
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

Simulation and Optimization of the Spin

Coherence Time of Protons in a Prototype

EDM Ring

by

Maximilian Vitz

Master Thesis

submitted to the

Faculty for Mathematics, Computer Science and Natural Science

of the RWTH Aachen University

in October 2020

carried out at the

III. Physikalischen Institut B

under

Prof. Dr. Andreas Lehrach





Abstract

Simulation and Optimization of the Spin Coherence Time of

Protons in a Prototype EDM Ring

The matter-antimatter asymmetry in the Universe might be understood by investigat-

ing the Electric Dipole Moment (EDM) of elementary charged particles. A permanent

EDM of a subatomic particle violates time reversal and parity symmetry at the same time

and would be a strong indication for physics beyond the Standard Model. The Jülich

Electric Dipole moment Investigations (JEDI) collaboration is carrying out a project for

the direct measurement of a permanent EDM of protons and deuterons. For this reason a

dedicated electrostatic storage ring is in development. As an intermediate step a prototype

ring is being developed to demonstrate su�cient beam lifetime and Spin Coherence Time

(SCT) in a pure electrostatic ring as well as in a storage ring with combined electric and

magnetic bending elements. The scope of this thesis is the simulation of a prototype ring

with combined electric and magnetic bending elements and the investigation of the in�u-

ence of chromaticity on the SCT. It will be shown that a vanishing horizontal and vertical

chromaticity does not cause the maximal SCT, as one might expect from initial theoretical

considerations. The optimal sextupole settings have to be determined individually for each

working point as will be demonstrated within this thesis.
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Simulation und Optimierung der Spin Kohärenz Zeit von Pro-

tonen in einen Prototype EDM Ring

Die Asymmetrie zwischen Materie und Antimaterie im Universum könnte durch die Un-

tersuchung des Elektirschen Dipole Momentes (EDM) von elementar geladenen Teilchen

verstanden werden. Das permanente EDM eines subatomaren Teilchens verletzt die Zeit

Umkehr und Parität gleichzeitig und wäre ein Anzeichen für Physik jenseits des Standard

Models. Die Jülich Electric Dipole moment Investigations (JEDI) Collaboration führt

ein Projekt zur direkten Messung des permanenten EDMs von Protonen and Deuteronen

durch. Aus diesem Grund ist ein geeigneter elektrostatischer Speicherring in Entwick-

lung. Als Zwischenschritt wird ein Prototype entwickelt um ausreichende Lebenszeit des

Teilchenstrahls sowie Spin Kohärenz Zeit (SCT) in einem rein elektrischen Ring und in

einem Ring mit kombinierten elektrischen und magnetischen Dipolen zu demonstrieren.

Ziel dieser Arbeit ist die Simulation eines solchen Prototype Ringes und mithilfe dieser

den Ein�uss der Chromatizität auf die SCT zu untersuchen. Es wird gezeigt werden,

dass eine verschwindende horizontale und vertikale Chromatizität nicht die maximale SCT

verursacht, wie man durch anfängliche theoretische Überlegungen erwarten würde. Diese

Arbeit zeigt, dass die optimalen Sextupole Einstellungen individuell für jeden Arbeitspunkt

bestimmt werden müssen.
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1 Introduction

The object of physics is the explanation of nature in equations and mathematical models.

The most known model is the Standard Model (SM) of particle physics. It is an overall

accepted model which describes elementary particles and their interactions. The SM was

con�rmed by many experimental observations and also provided predictions which lead to

many new discoveries. Despite its success there are also �elds in modern physics where the

SM lacks an explanation. One of theses �elds is the dominance of matter over antimatter

in the known part of the Universe. Although SM predicts such an asymmetry, the observed

asymmetry is magnitudes higher than the SM prediction. One possible explanation for this

observation is the disappearance of antimatter during the baryogenesis of Universe. This

would require a violation of fundamental symmetries. A new particle property called the

EDM can explain this violation process. Its in�uence is strongly suppressed in the SM [1].

The JEDI collaboration at the Institut für Kernphysik in the Forschungszentrum Jülich is

investigating the EDM of charged particles. It is planned to perform a direct measurement

of the EDM of protons and deuterons using a storage ring. The general idea is to store

a bunch of particles with initial longitudinal spin polarization and measure the vertical

polarization build-up with a polarimeter. Such an experiment is currently performed at

the Cooler Synchrotron (COSY) in Jülich and should deliver �rst measurements on the

deuteron EDM magnitude. As the EDM is coupled to the particles spin it would lead to

a build-up of vertical polarization by radial electric �elds. To increase the magnitude of

these �elds and to reduces systematic uncertainties a new purely electrostatic storage ring

is in development. Before building such a dedicated ring the feasibility of such an EDM

measurement in a storage ring has to be shown, technical issues have to be clari�ed and

simulations have to be performed. For this reason a prototype ring is planned. The proto-

type ring should be much smaller than the �nal ring and operate in two di�erent modes.

The �rst mode should be a pure electric mode and the second should combine electric and

magnetic �elds. In the end this prototype should demonstrate su�cient beam lifetime and

SCT, which indicates how long the spin remains aligned with the particle's momentum,

and work as a proof of principle experiment [2][3].

The aim of this thesis is to simulate the beam and spin motion in the prototype EDM

storage ring (PTR). The simulation should show �rst results of the SCT in dependency

of the chromaticity con�guration in the ring. Additionally, the variability of the betatron

tunes and other ring properties are investigated. The software library Bmad is used as a
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tool to simulate an idealized model of the prototype ring.

This thesis has the following structure: Chapter 2 gives a short scienti�c motivation for

an EDM measurement. There, it will also be explained what an EDM is and why it may

be so important for modern physics. The theoretical background for a measurement of an

EDM in a storage ring is provided in chapter 3. In particular the beam and spin motion

in a storage ring are discussed. In chapter 4 the properties of the PTR are explained and

its implementation into the simulation tool Bmad is shown. Possible working points by

variation of the quadrupoles are examined in chapter 5. The natural chromaticity of the

individual working points and its correction through sextupoles is also discussed. Chapter

6 shows �rst simulation results on the SCT and the spin tune spread for one working point

with di�erent chromaticity con�gurations. Chapter 7 summaries the results of this thesis

and gives an outlook on the future of this project.
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2 Scienti�c Motivation

2.1 Matter-Antimatter Asymmetry

The amount of matter in the Universe is exceeding the amount of antimatter by far. This

is a surprising fact, as one expects that after the big bang the Universe consisted of equal

amounts of matter and antimatter. The asymmetries magnitude has been measured by a

series of measurements of cosmic microwave background radiation and summarized in the

baryon-to-photon density ratio [4][5]:

η =
nb − nb̄
nγ

= (6.08± 0.09) · 10−10. (2.1)

The ratio is depending on the baryon density nb and anti-baryon density nb̄ as well as the

photon density nγ . The SM of particle physics also describes such an asymmetry, although

its prediction is about eight orders of magnitude smaller than the observed ratio [6]:

nb
nγ

=
nb̄
nγ
≈ 10−18. (2.2)

The measured asymmetry may be explained by an asymmetric annihilation process of

matter and antimatter which is resulting in the measured excess of matter. To realize such

an annihilation process three conditions formulated by Sakharov need to be ful�lled [7]:

• Violation of Baryon number: The annihilation process has to violate the baryon

number conservation, otherwise there is no possible way out of an initial baryon

charge number of B=0.

• Violation of C and CP: It has to violate C and CP so that the rates of baryon

production and antibaryon production are di�erent.

• No thermal equilibrium: The annihilation process had to take place during a

stage of non-equilibrium in Universe, since otherwise CPT-symmetry would assure

that 〈B〉=0 holds in average.

The violation of the baryon number can be explained within the SM. However, the C and
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CP violation in the SM is too small to explain the measured asymmetry. Therefore, there

have to be other sources of C and CP violation. This is one of the few existing indicators

that there might be physics beyond the Standard Model [4].

2.2 Electric Dipole Moment

One additional source of CP violation could be the EDM ~d which is de�ned as a permanent

separation of charges inside a particle. Similar to the Magnetic Dipole Moment (MDM) ~µ

it is a fundamental property of a particle and aligned parallel or anti-parallel to its spin ~s

[8]:

~d =
η

2

e

m
~s (2.3)

~µ =
g

2

e

m
~s. (2.4)

In these equations e denotes the elementary charge of a particle and m is its mass. The

parameters g and η are dimensionless scaling factors for the di�erent dipole moments.

Considering the MDM and the EDM of a particle it leads to the following Hamiltonian [9]:

H = −~µ · ~B − ~d · ~E. (2.5)

The external electric �eld is described with ~E and the corresponding magnetic �eld with
~B. The parity and time reversal symmetries get violated by applying their transformation

rule to this Hamiltonian. Violating P and T also implies CP violation assuming that CPT

symmetry is conserved [4].

The SM predicts an EDM although its magnitude is exceedingly small. In case of nucleons

the calculations of SM lead to a magnitude of 10−33 e·cm < dN < 10−31 e·cm. Measuring

an EDM at a higher limit than the SM prediction would increase CP violation and could

explain the measured asymmetry between matter and antimatter. Up to now only upper

limits for an EDM were found but no EDM signal itself. It is not su�cient to measure

only the EDM of one particle, e.g. the neutron, because the source of the EDM cannot be

found this way. The results for upper limits of di�erent particles are summarized in table

(2.1) [10][11]:

Table 2.1: Current upper limits of EDM searches.

Particle Neutron Proton Electron

|d| 2.9 · 10−26 e cm 7.9 · 10−25 e cm 8.7 · 10−29 e cm

(90% C. L.) [12] (95% C. L.) [13] (90% C. L.) [14]
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3 Theoretical Background

The EDM of elementary charged particles can be investigated via storage rings. The

knowledge of beam and spin dynamics is essential for such an investigation. The follow-

ing chapter will present basic knowledge of accelerators physics. Also methods for EDM

measurements in storage rings will be discussed.

3.1 Coordinate System

In a �rst step a coordinate system for storage rings has to be de�ned. As the dimensions of

a beam are very small in comparison to the whole storage ring the particle coordinates are

describe in relation to its ideal trajectory around the storage ring. The individual particle

is described in a co-moving coordinate system which has its origin on the ideal orbit. The

horizontal discrepancy of the reference particles to the described particle is marked x, the

vertical with y and the longitudinal with z. The co-moving coordinate system is illustrated

in �gure (3.1). The transformation of the basis vectors from one place s to another s′ is

de�ned by a simple rotation [15][16]:

Figure 3.1: Co-moving coordinate system with the Cartesian coordinates ~ex, ~ey and ~ez
at two position s and s′ inside the storage ring. The parameter θ denotes
the angular between the two position s and s′. The origin of the coordinate
system is always the particle on the ideal trajectory which is called the reference
particle. Inspired by [15].
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~e(s′)x = cos(θ) · ~e(s)x + sin(θ) · ~e(s)z (3.1)

~e(s′)y = ~e(s)y (3.2)

~e(s′)z = − sin(θ) · ~e(s)x + cos(θ) · ~e(s)z. (3.3)

3.2 Beam Dynamics

A particle beam consists of a multitude of particles. The motion of each of these particles

can be described relative to the reference particle. In addition to the previously discussed

physical o�sets in the Cartesian coordinates there are corresponding o�sets in the mo-

menta. The spatial o�sets and the momentum o�sets form a six dimensional phase space.

