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1. Introduction

The Jülich Electric Dipole moment Investigation (JEDI) collaboration at
Forschungszentrum Jülich, Germany aims to directly measure the electric
dipole moment of charged elementary particles like protons and deuterons for
the first time. A statistical sensitivity of O(10−24) e·cm is expected in a first
stage with the existing Cooler Synchrotron storage ring COSY. Afterwards
a new dedicated all-electric storage ring should increase the sensitivity. A
nonzero electric dipole moment would be a new source of CP violation if the
CPT theorem holds. In a first stage, the electric dipole moment is measured
by its interaction with an electric field inside a novel RF Wien Filter device,
which leads to a tiny vertical polarisation buildup of the initially horizontally
polarised beam. In order to reach the desired sensitivity, systematic effects,
which cause fake EDM signals, need to be reduced to their absolute minimum.
In this thesis, a new source of a systematic effect, which fakes an EDM sig-
nal is discussed. It was found that a misaligned electromagnetic field inside
the RF Wien Filter leads to periodic beam oscillations, which simultaneously
change the luminosity in the detector. A new luminosity monitoring system
is added to the DAQ (Data AcQuisition) system to monitor the movement of
the beam, which can be used to adjust the electromagnetic field inside the RF
Wien Filter to ensure stable working conditions and reduce systematic errors
during the next precursor run of the EDM project.

This work is divided into five parts, this introduction being the first of it.
Chapter 2 presents the theoretical background of this work, including the the-
ory of the electric dipole moment (EDM) and the staged approach of the JEDI
collaboration to measure the EDM. In chapter 3, a short introduction into the
accelerator facility COSY, along with its main components, which are relevant
for this work, is shown. The analysis of data taken during the first precursor
run in November 2018, showing the periodic beam movement, is presented in
chapter 4. Finally, a conclusions is given in the final chapter 5.
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2. Theoretical Background

2.1. Baryon Asymmetry

Our whole world is made out of ordinary baryonic matter, which is still a great
mystery in physics. Neither the Standard Model (SM) of elementary Particle
Physics nor the theory of general relativity can explain the origin of matter.
According to current theories, the big bang should have produced the same
amount of both matter and antimatter. The Baryogenesis describes the process
in the early universe when particles and their antiparticles annihilated, with
only a small amount of matter surviving. This effect can be quantified by the
ratio of the difference between the number of baryons nB and antibaryons nB̄
and the number of photons nγ, which are the main end products of annihilation
processes. The ratio is called baryon to photon ratio η

η =
nB − nB̄

nγ
≈ 1

2

nB − nB̄
nB + nB̄

. (2.1)

This ratio can be determined independently from the power spectrum of tem-
perature fluctuations in the Cosmic Microwave Background (CMB) and the
abundances of light elements in the intergalactic medium (IGM). Both meth-
ods consistently give values of η ∝ 10−10[1] while the standard model of el-
ementary particle physics combined with the standard model of cosmology
predicts a value of η ∝ 10−18[2].
To explain the asymmetry between matter and antimatter, Andrei Sakharov
identified three conditions in 1967, that have to be fulfilled [3]:

1) Baryon number B conservation violation, to explain the excess of baryon
over antibaryon production, as in the initial state B = 0.

2) C symmetry violation and CP symmetry violation. If C and CP symme-
tries are fully conserved, interactions which produce more baryons than
anti-baryons will not be counterbalanced by interactions which produce
more anti-baryons than baryons.

3) Deviations from the thermal equilibrium as CPT symmetry assures oth-
erwise the compensation of processes increasing and decreasing the baryon
number.
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2.2. ELECTRIC DIPOLE MOMENTS (EDMS)

In recent observations, CP violation has been found in many sources like Kaon
[4] and B-Meson decays [5]. However, the amount of measured CP invariance
is too small to explain the observed baryon asymmetry. New sources of CP
violation are needed, such as the so-called electric dipole moment (EDM).

2.2. Electric Dipole Moments (EDMs)

Classically, the electric dipole moment (EDM) is a vectorial property and de-
fined as

~d =

∫
V

ρ (~r) · ~r d3r, (2.2)

where ρ denotes the charge density. In elementary particle physics, it is a
fundamental property of a particle. It is aligned parallel or antiparallel to the
spin of a particle, since the quantization axis is the only distinguished direction
in a particle. The electric dipole moment is defined as [6]

~d = d · ~s with d = η
q~

2mc
, (2.3)

where q and m are the particle’s charge and mass respectively, ~ is the reduced
planck constant, c the speed of light and η1 is a dimensionless quantity, de-
noting the strength of the electric dipole moment. The electric dipole moment
is defined in analogy to the well known magnetic dipole moment (MDM) of a
particle

~µ = µ · ~s with µ = g
q~

2mc
, (2.4)

with the dimensionless g-factor. The hamiltonian of a particle at rest with a
magnetic and electric dipole moment in external magnetic ~B and electric ~E
fields is given by

Ĥ = −d · ~s · ~E − µ · ~s · ~B. (2.5)

Applying the parity operator P and the time reversal symmetry operator T
leads to

P(Ĥ) = +d · ~s · ~E − µ · ~s · ~B, (2.6)

T (Ĥ) = +d · ~s · ~E − µ · ~s · ~B. (2.7)

Parity transformation (eq. 2.6) changes the sign of the electric field ~E, but

doesn’t affect the spin ~s and the orientation of the magnetic field ~B, i.e, the
sign of the electric dipole moment term changes (violates P invariance), while
the magnetic dipole moment term remains negative (conserves P invariance).

1Don’t confound the strength of the EDM η with the baryon asymmetry in eq. 2.1.
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2.3. EXPERIMENTAL METHODS IN STORAGE RINGS

Figure 2.1.: Schematic drawing of a particle with a magnetic and electric dipole
moment in an external magnetic and electric field. Under par-
ity transformation, the electric field changes the sign. Under
time reversal, the spin and the magnetic field change their signs,
which leads to a different final state of the hamilonian for each
operation [7].

In eq. 2.7, the spin ~s and the magnetic field ~B change the sign, which leads
to the same conclusion as in eq. 2.6. Assuming that CPT symmetry holds,
a permanent, nonvanishing electric dipole moment for particles would mean a
further source of CP-violation. The breach of parity and time reversal sym-
metry can be seen in Figure 2.1.

2.3. Experimental Methods in Storage Rings

In this section, the methods of measuring the electric dipole moment of protons
and deuterons are presented. In section 2.3.2 the method of the first ever di-
rect measurement (also referred to as the precursor experiment) of the electric
dipole moment with the existing storage ring COSY is described. In the fol-
lowing chapter, future experiments are explained which require new dedicated
storage rings.

2.3.1. Main Principle

The basic principle of measuring an EDM is based on its interaction with
external electric fields. An electric field ~E in the rest frame of the particle tilts

4



2.3. EXPERIMENTAL METHODS IN STORAGE RINGS

the eletric dipole moment ~d. As the EDM is aligned parallel or antiparallel
with the spin axis, the interaction leads to a buildup of the spin axis

d~s

dt
∝ ~d× ~E. (2.8)

This tilt is used by all proposed storage rings to measure the EDM. The polar-
isation vector is initially in the horizontal plane. Therefore, the EDM rotates
the spin vector vertically up- or downwards. The evolution of the spin vector
under electromagnetic fields, including a non vanishing electric dipole moment
component, is described by the Thomas - BMT equation. Assuming that the
particle motion ~v is perpendicular to the electric and magnetic field2 [8]

d~s

dt
= ~s×

(
~ΩMDM + ~ΩEDM

)
with (2.9)

~ΩMDM =
e~
mc

[
G~B +

(
G− 1

γ2 − 1

)
c ~E × ~β

]
,

~ΩEDM =
e~
mc

[
1

2
η
(
~E + c~β × ~B

)]
.

In eq. 2.9, ~ΩMDM and ~ΩEDM denote the angular velocities associated with
the magnetic (MDM) and the electric dipole moment (EDM). ~E and ~B are
external electric and magnetic fields in the laboratory frame, G = (g − 2)/2 is
the anomalous g-factor and η is introduced in eq. 2.3. The Lorentz factors γ
and ~β are used to describe the relativistic velocity of particles. ~β is defined as
the ratio of the particles velocity ~v and the speed of light in vacuum ~β = ~v/c0.

Using ~β, γ can be calculated via γ = 1/
√

1− |β|2.
For an EDM measurement, the parameters in eq. 2.9 have to be chosen in
such a way, that a macroscopic polarisation buildup can be measured.

2.3.2. Magnetic Storage Rings - RF Wien Filter Method

For a magnetic ring like COSY3, eq. 2.9 reduces to

~ΩMDM + ~ΩEDM =
e~
mc

[
G~B +

1

2
ηc~β × ~B

]
, (2.10)

where ~B is the main magnetic field, oriented vertically, to bend the beam
around the ring.

2~v · ~E = ~0 and ~v · ~B = ~0.
3 ~E = ~0.
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2.3. EXPERIMENTAL METHODS IN STORAGE RINGS

• Vanishing EDM component (η = 0): In this case, the spin precession
is mainly driven by the magnetic field of the ring. The spin vector ~s
precesses around the vertical axis with a constant vertical component.
The so-called spin tune can be defined as the ratio of the spin precession
frequency and the revolution frequency,4

νs =
fspin

fbeam

, (2.11)

and is given in the case of an ideal ring by

νs = γG, (2.12)

which can be derived by plugging eq. 2.10 in eq. 2.9. Typical values for
COSY are listed in table 2.1. Note that a negative spin tune means a
counterclockwise spin rotation if the beam rotates clockwise. In an un-
perturbed ideal ring, the spins point 50% parallel to the particle motion
and 50% antiparallel.

• Non Vanishing EDM component (η 6= 0): In the case of a non

vanishing EDM component in eq. 2.10, ~ΩEDM will be inclined by a small
angle and the spin vector ~s will not only precess around the vertical axis.
It gets an additional oscillating vertical component, as shown in Figure
2.2 (blue curve). However, the amplitude of the oscillation is too small
to be detected directly and the net signal is zero. This is where the
so-called RF Wien Filter enters the field.

A costomary Wien Filter has an electrical ~EWF and a magnetic ~BWF field, per-
pendicular to each other and the beam direction. The total force on the beam
must be zero at the desired momentum. If the particles are off-momentum,
they are deflected either by the magnetic or electric field, hence the name filter.
The RF Wien Filter was designed and built at the ZEA5 institute [9]. The RF
Wien Filter works at the resonant frequency with the spin tune frequency

fWF = frev|γG± k| with k ∈ Z, (2.13)

where frev denotes the revolution frequency of the beam. Every turn, the
magnetic field of the RF Wien Filter ~BWF gives a small kick to the spin vector,
which breaks the symmetry between parallel and antiparallel spin and particle

4The unit is given by spin precessions / turn in the accelerator.
5Zentralinstitut für Engineering, Elektronik und Analytik.
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2.3. EXPERIMENTAL METHODS IN STORAGE RINGS
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Figure 2.2.: Vertical polarisation buildup with and without Wien Filter (WF)
in the ring with the measured signals in black.

motion. It can be shown, that the vertical polarisation build up is given by

(
dPV
dt

)
EDM

= η
e ~BWien

4mc

1 +G

γ2
P0

e
(
− ~ER + β ~BV

)
mcνsωC

, (2.14)

where ~ER denotes the radial electric field (~0 for COSY) and ~BV the vertical
magnetic field [10]. The calculations assume that the phase difference between
the spin tune precession and the RF Wien Filter is zero. Therefore a phase
feedback system is necessary (see section 3.2.3) [11].

