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1. Introduction
The Jülich Electric Dipole moment Investigation (JEDI) collaboration at Forschungszen-
trum Jülich, Germany aims to directly measure the electric dipole moment (EDM) of
charged particles – notably deuterons in this case – for the first time using a storage
ring, the Cooler Synchrotron COSY. According to the Standard Model (SM) of particle
physics, these EDMs arise from the violation of charge-conjugation-parity (CP) symmetry.

Since the EDMs predicted by the SM are very small, a measurement of a nonzero
electric dipole moment would imply a new source of CP violation, provided the well
established CPT-theorem (charge-parity-time symmetry) holds. Therefore, successfully
measuring an EDM could provide evidence for physics beyond the Standard Model. The
EDMs predicted by the SM are beyond current experimental detection capabilities.

A statistical sensitivity on the order of O(10−24)ecm is anticipated in the initial phase of
the experiment. Subsequently, a proposed dedicated all-electric storage ring could further
enhance the sensitivity. In the first stage, the EDM is measured by a signal buildup
using a device called Radio Frequency Wien Filter. To achieve the desired sensitivity,
it is crucial to minimize systematic effects that could generate false EDM signals. This
master thesis written at the chair of the III. Physikalisches Institut B of RWTH Aachen
University examines a bias effect introduced by the analysis procedure of experimental
data from the polarimeters using statistical methods. Bayesian and Frequentist probability
theory is applied to regions of small signal strength, were typical Gaussian uncertainty
assumptions are misleading and can be challenged. The improved methods are compared
to conventional approaches for quantities relevant for the quality of EDM measurements
like signal buildup and Spin Coherence Time.

One goal of the JEDI collaboration measurements is to deepen our understanding of
the matter-antimatter asymmetry in the universe, which is closely related to CP violation,
through fundamental research in nuclear and particle physics. Resolving the puzzle of
this observed asymmetry would be a key to understanding our very existence.

1.1. CP Violation and Baryon Asymmetry
If the charge-parity-time (CPT) theorem holds, the existence of permanent EDMs in
elementary particles would imply CP violation, as such moments are generated by processes
that violate time reversal symmetry. According to one of the Sakharov conditions, CP
violation is essential for generating the matter-antimatter asymmetry in the universe.
The search for their violation has been the focus of numerous experiments. The three
symmetries can briefly be described as follows [1]:

• Charge Conjugation: All particles involved in a process are converted into their
antiparticles under charge conjugation transformation.

• Parity: The physical process occurs identically under the transformation x⃗! −x⃗.
However, this is more of a point reflection than a literal mirror image.

• Time Reversal: Symmetry of physical laws which are independent of the direction
of the time t! −t.
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The first violation of the CP symmetry was observed in the kaon sector in 1964, as
indirect1 CP violation in the Fitch-Cronin Experiment [2], leading to a Nobel prize in
1980. Kaons can transform into their antiparticles and vice versa, but the probability for
such a transformation is not exactly the same in both directions [3].

Starting in the 1990s also direct CP violation was observed in again Kaon decay
processes, with the more recent additions in the B meson sector (B Factories in the 2000s
[4] and LHCb 2013 [5]) and also for D Mesons (LHCb 2019 [6]). All this processes relate
to CP violation in weak interactions, since CP violation in the strong sector is extremely
small or completely missing (strong CP problem).

For the weak sector the CKM-Matrix (Cabibbo-Kobayashi-Maskawa) has been intro-
duced to explain the observed CP violation. In the Standard Model case with three
generations of quarks, there are three mixing angles and one CP-violating complex phase.
However, the CP violation obtained from the CKM mechanism alone is insufficient to
explain baryogenesis i.e. the unexpectedly large number of baryons in the universe.
Therefore other sources of CP violation are extensively studied, e.g. the neutrino sector.

There the PMNS-Matrix (Pontecorvo-Maki-Nakagawa-Sakata) has possibly also a CP-
violating phase, but this is not certain yet, since the phase δCP is still compatible with
180◦. Such a phase would lead to a zero Jarlskog invariant, which is typically used
as a unique measure of CP violation and can be determined comparatively precisely
to J ≈ 0.000 030 8(15) for the quark sector [7]. Since the Jarlskog invariant can be
parameterized as JCP = Jmax

CP sin(δCP) , the total amount of CP violation even in the case
of some existing complex phase also depends on the value of Jmax

CP . The CP violation in
the leptonic sector is of ongoing interest, but notoriously difficult to measure [8]. Another
compelling candidate, where additional CP violation could show up, is the permanent
EDM of elementary particles.

The baryon asymmetry is one of the unresolved mysteries in cosmology. Given the
lack of evidence for primordial antimatter, the excess of matter is quantified by the
baryon-asymmetry-to-photon density ratio

η = nB −
≈0︷︸︸︷
nB

nγ
= nB
nγ

= 6.16(15) × 10−10 (1.1)

where nB and nB correspond to the baryon and anti-baryon density [9]. nB is very close
to zero, since measurements like the AMS-02 experiment at the ISS (since 2011) see no
leftover or in general no heavy antimatter nucleons; only some anti-protons and possibly
very few O(10) anti-helium events [10]. Also antimatter regions or their annihilation
radiation were not found in the universe surrounding us.

In other word Equation 1.1 means that there are approximately 1.6 billion photons for
each baryon in the Universe. The Standard Model of Cosmology predicts an asymmetry in
the order of ηSM = 10 × 10−18, which is roughly 8 orders of magnitude below the observed
one [11].

Quantitative measurements of the baryon asymmetry and other cosmological parameters
were realized by satellite and space probe experiments such as the Cosmic Background
Explorer (COBE, 1989-1993) and its successors Wilkinson Microwave Anisotropy Probe

1Indirect CP violation involves a difference in the oscillation between a particle and the corresponding
antiparticle. Direct CP violation is seen in differences in the decay rates of a particle and its antiparticle.
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(WAMP, 2001-2010 [12]) and Planck Surveyor (2009-2013 [13]), which all determined the
angular distribution and the power spectrum of temperature fluctuations of the cosmic
microwave background (CMB) with increasing precision.

According to current theories, the same amount of matter and antimatter was produced
from the Big Bang. In 1967 Sakharov introduced three criteria to allow the generation of
a baryon asymmetry [14].

• Baryon number B violation: Obviously, baryon-antibaryon asymmetry can only
be created after the Big Bang in a process, which violates the baryon number
conservation.

• C and CP violation: To create an imbalance in the production of baryons and
anti-baryons, the violation of charge conjugation symmetry (C) and charge-parity
transformation symmetry (CP) is required. Otherwise the processes in question
could always be compensated for.

• Universe not in thermal equilibrium: Particle reactions increasing B would
occur at the same rate as the corresponding inverse processes in thermal equilibrium.
Therefore, to generate asymmetry, these processes must occur in conditions deviating
from thermal equilibrium, to avoid this last compensation effect, which would be
ensured by CPT symmetry.

1.2. Electric Dipole Moments
The classical definition of an EDM describes the charge separation of the centers of gravity
of positive and negative charges as a vector property

d⃗EDM =
∫

V
x⃗ · ρ(x⃗) dx3 , (1.2)

with the charge density ρ(x⃗). The magnetic dipole moment with the current density j⃗(x⃗)
is given as

µ⃗MDM = 1
2

∫
V
x⃗× j⃗(x⃗) dx3 . (1.3)

The EDMs and MDMs are fundamental properties of the particles and are both aligned
parallel or anti-parallel with respect to the spin S⃗ = ℏs⃗:

d⃗ = ηEDM
qℏ

2mc
S⃗

ℏ
, (1.4)

µ⃗ = g
qℏ
2m

S⃗

ℏ
, (1.5)

where m indicates the mass of the particle and q is the charge (typically elementary charge
±e for all particles discussed in this work. The spin g-factor and the parameter ηEDM
are dimensionless quantities. The structure of the equations for the EDM and MDM
only differs by a factor 1/c. Note that for baryons or nucleons the MDM is often given
in another form, which does not directly include the particle mass in the definition, but
instead uses the proton mass mp and elementary charge e relating to the properties of the
proton. This is done because Equation 1.4 does not work for neutral particles like the
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neutron which have no charge, where q and therefore also g could then not be defined.
Using I⃗, which is the spin angular momentum of composite baryonic particles, one gets

µ⃗mp = gmp

eℏ
2mp

I⃗

ℏ
= gmpµN

I⃗

ℏ
(for baryons or nucleus) . (1.6)

The magnetic dipole moment is typically expressed in terms of the Bohr magneton
µB (for leptons) or the nuclear magneton µN (for hadrons), which differ by the ratio
me/mp ≈ 5.45 × 10−3.

µB = eℏ
2me

= 5.788 381 798 2(18)×10−5 eV
T µN = eℏ

2mp

= 3.152 451 254 17(98)×10−8 eV
T

particle |I⃗| or |S⃗| rest mass in GeV µ in µN or µB g-factor
proton ℏ/2 0.938 272 089 43(29) +2.792 847 344 63(82) +5.585 694 689 3(16)
neutron ℏ/2 0.939 565 421 94(48) −1.913 042 76(45) −3.826 085 52(90)
deuteron ℏ 1.875 612 945 00(58) +0.857 438 233 5(22) +0.857 438 233 5(22)
electron ℏ/2 0.000 510 998 950 69(16) −1.001 159 652 180 46(18) −2.002 319 304 360 92(36)
muon ℏ/2 0.105 658 375 5(23) −0.004 841 970 48(11) −2.002 331 841 23(82)

Table 1: Magnetic properties of the composite particles proton, neutron and deuteron, and for
the leptonic Dirac particles (electron and muon) compiled from the constants given in
the NIST Reference [15].

Table 1 lists the magnetic properties of typical particle candidates for EDM measure-
ments. The rest mass is given in units of energy and the spin in terms of the Planck
constant. Note that the g-factor for composite particles is simply the inverse of the spin
quantum number (s = 1

2 or s = 1) times the MDM measured in units of the nuclear
magneton, if the typical gmp convention is used (as done e.g. in the NIST database
[15]). However this convention has to be considered misleading, when working again with
formulas involving the particle mass, as described later. The MDMs of leptonic particles
are predominantly influenced by the mass ratios (as can be seen for the muon and tau),
since gµ ≈ ge. Their spin g-factors are close to the prediction of the Dirac equation g = 2
for point like spin-1

2 -particles.
The anomalous gyromagnetic G-factor is defined as

G ≡ a ≡ g − 2
2 ae,µ,τ ≈ α

2π ≈ 0.001 16 (1.7)

where the variable G is commonly used for hadrons and a for leptons. The magnetic
moment g-factors gmp as defined in the equation Equation 1.6 based on the proton mass,
cannot be used directly in the Thomas-BMT equation, which describes spin physics in
electromagnetic fields (see subsubsection 1.5.1 for details). These gmp obtained from
literature have to be corrected by the ratio of the particle mass relative to the proton
mass. This comes from the fact, that indeed the particle mass is relevant in the derivation
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Figure 1.1: Existing limits for the electric dipole moment of various particles (figure taken from
[16]).

of the Thomas-BMT equation (and not the reference proton mass).

gmd
= µd

2md

qs
= 1.714 025 460(45) gmp = µd

2mp

qs
= 0.857 438 233 5(22) (1.8)

G ≡ gmd
− 2

2 =
gmp · md

mp
− 2

2 = gmp · 1.99901 − 2
2 = −0.142 987 269 7(22) (1.9)

̸= gmp − 1 ≈ −0.142 56 (1.10)

Current EDM limits for various particles are given in Figure 1.1. Note that the
measurement for the proton is indirect and that no measurement for deuterons exists –
both particles are promising candidates for direct EDM measurements in storage rings.
It should be noted however that because the EDMs are so small, |ηEDM| ≪ 1, while the
typical g is of order O(±1) as seen in Table 1.

1.3. EDM and CP violation
The non-relativistic Hamiltonian of a particle with EDM and MDM in external magnetic
B⃗ and electric E⃗ fields is given by

H = −d⃗ · E⃗ − µ⃗ · B⃗ = −d · s⃗ · E⃗ − µ · s⃗ · B⃗ . (1.11)

Applying the parity operator P and the time reversal operator T leads to sign flips

P(H) = +d · s⃗ · E⃗ − µ · s⃗ · B⃗ . (1.12)
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Figure 1.2: Schematic of a particle with a MDM and EDM in an external magnetic and electric
field under parity transformation (P) and time reversal (T ). The graphic is taken
from [17].

The Parity transformation in Equation 1.12 changes the sign of the electric field E⃗, but
does not affect the spin s⃗ and the orientation of the magnetic field B⃗ (both axial vectors)

T (H) = +d · s⃗ · E⃗ − µ · s⃗ · B⃗ . (1.13)

Time reversal in Equation 1.13 changes the sign of the spin vector s⃗ and the magnetic field
B⃗, which finally leads to the same change in the Hamiltonian as the parity transformation.
The symmetry violations are visualized in Figure 1.2. Consequently, both symmetries (P
and T) are violated assuming d ≠ 0, due to the sign change of the electric dipole moment
term. In addition, CP is violated, provided the CPT theorem is valid. Notice how the
magnetic dipole moment term remains unchanged by the transformations and does not
violate the symmetries.

1.4. EDMs in the Standard Model
The CKM-Matrix in the quark sector is currently the only certain source of CP violation
in the Standard Model. The predicted EDMs of the quarks are generated by a three-loop
level Feynman diagram and therefore they are very small at [18]

dCKM
q ≈ 10 × 10−34e cm − 10 × 10−35ecm . (1.14)
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Three orders of magnitude smaller values occur for the electron, since here even four-loop
diagrams are needed [19]

dCKM
e ≈ 10 × 10−38e cm . (1.15)

For the neutron enhanced loop effects (from “strong penguin” diagrams [19]) could in
principle lead to EDMs of order

dCKM
n ≈ 10 × 10−32e cm . (1.16)

However, all predictions from theory are orders of magnitude smaller than the current
sensitivity of EDM experiments. Still the measurements can put constraints on Super-
Symmetry (SUSY) models, which naturally predict much larger EDM values due to
additional effects like possible one loops contributions involving hypothetical SUSY
particles [20]. If an EDM was measured in current experiments, this would be a clear sign
of new physics.

In the strong sector of the Standard Model a possible CP violating θ-term is directly
connected to the neutron and proton EDM [21]

dθn ≈ θ · (−2.9 ± 0.9) × 10−16e cm , (1.17)

dθp ≈ θ · (1.1 ± 1.1) × 10−16e cm . (1.18)

The “natural” choice of the θ-term would be expected as O(1), however the current
neutron EDM limits is roughly dn ≤ 10−26e cm (compare Figure 1.1), which constrains
θ ≤ 10−10. This is the strong CP “fine-tuning” problem.

1.5. Charged Particle EDM Experiments in Storage Rings
A storage ring experiment designed to precisely determine the EDM necessitates a
thorough understanding of the spin motion in electromagnetic fields. The particle motion
is determined by the Lorentz force

F⃗L = q
(
E⃗ + v⃗ × B⃗

)
, (1.19)

where q is the charge and v⃗ is the velocity vector of the particle, while E⃗ and B⃗ denote the
electric and magnetic field inside the accelerator. To keep a particle on the desired orbit
magnetic bending or electrostatic deflection (both dipole fields) can be used; also beam
focussing is needed using higher multipole components. Simultaneously, the particle’s spin
is tilted, when interacting with a electromagnetic field. According to the Thomas-BMT
equation, which describes the spin motion [22], this tilt is proportional to the applied
electric field and the particle’s electric dipole moment.

1.5.1. Thomas-BMT Equation

A spin vector S⃗ in an electric E⃗ and magnetic B⃗ field begins to precess with an angular
frequency Ω perpendicular to the axis Ω⃗. The electromagnetic fields are usually described
in the curvilinear laboratory reference frame (here an accelerator). The spin vector S⃗ is
defined in the rest frame of the particle. A calculation of the spin motion leads directly to
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the Thomas-BMT (Bargmann-Michel-Telegdi) equation, which also includes the electric
dipole moment (for a derivation see e.g. [23])

dS⃗
dt = Ω⃗s × S⃗ = Ω⃗MDM × S⃗ + Ω⃗EDM × S⃗ , (1.20)

Ω⃗MDM = − e

m

(G+ 1
γ

)
B⃗ − Gγ

γ + 1
(
β⃗ · B⃗

)
β⃗ +

(
G+ 1

γ + 1

)E⃗
c

× β⃗

 , (1.21)

Ω⃗EDM = − e

m

ηEDM

2

E⃗
c

− γ

γ + 1

β⃗ · E⃗
c

 β⃗ − B⃗ × β⃗

 . (1.22)

In Equation 1.20 the spin motion is decomposited into a term Ω⃗MDM caused by the MDM
and a term Ω⃗EDM caused by the EDM (note again that η ≪ G). The Lorentz factor is
γ = 1/

√
1 − γ2 and β⃗ = v⃗/c.

Assuming that the particle motion β⃗ is always exactly perpendicular to the electromag-
netic fields, i.e. β⃗ · E⃗ = β⃗ · B⃗ = 0, which would be the case in ideal EDM experiments in
storage rings, the Thomas-BMT equation simplifies to

Ω⃗RING
s = − e

m

(G+1
γ

)
B⃗ +

(
− 1
γ + 1 −G

)β⃗ × E⃗

c

+ ηEDM

2

(
E

c
+ β⃗ × B⃗

) . (1.23)

However taking into account longitudinal B⃗ fields may be important for calculations
of systematical errors and longitudinal E⃗ fields are associated with beam acceleration.
Remember that the anomalous magnetic moment G = g−2

2 used in the Thomas-BMT
equation needs to be calculated from a magnetic moment g corrected to the true mass of
the particle and not from the commonly found gmP

(defined using the proton mass). One
usually considers the spin motion relative to the beam direction and rewrites Equation 1.23,
by introducing the angular rotation velocity of the momentum in beam direction Ω⃗RING

p

Ω⃗RING
p = e

m

 1
γβ2

β⃗ × E⃗

c

−1
γ
B⃗

 . (1.24)

Finally the angular velocity of the spin rotation relative to the beam direction is given by
the most commonly used form

Ω⃗ = Ω⃗RING
s − Ω⃗RING

p = − e

m

[
G B⃗ +

(
1

γ2 − 1 − G

)(
β⃗ × E⃗

c

)
+ ηEDM

2

(
E

c
+ β⃗ × B⃗

)]
(1.25)

The basic principle of measuring an EDM relies on its interaction with external electro-
magnetic fields. For an EDM measurement, the experimental parameters like the particle
momentum (defines β and γ) and the electromagnetic fields E⃗ and B⃗ have to be chosen in
such a way, that a macroscopic signal involving changes of the spin axis can be measured.

1.5.2. Magnetic Storage Rings and RF Wien Filter Method

For a magnetic ring like COSY, where in a good approximation E⃗ = 0 can be assumed
and B⃗ is the main magnetic field (oriented vertically to bend the beam) Equation 1.25 is
further simplified to

magnetic ring: Ω⃗ = ΩMDM + Ω⃗EDM = − e

m

[
GB⃗ + ηEDM

2
(
β⃗ × B⃗

)]
. (1.26)
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In the case of a vanishing EDM component (η = 0), the spin precession is mainly driven
by the magnetic field of the ring. Therefore the spin polarization vector prepared in the
horizontal plane precesses around the vertical axis with a constant vertical component.
The so-called spin tune is then defined as the ratio of the spin precession frequency fspin
and the stored beam revolution frequency fbeam = 2πωbeam

νs = fspin

fbeam
= Ω
ωbeam

=
e
m
GB
eB
γm

= γG , (1.27)

where ωbeam = eB
γm

is the revolution frequency of the particles in the machine2. The spin
tune is a measure of how many additional spin revolutions happen per beam revolution.
Typical values of operation suitable for COSY are listed in Table 2.

In the case of a non vanishing EDM component (η ̸= 0) in Equation 1.26, the spin
polarization vector will not only precess around the vertical axis. Instead it will be tilted
by a small angle and gets an additional oscillating vertical component. However, this
amplitude is too small to be detected directly. Using the so-called radio frequency (RF)
Wien Filter method, the signal is enhanced. A Wien Filter has perpendicular electric E⃗WF
and magnetic B⃗WF fields. The total force on the beam axis must be zero at the desired
momentum, to let the particles pass the filter. The velocity where no deflection in the
device happens is given by

v = βc = |E⃗|
|B⃗|

. (1.28)

The RF Wien Filter works at resonant frequency with the spin tune frequency.

fWF = fbeam|γG± k| = fbeam|νs ± k| = |fspin ± kfbeam| with k ∈ Z . (1.29)

Every turn, the magnetic field of the RF Wien Filter gives a small kick to the spin vectors,
breaking the symmetry between parallel and antiparallel spin and particle motion, which
leads to a vertical spin polarization (signal) build up. This buildup of the polarization is
linear in time, but note that also various systematic effects like small misalignments in
the Wien filter can cause similar fake signals [24].

p [MeV/c] β γ G νs = γG fbeam [kHz] fspin [kHz]
d 970 0.459 1.126 −0.143 −0.161 750 120

Table 2: Rough overview of the machine parameters for EDM measurements using a magnetic
storage ring (circumference 184 m) for deuterons (d) as done with COSY.

2This is a simplification in the case of a circular machine with constant B; in general one has to calculate
field integrals around the storage ring.
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2. Cooler Synchrotron
The facility has three key components: Sources that provides polarized (and unpolarized)
hydrogen H− and deuterium D− ion beams, a pre-accelerator cyclotron called JULIC
and the main accelerator COSY. COSY (Cooler Synchrotron) is an accelerator with a
circumference of 184 m that provides a beam momentum range from 0.3 GeV

c
to 3.7 GeV

c
for

proton and deuteron beams. A sketch of the accelerator facility is shown in Figure 2.1.
Initially, the sources provide unpolarized or nuclear polarized neutral H0 and D0 beams.

These beams collide with an intense neutralized caesium beam and are ionized in the
reaction [25]

H0/D0 + Cs0 ! H−/D− + Cs+. (2.1)
The isochronous sector cyclotron JULIC (JUelich Light Ion Cyclotron) serves as a

pre-accelerator for the ions. A small polarimeter called LEP (Low Energy Polarimeter) is
installed at the injection beamline (IBL). It measures the initial polarization of the beam
as provided by the Cyclotron. After transferring the particles via the 94 m long IBL a
charge exchanging stripper carbon foil is used for the injection of the particle ensemble
into COSY [26]. The accelerator COSY follows a race track design and consists of two arcs
(52 m/arc) connected by straight lines (40 m/line). COSY offers four internal (relevant for
EDM measurements) and three external (fixed target) experimental sites, where hadron
experiments can be carried out. In the arcs, 24 normal conducting water cooled dipole
magnets provide the bending force with a maximum magnetic field of 1.58 T. In total
56 quadrupole magnets are used to focus the beam, while sextupole magnets correct
chromaticity effects, i.e. they minimize the beam dispersion. The RF-cavity specifies the
revolution frequency and momentum of the ions [27].