Di�erential equations can be derived for this six dimensional phase space to describe the

motion of the single particle in the storage ring [15][16].

3.2.1 Transverse Beam Dynamics

The transverse phase space is de�ned as the plane spanned between horizontal ~e(s)x and

vertical ~e(s)y coordinates. In this section the equation of motion in this plane will be

discussed. For this purpose a storage ring design with static transversal magnetic �elds up

to linear order will be considered.

Static Magnetic Field

A static transversal magnetic �eld B is needed to keep the reference particle with momen-

tum p on its circular trajectory through the accelerator. The basic equation describing

the necessary magnetic �eld comes from setting the Lorentz force equal to the centrifugal

force. Since the transverse beam dimensions are small compared to the bending radius R

of the particle trajectory, one can develop the magnetic �eld for small deviations from the

ideal trajectory which results in [15][16]:

1

R(x, y, z)
=
e

p
By(x, y, z) (3.4)
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⇒ e

p
By(x) =

e

p
By,0 +

e

p

dBy
dx

x +
1

2!

e

p

d2By
dx2

x2 + ...

=
1

R
+ kx +

1

2!
mx2 + ...

Dipole Quadrupole Sextupole

One obtains a description which shows the impact of di�erent magnet con�gurations as the

dipole, quadrupole and the sextupole. Also higher order con�gurations can be considered

in this way. The quantities k and m represent the strengths of the quadrupole and the

sextupole.

Hill's Di�erential Equation

Hill's di�erential equation is the fundamental basis to describe the particle motion in the

transverse phase space. It considers �eld components up to linear order which include

dipoles and quadrupoles but no sextupoles. With this approach the horizontal and vertical

motion decouple and behave independently from each other as can be described by [15]:

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆p

p
(3.5)

z′′(s) + k(s)z(s) = 0. (3.6)

In equation (3.6) the quantities x′′(s) and z′′(s) denotes the second derivation after the

quantity s. An other s depended quantity is the bending radius R(s) which only contributes

at places where dipole �elds are present. The same applies to k(s) which is the strength of a

quadrupole and only arises in quadrupole �elds. Its sign is varying between equation (3.5)

and (3.6). The reason for that behavior is that a quadrupole can only be focusing in one

direction but defocuses in the other. The de�nition chosen here is that a positive k value

is describing a horizontally defocusing quadrupole. A momentum deviation of a particle in

relation to the reference particle is described by ∆p/p. The momentum deviation is only

present in equation (3.5) and is sketching that longitudinal phase space and horizontal

phase space are coupled [15].

Dispersion

As shown in equation (3.5) the horizontal motion of a particle is in�uenced by its mo-

mentum deviation compared to the reference particle. The particle motion inside a dipole

where no quadrupole �eld is present can therefore be described by [15]:

7



x′′(s) +
1

R2(s)
x(s) =

1

R(s)

∆p

p
. (3.7)

Equation (3.7) is an inhomogeneous di�erential equation and therefore its solution is a

combination of a homogeneous part x(s) and an inhomogeneous part xD(s). The homoge-

neous solution shows the evolution of the phase space coordinates of an observed particle if

no deviation in momentum to the reference particle would be present. The inhomogeneous

solution is shifting the motion to dispersive trajectories described by [15]:

xg(s) = x(s) + xD(s) = x(s) +D(s)
∆p

p
. (3.8)

The property D(s) which is describing the dispersive trajectory xD(s) is called dispersion.

It is directly connected to the curvature R(s) as it occurs due to a mismatch of bending

power of the dipoles in presence of a momentum deviation [15].

Particle Emittance

Without considering a momentum o�set equation (3.5) becomes a di�erential equation

very similar to equation (3.6). Both equations di�er from the di�erential equation of the

harmonic oscillator by the s dependence of k, which would be constant in case of a harmonic

oscillator. Nevertheless a similar approach to solve the di�erential equation can be used.

The di�erential equation and its solution is exemplary sketched for the horizontal phase

space in the following equations [15]:

x′′(s)− k(s)x(s) = 0 (3.9)

⇒ x(s) =
√
ε
√
β(s) cos(ψ(s) + φ). (3.10)

The combination of
√
ε
√
β(s) forms a location-dependent amplitude of the oscillation. Here

the parameter ε is a constant for an individual particle and named one-particle emittance.

The so called β-function is an optical parameter which is varying with the beam focusing

and therefore depends on s. Together with the phase advance ψ(s) and the phase φ these

quantities describe the motion of an individual particle in the horizontal phase space. The

phase advance is directly connected to the β-function via [15]:

ψ(s) =

∫ s

0

1

β(s′)
ds′. (3.11)

8



Phase Space Ellipse

The importance of the β-function is also shown by the fact that it de�nes two additional

system parameters α and γ. These three quantities together are called optical functions

[15]:

α(s) = −

(
dβ(s)
ds

)
2

(3.12)

γ(s) =
1 + α2(s)

β(s)
. (3.13)

The optical functions can be derived for the horizontal and the vertical phase space. With

the help of these system parameters and the equation for the orbital movement in the

horizontal plane x(s) and vertical plane y(s) as well as their derivation x′(s) and y′(s) one

obtains the so called phase space ellipse. It is described exemplary for the horizontal phase

space in equation (3.14) and sketched in �gure (3.2). The vertical phase space behaves

identically. The form and orientation of the ellipse depends on the β-function. Its area is

de�ned by the Courant-Snyder-Invariant constant ε [15].

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ε (3.14)

Figure 3.2: Phase space ellipse for horizontal phase space at an arbitrary position inside
the storage ring. The x-axis shows the horizontal o�set x of a particle relative
to the reference particle and the y-axis the derivation of the horizontal o�set
x′. The quantities α, β and γ are the optical functions of the horizontal phase
space. The area A of the ellipse is de�ned by the Courant-Snyder-Invariant ε.
Inspired by [15].
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Beam Emittance

In a beam, there are many particles that move with di�erent amplitudes, so that the

areas of the phase ellipses are also di�erent. Thus, a mean emittance must be assigned

to the beam. To derive a de�nition of the emittance of a particle beam, one considers an

equilibrium distribution of all particles, which is constant in time. This can be described

by a two dimensional Gaussian distribution in the transversal phase space in an idealized

case [15]:

ρ(x, y) =
Ne

2πσxσy
exp

(
− x

2σ2
x

− y

2σ2
y

)
. (3.15)

In this equation N shows the number of particles while σx and σy represent the standard

deviation of the Gaussian distribution. The standard deviation is connected to the beam

emittance εbeam via [15]:

σbeamx,y(s) =
√
εbeamx,y · β(s) (3.16)

εbeamx,y =
σ2
beamx,y

(s)

β(s)
(3.17)

Betatron Tune

As the quadrupoles are used for beam focusing they also de�ne the number of betatron

oscillations a particle performs during one turn in a storage ring. This is described by the

β-function. The number of betatron oscillations during one turn is called betatron tune.

It needs to be calculated for the horizontal and the vertical phase space separately for an

uncoupled motion which is shown in equation (3.18), where i denotes the horizontal and

vertical phase space respectively [15]:

Qi =
1

2π

∮
ds

βi(s)
. (3.18)

The combination of horizontal and vertical betatron tune de�nes the working point of a

storage ring. If the working point ful�lls a so called resonance condition the amplitude of

a particle is growing massively which lead to a loss of the particle. A resonance condition

is build up on the incident that a particle is facing the same storage ring structure in

every turn. In result the same forces are acting on the particle periodically. If a resonance

condition is ful�lled these kicks coherently add up from turn to turn and push the observed
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particle away from the design orbit until the bending dipoles and quadrupoles are not able

to keep the particle inside the storage ring any more. An equation which de�nes the

resonance condition criteria is shown below [15]:

m ·Qx + n ·Qy = p with m,n, p ε Z. (3.19)

Here the integer parameter m and n de�ne the order of a resonance which is just |m|+ |n|.
To avoid losing particles due to this betatron resonances the working point has to be

chosen far from any low order resonance as these are stronger than high order resonances.

A reasonable working point can be found using a tune diagram which is sketched in �gure

(3.3) [15].

m m+1 m+2
Qx

n

n+1

n+2

Q
y

1st Order 2nd Order 3rd Order WP

Figure 3.3: Tune diagram with betatron resonances up to third order. The x-axis shows
the horizontal betatron tune Qx and the y-axis the vertical betatron tune Qy.
The integers m and n de�ne the order of the resonance via |m|+ |n|. Inspired
by [15].
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Chromaticity

As the optics of a storage ring is designed for the reference particle it is important to know

how the optics is changing if a particle's momentum deviates from the momentum of the

reference particle. The quantity which is describing the shift of the working point ∆Qi for

a particle o�set ∆p/p is called chromaticity and de�ned in equation (3.20) [15]:

ξi :=
∆Qi
∆p/p

. (3.20)

In case of a large storage ring with strong focusing the contribution of the quadrupoles to

the chromaticity becomes dominant. Large is meant in the sense that the bending radius

is much larger than the ring dispersion. Strong focusing denotes the fact that quadrupoles

with strong �elds and alternating gradients are used. The impact of the quadrupoles on

the chromaticity is then described by the following equation [15]:

∆Qi =
1

4π

∮
∆p

p
k(s)βi(s)ds. (3.21)

Therefore the chromaticity in this case just depends on the strength of the quadrupoles

and the magnitude of the β-function at the quadrupoles location. Sextupoles, placed

on areas with non vanishing dispersion, are used to manipulate the chromaticity as they

generate local quadrupole components depending on the radial position of the particle

when passing through the sextupole. Sextupoles do not belong to the linear beam optics

any more. A sketch of their operation principle is shown in �gure (3.4) and their impact

on the chromaticity is given by [15]:

∆Qi =
1

4π

∮
∆p

p
m(s)D(s)ds. (3.22)

The �nal chromaticity of a large ring is a combination of the natural chromaticity of

the ring induced by the quadrupoles and the chromaticity correction by the sextupoles.

Additionally there are also sextupole components of the dipole and quadrupole magnets.

There strength depends on the excitation of the magnets. However, this simple assumption

is no longer valid if one assumes a small storage ring. This is discussed in section (5.2.1)

[15].
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Figure 3.4: Sketch of the principle of chromaticity correction by sextupoles. Sextupoles
generate a local quadrupole component depending on the radial position of the
particle. In dispersive regions, they can correct for chromatic e�ects induced
by quadrupoles. Inspired by [15].

