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Abstract

The Cooler Synchrotron (COSY) is a particle accelerator and storage ring operated
by the Institute for Nuclear Physics (IKP) at Forschungszentrum Jülich. The
facility provides polarized and unpolarized beam sources, a cyclotron, an injection
beam line and the synchrotron itself, which besides many other features contains
electron and stochastic cooling systems. The injection beam line of COSY has been
injecting 45 MeV proton and 76 MeV deuteron beams from the cyclotron into the
ring since 1991. The optimization of the injection is done by hand and, therefore,
the opportunity for improvement is substantial. Currently, a new approach is being
developed in order to make this process of optimization more effective.

The main objective is to rely on a thoughtful study of the injection process and sim-
ulation tools to set the injection beam line parameters in order to achieve desirable
results and match the synchrotron’s properties at injection. The different necessary
steps to reach this goal are discussed. The process includes the characterization of
the beam in the injection beam line, an analysis of the injection beam line lattice
and the optimization of its sections using the Bmad software, the calculation of its
main parameters and, finally, the matching of the desired ones at injection.

In the end, the obtained results are shown and the conclusions are presented. The
work finishes with an outlook which describes the possible steps to take in any future
development related to the injection process in COSY.
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Introduction

1.1 Overview

The goal of this work is to analyze and optimize the injection of particles in the
Cooler Synchrotron (COSY). This involves both simulations and experimental work.
Having more particles in the beam leads to increased statistics and, hence, an
optimized time and cost efficiency. The increase of the number of particles (beam
intensity) and beam quality in the ring would be beneficial for the internal and
external experiments. This work has been carried out within the Jülich Electric
Dipole moment Investigation (JEDI) collaboration framework, which is trying to
measure the electric dipole moment of charged particles.

This work is structured in 4 chapters and a conclusion. The present chapter, the
introduction, is the first one. Here the motivation to carry out the work is given,
together with a general overview of the work of JEDI and the COSY facility. Chapter
2 presents the theoretical background necessary to understand the work. The next
two chapters, 3 and 4, are about the work that has been carried out in this thesis
to understand and optimize the injection. The structure of those chapters follows
the stream of particles from the cyclotron to the ring. Finally, the results and
conclusions are presented in a separated final chapter.

1.2 Motivation

COSY was built in the 1990s in order to provide light ion experiment possibilities to
the medium energy particle physics community. It was designed and built including
a stochastic cooling system, hence its name: the Cooler Synchrotron. In later times,
two electron coolers for different energies have been added. Those systems give the
possibility to shrink the beam phase space in a process known as cooling. Even if the
use of COSY for heavier ions than deuterons was planned, this was early canceled in
favor of GSI in Darmstadt. However, COSY has constantly delivered polarized and
unpolarized proton and deuteron beams of up to 3.7GeV/c momenta during more
than 20 years. Some of the experiments carried out in COSY during this time are
the WASA [1] and ANKE [2] internal experiments and TOF [3] external experiment.

Currently, COSY still provides a competent facility for the experimental particle
physics community, but upgrades are needed to continue being so in the near
future. One of this important upgrades is the increase of beam intensity and quality.
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Nowadays as an average value 1010 particles are accelerated in each cycle in COSY.
Nevertheless, the space charge limit sets an upper bound of 2× 1011 protons in the
storage ring [4], an order of magnitude larger than current values. In the year 2003
a big effort was carried out in the whole facility (starting from the source, going
through the source beam line, cyclotron and injection beam line and finishing with
the synchrotron itself) to improve the injection of particles into the ring. That effort
resulted in the highest current achieved in COSY until now, but it also required a
lot of effort in optimizing every system along the stream of particles, so it is not
considered a practical approach.

It is known that one of the limiting factors for intensity in the ring is the injection
of particles from JULIC to COSY. In an routine experiment the injection process
does not surpass 20% of efficiency (meaning that less that 20% of the particles at
the en of the transfer line are injected and stored in the ring) and it is usually closer
to be of around 15%.