The main experimental stations for the EDM measurement – including the polarimeters,
solenoids and the RF Wien filter – are located in the straight section of COSY as seen in
Figure 2.1. The polarization is measured by extracting a small fraction of the circulating
particles onto a carbon target. The scattering distribution and asymmetry of the detected
events is then analyzed. Solenoid fields allow to manipulate the spins of the particles.
COSY has the ability to store polarized ion beams providing long in-plane polarization
lifetimes up to O(1000 s). Therefore COSY is the natural choice to study systematic
effects on the road to a high precision charged particle electric dipole moment experiment
[28].

2.1. Important COSY Storage Ring Components
• Radio-Frequency Solenoid:. The RF solenoid at COSY is a 57.5 cm long air

filled, water cooled copper coil. It provides a sinusoidal magnetic field parallel to the
beam momentum vector. The RF solenoid at COSY is used to flip the initial vertical
polarization of the beam provided from the source into the horizontal plane (also
compare Thomas-BMT Equation 1.20). The solenoid is operated on resonance, i.e.
on a harmonic of the spin precession frequency fsol ≈ |K +Gγ|fCOSY with K ∈ Z.
At COSY K = 1 is used, and the exact frequency needs to be determined for the
experiment, since imperfections in the ring and fields lead to deviations from the
ideal case νs = Gγ given above. It is crucial to switch off the solenoid at the right
moment, when the vertical polarization vanishes [16]. The in plane spin precession
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Figure 2.1: Sketch of the COSY facility [29].

frequency fs is given by the product of the spin tune νs and the RF cavity (COSY)
frequency:

fs = νs · fbeam ≈ 0.1609 · 750 kHz ≈ 120 kHz. (2.2)

• Electron Coolers: Electron coolers reduce emittance and momentum spread of
the ion beam by providing a guided coaxial electron beam with the same mean
longitudinal velocity, but smaller velocity spread than the ion beam. The improved
beam quality is crucial in polarization experiments to increase the so-called Spin
Coherence Time [16]. The Coulomb interaction between oppositely charged electrons
and ions leads to an energy transfer which reduces the momentum spread of the
ion beam. 90◦ bending dipole magnets guide the electrons in and out of the beam
after a short 2 m joint interaction distance, where the particles are also guided and
focused by a solenoidal magnetic filed, that counteracts the Coulomb repulsion [30].
Two electron coolers are installed in COSY, one in every straight section. Only
the 100 keV electron cooler was used for cooling in the experiments discussed in
this work. Cooling with the newer 2000 keV electron cooler is not necessary when
working with a deuteron beam of up to 970 MeV eV, but its solenoid field was used
as an additional spin manipulator for the EDM experiments.

• Reference Frequency System: For the EDM experiments three RF components
are essential: The COSY RF cavity, the RF solenoid and the RF Wien filter. In
summer 2020 the fiber-optics-based reference frequency distribution system was
installed to synchronize the devices to a GPS-driven reference signal to avoid off-
resonance behavior between the beam (RF from cavity) and RF solenoid or RF
Wien filter.
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Figure 2.2: Schematic of the WASA forward detector as a cross section [31].

2.2. Polarimeters
Polarimeters are used in COSY to measure the vertical polarization component and the
in-plane (horizontal) polarization of the particle bunch circulating the accelerator; both
components are reflected in the form of asymmetries of count rates in the detectors. The
two polarimeters used for the EDM experiments at COSY were the forward detectors
of the “recycled” WASA detector (for so-called Precursor 1 runs, until late 2019) and
JEPO, a new polarimeter built by the JEDI collaboration dedicated directly for proton
and deuteron EDM experiments (for so-called Precursor 2 runs). The working principle
and analysis for data taken by both of the polarimeters is similar: Particles from the halo
of the beam scatter with a carbon target and are then detected in the polarimeter.

The detectors are segmented into four regions called “up”, “down”, “left” and “right”,
as seen from the beam direction. The up-down asymmetry of count rates in the detectors
can then be used as a measure of the in plane (horizontal) polarization, while the left-right
asymmetry is linked to the vertical polarization.

• WASA (forward) detector: The WASA (Wide Angle Shower Apparatus) is a
detector built in 1996 at the Departement of Radiation Sciences at the University
Uppsala originally for the storage ring CELSIUS. The entire detector was moved
to COSY in 2006. It consisted of two main parts: a central and a forward part.
After taking data for eight years, the physics program of WASA ended in 2015,
the detector was removed from the COSY ring and the central part was moved to
GSI in Darmstadt. The forward part of the detector was reinstalled and used as a
polarimeter for the EDM project [32].
In the first experimental period to measure the orientation of the Invariant Spin
Axis in 2018, an unpolarized carbon target was used to scatter the deuterons. The
scattered particles can be detected using two layers of forward window counters
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Figure 2.3: Technical drawing of the detector with the target rods in the beamline (left) and
sketch of the cross section (right) from the JEDI Polarimter (JePo) (graphics taken
from [34]).

(FWC), followed by four layers of straw tubes, a single layer forward trigger hodoscope
(FTH) and finally five layers of the forward range hodoscope (FRH). Each layer
of this component is made from plastic scintillators arranged in 24 pizza shaped
elements. A sketch of the detector with its layers is shown in Figure 2.2. The angular
coverage is given by Θ = 2◦ − 17◦ and ϕ = 0◦ − 360◦. For the use as a polarimeter,
the full detector is subdivided into four sections, each covering an azimuthal angle
of ∆ϕ ≈ 90◦.

• JEDI Polarimeter: In November 2019, a new dedicated polarimeter called JEPO
(Jedi Polarimeter) based on LYSO inorganic crystal scintillators was installed in
COSY, to increase the sensitivity of the polarimeter for measuring the polariza-
tion build-up due to the EDM. Each LYSO (cerium-doped Lutetium–Yttrium
Oxyorthosilicate, a Silicon Oxide) crystal measures 3 × 3 × 8cm3 [33].
The crystals are arranged in blocks of 3 × 4 + 1 for the four detector regions.
The positioning is done in such a way, that the so called Figure of Merit FOM =
σ(θ)A2

y(θ) (with the angular cross section σ and vector analyzing power Ay squared)
is maximized, since this minimizes the statistical uncertainty of the measurement.
A technical drawing and cross section of the JEPO are shown in Figure 2.3. For the
EDM experiments relevant for this work, only the vertical target was used. It can
be moved close to the halo of the beam by a rod. The particle extraction rate is
hold constant over time by a feedback system. After traversing the target chamber
(1) and a vacuum flight chamber (2) the scattered particles are detected in tracking
plastic scintillators (3) and finally are stopped in the LYSO crystals (4).
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Figure 2.4: Left picture: The convention for Up, Down, Left, Right detector regions. Right
picture: LYSO crystals of the JEPO (black boxes) are placed strategically to maximize
the information gained from the scattered particles by checking their corresponding
figure of merit in the left-right case. Note that the FOM for the up-down case is
given by a rotation by 90◦ [34]).

2.3. Polarization Determination
2.3.1. Turn Number and Time in Cycle

For the determination of the spin precession frequency in the horizontal plane, each event
is assigned to a number n of particle turns in the storage ring. The length of a turn
number interval is proportional to the time in the accelerator cycle (tic) for operation at
fixed energy and therefore fixed beam frequency (up to tiny variations not relevant for this
work). Both scales (time and turn number) can and will be used to indicate the duration
of the measurement (∆n = 106 ≡ 1.3 s = ∆t). Typically the measurements relevant for
this work using the polarimeters start at t0 = 90 s – after performing all previous steps like
e.g. beam acceleration, preparation and cooling. The cycle data taking ends at ≈ 264 s.
Note that t0 usually gets turn number n = 0. For the EDM measurement campaigns
precursor 1 and precursor 2 both time in cycle and turn number is given directly in the
ROOT data files of recorded events in the polarimeters.

2.3.2. Polarimeter Event Rates

The event rates ṄX = dNX

dn ≈ N/∆t are measured in each detector quadrant X =
(L,U,R,D) in order to determine the horizontal and vertical asymmetry parameter
(polarization). In Figure 2.5 the counting rates of the four detector quadrants are shown
for a 264 s cycle. There are no events saved from the first 90 s of the cycle, because the
beam is prepared by bunching and cooling. As soon as the extraction of the beam onto
the target starts the event rates increase. All the rates are (mostly) flat and roughly the
same amount of events is detected in each detector segment per time bin in the main data
acquisition period after the flip of the spin axis at t ≈ 100 s.

Note that a beam current monitor output would show a decline of stored beam intensity,
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Figure 2.5: Raw counting rates of each detector quadrant for a cycle (Precursor 1 experiment),
where the WASA detector was used. Measurement principle (vertical lines indicate
the corresponding time): a) Until ≈ 90 s beam preparation, including bunching and
cooling, no data taking in the detectors. b) At ≈ 100 s the RF Solenoid turns the
popularization into the horizontal plane and feedback preparation takes place. c)
At ≈ 150 s the RF Wien Filter is switched on and the frequency is set to the spin
precession frequency fWF = fs, while adjusting and maintaining the relative phase
between the polarization precession and the RF Wien Filter. c) After ≈ 264 s the
measurement for one cycle ends.

similar to Figure 2.6, as particles are lost over time e.g. in interactions with the target of
the polarimeter. However, this is corrected for by a feedback system changing the fields
around the target, which ensures a constant rate of detected events and by that similar
statistical uncertainty during the full measurement. The absolute counting rates for all
four detectors are a bit different, since the acceptances of the individual detectors are
not identical. Additionally, the beam might not go exactly through the geometric center
of the detector and also the target is not symmetric, which also yields to asymmetric
counting rates The efficiency for JEPO is in the order of 1 % and therefore roughly 100
times more particles are lost at the polarimeter than detected in the segments over the
measurement time. [34].

2.3.3. Left-Right Asymmetry (Vertical Polarization)

To compute an analytical expression for the left right asymmetry two point-like detectors
are considered, which are placed at φL = 0◦ and φR = 180◦ (compare Figure 2.4). The
number of detected events NL, NR during a (macroscopic) time interval ∆tmac for a
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Figure 2.6: In the upper panel the counting rates for the four quadrants of the JEPO polarimeter
(used for Precursor 2) appear as colored traces. They are nearly flat for the data
acquisition period and similar, but not identical. The green trace shows the summed
count rate. The start of beam extraction onto the target (here at ≈ 60 s) generates
a spike in rate. In the lower panel the blue line traces the declining stored beam
intensity. The efficiency is measured between the two vertical lines during the length
of a typical measurement cycle (figure taken from [34]).

vanishing tensor polarization (only vector polarization pZ considered) is given by

NR = Idtσ0R∆tmac

(
1 − 3

2pZAy
)
, (2.3)

NL = Idtσ0L∆tmac

(
1 + 3

2pZAy
)
. (2.4)

Here I denotes the beam current intensity, dt is the target density, σ0L and σ0R are the
averaged differential cross sections for both detectors. The averaged analyzing powers Ay
are assumed to be the same in this simple approach. To determine the vertical polarization,
the conventional calculation of the left-right asymmetry ϵLR is given by

ϵLR = NR −NL

NR +NL

= 3
2pZAZ (2.5)

Thus, the asymmetry of the counting rates is ideally proportional to the vertical vector
polarization (ϵLR ∝ pZ), if the cross sections are exactly the same σ0L = σ0R. In reality
this is not necessarily the case and a possible correction procedure for the left-right
asymmetry is described in [35].

16



Figure 2.7: Raw left-right asymmetry for multiple cycles in one run, using the counting rates.
Note that the unpolarized cycle (here number 2) does not show a notable initial asym-
metry (between 90 s and 100 s), while the following cycle are similar in asymmetry,
but also not identical.

The statistical uncertainty of Equation 2.5 can be calculated directly using Gaussian
error propagation and assuming uncorrelated counting rates, which follow Poisson statistics
with σN =

√
N for N ≫ 1

σϵLR
=

√√√√4N2
RNL + 4NRN2

L

(NR +NL)4 =
√

4NRNL

(NR +NL)3 ≈

√√√√ 4N2

(2N)3 =
√

1
2N . (2.6)

Note that these uncertainties approximately follow the
√

1/(2N) behavior, when assuming
NR ≈ NL ≡ N , which is valid for large parts of the experiment.

A typical examples of the left-right asymmetries for four cycle of a Precursor 1 run
is shown in Figure 2.7. Note that a run consists of multiple polarized (here cycles 1,3
and 4) and an unpolarized cycle, which shows no starting asymmetry. This cycle (plotted
in orange) can be used for fake-asymmetry corrections as done in [35]. Optimally the
left-right asymmetry for every cycle would amount to zero, after the vertical polarization
is turned into the horizontal plane (spin precession for t > 100 second until the Wien filter
is turned on).

2.4. Important Quantities of the Data Taking Procedure
The runs probing for a RF Wien filter signal buildup follows this procedure: A vertically
polarized deuteron beam is injected into the COSY ring, accelerated and cooled. After
90 s the target of the polarimeter is moved next to the beam and the extraction starts. At
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100 s the RF solenoid is used to rotate the polarization into the accelerator plane, where
it starts to precess.

The phase feedback system measures the phase relation between the spin precession
frequency and the (turned off) RF Wien filter to adjust frequency and phase of the device.
At 155 s the RF Wine filter is turned on, and a buildup of vertical polarization can
be measured. This vertical polarization component is linked to the orientation of the
Invariant Spin Axis and therefore also to the EDM. To summarize, the most relevant
information found in the data for each cycle for the determination of the direction of the
Invariant Spin Axis are:

• Vertical asymmetry (linked to vertical polarization): The vertical asymmetry
is computed directly from an asymmetry of detected particles in the left and right
quadrant of the polarimeter, which scales with the vertical polarization. The
asymmetry of detected events needs to be corrected using cycles without initial
polarization to correct systematic effects and to deduct fake signals for an EDM
measurement using a linear model. A nonzero EDM provides a linear signal buildup,
after the Wien Filter is turned on.

• Horizontal asymmetry (linked to horizontal polarization): The horizontal
asymmetry is computed from an asymmetry of detected particles in the upper and
lower detectors segments. The in-plane polarization is rotating with the spin preces-
sion frequency (spin tune), which is much faster than the detector rate. Therefore
this polarization component cannot be determined directly, but many oscillation
periods have to be taken into account (Mapping Method or Fourier Transform
approach). An oscillation with maximum amplitude is occurring, when the right
spin precession frequency is chosen in the analysis. The resulting amplitude is called
up-down asymmetry, which scales with the horizontal or in-plane polarization. The
horizontal polarization declines over time due to a depolarization effect. Therefore
a long spin coherence time is wanted in the experiment. The analysis of the up-
down asymmetry and its precession amplitude will be discussed in greater detail in
section 5.

• Total asymmetry (linked to total polarization): The total polarization is
calculated from the sum of the squared left-right asymmetry and up-down asymmetry.
It describes the amount of polarization of the particle bunch.

• Angle between Vertical and Horizontal Polarization: Determined by calculat-
ing the arc tangent of the left-right (vertical) and up-down (horizontal) asymmetry. A
linear slope can be interpreted as a EDM signal signal, or as a systematic effect/fake
signal.
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3. Fundamental Statistic Concepts
This work discusses the estimation of observables obtained from the polarimeters in the
COSY storage ring, based on ideas developed by Dennis Eversmann during his PhD Thesis
[36] using statistical methods. For this purpose, the relevant statistical concepts for the
Bayesian and Feldman Cousins approach, which is purely frequentist, are discussed in this
and the next chapter. Later these concepts are applied to parameter estimation for the
asymmetry (polarization) amplitude and its time dependence (spin coherence time) in the
COSY EDM measurements.

3.1. Central Limit Theorem
The central limit theorem (CLT) is a fundamental concept, which states that for a sequence
of independent and identically distributed random variables X1, ..., Xn with expectation
value E[Xi] = µ and variance Var[Xi] = σ2 < ∞ the resulting summed up distribution
converges to a Normal distribution. It is a remarkable property of the CLT that no
assumption is to be made about the shape of the distribution of the individual Xi.

Xn = X1 + · · · +Xn

n
= 1
n

n∑
i

Xi ! N
(
µ, σ/

√
n
)

(3.1)

Also one should notice, that for increasing n the width of the distribution (standard
deviation σ) will get narrower with 1/

√
n. This behavior, that the variance of a parameter

falls regularly with 1
n

for large n is also key to parameter estimation practices [37].

3.2. Bayes Theorem
Bayes’ theorem is another important law of probability theory and later relevant for
including so called prior knowledge of distributions in the parameter estimation process.
It can be written as

P (A|B) = P (A,B)
P (B) = P (B|A)P (A)

P (B) = P (B|A)P (A)∑
x P (B|x)P (x) (3.2)

P (A) and P (B) are the probabilities for events A and B happening, without any other
requirements. P (A,B) is the probability of A and B happening. The conditional
probability P (A|B) represents the probability of observing A given that B is true and
vice versa for P (B|A). Notice that the probability P (B) can be expressed as a sum of all
its possible conditional events weighted by how likely they are each, as long as those are
disjoint with ∑x P (x) = 1 (marginalization).

According to the Bayesian interpretation, the unconditional and conditional probabilities
can be seen as a degree of belief before and after considering the evidence. In this sense,
P (A) is called the prior, which represents the first level of belief in A, while P (A|B)
represents the posterior, when B is taken into account. The ratio P (B|A)/P (B) is
considered as the support B provides for A.

In a certain sense, Bayes’ theorem allows conclusions to be reversed: one starts from a
known value P (B|A), but one is actually interested in the value P (A|B). In the context
of this thesis B is typically some obtained measurement result, and A is its true physical
value. Of course one would like to directly conclude the knowledge of the true value and
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its uncertainty from the measurement, but it has to be noted, that the prior probabilities
and correct distributions have to be considered to avoid fallacy.

It can be shown however, that for an unbiased estimator without constraints, and
uncertainties that follow a Gaussian distribution, P (B|A) and P (A|B) can indeed be
interchanged when assuming a so called constant prior (for details see subsection C.2 in
the appendix).

This is e.g. implicitly done when performing a standard χ2-fit on some data. Here one
typically assumes that the measurement is unbiased, so that the best estimate for the fit
of the true behavior is indeed the measurement point, and the uncertainties (represented
by errorbars) are assumed to be Gaussian. The Gaussian behavior will also be the typical
“baseline” for comparisons in this work. The focus in the following chapters will be on
cases, where it is not from the start clear, whether e.g. Gaussian simplifications are
justified and one needs to discuss the necessity of more elaborate statistical methods and
its effects on the analysis.

3.3. Estimators
A statistic estimator is in general a rule to determine an estimate of a quantity based
on observed data, typically also providing an uncertainty of the estimate. If some fixed
parameter θ (true value) is to be estimated, the estimator is given by a function, which
takes the measurement (observed data) as input. In this work estimators (and later their
output) are denoted by a hat above the symbol θ̂. For a random variable (X) which
describes the distribution of the measured data as input, the estimator becomes a function
of a random variable θ̂(X), but for simplicity this is written still as θ̂. The estimate
for some given data set (x) is denoted as θ̂(x), which is always a fixed value, since only
deterministic estimators are discussed in this work.

3.3.1. Variance, Mean Squared Error and Bias

The variance
Var(θ̂) = E[(θ̂ − E[θ̂])2] (3.3)

is an indicator in how far the estimated parameter is off from the expected value of the
estimator on average. A small variance however does not necessarily indicate a good
description of the true parameter. The estimator could be always wrong the same way.
To deal with this case, the mean squared error

MSE(θ̂) = E[(θ̂ − θ)2] (3.4)

can be introduced. It is given by the expectation value of the squared errors, defined
as deviation from the true value θ. For some given sample of data x, the error of the
estimator θ̂ is defined as e(x) = θ̂(x) − θ. The error e(x) depends on the estimation
formula and the sample. The MSE is the probability weighted squared error for all x ∈ X.
A small MSE ensure that the results of the estimator are clustered closely around the
true value. Finally the bias

B(θ̂) = E[θ̂] − θ (3.5)
is defined, which corresponds to the distance between the average of the estimates and the
true value of the parameter θ. If B(θ̂) = 0 the estimator θ̂ is called an unbiased estimator.
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The mean squared error can also be written as a combination of variance and bias

MSE(θ̂) = Var(θ̂) + (B(θ̂))2. (3.6)

A proof for this relation is given in subsection A.1 in the appendix. Therefore typically
the goal is to minimize not only the variance or the bias, but the MSE as a trade off [38].

3.3.2. Fisher Information and Cramer-Rao Bound

The Fisher information indicates the amount of information, that a measurable random
variable X carries with respect to an unknown parameter θ. Below the simple case of one
scalar parameter will be described including possible bias. For multiple parameters the
Cramér-Rao bound corresponds to the covariance matrix.

First the scalar unbiased case: Consider the problem, that the parameter θ is to be
estimated from n independent observations of the random variable X, called x1, ..., xn
or in short x to denote the full set. Each observation comes from the same distribution
according to some probability density function (PDF) f(x; θ). The variance of any
unbiased estimator θ̂ with E[θ̂] = θ is then bounded by the reciprocal of the Fisher
information [39]:

Var(θ̂) ≥ 1
I(θ) . (3.7)

The Fisher information I(θ) is defined by the expected value of the square of the score
function ∂

∂θ
log (f(x; θ)) with respect to the PDF f(x; θ) :

I(θ) = E
( ∂

∂θ
log (f(x; θ))

)2
 = E

[
− ∂2

∂θ2 log (f(x; θ))
]
. (3.8)

A more general form of the bound also considers estimator T̂ , whose expectation is some
(differentiable) function of θ, i.e. E[T̂ ] = ψ(θ). In this case, the bound is given by:

Var(T̂ ) ≥ [ψ′(θ)]2
I(θ) (3.9)

where ψ′(θ) is the derivative ∂
∂θ
ψ(θ), and I(θ) is the Fisher information from Equation 3.8.

Notice how for ψB=0(θ) = θ the unbiased limit reoccurs naturally, since ∂
∂θ
ψB=0(θ) = 1.