Table 2.1.: Rough estimates of particular values of deuterons (d) and protons
(p) at a momentum of 970 MeV/c and 520 MeV/c in COSY respec-
tively, including the particles revolution frequency frev, anomalous
G factors [12, 13], Lorentz factors β and γ, the spin tune γG and
the spin tune in units of hertz fprec = γ|G|frev.

frev[kHz] G β γ γG fprec[kHz]
d 750.2 −0.143 0.459 1.126 −0.161 120.1
p 791.6 1.793 0.458 1.143 2.050 1622.7
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2.3. EXPERIMENTAL METHODS IN STORAGE RINGS

2.3.3. Electric and Combined Storage Rings

In a storage ring, using only electric bending components, eq. 2.9 reduces to

~ΩMDM + ~ΩEDM =
e~
mc

[(
G− 1

γ2 − 1

)
c ~E × ~v +

1

2
η ~E

]
(2.15)

It is of particular interest to reduce the angular velocity due to the MDM to
zero (”frozen spin”). The condition

G− 1

γ2 − 1
!

= 0 (2.16)

is satisfied, if pmagic = mp/G = 0.7 GeV holds. Note that this is only possible
for protons, as Gproton > 0 [14].

A ring, using both electric and magnetic bending elements has to fulfill the
following condition to reduce the MDM component to zero

G~B +

(
G− 1

γ2 − 1

)
c ~E × ~v !

= ~0. (2.17)

This is possible for any charged particle. Such a ring design is being studied
by the JEDI collaboration in Jülich [15].
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3. The Cooler Synchrotron COSY

In this chapter an overview of the accelerator facility COoler SYnchrotron
COSY located at Forschungszentrum Jülich in Germany along with its main
components relevant for this thesis is presented.

3.1. The Facility

The facility consists of three main parts: A source that provides polarised and
unpolarised hydrogen H− and deuterium D− ion beams, a pre-accelerator cy-
clotron called JULIC (JUelich Light Ion Cyclotron) and the main accelerator
COSY. In Figure 3.1, a schematic of COSY is presented. COSY provides four
internal and three external experimental sites, where hadron experiments can
be carried out.
Once the particles are produced in the source and transported via the source
beamline to the inner part of the cyclotron, the particles are accelerated and
transferred via the injection beamline (IBL) to the synchrotron.

3.1.1. Source and Cyclotron

In total three ion sources are available: two for unpolarised
(
named after the

companies IBA (Belgium) and AEA (Great Britain)
)

and one for polarised
ion beams, providing hydrogen and deuterium ions with an energy of 4.5 keV
and 7.6 keV, respectively. The polarisation process takes place during the col-
lision of ground state nuclear polarised hydrogen or deuterium with an intense
neutralized cesium beam

H0/D0 + Cs0 → H−/D− + Cs+. (3.1)

The polarised deuterium or hydrogen beam is afterwards extracted with a
dipole magnet to the pre-acceleretor JULIC [16]. The pre-accelerator cyclotron
JULIC accelerates the unpolarised or polarised hydrogen H− and deuterium D−

ion beams from the source up to their injection energies (45 MeV and 76 MeV
for H− and D− beams respectively [17]). The cyclotron was built in 1968 and is
used since 1992 as a pre-accelerator for COSY. It is an isochronous cyclotron,
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3.1. THE FACILITY

Figure 3.1.: Schematic overview of the facility. Starting at the pre-accelerator
cyclotron JULIC, the ion beam is transferred to the main ring
via the injection beamline. Included is an electron cooler, the RF
Wien Filter and a polarisation measurement device [7].

separated in different sectors. The magnetic field inside the cyclotron increases
with increasing radius to deliver constant relativistic beams. The different
sectors guaranty horizontally focused ion beams.

From the cyclotron, the ions are transferred via the 94 m long injection beam-
line to COSY. On the injection beamline, a small polarimeter called LEP (Low
Energy Polarimeter) is installed to measure the initial polarisation of the beam
provided by the cyclotron [18]. At the end of the injection beamline, two elec-
trons are removed from the ions by a thin carbon foil and the proton/deuteron
beam is injected into COSY [19].

3.1.2. COSY

COSY is a synchrotron, accelerating deuteron and proton beams up to a mo-
mentum of p = 3.7 GeV/c, which corresponds approximately to a kinetic en-
ergy of Ekin,d = 2.2 GeV/c for deuterons and Ekin,p = 2.8 GeV/c for protons
[19].
The structure of the accelerator consists of two straight lines (40 m/line) and
two arcs (52 m/arc), making it a so-called race track shaped ring. The total
circumference is 184 m [19]. In the arcs, 24 normal conducting water cooled
dipole magnets with a maximum magnetic field of 1.58 T bend the beam around

10



3.2. POLARISATION MANIPULATION & DETECTION

the ring. Furthermore, 56 quadrupole magnets focus the beam and sextupole
magnets correct chromaticity effects, i.e. they minimize the beam dispersion.
[20].
Besides the ability to accelerate polarised and unpolarised ion beams, COSY
provides excellent beam conditions by cooling the beam using two electron
coolers and a stochastic cooler, which reduce the emittance of the beam sig-
nificantly.

Electron Cooling
Two electron coolers are installed in COSY, each in every straight section. In
an electron cooler, electrons are accelerated with the same mean longitudinal
velocity, but a smaller transverse velocity momentum spread than the main
ion beam and guided via magnets into a short joint section with the main ac-
celerator where the electrons interact with the ion beam. Due to the Coulomb
interaction of oppositely charged particles, the momentum spread of the ion
beam is reduced. After interacting with the beam, the electrons are guided
via magnets out of the beam pipe [21].

Stochastic Cooling
COSY has a stochastic cooler, which consists of a pickup detector as well as a
kicker. At the position of the pickup, the deviation of the particle beam from
the design orbit is measured and the information is transferred diagonally from
the pickup detector to the kicker. When the beam enters the kicker, a bump
is applied to the beam, which corrects the deviation, allowing phase space
reduction in the horizontal and longitudinal plane [21].

3.2. Polarisation Manipulation & Detection

In addition, several devices are installed in the ring to manipulate and detect
the polarisation of the bunched beam, making COSY an ideal machine to study
systematic effects on the road to a final electric dipole moment experiment.
Some of these devices that are significant for this work, are presented in the
following.

3.2.1. RF Solenoid

The RF solenoid used in COSY to rotate the initially vertical polarised beam
longitudinally into the horizontal plane is a siberian snake. A siberian snake
is used in polarised particle accelerators to avoid resonant spin tune crossings,

11



3.2. POLARISATION MANIPULATION & DETECTION

Figure 3.2.: Interior of the RF Wien Filter seen along the beam axis with
two electrodes which produce the electromagnetic radio frequency
field [7].

which cause depolarisation of the beam. The siberian snake in COSY is a
4.7 Tm longitudinally solenoid of 1 m length [22].

3.2.2. RF Wien Filter

A conventional Wien filter has orthogonal static electric and magnetic fields,
used to filter off momentum particles. The particles are either deflected by the
electric or the magnetic field. The particle beam must enter the Wien Filter
in the center, where the Lorentz force ~FL is zero for particles with nominal
velocity. This ensures that no beam oscillations are excited, which makes it an
ideal device to manipulate spins of polarised particles. The purpose of the RF
Wien Filter is to rotate the beam polarisation horizontally to break the sym-
metry between parallel and antiparallel spin and beam motion to accumulate
a measurable EDM signal (see chapter 2.3.2). The interior with two electrodes
of the RF Wien Filter can be seen in Figure 3.2 [23].

3.2.3. Phase & Frequency Feedback

To determine the precession of the EDM with an RF Wien Filter, not only its
operation on a harmonic of the horizontal spin precession has to be guaranteed.
Additionally, the relative phase of the precession rate and the RF device needs
to be fixed. The phase difference of spin precession and rf frequency is defined
as

φ(t) = 2π (t− t0) · (frf − νsfcosy) + φ0, (3.2)

12



3.2. POLARISATION MANIPULATION & DETECTION

where φ0 is the phase at the time of starting the measurement t = t0. Using
n/fcosy = t− t0, where n denotes the turn number, eq. 3.2 reduces to

φ(n) = 2πn

(
frf

fcosy

− νs
)

+ φ0. (3.3)

As long as the Wien Filter condition (eq. 2.13) is fulfilled, φ(n) stays con-
stant. However, even small mismatches between the rf frequency frf and the
resonance frequency lead to continious changes of φ(n). The basic principle of
the feedback is to control the phase by adjusting the frequency of the cavity
fcosy. It can be shown that the necessary frequency change ∆fcosy is given by
[11]

∆φ ≈ 6.93
rad

Hz s
∆fcosy∆t. (3.4)

3.2.4. WASA Detector

The WASA (Wide Angle Shower Apparatus) was built in 1996 at the De-
partement of Radiation Sciences at the University Uppsala and installed at
the storage ring CELSIUS. In 2006, the entire detector was moved to COSY
for the Wasa at COSY collaboration. It consisted of two main parts: a cen-
tral part and a forward part. After taking data for eight years, the physics
program of WASA ended and the central part was removed from the detector.
Nowadays, the forward part is used as a polarimeter for the EDM project [24].
The detector consists of multiple pizza-shaped layers, that work as triggers
and detectors for penetrating particles after they scatter with the unpolarised
internal target. For the purpose of a polarimeter, the detector is subdivided
into four sections, each covering an azimuthal angle of ∆Φ ≈ 90◦. The four
detectors are called up, down, left and right, as seen from the beam direction.
A sketch of the detector with its layers is shown in Figure 3.3. The angular
coverage is Θ = 2◦ − 17◦ and Φ = 0◦ − 360◦. A coordinate system defining
the angles is shown in Figure 4.2. The extraction on the target is provided by
a white noise electric field, which consists of superimposed sinusoidal signals.
The extraction rate on the target is controlled by a feedback system called
Schneider Box. It controls the voltage of the white noise applied to the beam
so that the extraction rate stays constant with time.

In November 2019, a new dedicated polarimeter called JePo (Jedi Polarimeter)
based on LYSO crystals was installed in the ring, to increase the sensitivity of
measuring the polarisation build-up due to the EDM [26]. A picture of JePo
is shown in Figure 3.4.
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3.2. POLARISATION MANIPULATION & DETECTION

Figure 3.3.: Schematic of the Wasa forward detector [25, p.28].

Figure 3.4.: The new JePo polarimeter installed in the ring [7].
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4. Data Analysis

In this chapter, a detailed analysis of data taken during the first precursor run
in 2018, in terms of spin tune νs, phase ϕs and horizontal polarisation εH , is
presented. The ROOT data analysis framework is used for the analysis [27].

4.1. Measurement Principle

The polarised source provides only vertically polarised beam that is acceler-
ated in the cyclotron. When the fully vertically polarised beam is injected into
COSY, beam preparation takes place, including bunching and cooling. After-
wards, the solenoid rotates the polarisation into the horizontal plane and the
polarisation starts to precess with the spin tune frequency. At this point, the
phase feedback system is started. Afterwards, the RF Wien Filter is switched
on and the frequency fWF is set to the precession frequency fprec, while fixing
the relative phase between the spin tune and the RF Wien Filter, and the
vertical polarisation builds up. A schematic of the measurement principle can
be seen in Figure 4.1. However, unless specifically indicated, this thesis deals
with data that is taken with the feedback system turned off when the RF Wien
Filter is switched on. Observed effects are discussed in section 4.8. The data
is provided in so-called ROOT trees. A detailed description of the root trees
is listed in Table 4.1. To determine the polarisation precessing frequency and
the horizontal polarisation, an integer turn number n ∈ Z is assigned to each
event. The timing takes the COSY RF cavity as a reference. In this work,
only polarised deuteron data is analysed.