3.2.2 Longitudinal Beam Dynamics

Path Lengthening

So far only the transverse motion is described. In the longitudinal phase space there are

also e�ects induced by the deviation of the momentum to the reference particle. One of

these e�ects is called path lengthening of o�-momentum particles. As the o�set particle

does not follow the design path any more it either travels more or less distance than the

reference particle during one turn inside the storage ring. The quantity which is describing

the path lengthening ∆C in relation to the circumference C and the momentum o�set is

called the momentum compaction factor α0 [15]:

∆C

C0
= α0

∆p

p
. (3.23)

It can also be derived from the fact that the main contribution to its magnitude is coming

from the bending dipoles. In quadrupoles path lengthening e�ects can be neglected as they

only occur as higher order e�ects. This leads to a theoretical description of the momentum

compaction factor [15]:
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α0 =
1

C0

∮
D(s)

R(s)
ds. (3.24)

The momentum compaction factor α0 is also the critical parameter which decides which

time di�erence ∆T an o�set particle needs for one revolution inside the storage ring relative

to the reference particle revolution time T [15]:

∆T

T
=

(
α0 −

1

γ2

)
∆p

p
. (3.25)

As the relation of α0 and the particle's energy becomes important a new quantity is intro-

duced. This quantity is called transition energy γt and can be directly derived from the

momentum compaction factor α0 [15]:

γt =
1
√
α0

⇐⇒ α0 =
1

γ2
t

. (3.26)

In case the particle's energy γ is below transition energy γt, a particle with more momentum

than the reference particle (∆p/p > 0) needs less time for one revolution inside the storage

ring than the reference particle. The reverse applies to a particle with less momentum than

the reference particle (∆p/p < 0). If the particle's energy is shifted above transition energy

a particle with more momentum than the reference particle (∆p/p > 0) needs more time

for one revolution inside the storage ring than the reference particle and a particle with

less momentum than the reference particle (∆p/p < 0) needs less time. This is especially

becoming important in the next section [15].

Synchrotron Frequency

Cavities are the parts of an accelerator in which a particle beam is accelerated, decel-

erated or bunched by electric �elds. In a ring accelerator, it must be ensured that the

circulating particles maintain a well-de�ned �xed phase ψs on average with respect to the

high-frequency voltage U0 of the cavity to achieve a focusing e�ect in the longitudinal phase

space. This focusing e�ect is called phase focusing. The phase ψs is the critical parameter

which decides how much energy the particle gains from running through the cavity. The

energy balance of the reference particle for one turn is composed of the amount of energy

the particle receives while passing through the cavity and the energy the particle loses

during this turn in the storage ring W0, e.g. through synchrotron radiation [15]:

E0 = eU0 sinψs −W0. (3.27)
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Any particle which is passing the cavity at a di�erent phase ψd = ψs + ∆ψ receives an

additional amount of energy ∆E. From comparing the amount of energy the reference

particle receives from the cavity and the amount of energy an o�set particle receives from

the cavity a di�erential equation for the longitudinal motion can be derived which depends

on the additional amount of energy an o�set particle receives from the cavity ∆E, its the

second derivation after time ∆Ë and the so called synchrotron frequency ωs [15]:

∆Ë + ω2
s∆E = 0 (3.28)

ωs = ω0

√
−eU0h cosψs

2πβ2E

(
α0 −

1

γ2

)
. (3.29)

Equation (3.28) is describing an harmonic oscillation with the frequency ωs which is describ-

ing the oscillating of the o�set particles around the reference particle in the longitudinal

phase space. To achieve focusing in the longitudinal phase space equation (3.29) has to be

a real quantity. The parameters ψs and γ determine if equation (3.29) is real or imaginary

[15].

In case one is below transition energy γ < γt one has to choose a phase −(n · π)/2 <

ψs < +(n · π)/2 so that equation (3.29) is real. Here n denotes an arbitrary integer. If

one insert theses phases in equation (3.27) and neglect the energy loss W0 one can ob-

serve that the phases −(n · π)/2 < ψs < 0 decelerate the reference particle and the phases

0 < ψs < +(n·π)/2 accelerate it. A phase of ψs = 0 is neither accelerating nor decelerating

the reference particle [15].

The reason one uses the rising �ank of the sinusoidal function for acceleration of the beam

if one is below transition energy is that a particle with less momentum than the reference

particle needs more time than the reference particle to arrive at the cavity. Therefore it

arrives later than the reference particle at the cavity and receives an additional acceleration

compared to the reference particle. A particle with more momentum than the reference

particle arrives earlier at the cavity and receives less acceleration than the reference parti-

cle. This leads to the desired focusing e�ect in the longitudinal phase space and is sketched

in �gure (3.5) [15].

In case one is above transition energy γ > γt one has to choose a phase +(n · π)/2 <

ψs < +(3n · π)/2 so that equation (3.29) is real. Inserting theses phases again in equation

(3.27) and neglect the energy lossW0 one can observe that the phases +(n·π)/2 < ψs < +π

accelerate the reference particle and the phases +π < ψs < +(3n · π)/2 decelerate it. A

phase of ψs = π is neither accelerating nor decelerating the reference particle [15].
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Therefore one uses the falling �ank of the sinusoidal function for acceleration if one is

above transition energy. As being above transition energy a particles with more momen-

tum than the reference particle has to travel a longer distance and therefore arrives later

at the cavity. Here it receives less energy than the reference particle. The reverse happens

to particles with less momentum than the reference particle. This also leads to a focusing

e�ect in the longitudinal phase space. A sketch of this is shown in �gure (3.5) [15].

t
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 p/p < 0

 p/p = 0

 p/p > 0

s

 p/p < 0

 p/p = 0

 p/p > 0

s

Figure 3.5: Principle of phase focusing. The x-axis shows the time at which the particle
arrives at the cavity and the y-axis its voltage. The red lines represent the
operation below transition and the black ones above transition. Inspired by
[15].
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3.3 Spin Dynamics

3.3.1 Spin Formalism

After explaining the particle motion in six-dimensional phase space, the motion of the spin

must also be understood. The measurable quantity connected to the spin orientation of

a particle ensemble is the polarization P . The polarization vector of a particle ensemble,

which contains the expectation values of the spin operators is de�ned in the following way

[17]:

~Pi =
1

N

N∑
i=1

~Si. (3.30)

In case a beam consists of spin-1/2 particles two orientations of the spin with respect to

the quantization axis are possible. These are m = +1/2 and m = −1/2. They de�ne the

vector polarization PV along the quantization axis [17]:

PV =
Nm=1/2 −Nm=−1/2

Nm=1/2 +Nm=−1/2
. (3.31)

Considering instead spin-1 particles three orientations of the spin with respect to the

quantization axis are possible which are m = ±1 and m = 0. In this case the vector

polarization PV and tensor polarization PT along the quantization axis are [17]:

PV =
Nm=1 −Nm=−1

Nm=1 +Nm=0 +Nm=−1
(3.32)

PT =
Nm=1 +Nm=−1 − 2Nm=0

Nm=1 +Nm=0 +Nm=−1
. (3.33)

3.3.2 Spin Motion

Spin motion and particle motion are closely linked. To describe this behavior, the evo-

lution of the spin is determined by the electric ~E and magnetic ~B �elds which a particle

experiences inside the storage ring. The evolution of the spin in the center-of-mass system

of the particle is:

d~S

dt
= ~µ× ~B + ~d× ~E. (3.34)
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Transforming the electromagnetic �eld in the laboratory system, in which it is usually

known in a storage ring, leads to the Thomas-Bargmann-Michel-Telegdi (Thomas-BMT)

equation [8]:

d~S

dt
= ~Ω× ~S = ~ΩMDM × ~S + ~ΩEDM × ~S, (3.35)

~ΩMDM = − q

m

[(
G+

1

γ

)
~B − Gγ

γ + 1
(~β · ~B)~β −

(
G+

1

γ + 1

)
~β ×

~E

c

]
, (3.36)

~ΩEDM = − q

mc

ηEDM
2

[
~E − γ

γ + 1
(~β · ~E)~β + c~β × ~B

]
. (3.37)

In this equation the precession frequency ~ΩMDM shows the contribution of the MDM to

the spin motion while ~ΩEDM shows the contribution of the EDM. The quantity G is the

gyromagnetic anomaly G = (g − 2)/2 with the Lande's g factor. It is displayed for some

particles in table (3.1).

Table 3.1: Magnetic properties of proton, electron and deuteron. The column 'Type' shows
possible spin con�gurations and column '~µ' the MDM in units of Bohr's mag-
netron µB. The quantity g shows Lande's g-factor and G the gyromagnetic
anomaly [18].

Particle Type |~µ| in µB g G

Proton ±1/2 2.792 5.585 +1.793

Electron ±1/2 1.001 2.002 +0.001

Deuteron ±1, 0 0.857 1.714 −0.142

In this table the second column shows to which polarization type the corresponding par-

ticle belongs. The third column shows Lande's g-factor which is closely connected to the

gyromagnetic anomaly G in the fourth column.

As this thesis is focusing on the spin motion induced by the MDM its behavior has to

be understood better. The precession due to the MDM can be divided into contributions

of parallel ~B‖ and perpendicular ~B⊥ �eld components with respect to the velocity of the

particles [9]:

~ΩMDM = − q

γm

[
(1 + γG) ~B⊥ + (1 +G) ~B‖ −

(
Gγ +

γ

γ + 1

)
~β ×

~E

c

]
. (3.38)
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As the spin motion and particle motion are coupled, the orientation of spin in relation

to the particles momentum has to be considered. For this reason the cyclotron frequency

Ωcyc has to be taken into account. It describes the rotation of momentum induced by

electromagnetic �elds [9]:

d~p

dt
= ~Ωcyc × ~p, (3.39)

~Ωcyc = − q

γm

(
~B⊥ −

1

β2
~β ×

~E

c

)
. (3.40)

After subtracting equation (3.40) from equation (3.38) one receives a description of the

spin precession relative to the momentum precession. The relative precession is de�ned as
~ΩMDM,rel [9]:

~ΩMDM,rel = − q

γm

[
Gγ ~B⊥ + (1 +G) ~B‖ −

(
Gγ − γ

γ2 − 1

)
~β ×

~E

c

]
. (3.41)

3.4 Principle of Electric Dipole Moment Measurement

In the following section a realistic case is considered where magnetic �elds are vertically

applied ~B = (0, B, 0)T and electric �elds are applied in radial direction ~E = (E, 0, 0)T . The

particle itself is moving on the longitudinal axis with ~β = (0, 0, β)T . In result the MDM

contribution to the spin precession is only able to rotate the spin vector in horizontal plane

whereas the contribution to the precession due to EDM is able to rotate the spin vector in

vertical plane. This behavior is illustrated in �gure (3.6) [19].
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Figure 3.6: Sketch of spin rotation due to magnetic and electric �elds. The upper images
show the contribution of MDM to spin precession and the bottom ones the
contribution of EDM. The cross product of ~B and ~v is marked with an E* and
the cross product of ~E and ~v with a B*. Inspired by [19].

Through the horizontal rotation of the spin, electromagnetic �elds cause the spin to rotate

upwards in one revolution and downwards in another and vice versa. Thus, on average, no

signal is obtained from the rotation due to EDM contribution. Only a direct signal from

the vertical rotation due to EDM contribution can be detected if the horizontal rotation

vanishes. This is called frozen spin.