The JEDI collaboration bases its precursor experiments for a future Electric Dipole
Moment (EDM) measurement in COSY. If measured successfully, it would be a
breakthrough specially for particle physics, but also for the general understand-
ing of the universe. Thus, the possibilities are highly exciting. These precursos
experiments use polarized deuteron beams, for which the intensity in the ring is
even smaller than with unpolarized beams. The lower the intensity the lower the
statistics, so the longer the time needed to achieve the same results. The intention
to increase cost and time efficiency in those experiments (it would also be beneficial
for others) has pushed the collaboration to make an effort to study and optimize
the particle injection into the ring.

1.3 Electric Dipole Moments (EDMs)

The origin of matter is one of the great mysteries in physics. It is assumed that the
physics that governs the universe today is the same as at the time the first particles
were created. This leads to the prediction that the same amounts of matter and
antimatter were produced at the Big Bang, resulting in a baryonic number equal to
zero (see Eq. 1.1). However, all the experimental evidence available seems to indicate
that the observable universe contains mostly matter and very few antimatter. In
other words, a non-zero positive baryonic number. The baryonic number is given by

B =
1

3
(nq − nq̄) , (1.1)

where nq and nq̄ represent the number of quarks and antiquarks respectively. The
asymmetry between the baryon (matter) and antibaryon (antimatter) numbers in
the known universe can be quantified experimentally in different ways and consis-
tently yields a result of [5]

η =
nB − nB̄

nγ
≈ 10−10. (1.2)

In order to explain this imbalance, more matter than antimatter must have been
created at some point. This baryonic asymmetry is believed to have happened during
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the baryogenesis, a process that took place in the early universe. Then, at the time
of annihilating with each other the imbalance between matter and antimatter would
have resulted in some matter being unable to react with antimatter, thus surviving
until our times. This is an indicator that not all the physical laws act the same way
with both, something neither the standard model of particle physics or the theory of
general relativity provides a sufficient explanation for. There must be some process
which favors matter over antimatter. Those processes would exist provided that the
three ‘Sakharov conditions’ are met[6]:

1. Baryon number violation.

2. CP symmetry violation.

3. Interactions out of thermal equilibrium.

Among these conditions, the CP violation could be explained by the existence of a
permanent electric dipole moment (EDM) in fundamental or integer spin particles.
If existing, the permanent EDM would be a fundamental property of those particles
and it would be caused by the separation of the center of mass of positive and
negative charges inside them. Such separation would break both parity (P) and
time (T) invariance (see Figure 1.1) and, assuming that the CPT symmetry is
conserved, this would lead to a CP violation. This would cause the matter and
antimatter to decay at different decay rates, providing a possible explanation for
matter-antimatter asymmetry as observed today.

Figure 1.1: Parity (P) and time reversal (τ) transformation of a Hamiltonian with
an EDM and magnetic moment under E and B fields. It can be seen that if any of
the states is taken as a starting point and then a parity operator and a time reversal
operator are applied consecutively (the order does not matter), the final state of the
Hamiltonian is different than the initial one.
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The JEDI (Jülich Electric Dipole moment Investigation) collaboration at Forzschungzen-
trum Jülich was born with the goal of measuring the EDM of charged hadrons, for
which there are not measurements yet. Between the different integer spin particles,
the use of charged hadrons provides certain advantages compared to the use of
neutrons for example. The lifetime of charged hadrons like protons and deuterons
is longer than the one of neutrons. In addition, charged particles can be accelerated
and guided using electromagnetic fields. The measurement of an EDM in a single
particle is not enough to account for the amount of CP violation necessary to get the
current matter-antimatter asymmetry, so the measurement of charged and neutral
particle’s EDMs are complementary.

1.3.1 Experimental Method

The basics of an EDM measurement in any kind of particle is the interaction of an
electromagnetic fields E and B with the electric dipole d. If existing, this electric
dipole is oriented in the same axis as the spin vector, because this is the only
defined axis for a particle. Under the influence of electromagnetic fields the spin
vector experiences a torque resulting in a change of its direction. Assuming that the
particle also contains a magnetic moment µ = 2(G + 1) eh̄

2m
S (being G = (g − 2)/2

the anomalous g-factor), the evolution of the spin vector for a particle under the
influence of electromagnetic fields is described by the Thomas-BMT equation [7][8]
(its simplified form where v ·B = v · E = 0 is assumed):

dS

dt
= S×Ω with

Ω =
eh̄

mc
[GB +

(
G− 1

γ2 − 1

)
E× v +

1

2
η (E + v×B)].