4.2. Polarimetry

The general coordinate system, used in this thesis can be seen in Figure 4.2.
For the purpose of a polarimeter, the WASA detector is subdivided into four
different detectors named up, down, left and right detector. These detectors
refer to the relative position seen by the beam. The up, down, left and right
detectors’ centers are placed at polar angles of φ ≈ 90◦, 270◦, 0◦ and 180◦

respectively, each covering a polar angle range of ∆Φ ≈ 90◦.
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Figure 4.1.: Measurement principle: a) Beam preparation, including bunch-
ing and cooling. b) The RF Solenoid turns the polarisation into
the horizontal plane (εV = 0), feedback preparation takes place.
c) The RF Wien Filter is switched on and the frequency is set to
the polarisation precession frequency fWF = fprec, while adjust-
ing and maintaining the relative phase between the polarisation
precession and the RF Wien Filter. However, unless specifically
indicated, this thesis deals with data, taken with the feedback sys-
tem turned off, when the RF Wien Filter is switched on. When
the RF Wien Filter is switched on, the vertical polarisation accu-
mulates due to the EDM and systematics.

Table 4.1.: Root Tree Information.

Name Data Type Meaning
polstate int initial polarisation of data 1: up 2: down 15: unpolarised
tir float time in run
cycle int cycle of data
counter int detector 0: up 1: right 2: down 3: left
tic float time in cycle
turn int turn number
ph cosy float phase relative to cosy rf, i.e. position within one turn
ph sol float phase relative to solenoid rf
ph wf float phase relative to Wien Filter RF
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4.2. POLARIMETRY

Figure 4.2.: Coordinate system used in this thesis. The bold arrows denote
the beam direction and the track of a scattered particle. The
angles Φ and Θ are the polar angle and the azimuthal angle,
respectively [28].

The elastic differential cross section for vector polarised deuterons scattering
from a spin 0 (carbon) target is given by [29](

dσdCpol.(Θ,Φ)

dΩ

)
=

(
dσ0(Θ)

dΩ

)
·
(

1 +
3

2
PVAy(Θ) cos(Φ)− 3

2
PHAy(Θ) sin(Φ)

)
,

(4.1)
ignoring tensor polarisation, where the polar and the azimuthal angles are given
by Φ and Θ and dΩ is the differential solid angle. The magnitude of the vertical
and the in-plane beam polarisation are given by PV and PH , respectively. The
vector analysing power Ay(Θ) is a property of the elastic scattering between the

carbon target and the deuteron beam. dσ0(Θ)
dΩ

is the differential cross section for
an unpolarised beam and depends only on the azimuthal angle. The number
of detected events per time unit and solid angle is given by

dN(Θ,Φ)

dΩdt
= L · α(Θ,Φ) ·

(
dσ0(Θ)

dΩ

)
·
(

1 +
3

2
PVAy(Θ) cos(Φ)

− 3

2
PHAy(Θ) sin(Φ)

)
, (4.2)

where α(Θ,Φ) is the geometrical acceptance of the detector and L the inte-
grated luminosity of the deuteron beam. An expression for the event rate is
obtained by integrating over the solid angle, assuming that the acceptance is
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Figure 4.3.: Integrated Count Rates as a function of turn numbers in COSY.

the same for each detector, yielding

dN

dt
=

∫
Ω

dN(Θ,Φ)

dΩdt
dΩ, (4.3)

dNUp

dt
= L · α · σ0U ·

(
1− 3

2
PHAy

)
, (4.4)

dNDown

dt
= L · α · σ0D ·

(
1 +

3

2
PHAy

)
, (4.5)

dNLeft

dt
= L · α · σ0L ·

(
1 +

3

2
PVAy

)
, (4.6)

dNRight

dt
= L · α · σ0R ·

(
1− 3

2
PVAy

)
, (4.7)

where σ0X is the integrated spin-independent cross section and Ay the weigthed
average analysing power, which is assumed to be the same for each detector.
Due to the angular precession of the horizontal polarisation (eq. 2.12), PH can
be written as

PH(t) = Pxz sin(Ωst+ ϕs). (4.8)

The angular frequency, the phase and the magnitude of the horizontal spin
precession are denoted by Ωs = 2πνsfrev, ϕs and Pxz =

√
p2
x + p2

y. The angular
frequency in COSY is roughly fprec = |νs|frev ≈ 0.16 · 750 kHz = 120 kHz. The
detector on the other side can only handle data rates of roughly 5000 Hz.
Therefore a simple fit with νs as a parameter is not possible, as only one event is
detected per 24 spin revolutions. Members of the JEDI collaboration developed
methods to measure the spin tune with highest precision O(10−10).
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4.3. VERTICAL POLARISATION

4.3. Vertical Polarisation

The vertical polarisation can be determined by using time integrated count
rates, measured in the left (eq. 4.6) and right detector (eq. 4.7). A left-right
asymmetry εV is defined to calculate the vertical polarisation

εV =
NL −NR

NL +NR

=
3

2
PyAy, (4.9)

where σ0R = σ0L is assumed.1 Note that the unpolarised cross section, ac-
ceptance and especially luminosity cancel out, which makes this asymmetry
independent of beam parameters (except for the vertical polarisation Py). As-
suming Poisson statistics for time intergrated counts in the left and right de-
tectors (σbin =

√
N), the statistical uncertainty of εV is given by

σεV =
2
√
NLNR

(NL +NR)3/2
. (4.10)

If the analysing power Ay is known, the vertical polarisation Py can be de-
termined by rearranging eq. 4.9. The integrated counts in the individual
detectors (left and right) can be seen in Figure 4.3.

The left-right asymmetry εV according to eq. 4.9 is shown in Figure 4.4. The
steps, described in section 4.1, can be easily distinguished. Data acquistion
starts shortly before the beam polarisation is rotated with the rf solenoid in
the horizontal plane at roughly 10 × 106 turns. Afterwards, the vertical po-
larisation is zero, as the horizontal polarisation is maximal. When the RF
Wien Filter is switched on at roughly 50× 106 turns, the vertical polarisation
accumulates.
However, the build-up is not a clean EDM signal, as systematic effects like
misaligned magnets create fake EDM signals. Studies of systematic effects are
currently ongoing at JEDI. In Figure 4.5 the average vertical spin component
build-up is plotted for simulated offsets of the beam position including verti-
cally randomly distributed quadrupole misalignments. For larger beam offsets,
the strengths of the EDM signal (η from eq. 2.3) becomes indistinguishable
from a build-up, caused by misalignments. The dashed line denotes the loca-
tion for which the false signal by misalignments is equal to an EDM strength
of η = 10−4. In order to be sensitive to even lower EDM strengths, a stable
and precise orbit is crucial for an EDM experiment [31, p.157-158].

1Small differences in σ0R and σ0L lead to a bias and distortion of the vertical polarisation.
However, the proportionality between εV and pH remains. A more precise determination
of pH is based on the crossratio of up- and down polarised data [30].
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Figure 4.4.: Left - Right Asymmetry εV as a function of turn numbers in
COSY. At 50 × 106 turns, the RF Wien Filter is switched on
and the vertical polarisation accumulates.

Figure 4.5.: Polarisation build-up per turn as a function of the beam offset
in y direction from the nominal orbit, simulated with Gaussian
quadrupole misalignments in COSY. Additionally, further EDM
strengths are considered. A precise orbit is crucial for an EDM
experiment to be sensitive to low EDM strengths. The dashed
line denotes the location for which a signal due to quadrupole
misalignment is equal to an EDM strength of η = 10−4 [31, p.158].
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4.4. MAPPING METHOD

The analytical work from eq. 4.11 to 4.20 is taken from former IKP student
Dennis Eversmann’s PhD Thesis High Precision Spin Tune Determination at

the Cooler Synchrotron in Jülich [32, p.41-46].

4.4. Mapping Method

A first method to determine the amplitude εH and the phase ϕs of the spin
precession is the so-called mapping method. The idea is to map all detected
events into one single oscillation period. The basic principle can be seen in
Figure 4.6. The upper plot shows the true spin tune oscillation together with
data samples. The entire cycle is divided into macroscopic time intervals of
equal length (1.5 × 106 turns (≈ 2 s), lower left plot). In each time window,
all events are mapped into one oscillation period assuming an arbitrary chosen
spin tune. A clear oscillation unfolds as soon as the true spin tune value is
chosen (lower right plot).
A great advantage of the mapping method is its independence of beam prop-
erties (except the polarisation), i.e. beam luminosity and acceptance of the
detector, as it uses combined detector rates, measured by the up and down
detector.

4.4.1. Spin Phase Advance ϕs

To each recorded event, a turn number n is assigned. The spin phase advance
of an arbitrarily assumed spin tune ν is given by

ϕs(n) = 2πνn. (4.11)

The spin phase advance is mapped into a 4π interval via the modulo operator

ϕs(n) = ϕs(n) mod 4π. (4.12)

This procedure is repeated for each microscopic time interval for the up- and
down detector individually. In Figure 4.7, two examples of the mapped spin
phase advance according to eq. 4.12 are shown for two different assumed spin
tunes. The statistical error of each bin is given by σbin =

√
N , as Poisson

statistics is assumed. In Figure 4.7a a clear oscillation pattern can be seen,
which indicates that the assumed spin tune is close to the true spin tune.
On the other hand, in Figure 4.7b, no oscillation pattern is observable, as the
assumed spin tune is not consistent with the true spin tune. A least square fit
is performed to data to calculate the phase ϕs,fit and the amplitude Namp of
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Figure 4.6.: The basic principle of the mapping method. The upper plot shows
the true spin tune oscillation with data sampling. The lower plot
shows the upper plot for a macroscopic time interval (red box).
The lower right plot shows the result of the mapping method for
νassumed = νtrue.

the oscillation
N(ϕs) = N νs

const +N νs
amp sin

(
ϕνss + ϕ

νs,fix

s,fit

)
. (4.13)

The results of the least square fits shown in Figure 4.7a are listed in table
4.2. The oscillations of the two detectors should be phase shifted by π. This
becomes obvious in eq. 4.4 and 4.5, as the sign of the term, describing the
precession of the polarisation, changes. The phase shift for the data shown
in Figure 4.7a is given by ∆φs = |2.45| + | − 0.56| = 3.01 ± 0.13, which is
compatible with a phase shift of π. As it can be seen in eq. 4.4 and 4.5, the
rates, measured in seperate detectors depend on the acceptance of the detector

Table 4.2.: Results of the least square fits, shown in Figure 4.7a.

Up Detector Down Detector
Nconst 339.34 ± 2.91 344.91 ± 2.94
Namp 46.82 ± 4.09 47.71 ± 4.14
ϕs,fit −0.56 ± 0.09 2.45 ± 0.09
χ2/ndf 39.28 / 37 40.63 / 37
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Figure 4.7.: The spin phase advance according to eq. 4.12 for the up- and down
detector individually for two different assumed spin tunes ν in a
macroscopic time interval. If the assumed spin tune corresponds
to the true spin tune, an oscillation pattern unfolds, which is fitted
according to eq. 4.13. The fit results are given in table 4.2.

and beam luminosity. Therefore, the amplitude in eq. 4.13 is only proportional
to the true horizontal polarisation of the precessing polarisation. In the next
section a method is presented that uses an asymmetry of the up and down
detector to cancel out this effect.

4.4.2. True Amplitude & Phase

In order to determine the true amplitude and phase of the horizontal polarisa-
tion precession, the following new count rates, based on eq. 4.12, are defined

N±X (ϕs) =

{
NX (ϕs)±NX (ϕs + 3π) for 0 ≤ ϕs < π
NX (ϕs)±NX (ϕs + π) for π ≤ ϕs < 2π

(4.14)

where X is either the up- or down detector. By rearranging the count rates,
a new up - down asymmetry εH(ϕs) can be defined, in analogy to the vertical
asymmetry in eq. 4.9

ε (ϕs) =
N−U (ϕs)−N−D (ϕs)

N+
U (ϕs) +N+

D (ϕs)

=
3

2
pxz

σ0UAy − σ0DAy
σ0U + σ0D

sin (ϕs + ϕ) .