The resulting polarization of a particle beam can be measured using a polarimeter which

is recording the asymmetry in reaction rate. A spin which stays aligned to momentum

is causing no asymmetry whereas a spin which is rotated in vertical direction is causing

a left-right asymmetry in the polarimeter. A spin which is rotated in the horizontal is

causing a up-down asymmetry [19].
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3.4.1 Frozen Spin Method

As discussed previously the criterion for a direct measurement of the EDM is a vanishing

horizontal rotation [19]:

~ΩMDM = − q

γm

[
GγB −

(
Gγ − γ

γ2 − 1

)
βE

]
!

= 0. (3.42)

Pure Magnetic Storage Ring

A classic storage ring consists of magnetic elements but no electric elements. It is not

possible to achieve any con�guration in such a storage ring at which the criteria for frozen

spin is ful�lled although it is mathematically possible. The reason for this is that a B �eld

is needed to keep a particle inside the storage ring [19]:

GγB
!

= 0. � (3.43)

Pure Electric Storage Ring

A purely electric storage ring is the exact opposite of a purely magnetic storage ring as

only electric elements do have an impact of the particle and spin motion. In such a ring

the criteria for frozen spin can be ful�lled via [19]:

(
Gγ − γ

γ2 − 1

)
βE

!
= 0, (3.44)

(
Gγ − γ

γ2 − 1

)
= 0 ⇒ p =

mc√
G
. (3.45)

The corresponding momentum at which the spin is frozen is called magic momentum and

is just depending on the particles properties. This also limits the number of particles where

frozen spin can be achieved within a pure electric ring. Only particles with a positive G

can have frozen spin in a pure electric storage ring but no particle with a negative G like

deuterons [20].

Combined Fields

The spin can also be frozen in a storage ring with combined �elds. The criteria which has

to be ful�lled in this case is shown below [19]:
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⇒ B =

(
G− 1

γ2 − 1

)
βE

G
. (3.46)

From the fact that Lorentz force and centrifugal force have to be equal inside the bending

elements to keep the particle inside the ring a second condition can be derived [21]:

q( ~E + ~β × ~B) =
γmβ2

r
, (3.47)

⇒ E =
γmβ2

qr
− βB. (3.48)

Combing both conditions shown in the equations (3.46) and (3.48) a equation of determi-

nation for the �elds strengths inside the bending elements can be derived [21]:

⇒ E =
γmβ2

qr

1(
1

γ2−1
−G

)
β2

G + 1
, (3.49)

⇒ B =
γmβ2

qr

(
1

γ2−1
−G

)
(

1
γ2−1

−G
)
β2

G + 1

β

G
. (3.50)

It can be seen that in the case of combined �elds, it no longer matters whether particles

with positive or negative G were used. As long as the required �eld sizes can be achieved

in any accelerator with combined bending elements frozen spin can be used [20].

3.4.2 Spin Tune Spread and Spin Coherence Time

The spin tune spread and the SCT are the critical parameter when performing EDM

experiments in storage rings. They are de�ned for a particle bunch und show how fast

initially aligned spins diverge due to the di�erent �elds the individual particles see. To

understand both quantities the spins of the individual particles must be transformed into

a polarization which is shown in equation (3.30). In a second step the Cartesian spin

polarization has to be transformed in a spherical spin polarization. Figure (3.7) and the

following equations are explaining the transformation rules:
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Figure 3.7: Transformation from Cartesian coordinate system to spherical coordinate sys-
tem for the spin polarization formalism where x, y and z are the Cartesian
coordinates. The quantity r shows the radial distance, φ the polar angle and θ
the azimuthal angle.

Ptot =
√
P 2
x + P 2

y + P 2
z (3.51)

φP,beam = tan−1(Px/Pz) (3.52)

θP,beam = cos−1(Py/Ptot). (3.53)

The SCT is de�ned as the time at which the total spin polarization Ptot is falling below 1/e.

Therefore describes how fast the beam is loosing its polarization and becomes decoherent.

Another important property is φP,beam which directly connected to the spin tune spread

∆νs. The spin tune spread describes the amount of horizontal rotation of the polarization

in one turn relative to the reference particle's spin rotation νs which is called spin tune [9]:

∆νs =

∑
i(φ

i
P,beam − νs)∑

i 2π
. (3.54)

3.4.3 Depolarizing Spin Resonances

Similar to the resonances due to the betatron oscillations one has to consider spin reso-

nances which are able to reduce the SCT. They occur around areas where the spin tune

νs of the reference particle ful�lls a resonance condition. Spin resonances of di�erent type

are summarized in table (3.2) [9].
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Table 3.2: Summary of depolarizing spin resonances. They property νs shows the spin
tune of the reference particle and the k, l,m and n are integer. Horizontal and
vertical betatron tune are represented via Qx and Qy and the longitudinal tune
with Qs. The quantity P shows the super periodicity of the storage ring design
[9].

Type Case Origin

Imperfection resonance νs = k Field and positioning

errors of magnets

Intrinsic resonance νs = kP ±Qy Horizontal �elds for

vertical focusing

Higher-order resonance νs = (k ± l ·Qx ±m ·Qy ± n ·Qs) Higher-order �eld errors

of magnets and

synchrotron motion
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4 Prototype EDM Storage Ring

4.1 Project Overview

The Jülich Electric Dipole moment Investigations (JEDI) collaboration was created in the

end of 2011. The group is aiming to carry out a long term project for the measurement of

the permanent EDM of a proton and deuteron in a storage ring. In order to develop the

�nal high precision experiment, a strategy is proposed that consists of three stages. The

special features of each stage are summarized in table (4.1) [22].

The aim of the �st stage of the strategy is the demonstration of the feasibility of crit-

ical technologies for EDM measurement. Therefore the already existing facility is used.

The COSY is a pure magnetic storage ring where polarized deuteron beams can be in-

vestigated. Since the spin of the deuterons is non-frozen, the polarization rotates in the

horizontal plane. A so called RF Wien Filter that oscillates at the polarization precession

frequency and has its magnetic axis vertically aligned is used to recover an EDM signal [23].

For the second step a new facility the so called prototype EDM storage ring has to be

constructed. The reason to build this facility is the demonstration of frozen spin inside a

storage ring. Also spin manipulation tools should be development with the new facility

and a increased-precision EDM value should be measured. The frozen spin condition in

this relatively small storage ring can be achieved by using a combination of magnetic and

electric �elds inside the bending devices. Another feature which should be established with

the prototype EDM ring is the injection and operation of two counter circulating beams at

the same time. This method can eliminate a large fraction of systematic errors by looking

at the di�erence between the two counter circulating beams [23].

The �nal stage of strategy is the construction and operation of a pure electric storage

ring where no magnetic �eld is in�uencing the proton spin. This ring will be a larger

version of the prototype ring which does have the same features of frozen spin and counter

circulating beams. This ring will need all the technology developed in the previous stages

and allows for a high precision measurement of the proton EDM signal [23].
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Table 4.1: Summary of important features of proposed stages in the EDM research strategy.

Cooler Synchrotron Prototype Storage Ring All Electric Ring

Proof-of-Capability Proof-of-Principle Precession Experiment
Pure Magnetic Electric and Magnetic Pure Electric
Deuterons Protons Protons, Deuterons, 3He

Non-Frozen Spin Frozen Spin Frozen Spin
Single Beam Counter-circulating Beams Counter-circulating Beams

This thesis is focusing on the simulation of some properties of the prototype EDM storage

ring. In the following section the current design and its integration into the simulation

software Bmad will be discussed.

4.2 Design

The current design of the prototype EDM ring is based on a version made in February

2020 and consists of four unit cells. In between each unit one quadrupole is placed to add

additional tuning possibilities. Each unit cell has the following structure which provides a

total bending of 90◦ [3]:

Figure 4.1: Layout of a unit cell. 'QD' belongs to the horizontally defocusing quadrupole
family and 'QF' to the horizontally focusing quadrupole family.

Summing up all the magnets placed in the basic form of the lattice one ends up with eight

dipoles and 16 quadrupoles. The quadrupoles can be structured into three families with

common power supplies. In the bending section, i.e. in between the bending dipoles of one

unit cell the quadrupoles of the �rst family were placed. This family was named 'QD' and

contains four quadrupoles in total. The quadrupoles around the bending dipoles of one unit

cell form the next family which is called 'QF' which contains over all eight quadrupoles.

The last family consist of those quadrupoles which were placed in between the unit cells.

These are called 'QSS' as they are placed in the straight sections of the storage ring. This

family contains four quadrupoles and provides further �exibility to adjust the beam optics

[3].
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In a very simple approach a sextupole was placed on top of every quadrupole to cor-

rect chromaticity right at the place of origin. Also these sextupoles form three families

which correspond to the quadrupole families. They are named similar to the associated

quadrupole families they belong to with 'SXF', 'SXD' and 'SXSS'. A sketch of the design

with clockwise (CW) and counter-clockwise (CCW) injection is shown in �gure (4.2) and

all the elements used are summarized in table (4.2). The kinematic parameters of the

reference particle are shown in table (4.3) [3].

Table 4.2: Summary of lattice elements.

Element Number Length

Dipole 8 9.61975 m
Quadrupole 16 0.40000 m
Sextupole 16 0.40000 m
Cavity 1 1.00000 m

Table 4.3: Kinematic parameters of refer-
ence particle.

Parameter Magnitude Unit
Kinetic Energy 0.045 GeV
Momentum 0.294 GeV

β 0.299 /
γ 1.048 /

Figure 4.2: Basic layout of the prototype EDM storage ring. Injection lines for CW
and CCW injecting indicated as red arrows. QD is the horizontal focusing
quadrupole family, QF the horizontal defocusing quadrupole family and QSS a
quadrupole family which provides further �exibility to adjust the beam optics.
The total circumference of the ring is approximately 123m. Version 2018 [3].
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The strength of the magnetic and electric �eld of the dipoles just depend on the particle's

momentum and the length of dipoles as demonstrated in equation (3.49) and (3.50). For

the previously presented design, the magnetic and electric �eld strengths read:

|Edipole| = 5.061 kV/m (4.1)

|Bdipole| = 0.024 T. (4.2)

As the unit cells and the length of each element is now de�ned the circumference and

the width of the design just depend on the length of the straight sections in between the

bending sections. In the design version of the prototype ring of February 2020 one is

facing a total circumference of C = 123.358m and a width from beam line to beam line

of 36.252m. The length of the straights in the current version is 12.648m. With these

parameters the revolution frequency ν and the time for one revolution τ for the design

particle is given by:

ν =
pc

C
√
p2 +m2

= 726.794 kHz (4.3)

⇒ τ =
1

v
= 1.375 µs. (4.4)

4.3 Implementation into Bmad

The simulation of this design of the prototype EDM ring has been performed with Bmad

which is a subroutine library for charged�particle tracking in storage rings. It has been

developed at Cornell University's Laboratory for Elementary Particle Physics. The sub-

routine library is using an object oriented approach and is written in Fortran. Bmad

can be used to study single as well as multi�particle beam dynamics. For this reason it

has various tracking algorithms including the Runge�Kutta and symplectic integration. It

also provides routines for calculating transfer matrices, emittances, Twiss parameters, and

dispersion. Some elements which are already included in Bmad are dipoles, quadrupoles,

sextupoles and RF cavities which is everything one needs to simulate the basic version of

the prototype ring [24].