Finally consider a biased estimator θ̂ with a bias B(θ̂) = E[θ̂] − θ ≡ b(θ) ̸= 0 given
by a differentiable function b(θ). With the result from Equation 3.9, this corresponds to
E[θ̂] = ψ(θ) = θ + b(θ) and the bound is:

Var(θ̂) ≥ [1 + b′(θ)]2
I(θ) . (3.10)

Also the MSE of a biased estimator directly follows to be

MSE(θ̂) = E[(θ̂ − θ)2] ≥ [1 + b′(θ)]2
I(θ) + b(θ)2 (3.11)

using the standard decomposition of the MSE (see Equation 3.6). Note, however, that
if 1 + b′(θ) < 1 the variance bound will always and the MSE might be smaller than the
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unbiased Cramér–Rao bound 1/I(θ), depending on the bias. Biased estimators, which
indeed surpass the unbiased Cramér–Rao Bound are sometimes called “super efficient
estimators”. In the case of the parameter estimation for a sine-wave, which will be
discussed in this thesis, estimators for the amplitude are biased and indeed can achieve
super efficiency [40].

In the case of multiple parameters θ = [θ1, . . . , θd]T ∈ Rd the Cramér-Rao bound
corresponds to the covariance matrix of the (biased) estimator θ̂ = [θ̂1, . . . , θ̂d] and the
Fisher information matrix with entries

Im,k = E
[
∂

∂θm
log f (x; θ) ∂

∂θk
log f (x; θ)

]
= E

[
− ∂2

∂θm ∂θk
log f (x; θ)

]
. (3.12)

Cov(θ̂) ≥ ∂ψ(θ)
∂θ

I(θ)−1
(
∂ψ(θ)
∂θ

)T
. (3.13)

Thereψ(θ) = [ψ1(θ1, . . . , θd), . . . , ψd(θ1, . . . , θd)]T = E[θ̂] is the possibly biased expectation
vector of the estimator and ∂ψ(θ)

∂θ
denotes the Jacobian matrix with elements given by

∂ψi(θ)
∂θj

. In the case of unbiased estimators, where ∂ψ(θ)
∂θ

= ∂θ
∂θ

= 1, the Cramér-Rao bound
reduces to the matrix inverse [41]

Cov(θ̂) ≥ I(θ)−1. (3.14)

The variance bound of the estimator θ̂m is then given by

Var(θ̂m) =
[
Cov(θ̂)

]
mm

≥
[
I (θ)−1

]
mm

(
≥ ([I (θ)]mm)−1

)
. (3.15)

If it is inconvenient to compute the inverse of the Fisher information matrix, one can take
the reciprocal of the corresponding diagonal element (see last inequality in Equation 3.15)
to find a possibly more loose lower bound for the variance of the estimator θ̂m. This more
loose bound is not reached by the estimators but at least dimensions and general behavior
are right (up to a constant factor) [41].

3.3.3. Properties of Estimators

The theory of statistics provides four key properties of an estimator as stated below:

• Consistency: An estimator is said to be (weakly) consistent if it converges in
probability to the true value of the parameter, for n! ∞. For this we write θ̂n ! θ,
where n denotes the number of observations of a given sample x = (x1, . . . , xn). If
a sequence of estimators is unbiased and converges, then it must converge to the
correct value θ and is also consistent [42].

• Asymptotic Normality: An asymptotically normal estimator is a consistent
estimator whose distribution around the true parameter θ approaches a normal
distribution with a standard deviation σ shrinking in proportion to 1/

√
n as the

sample size n grows (also see subsection 3.1). Note that (σ/
√
n)2 = V/n is simply

an approximation of the true variance of the estimator, since in the limit n! ∞,
the asymptotic variance reaches zero and θ̂n converges to a Dirac delta function
around θ.
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• Efficiency: An efficient estimator is an estimator that estimates the quantity of
interest in some “best possible” manner. The notion of “best possible” is of course
not unambiguous, therefore one needs to define the desirable properties of estimators:
One might want to get an unbiased (B(θ̂) = 0) estimator and also have minimal
mean squared error. This conditions cannot in general be satisfied simultaneously:
A biased estimator may have a MSE smaller than any unbiased estimator (see
subsubsection 3.3.2). For unbiased estimators variance and MSE are of course the
same. Among unbiased estimators the one with the lowest variance is called the
minimum variance unbiased estimator (MVUE).

• Robustness: An estimator is considered robust, if the result is the same or at
least not substantially changed when there are outlines or (small) deviations from
the assumptions (e.g. underlying probability densities) provided to construct the
estimator. Therefore, one defines the so called breakdown point, when the results
of the estimator become unreliable. Typically this is given as a fraction of “bad”
observations or a signal to noise ratio, where the incorrect observations begin to
dominate.

3.4. Maximum Likelihood Method
In statistical theory the maximum likelihood method is one of the standard techniques for
parameter estimation. The method is based on the idea that the observations are fixed,
while θ as the model dependent parameter can vary freely. Without loss of generality θ
could also be a vector of parameters θ in the following considerations. The parameter’s
real value θ0 is a priori unknown.

The joint probability density function for a given collection of n independent and
identically distributed observations forming a vector x = [x1, . . . , xn]T is given by:

f(x|θ) = f(x1, x2, . . . , xn|θ) = f(x1|θ) × f(x2|θ) × · · · × f(xn|θ), (3.16)

When f(x|θ) is viewed as a function of x with the parameter θ fixed, it is considered a
PDF and when viewed as a function of θ with the data x fixed, it is considered a likelihood
function:

L(θ;x) = L(θ;x1, x2, . . . , xn) ≡ f(x1, x2, . . . , xn|θ) =
n∏
i=1

f(xi|θ). (3.17)

Note, that L(θ;x1, x2, . . . , xn) is not a posterior probability distribution. As described
in subsection 3.2 one would need prior knowledge about the distribution of the parameter
θ, to “invert” the PDF.

In order to simplify subsequent calculations, the product of probabilities is transformed
into a sum by taking the natural logarithm to get the so-called objective function

ℓ = log L(θ;x1, x2, . . . , xn) =
n∑
i=1

log(f(xi|θ)). (3.18)

The maximum likelihood estimator (MLE) corresponds to the value, which maximizes the
likelihood

θ̂MLE = arg
{

max
θ

(log L)
}

(3.19)
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A maximum likelihood estimator is therefore an extremum estimator. Under conditions
discussed e.g. in [43] maximum likelihood estimation provides appealing asymptotic
properties. With increases sample size n! ∞ (typically n needs to be only of moderate
size to get adequate results) maximum likelihood estimators have these properties:

• Consistency: MLEs converge in probability to the value being estimated.

• Efficiency: MLEs achieve the Cramér–Rao lower bound of variance, for a sample size
n! ∞. The variance in this case is given by the reciprocal of the Fisher information
as described in subsubsection 3.3.2. This means that no consistent estimator has
lower asymptotic mean squared error than the MLE (or other estimators attaining
this bound), which also means that MLEs reach asymptotic normality [44].

• Invariance: If θ̂ denotes the maximum likelihood estimator for θ, and f(θ) is some
transformation of θ, then the maximum likelihood estimator for α = f(θ) is simply
given by α̂ = f(θ̂). This property is incompatible with unbiasedness, and indeed
MLEs are in general still biased of order 1

n
[45]. Note that 1/n is much smaller

than the statistical uncertainty, which falls with 1/
√
n. In principle it is possible to

correct for the bias to get second-order efficient estimators, but this is beyond this
thesis.
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4. Feldman-Cousins Algorithm
4.1. Poisson Distribution with Background
The Feldman-Cousins algorithm [46] is used to construct so-called confidence interval for
(physical) parameters from corresponding probability distributions. The starting point
for the construction of purely frequentist Feldman-Cousins confidence intervals is the
so-called Neyman construction combined with likelihood ratios.

This is at best discussed for a concrete and comparably simple example. Consider a
counting experiment based on a Poisson distribution of observed events, where one knows
a background b and is interested in the signal events s0. The corresponding probability
distribution is given by:

P (k; s0 + b) = (s0 + b)k
k! e−(s0+b) (4.1)

The Neyman construction works as follows: Given a true value of the parameter θ (here
the true signal s0) one considers a probability (density) function f(x; θ) for the outcome of
the experiment. Often x – here the measurement of k events given in reality as a sum of
signal and background events – is an estimator for the parameter θ. One wants to defines
an interval in the measured outcomes of the experiment, in which a specified fraction of
outcomes (say e.g. confidence level cl = 90 %) are occurring. This means that with a
summed up probability of cl = 90 % the measurement results x (or k in our example) are
found in the interval for given θ. The construction happens in direction of x, which is
also typically chosen as the x-axis in corresponding plots.

Note that there is no unique way to choose the x values, which should be included first
in the interval. An arbitrary choice can lead to problems like the so-called “flip-flop” in
confidence bands when approaching parameter limits, where one chooses different rules
based on the actual measurement result. The corresponding jumps in the confidence
intervals as well as resulting over- and undercoverage should be considered bad practice
[46]. Therefore the main idea of Feldman and Cousins was to take the likelihood ratio,

R(k; s0 + b) = P (k; s0 + b)
P (k|µbest)

(4.2)

as an ordering principle. µbest maximizes P (k|µbest) for a fixed k, or x in the general case,
but taking into account physical limits of the parameters θ. Note that the true signal
s0 cannot be negative in this construction. The highest likelihood ratio for a given s0
is achieved at the considered true signal plus background (rounded to the next integer
value) at k ≈ µ ≡ s0 + b. For discrete distributions R will not always reach the value
R = 1 at the maximum as for continuous distributions.

The procedure is indicated for some arbitrary true signal s0 = 2.4 in Figure 4.1. Starting
from the highest ratio according to Equation 4.2 one ranks all the possible outcomes
(following the height of the black step plot, which is scaled to the probability plot) and
adds up the corresponding probabilities (blue dots) effectively following the red dashed
line. Note that “jumps” in the construction from the lower end of the distribution to the
upper end and vice versa are irregular. To represent this, a maximum rank RX (printed
in red) is defined, which indicates the corresponding rank of the last following k, which is
still on the “other side” of the probability distribution. Summation up to this rank RX is
linked to the red dots in the lower plot of Figure 4.1. One has to note that by construction

25



Figure 4.1: Construction procedure. The black step plot indicates the likelihood ratio (normed
to match the height of the probability distribution). The summation according to
the dotted red line produces the confidence indicators in the lower plot. Note that
the actual confidence limits are calculated by comparing the red dots (including
jumps) with the confidence limit and the simple summation of probability gives only
the blue dots. Note that X = RX − R0 from the upper plot. Typically X has the
value 0, 1 or 2.
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of the algorithm, it only stops when the desired confidence level is surpassed (one blue
point has to be above the desired confidence). The limits for any desired confidence level
at this s0 are read of simply from the dashed black line in and Figure 4.1.

One does this for all possible true values of s0, and builds a confidence belt of these
intervals. If one does not specify the desired probability i.e. confidence level, and draws
the number of observed events k on the x-axis and the true signal parameter s0 on the
y-axis, it is possible to get a representation of all possible confidence intervals in a 2D plot.
Such a plot of calculated confidence limits is given in the upper figure of Figure 4.2. Note
that the confidence limits are calculated along the x-axis, in the typical one dimensional
case. The obtained confidence intervals for some measurement are read of on the y-axis at
the position of the measurement result k. The confidence limits are not always a set of two
values, but instead the interval can be shortly interrupted as seen in the corresponding
middle and lower plot of Figure 4.2.

Even though the original paper from the late 1990s already mentions such behavior
as a so called mild pathology3 common implementations as in CERN ROOT4 seem to
simply ignore this admittedly rare cases, leading to errors as displayed in Figure 4.2.

Obviously the possible confidence limit values range from 0 to 1, and all values are
reached on the x-axis (at least in the continuous case), but not for a fixed k along the
y-axis. Therefore the sometimes read statement, that the Feldman-Cousins approach
never gives an empty confidence interval is not fully correct. In fact there is always a
confidence level, for which one can give a confidece interval and typically for the common
choice cl = 90 % or even cl = 68 % (compare Gaussian 1σ) the interval is not empty. But
for an arbitrary given confidence level (one could in theory e.g. choose 50 % or even 10 %),
the confidence interval can be empty at some given measurement, which happens to be
(even only slightly) below the expected background by fluctuation. One can guess that
this can only happen for a measurement, which gives a result smaller than the boundary
intersection of the maximum likelihood ratio line. In the Poisson with background example
this is the linear red line in Figure 4.2, which hits the x-axis at k = b. Note that all
interval constructions occur along the x-axis and around this line, therefore small intervals
cannot be extended over all arbitrarily k < b results. A very similar effect will also be
seen again in subsection 5.8 for the amplitude estimation of a sine function. In general
this “empty confidence interval case” is however more of an academic remark, which does
not lead to major problems in practice.

In general the resulting structure of confidence intervals can be complex. Even in
the simple scenario as for a Poisson distribution with background, one has to perform
numerical calculations to predict the correct limits. Note that by construction always
some over coverage in the confidence intervals is reached, as can be seen in Figure 4.3.
Also the irregular “jumps” happen, because the measurement k is a discrete parameter.

3Citation from [46]: “We find that a mild pathology arises as a result of the fact that the observable
n is discrete. When the vertical dashed line is drawn at some n [...], it can happen that the set of
intersected horizontal line segments is not simply connected. When this occurs we naturally take the
confidence interval to have µ1 corresponding to the bottom-most segment intersected, and to have µ2
corresponding to the top-most segment intersected.” Note that in their paper the measurement k ≡ n,
while µ1 and µ2 denote the lower and upper limits.

4Call TFeldmanCousins(0.91).CalculateUpperLimit(17,5) to confirm this bug from the command line
in root. The obviously wrong output is (double) 5.4850000, since it is only slightly larger than the
calculated lower limit (double) 5.4150000. However there is at least a warning in the documentation
that TFeldmanCousins is a legacy interface and that there will be no bug fixes or new developments.
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Figure 4.2: Feldman Cousins confidence limits (upper plot) for b = 5 and cl = 0.910. The
jump in the red confidence limits at k = 17 (see missing dot) is due to a bug in the
CERN ROOT calculation. A correct calculation by hand gives the orange limits.
In a detailed view (middle plot) also the reason for this problem can be observed.
Regions with confidence values below the desired limit are white, to pronounce the
construction effect, which produces an interrupted interval. The lower plot shows the
small signal region with cl = 0.900 (not cl = 0.910). Note that such effects typically
only produce small deviations in the confidence limits and striking errors as in the
first plot are very rare.
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Figure 4.3: Overcoverage in the Feldman Cousins approach for discrete probability distributions
(example for b = 5). Depending on the true signal the algorithms reaches actual
confidence coverage of up to 0.95, for desired confidence limits of 0.90.

The good news is that many such problems only occur, because the underlying Poisson
probability density is not continuous. For a continuous distribution the coverage can
always exactly reach the desired confidence limit, therefore avoiding any “jumps”. However,
still interesting effects, such as empty confidence intervals or discontinuous derivatives of
the confidence limits can occur at points, where the construction reaches the boundary of
the allowed parameter region. This cases will be discussed later in more detail for the
concrete example of confidence limits for the amplitude estimator of a sine wave fit (see
subsection 5.8), which follows a so-called Rice distribution.

4.2. The Downward Fluctuation Discussion
An effect which should always be considered when applying the Feldman Cousins approach
to a statistical problem is the following: The downward fluctuation. This “paradox” can
in principle also occur for continuous distributions and is not limited to the Poisson
distribution with background discussed below.

Assume one has a known background of e.g. b = 3.5. Now assume one observes for
signal plus background k = 0 events; so clearly less events than expected by background
alone. Therefore the experiment must have observed a downward fluctuation of the
background. Note that the 90 % upper limit for the signal s0 in this case is given by 0.75.
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A “carefully designed experiment” with no background b = 0, also measuring k = 0 events,
would have to give an upper limit of 2.44, which is counter-intuitive, since this seems to
be the “worse” result (factor 3 in the limit). So does a downward fluctuation truly result
in “better” upper limits?

One should note that there is a tendency to interpret frequentist confidence intervals
as Bayesian objects. That is of course not true. One has to think in terms of repeated
experiments. The Neyman construction, where Feldman and Cousins added their ordering
principle to, simply calculates for all possible true parameters the regions of experimental
results which cover a desired (e.g. 90 %) fraction of the possible outcomes. Those
confidence intervals then cover scenarios, where the measurement would indeed be in the
desired fraction of possible outcomes. And since more drastic downward fluctuations are
more unlikely, fewer true signal values cover the observed result in 90 % of the experiments,
typically only those with really small signal values. This leads to tighter confidence limits,
but of course does not mean, that the interval obtained from some single experiment
contains the true value with the probability given in the definition of the confidence limit.
Therefore the discussed limits are not “wrong”, if interpreted correctly. However one
typically likes to compare experiments, and the “better” or more sensitive experiment
(less background) naturally is expected to give tighter confidence limits.

The original Feldman and Cousins paper addresses this problem as follows: “Our
suggestion for [cases] in which the measurement is less than the estimated background, [is
to] report both the upper limit and the sensitivity of the experiment, where the sensitivity
is defined as the average upper limit that would be obtained by an ensemble of experiments
with the expected background and no true signal [46].” A simpler option is to only state
the confidence interval at the expected number of events, so for s = 0 and therefore at
k ≈ s + b = b, but since the measurement of k is discrete while the background is not
necessarily, both methods are only similar for integer b. By introducing the sensitivity,
less background indeed allows to quote tighter (average) limits.

To address the problem of confidence limits in the regime, where the measurements
result is smaller or roughly equal to the expected background also some suggestions for
corrections exist. A prominent one is the modified approach by Roe and Woodroofe,
which introduces conditioning [47]. To quote Roe and Woodroofe one reason for their
modifications were that “it seems unwise to regard lower than expected [background] as
evidence5 against a value of [signal]”. Such modifications typically bring the confidence
limits closer to corresponding Bayesian limits. Such modification will not be discussed
here, as they typically again introduce conditions in the construction of the limits or
mix Bayesian and Frequentist procedures, which can of course be justified given concrete
examples, but does not make the interpretation of results easier.

One could of course also criticize the term confidence limits as misleading, because it is
not true, that those limits represent confidence in the true value which is searched for in
the measurement. Note that this point is also not unique to the Feldman Cousins approach.
Take for example the so called CLs method, originally developed for the LEP Higgs searches
and repeatedly use in further Higgs searches (until discovery). In 2011 [48] summarized
it as follows: “The method’s name is very descriptive, but also misleading, as the CLs
exclusion region is not a confidence interval. The method is neither purely frequentist

5Indeed, the smaller FC confidence limits in such k < b cases should not be interpreted as direct evidence
against a signal value. But the FC construction does not imply this.

30



nor Bayesian, instead its motivation is practical [...]. Despite its shaky foundations in
statistical theory, it has been producing sensible results for over a decade.”

In summary Feldman Cousins deals with physical boundaries on parameters and avoids
the so called flip-flop problem. This mean that the procedure to quote limits for parameters
is automated, and not chosen arbitrarily by the user depending on observed measurement
results. Some “unintuitive” confidence limits are the price of the Feldman Cousins approach,
but most confusion arises from the fact, that one tries to force Bayesian interpretation on
a state-of-the art purely frequentist approach. If one wants to quote Bayesian limits (also
called credible intervals), one has to first introduce priors, which could also be criticized,
since the justification for the shape of the priors is often not objective. Of course it may
be also interesting to compare both the Bayesian and Frequentist approach, which will be
done for the sine fitting problem later in this work.
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5. Parameter Estimation in EDM experiments at COSY
5.1. In-Plane Spin Precession and Horizontal Polarization
The main problem of unfolding the idle spin precession in the horizontal plane is the
fact, that the spin precession frequency fs = |νs| · fCOSY ≈ 0.16 · 750 kHz = 120 kHz
is much faster than the event recording rate. In the experiments only every ≈ 25th
turn of the bunch one event is detected in each of the four detector quadrants. Thus
it is not possible to calculate the up-down asymmetries, which are proportional to the
horizontal polarization, from the precession in real-time. In the following, procedures
to accumulate sufficient statistics during a macroscopic time (and therefore also turn)
interval ∆Tmac = ∆n are described.

The first analysis method is the so called mapping method. Since it is well described in
Dennis Eversmanns PhD thesis High Precision Spin Tune Determination at the Cooler
Synchrotron in Jülich (see pages 41-46 of [36]), the method itself will not be described
here, but a description following his work and adjusting the definitions to match this work
is given in the appendix Appendix D. An overview of this technique can also be found in
the publication [49]. The occurring distributions are closely related to the concept of the
statistical analysis described below.

The second analysis method is based on the discrete turn Fourier transform, which
provides Fourier coefficients as estimators and will be discussed in detail in section 6. In
both cases the estimator of the asymmetry amplitude parameter is biased. The statistical
properties of the different possible estimators will be discussed in this chapter. Also the
Cramér-Rao bound is determined in order to specify a lower bound of the statistical error
of the estimated parameter, when using multiple possible approaches.

5.2. Up-Down Asymmetry and the Problem of Sine-Fitting
A turn number n is assigned to each recorded event. Then the so-called spin phase advance

ϕs(n) = 2πν0
sn (5.1)

of each event can be calculated from the product of the number of spin precessions in the
horizontal plane and an assumed (fixed) spin tune ν0

s .
With all the detector events from a turn interval with length ∆n mapped into one 2π

spin phase advance interval by a sophisticated mapping method (see Appendix D for
details) the asymmetry can be calculated from the difference of count rates in the upper
and lower detector segments of the polarimeter normalized by the total number of counts.
Its functional form is finally given by

ϵfit(ϕs) = ϵUD cos(ϕs − ϕ) + ϵoff . (5.2)

Note that by construction of the full mapping method the maximal possible amplitude
ϵUD is limited to one, since the count rates in the detectors cannot be negative and ideally
ϵoff = 0. The amplitude is then proportional to the horizontal vector polarization, but
this work will instead use ϵUD (denoted also simply as “amplitudes”), instead of the
actual absolute polarization, since mainly the relative change compared to the initial
polarization/asymmetry amplitude and the stability over different runs and cycles is of
interest.
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Figure 5.1: Asymmetry mapped from ∆n = 106 turns and fitted with Equation 5.2 and Equa-
tion 5.3 to extract estimators for the amplitude ϵUD and phase ϕ.

In Figure 5.1 the asymmetry ϵ(ϕs) is shown as an example for some measurement
interval of ∆n = 106 turns, which corresponds to a length of 1.3 s for the characteristic
COSY deuteron revolution frequency of ≈ 750 kHz. Relevant is the size of the errorbars,
which correspond to the events per bin. More events from longer macroscopic intervals
∆n ≡ ∆T allow for a more precise fit, but the resolution will then be reduced in direction
of time.

The oscillation is mapped from count rates to happen around zero. Therefore the data
is sufficiently described using only a phase and an amplitude (two parameters), but one
can also add an offset as a third parameter (compare the black lines with offset and red
lines without in Figure 5.1). The fitted offset is typically compatible with zero and can be
ignored.