(4.15)

The vertical asymmetry is shown in Figure 4.8 for a macroscopic time interval.
It is proportional to the sine of the spin phase advance. Performing a least
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Figure 4.8.: Vertical asymmetry ε(ϕs) fitted with eq. 4.16 to extract the hori-
zontal amplitude εH and the phase ϕs.

square fit according to

εH (ϕs) = A1 sin (ϕs) + A2 cos (ϕs) (4.16)

yields the amplitude and the phase of the precession. Both can be calculated
via

ε =
√
A2

1 + A2
2 =
√
−0.12612 + 0.072682 = 0.1455± 0.0084 (4.17)

ϕ = atan2(A2, A1) = atan2(−0.1261, 0.07268) = (−1.048± 0.057) rad (4.18)

where atan2 denotes the arctangent [33]. In eq. 4.17 and 4.18 the numbers
from Figure 4.8 are used as an example. However, it was shown that the
horizontal amplitude is biased for small amplitudes. A new method, based on
confidence intervals and Bayes’ theorem was developed in reference [34]. The
statistical errors of the amplitude and the phase are calculated via Gaussian
error propagation

σ2
ε =

A2
1σ

2
A1

+ A2
2σ

2
A2

A2
1 + A2

2

, (4.19)

σ2
ϕ =

A2
2σ

2
A1

+ A2
1σ

2
A2

(A2
1 + A2

2)
2 . (4.20)

In Figure 4.9a the amplitude according to eq. 4.17 is shown as a function
of time and assumed spin tune, where the color denotes the amplitude. The

24



4.4. MAPPING METHOD

20 40 60 80 100 120

610×0.1609703

0.1609704

0.1609705

0.1609706

0.1609707

0.1609708

0.1609709

0.160971

H
its

 / 
T

ur
n

0.06

0.08

0.1

0.12

0.14

0.16

A
m

pl
itu

de

a)

20 40 60 80 100 120
610×

Turn

0.1−

0.05−

0

Vε

b)

Figure 4.9.: a) Amplitude spectra, computed with the mapping method ac-
cording to eq. 4.17. A spin tune range from 0.1609703 to
0.16097105 with ∆ν = 7.5 · 10−9 (100 spin tune bins) is scanned
in 87 time bins.
b) Vertical polarisation εV for comparison.

analysis starts from 9.5×106 turns, as before the beam is vertically polarised
and thus shows no precession in the horizontal plane. As soon as the Wien Fil-
ter is switched on, the vertical polarisation increases and the amplitude of the
horizontal polarisation decreases. For each point in Figure 4.9 a phase can be
calculated which is used to calculate the spin tune, see section 4.6. An example
of the phase for different assumed spin tunes is shown in Figure 4.14.

25



4.5. FOURIER METHOD

The analytical work from eq. 4.22 to 4.30 is taken from former IKP student
Dennis Eversmann’s PhD Thesis High Precision Spin Tune Determination at

the Cooler Synchrotron in Jülich [32, p.47-50].

4.5. Fourier Method

In this section, a second method of computing the horizontal polarisation εH
and the phase ϕs of the precession is presented, which is based on the regular
Fourier transform. The Fourier transform f(ω) of a continuous 1-dimensional
periodic probabilty density function f̂(t) = A cos(ωst+ φs), where ωs = 2πνs,
is given by

f(ω) =

∫ ∞
−∞

f̂(t)eit·ωdt, (4.21)

transforming the periodic probabilty density function into the frequency space
ω. Computing f(w) would result in a delta distribution at ωs. As the timing
of events is not a continous function and the detector is placed at a discrete
place in COSY, the Fourier transform of a continious function does not apply.
Therefore the so-called Discrete Turn Fourier Transform is used, which is ex-
plained in more detail in the following.
The basic principle of the Fourier method is very similar to the principle ex-
plained in section 4.4. The only difference is the discrete Fourier transfor-
mation which results in a peak at the true spin tune frequency as shown in
Figure 4.10.

4.5.1. Discrete Turn Fourier Transform

The Discerete Turn Fourier Transform (DTFT) is based on the assignment of
a discrete turn number n to each event. Therefore f̂(t) in eq. 4.21 becomes
mathematically a discrete delta comb, which consists of Dirac delta functions
δ (t− n/fRF), where fRF denotes the radio frequency of the cavity

f(ω) =

∫ ∞
−∞

∞∑
n=0

f̂(t)δ

(
t− n

fRF

)
e−it·ωdt

=
∞∑
n=0

f̂ [n]e
−inω
fRF

=
∞∑
n=0

f̂ [n]e
−i2πnω
ωRF (4.22)
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Figure 4.10.: The basic principle of the Fourier method. The upper plot shows
the true spin tune oscillation with data sampling. The lower plot
shows the upper plot for a macroscopic time interval. The lower
right plot shows the Fourier spectra of data in a macroscopic time
interval. A peak appears at the true spin tune position.

where the square brackets denote a discrete argument of f̂ . With the relation
ν = ω/ωRF, eq. 4.22 gets

f(v) =
∞∑
n=0

f̂ [n]e−i2πn·v (4.23)

with f̂ [n] = A cos (2πvsn+ ϕs) .

As the measurement time interval is not infinite, it is useful to define a rect-
angular function w[n]

ŵ[n] =


0 n < 0
1 0 ≤ n < N
0 n ≥ N

(4.24)

where N denotes the total number of events in a finite time interval. Multi-
plying in turn space ĝ[n] = f̂ [n] · ŵ[n] corresponds to a convolution in the spin
tune domain g[ν] = f [ν] ∗ w[ν]
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g(v) = f(v) ∗ w(v) = (f ∗ w)(v)

=

∫ ∞
−∞

f(v − λ)w(λ)dλ

=
∞∑
n=0

f̂ [n]ω̂[n]e−i2πn·ν

=
N−1∑
n=0

ĝ[n]e−i2πn·ν

⇒ gνk =
N−1∑
n=0

ĝ[n] [cos (2πnvk)− i sin (2πnvk)] (4.25)

In the last step, Euler’s formular is used. Additionally, νk is introduced, as
the difference between two adjacent values of ν is not infinitesimaly small.
Therefore, νk becomes discrete. νk is an element of the scanned spin tune
range {νmin, νmax} with k ∈ {1, ..., kmax}

νk = νmin + ∆ν(k) · (νmax − νmin), (4.26)

∆ν(k) =
k − 1

kmax − 1
.

The prefactor ĝ[n] represents the randomly distributed turn events and is de-
termined, based on the probability function f̂ [n] in eq. 4.23. ĝ[n] is one, when
the turn number n corresponds to a detected event n = n(nev)

ĝ[n] =

{
1 for n = n (nev)
0 else.

(4.27)

Therefore, eq. 4.25 reduces to

gνk =
Nev∑

n(nev)=1

cos
(
2πvkn(nev)

)
− i sin

(
2πvkn(nev)

)
, (4.28)

where Nev is the total number of events (nev ∈ {1, Nev}). The discrete Fourier
parameters aνk and bνk are given by the real and the imaginary part of eq. 4.28
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Figure 4.11.: Fourier parameters aνk and bνk as a function of assumed spin
tune, measured by the up detector in a macroscopic time inter-
val. The spin tune ranges from 0.160 970 3 to 0.160 971 05 with
∆νk = 5 · 10−9 (150 bins).

respectively

aνk = Re (gνk) =
2

Nev

Nev∑
nev=1

cos
(
2πνkn (nev)

)
, (4.29)

bνk = Im (gνk) =
2

Nev

Nev∑
nev=1

− sin
(
2πνkn (nev)

)
. (4.30)

The factor 2/Nev takes the normalisation based on Parseval’s theorem into
account [35]. The statistical uncertainty of the Fourier parameters is given
by

σaνk =
2

Nev

√√√√ Nev∑
nev=1

cos2
(
2πνkn (nev)

)
, (4.31)

σbνk =
2

Nev

√√√√ Nev∑
nev=1

sin2
(
2πνkn (nev)

)
. (4.32)

A derivation for eq. 4.31 and 4.32 is given in section A.1. An example of the
Fourier parameters as a function of the assumed spin tune in a macroscopic
time interval is shown in Figure 4.11.
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4.5.2. Amplitude & Phase

The amplitude and the phase of the Fourier transform can be computed with
the Fourier parameters

εvk = |gvk | =
√

Im (gvk)
2 + Re (gvk)

2 =
√
a2
vk

+ b2
vk
, (4.33)

ϕvk = arg (gvk) = atan2
(

Im (gvk) ,Re (gvk)
)

= atan2 (bvk , avk) . (4.34)

The statistical uncertainties are given by Gaussian error propagation

σ2
εvk

=
a2
vk
σ2
avk

+ b2
vk
σ2
bvk

a2
vk

+ b2
vk

, (4.35)

σ2
ϕvk

=
b2
vk
σ2
avk

+ a2
vk
σ2
bvk(

a2
vk

+ b2
vk

)2 . (4.36)

In Figure 4.12 two examples of the amplitude of the Fourier transform are
shown, measured by the up detector in two different macroscopic time inter-
vals. A clear peak around the estimated spin tune is visible. Comparing both
spectra, it can be seen that the amplitudes differ because the horizontal polar-
isation changes with time. Using eq. 4.4 and 4.5, it can be calculated that the
amplitudes in the up and down detector (A↑ and A↓) of the Fourier spectra
are given by

A↑(ν = νs) = A↓(ν = νs) = εH , (4.37)
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Figure 4.12.: Fourier Amplitudes according to eq. 4.33 for two different time
bins. Both spectra are measured by the up detector. The
scanned spin tune ranges from 0.160 970 3 to 0.160 971 05 with
∆νk = 5 · 10−9.
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with εH = 3
2
pxzAy. A detailed derivation for eq. 4.37 is given in section A.2.

A comparison of the horizontal polarisation measured with both detectors and
the mapping method is shown in Figure 4.15. The phases measured with the
up and down detector can be seen in Figure 4.16.

4.6. Spin Tune Determination

To determine the spin tune as a function of turn number νs(n), a fixed spin
tune ν0

s and the change of phase for that fixed spin tune, that acts as a baseline,
needs to be determined

νs(n)

ν0
s

= 1 +
∆νs(n)

ν0
s

= 1 +
∆fs(n)

fs

− ∆fRF(n)

fRF

= 1 +
1

2πν0
s

∂ϕs(n)

∂n

⇒ νs(n) = ν0
s +

1

2π

∂ϕs(n)

∂n
, (4.38)

where fs and fRF denote the spin precession frequency and the RF cavity fre-
quency respectively [36]. The effect of scanning an off spin tune value, changing
the phase is shown in Figure 4.13. Assuming, that the blue curve represents
the true horizontal precession, it can be seen that for a data sampling fre-
quency (assumed spin tune) which is slightly different than the true frequency,
the phase difference (denoted as the arrows) increases with time. As soon as
the data sampling frequency corresponds to the true precession frequency, the
difference of phase stays constant. The phase ϕs denotes the phase difference
between assumed spin tune frequency ν0

s and true spin tune frequency νs. The
effect for real data can be seen in Figure 4.14 for four different assumed spin
tunes. The phase in Figure 4.14c shows the most constant behaviour, which
makes the assumed spin tune act as the spin tune baseline ν0

s . The change of
phase is determined by fitting the phase for the fixed spin tune with a poly-
nominal of 8th order, as the change of phase shows an arbitrary behaviour,
because of the spin tune frequency potentially changing due to instabilities of
power supplies etc. The change of phase with respect to the turn number n is
given by

ϕs =
8∑
i=0

ain
i. (4.39)
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Figure 4.13.: Schematic of the phase shift, if the fixed spin tune is higher (or-
ange curve) than the true spin tune (blue curve). The phase shift
is denoted by the arrows. If the assumed spin tune matches the
true spin tune, the phase shift stays constant with time.