Although all necessary elements are already de�ned in Bmad the construction of dipoles

which make use of combined magnetic and electric �elds is challenging. The solution is

the correct manipulation of parameters of a magnetic dipole magnet. For this purpose a
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magnetic sector dipole was used. The reference bending angle of a dipole can be accessed

via the parameter b_�eld. Manipulating this parameter is changing the geometry of the

ring. The actual magnetic �eld is the combination of the parameter b_�eld and another

one called b_�eld_error [24].

The electric �eld of the dipole can be set via a multipole moment. The parameter b0_elec

corresponds to an electric dipole �eld and is used to achieve the desired electric �eld in the

dipole. The whole process is summarized in table (8.1) in the appendix. For simplicity only

a box �eld is assumed which is indicated with the input basic_bend when manipulating

the fringe_type parameter [24].

Another challenge when constructing the lattice design in Bmad was the placement of

the sextupoles on the quadrupoles. For this reason the superimpose attribute of the sex-

tupoles with quadrupoles as reference was used. The result of including all elements of the

lattice design into Bmad is shown in �gure (4.3) [24].

Figure 4.3: Floor plan of the prototype EDM ring. Electromagnetic dipoles are labeled
with 'EM' and the cavity with 'RF'. The name 'QD' denotes the horizontal
focusing quadrupole family, 'QF' the horizontal defocusing quadrupole family
and 'QSS' a quadrupole family which provides further �exibility to adjust the
beam optics. The axes represent the unit meter. Graph made with the Tao
module [25].
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4.4 Benchmarking the Model

4.4.1 De�nition of Phase Space

In order to benchmark the model one �rst has to de�ne the phase space coordinates of

the particle in the six dimensional phase space in Bmad. The horizontal X and vertical

Y phase space coordinates describe the physical o�set of a particle from the design orbit.

Their corresponding momenta Px and Py display the momenta in horizontal px and vertical

py direction normalized by the designs particle momentum p0 [24]:

Px(s) =
px(s)

p0
(4.5)

Py(s) =
py(s)

p0
. (4.6)

Dealing with the longitudinal phase space is more complicated as the longitudinal phase

space coordinate Z should not be confounded with the longitudinal o�set of a particle from

the design orbit. The phase space coordinate Z is de�ned by the di�erence in time it needs

to reach the same point as the reference particle [24]:

Z(s) = β(s) · c · (t(s)− t0(s)) (4.7)

The phase space which corresponds to the longitudinal momentum contains the information

of the overall particle momentum as it is de�ned by the di�erence of the design momentum

and also normalized by it [24]:

Pz(s) =
p(s)− p0

p0
. (4.8)

In the following chapters and sections these de�nitions of the six dimensional phase space

will be used.

4.4.2 Investigation of numerical noise

Knowing how Bmad treats the phase space coordinate one is able to investigate the closed

orbit of the model of the prototype EDM storage ring. An arbitrary working point has

been chosen for this reason. A discussion which working points allow stable operation

will be performed later. Bmad is able to calculate the closed orbit of a lattice using the

subroutine closed_orbit_calc. The results of this subroutine are shown in �gure (4.4).
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Figure 4.4: Closed orbit and momentum deviation for a randomly selected working point
of the storage ring. While the x-axis indicates the position in the memory ring
for all plots, the y-axis changes for each plot. The y-axes of the two upper plots
show the horizontal phase space, where the physical o�set X to the reference
particle is shown on the left and the momentum deviation PX on the right.
The same is shown by the two middle plots for the vertical phase space and by
the two bottom plots for the longitudinal phase space.

In this �gure one can see how the phase space coordinates of the closed orbit are changing

over the ring circumference. The upper plots show the horizontal phase space, whereas

the lower ones show the vertical phase space. The bottom plots contain the information

about the longitudinal phase space. On the x-axis one can see the position s in the rings

circumference.

The plots for the horizontal phase space and the longitudinal phase space show

some numerical noise which may come from round o� errors due to the dipoles. This

assumption is supported by the fact that there is a fourfold periodic structure visible

in the horizontal phase space. The beginning and end of each periodic structure in the

horizontal phase space is in good agreement with the beginning and the end of the unit

cell of the model. The vertical phase space does not show any numerical noise which is

not surprising as the vertical phase space is not in�uenced by the dipoles.
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I order to check if the numerical noise has an impact on a particle which is starting on the

closed orbit and has the properties of the design particle, a particle with these features

was tracked over 10000 turns. For this investigation the Bmad subroutine track_all was

used which as the name suggests is tracking a particle through the lattice. The results are

shown in �gure (4.5).
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Figure 4.5: Evolution of phase space over 10000 turns for a particle which is starting on
the closed orbit and has the properties of the design particle. While the x-
axis indicates the number of tracked turns for all plots, the y-axis changes for
each plot. The y-axes of the two upper plots show the horizontal phase space,
where the physical o�set X to the reference particle is shown on the left and
the momentum deviation PX on the right. The same is shown by the two
middle plots for the vertical phase space and by the two bottom plots for the
longitudinal phase space.

This �gure has the same structure as the one before. It is showing the horizontal phase

space in the upper plots, the vertical phase space in the plots below and the longitudinal

phase space in the bottom plots. In contrast to the previous �gure the x-axis shows the

turn number at which the phase space was determined. The phase space was always

recorded at the beginning element of the lattice.

This investigation shows that the numerical noise does not in�uence the tracked

particle at all. For this reason one is able to call this particle the reference particle.

Similar plots can be shown for any working point which allows stable operation.
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4.4.3 Dipole �elds and frozen spin

One now has to check if the spin is actually frozen for the design particle. Therefore the

electric and magnetic �elds of the bending dipoles have been investigated. A routine was

written which tracks a particle on the reference orbit through a dipole and records the elec-

tric and magnetic �elds it experiences. The results of this routine are shown in �gure (4.6).
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Figure 4.6: Electric and magnetic �eld inside the dipoles. The x-axis shows the position
inside the dipole while the y-axis shows the �eld strength.

In this �gure the upper plot shows the horizontal electric �eld component and the lower

one shows the vertical magnetic �eld component. The x-axis shows the longitudinal

position inside the dipole. Only these �eld components were present inside the dipoles.

All other �eld components show zero strength. The magnitude of the visible �elds are in

perfect agreement with the �elds which are shown in equation (4.1) and equation (4.2).

Another observation which is important is that the �elds arise immediately and with

full strength after the particle enters the dipole. When the particle leaves the dipole the

�elds vanish instantaneously. This shows that the desired box �elds are achieved and one

considers dipoles without fringe �elds.
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With these �elds the reference particle spin has to be frozen. To check if this is

the case the reference particle spin was tracked for 10000 turns with spin and momentum

initially aligned. The Cartesian and the spherical spin vectors coordinates have been

investigated. The transformation from Cartesian spin coordinates to spherical spin

coordinates is identical to the one sketched by �gure (3.7) and shown in the equations

(3.51),(3.52) and (3.53).

The results of the investigation of the spin vectors are shown in �gure (4.7). It

shows the Cartesian spin vectors on the left side and the spherical spin vectors on the

right side. The Cartesian coordinate system and the spherical coordinate system are

de�ned alongside the co-moving coordinate system. The important observation in theses

plots is that the spin is not rotating if the reference particle is tracked. All plots show

constant values over 10000 turns. The presented benchmarking simulations prove that

all important features of the prototype EDM ring were successfully implemented into the

Bmad model.
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Figure 4.7: Evolution of spin coordinates over 10000 turns for a particle which is starting on
the closed orbit and has spin and momentum initially aligned. While the x-axis
indicates the number of tracked turns for all plots, the y-axis changes for each
plot. On the left side the y-axis shows the Cartesian spin coordinates. On top
the horizonal spin coordinate Sx is shown, below the vertical spin coordinate
Sy and at the bottom the longitudinal spin coordinate Sz. On the right side
the y-axis shows the spherical spin coordinates. On top the total spin Stot is
shown, below polar angular φs and at the bottom the azimuthal angular θs.
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4.4.4 Phase Space Ellipse

In order to study realistic situations, the behavior of particles with an o�set in phase space

has to be investigated. A �rst important observation was that particles which had a spacial

or a momentum o�set beyond a speci�c limit were lost during tracking. As also the dynamic

aperture is limited this is reasonable. For particles which have a spacial or a momentum

o�set which is inside this limit it is important to check if the six dimensional phase space

is conserved. This was done by recording the phase space ellipse at the beginning of the

lattice and at an arbitrary point inside the lattice over 10000 turns. Figure (4.8) shows

the results.
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Figure 4.8: Phase space ellipses at two di�erent locations for a particle with o�sets in all
phase space coordinates. One location is shown on the left side and the other
on the right side. The upper plots show horizontal phase space ellipses, the
ones below vertical phase space ellipses and the bottom ones longitudinal phase
space ellipses. The center of the ellipses estimated by an elliptic �t is marked
with a red dot.
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The plots on the left side of the �gure show the phase space ellipses at the beginning

of the lattice and the plots on the right side of the �gure show the phase space ellipses

at an arbitrary point inside the lattice. The y-axis is always showing the phase space

momentum and the x-axis the corresponding phase space vector. Each black dot inside

these graphs represents the result of one turn around the storage ring. The red dot

inside these graphs mark the center of the ellipses which was determined using an elliptic �t.

The phase space ellipses for the vertical and the longitudinal phase space ful�ll the

expectation as the corresponding graphs at both locations inside the ring show ellipses.

This can be observed at any location. The areas of these ellipses are identical which shows

that the phase space is conserved. The ellipses are centered around the origin of the plots.

The origin represents the reference particles location as it was shown before.

Understanding the graph for the horizontal phase is more complicated. They show

a cylindrical structure and not a simple ellipse as in the other plots. The reason for this is

that an o�set particle is moving on dispersive trajectories. Due to the cavity, the center of

the phase space ellipse is shifted on the x-axis. The limits of the shifted center are de�ned

by the initial o�sets of the particle. In the case of the horizontal phase space ellipse in

�gure (4.8) an initial spatial o�set of 10−3 was chosen for the horizontal phase space. In

result the center of the ellipse is moving in between ±10−3. This movement of the center

forms the symmetric cylindrical structure we are facing here. The area of this movement

is identical at each point inside the accelerator. This shows that also the horizontal phase

space is conserved.

As the model of the prototype EDM storage ring is benchmarked with these obser-

vations one is able to start further investigations.
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5 Optical Flexibility of the Lattice

5.1 The Working Point

Possible working points for the lattice had to be investigated to choose an appropriate

one for beam and spin tracking. Changing from one working point to another is done

by varying quadrupole strengths. For this reason a scanning routine was written which

worked in the following way:

1. All quadrupoles of family 'QF' were assumed to operate at the same strength. The

same assumption was taken for all quadrupoles of family 'QD'. The quadrupole family

'QSS' was turned o� and not considered in this routine.