To better compare different parameter estimation methods (see e.g. also the Fourier
transform in section 6) the fitting function can be rewritten using the two orthogonal
functions sine and cosine as

ϵfit(ϕs) = A sin(ϕs) +B cos(ϕs) . (5.3)

Using the fit results Â and B̂ as estimators6, the amplitude and phase

ϵ̂UD =
√
Â2 + B̂2 (5.4)

ϕ̂ = atan2(Â, B̂) (5.5)
can be reconstructed, where atan2 denotes the arctangent, which provides correct signs for
0◦ ≤ ϕ̂ < 360◦ typically described in the interval [−π,+π) (for details see [50] and [51]).

6From now on all estimators (this means the fitting results) will be denoted with a hat to differentiate
between them from the underlying true parameter values.
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The statistical errors without correlations between Â and B̂ calculated by Gaussian error
propagation, which is good approximation to get a feeling for the behavior, are given by

σ̂2
ϵ = Â2σ2

A + B̂2σ2
B

Â2 + B̂2
for σA = σB = σ ⇒ σ̂2

ϵ = σ2 (5.6)

σ̂2
ϕ = B̂2σ2

A + Â2σ2
B

(Â2 + B̂2)2
for σA = σB = σ ⇒ σ̂2

ϕ = σ2

ϵ̂2 (5.7)

Note that it is not entirely correct to assume zero correlation, as will be described in
subsection 5.4 in a detailed analysis discussing the statistical error, but this term will
typically be small. It can and will be shown explicitly for a maximum likelihood fit,
that the estimators in sine fitting approach the Fisher information limit corresponding to
σlimit
ϵ =

√
2/N with the total number of events N in the considered turn interval ∆n. For

a sufficient number of bins this result is also reached by the simpler binned least squares
χ2-fit, as performed in Figure 5.1.

The following assumptions must hold in order to determine and to unfold the asymmetry
properly during a macroscopic time interval ∆T = 1/fCOSY · ∆n: The (average) spin tune
of the beam has to be stable during the interval, otherwise the sinusoidal functional form of
the event distribution would get smeared and thus the amplitude would be underestimated.
Furthermore, the in-plane vector polarization should not drop much during a macroscopic
turn interval ∆n. This would cause a false amplitude estimation because the depolarization
effect is in general not linear. Generally speaking the macroscopic time interval ∆T has to
be small compared to the spin coherence time (see subsection 7.2). A larger SCT therefore
also allows for a larger turn interval, which directly results into more precision of the fit
and correspondingly the amplitude estimation.

5.3. Amplitude Determination and Bias
From both methods one gets two parameter estimators depending on the chosen reference
spin tune: Â(ν0

s ) and B̂(ν0
s ). In the case of the mapping method, the estimators correspond

to the parameters of the asymmetry fit (sine and cosine term). For the discrete turn
Fourier transform Â(ν0

s ) and B̂(ν0
s ) are simply given by the Fourier coefficients, which are

orthogonal, as well.
The problem of fitting bias can be explained as follows. Suppose there is no asymmetry

amplitude (no signal) in the data at all. However the two fit estimators Â and B̂, which
describe the sine and cosine component in the data, will be normally distributed random
variables and have some (Gaussian) uncertainty. Then the estimated amplitude as in
Equation 5.4 is biased in the positive direction, since it is defined as the square root of
the sum of the squares of both the estimators. The only way to obtain a zero amplitude,
would be to have exactly zero for both Â and B̂. This means that even if the estimators Â
and B̂ are consistent, asymptotic normal, efficient and unbiased (which is the ideal case),
the amplitude is systematically overestimated, which becomes more and more significant
for small amplitudes and low statistics.

This bias problem of course also occurs when fitting the amplitude P directly, since
then the phase ϕ is unknown, and the data still fluctuates randomly. The fitting procedure
again finds an amplitude representing this fluctuations.
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Figure 5.2: Distribution of the amplitude estimator (200000 repetitions), based on random data
following a sine with small amplitude and large uncertainties analyzed by a maximum
likelihood fit. The binned data with scaled Poisson errorbars in the left plot is for
illustration. N = 200 points were used in the MLE estimation, which corresponds to
σP ≈

√
2/N = 0.1. The results for the fitted amplitudes (right plot) follow a Rice

distribution. The mean of the rice distribution is more than 1σ away from the true
P , it is therefore substantially biased.

For simplicity consider the following toy model for the amplitude:

f(x;A,B) = 1
2π (1 + A sin(x) +B cos(x)) , (5.8)

This function is linear in all fitting parameters and represents a probability density for
observed events, which are then typically binned in x ∈ [0, 2π). The corresponding
amplitude is again given by P =

√
A2 +B2, so that P is always positive. The most

simple case is to assume no true signal in the data; e.g. also relevant for axion searches,
which are possible using COSY data as done in 2023 [52]. Even if the true amplitude
P = 0 (expected from A = 0 and B = 0), one finds amplitudes P̂ different from zero
from the estimators – no matter if maximum likelihood, Fourier transform or χ2-fits are
used. This is again due to the mentioned bias in fitting. For small true amplitudes P > 0
and relatively large uncertainties (fluctuations in binned data), the bias effect is also
relevant, as can be seen in Figure 5.2. Actually the estimated amplitude P̂ , given some
true amplitude P follows a so called rice distribution, which is clearly not Gaussian. The
rice distribution will be discussed in subsection 5.6. The model from Equation 5.8 is also
relevant for general signal processing [40, 53].

5.4. Statistical Uncertainty of A and B
Using the theory of maximum likelihood estimation, one can calculate the asymptotic
variance for the estimators Â and B̂ given N measurements following the PDF in Equa-
tion 5.8. The full calculation with intermediate steps can be found in subsection B.1 in
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the appendix. Starting from the probability density function, the log-likelihood function
reads

ℓ = ln
(
N∏
i=1

f(xi;A,B)
)

=
N∑
i=1

ln
( 1

2π

)
+ ln(1 + A sin(xi) +B cos(xi)). (5.9)

By calculating the second derivatives ∂2ℓ
∂A2 , ∂2ℓ

∂B2 and ∂2ℓ
∂A∂B

and their expectation values,
one finds the inverse of the covariance matrix for (θ1, θ2) ≡ (A,B) using the abbreviation
C =

√
1 − A2 −B2 =

√
1 − P 2 ≤ 1 for 0 ≤ P ≤ 1:

cov−1(A,B) = −
〈

∂2ℓ

∂θi∂θj

〉
=

 −(A2[C−1]+B2[C2−C])N
CP 4

(C−1)2ABN
CP 4

(C−1)2ABN
CP 4

−(B2[C−1]+A2[C2−C])N
CP 4

 . (5.10)

Note that the results are fully symmetrical A ⇔ B. From the inversion of the inverse
covariance matrix one finds the variances. Note the typical behavior of all entries ∝ N−1:

cov(A,B) = 1
det(cov−1(A,B)) · adj(cov−1(A,B)) =

 A2C+B2

N(1−C) −AB
N

−AB
N

A2+B2C
N(1−C)

 . (5.11)

σA =

√√√√A2C +B2

N(1 − C) σB =

√√√√A2 +B2C

N(1 − C) covA,B = −AB

N
(5.12)

The correlation coefficient for A and B is only zero for A = 0 or B = 0. The results for
σA and σB in the interesting case of small amplitudes P ≪ 1 are given by

σ2
A = A2√1 − P 2 +B2

N(1 −
√

1 − P 2)
=P 2≪1≈ 2

N

(
1 − 3P 2 − 2B2

4 − P 4

16

)
. (5.13)

σ2
B = A2 +B2√1 − P 2

N(1 −
√

1 − P 2)
P 2≪1≈ 2

N

(
1 − 3P 2 − 2A2

4 − P 4

16

)
(5.14)

Notice that the only remaining term for A = B = P = 0 is 2/N . For small amplitudes
0 < P ≪ 1 corrections do apply, always reducing σA and σB because the O(P 2) term is
negative.

The error on P =
√
A2 +B2 and on φ = arctan(A/B) can be calculated from simple

Gaussian error propagation. Note that a calculation of σP and σφ from the maximum
likelihood fit of the probability density f(x;P, φ) = 1

2π (1 + P cos(x− φ)) as done in [54]
(see also subsection B.2 in the appendix) gives exactly the same results for the uncertainties,
but e.g. does not explain correlations between the sine and cosine term as shown above.

To get the behavior for small amplitudes P 2 ≪ 1, one can perform a Taylor expansion
to O(P 4).

σ2
P = −1〈

∂2ℓ
∂P 2

〉 = 1
N

P 2√
1/(1 − P 2) − 1

P 2≪1≈ 2
N

(
1 − 3

4P
2 − 1

16P
4
)
, (5.15)

σ2
φ = −1〈

∂2ℓ
∂φ2

〉 = 1
N

√
1/(1 − P 2)√

1/(1 − P 2) − 1
P 2≪1≈ 2

NP 2

(
1 − 1

4P
2 − 1

16P
4
)
. (5.16)
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Figure 5.3: Upper two plots: Distributions of the estimators of the parameters Â and B̂ based
on random data analyzed by a maximum likelihood fit. N = 200 points were used
in the MLE estimation, which corresponds to σA ≈ σB ≈ σP ≈

√
2/N = 0.1. The

results for Â and B̂ follow (unbiased) Gaussian distributions, precisely represented
by the expected values in mean (here A = 0.04 and B = 0.03) and uncertainty given
from Equation 5.12. Lower plot: 2D representation of fit results for the parameters
Â and B̂.

The approximation σP ≈
√

2
N

≡ σ0 is the zero order result. The statistical error of the
phase scales reciprocally with the amplitude, therefore a larger amplitude makes the phase
estimation more precise. If there is no amplitude (P = 0), also φ is undefined and a
Gaussian error approximation for the phase is not valid.

However one should notice, that the results discussed above are strictly speaking only
valid for N ≫ 1, since the maximum likelihood estimator reaches the Cramér-Rao Bound
for N ! ∞. Note that for a sufficiently large number of bins the uncertainties derived
here for the unbinned likelihood method coincide with the uncertainties of a binned least
squares fit to the data.
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5.5. Three-parameter fit for amplitude estimation
Another possible fitting option using matrix calculation is taken from [40] and works as
follows. The binned data is given as vectors y = (y1, . . . , yn)T (with the number of bins
n ≫ 3) and x = (x1, . . . , xn)T , where x is the position of the bins and y the counted
events per bin. The fitting model in this case is given by

yn[A,B,C] = A cos(xn) +B sin(xn) + C. (5.17)

A, B, and C are unknown constants, which are sought for in the estimation procedure.
Note that one can easily introduce a known additional parameter in the procedure e.g.
the angular frequency (x ≡ ωtn = 2πftn), or the spin tune (x ≡ 2πνsn ), if this parameter
can assumed to be fixed. The use of A, B and C is favorable because all the sought
for parameters enter the model linearly. In the first step, the three-parameter fit is
employed yielding estimates Â, B̂, and Ĉ. In the second step, estimated Â and B̂ values
are plugged in to P̂ =

√
Â2 + B̂2 to obtain an estimate of the amplitude, as done also

in the corresponding MLE and Fourier approach. Because of the linearity this problem
can be treated with linear algebra. The parameters are gathered in the parameter vector
x̂ = (A,B,C)T and the binned data is written as y = (y1, . . . , yN)T . Then, y obeys the
over determined set of linear equations

y = Dx̂, (5.18)

where D is the n× 3 matrix

D =



cosx1 sin x1 1

cosx2 sin x2 1
... ... ...

cosxn sin xn 1


≡ (cos(x), sin(x),1). (5.19)

The least squares solution x̂ = (Â, B̂, Ĉ)T is given by

x̂ = (DTD)−1DTy. (5.20)

As can be seen in Figure 5.4, for small amplitudes and large statistical uncertainties all
biased amplitude estimators P̂ follow the expected Rice distribution very well.

If a binned fits is used, there can be noticeable deviations especially for few bins
nbins = 10, but those become only noticeable when the statistical uncertainties in the fit
are small. This effect can be seen in Figure 5.5. It is possible to reach a good agreement
with the expected Rice distribution (red line), by always using the Maximum Likelihood
Method or the Fourier Transformation, of when more bins (here nbins ≈ 100) are used for
the amplitude estimation.

An interesting effect occurs for P ≈ 1, which is described in Figure 5.6. However,
such large amplitudes are not obtained in the experiment. Typically the (asymmetry)
amplitude related to the horizontal precession is well below 0.3), therefore even zero order
approximation of σP ≈ σ0 is considered sufficient.
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Figure 5.4: Comparison of results for various fitting methods in case of a small true amplitude
P = 0.05 for N = 200 (left, σ0 = 0.1) and N = 5000 (right, σ0 = 0.02) events
mapped into [0, 2π). All methods roughly follow the expected Rice distribution
derived for the MLE approach, when 100000 repetitions of the fitting procedure
using random data are performed.
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Figure 5.5: Effect of using too few bins on fit results of P̂ for the binned χ2-fit and Linear Fit
using the three parameters [Â, B̂, Ĉ] vector. The results for the simple χ2-fits and
the three parameter estimators given in subsection 5.5 significantly differs from the
unbinned methods, but only for a small number of bins (n = 10 bins in the left and
n = 100 in the right plot). Also a very large number of events (here N = 80000) has
to be used, that ensures small uncertainties to resolve the differences.

5.6. Rice Distribution
It can be shown also analytically that the estimator for the amplitude in fact follows a
Rice distribution (see Appendix C taken from [54] and [55]). The probability density of
the rice distribution is given by:

f(P̂ |P, σ)dP̂ = 1
σ2 e−(P̂ 2+P 2)/(2σ2)P̂ I0

(
P̂P

σ2

)
dP̂ (5.21)

where P is the true amplitude and P̂ is the corresponding estimated amplitude. I0 is
the modified Bessel function of the first kind. σ is the uncertainty parameter calculated
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Figure 5.6: Upper plot: In the case of large amplitudes (here P = 0.95), the width of the obtained
distributions of P̂ estimators is noticeably smaller for the MLE (blue dots) when
compared to the Fourier transform (red dots), as well as the linear binned three
parameter approach (green dots). A very large number of events (here N = 80000)
is used for the fits. The dots are the number of fitting results with Poisson error per
estimated amplitude bin each. In total there were 100000 repetitions of the fit. Lower
plot: The MLE sigma parameter is indeed described according to subsection 5.4;
compare the solid orange line in both plots. For large P the variance of the estimator
goes down steeply, therefore σ0 =

√
2/N (solid red line) and typical Taylor expansions

are not a good representation of the MLE P̂ estimator distribution anymore.
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from error propagation, which takes into account the correlation between A and B, based
on the uncertainties of A and B, as introduced in Equation 5.15.

Also one should not misinterpret the σ parameter in Equation 5.21 as the square root
of the variance of the distribution. This relation would only be valid in the Gaussian limit,
which is given by σ

P
! 0, but not for P ≈ σ. Typically even the zero order approximation

σA ≈ σB ≈ σ ≈
√

2/N is sufficient to get a decent representation of the distribution
especially for small amplitudes. N is still the number of observed events used for the
amplitude parameter estimation. In the data analysis of COSY experiments larger N
can be obtained by simply choosing longer macroscopic turn intervals ∆T = ∆n for each
fitting procedure.

If one investigates the mean and variance of the Rice distribution the following results
can be derived

µrice = σ

√
π

2L1/2

(
−1

2

(
P

σ

)2)
, (5.22)

σ2
rice = 2σ2 + P 2 − πσ2

2 L2
1/2

(
−1

2

(
P

σ

)2)
. (5.23)

where Lq(·) denotes a Laguerre polynomial and L2
q(·) is its square. For the case q = 1/2

the Laguerre polynomial can be expressed using Bessel functions of first kind

L1/2(x) = ex/2
[
(1 − x) I0

(
−x

2

)
− xI1

(
−x

2

)]
. (5.24)

It is seen that as P becomes large compared to σ the mean approaches P and the
variance becomes σ2. One way to describe the transition to a Gaussian approximation is
described in subsection C.1 in the appendix.

For P = 0 the Rice distribution is equal to the probability density of the Rayleigh
distribution and therefore

f(P̂ ; 0, σ) = P̂ ;
σ2 e

−P 2/(2σ2), P ≥ 0 , (5.25)

where σ is again the scale parameter of the distribution, but not the standard deviation.
In this limiting case the expectation value is given by µrice,P=0 =

√
π
2σ and the standard

deviation is σrice,P=0 =
√

4−π
2 σ. The mode with the maximum of the PDF for P = 0 is

given by σ.
It is convenient to rewrite the Rice distribution from Equation 5.21 in terms of the

relative amplitude P̂ /σ, which is a term usually called signal strength:

f

(
P̂

σ

∣∣∣∣∣ Pσ
)

dP̂ = e
− 1

2

((
P̂
σ

)2
+(P

σ )2
)
P̂

σ
I0

(
P̂

σ

P

σ

)
d
(
P̂

σ

)
. (5.26)

The distribution now only depends on ratios of the amplitude and its uncertainty
parameter σ. Defining ϵ̂ = P̂ /σ and ϵ = P/σ one can simply write:

f ( ϵ̂| ϵ) dP̂ = e− 1
2(ϵ̂2+ϵ2) ϵ̂ I0 (ϵ̂ ϵ) dϵ̂ . (5.27)

The standard deviation σrice and the corresponding uncertainty parameter σ are shown
in the left plot of Figure 5.7. The right plot shows the bias between mean of the distribution
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Figure 5.7: Left: Uncertainty parameter σP and standard deviation σRice of the Rice distribution
for various used events N . The limit in case P = 0 comes from the Rayleigh
distribution. The Rice distribution is narrower for small amplitudes than the σ
parameter. For large P ≈ 1 the behavior of the standard deviation is dominated
fully by the behavior of the sigma parameter. Right: Corresponding relative bias in
the Rice distribution relevant for amplitude parameter estimation.

and true underlying amplitude P in units of the parameter σ0, as a function of the true
signal strength ϵ = P/σ0 . Only for small signal strengths the bias is similar in size to
the uncertainty of the parameter. For larger signal strengths the bias goes down ∝ ϵ−1.
Note that technically the bias does depend on the uncertainty parameter σ (the number
of data points used in the fit), but this effect only becomes relevant if ϵ approaches the
physical meaningful limit of the signal strength given by ϵlimit = 1/σ0, which corresponds
to P = 1 and does not happen in the COSY experiment. Therefore the relative bias can
be described with an universal function using N ! ∞. Effectively already N ≈ 2000 is
sufficient for this description (see right plot of Figure 5.7).

In Figure 5.9 some properties relevant for the analysis of the Rice distribution are
shown. The solid red line (maximum of f(ϵ̂|ϵ) in direction of the true signal strength ϵ,
which defines also ϵbest) is equal to the maximum of the likelihood ratio max[R(ϵ̂|ϵ)] = 1,
with R(ϵ̂|ϵ) = f(ϵ̂|ϵ)

f(ϵ̂|ϵbest) .
This implies, that the most likely true ϵ is zero for ϵ̂ ≤

√
2 ≈ 1.41. Note that the

“inverse” distribution f̃(ϵ|ϵ̂) constructed from a Bayesian approach using a constant prior
will have the same maxima in direction of the true signal strength ϵ.

From Figure 5.9 one can also read off, that the peak (mode) of the rice distribution
(dashed red line) is limited to ϵ̂ ≥ 1 and equality is reached for vanishing true signal
amplitude. The mean of the distribution (pointed line) is limited to the region ϵ̂ ≥

√
π/2,

where equality is again reached for ϵ = 0 representing the Rayleigh distribution.
Both mean and mode approach the true amplitude ϵ for γ ≫ 1 from below, which

means that the naive estimate ϵ̂ = ϵ, which assumes that the measured amplitude would
be the true amplitude, is always positively biased. However since ϵ > 1 implies also P > σ,
the bias is considerably smaller than the uncertainty σ of the measurements even for
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Figure 5.8: Rice probability distribution f(ϵ̂|ϵ) for some true signal strengths ϵ ∈ [0, 2, 4, 6, 8],
with the average estimated signal strength ϵ̂ marked as vertical dashed line. Also
note that the rice distributions are well described by a normal distribution if the
signal strength ϵ ≫ 1 (σ ≪ P ).

relatively small signal strengths i.e. for ϵ > 3. Note that at this point, also all relevant
properties of the Rice distribution already coincide, but a small bias is still observable as
difference to the black diagonal ϵ̂ = ϵ line.

A simple approximation of the true amplitude signal strength ϵ (given some estimated
amplitude signal strength ϵ̂) can be calculated from [56]

ϵ ≈ ϵ̂− 1 − e−ϵ̂2

2ϵ̂ . (5.28)

It is drawn as a blue line in the right plot of Figure 5.9. Note that in the region of
small signals with ϵ < 1.5 the formula starts to deviate from the description of the Rice
probability mode. Nevertheless, this simple analytic function has the advantage, that it
is continuous and the estimated true amplitude is positive for all estimated amplitudes
(zero only for ϵ̂ = 0). Equation 5.28 also transforms smoothly with the signal strength,
while the Feldman Cousins and Bayesian approach put the (most probable) amplitude to
zero for multiple estimated amplitudes. For large signal strengths ϵ ≫ 1 the bias in the fit
behaves as

⟨ϵ̂⟩ − ϵ ≈ 1 − e−ϵ̂2

2ϵ̂ ≈ 1
2ϵ̂ , (5.29)

〈
P̂
〉

− P ≈ σ2 · 1 − e− P̂ 2
σ2

2P̂
≈ σ2 · 1

2P̂
= σ · 1

2ϵ̂ . (5.30)
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Figure 5.9: Left plot: Two dimensional representation of all possible Rice distributions (for
various true signal strengths). Right plot: The corresponding “property lines” such
as mean, mode and maximum likelihood ratio line for the Rice distribution for various
signal strengths.

One should note that if ϵ̂ ≫ 1, the bias is therefore much smaller than the uncertainty of
the fit, which is of order σ.

5.7. Construction of Confidence Intervals
The Feldman-Cousins algorithm [46] is used to construct the confidence intervals for the
Rice distribution. At a given signal strength ϵ the algorithm selects all values of ϵ̂ for
which the ratio

R(ϵ̂, ϵ) = f(ϵ̂|ϵ)
f(ϵ̂|ϵbest)

(5.31)

has the largest values until the desired coverage (confidence level cl) of the confidence
interval is reached. In the likelihood ratio ϵbest denotes the value of ϵ for which the
probability density f(ϵ̂|ϵ) has its maximum in the allowed region of ϵ, i.e. f(ϵ̂|ϵbest) =
max{f(ϵ̂|ϵ)}. ϵbest as a function of ϵ̂ is shown in Figure 5.10 as the solid red line. It simply
is the maximum of all the possible probability densities in direction of the true signal
strength ϵ (where ϵ is limited to the physical region with amplitude P > 0). Note that
for the following plots ϵ̂ (corresponding to the estimator result) will be plotted in the
x-direction, while the true signal strength ϵ is shown in y-direction. Feldman Cousins
confidence intervals are constructed in horizontal direction, while they are read off in
vertical direction for a given ϵ̂. The construction itself is independent of the measured
amplitude value.