Taking the derivative leads to

∂ϕs
∂n

=
8∑
i=0

ain
i−1i, (4.40)

where ai denote the fit parameters. The phase, calculated with the single and
combined detector method and its least square fits is shown in Figure 4.16.
The statistical error including the correlation coefficient ρjk between the fit
parameters aj and ak of ∂ϕs

∂n
is given by

σ( ∂φ∂n)(n)2 =
8∑
i=0

(
ni−1iσai

)2
+ 2

8∑
j=1

8∑
k=1
j 6=k

tj−1j · tk−1k · σajσakρ (aj, ak) . (4.41)

The statistical uncertainty of the spin tune is given by

σνs(n) =
1

2π
σ( ∂φ∂n)(n). (4.42)

The result of the spin tune is shown in Figure 4.17. Note that calculating the
spin tune as a function of time is independent of the particular choice of ν0

s ,
as a different choice of the fixed spin tune is compensated by the change of
phase. The statistical sensitivity is in the order of O(10−10) in a measurement
time interval of approximately 100 s.
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Figure 4.14.: The change of phase for different assumed fixed spin tunes. As
soon, as the assumed spin tune correponds to the true spin tune,
the phase shows the most stable behaviour.

4.7. Comparison of the Methods

In this section a comparison between the methods to calculate phase ϕs, hori-
zontal polarisation εH and spin tune νs explained in section 4.4 and 4.5 is given
for a cycle where the phase feedback was turned off when turning on the RF
Wien Filter. In Figure 4.15 the comparison of the horizontal polarisation is
displayed. Figure 4.15a-c show a spectrum according to the mapping method
and the single detector Fourier method (up and down), respectively. Figure
4.15d shows the spectra evaluated at the spin tune position, calculated with
the combined-detector mapping method. An unexpected and clear difference
between those spectra can be seen, even though all three spectra should show
the same result. A striking difference of data occurs at roughly 50×106 turns,
which is the time of switching on the RF Wien Filter. The results of the com-
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bined detector mapping method2 are always between the results of the single
detector method, which are oscillating. A similar behaviour shows the phase
(Figure 4.16) and the spin tune (Figure 4.17). The phase determined for the
individual detectors fits within their uncertainties until 50×106. Afterwards, a
clear deviation occurs, which causes at the same time a deviation when deter-
mining the spin tune. The phase calculated with the mapping method shows
a small offset. The reason for this offset is unknown. However, the shape of
the fit looks similar to the shape of the fit done with the individual detectors.
While taking the derivative of the function, a constant offset doesn’t matter.
Therefore, the shape of the spin tune is not affected by this offset.
As explained in more detail in the next section, a mismatch of the electromag-
netic fields inside the RF Wien Filter leads to this unexpected behaviour.

4.8. Mismatch of the Wien Filter

The non matching results obtained by the individual detectors method pre-
sented in Figure 4.15 - 4.17 are caused by a mismatch of the electromagnetic
field inside the RF Wien Filter. Whenever the RF Wien Filter rotates the
horizontal polarisation vector, it also excites unintended and unexpected beam
oscillations when the Lorentz force at the beam position is not zero. As the
Wien Filter kicks the horizontal polarisation periodically with the same fre-
quency ωWF as the rotation of the spintune ωs = 2πνs and the same phase ϕs,
the beam oscillations are expected to be periodic with the same frequency and
phase if the phase feedback was switched on during data taking. Additionally,
the phase feedback allows to set a constant phase offset ϕ0 between the spin
tune frequency and the Wien Filter frequency. The beam oscillations have
therefore the same phase relation to the precessing spins as the Wien Filter to
the precessing spins. Mathematically, a constant phase ϕ0 needs to be added
to the phase of the spin tune ϕWF = ϕs + ϕ0. The periodic beam oscillations
change the number of particles hitting the target when extracting the beam
on the target, which leads to an oscillating luminosity

Losc = LCOSY ·
(
1 + a cos(ωWFn+ ϕWF)

)
, (4.43)

where LCOSY is the constant integrated luminosity of COSY without switched
on Wien Filter, ωWF is the Wien Filter frequency exciting the beam, a is the
corresponding oscillation amplitude and ϕWF takes the phase relation between

2Note that the error bars of the combined detector method are smaller by a factor of ≈
√

2.
The estimator of uncertainties of the phase, the spin tune and the horizontal polarization
scale in good approximation with 1/

√
N . The mapping method uses combined rates in the

up and down detector which increase the total number of events by a factor of 2, decreasing
the uncertainties by a factor of

√
2 [36, 32].
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Figure 4.15.: A comparison of the horizontal polarisation. a) Mapping
method. b) Fourier method: Up detector. c) Fourier method:
Down detector. d) Different spectra evaluated at the spin tune
position. In each spectra a frequency range in the spin tune do-
main from 0.1609703 to 0.16097105 is scanned in 150 bins in a
time range from 9.5 × 106 to 130 × 106 turns (87 time bins). A
clear difference of the result can be seen, when turning on the
RF Wien Filter at 50× 106 turns.
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Figure 4.16.: Phase ϕs as a function of turns. The phases determined by the
individual detectors is consistent until 50 × 106, afterwards a
deviation occurs.
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Figure 4.17.: Spin tune νs as a function of turns.
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Wien Filter and spin tune frequency into account. Inserting the oscillating
luminosity in eq. 4.3 leads to a change of the count rates in the individual
detectors

ṄUp ∝
(
1 + a cos(ωWFn+ ϕWF)

)
·
(
1− εH cos(ωsn+ ϕs)

)
, (4.44)

ṄDown ∝
(
1 + a cos(ωWFn+ ϕWF)

)
·
(
1 + εH cos(ωsn+ ϕs)

)
, (4.45)

ṄLeft ∝
(
1 + a cos(ωWFn+ ϕWF)

)
·
(
1 + εV

)
, (4.46)

ṄRight ∝
(
1 + a cos(ωWFn+ ϕWF)

)
·
(
1− εV

)
, (4.47)

with εV = 3
2
pVAy, εH = 3

2
pxzAy and the dot denotes the time derivative, i.e.

the counting rate
(

dN
dt

)
.3 Note that the oscillation amplitude a is assumed to

be the same in all four detectors, even though the oscillations might only occur
in one plane. The beam oscillations change the count rate periodically on the
target and therefore at the same time in all four detectors simultaneously.
In the following, three different scenarios are discussed. The first scenario deals
with unpolarised data. The second and third scenario deal with polarised data,
where the phase feedback was turned on and turned off respectively when the
RF Wien Filter was switched on.

4.8.1. Unpolarised Cycles

The effect of an oscillating luminosity becomes clear when looking at unpo-
larised cycles, i.e. pV = pH = 0, reducing eq. 4.44-4.47 to

ṄUp = ασ0ULCOSY ·
(
1 + a cos(ωWFn+ ϕWF)

)
, (4.48)

ṄDown = ασ0DLCOSY ·
(
1 + a cos(ωWFn+ ϕWF)

)
, (4.49)

ṄLeft = ασ0LLCOSY ·
(
1 + a cos(ωWFn+ ϕWF)

)
, (4.50)

ṄRight = ασ0RLCOSY ·
(
1 + a cos(ωWFn+ ϕWF)

)
. (4.51)

Performing a Fourier Transform of eq. 4.48 to 4.51 and normalising, results in
a peak at the Wien Filter frequency ωWF which corresponds to the spin tune
frequency ωs with an amplitude of a

AX(ω = ωWF) = a, (4.52)

where X ∈ {U,D,L,R} denotes the detector. In Figure 4.18 the spectra
measured by the individual detectors for an unpolarised deuteron cycle using
the RF Wien Filter is shown. All detectors show a clear peak when switching
on the RF Wien Filter at 50× 106 turns. The frequency of the signal is equal

3Due to visuality, the factors ασ0XLCOSY are not displayed (with X ∈ {U,D,L,R}).
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Figure 4.18.: Amplitudes measured by the individual detectors with data from
an unpolarised cycle. A clear peak becomes visible at 50 × 106

turns when turning on the RF Wien Filter.

to the frequency of the spin tune even though the polarisation is zero. As
expected, the amplitude measured by the individual detectors is in the same
order of magnitude. In principle, the maximal amplitude of the individual
spectra can be used to determine the parameter a. However, another method
that is explained in section 4.8.2 is used to determine the oscillation amplitude
a as in general polarised data is analysed.

4.8.2. A new Online Monitoring Luminosity Tool

The unexpected peaks in the different detectors triggered the idea of develop-
ing a new tool to monitor the periodic change of luminosity while data taking.
Therefore a new program is added to the software of the DAQ of the polarime-
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ter to monitor the luminosity. The idea is to monitor the Fourier amplitudes
measured in the individual detectors while adjusting the electric and magnetic
field inside the RF Wien Filter. When the Wien Filter is matched (Lorentz
Force at the beam position is zero), the Fourier peaks due to the periodic
movement of the beam are expected to vanish.
In the new online monitoring tool, all events of the individual detectors are
combined, which makes it only sensitive to the luminosity change as the change
of count rates due to the polarisation of the beam cancels out

Ṅsum = Ṅup + Ṅdown + Ṅleft + Ṅright

∝ 4 + 4a cos(ωWFn+ ϕWF), (4.53)

where Ṅ denotes the counting rate dN
dt

. Performing a Fourier transform of
eq. 4.53 and scaling it by the total counts measured in all four detectors
Nsum = Nup +Ndown +Nleft +Nright gives for the Fourier amplitude at the Wien
Filter frequency

Asum(ω ≈ ωWF = ωs) = a. (4.54)

Due to the computational time, the single detector mapping method is used to
calculate the sum of the signals, as it is much faster than the Fourier method
because no sine or cosine functions need to be calculated.
An example of how the new monitoring will look like is shown in Figure 4.19
for a polarised cycle. The Figure in the middle shows the sum of all sig-
nals measured in the individual detectors. As soon as the RF Wien Filter is
switched on, the amplitude is in the order of 0.04. For reference, the ampli-
tudes measured by the individual detectors are also shown during a run with
the phase feedback switched off, when the RF Wien Filter is turned on. The
new monitoring tool allows observing the periodic change of luminosity while
adjusting the electric and magnetic field inside the Wien Filter. When both
fields are matched, the amplitude of the combined signals from detectors is
supposed to be zero. Looking closely at the data points before the Wien Filter
is switched on in Figure 4.15 - 4.17, it can be seen that results obtained with
the mapping method are always in between the data points of the single detec-
tor method, even before switching on the RF Wien Filter. Additionally, also
the amplitude in the middle panel in Figure 4.19 is not zero before switching
on the RF Wien Filter. It is possible that the beam is periodically moving due
to imperfections in the ring even before the RF Wien Filter is switched on.
These systematic deviations show high sensitivity when measuring counting
rates. A detailed check during the next RF Wien Filter beam time, comparing
the results of the individual detectors with the combined detectors method
would be interesting to do to see how well it is possible to adjust the device.
In principle, it is possible to scan other periodic luminosity change, if the fre-
quency is known and computational time allows online monitoring. However,
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Figure 4.19.: Example of the new online luminosity monitoring tool.
Middle Panel: Sum of all four individual detectors.
Rest: Amplitudes measured by individual detectors for a po-
larised cycle without phase feedback when turning on the RF
Wien Filter.

until now (March 2020), no Wien Filter beam time was available to test the
new online tool. Note that the online monitoring only allows monitoring the
beam oscillation amplitude a. A frequency and phase mismatch cannot be
controlled. These parameters are adjusted with the phase feedback.