2. While the strength of family 'QD' was kept constant, the strength of family 'QF'

was modi�ed. The �neness of the scan could be changed by the amount of variation

chosen. After family 'QF' reached a prede�ned �nal strength it was set back to its

initial strength.

3. After one iteration of the previous step the strength of family 'QD' was varied while

the strength of family 'QF' was kept constant. The same step size as the one used

for family 'QF' was applied to increase the strength of family 'QD' once. After this

is done the previous procedure is performed again.

4. The two procedures were repeated until family 'QD' was varied between the same

initial quadrupole strength and �nal quadrupole strengths as family 'QF'. After every

variation of strength the horizontal and vertical tunes were calculated.

This routine allows a scan of the tune �exibility when using the quadrupole families 'QF'

and 'QD'. The results of this routine for the current lattice are shown in �gure (5.1)

and (5.2). The step size chosen was n = 10−2 and both families were varied in between

normalized quadrupole �eld strengths of k = ±0.4 [1/m].
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Figure 5.1: Horizontal betatron tune during the variation of the normalized quadrupole
�eld strength k of the 'QF' and 'QD' quadrupole family. The colorbar indicates
the magnitude of the horizontal tune.
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Figure 5.2: Vertical betatron tune during the variation of the normalized quadrupole �eld
strength k of the 'QF' and 'QD' quadrupole family. The colorbar indicates the
magnitude of the vertical tune.
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Figure (5.1) and �gure (5.2) display the strength of family 'QF' on the x-axis and the

strength of family 'QD' on the y-axis. If no stable solution was found for the con�guration

of quadrupole strength a white dot is plotted. In case a stable solution was found the

plotted dot is blue. Depending on the magnitude of the tune the dot is lighter or darker

colored. The color bar on the right side of the �gures gives more information about the

magnitude of horizontal and the vertical tune.

As the quadrupole strength was varied in between values of k = ±0.4 [1/m] for

both groups one might wonder why this is not shown in the �gures. This is because only a

limited amount of quadrupoles con�gurations allow stable operation. This limited amount

of con�gurations is shown in the �gures where these con�gurations form an area of stable

operation. The values of k = ±0.4 [1/m] are not arbitrarily chosen. These were expected

values in the case of pure electric quadrupoles [26].

Inside the area of stable operation the horizontal and vertical tunes are able to

vary in between zero and two. The horizontal tune is increasing from low tune values

in the lower left side of the area of stable operation to tune values close to two in

the upper right side of the area of stable operation. The vertical tune is behaving

vice versa and has very low tune values on the upper right side of the area of stable

operation and tune values close to zero at the lower left side of the area of stable operation.

One can conclude that the area of stable operation is limited by the fact that ei-

ther the vertical or horizontal tune hits a value of zero or two which is a �rst order

betatron resonance. Beyond these tune values no further stable operation is possible. This

is causing the sharp edges of the colored area. Also white lines inside the area of stable

operation are visible which indicate working points of unstable operation. These white

lines are at points where the horizontal tune ful�lls a resonance condition. One might

wonder why no white lines which correspond to resonance conditions induced by the

vertical tune are visible. An explanation for this is provided by the fact that the chosen

step size n = 10−2 was not �ne enough to reveal these unstable working points. They

become visible at a much �ner step size of n = 10−7. In this idealized case no non-linear

�elds are implemented. For this reason no higher order resonances are visible. This

is not the case in a real storage ring where the area of stable operation is even more limited.

As one now knows the tunes of the working points which allow stable operation

one has to investigate the chromaticity at these working points to choose an appropriate

working point for beam and spin tracking .
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5.2 The Chromaticity

Chromaticity is a critical parameter in a storage ring. It describes the change in betatron

tune with the relative momentum deviation and is described with formula (3.20). Therefore

it is very important to know and understand the chromaticity at a chosen working point.

To investigate the chromaticity the previous described scanning routine was used which

varied the quadrupole strengths. In parallel another routine to access the chromaticity

was implemented. It was inserted at the point in which the tunes where calculated in the

scanning routine and worked in the following way:

1. The cavity and all sextupoles in the lattice were turned o�.

2. Two particles were de�ned and placed on the closed orbit of the reference particle.

One of this two particles receives an arbitrary positive momentum o�set and the

other one a corresponding negative momentum o�set. It should be taken care that

the momentum o�sets are reasonable small so the particle performs a stable motion.

3. The closed orbits for the two o�set particles are calculated. Based on the closed

orbits the horizontal and the vertical betatron tunes are determined.

4. By comparing the tunes of the particle with the positive momentum o�set and the

particle with the negative momentum o�set the chromaticity can be calculated ac-

cording to:

ξi =
Qi,+ −Qi,−

2 · po�set
. (5.1)

This procedure is already included into the Bmad source code and called chrom_calc. To

investigate the chromaticity of the prototype EDM storage ring a momentum o�set of

po�set = 10−4 was used in this routine. The results of this research are shown in the �gure

(5.3) and �gure (5.4). The basic structure of �gure (5.3) and �gure (5.4) is identical to

the structure of (5.1) and �gure (5.2). The di�erence is lying in the color of dots which

indicate stable operation. If the chromaticity at a working point with stable operation is

negative this is marked with a red dot. In case the chromaticity is positive instead it is

marked with a blue dot. The magnitude of the chromaticity is displayed with darker and

lighter colors. The more the chromaticity deviates from zero the darker the color becomes.

In case the chromaticity exceeds an absolute value of four it is kept at a value of four.

The results show that the chromaticity can vary widely when changing the quadrupole

strengths and is also able to change sign. This results can not be understood when just

considering quadrupole contributions to the chromaticity as it is done for large machines

with strong focusing.
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Figure 5.3: Horizontal chromaticity during the variation of the normalized quadrupole �eld
strength k of the 'QF' and 'QD' quadrupole family. The colorbar indicates the
magnitude of the chromaticity.
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Figure 5.4: Vertical chromaticity during the variation of the normalized quadrupole �eld
strength k of the 'QF' and 'QD' quadrupole family. The colorbar indicates the
magnitude of the chromaticity.

41



5.2.1 Discussion of chromaticity for small rings

The chromaticity of large storage rings with strong focusing is dominated by the con-

tribution of quadrupoles and sextupoles. When the ring is shrinking which means the

bending radii become small this approach is susceptible to errors. Other contributions to

the chromaticity become important as well. This is discussed in [27]. In the following this

paper is summarized and the results for chromaticity are considered in relation to it:

Chromaticity arises from all momentum depend elements inside a storage ring. These are

in particular dipoles, quadrupoles and sextupoles in the case of the prototype EDM ring.

Also the location, size and shape of the closed orbit is momentum dependent and therefore

in�uences the chromaticity. All e�ects caused by momentum dependent elements and

the closed orbit have to be included into analytical models to give a correct prediction of

chromaticities.

Especially important for rings with small bending radii are non-linear dipole contri-

butions to the chromaticity which produce sextupole like e�ects. This can be understood

considering the Hamiltonian of a dipole:

Hdipole = −[C/(2πρ0)]× [Qp[(1 + δ)2 − P 2
p − P 2

z−]− (C/ρ0)(1/2)Q2
p]. (5.2)

Expanding the Hamiltonian by a power series around the design orbit it will contain linear,

quadratic, cubic and higher order terms. The cubic terms are of the following form:

Hcubic
dipole ∝ (C/ρ0)(Qp −Q0

p)(P
2
p + P 2

z )/(1 + δ). (5.3)

The term (Qp − Q0
p) corresponds to the horizontal displacement from the design orbit

divided by the circumference and therefore scales with the size of the ring. All other

parameters are independent from the size of the ring. This cubic term has a large con-

tribution to the chromaticity when considering small rings. For this reason chromaticity

calculations that do not consider dipoles or just consider them to contribute linearly to

the chromaticity are not expected to be correct for small rings.

A chromaticity calculation which is considering this non-linear dipole contribution

and therefore can be used as a benchmark is the one Bmad is using inside the routine

chrom_calc and which is explained at the beginning of this chapter. This also in

agreement with the method the paper is recommending to calculate the chromaticity for

small rings.
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5.2.2 Discussion of chromaticity for large rings

To sketch the in�uence of non linear dipole contributions for this thesis an investigation was

performed which compared the prediction of equation (3.21) for the natural chromaticity

with the results of Bmad. Both lattices used for the following simulations consist of a

repetitive sequence of dipoles and quadrupoles which form one unit cell as it is shown here:

Figure 5.5: Layout of a unit cell.

This unit cell was used eight times to create a small lattice with a circumference of 68m. In

addition a larger lattice was designed by 32 of these unit cells which had a circumference of

272m. To face a closed geometry only the bending radii of the pure magnetic dipoles had

to be manipulated. All other parameter were kept constant. For this reason the bending

radii of the larger ring are four times larger than the ones used in the small ring. A �oor

plan of both lattices is shown in �gure (5.6).

Figure 5.6: Floor plans of lattices used in this section. The small ring is displayed on the
left side and the large ring is shown on the right side. Black boxes indicate
the dipoles while red boxes show the quadrupoles. All axes represent the unit
meter.
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Apart from dipoles and quadrupoles no other elements were used in these two lattices. This

should ensure that the design is as simple as possible. To have a look at the chromaticity

of these two rings two approaches where chosen. The �rst one uses the Bmad routine

chrom_calc which was discussed in the previous section. The second one uses equation

(3.21) which just considers quadrupoles contributing to the chromaticity. The results of

both approaches are shown in table (5.1).

Table 5.1: Horizontal ξx and vertical ξy chromaticities for the small and the large ring.
'Prediction (S)' uses the β-function at the beginning of a quadrupole to calcu-
late the chromaticity and 'Prediction (E)' uses the β-function at the end of an
quadrupole.

Bmad Prediction (S) Prediction (E)

ξx, small −0.661 −1.112 −1.181

ξy, small −0.804 −1.722 −1.443

ξx, large −5.596 −5.565 −5.661

ξy, large −5.723 −6.052 −5.776

The chromaticity shown in the tables can be understood in the following way. The column

'Bmad' shows the results of the Bmad routine chrom_calc. The column 'Prediction (S)'

uses the β-function at the beginning of a quadrupole to calculate the chromaticity and

the column 'Prediction (E)' uses the β-function at the end of an quadrupole.

In fact the Bmad results show good agreement with the prediction of equation

(3.21) in case one is facing a ring with large bending radii as one is doing in line three

and four of table (5.1). The larger deviation in the vertical chromaticity ξy,large is coming

from the fact the vertical β-function is larger than the horizontal one.

