trajectory than the nominal trajectory. Thus it will reach the
cavity earlier with a smaller phase, which means it will gain more energy to catch up
with the reference particle. And vice versa when a particle’s momentum is greater
than that of the synchronous particle.
In a real accelerator, particles always have a certain energy spread. The particles
clump together through the cavity to form the bunches. Inside a bunch, offset particles
perform synchrotron oscillations around the reference particle.[  11 ]
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3. Beam dynamics in storage rings

Figure 3.4.: Phase focussing of relativistic particles. The cavity is working on the
bunching mode, ϕs = π. The horizontal coordinate is the phase of the
particle. Particles with momentum deviations oscillate around the refer-
ence orbit due to phase differences.
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4. Spin dynamics in storage rings

Spin motion in accelerators is often viewed as the fourth dimension of particle motion.
When one studies spin dynamics, one has to consider the details of the beam dynamics
carefully because of the close connection between spin motion and orbital motion. The
content of this section is mainly taken from [ 33 ], [  23 ] and [ 16 ].

4.1. Polarization

4.1.1. Spin-1/2 particles

The state of a spin -1/2 particle can be expressed by its wave function:

∣Ψ⟩ = a ∣χ+1/2⟩ + b ∣χ−1/2⟩ ≡ a ∣↑⟩ + b ∣↓⟩ = a(
1
0) + b(

0
1) (4.1)

where ∣↑⟩ and ∣↓⟩ represent the corresponding two spin statesm = ±1
2 , respectively. [  16 ]

Its density matrix is:

ρ = ∣Ψ⟩ ⟨Ψ∣ = (
∣a∣2 ab∗

ba∗ ∣b∣2
) (4.2)

with ∣a∣2 + ∣b∣2 = 1.

Spin polarization P⃗ is defined as the expectation value of the spin operators S⃗:

P⃗ =
1
N

N

∑
i=1
S⃗i. (4.3)

For a beam that contains N+ quantization states of +1/2 particles and N− quan-
tization states of -1/2 particles, one can then introduce the definition of the vector
polarization as [ 16 ]:

PV =
N+ −N−

N+ +N−
. (4.4)

4.1.2. Spin-1 particles

Similar to spin -1/2 particle, the three spin states of the spin -1 particle particle are
represented by ∣1⟩, ∣0⟩, and ∣−1⟩, respectively. Then its wave function can be expressed
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4. Spin dynamics in storage rings

as:

∣Ψ⟩ = a ∣χ1⟩ + b ∣χ0⟩ + c ∣χ−1⟩ ≡ a ∣1⟩ + b ∣0⟩ + c ∣−1⟩ =
⎛
⎜
⎝

a
b
c

⎞
⎟
⎠

(4.5)

and [  16 ]

ρ =
⎛
⎜
⎝

∣a∣2 ab∗ ac∗

ba∗ ∣b∣2 bc∗

ca∗ cb∗ ∣c∣2

⎞
⎟
⎠
. (4.6)

For a beam that contains N+ quantization states of +1 particles, N− quantization
states of -1/2 particles and N0 quantization states of 0 particles, the vector polariza-
tion PV and tensor polarization PT along the quantization axis are [  16 ]:

PV =
N+ −N−

N+ +N0 +N−
(4.7)

PT =
N+ +N− − 2N0

N+ +N0 +N−
(4.8)

4.2. The Thomas-BMT equation

In a circular accelerator, the formula describing the precession motion of a particle
is called the Thomas-Bargmann-Telegdi-Michel (Thomas-BMT) equation [ 1 ][ 2 ]. The
special feature of this equation is that it uses a mixture of two different reference
frames. The electromagnetic field seen by the particle is transformed into the lab-
oratory frame, while the particle’s spin is in the particle’s rest frame. Usually one
only need to consider the Magnetic Dipole Moment (MDM) effect. A more general
expression is given here, which also includes the contribution of the Electric Dipole
Moment (EDM) [ 18 ]:

dS⃗
dt = Ω⃗MDM × S⃗ + Ω⃗EDM × S⃗, (4.9)

Ω⃗MDM = −
q

m
[(G +

1
γ
) B⃗ −

Gγ

γ + 1
(β⃗ ⋅ B⃗) β⃗ − (G +

1
γ + 1) β⃗ ×

E⃗

c
] , (4.10)

Ω⃗EDM = −
q

mc

ηEDM
2 [E⃗ −

γ

γ + 1
(β⃗ ⋅ E⃗) β⃗ + cβ⃗ × B⃗] (4.11)

with the anomalous magnetic moment of a particle G =
g−2
2 .

Since the field can be divided into parallel and perpendicular components along the
direction of particle’s motion, one can write the total MDM terms separately as: [ 18 ]

Ω⃗MDM = Ω⃗B⊥ + Ω⃗B∥ + Ω⃗E⊥

= −
q

γm
[(1 +Gγ) B⃗⊥ + (1 +G) B⃗∥ − (Gγ +

γ

γ + 1) β⃗ ×
E⃗

c
] .

(4.12)
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4.3. Frozen spin method

Consider the precession of the particle’s momentum induced by the electromagnetic
field, the corresponding cyclotron frequency is [ 18 ]:

dp⃗
dt = Ω⃗cyc × p⃗, (4.13)

Ω⃗cyc = −
q

γm
(B⃗⊥ −

β⃗ × E⃗

β2c
) . (4.14)

4.3. Frozen spin method

By comparing the two equations (  4.12 ,  4.14 ), it can be seen that there is a crossing
point in pure electric rings. At this point, the precession frequencies of the momentum
vector and the spin vector are equal. If the spin vector starts in the same direction
as the momentum vector, then the spin vector will always remain aligned with the
momentum vector. This configuration is called the "frozen spin". [ 13 ,  23 ]

∆Ω⃗MDM = Ω⃗MDM − Ω⃗cyc

= −
q

γm
[GγB⃗⊥ + (1 +G) B⃗∥ − (Gγ −

γ

γ2 − 1) β⃗ ×
E⃗

c
] .

(4.15)

For protons with G = 1.79, the corresponding magic momentum is given as:

(Gγ −
γ

γ2 − 1) = 0 ⇒ p =
mc
√
G

≈ 0.7GeV /c. (4.16)

For particles with negative G, such as deuterons, frozen spin cannot be achieved
in pure electric field accelerators. However, for combined bending fields, there is
no such restriction. The spin motion of all particles can be frozen as long as the
electromagnetic field meets the following conditions [  24 ]:

B =
Eβ

G
(

1
γ2 − 1 −G) , (4.17)

E =
γmβ2

qρ

1
( 1
γ2−1 −G)

β2

G + 1
, (4.18)

B =
γmβ2

qρ

( 1
γ2−1 −G)

( 1
γ2−1 −G)

β2

G + 1
β

G
. (4.19)

4.4. Spin tune

When the reference particle travels on a magnetic ring, the particle is only affected
by the bending magnetic field of the dipole magnets and the accelerating electric field
in the RF cavity. The particle will not experiences any quadrupole fields. Since the
direction of the accelerating electric field is parallel to the velocity, E⃗ also does not
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4. Spin dynamics in storage rings

contribute to the precession. One can simplify the Thomas-BMT equation for spin
motion as [ 33 ]:

dS⃗
dt = −

q

γm
(1 +Gγ)B⃗⊥ × S⃗. (4.20)

Figure 4.1.: Spin rotation passing through a magnetic bending field. B⃗ is the external
magnetic field and S⃗ is the spin vector. (1 + γGθ) angle represents a
superposition of the spin motion and the beam motion. Adapted from
[ 33 ].