4.8.3. Cycles with Phase Feedback

In this section, data with polarised deuterons is shown. The phase feedback
remains switched on when the RF Wien Filter is switched on, which means that
the frequency of the Wien Filter exciting the beam is adjusted continiously with
the true spin tune frequency. Additionally, the phase ϕ0 between spin tune
frequency and beam precession frequency remains constant, as the feedback
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controls the phase between spin frequency and RF Wien Filter

Losc = LCOSY ·
(
1 + a cos(ωsn+ ϕs + ϕ0)

)
. (4.55)

The count rates in the up and down detectors are given by

Ṅ↑↓ ∝
(
1 + a cos(ωsn+ ϕs + ϕ0)

)
·
(
1∓ εH cos(ωsn+ ϕs)

)
, (4.56)

with ωs = 2πνs. Multiplication leads to

Ṅ↑↓ ∝ 1∓ εH cos(ωsn+ ϕs) + a cos(ωsn+ ϕs + ϕ0)

∓ aεH cos(ωsn+ ϕs) cos(ωsn+ ϕs + ϕ0). (4.57)

Performing a Fourier transform leads to peaks at ω = 0, ω = ωs and ω = 2·ωs.4
Relevant is the peak at the spin tune frequency. Ignoring the other terms
gives

Ṅ↑↓ ∝ ∓εH cos(ωsn+ ϕs) + a cos(ωsn+ ϕs + ϕ0). (4.58)

The frequency of the RF Wien Filter and relative phase of the spin tune fre-
quency and RF Wien Filter frequency are controlled and adjusted throughout
the entire measuring time. As it is ensured that ϕs is adjusted, it can be
set to an arbitrary value (ϕs = 0) without losing generality. For the Fourier
transform only ϕ0 remains relevant

Ṅ↑↓ ∝ ∓εH cos(ωsn) + a cos(ωsn+ ϕ0)

= a
(

cos(ωsn) cos(ϕ0)− sin(ωs) sin(ϕ0)
)
∓ εH cos(ωsn)

= cos(ωsn) · (a cos(ϕ0)∓ εH) + sin(ωsn) · (−a sin(ϕ0)). (4.59)

The Fourier amplitudes at the spin tune frequency are given by

A↑↓(ω = ωs) =

√
(a cos(ϕ0)∓ εH)2 + a2 sin(ϕ0)2

=
√
a2 + ε2H ∓ 2aεH cos(ϕ0). (4.60)

Amplitudes in the individual detectors depend on the horizontal polarisation
εH , the beam oscillation amplitude a and the phase between beam oscillations
and spin tune precession ϕ0. The phase ϕ0 is a value that is fixed by the
operators before starting the measurement and remains constant throughout
the measuring time. In Figure 4.20 an example of a run with phase feedback
switched on can be seen. The phase relation was set to ϕ0 = π rad. The

4cos(a) cos(b) = cos(a−b)+cos(a+b)
2 .
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amplitudes in the individual detectors are therefore given by

A↑↓ = |a± εH |, (4.61)

which can be seen in Figure 4.20. A second important result is, that the
measured spin tune is not affected by this effect, which can also be seen in
Figure 4.20. The two detectors and the combined detector method show the
same results. Small deviations can occur due to imperfections in the machine.
A systematic effect could be that the beam doesn’t hit the target in right
angle, which would automatially increase the counting rate in a single detector,
shifting the peak to higher or lower apparent spin tunes. Another effect that
can occur is that the spin tune and the beam oscillation run slightly out of
phase when travelling from the Wien Filter to the polarimeter. However,
combining the results of the spin tunes from individual detectors leads to the
same result as the combined-detector mapping method (Figure 4.22)

νs,comb =
νs,↑ + νs,↓

2
. (4.62)

The amplitudes from eq. 4.61 can be used to determine the horizontal polari-
sation εH and the oscillation amplitude a

A↑ − A↓
2

= a and
A↑ + A↓

2
= εH . (4.63)

The results are shown in Figure 4.21. The horizontal polarisation calculated
with the combined Fourier amplitudes fits very well with the results from the
mapping method. The amplitude of the beam oscillations occurs as expected
when turning on the RF Wien Filter at 50 × 106 turns and is in the order of
0.04. Note that eq. 4.63 and 4.61 are only valid if the phase between spin tune
frequency and Wien Filter is set to ϕ0 = π rad.

To confirm the equation for the amplitude of the individual detectors (eq. 4.60)
a second run is analysed, where the phase relation between spin tune and Wien
Filter was set to ϕ0 = π/2 rad. The amplitudes are therefore given by

A↑↓ =
√
a2 + ε2H , (4.64)

which means that both detectors measure the same signal despite the beam os-
cillations. In Figure 4.23 the results are confirmed. Plotted are the amplitudes
measured by individual detectors (A↑ and A↓), the beam oscillation amplitude
a and the difference of the signals measured in the individual detectors. The
difference is consistent with zero as a least-square fit with a polynomial of 0th
order shows. The result of the fit is 0.0002± 0.0020 with χ2/ndf = 124/86.
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Figure 4.20.: Horizontal polarisation εH , phase ϕs and spin tune νs as a func-
tion of turn numbers for Run 50291 Cycle 2. While the horizontal
polarisation deviates, the spin tune measured with individual de-
tectors show the same result as the mapping method.
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Figure 4.21.: The horizontal polarisation εH calculated with the combined-
detector mapping method and the combined Fourier amplitudes.
The results match within their statistical uncertainties. Addi-
tionally, the difference of the Fourier amplitudes is shown, which
corresponds to the beam oscillation amplitude a and occurs when
turning on the Wien Filter.
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Figure 4.22.: Results of the spin tune determined with the combined-detector
mapping method and the combined Fourier method.
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Figure 4.23.: Fourier Amplitudes measured by the individual detectors (A↑↓),
the amplitude of the beam oscillations a and the difference of the
Fourier Amplitudes measured in the single detectors for a run,
where the phase between spin tune and Wien Filter was set to
ϕ0 = π/2 rad and the phase feedback turned on when switching
on the RF Wien Filter. Despite the beam oscillations, the signals
in the individual detectors match as expected.
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4.8.4. Cycles without Phase Feedback

In this chapter, the results shown in figure 4.15 to 4.17 is tried to be explained.
However, until now this data is not understood in all details. Only an Ansatz
of an anlytical approach is given in this chapter to understand the behaviour.
As the phase feedback is turned off, when turning on the RF Wien Filter,
the equations get more complicated. The frequency ωWF and the phase ϕWF

of the Wien Filter are not adjusted by the phase feedback while measuring.
These values are fixed to the frequency and phase before turning off the phase
feedback. Therefore, frequency and phase remain constant with time

Losc = LCOSY ·
(
1 + a cos(ωs,0n+ ϕs,0)

)
, (4.65)

with ωs,0 = ωs(t = tWF) and ϕs,0 = ϕs(t = tWF). While the phase and the
frequency of the Wien Filter remain constant, the spin tune and its phase
change with time. The count rates in the up and down detector are given by

Ṅ↑,↓ ∝
(
1 + a cos(ωs,0n+ ϕs,0)

)
·
(
1∓ εH cos(ωsn+ ϕs)

)
. (4.66)

Multiplying eq. 4.66 leads to

Ṅ↑↓ ∝ 1∓ εH cos(ωsn+ ϕs) + a cos(ωs,0n+ ϕs,0)

∓ aεH cos(ωs,0n+ ϕs,0) cos(ωsn+ ϕs). (4.67)

Performing a Fourier transform, only the terms containing the spin tune fre-
quency are relevant, assuming that the spin tune doesn’t drift too far away
from the initial spin tune when turning off the phase feedback

Ṅ↑↓ ∝ ∓εH cos(ωsn+ ϕs) + a cos(ωs,0n+ ϕs,0). (4.68)

Spin tune ωs and phase ϕs can be replaced by

ωs = ωs,0 + ∆ω and ϕs = ϕs,0 + ∆ϕ. (4.69)

where ∆ω and ∆ϕ denote the offset with respect to the spin tune and phase at
the time when turning on the RF Wien Filter. Plugging into eq. 4.68 gives

Ṅ↑↓ ∝ a cos(ωs,0n+ ϕs,0)∓ εH cos((ωs,0 + ∆ω) · n+ (ϕs,0 + ∆ϕ)). (4.70)

As only the phase relation between both oscillations is relevant, the common
phase ϕs,0 can be set to an arbitrary value (ϕs,0 = 0) without losing generality,
reducing eq. 4.70 to

Ṅ↑↓ ∝ a cos(ωs,0n)∓ εH cos
(
(ωs,0 + ∆ω) · n+ ∆ϕ

)
. (4.71)

46



4.8. MISMATCH OF THE WIEN FILTER

0.1609704 0.1609706 0.1609708 0.160971
Hits / Turn

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14
H

or
iz

on
ta

l A
m

pl
itu

de

Fourier Up Detector

Fourier Down Detector

Mapping

Figure 4.24.: Peaks determined by the up, down and combined detctors. All
peak maxima deviate.

Mathematically, a Fourier Transform would result in two independent peaks
at ω = ωs,0 and ω = ωs with an amplitude of a and εH respectively. Due
to the small drift of the spin tune ∆ω and the smearing of the peaks, the
individual peaks are not distinguishable. Only one single peak, shifted from
the spin tune frequency is observable. The amplitude of the single peak is a
combination of the horizontal polarisation, the beam oscillation amplitude and
the time dependent phase shift between spin tune and Wien Filter. However,
it was shown that the apparent spin tunes, measured by individual detectors
deviate symetrically from each other as in Figure 4.17. The reason for this
behaviour is still unknown. To make it more clear, the peaks of the 43th time
bin are shown in Figure 4.24. A clear displacement of all peak maxima can be
seen. A second observed effect is, that the spin tune (and the peak maxima)
oscillate around the combined detector method. Also the reason of this effect
is still unknown. The source of this problem is probably the Wien Filter excit-
ing the beam with a frequency that is different from the spin tune frequency
as both effects are not seen in data, where the phase feedback was turned on,
when turning on the Wien Filter. Also weighting the results of the spin tune
measured by both single detectors from Figure 4.17 as in Figure 4.22 for the
phase feedback turned on leads to nonmatching results as shown in Figure
4.25.

However, the root of this behaviour is a mismatched Wien Filter in terms of
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Figure 4.25.: Results of the spin tune determined with the combined-detector
mapping method and the combined Fourier method for a run
with phase feedback turned off.

the strengths of the electromagnetic field inside the device. The peaks seen
by individual detectors are used in a new online monitoring tool to adjust the
electromagnetic field by minimizing the amplitude of the oscillation a to ensure
that the Lorentz force at the beam position is zero. As soon as a is minimzed,
the luminosity is not oscillating anymore and the frequency shift (with and
without phase feedback) is not observable anymore.

For the sake of completeness, an additional cycle is shown in Figure 4.26. In
this cycle the phase feedback was turned on when turning on the RF Wien
Filter and set to ϕ0 = 3.93 rad. The results obtained with individual detectors
follow the shape of data determined with the mapping method. This may be
due to the fact that the RF Wien Filter was matched better during this run
and might be a promising result to make use of a new luminosity monitoring
tool. However, also in this plot small deviations occur. A detailed check of the
results measured by individual detectors after using the new online monitoring
tool would be interesting to do.