If the ring is shrinking and the bending radii are becoming small a large disagree-

ment between the Bmad results and the prediction results due to equation (3.21) occurs

as it is shown in line one and two of table (5.1). This disagreement can only be explained

with non-linear dipole contribution which are raising the chromaticity for small rings.
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5.3 Chromaticity Correction

The last part of this chapter is focusing on the investigation towards working points that

allow for machine operation at low sextupole strengths to correct the chromaticity which

is shown in �gure (5.3) and in �gure (5.4). This is important as one wants to keep the

impact of sextupoles on the spin motion as low as possible.

In general a sextupole is in�uencing horizontal and vertical chromaticity at the

same time. The impact of a sextupole on the horizontal and vertical chromaticity depends

on the corresponding β-function at the location of the sextupole. For this reason two

new quantities are introduced which describes the ratio between horizontal and vertical

β-function at exactly these locations:

Rxy = max

[(
βx
βy

)∣∣∣∣
s=ssextupole

]
(5.4)

Ryx = max

[(
βy
βx

)∣∣∣∣
s=ssextupole

]
. (5.5)

As we are facing a symmetric design consisting out of four unit cells a maximal ra-

tio Rxy or Ryx found at one sextupole is also present at all other sextupoles of the

same family. Considering a case where Rxy is large the corresponding sextupoles have

a higher impact on the horizontal chromaticity than on the vertical one. As soon as

both ratios are high enough the chromaticity can be corrected with low sextupole strengths.

To investigate this quantity the previous described scanning routine was used again. It

was modi�ed to �nd the maximum ratio of horizontal to vertical β-function and vice

versa at the di�erent quadrupole con�gurations. As the ring does have four identical unit

cells a maximum which is found at one sextupole of a family is also present at all other

sextupoles of this family. The results of this investigation are shown in �gure (5.7) and

�gure (5.8).

The basic structure of these �gures is identical to the structure of (5.1) and �gure

(5.2). In these �gures the lighter blue areas indicate areas with a ratio Rxy or Ryx being

lower or close to one and the darker blue areas show quadrupole con�gurations where the

ratio Rxy or Ryx turned out to be signi�cantly higher than one.
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Figure 5.7: Ratio Rxy during the variation of the normalized quadrupole �eld strength k
of the 'QF' and 'QD' quadrupole family. The colorbar indicates the magnitude
of the ratio.

0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10

kQF

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

k Q
D

Ryx

0

1

2

3

4

5

Figure 5.8: Ratio Ryx during the variation of the normalized quadrupole �eld strength k
of the 'QF' and 'QD' quadrupole family. The colorbar indicates the magnitude
of the ratio
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One can see that it is possible to achieve values of Rxy or Ryx which are signi�cantly

higher than one for both quantities at the same time. In the case of the prototype EDM

ring this limits possible to working points to ones at the upper left side and lower right

side of the area of stable operation.

If one now is looking at �gure (5.3) and �gure (5.4) which show then chromatici-

ties in both planes one can see that the upper left side of the area of stable operation has

high chromaticity values which have to be corrected. This is resulting in high sextupoles

strengths which one wants to avoid. The lower right side of the area of stable operation is

more appropriate as one has low chromaticity values of −1 < ξx, ξy < +1. One is also far

away from strong resonances and unstable areas as it is shown in �gure (5.1) and �gure

(5.2). Therefore the quadrupole con�gurations at the lower right side of the area of stable

operation were chosen as a working point for performing further beam and spin tracking.
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6 Investigation of Spin Motion

6.1 Preparation

6.1.1 Chosen Working Point

After discussing which criteria a possible working point should meet, the actual working

point can now be determined. This working point can be used for tracking individual

particles and particle beams. To investigate the SCT a particle beam has to be tracked.

An explanation of the SCT is given below in section (3.4.2). There it also becomes clear why

the tracking of a single particle is not su�cient for a correct determination. The properties

of the chosen working point to investigate the SCT of the prototype EDM storage ring are

given in table (6.1).

Table 6.1: Properties of chosen working point. The property kfocus shows the normalized
�eld strength of the quadrupole family 'QF' and kdefocus of the quadrupole
family 'QD'. The horizontal betatron tune is indicated with Qx and the vertical
betatron tune with Qy. The horizontal chromaticity is indicated with ξx and
the vertical chromaticity with ξy.

kfocus kdefocus Qx Qy ξx ξy
+0.070 -0.243 1.823 1.123 -0.070 +0.035

You can see from the table that the quadrupole family 'QF' now actually represents hor-

izontally focusing quadrupoles, after which they were named. The same applies to the

quadrupole family 'QD' which is horizontally defocusing at this working point. The work-

ing point was chosen in a way that the betatron tunes shown in column three and four

of table (6.1) are far away from any betatron resonance. To demonstrate this feature the

working point was drawn in a tune diagram up to third order which is shown in �gure (6.1).

The last two columns of the table show the natural chromaticities of the working point. As

desired, these are close to zero. Figure (6.2) shows the optics of the chosen working point.

Here the x-axis indicates the location inside the storage ring and the y-axis the magnitude

of the individual properties which are mentioned in the legend on top of the graph. As

the red dots show the locations of the quadrupoles inside the ring one can calculate the

ratios Rxy and Ryx here. These results are Rxy = 1.42 and Ryx = 9.32. As the ratio Rxy
is very low it causes higher sextupole strengths when manipulating the chromaticity in the

following sections.
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Figure 6.1: Tune diagram with resonances up to third order and chosen working point
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shows the vertical betatron tune Qy.
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dispersion. The x-axis shows the position inside the storage ring and the y-
axis the magnitude of the individual properties. Location of quadrupoles are
marked with red dots.
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6.1.2 Initial Beam Parameter

The simulation of a multi-particle beam has been performed using two routines of the

Bmad source code. These were in particular a routine to initialize a beam with prede�ned

parameters which is called init_beam_distribution and a routine which is tracking the

beam through the lattice named track_beam. The initial beam parameters are displayed

in table (6.2) and (6.3).

Table 6.2: Beam Parameters.

Particle Type Proton
Number of Particles 1000

Number of Bunches 1
Center Closed Orbit

Beam Polarization x 0
Beam Polarization y 0
Beam Polarization z 1

Table 6.3: Beam Distribution.

x Distribution Gaussian
y Distribution Gaussian
z Distribution Gaussian

εx 5 · 10−7 m · rad
εy 5 · 10−7 m · rad
σz 1 · 10−3

σpz 1 · 10−4

Table (6.2) shows that a proton beam consisting of 1000 particles in one bunch was used

for the simulation. Although 1000 particles are not a realistic beam intensity, which

contains approximately 1010 particles, this compromise between reality and simulation

was chosen to avoid exceedingly long simulation times. The reference particles closed orbit

was chosen to be the beam center so o�set particles are moving symmetrically around

the reference particles. Also a purely longitudinal polarization at the beginning of the

tracking algorithm was used.

The distribution of the tracked beam are displayed in table (6.3). Since a Gaus-

sian shape is expected from a realistic beam, this was also chosen in the simulation for

the phase space coordinates. The beam emittance ε and the σ of the Gaussian beam

distribution are connected via the β-function:

εx,y =
σ2
x,y(s)

βx,y(s)
. (6.1)

When selecting the beam distribution, care was taken to ensure that individual particles

move inside the stable area of the phase space ellipse, so no particle gets lost during

tracking. To check if the Bmad routine init_beam_distribution works properly the beam

distribution after the initialization process was investigated. For this reason the phase

space coordinates of every single particle of the beam were recorded. Figure (6.3) and

�gure (6.3) show the result of this investigation.
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Figure 6.3: Horizontal distribution of the beam. A normalized density function is displayed
on the y-axis and the deviation from the reference particle is shown on the x-
axis. A Gaussian �t is indicated in orange.
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Figure 6.4: Vertical distribution of the beam. A normalized density function is displayed
on the y-axis and the deviation from the reference particle is shown on the
x-axis. A Gaussian �t is indicated in orange.
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Figure 6.5: Longitudinal distribution of the beam. A normalized density function is dis-
played on the y-axis and the deviation from the reference particle is shown on
the x-axis. A Gaussian �t is indicated in orange.
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Figure 6.6: Momentum distribution of the beam. A normalized density function is dis-
played on the y-axis and the deviation from the reference particle is shown on
the x-axis. A Gaussian �t is indicated in orange.
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Figure (6.3) and (6.4) show the horizontal and vertical beam distribution at the �rst

element of the lattice before the beam propagates through the lattice. Figure (6.5) and

(6.6) show the longitudinal phase space of the beam. A Gaussian �t colored in orange

indicates that the beam distribution does in fact have a Gaussian shape in all phase space

coordinates. The mean µ and the standard deviation σ of the distribution are displayed

above each graph.

The mean of the horizontal and vertical Gaussian distribution shows values very

close to zero. As the x-axis of these plots has the unit millimeter the mean can be assumed

to be zero and the visible e�ect is consistent with a statistical �uctuation below one σ.

With equation (6.1) one is able to convert the standard deviations to emittances. The β

used is the one of the lattice �rst element. The results read:

σx = 3.11 · 10−3 m ⇒ εx = 5.82 · 10−7 m · rad (6.2)

σx = 2.41 · 10−3 m ⇒ εx = 5.00 · 10−7 m · rad. (6.3)

While the emittance for the vertical phase space corresponds to the parameter used

in the routine init_beam_distribution, this does not apply to the horizontal phase

space. The reason for this is the fact that horizontal and longitudinal phase space are

coupled. As a momentum deviation inside beam is introduced the horizontal emittance is

increasing. In case the momentum deviation is not considered and chosen to be zero also

the result for the horizontal emittance corresponds to the parameter used in the routine

init_beam_distribution.

If one is looking at the mean for the longitudinal phase space the case is quite

similar to the horizontal and vertical phase space coordinates. The reason that the

means deviate from zero is statistical �uctuation. The standard deviation here is in

perfect agreement with the ones used as a parameter in the routine init_beam_distribution.

This shows that the previously de�ned beam parameters were transferred to the

simulation program as desired. Calling the function track_beam leads to the propagation

of the beam trough the lattice. In this simulation no interaction between the protons

inside the particle beam was considered. For this reason a single particle in the particle

beam behaves identically to a single tracked particle.
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6.2 Variation of vertical Chromaticity

To optimize the SCT at a given working point the chromaticity can be varied. This can be

achieved by the manipulation of the sextupoles strengths. To keep the approach as simple

as possible the horizontal chromaticity is kept at a value of zero while the vertical chro-

maticity is manipulated. The sextupole strengths needed to achieve the desired horizontal

and vertical chromaticities are shown in table (6.4).

Table 6.4: Sextupole strengths needed for chromaticity manipulation. The properties ξx,des
and ξy,des show the desired horizontal and vertical chromaticities and the proper-
ties k2,SXF and k2,SXD the normalized sextupole �eld strengths to achieve those.
The indices at these properties show if they belong to the sextupole family 'SXF'
or 'SXD'.