Figure  4.1 shows spin rotation passing through a dipole field. The orbit bends by an
angle θ as it passes through the dipole field. At the same time, the spin rotates around
B⃗ by a (1+ γGθ) angle, which is a γGθ angle relative to the orbit. In analogy to the
definition of the betatron tune, the spin tune is defined as the number of precessions
in one orbital revolution [ 3 ,  4 ]:

νs = γG. (4.21)

4.5. Spin resonance

The spin motion is affected by the perturbation field due to the repetitive motion
of the particle in a circular accelerator. On the one hand when the spin motion is
far from resonance, the perturbation of the spin motion is incoherent with the spin
precession and the total kicks on the spin vector can be averaged out to zero. On
the other hand, when the spin motion is in resonance, the kicks on the spin vector
are coherently added and leading to depolarization. In order to achieve a long spin
coherence time, it is very important to be away from the resonances.
According to the sources of spin resonance they can be classified as imperfection
resonance, intrinsic resonances and resonances due to higher-order effects. The infor-
mation in this section is mainly taken from [ 8 ].
imperfection resonance

The condition of the imperfection resonance is:

Gγ = integer. (4.22)
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4.6. Spin coherence time

Imperfection resonances are caused by magnetic field errors and the misalignment
of the magnets. After a particle has completed one revolution around a circular
accelerator the error field will repeat. If the precession of the spin vector around its
closed orbit is an integer number of turns, the error field will disturb the spin motion
in each turn.
intrinsic resonance

The condition of the intrinsic resonance is:

Gγ = kP ±Qy (4.23)

where k is an integer and Qy is the vertical betatron tune. P represents the super-
periodicity of the lattice i.e. the number of identical periods of the accelerator. The
intrinsic resonance is induced by the horizontal fields for vertical focusing. Such res-
onances are called intrinsic resonances since they are not related to any imperfection
but only to betatron motions. Their strength depends on the amplitude of the vertical
betatron oscillation.
higher-order resonance

The condition of the higher-order resonance is:

Gγ = k ± lQx ±mQy ± nQs (4.24)

where k, l, m and n are integers, Qx is the horizontal betatron tune, Qy is the vertical
betatron tune and Qs is the longitudinal tune. This resonance is arising from higher-
order field errors of magnets as well as the synchrotron sidebands.

4.6. Spin coherence time

Spin decoherence arises mainly from the difference in momentum between individual
particles in the beam. Figure  4.2 illustrates the depolarization of a horizontally po-
larized beam. For horizontally polarized particles, the decoherence of the spin leads
to a uniform distribution of the spin direction in the horizontal plane which in turn
reduces the total polarization. To describe the lifetime of the initial polarization, the
spin coherence time (SCT) is defined as the time for the total spin polarisation to fall
below 1/e.
4.6.1. Orbit lengthening

Spin tune is energy dependent. When the momentum of a particle slightly changes,
it leads to a change in spin tune. If the beam is unbunched, this first-order effect
is significant due to the large spread of revolution frequencies between the particles.
The spin tune spread ∆νs can be expressed as:

∆νs = G∆γ = Gγβ2 ∆p
p0
. (4.25)
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4. Spin dynamics in storage rings

Figure 4.2.: The left picture shows that at the injection the beam is horizontally
polarised and all the spins are along the same direction. The right picture
shows that after some time the spins spread out in the horizontal plane
as the different particles have different velocities. Adapted from [  17 ].

For a bunched beam, the RF cavity drives the particles to oscillate around a reference
particle within the bunch. In this way the overall momentum spread can be averaged
out and the first-order effect is suppressed by the RF field. The second-order effect
dependent on orbit lengthening is one of the sources for the spin tune spread. [  23 ]
The orbit lengthening due to the betatron motion is [ 15 ]:

(
∆C
C0

)
β

= −
2π
C0

(εxξx + εyξy), (4.26)

where εx and εy refer to the emittance in the horizontal and vertical plane respectively,
ξx and ξy refer respectively to the horizontal chromaticity and vertical chromaticity.
The contribution of the momentum deviation ∆p/p0 to the orbit lengthening is [ 15 ]:

(
∆C
C0

)
∆p

= α0
∆p
p0
+ α1 (

∆p
p0

)

2
+ ..., (4.27)

where αn is n-th order momentum compaction factor.
4.6.2. Sextupole correction

Sextupole magnets can be used to minimise the spin decoherence caused by betatron
motions and the momentum spread. One can use a sextupole with strength ks to
correct the second-order momentum compaction factor α1 [ 19 ]:

∆α1 = −
ks ⋅D3

0
C0

(4.28)

where D0 is the first-order dispersion function and C0 is the circumference.
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4.6. Spin coherence time

Simultaneously the effect of the sextupole on the orbit lengthening is [  19 ]:

(
∆C
C0

)
sext

= ∓
ksD0βx,yεx,y

C0
, (4.29)

here βx,y denotes to the beta function in the horizontal and vertical plane respectively.
The minus and plus sign represent orbit lengthening due to horizontal and vertical
plane effects respectively.
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5. Simulation model

In this chapter, the first part describes the accelerator complex at the Institut für
Kernphysik (IKP) Forschungszentrum Jülich. Second, the implementation and bench-
marking of the model used in this thesis is presented. Finally, algorithms for calcu-
lating spin tune are discussed.

5.1. The Cooler Synchrotron COSY

Figure 5.1.: Schematic of the Cooler Synchrotron COSY and the pre-accelerator
JULIC including dipoles, quadrupoles, JePo polarimeter, RF Wien fil-
ter, electron cooling system and WASA detector. Taken from [ 27 ]

The accelerator complex consists of polarized or unpolarized ion sources providing
protons H− or deuterons D−, the cyclotron JULIC as a pre-accelerator and the Cooler
Synchrotron COSY. The schematic overview of the accelerator complex is shown in
Figure  5.1 .