As an additional remark, it is not recommended to use a single detector in order
to determine phase ϕs, horizontal polarisation εH and spin tune νs and stick to
the combined-detector mapping method, which is not sensitive to luminosity
changes of the beam and leads to reliable results.
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Figure 4.26.: Horizontal polarisation εH , phase ϕs and spin tune νs as a func-
tion of turn numbers for Run 50122 Cycle 2. Horizontal polarisa-
tion and the spin tune measured with single detectors show the
same result as the mapping method.
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4.9. A Detailed Spectral Analysis with Artificial
Neural Networks

The unexpected peaks seen in the left and right detector due to the periodic
movement of the beam triggered the idea of performing a detailed spectral scan
of data to find other unexpected peaks. The idea is to scan a full frequency
range. Afterwards, an artificial neural network decides whether a peak is
dominant in data. In this chapter, the result of all peaks found in data is
shown after a short introduction into neural networks.

4.9.1. Neural Networks - An Introduction

Machine learning is a technique in computer science to derive decision rules
from data. The method used in this thesis is called supervised learning. The
network is trained in an iterative process with pairs of input and desired output
data. The network tries to derive rules which replicate the known output.
The aim is to find rules which produce the desired output on new data. The
following theory focuses on a classification task [37]. The neural networks used
in this thesis are created with Keras [38] using the TensorFlow [39] backend.
The basic unit of a neural network is a neuron, in analogy to a neuron in a
human brain. The neuron receives inputs from other neurons as numerical
values. As different inputs have different importances, each input is weighted
accordingly. Afterwards, the signal is passed to an activation function σ(x),
as otherwise, the neural network would only represent a linear relationship. In
many scenarios, the relationship between input and output data is nonlinear.
Mathematically, the output of a neuron can be written as

y = σ

(∑
i

wixi + b

)
, (4.72)

where the inputs and the corresponding weights are given by xi and wi. The
bias parameter of the neuron and the activation function are denoted as b and
σ. The final output is y [40]. The most common used activation function,
which is also used in this work (see Figure 4.27), is called rectified linear unit
(ReLU) [41]

ReLU(x) = max(x, 0). (4.73)

In the context of this work, neural networks are used for a classification task,
which means that the network learns pattern and classifies the data accord-
ingly. The output of the neural network is therefore a probability value for
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Figure 4.27.: ReLU activation function, used in this work.

each possible class with ∑
i

yi = 1. (4.74)

In general, the output range of a neural network is (−∞,∞). An activation
function that guaranties normalised probabilities in [0, 1], is called softmax
function

σi(~y) = softmaxi(~y) =
eyi∑
k e

yk
, (4.75)

where i denotes the output of the i-th neuron [42].

Dense/ Fully Connected Layers In neural networks, neurons are organized
in layers, so that a neuron receives only inputs from neurons in the layer before
and only sends outputs to neurons in the next layer. In a dense layer, each
neuron receives an input from every neuron in the preceding layer (see Figure
4.28). The output of a combined dense layer can be written as

yi = σ

(∑
j

wijxj + bi

)
. (4.76)

Note that the weight w from eq. 4.72 changed into a nNeurons × nInputs matrix
and the bias b into a vector with the size of the number of neurons nNeurons.
If two or more layers are connected this way, one speaks of a neural network.
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Figure 4.28.: A schematic sketch of an artificial neural network with an input
layer, one hidden layer and one output layer. The arrows denote
the corresponding weights [43].

The output of a neural network with multiple layers is given by

outi = σ

(∑
j

wnijx
n−1
j + bni

)

= σ

(∑
j

wnijσ

(∑
k

wn−1
jk (. . .) + bn−1

j

)
+ bni

)
,

(4.77)

where i denotes i-th output neuron and n the total number of layers. The
softmax activation function is used in the last layer of the network to guaranty
a normalized probability output [42].

Convolutional Layers
The basic principle of a convolutional layer consists of filters, called kernels,
that have a much smaller size than the input of the data. Each kernel consists of
random values. Each data point of a subsection of the full dataset is weighted.
Afterwards, the weighted values are summed up and an activation function is
applied. Mathematically, a convolutional layer operation can be written as

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (4.78)
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Figure 4.29.: Convolutional Layers: The matrices from left to right denote the
input data matrix I, kernel K and feature map S [45].

Figure 4.30.: Schematic principle of Max Pooling Layers. The data input is
divided in subsets, where only the maximum of the subset is
passed to the next layer of the network architecture [47].

where I denotes a two-dimensional input data image and K a two-dimensional
kernel. The result S is called feature map. The values of K are trainable
weights and the same for every segment of I.
The principle is shown in Figure 4.29. The big matrix on the left shows
arbitrary data and the marked red box denotes the segment on which the
kernel is applied. Each data point is multiplied with the corresponding weight
of the kernel. The last matrix shows the summation of all values. It is obvious,
that a convolutional layer drastically reduces the size of input data (and so
the training time) which is useful for high input dimensions [44].

Max Pooling Layers
A more efficient way to reduce the size of input data, is using so-called Max
Pooling Layers, where only the maximum of a subset of the full data range is
passed to the next layer. The pooling size and the stride denote the dimension
of the image section, where the pooling is applied and the number of data
points the pooling filter is moved for the next pooling step. The principle is
shown in Figure 4.30. In neural networks, it is common that convolutional
layers and max pooling layers are used in multiple pairs [46].
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Figure 4.31.: An example of a full architecture of an neural network. From
left to right: Input Data, Alternating Convolutional and Max
Pooling Layers, Flattening, Dense Layers and the final output.
A similar architecture is used in this work, see section 4.9.3 [48].

A Full Architecture
In Figure 4.31 an example of a full neural network architecture is shown.
Starting from the input data, alternating convolutional and max pooling layer
filter more and more features in data while reducing the dimension. Afterwards
a flatten layer is applied, which transforms the matrix into a one-dimensional
array, which is used as an input for the classification task, done by a series of
dense layers. The output is in this case a 9 dimensional vector output for the
numbers between 1 and 9. A similar architecture is also used in this thesis.

4.9.2. Generation of Data

The dataset is generated with the Fourier method as described in chapter 4.5.
Until now, a frequency range from 0 kHz to 150 kHz and 350 kHz to 500 kHz
is scanned in all four detectors simultaneously for a polarised and unpolarised
dataset. The network is trained with spectra having 20 bins in time from 0 to
130× 106 turns and 150 bins in the frequency domain with a frequency range
of ∆f = 3.75 Hz. Therefore the entire dataset is after being analysed split into
frequency ranges of 3.75 Hz and predicted by the network. Some examples of
a few spectra generated this way are shown in Figure 4.32.

4.9.3. Network Training

For a neural network, the number of free parameters (weights) can be huge.
Their determination is automized during the so-called training process. A loss
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function is the target function of the optimization performed while training a
neural network. It quantifies how close the reconstructed output ŷ is to the
true output y. The aim of the neural network is to minimize the loss function.
In this thesis the so-called categorical cross entropy is used as a loss function

Cross Entropy = − 1

Nsamples

∑
Nsamples

# nodes∑
i

strue.
i ln

(
spred.
i

)
, (4.79)

where si is the softmax output of the i-th neuron [49]. The training of a neural
network is conducted in several iterations, so-called epochs. Before the first
epoch starts, all parameters are set to random values. In each epoch, the loss
function and the reconstructed output are generated. The weights and biases
of the network are optimized each epoch by the stochastic gradient descent

~w′ = ~w − α∇L(~w), (4.80)

where ~w denotes a vector containing the weights and the learning rate α deter-
mines the stepsize [50]. In principle, it is possible to reach the local minimum
of the loss function. However, efficient optimizers like Adam [51] that adap-
tively adjust the learning rate are commonly used. Before training the neural
network, the labeled dataset is divided into a training and a validation data
sample. During training, the network only uses the training data sample. The
validation dataset is evaluated with the trained model after each epoch to en-
sure that the network learns the structure of data, rather than memorizing the
training data (overtraining). A second intuitive indicator of the performance
of the neural network is the accuracy

acc =
#Correct Predictions

NData

. (4.81)

The output gives the percentage of correctly predicted data. For the training
process, in total 300 spectra are used, 150 of them containing a peak and 150
not. An example set of training data can be seen in Figure 4.32. The first
column shows three clear peaks, while the second column contains only data
with noise. The network is trained for 1000 epochs. The final architecture
of the neural network containing more details is shown in Figure 4.34. The
performance of the network can be seen in Figure 4.33. The accuracy of
the network quickly reaches 100%, while the loss decreases continuously when
training the network during the epochs, which means that the efficiency of
the network differentiating dominant peaks and noise for the training and
validation set increases. The threshold for the probability of detecting a peak
is given by pPeak > pNoPeak, i.e. pPeak > 0.5.
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Figure 4.32.: Examples of data that is used to train the network. The first
column shows three spectra with a dominant peak. The second
column contains spectra which show noise.
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Figure 4.33.: a) Accuracy and Loss b) Validation Accuracy and Validation
Loss, when training on the real data training set. The accuracy
reaches in both cases 100%, which means that all peaks of the
training and validation set are correctly identified.
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Input Data
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Conv Layer
kernel = (3,3), filters = 16, ReLU

Max Pooling Layer
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kernel = (3,3), filters = 32, ReLU

Max Pooling Layer
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Figure 4.34.: Network Architecture: The spectra are used as an input for al-
ternating convolutional and max pooling layers, followed by two
fully connected layers, performing the binary classification task.
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4.9.4. Results

In total 869 peaks are found in polarised data and 959 peaks are found in un-
polarised data in a frequency range from 0 Hz to 150 000 Hz and 350 000 Hz to
500 000 Hz. Peaks appear in the frequency range from 0 Hz to 11 000 Hz (Fig.
4.35), 115 845 Hz to 125 801 Hz (Fig. 4.36) and 465 285 Hz to 472 833 Hz (Fig.
4.37). Due to the high amount of peaks, it is not possible to discuss each peak
in detail. However, a more general approach, trying to understand structures
and dominant peaks are given in the following, even though the source of most
detected peaks can only be guessed.

Figure 4.35 to 4.37 have the same structure. The first plot shows the probabil-
ity of the network detecting a peak as a function of frequency and detector (red
labels: polarised and blue labels: unpolarised). If the network detects a peak,
a coarse amplitude scan is performed. Assuming that a peak has the highest
amplitude of a scanned spectra in a 3.75 Hz frequency interval, all amplitudes
in a full time spectra (20) are collected. The second plot shows the absolute
maximal amplitude of the corresponding spectra and the third Figure the low-
est peak maxima. This procedure gives a rough estimation of the dynamic
of the peak amplitude and is not a precise tool to determine amplitudes. A
more precise method would be to fit each peak by a gaussian and determine
the amplitude with a fit parameter, which would go beyond the scope of this
analysis.
In Figure 4.35 the detected peaks in a low frequency range from 3.75 Hz to
11 000 Hz are shown. Most of the peaks appear in a low frequency range from
3.75 Hz to 1800 Hz and around 3500 Hz. The x-axis range doesn’t start from
zero because the amplitude of the 0 Hz peaks would suppress the amplitude
axis in the second plot, as the amplitude is 2, which becomes obvious by plug-
ging in νs = 0 in eq. 4.29 and 4.30. In the first range a dominant peak is for
example at 50 Hz, which also corresponds to the frequency of the European
AC voltage (see also Figure 4.32 first column, first plot). A lot of peaks ap-
pear at even multiples of 50 Hz. The highest peak in the first range appears
at 300 Hz with a maximum amplitude of 0.6. At 3500 Hz a second peak with a
high amplitude of 0.9 appears, which is also shown in Figure 4.32. Note that
this amplitude is higher by a factor of 4, compared to the amplitude of the
frequency, which corresponds to the true spin tune. A lot of peaks are dis-
tributed symmetrically around this peak. They all share the same structure
of the main peak, but with lower amplitude. The reason for this peak is un-
known. In general, no noticeable difference between polarised and unpolarised
data is observed.