(1.3)

Here B and E represent the magnetic and electric fields in the laboratory frame.
Furthermore, the dimensionless factor η has been introduced using the relation d =
η eh̄

2mc
S. Using 1.3 to analyze the spin vector behavior in a storage ring several cases

have to be considered [9]:

• Pure electric field: Using a ring without any magnetic field (B=0) and also

adding the condition that the term
(
G− 1

γ2−1

)
cancels, Eq. 1.3 simplifies to:

dS

dt
=
eh̄η

2mc
S× E. (1.4)

The condition G = 1
γ2−1

can only happen for particles with G > 0. This
is the case of the proton with the ‘magic’ momentum: pmagic = 0.7 GeV.
If horizontally polarized particles with an electric dipole are injected into a
storage ring, an EDM would cause a vertical polarization build-up that could
be detected.

• Combined electric and magnetic fields: In case of having both electric and
magnetic fields the terms including the factor G can be canceled if

GB +

(
G− 1

γ2 − 1

)
E× v = 0
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is fulfilled. This can happen for particles with any G value. Such a ring is
under consideration in the JEDI collaboration [9].

• Pure magnetic field: Here the electric field is zero and therefore Eq. 1.3 is
reduced to

dS

dt
=

eh̄

mc
S×

(
GB +

1

2
η (v×B)

)
. (1.5)

In this case the polarization build-up because of an EDM is difficult to detect.
The polarization precession in the horizontal plane caused by the term pro-
portional to G makes the spin projection to be parallel to the momentum 50%
of the time and antiparallel the other 50%. Given the electric fields seen by
the particle in its rest frame due to the magnetic fields in the laboratory, the
polarization build up in the vertical direction caused by the EDM is canceled.
However, the symmetry of the projection of the polarization in the momentum
direction can be broken using a ‘magic Wien filter’ with the proper frequency.
Such an option is being studied by JEDI as an possible application of the
currently existing COSY facility.

Thus, for any of the previously mentioned cases, the experimental method consists
on injecting horizontally polarized beams in a storage ring and measuring the polar-
ization build up in the vertical plane. The Cooler Synchrotron (COSY) is a purely
magnetic synchrotron located in Forzschungzentrum Jülich. This ring is used for
the precursor experiments for the EDM measurement. The aim is to later continue
with a prototype ring and finally in a ring specially designed for this purpose. In
the case of JEDI deuterons are currently used, but there are plans to also include
protons in the future.

1.4 Facility

The facility is not only composed by the ring COSY. It has different sections, each
one with its own purpose. The H− and D− negative ions are first extracted in the
sources and then guided to the cyclotron by the Source Beam Line (SBL). The source
is different for polarized and unpolarized particles, as the production of polarized
beams requires a small collider. Once in the cyclotron, the beams are accelerated
up to their injection kinetic energy, which is nominally 45 MeV for H− ions and
76 MeV for D− ions. Then, they are driven through the Injection Beam Line (IBL)
and injected into COSY using a charge-exchange injection system.
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Figure 1.2: Sketch of the full facility excluding the particle source and the transfer
line connecting it to the cyclotron, which are both located under it. The cyclotron
is called ‘Pre-accelerator’ in this figure.

The facility plane is shown in Figure 1.2. In the following sections this facility plane
is dissected and explained in three separated parts for simplicity. The explanations
will not go too deep, as it would take very long to explain every section in detail.
From now on the name COSY is used only to refer to the synchrotron ring itself,
even if it is usually used to denote the whole facility complex. In addition, it is
important to keep in mind the nature of the particles in each part of the ensemble.
The particles which are extracted from the source, pre-accelerated in the cyclotron
and guided to COSY using the IBL are negative charged particles (H− or D− ions).
However, when they are injected in COSY the charge-exchange injection system
stripes their electrons, so at the end positive charged particles (protons or deuterons)
are accelerated and stored in the ring.