At the cyclotron JULIC, H− and D− can be accelerated up to a momentum of 300
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MeV/c and 600 MeV/c respectively. The ions are then guided to the synchrotron via
a 100 m long beam line. COSY has the ability to accelerate proton and deuteron
beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c [ 14 ]. In order
to reduce the momentum spread of the beam and shrink the transverse equilibrium
phase space, COSY use electron cooling for proton beams with momentum up to 0.6
GeV/c and stochastic cooling for those with momentum above 1.5 GeV/c.[ 10 ]
The circumference of COSY is about 184 m with two 180○ arc sections and two
straight sections. In each 52 m long arc section, 12 dipoles that bend the beam are
distributed. In addition, 12 quadrupoles are also located in each arc section, forming
three mirror-symmetric cells together with the dipoles. The structure of each unit is
made up of DOFO-OFOD. Here O is a bending dipole, F and D refer to focusing and
defocusing quadrupoles (MQU1 to MQU6) respectively.[ 9 ]
Each 40 m long straight section contains 4 × 4 = 16 quadrupoles (MQT1 to MQT8),
placing in the FDDF or DFFD configuration, which make up two mirror-symmetric
telescopes. 7 sextupoles, an RF cavities, and 2 polarimeters (WASA and JePo) are
installed on the straight sections. In addition, important devices for manipulating the
spin of polarized beams, such as a RF solenoid, a Siberian Snake and an RF Wien
filter are also located in the straight sections.

5.2. Bmad model of COSY

In this thesis, the Bmad software library was used to simulate beam and spin dynamics
for charged particles in the Cooler Synchrotron COSY. Bmad was developed in the
1990s by Cornell University’s Laboratory for Elementary Particle Physics. The Bmad
code is an open source, object-oriented library written in Fortran 2008. It has several
tracking algorithms such as Runge–Kutta and symplectic (Lie algebraic) integration.
[ 35 ]
Although Bmad lattice uses a MAD like syntax, Bmad cannot read MAD files directly.
One need to convert the existing COSY optics files output by MAD-X into Bmad
lattice file syntax. As the .twiss file are output in s-coordinate order, where s is
the position along the reference orbit. Python was used to read it line by line and
sort all the elements into multiple .bmad files.[ 36 ] This is particularly conducive to
updates and modifications. Bmad’s built-in routines will parse the lattice and create
a digested file so that programs using the same lattice file can read the digested file
again to save time. The COSY lattice includes the following files:

• cosy_actions.bmad: initializes the species, number and momentum of parti-
cles, whether the cavity is on or not and the default tracking method used.

• cosy_lattice.bmad: defines the sequence of elements that make up COSY.
• element_layout.bmad: lists all elements and their attributes.
• element_attributes.bmad: controls kicker magnets, solenoids and RF cavi-

ties.
• magnet_groups.bmad: magnets that use the same power supply are grouped

into one family. This file includes 8 of straight section quadrupoles, 6 of arc
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section quadrupoles and 3 of arc section sextupoles.
• magnet_settings.bmad: sets magnet strengths for different families.

Figure 5.2.: Optical functions of the Cooler Synchrotron COSY. The betatron tunes
are (Qx = 3.63, Qy = 3.72) and the natural chromaticities are (ξx = −4.25,
ξy = −3.94).

The idealized COSY lattice is from the second precursor run experiment, where mis-
alignments of the magnets are not taken into account, the transverse betatron tunes
are (Qx = 3.63, Qy = 3.72) and the natural chromaticities are (ξx = −4.25, ξy = −3.94)
when all sextupoles are turned off. Figure  5.2 shows the optical functions such as
horizontal βx and vertical βy beta functions as well as the dispersion Dx of the lat-
tice. The horizontal coordinate is the position s along the accelerator. The dispersion
D = 0 in the straight section is a typical setting for COSY, which facilitates the place-
ment of experimental devices. In the arc sections where D is not zero, three different
families (MXG, MXS, MXL) of sextupoles are installed, which are indicated in the
plot by vertical lines of different colours.

5.3. Benchmarking of the COSY model

5.3.1. Phase space in Bmad

After the COSY’s model was implemented in Bmad, it is important to benchmark
the model. Bmad uses a canonical coordinate system [ 35 ]

r(s) = (x, px, y, py, z, pz), (5.1)
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where s is the distance of the reference particle relative to the zero point of the
reference orbit (sometimes called the design orbit). The x-axis and y-axis indicate the
offsets of the particle in the transverse plane, respectively. The phase space momenta
px and py are derived from the corresponding momentum Px and Py, normalised by
the reference momentum P0:

px =
Px
P0

py =
Py
P0
.

(5.2)

The longitudinal z-axis is defined as:

z(s) = −β(s)c(t(s) − t0(s))

= −β(s)c∆t(s)
(5.3)

where β is the ratio of v/c with v being the particle’s velocity, t(s) and t0(s) represent
respectively the time when the particle and the reference particle arrive at the position
s.

For relativistic particles, the velocity of the particle and the velocity of the reference
particle are both the speed of light. Then βct represents the path length L, and the
change of z can be expressed as :

∆z = L0 −Lp (5.4)

where Lp and L0 refer to the path length of the particle and the reference particle.

In the next part, the phase space ellipses of offset particles were investigated. Using
a single proton with a momentum of 531 MeV/c, which have small deviations in x, y
and momentum respectively. Tracking it for 2,000 turns in Bmad, at the beginning
of each turn one can always recorded the six phase space coordinates of the particle
in the first element. These data was used to plot three phase spaces in transverse and
longitudinal planes.
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5.3. Benchmarking of the COSY model

Figure 5.3.: The three-dimensional phase space of a particle with an initial horizontal
offset. The offset is set to ∆x = 1 mm mrad. The left plots shows the
horizontal phase space ellipse. The middle plot shows that motion in
the vertical plane is not affected. The ellipses shift due to the dispersion
effect are shown in the right plot.

For a particle with only an initial offset in the horizontal x-direction, its three-
dimensional phase spaces are shown in Figure  5.3 . The left plot of the figure shows
a stable phase space ellipse in the horizontal plane. The middle plot shows that in
an ideal lattice the horizontal plane is decoupled with the vertical plane, so that the
motion in the vertical plane is not affected. Due to the path length change caused
by the dispersion effect, the phase of the particle does not match the cavity’s phase.
The right plot illustrates that the centers of the ellipses are shifted.

Figure 5.4.: The three-dimensional phase space of a particle with an initial vertical
offset. The offset is set to ∆y = 1 mm mrad. The middle and right plots
show the vertical and the longitudinal phase space ellipses respectively.
The left plot shows small perturbations in the horizontal plane.

In Figure  5.4 , the particles have an initial vertical offset. Deviations in the vertical
plane would cause orbit lengthening via betatron motions. In the longitudinal plane,
the phase of the particles does not match the cavity’s phase, causing small deviations
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in the longitudinal direction as well. Due to the dispersion effect, this ends up creating
some small perturbations in the horizontal plane as well, although the horizontal and
vertical planes are decoupled.

Figure 5.5.: The three-dimensional phase space of a particle with an initial momentum
deviation. The offset is set to ∆p/p0 = 10−5. The left plots shows the
horizontal phase space ellipses shift due to the dispersion effect. The
middle plot shows that motion in the vertical plane is not affected. The
left plots shows the longitudinal phase space ellipse.