Figure 5.10 shows likelihood ratios and the corresponding confidence limits constructed
for the signal strength ϵ = P/σ. The 68 %, 90 % and 99 % confidence interval limits are
shown as dashed black lines. Given the measurement at some signal strength ϵ̂ one reads
off the confidence interval in vertical direction (intersection with dashed lines). To get a
confidence interval for the amplitude one simply rescales the obtained true signal strength
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Figure 5.10: Left: The likelihood ratio R(ϵ̂, ϵ) as a function of the signal strength ϵ̂ for various
true signal strengths ϵ. Right: Feldman-Cousins confidence intervals for the Rice
distribution in units of the signal strength.

with the uncertainty parameter σ. Note that the lower limit is always given by zero for
values P <

√
2σ.

If one only has a single measurement the confidence intervals (e.g. the upper 68 %
or 90 % limit lines) are decreasing for ϵ < 1. By a statistical fluctuation of course one
could always find an arbitrarily small estimated amplitude e.g. in the P = 0 case. This
would also lead to a smaller confidence interval (see Figure 5.10), compared with the
expected result, where some amplitude greater than zero is estimated due to the bias of
the fitting procedure. This effect is similar in nature to the case discussed in the original
work of Cousins and Feldman where one measures signal and background events, but
one already knows the expect number of background events (see also the discussion in
subsection 4.2). Translated to our case, if one finds a signal strength ϵ̂ far below the
expected value ϵ̂ ≈ 1, it can be noted that a downward fluctuation did happen. If one is
interested in the sensitivity in those cases, one should take the limits corresponding to
the expectation value for the amplitude.

5.8. Derivation of the Posterior Probability Density Function
The previous section described how a confidence interval can be defined for P given a
measured P̂ . Note that one typically also wants to quote a point estimate of the true
amplitude given some measurement. The natural way to do this with the Feldman Cousins
approach, is to quote the P corresponding to the maximum likelihood ratio R(P̂ , P ) = 1,
since all confidence intervals start around this “central” estimate.

If the amplitude P is the final result of the experiment, this is sufficient as long as the
asymmetrical confidence surrounding the result is considered for small signal strengths.
However, if P is used as an input in a subsequent analysis, it is desirable to also have a
probability density function for the true amplitude P given some estimator (measurement)
P̂ . Unfortunately, it is in general not directly possible to construct such a pdf without
further assumptions. The typical approach is to use Bayes’ theorem with a constant prior
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Figure 5.11: The probability distribution f(ϵ̂|ϵ) and the posterior Bayesian probability distribu-
tion f̃(ϵ|ϵ̂). Note that the distributions are only interchangeable if σ ≪ P (large
signal strength). In this case both approach the Gaussian limit.

probability for P , which gives the probability density function

f̃(P |P̂ ) = f(P̂ |P )∫∞
0 f(P̂ |P )dP

. (5.32)

Note that f̃(P |P̂ ) ∝ R(P̂ , P ) for a fixed P̂ . This means, that the maximum of the
probability density function for the true amplitude (using a constant prior) is always at
the same position as R = 1 from the Feldman Cousins approach.

In Figure 5.11 the Rice PDF f(ϵ̂|ϵ) and the posterior distribution are compared. Again
if the amplitude is large compared to the uncertainties, the distributions approach the
Gaussian limit, where f(P̂ |P ) ≡ f̃(P |P̂ ) (compare subsection C.2). If σ ≈ P (small signal
strength) the distributions are clearly not Gaussian, and their shape is indeed different.
For details on how the rice distribution converges to a normal distribution see [56].

One might ask, why the prior probability is not defined otherwise, e.g. as constant in
the range P ∈ [0, 1], since the maximum amplitude is also naturally limited by one – at
least for the typical application related to probability distributions as introduced above.
This is not done, since in the real experiment the maximum amplitude P = 1 is not
reached, and typically there are many σ distance to this limit, therefore the outcome is not
significantly changed. Note that various estimators e.g. mapped χ2-fits and the Fourier
transform can in theory (for general application) produce estimates P > 1, because they
do not know anything about the underlying probability distribution. Not using a limited
prior to P ≤ 1, but instead allowing for all positive amplitudes, also has the advantage
that one can again work with signal strength ϵ = P/σ and simply resale the results.
Otherwise the maximum allowed signal strength would depend on the uncertainty (since
then ϵmax. = 1/σ) and the distributions would not be universal.

To give Bayesian credible intervals (the Bayesian analogy to Feldman Cousins confidence
intervals) for the true amplitude or signal strength ϵ, one simply starts at the most probable
signal strength ϵ in the probability distribution f̃(ϵ|ϵ̂) and integrates the probability
distribution around it with descending probability density. Using this approach the central
value for both the Feldman Cousins confidence intervals and the Bayesian credible intervals
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is typically the same (as long as ϵ ≥
√

2). Where the results differ is in how far the
intervals extend regarding the true signal strength, given some estimated signal strength.

Figure 5.12 compares the resulting interval limits for all the possible confidence limits cl
and all estimates signal strengths ϵ̂. Three “typical” choices 68 %, 90 %, 99 % are marked
with dashed lines.

Figure 5.13 compares vertical cross section through this 2D representation at given
measured signal strengths ϵ̂. For a given confidence (FC approach) or credible level (Bayes
approach) on the x-axis one reads of the corresponding true signal strength on the y-axis.
For ϵ <

√
2 all lower limits are zero (not displayed in the plot). The two horizontal lines

correspond to the signal strength where R = 1 and the Bayesian posterior PDF has its
maximum (red) and to the naive estimator ϵ = ϵ̂ (blue), which would be used to construct
biased Gaussian confidence intervals.

At small signal strength ϵ <
√

2, the Feldman Cousins approach typically gives nar-
rower confidence limits than the corresponding Bayesian credible intervals. In this case
the parameter limits for the Bayesian approach can be calculated from the cumulative
distribution function (CDF) of the underlying probability density. Therefore there are
never empty credible intervals; for every ϵ̂ and every desired confidence level cl one can
give a corresponding interval. This is different for the Feldman Cousins approach, where
for small confidence values, the interval can be extremely small and even completely empty
for some non vanishing confidence levels cl > 0. However empty intervals occur only at
cl ≈ 50 % and for “typical” cl = 68.27 % ≡ 1σ the interval is also never empty, but simply
noticeably narrower.

Another interesting effect happens above ϵ >
√

2. For this consider the second plot
in Figure 5.13 with ϵ̂ = 1.5. At this point the confidence intervals do not start at zero
anymore, but are constructed around some assumed true signal strength (which has the
highest likelihood ratio R = 1). These “center” values in the interval are indicated by
the horizontal red lines. Now there are also lower parameter boundaries at least for small
chosen confidence intervals. Therefore both approaches now give non empty intervals no
matter what confidence limit is chosen. However the given limits are still very different.
The obtained limits for the true signal strengths are then non smooth functions of the
confidence limits for both approaches at exactly one point, where small changes in the
chosen limit cl can change the obtained interval drastically. Note that this also implies that
small changes in the measured signal strength ϵ̂ change the confidence limits non smoothly.
The lines were this non smoothness happens are also overlayed in Figure 5.12, but the
farther away from the estimated signal strength ϵ̂ =

√
2, the less steep an prominent are

those kinks in the limits.
For larger ϵ > 3.5 both the FC confidence and the Bayesian credible levels give more and

more similar results. A small bias compared to a naive Gaussian estimator still remains,
since the horizontal lines are never identical. In the Gaussian limit FC and Bayesian
approach would deliver exactly identical results for the true signal strength limits and
start the construction at ϵ̂ = ϵ. In the Gaussian limit also all confidence intervals are
“smooth”, since no parameter boundaries exist.
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Figure 5.12: Confidence Intervals for the Rice Distribution vs. Bayesian Credible Intervals. Non-
smooth points in the confidence intervals are a result of the construction starting at
the red central line (max R = 1) and then reaching the limits ϵ̂ = 0 in x-direction
for FC and ϵ = 0 in y-direction for the Bayesian posterior.
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Figure 5.13: Confidence Intervals for the Rice Distribution vs. Bayesian Credible Intervals at
given estimated signal strengths ϵ̂ = 0.5, 1.5, 2.5, 3.5. This are basically cuts along
the vertical direction of Figure 5.12. For small signal strength Bayesian and FC
limits are different, for larger signal strength ϵ̂ > 3 both approaches become similar.
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6. Turn Fourier Transform
Another analysis approach of data is the discrete time Fourier transform or more precise
the discrete turn Fourier Transform. In this case the measurement observable is based on
the discrete integer turn number n and not on the time stamp (time in cycle).

In a simple model the spin motion function corresponds to a 1-dimensional time periodic
function at the polarimeter describing the probability of an event in the detector, where n
is a sequence of discrete turn numbers

f(t) = 1
∆n · (1 + P cos(ωst− ϕs)) ≡ f(n) = 1

∆n · (1 + P cos(2πνsn− ϕs)) (6.1)

= 1
∆n · (1 + A sin(2πνsn) +B cos(2πνsn)) , (6.2)

with the angular spin precession frequency ωs, the spin tune νs, the phase ϕs and an
amplitude P . A Fourier transformation can put such a signal from the turn domain into
the spin tune domain.

6.1. Discrete Fourier Transform
All detected events are assigned to a turn number n ∈ N, leading simply to a list of integer
numbers. Here the discrete Fourier Transform (DFT) can be used to further process
the data. The DFT is a fundamental tool in digital signal processing, and transforms a
sequence of numbers given in the time domain into another sequence of (complex) numbers
in the frequency domain. Given a sequence of N numbers x[n], where n = 0, 1, 2, . . . , N−1,
the DFT of the sequence is typically defined as:

X[k] =
N−1∑
n=0

x[n] · e−i2πn k
N , k = 0, 1, 2, . . . , N − 1 (6.3)

Here, X[k] represents the k-th (frequency) component of the transformed signal, i is
the imaginary unit, and e−i2πn k

N is the complex exponential kernel that can be seen as
the basis function for the transformation.

Since one typically chooses N ≈ O(106), it would take unnecessary computational
power to calculate all sums for νk = k

N
, especially since a good approximation of νk is

typically already known e.g. from the Thomas-BMT equation. In practice the discrete
Fourier transform for the spin tune is not evaluated for discrete values of νk = k

N
, but

the sampling interval of the spin tune domain is given by νk = ν0 + ∆νk, with k ∈ Z an
|k| ≤ Nk, where Nk ≪ N . ν0 is a well educated guess, where the true spin tune might
be. Therefore νk ∈ [ν0 − ∆νNk, ν0 + ∆νNk]. Note that the assumed spin tunes are still
equidistant (distance ∆ν).

Not going into detail about the mathematical technicalities, the discrete sequence of
the turn signals is transformed into the spin tune domain, using the formula

ĝ[νk] ≡ gνk
=

N−1∑
n=0

g[n]e−i2πn·νk (6.4)

=
N−1∑
n=0

g[n][cos(2πnνk) − i sin(2πnνk)] , (6.5)
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where Euler’s formula is used to expand the complex exponential. The Precursor exper-
iments provide signals g[n], which are based on random processes. The probability of
detecting an event per one turn of the bunch is small ≪ 1. Therefore most of the turn
entries are zero

g[n] =
1 for n = n(nevent)

0 else
(6.6)

Consequently, the summation is given by the sequence of turn numbers n(nevent), where
indeed events were detected nevent ∈ [1, Nevent]. Note that this g[n] with turns chosen at
random, is in fact a representation of Equation 6.1. The Fourier coefficients are given by
the real and the imaginary part of gνk

.

Âνk
= 2
Nevent

Im(gνk
) = 2

Nevent

Nevent∑
nevent=1

− sin(2πνkn(nevent)) . (6.7)

B̂νk
= 2
Nevent

Re(gνk
) = 2

Nevent

Nevent∑
nevent=1

cos(2πνkn(nevent)) . (6.8)

The factor 2
Nevent

takes into account the normalization based on Parseval’s theorem [57]
for real input data. A motivation why this factor is needed can also be found in the
appendix in subsection A.2 with an application of DFT to a signal coming from pure sine
and cosine data, where the factor naturally arises. The uncertainties of both Âνk

and
B̂νk

are not derived here, but a calculation can be found in the appendix of [58] based
on the principles described in [59]. As simulation shows below, the relevant results for
the amplitude follow a rice distribution anyhow and the uncertainty parameter is the
expected one from subsection 5.4.

Since Âνk
is calculated directly form the sine term and B̂νk

from the cosine term, the
amplitude and phase simply are given by

P̂νk
=
√

Im(ĝνk
)2 + Re(ĝνk

)2 =
√
Â2
νk

+ B̂2
νk

σPνk
= σDFT ≈

√
2

Nevent
(6.9)

ϕ̂νk
= atan2 (Im(ĝνk

),Re(ĝνk
)) = atan2(Âνk

, B̂νk
) σϕνk

= σDFT

Pνk

≈

√
2

Nevent

Pνk

. (6.10)

Both uncertainty parameters are similar to the theoretical derivation based on the Cramér-
Rao bound of a sinusoidal oscillation. However the uncertainties of such a DFT are of
course highly correlated between neighboring νk, as all the data goes into the calculation
of each parameter, therefore a useful interpretation of uncertainty is not trivial, as it tells
nothing about the fluctuation in direction of νk. A more detailed description therefore
requires numerical simulations.

6.2. Analytic Fourier Amplitude Model
Apart from the numerical results, which are usually sufficient for the analysis, one might
want to understand the shape and structure also analytically. The following section will
argue, how the resulting amplitudes in a Fourier transform are formed, when scanning
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through various possible spin tunes. For this one rewrites the Fourier transform ĝ(ν), with
the “selection function” g[n] being represented by the probability density function f(n)

ĝ(ν) =
N−1∑
n=0

g[n]e−in·2πν ≈
N−1∑
n=0

f(n)e−in·2πν (6.11)

≈
∞∑

n=−∞
f(n)rectN(n)e−in·2πν =

∞∑
n=−∞

P cos(2πνsn− ϕs)rectN(n)e−in·2πν . (6.12)

In this case one can represent the Fourier transform by a product of the sine-like probability
density f(n) and a rectangular window function rectN(n). This rectangular function
analytically selects values of n i.e. 0 ≤ n < N where rectN(n) = 1. A multiplication in
the turn domain n corresponds to a convolution in the spin tune domain ν, therefore

ĝ(ν) = f(ν) ∗ rectN(ν) = (f ∗ rectN)(ν) =
∫ ∞

−∞
f(ν − λ) · rectN(λ)dλ (6.13)

.
The Fourier transforms of both a sine wave (see subsection A.2) and a rectangular

function (see subsection A.2) can be calculated analytically. Without loss of generality
and for simplicity one can assume the phase to have some value and choose ϕs = 0: then
A = 0 and |B| = P . In that case it is especially easy to derive the result for the Fourier
transform directly even for the amplitude. Otherwise both a sine (with A) and cosine
term (with B) have to considered, but the result for the amplitude remains the same.
One gets the Fourier transforms of the parameter B (here equivalent to the amplitude):

fB(ν) = NB

2 (δ(ν − νs) + δ(ν + νs))
[
fA(ν) = NA

2i (δ(ν − νs) + δ(ν + νs))
]
. (6.14)

One also finds the Fourier transform of the rectangular function to be

rectN(ν) =
∞∑
n=0

rect[n]e−i2πn·ν =
Nmax=∆n−1∑

n=0
e−i2πn·ν = 1 − e−i2πν∆n

1 − e−i2πν (6.15)

= sin (πν∆n)
πν∆n e−iπ(∆n−1) = sinc (πν∆n) e−iπ(∆n−1) = ±sinc (πν∆n) . (6.16)

Combining both results one can deduce the Fourier transform of the amplitude

⇒ ĝB(ν) = NB

2

∫ ∞

−∞
(δ((ν − λ) − νs) + δ((ν − λ) + νs))

1 − e−i2πν∆n

1 − e−i2πν dλ (6.17)

= NB

2

∫ ∞

−∞
(δ((ν − νs) − λ) + δ((ν + νs) − λ)) 1 − e−i2πν∆n

1 − e−i2πν dλ (6.18)

= NB

2

[
1 − ei2π(νs−ν)∆n

1 − ei2π(νs−ν) + 1 − ei2π(νs+ν)N

1 − ei2π(νs+ν)

]
(6.19)

= NB

2 [sinc (π(νs − ν)∆n) + sinc (π(νs + ν)∆n)] . (6.20)

Note that in the equations above starting at Equation 6.15 the length of the turn interval
∆n, defines how narrow the sinc function will be, since n is selected as 0 ≤ n < ∆n.
The start at n = 0 is arbitrary and does not change the result of the Fourier transform.
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Figure 6.1: Fourier Spectrum for 10000 repetitions of a Fourier scan over a scanned spin tune
range. A sinc function structure is formed as the average result for a true amplitude
of P = 0.2.

From Equation 6.17 one gets the shape of the main peak at ν = νs. The other sinc
peak corresponds to ν = −νs, because Equation 6.17 is symmetric. Finally one is mainly
interested in the values around the true spin tune, and at ĝ(ν ≈ νs) one gets (using
N = ∆n)

⇒ |ĝB(ν ≈ νs)| ≈ N
B

2
sin (π(νs − ν)N)
π(νs − ν)N = N

B

2 sinc (π(νs − ν)N) (6.21)

⇒ |ĝB(ν = νs)| ≈ NB

2

[
= NP

2 since A = 0
]
. (6.22)

Indeed 2
N
ĝ(ν ≈ νs) gives the amplitude P in this case. However one has to notice, that

this calculation is only fully true for large signal strength (N ! ∞, therefore σ ! 0). For
few events in the interval and small signal strength one has to take care of possible bias
effects (due to fluctuations), as already mentioned in the previews chapters and seen for
the fitting results in the toy model case. The Fourier transforms approach described above
in general can lead to biased amplitudes. Then the uncertainty parameter σ =

√
2/N has

to be included in the description, as will be done below.

6.3. Fourier Transform Spectrum Simulations
Randomly generated data distributed according to Equation 6.1 can be analyzed by the
discrete turn Fourier transform. In simulations done below the ideal undisturbed case
is studied (fixed amplitude over the full interval), and exactly the same parameters are
used to sample thousands of repetitions, which is not possible using real experiential data.
For the simulation random turn numbers are generated from a turn interval of length ∆n
and with a known spin tune of νs = 0.16. This is in the region of the true values and
the deviations for the simulated spin tune scan are easier to read. The true spin tune
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Figure 6.2: The resulting amplitudes at given assumed spin tunes for 10000 repetitions of a
Fourier scan using the same initial parameters for a true amplitude of P = 0.2.
The distributions of Fourier amplitudes P for a fixed assumed spin tune νs are
well described using a Rice distribution with the expected amplitude from the sinc
function of Figure 6.1 and the uncertainty parameter σ0 =

√
2/N .

for simulations is always in the middle of the spin tune axis. As in the experiment the
number of events generated N is much smaller than the length (measured in turn numbers
∆n) of the interval.

For various assumed spin tunes one calculates the estimator for Â and B̂ following
Equation 6.7 and Equation 6.8. For a given set of turn numbers the calculation of
amplitudes for neighboring assumed spin tunes is highly correlated, since the same data
is used for each calculation. This procedure is repeated multiple time with the same
parameters, only the generated turns are random.

One resulting distribution for P = 0.200 and N = 200 events over ∆n = 106 turns can
be seen in Figure 6.1. It is noticed that the resulting amplitudes distribution is precisely
described by the following model. The underlying amplitude for each spin tune is given
by a sinc function

P (ν; νs) = P ·
∣∣∣∣∣sin(π · (ν − νs) · ∆n)

π · (ν − νs) · ∆n

∣∣∣∣∣ , (6.23)

which is given as the dashed red line in Figure 6.1. This (unbiased) amplitude is indeed
approaching zero for larger deviations from the true spin tune.

However for the estimated amplitude the bias due to the fitting procedure with random
possible fluctuations has to be considered. The amplitude from Equation 6.23 therefore
has to be used together with the σ0 =

√
2/N parameter as an input for a rice distribution

for all possible spin tunes. As shown in Figure 6.1 the description of simulated data using
this model is excellent. The behavior of the mean amplitude for all possible spin tunes
(dashed black line in simulation) coincides with the calculation from the procedure give
above (solid red line below dashed black line). Note that again the estimated amplitude is
on average greater than the underlying true amplitude for every assumed spin tune. The
average predicted and simulated amplitude reaches minima for (ν − νs) = k · 1/∆n with
k ∈ N (without the obvious main maximum for k = 0). These (average) minima are given
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Figure 6.3: Three examples for obtained Fourier amplitudes in the scan through the spin tunes
once for a signal strength of 2 (left) and for a signal strength of 20 (right). If the
signal strength is small, the main peak can fluctuate out of the (expected) main
lope. The larger the signal strength, the better the sinc-structure is resolved even in
individual measurements.

by the expectation value of a Rayleigh distribution with the uncertainty parameter σ.
Due to the uncertainty parameter σ even for large deviation from the true spin tune, the

estimated amplitude on average does not reach zero, and the limiting case is a Rayleigh
distribution with mean

√
π/2σ and the mode (most probable fitting amplitude) is given

by σ. The true amplitude P is marked with a horizontal dashed orange line and σ with a
solid orange line in Figure 6.1.

One might ask, why a simulation is even needed, when the distribution can be predicted
analytically as described above. The reason for this is, that one can easily predict the
average behavior of the simulation, but it is much harder to give an accurate model
for individual amplitude sets. And since the maximal amplitude is searched for in
every individual set of turn numbers, the distribution of its maximum amplitudes (and
corresponding spin tunes) is obviously different from the distribution at the peak of the
full spectrum.

If one uses surrounding spin tunes (more information) to exclude spin tune result,
which do not fall on the expected maximum of the main peak or predicts the spin tune
accurately enough for the whole measurement, the distribution of amplitudes at the true
spin tune will again follow a Rice distribution, since one then effectively cuts through the
distribution at a fixed frequency. This is also the case for any other “quasi-fixed frequency”
or “quasi-fixed spin tune” analysis, e.g. when using the so called mapping method.