In Figure 4.36, the detected peaks in a range around the spin tune are shown.
At roughly 120 800 Hz, the spin tune frequency can be seen, with the cor-
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Figure 4.35.: Peaks detected by the neural network in a frequency range from
3.75 Hz to 11 000 Hz. The first plot shows the probability of a
peak given by the neural network as a function of frequency and
detector. The second plot shows the maximal and the third plot
the minimal amplitude of corresponding spectra. The red detec-
tor labels denote the peaks measured with a polarised and the
blue labels with an unpolarised beam.

responding peaks in the left and right detectors and the peaks seen in the
unpolarised data, caused by the RF Wien Filter exciting beam oscillations.
As expected, the amplitudes in the up and down detector show the highest
amplitude due to the spin precession, which is in the order of 0.2. The other
detectors show the amplitude of the periodic beam motion, which is in the or-
der of 0.04. Additionally, four more peaks, symmetrically distributed around
the spin tune (two on each side) with much less amplitude, are observed. They
only occur in the up and down detector, as it is expected only for the spin tune
frequency with an unperturbed beam.

The last set of peaks is found in a very high-frequency range of 465 285 Hz to
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Figure 4.36.: Peaks detected by the neural network in a frequency range from

115 845 Hz to 125 801.25 Hz. The first plot shows the probability
of a peak given by the neural network as a function of frequency
and detector. The second plot shows the maximal and the third
plot the minimal amplitude of corresponding spectra. The red
detector labels denote the peaks measured with a polarised and
the blue labels with an unpolarised beam.

472 833.75 Hz. In this region, most of the peaks are found, while in unpolarised
data much more peaks appear. Most of the peaks have a small amplitude in
the order of 0.03. However, some peaks, especially in unpolarised data, have
an amplitude of 0.15, which is comparable to the amplitude of the spin tune
frequency. Around 469 000 Hz, a lot of very dense peaks appear with small
amplitudes of 0.03.

Until now, these are all peaks, that are found in two data sets. Most of these
peaks are unexpected and might be sources of new systematic imperfections
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4.9. A DETAILED SPECTRAL ANALYSIS WITH ARTIFICIAL NEURAL
NETWORKS

466 467 468 469 470 471 472
310×

Frequency / Hz

Up

Down

Right

Left

Up

Down

Right

Left

D
et

ec
to

r

0

0.2

0.4

0.6

0.8

1

pe
ak

p

466 467 468 469 470 471 472
310×

Frequency / Hz

Up

Down

Right

Left

Up

Down

Right

Left

D
et

ec
to

r

0

0.05

0.1

0.15

M
ax

. A
m

pl
itu

de

466 467 468 469 470 471 472
310×

Frequency / Hz

Up

Down

Right

Left

Up

Down

Right

Left

D
et

ec
to

r

0

0.005

0.01

0.015

0.02

M
in

. A
m

pl
itu

de

Figure 4.37.: Peaks detected by the neural network in a frequency range from
465 285 Hz to 472 833.75 Hz. The first plot shows the probability
of a peak given by the neural network as a function of frequency
and detector. The second plot shows the maximal and the third
plot the minimal amplitude of corresponding spectra. The red
detector labels denote the peaks measured with a polarised and
the blue labels with an unpolarised beam.

in the machine. These peaks occur probably due to various reasons, regarding
the beam and the detector itself. In principle devices like vacuum pumps, dark
currents etc. can cause peaks.

However, it would be particularly interesting to investigate the peak 3500 Hz,
as its amplitude is greater than the amplitude of any other peak. Due to com-
putational time, it was not possible to scan more datasets on a full frequency
range to compare peaks found in this data with old data or new data. Espe-
cially a comparison to data taken with the new polarimeter JePo installed in
November 2019 in COSY would be very interesting to do in near future.
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5. Conclusion

The JEDI collaboration at Forschungszentrum Jülich, Germany aims to di-
rectly measure the electric dipole moment (EDM) of charged elementary par-
ticles like protons and deuterons for the first time with the existing storage ring
COSY during the so-called precursor experiment. Horizontally polarised par-
ticels in a magnetic ring precess around the vertical axis with the so-called spin
tune frequency. Therefore the horizontal polarisation vector points 50% of the
measuring time parallel and 50% antiparallel to the beam motion. Mathemati-
cally, it can be shown that the EDM induces an oscillating vertical polarisation
due to the spin precession. However, the amplitude of this oscillation is too
small to be detected directly. Therefore a novel RF Wien Filter was built,
which has a electric and magnetic field perpendicular to each other and the
beam direction. At the desired momentum, the particles are not affected by
the field, which makes the device an ideal polarisation manipulator. Each time
the beam enters the device, the magnetic field gives a kick to the polarisation
precession, breaking the symmetry between parallel and antiparallel beam mo-
tion, which leads to a measurable vertical polarisation net signal. However,
also systematic effects like misaligned magnets in the ring can induce a ver-
tical polarisation buildup of the beam, independent from the electric dipole
moment. A big challenge is to reduce systematic effects to their absolute min-
imum. The polarisation is measured with a polarimeter: Particles hit a target
and scatter, depending on their polarisation, into four different segments of a
detector called up, down, left and right detector as seen from the beam.

In this work, the analysis of data taken during the first precursor run in Novem-
ber 2018 is presented. A focus of analysis is set to the results measured by
single detectors. Mathematically, the up and down detector should measure
the same phase ϕs, horizontal polarisation εH and spin tune νs as a function
of time. However, a striking deviation occurs in the single detectors, as soon
as the RF Wien Filter is switched on. These deviations are caused by a mis-
aligned electromagnetic field inside the RF Wien Filter. Everytime the device
rotates the polarisation precession vector, it can also excite unintended beam
oscillations if the Lorentz force at the beam position is not zero. These beam
oscillations are observable as luminosity changes in the WASA polarimeter.
As the change of luminosity is periodic with the same frequency as the Wien
Filter Frequency, performing a Fourier transform of the counting rates in the
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detectors leads to peaks at the spin tune frequency. A new program is added
to the DAQ of the detector, to monitor periodic rate changes in a frequency
range around the spin tune frequency while data taking, as the beam oscilla-
tion frequency is expected to have the same frequency as the spin tune. This
new monitoring system can be used to adjust the electromagnetic radio fre-
quency field inside the RF Wien Filter to ensure stable working conditions and
reduce systematic errors during the next precursor run of the EDM project.
The program will be tested during the next RF Wien Filter beam time at
COSY.

As an additional remark, it is not recommended to use a single detector in
order to determine phase ϕs, horizontal polarisation εH and spin tune νs and
stick to the combined-detector mapping method [36], which is not sensitive to
luminosity changes of the beam and leads to reliable results.

Periodic beam oscillations are one of many sources to cause signals in the
polarimeter. In the last part of this work, a detailed spectral analysis of signals
measured in the individual detectors is done with artificial neural networks.
A large frequency range is scanned. Afterwards an artificial neural networks
decides whether a dominant peak is present in data. In total almost 2000
peaks are found in an polarised and unpolarised dataset, of which origins are
mostly unknown. In the future, further investigations should be carried out in
order to investigate especially peaks with high amplitude.
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A. Fourier Method - Calculations

A.1. Fourier Parameters Error

In this chapter, a detailed derivation of the statistical errors of the Fourier
parameters (eq. 4.31 and 4.32), is given. Assuming an arbitrary function
f(x), where the variable x is distributed according to a probability density
function n with 〈N〉 =

∫
n(x)dx. The expectation value of f is given by

〈f〉 =

∫
f(x)n(x)dx∫
n(x)dx

=
1

〈N〉

∫
f(x)n(x)dx. (A.1)

Taking discrete values of xi yields∑
fi ≈

∫
f(x)n(x)dx. (A.2)

Plugging eq. A.2 into eq. A.1 gives

〈f〉 =

∑
fi

〈N〉 ⇔ 〈f〉〈N〉 =
∑

fi. (A.3)

Assuming statistical independence between f and n, the expectation value of∑
fi can be written as 〈∑

fi

〉
= 〈〈f〉〈N〉〉 = 〈f〉〈N〉. (A.4)

The covariance of two statistically independent functions f and g, distributed
according to a common probability function n is given by

Cov
(∑

fi,
∑

gi

)
=
〈(∑

fi

)(∑
gi

)〉
−
〈∑

fi

〉〈∑
gi

〉
=

〈∑
i=j

fi · gj +
∑
i 6=j

fi · gj
〉
− 〈N〉2〈f〉〈g〉

= 〈N〉〈fg〉+ (〈N(N − 1)〉)〈f〉〈g〉 − 〈N〉2〈f〉〈g〉
= 〈N〉〈fg〉+

(〈
N2
〉
− 〈N〉2 − 〈N〉

)
〈f〉〈g〉

(A.5)
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A.2. FOURIER AMPLITUDES WITHOUT LUMINOSITY EFFECTS

Assuming N to be poisson distributed, leads to〈
N2
〉
− 〈N〉2 = 〈N〉. (A.6)

Therefore, eq. A.5 reduces to

Cov
(∑

fi,
∑

gi

)
= 〈N〉〈fg〉 =

∑
fi · gi. (A.7)

By choosing f = g, the statistical error of a weighted sum is given by [52]

σ2
(∑

fi

)
= Cov

(∑
fi,
∑

fi

)
=
∑

f 2
i . (A.8)

A.2. Fourier Amplitudes without luminosity
effects

The count rates in the four different detectors are given by

dNUp

dt
= L · α · σ̄0 ·

(
1− 3

2
PHĀy

)
, (A.9)

= L · α · σ̄0 ·
(

1− 3

2
PxzĀy sin (2πνsfrevt+ ϕs)

)
, (A.10)

dNDown

dt
= L · α · σ̄0 ·

(
1 +

3

2
PHĀy

)
(A.11)

= L · α · σ̄0 ·
(

1 +
3

2
PxzĀy sin (2πνsfrevt+ ϕs)

)
. (A.12)

Performing a Fourier transform in the spin tune domain (frev = 1) leads to an
estimate of the amplitude measured in the up and down detector

F (ν)↑↓ =

∫ ∞
−∞

dN↑↓
dt

e−2πiνtdt (A.13)

=
1

2
L · α · σ̄0

(
±εH ieiϕsδ(νs − ν)∓ εH ie−iϕsδ(νs + ν) + 2δ(ν)

)
(A.14)

where δ denotes the delta distribution. Additionally εH = 3
2
PxzĀy is intro-

duced. Note that usually in signal processing, the prefactor 1/
√

2π is ignored
for the Fourier transform. It is introduced for the reverse transformation
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A.2. FOURIER AMPLITUDES WITHOUT LUMINOSITY EFFECTS

(Ff)(y) =

∫
Rn
f(x)e−2πiy·xdx (A.15)

f(x) =
1

(2π)n

∫
Rn

(Ff)(y)e2πiy·xdy. (A.16)

This way, the normalization based on Parseval doesnt hold anymore, which is
compensated by the factor of 2 introduced in equation 4.29 and 4.30. Therefore
eq. A.14 needs to be scaled by 2

F (ν)↑↓ = L · α · σ̄0

(
±εH ieiϕsδ(νs − ν)∓ εH ie−iϕsδ(νs + ν) + 2δ(ν)

)
. (A.17)

Normalizing the Fourier amplitudes with the total number of events, measured
in the individual detectors and using

A↑,↓(ν = νs) =
√

Re(F (ν)↑↓)2 + Im(F (ν)↑↓)2, (A.18)

leads to
A↑,↓(ν = νs) = εH . (A.19)
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