When there is a small deviation in the momentum of the particle, one can clearly see
in Figure  5.5 that there is a large impact on the motion in the horizontal plane due
to the dispersion effect, while the vertical plane is unaffected. The cylindrical shape
in the left plot is formed by large shifts in the phase space ellipses. It is also worth
noting that the distortion of the phase space ellipse caused by the deviations from the
longitudinal plane, i.e. the momentum deviations, is much greater than the offsets in
the transverse planes.
5.3.2. Spin tune of a proton

The spin motions of the reference particle in horizontal plane and longitudinal plane
are shown in Figure  5.6 . Since the initial spin is aligned with the longitudinal direc-
tion, the spin precession will only happen in the horizontal plane. The simulation
results show that there is no spin motion in the vertical plane. In the horizontal and
longitudinal planes, however, regular periodic changes of the particle’s spin can be
observed as shown in the left and right plots.

It is important to know how Bmad processes the spin tune. The Bmad subroutine
Closed_orbit_calc can uses 1-turn transfer matrix to calculate the spin tune. It reads
the initial spin vector of the particle, and after one turn, records the spin vector at
the same position. The angle between the two vectors is calculated via a built-in
mathematical routine and divided by 2π to obtain the fractional part of the spin
tune. According to Equation  4.21 νs = γG, the theoretical spin tune of the proton
can be obtained:
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Figure 5.6.: Spin motions of the reference particle in horizontal plane (left) and longi-
tudinal plane (right). The initial spin vector is aligned with the momen-
tum vector, parallel to the longitudinal direction. The spin precesses in
the horizontal plane. The x-axis is the number of tracking turns. The y-
axis is the component of the spin vector in the horizontal or longitudinal
directions.

Theory ∶ νs = +2.0600441688281070
Bmad ∶ νs = −0.0600441688257620.

The calculated value agrees with the theoretical value to the 11th digit. The calcu-
lations show that the Bmad routine is able to accurately calculate the spin tune of
a particle after completing one revolution. This also demonstrates that the Bmad
program can simulate the spin motion of a particle in a circular accelerator very well.
However, it is not sufficient to investigate the spin tune spread by using one turn of
the spin tune difference from the theoretical value. As the number of turns is in-
creased, the spin tune spread due to the orbit lengthening becomes larger and larger.
In order to properly study the SCT, in this thesis the average spin tune spread is
usually calculated using data tracking more than 1,000 revolutions.

5.4. Algorithm for spin tune

5.4.1. Method for the reference particle

5.4.1.1. Fitting method

Observing the regular motion in Figure  5.6 , one can apply a sinusoidal fit to the spin
component in either the horizontal or longitudinal direction to obtain the spin tune.
The fitting results in the horizontal direction is shown in Figure  5.7 , where the second
parameter b is the frequency ωfit of this sinusoidal function. One can calculate the
spin tune by using the following equation:

νs =
ωfit
2π . (5.5)

29



5. Simulation model

Figure 5.7.: The horizontal spin direction is plotted versus the turn number. A sinu-
soidal function is fitted. The function and parameters used for the fit are
shown in the legend. The blue dots are the simulated data and the red
line is the fitted curve.

By tracking the reference particle for 40 turns and using the fitting method one can
get:

Theory ∶ νs = 2.0600441688281070
Fitting ∶ νs = 0.0600441688264975 ± 2.5824 ⋅ 10−12,

the fitted value agrees with the theoretical value to the 11th digit.

5.4.1.2. Average phase advance (APA) method

A commonly used method of calculating the frequency of an orbit in simulations is
the average phase advance (APA) method.[ 7 ] The spin tune is given by the average
of phase advance angle θi :

νs =
1

2π(n − 1)
n

∑
i=2
θi (5.6)

where θi denotes the phase advance between the turn (i − 1) and the turn i.
When v1 and v2 are used to represent the spin vector of a particle, the Equation  5.6 

becomes:[ 31 ]

νs =
1

2π(n − 1)
n

∑
i=2
cos−1(

v⃗1 ⋅ v⃗2

∣v⃗1∣∣v⃗2∣
) (5.7)
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Figure 5.8.: Spin tune distribution of a particle with an initial horizontal offset ∆x
= 1 mm mrad. Due to the betatron motion and dispersion effects, the
particle undergoing synchrotron oscillation in the longitudinal plane leads
to spin tune spread. The blue dots denote the spin tune for each turn
calculated via the APA method.

By tracking the reference particle for 40 turns and using the fitting method one can
get:

Theory ∶ νs = 2.0600441688281070
APA ∶ νs = 0.0600441688258315 ± 3.8471 ⋅ 10−14,

here, the standard deviation of spin tunes is used as the error. The spin tune obtained
via APA method agrees with the theoretical value to the 11th digit.

5.4.2. Method for offset particles

5.4.2.1. Betatron and synchrotron effects

The previous discussion was based on the reference particle, however, for particles with
deviations, there are difficulties with the two algorithms above where high accuracy
is required. Figure  5.8 shows a particle has an initial horizontal direction offset ∆x.
After tracking for 10,000 turns, its spin tunes calculated by the average phase advance
method are evenly distributed within a specific range. This is a result of the combined
betatron motion and dispersion effects, which can be largely averaged out.
For a particle with an initial momentum deviation ∆p/p, also tracking for 10,000

31



5. Simulation model

Figure 5.9.: Spin tune distribution of a particle with an initial momentum deviation
∆p/p = 10−5. The synchrotron oscillation strongly modulates the spin
tune. The frequency of the synchrotron oscillation can be obtained by
applying a sine fit function (the red curve). The blue dots denote the
spin tune for each turn calculated via the APA method.

turns, the distribution of spin tune is shown in Figure  5.9 . Due to the cavity, one can
clearly see the synchrotron oscillation modulates the spin tune results. Applying a
sinusoidal fit to the spin tunes yields a frequency of 400 Hz approx., which is consistent
with the synchrotron frequency. This effect cannot be averaged out for a beam with
large numbers of particles, and one have to find a new algorithm to calculate the spin
tune.
5.4.2.2. Fast Fourier transform (FFT) method

Another method commonly used in measurement is based on Fourier analysis.[ 7 ] The
Fourier transform is a mathematical operation, which transform time-domain data
of an observable into frequency-domain. In our case, it is a transformation from the
turn to the tune. The following three plots (Figure  5.10 and Figure  5.11 ) show the
spin tune spectra of particles with horizontal x, vertical y and momentum deviations
∆p/p respectively. Each particle was tracked for 10,000 turns.
As the data are obtained from simulations, they are noise-free. The frequency, i.e.,
the spin tune can be determined as the horizontal coordinate of the main peak in the
amplitude spectrum. In Figure  5.10 , there are only deviations in the transverse plane.
The plots show that there is only one peak, whose x-axis is exactly the fractional part
of the theoretical value. When a particle only has the momentum deviation ∆p/p, as
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Figure 5.10.: The simulated spin tune spectra for particles with horizontal offsets (left)
and vertical offsets (right). The x-axis is the spin tune and the y-axis is
the normalised amplitude.

shown in Figure  5.11 . Some sidebands with smaller amplitude appear near the main
peak. Similarly, the x-axis of the main peak is the fractional part of spin tune, while
those of the sidebands are shifted due to synchrotron modulation.
The frequency resolution is the difference in frequency between each bin. Since the
spin tune is the number of spin precessions per revolution. In a fast Fourier transform
(FFT), the spin tune resolution is defined as

∆νs =
Fs
N
, (5.8)

where Fs is the sample frequency, N is number of data points used in the FFT. This
is not enough to precisely determine spin tunes in the simulation results.
To improve the resolution, many methods have been proposed. One of them, called
numerical analysis of fundamental frequencies (NAFF) algorithm, is widely used in
today’s accelerator measurements and simulations. The NAFF code was developed
in the 1990s as a method to analyse chaotic dynamical systems.[ 6 ] The resolution of
NAFF algorithm can get up to 1/N4 for noise free data in simulations.[ 29 ] Moreover,
this method is very easy to use in python because there are scientists from CERN
who have implemented this python module.[ 37 ] The NAFF method is not only suit-
able for analysing the reference particles, but also to the particles with deviations. In
addition, another advantage is that it runs very fast compared to the average phase
advance method.