What is meant by “quasi-fixed spin tune” is explained in more detail in the appendix
(see subsection D.2). If one uses the phase information to estimate the spin tune (as
briefly described in subsection 6.4) one can use the full data set to determine the spin
tune. For more than 133s total measurement time per cycle the total usable turn number
interval is given by 100 · 106 and above. Also the phase is more sensitive to changes in the
spin tune, an therefore the spin tune can be determined at least two to three orders of
magnitude better than from one amplitude alone.

Even really small tune changes of order 10−9 and less can be obtained by a phase fit.
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Figure 6.4: Fourier maxima distribution for 10000 repetitions of a Fourier scan using N = 200
and P = 0.2. If simply the maximum amplitude is chosen in all the measurements the
amplitude is overestimated much more, than expected from a simple Rice distribution
(following the height of the sinc function drawn in red).

When evaluating the spectra at such spin tunes, one can guess, that the average mean
position of the Fourier spectra is correctly estimated. Even if the signal strength drops
down, so that large fluctuations of the amplitude peak might happen, the corresponding
amplitudes behaves just randomly like a Rice distribution, since they are evaluated at one
quasi fixed spin tune positions and do not follow the shifting individual peak positions
any longer. Note that the amplitude overestimation coming from the underlying Rice
distribution for small signals introduced in the previous chapter subsection 5.3, which is
mostly independent of the estimation method chosen, remains even when the correct spin
tune is chosen.

For all further analysis, “quasi-fixed spin tune” cases are considered, where the underlying
distribution is assumed to be a simple Rice distributions with only two parameters. The
estimated amplitude is P̂ , the estimated uncertainty is σ̂ ≡ σ0 =

√
2/N . Since mainly

the small amplitude regions are of interest, one can use the universal signal strength
approach with ϵ̂ = P̂ /σ0 and simply scale with the uncertainties afterwards, avoiding
unnecessary complications if the uncertainty parameter σ is treated as simple as possible
(not regarding it as a function of the amplitude). It was shown in the previous section
that this simplification can be justified, especially since it at worst overestimates the
uncertainties by a small margin, while still treating the shape of all distributions correctly.
Also this approach reproduces the expected results on typical real COSY data for the
usual large signal strengths. Finally one should keep in mind, that for ϵ ≫ 1 most of the
effects discussed in this chapter again become irrelevant as the peak position will fluctuate
only in the flat region of the maximum of the main peak and all uncertainties become
Gaussian like.
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Figure 6.5: Distribution of the maximum amplitude in the fit and the corresponding rice dis-
tribution. Upper plot: for N = 200 and amplitude P = 0.2 (signal strength 2).
Lower plot: for N = 2000 and amplitude P = 0.2 (signal strength 6.3). If the signal
strength improves the maxima start to again follow a Rice distribution (approaching
the Gaussian limit).

6.4. Spin Tune Estimator
The spin tune can be precisely determined by calculating the turn derivative of the phase
information obtained in the analysis procedure described above. The relation of phase
and turn depending spin tune is given by

νs(n) = ν0
s + 1

2π
dϕs(n)

dn . (6.24)

where n denotes the turn number and ϕs(n) is the phase obtained from a spin tune scan.
Therefore the spin tune is determined from the interpolation of two consecutive phase
estimators. The effect of scanning an off spin tune value, deviating from the correct one,
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can be understood by looking at the phase spectrum. Note that the starting phase in
this type of plots is fixed to an constant value over the whole spin tun range, to see the
effect of a deviating spin tune over the number of turns. Also if the phase goes out of
the definition range ϕs(n) ∈ [0, 2π] it is corrected to be continuous. Assuming that the
spin tune matches the true horizontal precession, the phase stays rather constant over the
whole range (apart from small actual spin tune drifts or statistical fluctuations). For a
data sampling spin tune, which is slightly different than the true spin tune frequency, the
phase difference increases (or decreases) more or less linearly with time, since a mismatch
in frequency adds the same phase deviation per turn.

Figure 6.6 shows the spin tune scan of an example run (one cycle) from the Precursor 1
experiment for three different binning options in turn number ∆n. The peaks at the spin
precession frequency are only visible after the first 20 · 106 turn, since the spin tune before
the jump (where the solenoid magnetic fields are changed) is outside the scanned range.

The scanned tune range is the same in all plots. Note that the amplitude scan gets
narrower ∝ 1/∆n, while the sigma parameter of the amplitudes in the spin tune scan
changes with the number of events per bin and therefore ∝

√
2/∆n ∝

√
2/N , assuming

constant average count rates in the turn intervals. In the case of ∆n = 106, the main peak
of the amplitude is limited by spin tunes of ±10−6 around its maximum, where the first
minima are reached.

The peak heights are fluctuating a bit, but the average middle of the peaks stays rather
constant. The phase spectra are narrower than the amplitude spectra. Note that the
phase spectra start to repeat, if one leaves the region ±1/(2∆n) around the maximum of
the main peak into a secondary spectrum. Therefore one needs to first hit the main lope
using the amplitude spectra, or some good spin tune prediction. The phase estimation
uncertainty scales with the inverse of the amplitude; it is also most precise at the main
peak.

The spin tune which delivers the most flat phase corresponds to the true reference spin
tune. However the spin tune phase is not further analyzed in this thesis, since its detailed
description is mostly heuristic, using polynomial fits [58]. Typically a precision of at least
10−10 can be reached for the spin tune when looking at the behavior of the phase in a
single cycle of 100 s length. Such small deviations are not resolved in the given amplitude
spectra, so the spin tune for them can be assumed to be constant (quasi-fixed spin tune).
Then the amplitudes of the peaks behave according to the underlying rice distribution (no
matter how good the signal strength), as long as one evaluates at fixed (or quasi-fixed)
spin tunes, but not at the shifting peak maxima per bin, which can occur at small signal
strength.
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Figure 6.6: Amplitude and phase scans for the upper detector of an example run from the
Precursor 1 experiment. The spin tune scan is done for three different turn number
intervals ∆n ∈ [1.0 · 106, 2.0 · 106, 4.0 · 106] (corresponding to time bins of 1.33s, 2.67s
and 5.33s). The spin tune scan is carried out for the same spin tune interval in each
plot. The broadness of the main peak around the assumed true reference spin tune
νref (horizontal red line) is given by νref ± 1/∆n, where on average the first minima
of the sinc functions are forming. Second minima can be found at νref ± 2/∆n. Note
that the reference spin tune (from the wrapped phase spectrum) coincides with the
average center of the peaks in the amplitude spectrum. The pattern of the wrapped
phase starts to repeats at ±1/(2∆n), which is half of the main peak width.
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7. Spin Polarization Decay and Spin Coherence Time
7.1. Simple Exponential Decay Model
To study the advantages of the correctly assumed probability distribution of the fitting
parameters (in this case the amplitude P ) a simple demonstrator model is used. This
approach follows the one described in [54], but extends the discussion around the compar-
ison of the results with a simple χ2-fit and relating it directly to the spin decoherence in
the Precursor EDM measurements.

In figure Figure 7.1 the dashed red line shows an exponential function

fexp(t;P0, τ) = P0e−t/τ (7.1)

with a decay constant τ = 1 and starting amplitude P0 = 0.3. The data points (also
shown in red) were generated at ten different times ti following the f(P̂ |P (ti), σ) rice
distribution with a σ =

√
2/N = 0.045 corresponding to N = 1000 events analyzed per

bin. The vertical bands at each time bin indicate the Bayesian probability distribution
with constant prior introduced in subsection 5.8 (the darker the higher the probability)
f̃(P |P̂ ) as a function of P , where P̂ is given by the generated value (i.e. the data point
in red).

The blue curve shows the result of a simple least squares χ2-fit to the red data points,
which assumes naive Gaussian errors (see the red error bars) for all the data points. Note
that these errorbars sometimes reach into the unphysical P < 0 region, especially for
t/τ > 2. The resulting fitted function is far off from the underlying true one (dashed red
line). The orange curve shows the result of a likelihood fit with the likelihood function

L =
Nbin∏
i=1

f̃Rice(P0e−ti/τ |P̂i, σ) (7.2)

varying τ and P0 to maximize L. The maximum likelihood estimator (MLE) describes
the underlying true behavior much better than the χ2-fit results.

In this example the least squares fit yields τ̂ = 1.56 ± 0.36 and P̂0 = 0.282(38) (blue
line) compared to likelihood fit τ̂ = 1.02 ± 0.34 and P̂0 = 0.303(44) (orange line) for the
maximum likelihood estimator; in the latter case the agreement with τ = 1 and P0 = 0.4
is almost perfect.

The more detailed analysis including correlations between the two fitting parameters
is shown in the lower plot of Figure 7.1, where the negative log likelihood values are
calculated in a grid surrounding the maximum. A decline of the log likelihood to −1

2
when compared with the maximum indicates the 1σ interval (dashed red line), and the 2σ
interval is reached at ≈ −4 (dashed black line). Note that the 2σ region cannot simply
be described by an ellipsis, but is elongated in τ direction. Even for the 1σ region the
fit errorbars (symmetric, centered around the fit result) are not fully identical with the
extend of the ellipsis region. For comparison the χ2 fit results with their uncertainties are
shown as a black cross. The relative size and shape of the errorbars for both results are
typically similar; the χ2-fit result is simply shifted away from the true input parameters
due to a fitting bias.

Such an individual result are illustrative, but in simulation it is accessible and also more
interesting what happens on average. Figure 7.2 compare the fit results for P0 and τ for
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Figure 7.1: Upper plot: Maximum Likelihood Fit and χ2-fit to a simulated exponential decay,
with estimated amplitudes P̂ following a rice distribution. Dashed red line: P (t) =
P0e−t/τ with τ = 1 and P0 = 0.3. Red data points: random values according to
f(P̂ |P (ti), σ) shown with Gaussian error σ =

√
2/1000. Vertical bands: probability

distribution f̃(P |P̂ , σ) for true P for the given generated P̂ . The lines are the result
of a least squares fit (blue) and a maximum likelihood fit (orange) to the data. Lower
plot: Log Likelihood values around the maximum of the fit from Equation 7.2 and
corresponding 1σ and 2σ regions in comparison with the χ2-fit results.
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Figure 7.2: Distribution of P̂0 and τ̂ for 10000 simulations. Results from likelihood fit using the
probability distributions and a least squares fit.
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Figure 7.3: Comparison of the 2D histograms for the likelihood method vs. the simple χ2 fit.
For the 1 dimensional comparison along each axis see Figure 7.2.

10000 repetitions of the fit with the same starting parameters. The uncertainty on a fit
by fit basis is roughly the same for both the simple χ2-fit, were Gaussian distributions
for the uncertainty are assumed, and the maximum likelihood estimator using the Rice
distribution.

The average of τ̂ is 1.64(49) for the least squares fit and 1.03(34) for the likelihood
approach. Note that the uncertainty is not the uncertainty of the mean, but simply the
standard deviation of the fit results from the 10000 repetitions.

Therefore on average the likelihood result has a remaining bias of 0.03/0.34 = 0.09 of its
statistical fluctuation, whereas the bias for the least square fit amounts to 0.64/0.49 = 1.29.
This proves that the likelihood fit using f̃(P̂ |P ) as a pdf gives a result much closer to the
true value τ = 1 in the case of large statistical uncertainties on individual data points.

The average of the amplitude P̂0 is 0.280(43) for the least squares fit and 0.302(42) for
the likelihood approach. The average results for the amplitudes are shifted by a bias of
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Figure 7.4: Comparison of the simple exponential model and the spin decoherence model by
Dennis Eversmann (Equation 7.8) developed in [36] in a lin. and a log. plot.

less than 5 % of the statistical uncertainty for the MLE and ≈ 50 % for the χ2-fit, while
both estimators have roughly the same statistical uncertainty of 14 %.

To get a better feeling for those results Figure 7.3 shows the 2D distribution of the
10000 fit results in bins of P̂0 and τ̂ . The mean and standard deviations of both estimators
are shown in comparison with the input values.

The fit results for the simple χ2-fit are both biased, especially the decay time τ , but
also the starting amplitude P0. If the relative uncertainties get smaller (stronger signal
strength per bin), especially relevant in the region where the signal is strong (approx until
t/τ < 2), the distributions of the results from the χ2-fits approach the MLE results and
therefore the true input values. Then one can simply exclude regions with small signal
strength from the fit, and obtains basically unbiased results, as it is done typically also
in the analysis of the experimental data. Still, in regions with t/τ ≫ 1 it is problematic
to quote the “naive” estimators with Gaussian errors, as they do not describe the true
distributions, cover nonphysical negative amplitudes and imply that on average some
small signal would remain. Using Feldman Cousins confidence intervals and or the correct
Bayesian probability distributions cures this, being the more elaborate result. Nevertheless,
the better the original data (greater signal strength), the less worthwhile the significantly
increased effort using methods as described above as the final results the typically changed
only withing less than 1σ of one single measurement (compare the bias of the Rice
distribution). If one experiment is repeated with (exactly) the same initial conditions
Nexp. times, one can quote the uncertainty of the mean, where the statistical fluctuation
scales ∝ 1/

√
Nexp.. Then the bias becomes more and more interesting, since it stays

constant.
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7.2. SCT Results for Precursor Data
To study the spin coherence time τSCT, a polarized 0.97 GeV

c
deuteron beam is injected into

the storage ring and its polarization is tilted into the horizontal plane by means of the RF
solenoid. The setup allows to easily determine the spin tune, since the spin performs an
idle precession. Long and short-term measurements are essential to compare the different
fitting methods.

In Dennis Eversmann’s PhD thesis [36], a mathematical description of the loss of
polarization is provided. It is based on the idea that the spin tunes of the individual
particles of the ensemble are distributed in relation to the spin tune of the particle on the
reference orbit, which is defined as νref

s . In this model the probability density distribution
of the spin tune νs is described using a Rayleigh distribution for νs > νref

s . A scale
parameter ∆νs indicates the width of the distribution, i.e. for larger ∆νs the spin tune
spread of the ensemble is wider, which also leads to a faster depolarization, since the
spin vectors are out of phase during less turns. The reference spin tune is assumed to be
constant for a cycle.

According to the model the up-down asymmetry (ϵUD(t)) during the decay of the spin
polarization can be described by:

ϵUD(γs(t)) = ϵ0

([
1 −

√
πγs(t)e−γ2

s (t)erfi(γs(t))
]2

+ πγ2
s (t)e−2γ2

s (t)
) 1

2
, (7.3)

with γs(t) =
√

2π · ∆νs · fCOSY · t erfi(x) = 2√
π
ex

2
D(x), (7.4)

where D(x) is the Dawson function. The parameter γs(t) includes the spread of the
spin tune distribution ∆νs, and is then the only fit parameter apart from the up-down
asymmetry ϵ0 at the beginning of the analyzed period (when the spin starts precessing
in the plane). The Spin Coherence Time in this model can be calculated numerically by
solving7

ϵUD(γs(τSCT)) = 1
e

⇒ γs(τSCT) =
√

2π∆νsfCOSYτSCT ≈ 1.571017 (7.5)

⇒ τSCT ≈ 0.353603
∆νsfCOSY

and στSCT ≈ 0.353603
∆ν2

sfCOSY
σ∆νs . (7.6)

Note that a spin coherence time τn measured in turns n is directly linked to a SCT
measured in time τSCT by τSCT = 1/fCOSY · τn.

Figure 7.4 compares the shape of the simple exponential model, with the more elaborate
spin decoherence model used to describe spin depolarization in the actual experiment.
Note that the model starts with a horizontal slope, for t/τ ≈ 1 it falls faster than a simple
exponential and for t/τ ≫ 1 it falls of more slowly in the graph.

Two examples of a measurement of the Spin Coherence Time (from the precursor 2 run)
are shown in Figure 7.5 (left short SCT and right long SCT). The RF solenoid is used
to rotate the vertical polarization into the horizontal plane and the beginning of the fit
interval is therefore at 90 s in the cycle. In the left panel, the up-down asymmetry drops

7The correct numerical result 0.353 603 that [36] quotes is not identical but close to 1/(2 ·
√

2) ≈ 0.353 553.
If it was exactly the latter value, then γs(τSCT) = π/2, as it first appears to be when rounding in
Equation 7.5 to less decimal places. But when zooming into Figure 7.4 to 10−3 around t/τ = 1, one
start to see a small deviation using this approximation.
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Figure 7.5: Two examples of measuring the Spin Coherence Time while changing the sextupole
currents. These two plots (and the corresponding data) were taken from Achim
Andres PhD thesis [35]. The left measurement yields a short Spin Coherence Time
of (47.53 ± 1.23) s. The right panel shows a measurement of the Spin Coherence
Time of (689.6 ± 77.5) s.

fast. The up-down asymmetry is on average rather constant and larger than zero after
150 s. The reason behind is that the fitting bias of sine functions with small amplitudes
and large uncertainties becomes prominent; also again some errorbars extend below zero.
To reduce the influence of a possible bias the fit does not cover the full time range. To
optimization the Spin Coherence Time the sextupole magnets in the COSY ring are
adjusted by checking a grid of different possible currents. A long Spin Coherence Time
along the entire measurement period is crucial for the success of the experiment. The
right plot in Figure 7.7 shows a measurement of a better optimized Spin Coherence Time.

As a first step one can use the Feldman Cousins confidence intervals to get rid of any
unphysical errorbars at the end of the cycle in Figure 7.5. The results are shown in
Figure 7.6. The black data points represent the estimated parameters for the asymmetry
amplitude in the time bin with obtained individual (gaussian) errors σ0. The average
uncertainty per bin is ≈ 0.009, which corresponds to on average ≈ 25000 evaluated events
per bin. The corresponding 1σ ≈ 68 % confidence interval from the Feldman Cousins
approach is represented by the red horizontal lines. Note that these intervals can be on
rare occasion much shorter than the Gaussian errors, if the measured amplitude is much
smaller than the uncertainty (see e.g. the 6th bin before 200 s in the short SCT case (upper
plot in Figure 7.6) - this what was called a downward fluctuation in subsection 5.7. The
FC confidence limits never go into the unphysical negative region. Many bins compatible
with zero-asymmetry (as maximum likelihood ratio implies) are seen at the end of the
short SCT measurement (see red dots) in Figure 7.6.
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Figure 7.6: Turn depending amplitude for two different runs, where the Gaussian uncertainties
and confidence limits from the Feldman-Cousins approach are compared. For the
short SCT (upper plot) many measurements at the end of the cycle are linked to
a vanishing true amplitude, but not much is changed for the long SCT, where all
measurement show a large signal strength.

Figure 7.7: Another way to display the data form Figure 7.5. The measurements are first
corrected to the corresponding asymmetries with maximum likelihood ratio R = 1 of
the Feldman-Cousins approach (red points). The Bayesian probability distribution
assuming a constant prior is overlayed.
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Figure 7.8: Short SCT Measurement from Precursor 2 experiment. Upper plot: Turn
depending asymmetry amplitude over the measurement. The probability density
function of the true amplitude based on the measured amplitude is indicated by
the overlayed vertical bands. The orange curve represents a maximum likelihood
fit, while the blue curve indicates the corresponding simple χ2-fit. Lower plot:
The corresponding fit results are compared (including correlations), the dashed red
distorted ellipses mark the 1σ region.
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Figure 7.9: Long SCT Measurement from Precursor 2 experiment. Upper plot: Turn depend-
ing asymmetry amplitude over the measurement. The probability density function of
the true amplitude based on the measured amplitude is indicated by the overlayed
vertical bands. Again the orange curve represents the fit using the MLE, while the
blue curve indicates the corresponding simple χ2-fit. Lower plot: The fit results are
compared (including correlations), the dashed red distorted ellipses mark the 1σ
region.
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7.3. Maximum Likelihood Fit
The next step is to see, whether also the fits of the SCT can be substantially improved
using the more elaborate statistical estimators. The likelihood function for amplitude
fitting is given by

L =
Nbin∏
i=1

f̃Rice(ϵfit
UD(ti; ϵ0, τSCT)|ϵ̂i, σi) with σi =

√
2

Nev,i
(7.7)

where the uncertainty σi of the asymmetry ϵi in every bin i ∈ [1, Nbin] is directly linked to
the number of events Nev,i in the bin used to construct the asymmetry.

ϵfit
UD(t; ϵ0, τSCT) = ϵ0

([
1 −

√
πγs(t)e−γs(t)2erfi(γs(t))

]2
+ πγ2

s (t)e−2γs(t)2
) 1

2
(7.8)

with γs(t) = 0.353 603
√

2π · t/τSCT. (7.9)

Figure 7.9 and Figure 7.8 show the Maximum Likelihood Estimator approach using the
Bayesian probability distribution with constant prior for the given asymmetry amplitudes
(runs 5033 and 5038, corresponding to the data from Figure 7.5).
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Figure 7.10: Time depending amplitude for a long and short spin coherence time (using old
data from 2015 with an average σ0 ≈ 0.036) corresponding to 1600 events per bin.
The color scheme in the left plots again represents the posterior probability density
function according to the estimated values of the discrete turn Fourier transform
assuming a Rice distribution. The right plots compare the fit results including
correlation.
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short SCT τ [s] short SCT ϵ0 (P0) long SCT τ [s] long SCT ϵ0 (P0)

A. Andres (fit limited) (47.53 ± 1.23) (0.1321 ± 0.0027) (689.6 ± 77.5) (0.1451 ± 0.0013)

χ2-fit (using full range) (48.76 ± 1.23) (0.1321 ± 0.0025) (689.7 ± 77.7) (0.1451 ± 0.0013)

MLE (using full range) (46.73 ± 1.21) (0.1324 ± 0.0027) (686.7 ± 79.4) (0.1449 ± 0.0013)

χ2-fit (old 2015 data) (65.65 ± 3.40) (0.2157 ± 0.0084) (259.3 ± 55.3) (0.2442 ± 0.0065)

MLE (old 2015 data) (56.85 ± 3.70) (0.2217 ± 0.0097) (255.5 ± 60.8) (0.2415 ± 0.0064)

Table 3: Parameters obtained by the global maximum likelihood fit based on the data for a long
and short spin coherence time shown in Figure 7.9, Figure 7.8 and Figure 7.10.

In the case of the analyzed Precursor 2 runs, both MLE and χ2-fit offer a decent
description of the data. For the short SCT both measurements are well compatible still
withing ≈ 1.5σ, of the statistical uncertainty as estimated from the maximum likelihood
fit. For the long SCT measurements no differnce in SCT can be resolved. However another
interesting effect can be seen from Figure 7.9. For a long SCT measurement the relative
statistical uncertainty of the SCT is much larger than for a short SCT measurement. Also
the corresponding uncertainties are not ellipses. This can be understood, because the
fits of the SCT start off with a flat slope, where it is naturally difficult for the model to
predict the correct SCT. Short SCTs are excluded form not seeing a decline, but without
extending the measurement, it is hard to exclude longer possible SCTs. The parameter
ellipse is therefore elongated into large τSCT direction in Figure 7.9.