The main components of the accelerator complex are the specialized ion sources,
an isochronus cyclotron acting as a pre-accelerator, the approximately 100 m long
transfer line from the cyclotron to the ring and the cooler synchrotron itself, which
is 184 m long in circumference [10]. Three extraction beam lines serving external
experimental areas are also present, but they are not of interest in this work.

1.4.1 Sources and Cyclotron

The first stage of the journey of the particles takes place in the beam source.
Three specialized ion sources are available, two for unpolarized beams and one for
polarized beams. Those sources are shown in Figure 1.3. The operation as an
injector in COSY requires beam pulsing with a maximum repetition rate of 0.5 Hz
and a macro-pulse duration of 10 to 20 ms. Almost all cyclotron systems operate
continuously and the macro-pulsing is generated by switching the extraction voltage
for the ion sources. If required, there is a beam chopper in the beam line which can
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be used for micro-pulsing in order to reduce the intensity of the beam before it enters
the cyclotron. The continuous beams are then bunched by a double gap buncher
with sinusoidal voltage (located just below the cyclotron). This matches them to the
RF-phase acceptance of the cyclotron. The energy of the particles from the source
is approximately 4.5 keV for H− and 7.6 keV for D− ions [11].

The IBA and AEA sources both provide unpolarized H− and D− ions. Both are
industrial grade sources and the names come from the companies IBA, Louvain-La-
Neuve (Belgium), and AEA, Culham (England). Those two are ‘multi-cusp’ type
sources and can be operated independently. They were brought into operation in
1996 and they are able to provide over 300µA beams in pulsed operation [12]. Before
that H+

2 beams were used, but the source is no longer operational.

Figure 1.3: The three ion sources, the transfer line from them to the cyclotron and
the JULIC cyclotron are shown here. The sources are located in a chamber beneath
the cyclotron.

The polarized beam is provided by a colliding beam type source, proposed by
Haeberli in 1968 [13]. This source was built under a collaboration of three different
groups from Bonn, Erlanger and Cologne universities [14]. It uses the reaction

H̃0 + Cs0 → H̃− + Cs+, (1.6)

where deuterium (~D0) can also be used instead of the hydrogen (~H0). An intense
neutralized cesium beam is made to collide with the ground state nuclear polarized
hydrogen and a charge-exchange process takes place. The resulting polarized ion
beam is extracted using a dipole magnet. A sketch of this source is shown in
Figure 1.4. It routinely provides a 20µA beam to the cyclotron, but even if this
intensity is lower than for the unpolarized sources, its phase space emittance (a
concept which is explained in Sec. 2) is smaller. Polarization levels of P > 80% have
been measured at COSY.
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Figure 1.4: The polarized source sketch. The fast Cs0 beam comes from the right
to the left and the cold polarized ~H0 atoms come from the left to the right. Both
beams collide at the charge-exchange region and the reaction in Eq. 1.6 takes place.
The polarized ion beam is then bent in the reflection chamber and extracted from
the source.

The ions extracted from the source are guided by the SBL to the JUelich Light Ion
Cyclotron (JULIC). The beam line contains diagnostic systems as Faraday Cups for
measuring the beam intensity. These cups are also used as beam stoppers. JULIC
is responsible to accelerate the ions up to their injection energies to COSY: 45 MeV
and 76 MeV for H− and D− beams respectively. It is an isochronous cyclotron. It
has been operational for nuclear physics experiments since 1968, but was refurbished
and adapted to work as a pre-accelerator for COSY in 1990-1992. Nevertheless, it
is still well suited to perform nuclear physics and irradiation experiments by itself.

Cyclotrons were the first kind of particle accelerators, designed by E. O. Lawrence
in 1929–1930. A cyclotron accelerates charged particles outwards from the center
along a spiral path. The particles are accelerated by a RF electric field between the
magnetic regions and kept in the spiral path using magnetic fields. The working
principle of a classic cyclotron can be seen in Fig. 1.5a. The acceleration region lays
between the capacitive electrodes known as ‘dees’. It is in these electrodes where the
magnetic fields bend the trajectory of the particles. Each time the particle crosses
the region between the dees, the electric field polarity changes so that those particles
always experience an accelerating force [17].