By tracking the reference particle for 10,000 turns and using the FFT/NAFF method
one can get:

Theory ∶ νs = 2.0600441688281070
FFT /NAFF ∶ νs = 0.0600441688257838 ± 10−16,

here, the frequency (tune) resolution for noise free simulations data is used as the
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Figure 5.11.: The simulated spin tune spectrum for a particle with an initial mo-
mentum deviation ∆p/p. The x-axis is the spin tune and the y-axis is
the normalised amplitude. The synchrotron modulations are shown as
sidebands around the main peak.

error. The spin tune obtained via FFT/NAFF method agrees with the theoretical
value to the 11th digit.
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6.1. Beam parameters and spin tracking

In this thesis, a large part of the work is the spin tracking simulation of proton beams.
We have two approaches to tracking a beam of multiple particles. The first is to use
Bmad’s macroparticle simulation module to split the beam into bunches for tracking.
The advantage of this method is that the space charge and coherent synchrotron
radiation effects can be examined. The disadvantage is that it is limited by the
performance of the CPU’s single core, so only simulations with a small number of
particles can be performed, which does not meet the requirements of our experiments.
The second method, which is the one we use, ignores the interactions between particles
and simulates the individual particles that make up the beam. This method can utilize
the multi core CPUs of the cluster and perform parallel computing at the same time,
which greatly saves the simulation time.
6.1.1. Beam parameters

There are two standard methods for Bmad-based programs to determine the initial
distribution of the beam. One is to use the beam_init_struct structure, which con-
tains parameters that can build the particle distribution. Each time the program runs,
a beam that satisfies the above parameters is regenerated. This approach introduces
more uncertainty to the simulation results due to different random factors. Another
method is to specify the initial beam distribution based on a fixed file containing the
positions of individual particles satisfying the beam_init_struct structure. Using
this method ensures that each simulation has the same particle distribution. The
second method was used in this thesis. Table.  6.1 shows the initial parameters of a
proton beam.
6.1.2. Particle distribution

The next step is to investigate whether the distribution of particles can be maintained
consistently within the simulation. First is the initial distribution generated by the
subroutine based on beam_init_struct structure, as an example in the transverse
plane. Figure  6.1 shows histograms of the particle distributions in the horizontal and
vertical directions, respectively. In both directions the mean values are very close to
zero and far below one standard deviation. This demonstrates that the distributions
of the initially generated particles are consistent with the parameter settings.
After tracking one million turns in the default lattice, Bmad records the position in-
formation of each particle in the beam. These are plotted separately as histograms in
Figure  6.2 . One can see that compared to the initial particle distributions, the mean
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Figure 6.1.: Initial particle distribution of the beam in the horizontal plane (top panel)
and in the vertical plane (bottom panel). The x-axis is the distance
between the particle and the reference particle, while the y-axis is the
normalised probability density function. The red dashed line represents
the fitted Gaussian distribution curve.
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Figure 6.2.: The particle distribution in the horizontal plane (top panel) and in the
vertical plane (bottom panel) in the beam after one million revolutions
was tracked. The x-axis is the distance between the particle and the
reference particle, while the y-axis is the normalised probability density
function. The red dashed line represents the fitted Gaussian distribution
curve.
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species proton
n_particle 100
n_bunch 1
distribution_type Gaussian
εx 5 ⋅ 10−7 m ⋅ rad
εy 5 ⋅ 10−7 m ⋅ rad
σz 10−3

σpz 10−4

Table 6.1.: Beam initial parameters. The number of particles in the beam with only
one bunch is 100. Within a bunch, the generated particles follow a Gaus-
sian distribution. In the transverse plane, the emittances of x and y are
both 5 ⋅ 10−7 m ⋅ rad. In the longitudinal plane, the standard deviation of
z is 10−3 and σpz refers to the fractional energy spread dE/E.

values have slightly increased in both horizontal and vertical directions. The increas-
ing in the horizontal direction is more obvious. Since the motion in the horizontal
direction is coupled with that in the longitudinal direction. Particles with different
initial momentum deviations result in disturbances in the horizontal direction, thus
increasing the average value of x. In a real accelerator, the emittance growth is due
to the fringe fields, the higher-order fields and the intra-beam scattering effect. In
the simulations of this thesis, interactions between particles are neglected and all
’fringe_type’ are set to ’none’. So we assume that the emittance growth only comes
from the sextupoles as well as statistical fluctuations.

6.1.3. Spin tracking

To investigate the effect of particle number on the spin coherence time (SCT), two
separate spin tracking simulations were performed. The default COSY lattice with
all sextupoles turned off was used. The particle’s position, momentum and spin data
at each turn were recorded using the subroutine track_all.
Figure  6.3 and  6.4 show the results of the simulations for particle numbers n = 1000
and n = 100, respectively. The x-axis is the time. The y-axis is the total polarization
and a red line is drawn at the y = 1/e. Comparing the two plots, it can be seen that
for n = 1000, total polarization below 1/e appears at 0.093±0.003 s, while for n = 100
at 0.089±0.006 s. By definition, the time at which total polarization falls below 1/e is
the SCT. The difference in SCT between the two is very small. When the number of
particles is larger, the error is smaller. In order to reduce the simulation computing
time, it is sufficient for us to use 100 particles.
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Figure 6.3.: Spin coherence time for a polarized proton beam with the particle number
of 1000. The x-axis is the time and the y-axis is the total polarization.
A red line indicates that the total polarization drops to 1/e of the initial
polarization, and the corresponding time is the spin coherence time.

Figure 6.4.: Spin coherence time for a polarized proton beam with the particle number
of 100. The x-axis is the time and the y-axis is the total polarization. A
red line indicates that the total polarization drops to 1/e of the initial
polarization, and the corresponding time is the spin coherence time.

6.2. Dependence of the SCT on phase space parameters

6.2.1. Emittances

Previous work suggested that the SCT is dependent on the emittances and momentum
spread of the beam.[ 22 ,  26 ] In order to investigate the relationship between emittances
and the reciprocal of SCT, simulations were conducted as follows. First, εy was fixed
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at 0.1mmmrad and then εx was varied from 0.1mmmrad to 0.6mmmrad. Spin
tracking simulations were performed on them separately and their SCT results were
then analysed. All results are presented in Table  6.2 .