The fit results are tabulated in Table 3. The difference in estimated asymmetries from
the fit is shown to be small, which is “good”, because one likes to have at best unbiased
asymmetries, as those go into the EDM measurement directly in the form of ratios between
horizontal and vertical asymmetry. For typical long SCTs of τSCT > 700 s and above (1000s
is one often mentioned goal in the experiment, e.g. compare [28] and [35]), the difference
between the biased naive χ2-fit and the elaborate MLE for the amplitude is considerably
less than 20 % of the statistical uncertainty and in absolute numbers ≈ 0.0002.

From the underlying theory introduced in subsection 5.6 this can be confirmed by the
following expected bias, using some rough but motivated estimates. For a long SCT the
asymmetry is not changing much over the whole measurement. Consider a starting signal
amplitude P0 ≈ 0.2 and N ≈ 20000 events per time bin, implying σ0 =

√
2/N = 1

100 = 0.01.
Therefore the average signal strength is ϵ ≈ P0/σ0 ≈ 20. The remaining bias per bin can
be estimated using Equation 5.29 as

⟨ϵ̂UD⟩ − ϵUD ≈ σ2 · 1
2P0

= σ · 1
2ϵ ≈ σ · 1

2 · 20 ≈ 0.025 · σ ≈ 0.00025 . (7.10)

Since every bin has roughly the same bias, also the fit parameter P0 will be biased the
same way, therefore by ≈ 0.0002. Note that this is compatible with the difference we see
between the long SCT fits using Precursor 2 data in Table 3.

Note that also MLE estimators can show some small remaining bias, as was seen for
the simple exponential model, but this bias scales with the total used events over the
whole cycle (all bins) and will therefore be neglected, as it is much smaller than the
χ2-fit bias. Also the results are only fully valid (meaning minimal bias is achieved), if
the underlying model of the SCT is indeed correct. Within the given uncertainties at
least small modification of the underlying fit-function seem possible and would be also
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compatible with the data, but such considerations are beyond this work. Nevertheless the
Bayesian approach for the observed amplitudes and the corresponding estimators could
also be applied to any8 other desired SCT model.

Note that the experimental situation was different in the past, when the fitting method
using the MLE was originally suggested. The plots in Figure 7.10 show SCT COSY
runs from 2015, where the measurement interval was much shorter, and polarimeter
i.e. detectors rates were worse too, leading to much greater statistical uncertainties.
Therefore the short SCT χ2-fits are indeed noticeable different by eye when compared to
the MLE approach. For the “long” SCT measurement (only τSCT ≈ 200 s) in the lower
plot, the χ2-fit and the MLE results are still similar, since the Rice probability distribution
approaches the Gaussian limit for moderate signal strengths already.

8The model should not predict negative asymmetry amplitudes in the allowed parameter space, since
then the Bayesian Posterior Probability is undefined. If such unphysical regions can be accessed by
some parameter combinations, they should be excluded from the fit.
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8. Beam Oscillation Amplitude
For the measurement of the in-plane polarization the event rates of the upper and lower
detectors are typically combined to cancel out the acceptance and luminosity factors of
the beam. When analyzing the count rates in the individual detectors, the following
effect was found. Its description here closely follows the work done by Achim Andres
for his PhD thesis [35] (see pages 136-139), with then applying the statistical methods
introduced above in the end. In the case that the electromagnetic fields inside the RF
Wien filter do not exactly match to the momentum of the deuteron beam (a small Lorentz
force remains), the beam experiences a kick in each revolution, leading to small coherent
oscillations of the beam. An interesting approach to quantify the matching of the RF
Wien filter is analyzing event rate changes in the polarimeter. A so called unmatched RF
Wien filter induces coherent beam oscillations, where the number of deuterons hitting the
carbon target in the polarimeter should periodically change by the frequency the Wien
filter is kicking the beam fWF.

This change of interaction rate is then also measured in the four quadrants of the detector
after scattering on the carbon block. This can be described by adding an oscillation term
to the luminosity of the beam

LCOSY ! LCOSY · (1 + a cos (2πfWFt)) , (8.1)

where a denotes an amplitude, scaling with the oscillation amplitude of the beam, however
the oscillation beam amplitude parameter cannot be trivially translated into an amplitude
in “standard units” because a depends on additional beam parameters like beam position
and vertical betatron oscillation amplitude. The event counting rates

(
dN/dt = Ṅ

)
in

the individual detector quadrants are given by

ṄUp ∝ (1 + a cos (ωWFn+ ϕrel)) · (1 − ϵUD cos(ωsn)) , (8.2)
ṄDown ∝ (1 + a cos (ωWFn+ ϕrel)) · (1 + ϵUD cos(ωsn)) , (8.3)
ṄLeft ∝ (1 + a cos (ωWFn+ ϕrel)) · (1 + ϵLR) , (8.4)
ṄRight ∝ (1 + a cos (ωWFn+ ϕrel)) · (1 − ϵLR) . (8.5)

Ideally the Wien Filter and the spin precession matches ωWF = ωs. The expected Fourier
amplitudes at the frequency of the Wien filter and spin tune in the left and right detector
quadrants (needed for vertical polarization determination), where no oscillation of the
spin tune does happen, are then directly given by

A⇄ (ω = ωWF = ωs) = a. (8.6)

One has to notice that those Fourier amplitudes (like other possible fitting methods) are
typically biased for small amplitudes, as this is again as cosine estimation procedure,
where the amplitude estimators are biased when the signals are small compared to its
uncertainties. The measured amplitudes in the upper and lower quadrants A"#, are more
complicated as they are interwoven with the oscillating signal from the spin tune precession.
For more details see page 137 of [35].

The findings of such Fourier amplitude considerations from the Precursor 1 data lead to
a monitoring tool for the periodic change of luminosity while data taking, which was used
during the Precursor 2 runs. This allowed to improve the matching of the RF Wien filter
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(signal) slope m [10−6 1
s ] (signal) offset b (pilot) slope m [10−6 1

s ] (pilot) offset b

χ2-fit (Precursor 1) 149.5 ± 25.7 0.0300 ± 0.0016 - -

MLE (Precursor 1) 151.3 ± 25.7 0.0294 ± 0.0016 - -

χ2-fit (Precursor 2) 24.4 ± 6.5 0.0077 ± 0.0011 1.0 ± 6.5 0.0091 ± 0.0011

MLE (Precursor 2) 38.7 ± 10.1 0.0022 ± 0.0019 5.5 ± 13.3 0.0044 ± 0.0021

Table 4: Parameters obtained by the maximum likelihood and χ2-fit with corresponding uncer-
tainties for beam oscillation amplitudes as shown in Figure 8.2.

field, and therefore minimizing the beam oscillation amplitude. For this tool the sum of
the count rates in the individual detectors is used, since any polarization effects cancel
out (see Equation 8.2) when combining all the data. Of course also more events per time
bin reduce the statistical uncertainty of the beam oscillation amplitude parameter a.

Ṅsum = ṄUp + ṄDown + ṄLeft + ṄRight ∝ 4 · (1 + a cos(ωWFn+ ϕrel)) . (8.7)
By performing a Fourier transformation of Equation 8.7 and scaling by the total number

of events per chosen time bin (Ṅsum = ṄUp +ṄDown +ṄLeft +ṄRight), the Fourier amplitude
does not depend on the polarization or feedback settings and is simply given by

Asum(ω = ωWF) = a . (8.8)
In Figure 8.1 the beam oscillation amplitude a for combining all the detectors is shown

as a function of time in cycle for a measurement using a run from the Precursor 1 (upper)
and the Precursor 2 experiment. For the Precursor 2 experiment two bunches are in the
machine, the pilot bunch (middle) and the signal bunch (lower), which show very similar
behavior.

In all cases, the RF Wien filter is switched on at 155 s indicated by a vertical black line.
An unmatched Wien filter then starts to periodically kick the beam resulting in beam
oscillations which are measured in the detectors. For the Precursor 1 data, a clear jump
is visible, while this effect was prevented in the precursor 2 experiment. Since both pilot
and signal bunch amplitude are almost unaffected by the operation of the RF WIen filter,
one can deduce that the filter fields are matched more precisely. For the analysis, this
relative change of the parameter when the RF Wien filter is switched off and on is the
most relevant result.

However in both picture the naive interpretation would be, that always a small beam
oscillation amplitude did in fact remain, and judging from their uncertainties they would
be mostly constant and greater than zero. However this is misleading, when using
the knowledge of amplitude overestimation, since the uncertainties of the amplitude
determination are large compared to the average amplitude, and again this is the regime,
where the bias of sine estimation is relevant. Additionally, the error bars (when wrongly
interpreted as gaussian erros) sometimes extend to values below 0, which is not a correct
description of the data, since the amplitudes can never be smaller than zero with the
definitions used here. Correspondingly the error bars should also not be symmetric for
small oscillation amplitudes.

By applying the Bayesian method and using a probability density for the Fourier
amplitudes – for which the Rice distribution is a good choice as shown in section 6 – one
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Figure 8.1: Comparison of a beam oscillation amplitude measurement during a Precursor 1 and
a Precursor 2 run (where two bunches are in the COSY ring). The raw data included
in this plots was directly taken from the PhD Thesis of Achim Andres (see Figure
7.41 of [35]). The style is different (each bunch in its own plot) to better compare it
to the analysis using the Maximum Likelihood estimator in Figure 8.2.

can correct or at least vastly reduce the bias effect. The result for such a procedure are
shown in Figure 8.2; note that now no estimated amplitude extends below zero. For the
Precursor 1 data (only one single bunch in the machine) the beam oscillations parameters
(slope m and offset b) are typically both pronounced. Therefore it makes no difference,
whether a simple χ2-fit or the more elaborate MLE is used. The results for the two fits
match within less than the 1σ. Especially the slope is almost identical, for both methods.

For the so called pilot bunch in Precursor 2 data, which is not effected by the RF Wien
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filter fields, the Maximum Likelihood fit confirms the result from the χ2-fit, that there is
no build up of the amplitude over the measurement. The slope (parameter m) in the fit
stays well compatible with zero. The starting amplitude (parameter b) is much better
compatible with zero in the 2σ region, when compared to the least squares result, where
b = 0 would be ≈ 8σ away from the desired zero result.

Interestingly the starting amplitude b is shows a very similar behavior for the signal
bunch. It is compatible to 0 within ≈ 1σ for the MLE approach, while a simple χ2-fit
would result in 7σ. One sees a non-zero slope of the beam oscillation amplitude for
the signal bunch already in the simple χ2-fit that stays at roughly 4σ in both analysis
approaches. Since the simple χ2-fit does not start at a b = 0 because of the bias, it
underestimates the slope of the amplitude of the measurement by a factor of roughly two.
The fit results are summarized in Table 4.

Note that the apparent buildup in this analysis, which is seen for the signal bunch,
is not directly the buildup of the vertical polarization, which is used to determine the
Invariant Spin Axis. The vertical polarization can be calculated directly from the left-
right asymmetry of detector events (which is proportional to the vertical polarization)
at a given time bin, and does not depend on a frequency related analysis (e.g. Fourier
Transform). Therefore it is not suffering from the bias effect discussed in this chapter and
naturally starts at zero amplitude. Only when looking at the so called beam oscillation
amplitude parameter a, the bias is introduced in the analysis, but this should not disturb
the determination of the invariant spin axis with the methods used in Achim Andres PhD
Thesis [35].

Still it might be interesting to further investigate also the behavior of the oscillation
amplitude, as the behavior of the Wien Filter is of great interest for the precision of the
measurement (e.g. precision of Wien filter fields). Anyhow one can confirm the absence of
beam oscillations at the Wien filter frequency (assumed equal to the spin tune frequency)
for the pilot bunch, and sees some signal buildup in the oscillation amplitude for the signal
bunch. This signal would be strongly underestimated using conventional fitting methods
in a linear model. To interpret it in terms of a further analysis related to the invariant spin
axis however turns out to be difficult, since correction terms would be needed. E.g. for
the determination of the invariant spin axis one has to correct the corresponding left-right
asymmetry (vertical polarization) using unpolarized cycles by a linear model first (see [35]
pages 63-66), to say something about the effects on polarized data. This avoids so called
fake buildup, which is seen when the Wien Filter is turned on for the signal data. Similar
corrections would be probably needed in this case as well, to get a better feeling for the
nature of this beam oscillation amplitude. But if one wants to study a signal buildup
using Fourier amplitudes in the region of small signal strength, it is necessary to e.g. use
posterior probability distributions, as simple χ2-fits are naturally strongly biased in the
region.
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Figure 8.2: Comparison of a beam oscillation amplitude measurement and corresponding fits
using Gaussian errors (χ2-fit in red) and probability distributions from the Bayesian
approach (MLE-fit in orange).
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Figure 8.3: Comparison of the obtained fit parameters and their log-likelihood functions showing
correlations for the fits shown in Figure 8.2. For the MLE using the RICE distribution
only parameter combinations, which fulfill the requirement of non-negative amplitudes
for the full measurement cycle, are allowed (black exclusion lines).
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9. Conclusion
The JEDI collaboration aims to directly measure the electric dipole moment (EDM) of
charged elementary particles, first of all deuterons, with the existing storage ring COSY
at Forschungszentrum Jülich during the so-called precursor experiment. In a magnetic
ring horizontally polarized particles precess around the vertical axis with the so-called
spin tune frequency. The EDM induces an oscillating vertical polarization due to the
spin precession, however this oscillation is too small to be detected directly. However
measurable signal can be accumulated using a radio frequency Wien Filter which – at the
desired momentum – ideally does not affected the orbit of the particles, but acts only as a
polarization manipulator. However, also various systematic effects can induce a vertical
polarization buildup of the beam, independent from the EDM. Therefore any possible
systematic effect has to be reduced to their absolute minimum. One at least possible
source of systematic effects is not the machine or experiment itself, but the data analysis
procedure. The polarization is measured with a polarimeter: Particles hit a target and
scatter, depending on their polarization, into four different segments of a detector called
up, down, left and right detector as seen from the beam. From the corresponding counts
in the detector, all the signals have to be reconstructed using parameter estimation.

Parameter estimations play an important role in all area of science. However, estimates
of parameters obtained from simple least squares fits, which assume Gaussian errors
can often be biased, even for simple scenarios like the estimation of the amplitude of
a sine-function. This bias is especially important and prominent when the measured
quantity is small compared to its uncertainty. If the relative uncertainty gets small,
limiting theorems and statistical properties usually ensure Gaussian behavior, where
such considerations are not longer essential. Additionally always assuming Gaussian
uncertainties may introduce coverage in non-physical regions of the parameters, in the
case of large relative uncertainties.

In this work the Feldman-Cousins algorithm was used to construct proper confidence
intervals covering only the allowed region P ≥ 0 for the amplitude P of a sine-function
and the results were applied to the corresponding physical quantities such as count rate
asymmetries, which are linked to spin polarization. Furthermore those Feldman-Cousins
confidence intervals were compared with the corresponding Bayesian credible intervals
in detail. The posterior probability density functions for the true amplitude found by
applying Bayes’ theorem was used to study the reduction of fitting bias effects in spin
coherence time measurements (SCT) and applied to a quantity called beam oscillation
amplitude.

For the spin coherence time fits it was proven that the Bayesian posterior probability
density for a true amplitude, given some measured amplitude, using a maximum likelihood
approach leads to better (meaning less biased) fit results compared to simple least squares
fits in the case of dominant statistical uncertainties. For the analysis a simple exponential
toy model of the SCT and a more elaborated model containing the spin tune spread
(developed by Dennis Eversmann) were tested.

In the Precursor experiments it turns out that for the SCT measurements the relative
uncertainties are typically already quite small, therefore the Bayesian estimators indeed
approach the Gaussian limits. As the SCT should be longer than the measurement time
for optimal results of the experiment anyhow (at best τSCT > 1000 s), also the problem of
fitting in bias dominated regions with small remaining amplitudes can typically be avoided.
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The correlations between initial asymmetry (polarization) and SCT are visualized, and by
that also an interesting effect is demonstrated: A measurement with a fitted long SCT
typically has a much larger relative uncertainty on τSCT than a short SCT measurement.

The bias from the fitting procedure remains considerably smaller than the statistical
uncertainty of individual measurements for short SCTs and is even less relevant for desired
long SCT measurements. Only for introductory test measurements with much worse
signal strength and very short SCT obvious differences between a simple least squares fit
and the Bayesian Maximum Likelihood Estimator approach were found. Since long SCTs
are crucial for the quality of EDM experiments, the influence of the described fitting bias
would go down further, when the SCT and in general the average signal strength per time
bin would be improved even more in potential future experiments.

Important physical quantities – like horizontal and vertical polarization respectively
asymmetry – for the established EDM measurement approach involving the determination
of the invariant spin axis are mostly unchanged by the bias from the analysis procedure.
The left-right asymmetry (linked to vertical polarization buildup) is typically constructed
using direct approaches, which do not involve the biased estimators discussed here. The up-
down asymmetry (horizontal polarization) is in principle biased from the analysis procedure
as discussed in this work, however by ensuring a large SCT and large average signal
strengths the bias is small compared to the statistical uncertainty of the measurements.
Especially when (rare) regions with small signal strengths are simply excluded from the
analysis, the bias problems can be mostly avoided without following the more complex
procedures described in this work and sticking to the conventional and established methods.

The situation is different for a quantity called beam oscillation amplitude, which is
not directly related to parameters needed for the EDM measurement but related to the
behavior of the bunches in the machine and the influence of the Wien filter. This device is
interesting, since longitudinal tilts of beam or magnetic field axis have an impact on the
buildup of the vertical component of the spin vector and systematic effects in the Wien
Filter are not yet fully understood. When studying the Fourier transform of the event rates
in all detectors at the Wien filter frequency the behavior of the beam oscillation amplitude
with time cannot be correctly described using simple least squares fits, as uncertainties
dominate and the Fourier amplitudes of those oscillations are biased. When applying the
Bayesian probability theory from this work an expected zero signal for the oscillation
amplitude from bunches unaffected by the Wien Filter can be proven. For the signal
bunches simple fits underestimate the slope of the signal buildup by a factor of 2, since
they start from a biased nonzero amplitude. This amplitude buildup however cannot be
easily related to the already established EDM measurement parameters. Therefore, further
research would be necessary to determine, whether the behavior of this so-called beam
oscillation parameter can actually provide helpful insights for the EDM measurement.
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A. Calculations and Proofs
A.1. Proof of the MSE decomposition
The following proof of the MSE decomposition uses only simple and well know properties:

B(θ̂) = E[θ̂] − θ ⇔ E[θ̂] = θ +B(θ̂) E
[
E[θ̂]

]
= E[θ̂] E[θ] = θ

Var(θ̂) = E
[
(θ̂ − E[θ̂])2

]
= E

[
θ̂2 − 2θ̂E[θ̂] + E[θ̂]2

]
= E

[
θ̂2
]

− E
[
2θ̂E[θ̂]

]
+ E[θ̂]2

= E[θ̂2] − 2E[θ̂]E[θ̂] + E[θ̂]2 = E[θ̂2] − E[θ̂]2

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= E

[
θ̂2 − 2θ̂θ + θ2

]
= E

[
θ̂2
]

− E
[
2θ̂θ

]
+ θ2

= E[θ̂2] − 2E[θ̂]θ + θ2 = E[θ̂2]−E[θ̂]2︸ ︷︷ ︸
Var(θ̂)

+E[θ̂]2 − 2E[θ̂]θ + θ2︸ ︷︷ ︸
(B(θ̂))2

= Var(θ̂) +
(
θ +B(θ̂)

)2
− 2

(
θ +B(θ̂)

)
θ + θ2

= Var(θ̂) +@@θ
2 +

����
2B(θ̂)θ +B(θ̂)2 −Z

Z2θ2 −
����
2B(θ̂)θ +@@θ

2 = Var(θ̂) + (B(θ̂))2

When the parameter θ is not a scalar but a vector (multiple parameters), one typically
chooses the Euclidean norm to define the MSE [38]. Then an analogous decomposition
applies:

MSE(θ̂) = MSE(∥θ̂ − θ∥2) = trace(Cov(θ̂)) + ∥B(θ̂)∥2 =
∑
i

(
Var(θ̂i) + (B(θ̂i)2)

)
(A.1)

where trace(Cov(θ̂)) is the trace of the covariance matrix of the estimator and ∥B(θ̂)∥2 is
the Euclidean square vector norm of the bias vector. Note that this decomposition also
still works component wise.

A.2. Fourier Transform of a Sine and Cosine Function
The discrete turn Fourier transform of the function f [n] = P cos(2πνsn− ϕs) =
A sin(2πνsn) +B cos(2πνsn) is defined as:

f̂(ν) =
∞∑
n=0

f [n]e−in·2πν =
∞∑
n=0

[A sin(2πνsn) +B cos(2πνsn)] e−in·2πν (A.2)

Using Euler’s formula, the sine and cosine function can be expressed as:

sin(2πνsn) = 1
2i
(
e+i(2πνsn) − e−i(2πνsn)

)
(A.3)

cos(2πνsn) = 1
2
(
e+i(2πνsn) + e−i(2πνsn)

)
(A.4)

Therefore one gets for the Fourier transform

f(ν) =
∞∑
n=0

[
A

2i
(
e+i(2πνsn) − e−i(2πνsn)

)
+ B

2
(
e+i(2πνsn) + e−i(2πνsn)

)]
e−in·2πν (A.5)

=
∞∑
n=0

A

2i
(
e+i(2π(νs−ν)n) − e−i(2π(νs+ν)n)

)
+ B

2
(
e+i(2π(νs−ν)n) + e−i(2π(νs+ν)n)

)
(A.6)
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Here only the components at ν = νs and ν = −νs are relevant (as the sum goes to infinity).
For all other values of ν the exponential terms are cyclic if 2π(νs ± ν) · n approaches some
integer multiple of 2π, which happens always for n! ∞. Therefore those terms are small
and zero in the limiting case. Now assume that the sum goes to some index 1 ≪ N ! ∞
and only evaluate at ν = νs. In the limiting case on gets:

f̂(ν = νs) =
N∑
n=0

A

2i
(
e+i(2π(νs−νs)n)

)
︸ ︷︷ ︸

=e0=1

+B2
(
e+i(2π(νs−νs)n)

)
︸ ︷︷ ︸

=e0=1

, (A.7)

= NA

2i + NB

2 = N

2 (B − iA). (A.8)

Therefore one can easily see, that indeed up to some factor 2/N the real part of the DFT
is given by A and the imaginary part is given by B.