ξx,des ξy,des k2,SXF [1/m3] k2,SXD [1/m3]
0 −10 −0.022 +0.259

0 −08 −0.017 +0.207

0 −06 −0.013 +0.155

0 −04 −0.008 +0.104

0 −02 −0.003 +0.052

0 0 +0.001 ±0.000

0 +02 +0.006 −0.052

0 +04 +0.011 −0.104

0 +06 +0.015 −0.156

Here the �rst column shows the desired horizontal chromaticity while the second column

shows the desired vertical chromaticity. The actual chromaticity values ξx,act and ξy,act

are able to di�er from the desired value ξx,des and ξy,des. This di�erence εchrom is de-

scribed in equation (6.4) and was set to stay below 0.01 in order to ensure that the desired

chromaticity values are in good agreement with the actual ones:

εchrom = |ξx,act − ξx,des|+ |ξy,act − ξy,des|. (6.4)

The third column of table (6.4) shows the strengths of the sextupoles placed on the

quadrupole family 'QF' and the last column the strengths of the sextupoles placed on

the quadrupole family 'QD'. Being able to tune the chromaticities to the desired values

the SCT and the spin tune spread can be investigated. This was done by recording the

spherical spin polarization at the beginning of each turn. The beam used for this investi-

gation had the properties mentioned in the sections before. The result for a con�guration

of zero horizontal and zero vertical chromaticity is shown in �gure (6.7) as an example.
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Figure 6.7: Evolution of total spin polarization Ptot during 100000 turns. A quadratic �t to
the simulation data is indicated in orange. Exemplary plot for a chromaticity
con�guration of ξx = 0 and ξy = 0.
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Figure 6.8: Evolution of horizontal polarization orientation φP,Beam during 100000 turns.
A linear �t drawn in orange covers the blue data points. Exemplary plot for a
chromaticity con�guration of ξx = 0 and ξy = 0.
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Figure 6.9: Evolution of vertical polarization orientation θP,Beam during 100000 turns. The
initial angular θP,Beam corresponds to π/2. Exemplary plot for a chromaticity
con�guration of ξx = 0 and ξy = 0.

The three exemplary plots above show the evolution of the spherical spin polarization.

The x-axis indicates the number of turns the beam already propagated and the y-axis

denotes the magnitude of the corresponding spherical spin polarization.

In the �rst plot which shows the total spin polarization a quadratic �t to the blue

data points was performed which is indicated in orange. The assumption of a quadratic

behavior is reasonable as one would expect a damped oscillation of the total spin. As this

damped oscillation behaves like a cosine function a quadratic �t is appropriate. Using the

parameters of the quadratic �t shown in �gure (6.7) an estimation of the SCT could be

made. The second plot, �gure (6.8), shows the rotation of the horizontal spin polarization.

As this is directly connected to the spin tune spread as shown in equation (3.54) a linear �t

was performed this �gure which is indicated in orange. This linear �t covers the blue data

points. As the reference particles spin is frozen (φs = 0) the slope of the linear �t reveals

the spin tune spread ∆νs. The last plot, �gure (6.9), shows the vertical spin build up. The

initial angular of θP,Beam corresponds to π/2 which indicates no vertical spin build up.

During the propagation of the beam through the lattice it deviates from its starting value

of π/2. It can be shown that these small symmetric deviations are induced by the ver-

tical distribution of the beam. If the vertical distribution is turned of no deviation is visible.
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The estimation of the SCT and the spin tune spread was obtained for every sex-

tupole con�guration mentioned in table (6.4). The results are shown in the �gure

(6.10) and �gure (6.11). The �rst �gure shows the SCT on the y-axis and the vertical

chromaticity on the x-axis. The data points are displayed in blue and a Gaussian �t to

the data points is indicated in orange.

In the second �gure the y-axis shows the spin tune spread while the x-axis displays

the vertical chromaticity. Here the data points are also colored blue while a linear �t is

performed in orange. In both �gures the �tting parameters are displayed in the legend

above. The errors of each data point are obtained from the quadratic and linear �t before.

They are so small that they become invisible in these graphs.
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Figure 6.10: SCT for a particle beam consisting of 1000 particles versus vertical chromatic-
ity ξy. The horizontal chromaticity ξx is set to zero while the vertical chro-
maticity ξy is varied along the x-axis. A Gaussian �t to the data is indicated
in orange.
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Figure 6.11: Spin tune spread νs for a particle beam consisting of 1000 particles versus
vertical chromaticity ξy. The horizontal chromaticity ξx is set to zero while
the vertical chromaticity ξy is varied along the x-axis. A linear �t to the data
is indicated in orange.

In �gure (6.10) one can see from the �tting parameters that the longest SCT is achieved

at a vertical chromaticity of ξy = −3.88. Naively one would expect, that the longest spin

coherence time is achieved at the same chromaticity con�guration at which the spin tune

spread is minimal. The minimal spin tune spread can be calculated by the linear �t in

�gure (6.11). The result is that the minimal spin tune spread is achieved at a vertical

chromaticity of ξy = −5.33.

This is a surprising result and one might explain it with the missing data points

on the falling �ank of the Gaussian distribution. The SCT and the spin tune spread

was therefore re-investigated with only 100 particle and compared with the result for

1000 particles. The results are shown in �gure (6.13) and �gure (6.13). Their individual

quantities are displayed on the y-axis and the vertical chromaticities on the x-axis. The

data points are shown in blue while the �ts are marked with orange.
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Figure 6.12: SCT for a particle beam consisting of 100 particles versus vertical chromaticity
ξy. The horizontal chromaticity ξx is set to zero while the vertical chromaticity
ξy is varied along the x-axis. A Gaussian �t to the data is indicated in orange.
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Figure 6.13: Spin tune spread νs for a particle beam consisting of 100 particles versus
vertical chromaticity ξy. The horizontal chromaticity ξx is set to zero while
the vertical chromaticity ξy is varied along the x-axis. A linear �t to the data
is indicated in orange.

60



It is remarkable that the results for 1000 particles and 100 particles are similar. The

minimal spin tune spread is at ξy = −5.33 for 1000 and ξy = −5.31 for 100 particles which

indicates that one would expect the maximum SCT at the same vertical chromaticity

for 100 and 1000 particles. This is not the case as the Gaussian �t shows that it is at

ξy = −3.88 for 1000 and ξy = −4.15 for 100 particles.

This disagreement between the results for 100 and 1000 particles can be explained

with the missing data points on the falling �ank of the Gaussian �t for 1000 particles.

What the missing data points are not explaining is the disagreement between the longest

SCT and the minimal spin tune spread. The longest SCT and the minimal spin tune

spread are still more than one σ away from each other.

A possible explanation for the mismatch is the fact that spins axis of rotation in

phase space was assumed to be vertical. In the vicinity of spin resonances this axis can

drop. The determination of this axis can be performed by the so-called stroboscopic

averaging. This has not been considered here, but can have an in�uence and explain the

discrepancy between longest SCT and minimum spin tune spread [28].

In a previous investigation on the purely magnetic storage ring COSY with deuterons it

was already shown that the minimal spin tune spread can be described by the following

formula [29]:

0 = |A+a1IS +a2IL+a3IG| < x′2 > +|B+ b1IS + b2IL+ b3IG| < y′2 > +O(< (∆p/p)2 >)

(6.5)

In this formula the parameter A and B represent the contribution of the natural chro-

maticity of the ring, while IS , IL and IG show the currents applied to the three sextupole

groups located in the arcs of COSY. The coe�cients ai and bi de�ne the sensitivity of the

beam properties to the sextupole strengths. A term proportional to < (∆p/p)2 > arises

due to the synchrontron motion. This formula suggests that in case of zero chromaticity

the �rst and second term vanishes and the spin tune spread becomes close to zero. This

would result in the maximum SCT [29].

The investigation actually shows that there are sextupole con�gurations inside COSY at

which the SCT becomes very long. An independent measurement during the same project

shows that these sextupole con�gurations coincide with almost zero chromaticity. This

can be explained by the fact that all particle paths have the same length regardless of

their betatron oscillation [29].
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The question arises why the results presented in this thesis deviate from this re-

sults. In contrast to the previous mentioned investigation of the longest SCT and minimal

spin tune spread do not appear at a chromaticity of zero in both planes. Furthermore,

the maximum SCT and the minimum spin tune spread are not at the same sextupole

con�guration. However, it should be noted, that the COSY and the prototype EDM

storage ring behave in an elementary di�erent way with respect to the spin motion.

This is shown by the fact that COSY is a purely magnetic ring and thus the spin

of the reference particle oscillates. In contrast, the prototype EDM storage ring allows

the spin of the reference particle to be frozen. Also the �elds a particle experiences

are di�erent as the prototype EDM storage ring provides an additional electric �eld to

the magnetic �eld inside the dipoles. Furthermore, the measurements at COSY used

deuterons while protons were used in this work.

At this stage it is not possible to clearly explain why the optimal SCT of both

rings is so di�erent. This can only be done once the spin motion of a particle in the

prototype EDM storage ring is better understood.
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7 Summary and Outlook

To perform a high-precision experiment to determine the EDM of a charged particle at a

storage ring one needs an exact understanding of the spin motion. This thesis is focusing

on the simulation of such a spin motion in the so-called prototype EDM storage ring.

Its special feature is to have bending dipoles with combined magnetic and electric �elds

which keep the spin of the reference particle aligned with its momentum.

An idealized model of the prototype EDM storage ring design from February 2020

was used and benchmarked within this thesis. No misalignments or �eld errors where

considered. An investigation of possible working points has been performed by varying

the quadrupole strengths. The evaluation of this investigation shows that one is able

to achieve horizontal and vertical betatron tunes in between the range of zero and two.

For tune values higher than two no stable solution could be determined. In parallel the

chromaticity of the working points was recorded which varies widely and even changes its

sign. It has been found out and shown that this is a natural behavior for small storage rings.

Using sextupoles being mounted right on top of the quadrupoles to manipulate the

chromaticity, the dependency of the spin coherence time and the spin tune spread on

chromaticity was investigated. It was observed that the optimum values for the maximal

SCT and minimal spin tune spread do not coincide. The reason for this could be the

fact that stroboscopic averaging has to be taken into account to determine the spins axis

of rotation. Also maximal SCT and minimal spin tune spread deviate from zero chro-

maticity in both planes. This observation could not be explained in the course of this work.

In the future, this observation must be further investigated and veri�ed. For this

reason, one �rst has to switch from the lattice of the prototype EDM ring back to the

COSY lattice, since here the spin motion is already better understood and simulation

results can be compared with measurement results. As soon as one achieves an agreement

between simulation and measurement, one can work back from the COSY model to the

prototype EDM storage ring.

In conclusion, this work has shown how to model an electromagnetic dipole in Bmad.

Furthermore, the �exibility of the lattice with respect to betatron tunes and natural

chromaticity was investigated. Finally, it was shown that the SCT behaves di�erently

than expected under the in�uence of electric �elds.
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8 Appendix

Table 8.1: Parameters of an electromagnetic sector dipole in Bmad [24].

Attribute Parameter Name Input

Field Type fringe_type basic_bend
Length l dipole_length

Curvature b_�eld geometric_b_�eld
Magnetic Field b_�eld_err actual_b_�eld - geometric_b_�eld
Electric Field b0_elec -actual_e_�eld
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