Table 6.2.: Different emittances and their corresponding SCTs. The first column of
table shows the emittance values in the horizontal εx or vertical εy direc-
tions. When varying one, the other emittance is fixed at 1 mm mrad. The
second column is the SCT when changing εx, and the third column is the
SCT when changing εy.

εx / εy SCT_x SCT_y
0.1 mm mrad 0.336 ± 0.015 s 0.336 ± 0.015 s
0.2 mm mrad 0.234 ± 0.016 s 0.285 ± 0.024 s
0.3 mm mrad 0.169 ± 0.028 s 0.262 ± 0.021 s
0.4 mm mrad 0.126 ± 0.017 s 0.208 ± 0.016 s
0.5 mm mrad 0.117 ± 0.019 s 0.207 ± 0.016 s
0.6 mm mrad 0.112 ± 0.005 s 0.192 ± 0.008 s

Figure 6.5.: The relationship between emittances and the reciprocal of SCTs. The x-
axis is the value of emittances and the y-axis is the inverse of SCTs. The
orange dots are the horizontal emittances, the green line is the applied
linear fit. The black crosses are the vertical emittances, the red line is
the applied linear fit.

The results in Table  6.2 are plotted in Figure  6.5 . The inverse of SCT was chosen
because it is proportional to the spin tune spread ∆νs. One can see from the plot that
1/τ fits well linearly with the emittances in both directions. To obtain a long SCT,
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Figure 6.6.: The polarisation lifetime of a proton beam when the cavity is turned off.
The x-axis is the revolutions and the y-axis is the total polarization.

small emittances are needed. In real experiments, one needs to reduce the emittance
by employing beam cooling.

6.2.2. Momentum spread

As discussed in Section  4.6.1 , the first order momentum spread effect can be expressed
as Equation  4.25 :

∆νs = G∆γ = Gγβ2 ∆p
p0
.

Figure  6.6 shows a unbunched proton beam, the overall polarisation drops rapidly to
zero within one thousand turns. The first order effect can be removed by turning on
the cavity and bunching. After removing the first order effect, the polarisation will
be maintained for a much longer time.
In order to investigate the relationship between the second-order effect of momentum
deviation and the SCT, one can vary ∆p/p and then performed spin tracking simu-
lations. The results are presented in Table  6.3 , where the emittance in both x and
y directions are fixed at 0.1mmmrad. Figure  6.7 shows that the inverse of SCT is
linearly related to the square of the momentum deviation. Note that this only holds
when the momentum offset ∆p is very small. Otherwise, the particle will be lost when
∆p is greater than a certain value.
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∆p/p 0.5 × 10−4 1.0 × 10−4 1.5 × 10−4 2.0 × 10−4

SCT (s) 0.416 ± 0.017 0.375 ± 0.029 0.268 ± 0.033 0.231 ± 0.049

Table 6.3.: Different momentum spreads and SCTs. The first row is the momentum
spread and the second row is the corresponding SCT.

Figure 6.7.: The relationship between the square of the momentum spreads and the
reciprocal of SCTs. The x-axis is the square of the momentum spread-
sandand the y-axis is the inverse of SCTs. The orange line is the applied
linear fit.

6.3. Chromaticity scan

Spin tune spread leads to a shorter SCT. The main contribution is the average path
length change due to betatron and synchrotron motions as well as intrinsic resonances.
The three groups of sextupole (MXS, MXL and MXG) in COSY (see Figure  5.2 ) are
located at the large places of βx, βy and dispersion in the arc parts, respectively. In
order to find the possible chromaticity (ξx, ξy) values, a 3D scan routine for adjusting
the sextupoles settings is used.
6.3.1. Sextupole and chromaticity

According to the previous theory discussions, the additional quadrupole strength
generated by the sextupole is:

ksext =mx =mD
∆p
p

(6.1)
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6.3. Chromaticity scan

Figure 6.8.: Horizontal (top) chromaticity or vertical (bottom) chromaticity as a func-
tion of the normalized MXL sextupoles strength. The scan range of k2 is
(-3, +3) [1/m3].

where m is the sextupole strength, D is the dispersion and ∆p/p is the momentum
spread. In Bmad, the normalized sextupole strength k2 is more commonly used. It is
defined as:

k2 =
q

p
m, (6.2)

with q being the particle charge and p the momentum.
One can use the scanning routine to benchmark the effect of each family’s sextupole on
the chromaticity. When the sextupole of one family was being checked, the sextupoles
of other families were set to zero. The range of the normalized sextupole strength k2
is (-3, +3) [1/m3].
The scanning results are illustrated in the graphs below. Figure  6.8 shows the chro-
maticity in the horizontal and vertical directions respectively as a function of the
normalized strength of MXL sextupoles. For MXS and MXG families, see Figure

 A.1 in Appendix  A . It can be seen that the sextupole strength is strictly linear
with respect to the chromaticities in both directions. Among them, since the MXG
sextupoles are located where the dispersion is the largest, the MXG family has the
greatest effect on chromaticity. All the results are consistent with theory.
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6. Investigation of spin coherence time

6.3.2. Zero chromaticities

Considering the path length change due to betatron motions, the chromaticities (ξx,
ξy) in Equation  4.26 should be zero. In order to find the possible zero chromaticities,
a 3D scan routine for adjusting the sextupoles settings is used.
After two iterations the optimal settings can be found. First do a rough scan with
(121×101×101) grids to locate approximate ranges. One can find that (ξx, ξy) ≈ (0,0)
points are nearly at a fixed MXL setting. Then the second iteration uses these ranges
to perform a finer scan with (121 × 101 × 401) grids. The resulting sextupole settings
and optical parameters are listed in Table  6.4 . Since only the sextupoles have been
changed, the betatron tunes remain the same. Based on these settings, one can
perform a spin tracking simulation, and the obtained spin coherence time was plotted
in the Figure  6.9 . The SCT is only 0.192±0.016 s, obviously, such a short SCT cannot
meet our experimental requirements.

k2_mxl k2_mxg k2_mxs Qx Qy ξx ξy

-0.5365 +1.4835 -2.9260 +3.6322 +3.7182 +0.0002 -0.0002

Table 6.4.: The sextupoles setting and optical parameters obtained from the scan.
k2 are the normalized strength of three families (MXL, MXG and MXS)
sextupoles, Qx and Qy are the betatron tune in the horizontal and vertical
planes respectively, ξx and ξy are the chromaticity in the horizontal and
vertical planes respectively.

Figure 6.9.: Spin coherence time for a polarized proton beam with zero chromaticity
(ξx, ξy) = (0, 0). The x-axis is the time and the y-axis is the total
polarization. A red line indicates that the total polarization drops to
1/e of the initial polarization, and the corresponding time is the spin
coherence time.
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Next one can investigate some integer chromaticity points around the (ξx, ξy) = (0, 0)
point by using the same method. The results of scanning, spin tracking simulations
as well as second-order momentum compaction factor α1 are shown in the following
Table  6.5 . To reduce the effect of emittances on the results, one can also use another
beam with smaller emittances to do the spin tracking. It can be seen that zero
chromaticity is not the point where the SCT is maximum.