Note that the result from DFT is similar to the (non discrete) Fourier transform of the
cosine function (or sine function in complete analogy) B cos(ωst) ≡ B cos(2πνsn). The
prefactor 1

2π is needed to represent the angular frequency ω instead of ν in the final result.
Using again the exponential representation of the cosine the Fourier transform is given by:

F (ω) = 1
2π

∫ +∞

−∞
B cos(ωst) · e−iωt dt = 1

2π

∫ +∞

−∞

B

2
(
e+i(ωst) + e−i(ωst)

)
· e−iωt dt . (A.9)

This can be split into two integrals:

F (ω) = 1
2π

B

2

(∫ ∞

−∞
e+i(ωs−ω)t dt+

∫ ∞

−∞
e−i(ωs+ω)t dt

)
. (A.10)

Each integral is of the form: ∫ ∞

−∞
eiαt dt = 2πδ(α) , (A.11)

where δ(α) is the Dirac delta function. Therefore:

F (ω) = 1
2π

B

2 (2πδ(ω − ωs) + 2πδ(ω + ωs)) . (A.12)

Simplifying this expression one gets

F (ω) = F{B cos(ωst)} = B

2 [ δ(ω − ωs) + δ(ω + ωs)] . (A.13)

In this case again only the true frequency ω = ωs (and the negative equivalent ω = −ωs)
appear in the Fourier representation.

A.3. Fourier Transform of the Rectangular Function
Consider the rectangular function rectN(t), which is defined as:

rectN(t) =
1 if 0 ≤ t ≤ N,

0 otherwise.
(A.14)
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Applying the (continuous) Fourier transformation to the rectangular function rectN(t):

F (ω) =
∫ ∞

−∞
rectN(t)e−iωt dt =

∫ N

0
e−iωt dt (A.15)

This integral can be evaluated as:

F (ω) = e−iωt

−iω

∣∣∣∣∣
N

0
= F (ω) = 1

−iω
(
e−iωN − e0

)
= 1
iω

(
1 − e−iωN

)
(A.16)

Rewriting the expression into a more useful form gives:

F (ω) = 1
iω

(
ei ωN

2 − e−i ωN
2
)
e−i ωN

2 = 2
ω

(
sin
(
ωN

2

))
e−i ωN

2 (A.17)

This expression indicates that the Fourier transform of the rectangular function rectN(t)
is an unnormalized sinc function, scaled by N and shifted in frequency:

F (ω) = F{rectN(t)} = N
sin

(
ωN
2

)
ωN
2

e−i ωN
2 = N · sinc

(
ωN

2

)
e−i ωN

2 (A.18)

where the sinc function is defined as: sinc(x) = sin(x)
x

Another possible way to define the rectangular function rect(t) is to be 1 for |t| ≤ 1
2

and 0 for |t| > 1
2 . The unitary Fourier transform of the rectangular function in this case

is given by: ∫ ∞

−∞
rect(t) · e−i2πft dt = sin(πf)

πf
= sinc(πf). (A.19)

B. Likelihood Method - Variance of Estimators
B.1. Likelihood Method for A and B
Using the theory for maximum likelihood estimation, one can calculate the asymptotic vari-
ance for the estimators Â and B̂ given N measurements following the PDF in Equation 5.8.
Starting from the probability density function, the log-likelihood function reads

ℓ = ln
(
N∏
i=1

f(xi;A,B)
)

=
N∑
i=1

ln
( 1

2π

)
+ ln(1 + A sin(xi) +B cos(xi)). (B.1)

Using the second derivatives

∂2ℓ

∂A2 = −
∑
i

sin2(x)
(1 + A sin(x) +B cos(x))2 , (B.2)

∂2ℓ

∂B2 = −
∑
i

cos2(x)
(1 + A sin(x) +B cos(x))2 , (B.3)

∂2ℓ

∂A∂B
= −

∑
i

sin(x) cos(x)
(1 + A sin(x) +B cos(x))2 , (B.4)
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and their expectation values, where C =
√

1 − A2 −B2 =
√

1 − P 2 ≤ 1 for 0 ≤ P ≤ 1 is
used:〈

∂2ℓ

∂A2

〉
=
∫ 2π

0
−
∑
i

sin2(x)
(1 + A sin(x) +B cos(x))2 · 1

2π (1 + A sin(x) +B cos(x)) dxi

= −N
∫ 2π

0

1
2π sin2(x)

1 + A sin(x) +B cos(x) dx = −NB2C − A2C −B2C2 + A2

C(B2 + A2)2

= ([A2 −B2]C +B2C2 − A2)N
CP 4 = (A2[C − 1] +B2[C2 − C])N

CP 4 ,〈
∂2ℓ

∂B2

〉
= −N

∫ 2π

0

1
2π cos2(x)

1 + A sin(x) +B cos(x) dx = −NA2C −B2C − A2C2 +B2

C(B2 + A2)2

= ([B2 − A2]C + A2C2 −B2)N
CP 4 = (B2[C − 1] + A2[C2 − C])N

CP 4 ,〈
∂2ℓ

∂A∂B

〉
= −N

∫ 2π

0

1
2π sin(x) cos(x)

1 + A sin(x) +B cos(x) dx = −N−2ABC + ABC2 + AB

C(B2 + A2)2

= (2ABC − ABC2 − AB)N
CP 4 = −(C2 − 2C + 1)ABN

CP 4 = −(C − 1)2ABN

CP 4 .

Note that the results are fully symmetrical A ⇔ B. The inverse of the covariance matrix
for (θ1, θ2) ≡ (A,B) is:

cov−1(A,B) = −
〈

∂2ℓ

∂θi∂θj

〉
=

 −(A2[C−1]+B2[C2−C])N
CP 4

(C−1)2ABN
CP 4

(C−1)2ABN
CP 4

−(B2[C−1]+A2[C2−C])N
CP 4

 . (B.5)

The inverse of a 2 × 2 matrix is calculated via the determinant and the adjugate matrix.
The determinant of the matrix is det(cov−1(A,B)) = N2(C−1)2

CP 4 .

det(cov−1(A,B)) = N2 (A4C2 − 2A4C + A4 + 2A2B2C2 − 4A2B2C + 2A2B2 +B4C2 − 2B4C +B4)
CP 8

(B.6)

= N2 (C2 − 2C + 1)
CP 4 = N2(C − 1)2

CP 4 (B.7)

From the inversion of the inverse covariance matrix one finds the variances. Note the
typical behavior of all entries ∝ N−1:

cov(A,B) = 1
det(cov−1(A,B)) · adj(cov−1(A,B)) =

 A2C+B2

N(1−C) −AB
N

−AB
N

A2+B2C
N(1−C)

 . (B.8)

σA =

√√√√A2C +B2

N(1 − C) σB =

√√√√A2 +B2C

N(1 − C) covA,B = −AB

N
(B.9)

The correlation coefficient for A and B is only zero for A = 0 or B = 0, when the sine
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or cosine term vanishes, otherwise it is given by

ρA,B = covA,B
σAσB

=
−AB

N√
A2C+B2

N(1−C) · A2+B2C
N(1−C)

= −AB

N
·
√
N(1 − C)
A2C +B2 · N(1 − C)

A2 +B2C
(B.10)

= − AB(1 − C)√
(A2C +B2) · (A2 +B2C)

= − AB(1 − C)√
(A4 +B4)C + A2B2(C2 + 1)

(B.11)

To understand the limiting behavior for σA in the case P ≪ 1 it is convenient to
write A2 = P 2 −B2. The Taylor expansion up to order O(P 4) is given by

σ2
A = A2√1 − P 2 +B2

N(1 −
√

1 − P 2)
= 1
N

(P 2 −B2)
√

1 − P 2 +B2

1 −
√

1 − P 2
P 2≪1≈ 2

N

(
1 − 3P 2 − 2B2

4 − P 4

16

)

And of course the same applies to σB, with B2 = P 2 − A2:

σ2
B = A2 +B2√1 − P 2

N(1 −
√

1 − P 2)
P 2≪1≈ 2

N

(
1 − 3P 2 − 2A2

4 − P 4

16

)

Notice that the only remaining terms for A = B = P = 0 is 2/N . For small amplitudes
0 < P ≪ 1 corrections do apply, always reducing σA and σB because the O(P 2) term is
negative. The error on P =

√
A2 +B2 calculated from Gaussian error propagation is:

σ2
P =

(
∂P

∂A
σA

)2

+
(
∂P

∂B
σB

)2

+ 2∂P
∂A

∂P

∂B
σAσBρA,B =

A2σ2
A +B2σ2

B + 2ABσAσB covA,B

σAσB

P 2

=
A2A2C+B2

N(1−C) +B2A2+B2C
N(1−C) + 2AB−AB

N

P 2 = A4C + A2B2 + A2B2 +B4C − 2A2B2(1 − C)
P 2N(1 − C)

= A4C +B4C + 2A2B2C

P 2N(1 − C) = P 2C

N(1 − C) = P 2√1 − P 2

N(1 −
√

1 − P 2)
= P 2

N
(√

1/(1 − P 2) − 1
)

The error on φ = arctanA/B also calculated by Gaussian error propagation is:

σ2
φ =

(
∂φ

∂A
σA

)2

+
(
∂φ

∂B
σB

)2

+ 2∂φ
∂A

∂φ

∂B
σAσBρA,B =

B2σ2
A + A2σ2

B + 2B(−A)σAσB covA,B

σAσB

P 4

=
B2A2C+B2

N(1−C) + A2A2+B2C
N(1−C) − 2AB−AB

N

P 4 = A2B2C +B4 + A4 + A2B2C + 2A2B2(1 − C)
P 4N(1 − C)

= A4 +B4 + 2A2B2

P 4N(1 − C) = 1
N(1 − C) = 1

N(1 −
√

1 − P 2)
=

√
1/(1 − P 2)

N
(√

1/(1 − P 2) − 1
)

B.2. Likelihood Method for Amplitude and Phase
Starting from the probability density function

f(x;P, φ) = 1
2π (1 + P cos(x− φ)) , 0 ≤ x < 2π , (B.12)
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the log-likelihood function reads

ℓ = lnL =
N∑
i=1

ln
( 1

2π

)
+ ln(1 + P cos(xi − φ)) . (B.13)

Using the second derivatives

∂2ℓ

∂P 2 = −
∑
i

cos2(x− φ)
(1 + P cos(x− φ))2 , (B.14)

∂2ℓ

∂φ2 = −
∑
i

−P (P + cos(x− φ))
(1 + P cos(x− φ))2 , (B.15)

∂2ℓ

∂P∂φ
= −

∑
i

sin(x− φ)
(1 + P cos(x− φ))2 (B.16)

and their expectation values 〈
∂2ℓ

∂P 2

〉
= N

1 −
√

1/(1 − P 2)
P 2 , (B.17)

〈
∂2ℓ

∂φ2

〉
= N

1 −
√

1/(1 − P 2)√
1/(1 − P 2)

, (B.18)

〈
∂2ℓ

∂P∂φ

〉
= 0 . (B.19)

the variances of P and φ can be calculated directly, since the corresponding matrix is
diagonal. The correction terms up to O(P 4) are also given by

σ2
P = −1〈

∂2ℓ
∂P 2

〉 = 1
N

P 2√
1/(1 − P 2) − 1

P 2≪1≈ 2
N

(
1 − 3

4P
2 − 1

16P
4
)
, (B.20)

σ2
φ = −1〈

∂2ℓ
∂φ2

〉 = 1
N

√
1/(1 − P 2)√

1/(1 − P 2) − 1
P 2≪1≈ 2

NP 2

(
1 − 1

4P
2 − 1

16P
4
)
. (B.21)

C. Derivation of the Rice Distribution
Starting from the two dimensional probability distribution (where f(Â|B) and f(B̂|B)
are both simple Gaussians) the transformation to P̂ and φ̂ including the “polar” Jacobian
determinant P̂ yields

f(Â|A)f(B̂|B)dÂdB̂ = 1
2πσ2 e−(Â−A)2/(2σ2)e−(B̂−B)2/(2σ2) dÂ dB̂ (C.1)

f(P̂ , φ̂|P, φ) dP̂ dφ̂ = 1
2πσ2 e−(P̂ sin φ̂−P sinφ)2/(2σ2)e−(P̂ cos φ̂−P cosφ)2/(2σ2) P̂dP̂dφ̂ (C.2)

= 1
2πσ2 e−(P̂ 2+P 2)/(2σ2)e−(2P̂P (sinφ sin φ̂+sinφ sin φ̂)/(2σ2) P̂d P̂ dφ̂ (C.3)

Performing the integration over all possible angles φ̂ the Rice distribution is obtained
(with I0 as the modified Bessel function of first kind).
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∫ 2π

0
e(2PP̂ (sin(φ) sin(φ̂)+cos(φ) cos(φ̂))/(2/σ2)dφ̂ = 2πI0

(
PP̂

σ2

)
(C.4)

⇒ f(P̂ |P ) = P̂

σ2 e−(P̂ 2+P 2)/(2σ2) I0

(
PP̂

σ2

)
. (C.5)

C.1. Transition from a Rice Distribution to a Gaussian
The Bessel function can be approximated as

Iα(z) ! ez√
2πz

(
1 − 4α2 − 1

8z + · · ·
)

as z ! ∞ (C.6)

so, in the large P̂P/σ2 region, an asymptotic expansion of the Rice distribution is given
by:

f(x, P, σ) = P̂

σ2 exp
(

−(P̂ 2 + P 2)
2σ2

)
I0

(
P̂P

σ2

)
(C.7)

≈ P̂

σ2 exp
(

−(P̂ 2 + P 2)
2σ2

)√
σ2

2πP̂P
exp

(
2P̂P
2σ2

)(
1 + σ2

8P̂P
+ · · ·

)
(C.8)

approx
1√
2πσ

exp
(

−(P̂ − P )2

2σ2

)√
P̂

P
, as P̂P

σ2 ! ∞ (C.9)

When the density is concentrated close around P and |P̂ − P | ≪ σ because of the
Gaussian exponent, one can also approximate

√
P̂ /P ≈ 1 and finally gets the Gaussian

approximation:

f(P̂ , P, σ) ≈ 1√
2πσ

exp
(

−(P̂ − P )2

2σ2

)
,

P

σ
≫ 1 (C.10)

This approximation becomes well usable for P
σ

≈ 3 and larger.

C.2. Bayes-Theorem for Gaussian with Constant Prior
Consider a Gaussian probability distribution N (x|µ, σ) and for simplicity assume the
variance V = σ2 is known from the start. Therefore one does not have to write σ as a
parameter of the distribution, and without loss of generality considers the Gaussian PDF
where σ = 1.9

N (x|µ, σ) = 1√
2πσ2

exp
(

(x− µ)2

2σ2

)
. (C.11)

P (B|A) ≡ N (x|µ) = 1√
2π

exp
(1

2(x− µ)2
)
. (C.12)

Here the constant prior for the true mean is defined as P (A) ≡ P (µ) ≡ 1
C

in such a
way that

∫∞
−∞ P (A) dA = 1. Note that no constant C ∈ R fulfills this, but obviously

9This is equivalent to a PDF considering the Gaussian depending on a signal to noise ratio γ = µ/σ.
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∫+c/2
−c/2

1
c

dA = 1, and one simply lets c ! ∞ to reach what is described with C in the
limiting case. Also notice how the parameter space is not constrained and therefore
x, µ ∈ (−∞,+∞).

P (A|B) = P (A,B)
P (B) = P (B|A)P (A)

P (B) = P (B|A)P (A)∫
A P (B|A)P (A) dA (C.13)

P (µ|x) = N (x|µ) · P (µ)∫
N (x|µ) · P (µ) dµ =

1√
2π exp

(
1
2(x− µ)2

)
·
�
�1
C∫ 1√

2π exp
(

1
2(x− µ)2

)
·
�
�1
C

dµ
(C.14)

=
1√
2π exp

(
1
2(x− µ)2

)
∫ 1√

2π
exp

(1
2(x− µ)2

)
dµ︸ ︷︷ ︸

=
∫

N (x|µ) dµ=1

= 1√
2π

exp
(1

2(x− µ)2
)

= N (x|µ) = N (µ|x)

(C.15)

Indeed P (A|B) = P (B|A) for the Gaussian distribution with constant prior, and also
both PDF are normal distributions with the same true mean at x = µ.

D. Mapping Method
It is not possible to determine the spin precession frequency fs directly from the observed
event rates by a simple least squares fit with νs as a parameter, because the spin precession
frequency is given by fs = |νs| · fRF ≈ SI0.16 · 750 kHz = 120 kHz, and for a detector with
an average event rate of a few kilo hertz, multiple spin revolutions happen between each
detection.

The algorithm described below is used to map all events from a chosen turn interval
∆n into one oscillation period to accumulate enough statistics to extract properly the
amplitude and phase of the precession. The algorithm generates asymmetries, which has
the advantages, that those are largely independent of variations of acceptance or flux. A
turn interval ∆n = 106 corresponds to a time interval ∆T = 1/fRF · ∆n ≈ 1.3 s.

For the analysis some (fixed) spin tune ν0
s has to be chosen, which is typically close

around the expected spin tune. Each of the turn intervals is analyzed independently, and
the events are mapped into a 4π interval depending on their spin phase advance

ϕν
0
s
s,map = 2πν0

sn mod 4π = ϕν
0
s
s (n) mod 4π . (D.1)

This yields the event counts for the up NU(ϕν0
s
s,map) and the down ND(ϕν0

s
s,map) detector

quadrant. An example is given in Figure D.1. Here in total Ntot ≈ 105 events were
recorded (≈ 6000 for the up and ≈ 4000 for the down detector). The 4π interval is divided
into Nbins = 40 bins (meaning 20 bins per 2π). The minimum number of events per bin is
greater than 50 (up to 200) depending on the detector quadrant and the mapped spin
phase advance ϕν0

s
s,map. The number of events in each bin is assumed to follow a Poisson

distribution, therefore σN =
√
N is used for the errorbars. A simple least squares fit is

performed by a sine function with three free parameters

Nfit(ϕν
0
s
s,map) = Noffset +Namp sin

(
ϕν

0
s
s,map + ϕ

ν0
s
s,fit

)
(D.2)
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Figure D.1: Counts NU and ND after mapping some events recorded during a turn interval
of ∆n = 106 turns (1.3 s) into a spin phase advance interval of 4π. The vertical
error bars indicate the statistical uncertainties and horizontal bars represent the
corresponding bin width (plot reproduced from [36], also compare [49]).

The quantities Namp and ϕ
ν0

s
s,fit are the amplitude and the phase of the sine. Noffset

denotes the offset of the function and is equal to the average number of events per bin.
Note that this sine function is very similar to the toy model probability density discussed
in detail in this work (there for binning in 2π). The total number of events in the analysis
is approximately Ntot ≈ Noffset · Nbins. When norming the average number of events to
unity the maximum possible amplitude is again one, since the number of events per bin
cannot be negative.

Note that the spin phase advance is mapped properly into the 4π interval only when
the assumed spin tune matches the true one ν0

s ≈ νs. If the assumed spin tune is far off
only random fluctuation do occur, but the fit will still find some small amplitude (due to
the fitting bias), if the phase is not fixed. The event rates of the two detectors are shifted
by ≈ π, since the rate of the up detector quadrants becomes maximal whilst the down
detector quadrants reaches the minimum. All the absolute detection rates are depending
on the individual detector properties and the beam luminosity. Also the corresponding
oscillation amplitude Namp is expected to scale with the total number of detected events
and thus depends on the detector geometry and acceptance.

D.1. Asymmetries from Count Sums and Differences
To cancel out the systematic effects, asymmetries are formed by using both detectors.
Finally two sinusoidal waveforms oscillating around zero (differences) and two constant
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Figure D.2: Count sums N+
U,D(ϕs) and differences N−

U,D(ϕs) calculated according to Equation D.3
with ϕs ∈ [0, 2π) using the counts NU (ϕs) and ND(ϕs) from both detectors as shown
in Figure D.1. Again the vertical error bars indicate the statistical uncertainties,
the horizontal bars represent the bin width (plot reproduced from [36] and [49]).

function (sums) are obtained by defining four new event counts for the two quadrants (X
= U or D):

N±
X (ϕν0

s
s,map) =

NX(ϕν0
s
s,map) ±NX(ϕν0

s
s,map + 3π) for 0 ≤ ϕs ≤ π

NX(ϕν0
s
s,map) ±NX(ϕν0

s
s,map + π) for π ≤ ϕs ≤ 2π.

(D.3)

The resulting sums (N+
U,D(ϕν0

s
s,map)) and differences (N−

U,D(ϕν0
s
s,map)) of the counts using

Equation D.3 are depicted in Figure D.2. The asymmetry

ϵ(ϕν0
s
s,map) = N−

U (ϕs) −N−
D (ϕs)

N+
U (ϕs) +N+

D (ϕs)
= ϵUD · cos

(
ϕν

0
s
s,map − ϕ

)
(D.4)

now makes use of both these sine-like signals and norms them by the total number of
events in the turn interval. The asymmetry is defined in the range ϕν0

s
s,map ∈ [0, 2π), where

again the maximal possible amplitude ϵUD is one. The amplitude is proportional to the
horizontal vector polarization pξ, which can be determined if the cross section σ0X and
the analyzing power are known for both detectors. If one calculates 1

2π (1 + ϵ(ϕν0
s
s,map)) i.e.

scales values and uncertainties accordingly, a probability distribution fully identical to the
one discussed in this master thesis is obtained. Therefore the results from the analysis of
the toy model sine function are fully transferable to the spin tune analysis done by the
mapping method.

89



(a) (b)

Figure D.3: Spin tune phase and spin tune over the number of turns for COSY Precursor 1 Data.
A precision of 10−9 is reached, and the typical difference between different analysis
methods is shown. The fitting is done using a polynomial of 8th order. This plots
are taken from [58].

D.2. Precise Spin Tune from Polynomial Fits
Figure D.3 shows a precise spin tune determination from Precursor data. Relevant for this
work is the fact, that the small deviation in the spin tune are not effecting the amplitude
estimation procedure. The typical precision obtained when searching for the correct spin
tune is more than one order of magnitude better than what is needed for estimating
the correct peak amplitude (with corresponding uncertainty). This observation is what
was called “quasi fixed spin tune” regarding the amplitude in this work. The observed
amplitudes should not be significantly influenced by any statistical effects related to the
analysis of the spin tune.

Note that nevertheless the estimated amplitudes between the methods (Up Detector,
Down Detector and Mapping) can be and are significantly different, if the beam is e.g.
influenced by the Wien Filter Fields, or generally if the symmetry between the detectors is
broken. Such effects do cause the differences in phase and spin tune shown in Figure D.3,
but even if the spin tune would not change for the analysis, the amplitudes are changed
(almost) in the same way as in the detailed analysis. Combining the individual detectors
using a (weighted) average can typically reproduce the mapped signal amplitude.
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