Table 6.5.: Spin coherence time of some integer chromaticity points. The first column
is the chromaticity of horizontal and vertical planes, while the second
column is the second-order momentum compaction factor α1. The third
column is the SCT when emittances are set to εx = εy = 0.5mmmrad and
in the fourth column is the SCT when emittances are set to εx = εy =

0.1mmmrad.
(ξx, ξy) α1 SCT0.5 (sec) SCT0.1 (sec)
(0, 0) -6.28 0.192 ± 0.016 0.544 ± 0.044
(0, -1) -3.89 0.225 ± 0.017 0.713 ± 0.023
(-1, 0) -2.63 0.222 ± 0.011 0.810 ± 0.027
(1, 0) 0.30 0.190 ± 0.019 0.800 ± 0.062
(0, 1) 1.23 0.180 ± 0.014 0.763 ± 0.030

6.3.3. Searching for minimal spin tune spread

In this section, the minimum spin tune spread ∆νs was found using the scanning
method. First the chromaticity of a working point is determined using the scanning
program, then three beams with deviations are used for the spin tracking simulations,
and finally the tracking results are analysed to obtain ∆νs. The three beams used in
the simulation have deviations in the horizontal direction, vertical and longitudinal
directions respectively.

The experience from the previous scan of (ξx, ξy) = (0, 0) point shows that the value
of MXL is fixed for a particular chromaticity. So one can start by scanning only
the MXL sextupoles, keeping the other families of sextupoles at zero. Figure  6.10 

illustrates the result of a 1-dimensional scan after two iterations. In the vicinity of
the minimal ∆νs, one can fit a parabola to determine the minimum value of ∆νs.
Once the optimal MXL has been obtained, a 2-dimensional scan of the MXS and
MXG is then performed. After tracking for 2000 turns at each point, the calculated
∆νs are plotted in the Figure  6.11 . After several iterations over the light-coloured
(smaller ∆νs) region, the point with the minimum ∆νs is obtained. Thus, the spin
tune spread ∆νs can be reduced by 3 orders of magnitude.
The results of the simulations obtained from the scans are listed in Table  6.6 . Note
that the point with the smallest ∆νs does not overlap with the (ξx, ξy) = (0, 0) point.
Comparing the scan of the beam with momentum deviation to the beam with only
x and y offsets shows that the chromaticities are very close between the two scans,
while the α1 of the former is closer to 0. The SCT has also increased significantly to
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Figure 6.10.: Spin tune spread ∆νs as a function of the normalized MXL sextupoles
strength. The results are obtained after two iterations of 1-dimensional
scanning.

α1 ξx ξy SCT(s)
(ξx, ξy) = (0, 0) -6.284 +0.0002 -0.0002 0.192 ± 0.016
BMAD - Scan (x, y) 0.051 -3.9770 -4.9849 3.388 ± 0.151
BMAD - Scan (x, y, p) 0.005 -3.8676 -5.2498 7.009 ± 0.352

Table 6.6.: Spin tracking results of minimal spin tune spread via scan method. The
first row is for point (ξx, ξy) = (0, 0), the second row is the result of
scanning the beams only with x and y offsets, and the third row is for the
beams with additional momentum deviations. The columns in the table
respectively show the second-order momentum compaction factor α1, the
chromaticity in the x and y directions and the SCT.
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6.3. Chromaticity scan

Figure 6.11.: The Spin tune spread ∆νs is obtained after 2-dimensional scannings.
Its value is accompanied by a colour, the larger the spin tune spread,
the darker the colour. MXS and MXG are respectively the normalized
strength of two families sextupole.
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7.009 s, but there is still a long way to reach the expected value of 1000 s. In Figure
 6.12 , the SCT obtained after these two scans are shown respectively.

Figure 6.12.: Spin coherence time for a polarized proton beam with horizontal offsets
and vertical offsets (top), plus additional momentum deviations (bot-
tom). The x-axis is the time and the y-axis is the total polarization. A
red line indicates that the total polarization drops to 1/e of the initial
polarization, and the corresponding time is the spin coherence time.
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7. Optimization of spin coherence time

7.1. Optimization method

In previous deuteron experiments, G. Guidoboni et al. suggested that the reciprocal
of the SCT has a relationship with the sextupole magnet currents as follows:[ 22 ,  26 ]

1
τ
= ∣A + a1Is + a2IL + a3IG∣ ⋅ ⟨(∆x)2⟩

+ ∣B + b1Is + b2IL + b3IG∣ ⋅ ⟨(∆y)2⟩ +O⟨(
∆p
p0

)2⟩
(7.1)

Here, τ is the SCT. ∆x and ∆y are the deviations of the particle in the x and y
directions, which are the contributions of the horizontal and vertical emittance. A
and B are the natural chromaticity, which is the chromaticity without the correction
of the sextupole magnets. Is, IL and IG are the currents applied to each of the three
families of sextupoles. The subscripts S, L and G refer to the corresponding families
of sextupoles in the arc section (MXS, MXL and MXG). ai and bi are the coefficients
of the currents.

Assuming that for the momentum deviation term, its coefficient also follows a similar
linear relationship.[ 36 ] Since the spin tune spread is proportional to 1/τ , one can write
the further step as:[ 20 ]

1
τ
= ∣A + a1Is + a2IL + a3IG∣ ⋅ ⟨(∆x)2⟩

+ ∣B + b1Is + b2IL + b3IG∣ ⋅ ⟨(∆y)2⟩

+ ∣C + c1Is + c2IL + c3IG∣ ⋅ (
∆p
p0

)2

(7.2)

For a single particle with horizontal or vertical offsets or momentum spread, one can
change the settings of one family sextupoles (e.g. MXG), while all other families of
sextupoles are set to zero. By using the FFT/NAFF algorithm one can easily remove
the modulation effects of synchrotron oscillations and obtain very precise spin tune
values. The spin tune difference between a offset particle and the reference particle
is calculated.
The results of proton beam’s spin tune spread ∆νs with momentum spread ∆p/p for
MXG sextupole family is plotted in Figure  7.1 , and for the MXL sextupole family with
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Figure 7.1.: Spin tune spread ∆νs as a function of momentum spread ∆p/p for MXG
sextupole family. Different normalized sextupole strengths k2 are shown
in different colours, while the parabolas demonstrate clearly that they are
all second-order curves.

horizontal or vertical offsets are shown in Figures  B.1 in the Appendix  B , respectively.
The optimized settings for minimum ∆νs can be obtained by flattening those resulting
parabolas.
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7.2. Linear equations approach

Our assumption is that the dependence of spin tune spread ∆νs is linear for each
family of COSY arc sextupoles. As there are three phase space coordinates to be
optimised and three families of sextupoles located in the arc region available for
variation, the following linear system of equations can be derived:[ 23 ]

∆νs,x = a0 + a1Is + a2IL + a3IG = 0
∆νs,y = b0 + b1Is + b2IL + b3IG = 0
∆νs,p = c0 + c1Is + c2IL + c3IG = 0.

(7.3)

In order to minimise the spin tune spread ∆νs in all phase space coordinates, the
system of linear Equations  7.3 can be solved by the spin tracking simulations. This
leads to an optimisation setup for the three sextupole families of COSY.
One can use a Bmad program to adjust one family sextupoles to the desired value,
spin tracking simulations were performed for three separate beams with x, y and mo-
mentum offsets. Seven different values were chosen for each sextupole family, and the
output data was analysed using a python script for linear fit. As an example of the
sextupole family MXS, the Figures  7.2 and  7.3 show the results of the fits for the
horizontal, vertical and longitudinal directions respectively.

The optimal normalized sextupole strengths obtained from the simulations are as
follows:

k2_mxs = 0.09701016 1/m3

k2_mxl = 0.07542403 1/m3

k2_mxg = 0.00589589 1/m3.

Using these settings, one can find that spin tune spread was suppressed to −6×10−12,
which is the closest value to zero achieved so far. After a long 12 million turns spin
tracking simulation (see Figure  7.4 ), the total polarization remains above 0.9. For the
ideal COSY lattice, the optimal sextupole settings with the longest SCT of a proton
beam was found.

α1 ξx ξy SCT(s)
BMAD - Scan (x, y, p) 0.005 -3.8676 -5.2498 7.009 ± 0.352
BMAD - Fitting Linear (x, y, p) 0.016 -3.7187 -5.1487 > 17

Table 7.1.: Spin tracking results of the optimization. The first row is for scanning
the beams with momentum deviations, x and y offsets. The second row
is the result of linear fitting method. Columns in the table refer to the
second-order momentum compaction factor α1, the chromaticity in the x
and y directions and the SCT, respectively.
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7. Optimization of spin coherence time

Figure 7.2.: Linear fittings in the horizontal (top) direction and vertical (bottom) di-
rection. The blue dots represent the data from spin tracking simulations.
The x-axis is the normalized MXS sextupole strength k2 and y-axis is the
spin tune spread ∆νs. The fitted parameter ai in the upper right of the
plots refers to the coefficient a1 of the MXS sextupole family current.
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7.2. Linear equations approach

Figure 7.3.: A linear fitting in the longitudinal direction. The blue dots represent the
data from spin tracking simulations. The x-axis is the normalized MXS
sextupole strength k2 and y-axis is the spin tune spread ∆νs. The fitted
parameter ai in the upper right of the plots refers to the coefficient a3 of
the MXS sextupole family current.

Figure 7.4.: Spin coherence time for a polarized proton beam with optimal sextupole
settings. The x-axis is the time and the y-axis is the total polarization.
A red line indicates that the total polarization drops to 1/e of the initial
polarization, and the corresponding time is the spin coherence time.
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In this chapter, a linear system of equations approach is used to optimise the three
families of sextupoles located in the arc sections. The sextupole settings with zero
spin tune spread were found by Bmad’s simulations. The long SCT results were
examined using spin tracking simulations.
The corresponding second-order momentum compaction factor α1, horizontal and
vertical chromaticity as well as the results obtained by the scanning method in the
previous chapter are listed in Table  7.1 .
The values of chromaticity are very close to those obtained earlier using the scanning
method, both being negative. It is known that if all chromaticities are zero, there
would be zero contribution from orbit lengthening caused by betatron motions. One
possible reason for this is due to the ideal model used in this thesis. If the fringe
fields of the magnet are also taken into account, the optimal sextupole settings will
correspond to zero chromaticities.[ 34 ] This explanation still needs to be cross-checked
by simulations using the Bmad program.
Furthermore, The difference between the two α1 is very small and both are very close
to 0. The contribution of α1 is important for the SCT of proton beams. A delicate
experiment design for measuring the α1 is required.

54



8. Summary and outlook

The JEDI (Jülich Electric Dipole Moment Investigation) collaboration is pursuing the
goal of measuring the Electric Dipole Moment (EDM) of protons with high precision
for the first time at the Cooler Synchrotron COSY. Ensuring a long spin coherence
time (SCT) is an important prerequisite for proton EDM measurements in storage
rings. In this thesis, a COSY model without misalignments or field errors is im-
plemented in the software library Bmad. After completing the benchmark, different
algorithms for calculating the spin tune are discussed. A method based on fast Fourier
transform (FFT) is presented which removes the modulation of synchrotron oscilla-
tions to obtain accurate results and saves a lot of computing time.

Based on the assumption that the particles follow the Gaussian distribution, the beam
was generated for the spin tracking simulation. The results of the simulations after
one million turns tracking show a negligible increase in the emittances of the beam,
and the SCT of the beams produced by the 100 and 1000 particles are close to each
other. Important parameters of the beam, such as emittances and the square of the
momentum spread, were checked for their linear dependencies with the inverse of the
SCT.
Besides, three families of sextupoles located in the arc section were varied to investi-
gate the relationship between chromaticities and the SCT. Firstly, the SCT at zero
chromaticity and nearby points were examined which revealed that the SCT was not
at its maximum at (ξx, ξy) = (0, 0). Subsequent searches were performed using a scan-
ning program together with spin tracking simulations to try to find the point where
spin tune spread ∆νs is minimal. It was shown that only considering the chromaticity
is not sufficient to achieve long SCT, the second order momentum compaction factor
α1 also plays an important role.

The observed second-order effects of Spin tune spread ∆νs with emittances (εx, εy)
and the momentum deviation ∆p/p, corresponding to different sextupole strengths,
can be plotted as a family of parabolas. We assume that the coefficient of the square
of the momentum deviation is also linear with the current strength applied to the
sextupoles. Flattening these parabolas gives the optimal setting for the sextupoles.
Solving the linear system of equations by simulation and fitting leads to a result that
not only suppress ∆νs to −6 × 10−12, but also the SCT is much longer than before.

One possible explanation for why the chromaticity of the optimal SCT is not zero
is due to the ideal model we used. Recent studies using different software have
shown that the optimal point will coincide with the zero chromaticity point when
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8. Summary and outlook

the fringe field is taken into account, which requires further simulations with Bmad
to cross-check. In addition, the simulations show that the SCT is very sensitive to
the beam parameters. This raises the requirement for a more accurate manipulation
of chromaticity in future real experiments, and it is also very challenging to perform
measurements for the second-order momentum compaction factor α1.
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Appendix



A. Chromaticity scan

A. Chromaticity scan

Figure A.1.: Horizontal (blue) chromaticity and vertical (yellow) chromaticity as a
function of the normalized MXS (upper two graphs) and MXG (lower
two graphs) sextupoles strength. The scan range of k2 is (-3, +3) [1/m3].
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B. Optimization method

Figure B.1.: Spin tune spread ∆νs as a function of horizontal offset x (top) or vertical
offset y (bottom) for MXL sextupole family. Different normalized sex-
tupole strengths k2 are shown in different colours, while the parabolas
demonstrate clearly that they are all second-order curves.
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