In the case of a isochronous cyclotron, the particle always takes the same time
to travel one loop, so it always arrives at the same RF phase to the accelerating
gap. Furthermore, JULIC is a separated sector cyclotron, where the shape of the
cyclotron poles itself is used to horizontally focus the beam and compensate the
relativistic mass increase [18] and the vertical orbit instability. The particles do not
longer travel in circular orbits, as is seen in Fig. 1.5b, but instead experience smaller
bending forces in the valleys and stronger bending forces in the hills. The electric
field RF used for accelerating the charged particles is known as cyclotron frequency.
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(a) Classic ’dee’ cyclotron.
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(b) Isochronous separated sector cyclotron.

Figure 1.5: Comparisson between a classic cyclotron and a separated sector
cyclotron.

The transmission through the JULIC cyclotron is of ∼5% for unpolarized beams and
∼15% for polarized ones. In routine operation extracted intensities of 10 µA and
1 µA can be achieved for those beams respectively [16]. The diagnostic systems in
JULIC make it possible to measure the beam intensity depending on the cyclotron
radius. After acceleration, the particles are extracted and injected into the IBL in
10−20 ms macro-pulses.

1.4.2 Injection Beam Line

The IBL is a 94 m long transfer line. It is composed of 8 different sections, each
of them with a different purpose. The detailed explanation for each of the sections
is given later in Sec. 3. The full IBL contains 42 quadrupole magnets to focus, 12
dipole magnets to bend and 14 steerer magnets to steerer the beam. The magnetic
elements are powered in groups, with 19 independent power supplies. It was built
by SIEMENS in 1992.

There are several Faraday Cups to measure beam intensity along the IBL, the most
important ones being the one at the beginning to measure the intensity extracted
from the cyclotron and the one at the end to measure the injected intensity at
COSY. Most of the beam diagnostics in the IBL is based on the readout of profile
grids, located as pairs for both planes at 8 locations along the beam line (beginning
of each section). Each grid consists of 30 wires (wire diameter 0.1 mm, distance
1.5 mm). Beam viewing systems, composed of scintillating foils and cameras, are
also present at the beginning and at the end of the IBL. A slit system located at
the exit of the cyclotron is used for filtering the beam and measure the emittance
(see Sec. 3.1.1). Finally, three phase probes make energy determination possible by
time of flight measurements [21]. Usual transmission efficiency in the IBL ranges
from 70% to over 90%.
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Figure 1.6: IBL sketch.

Apart from the beam transfer from the cyclotron to the ring, the IBL also takes
care of matching the beam properties to the requirements at the injection point in
COSY. This is achieved using the last section of the transfer line. The theory of the
injection process in COSY is explained in Sec. 2.6.

1.4.3 COSY

COSY is a synchrotron, a type of accelerator that ramps its components at the same
time as the beam gains energy, thus making the same ring useful for different energy
particles. It is a race track shaped ring, with two straight sections of 40 m each. 16
quadrupole magnets are placed in each of those straight sections, grouped in four
groups of four quadrupoles each [22]. Those quadrupoles make it possible to get
a 1 to 1 imaging of the beam in the straight sections. This means that the beam
that enters the straight section can be made to exit it with the same phase space
as at the entrance. This converts the race track shaped ring into a virtual circular
ring, but at the same time it gives the possibility to place internal devices such as
stochastic cooling systems and RF cavities in the straight sections. Furthermore,
the beam properties can also be adjusted using the same quadrupoles, thus getting
favorable conditions to perform different internal experiments in the same straight
sections.
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Injection

RF Wien filter

EDDA polarimeter

WASA polarimeter
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e-cooler

Figure 1.7: Actual status of the COSY ring, with the two electron coolers, Wien
filter and EDDA polarimeter. The injection point is marked with a red rectangle.

The arc sections have a length of 52 m each and are composed of three repeated
cells (magnet combinations), mirror symmetric themselves. Each of those half-
cell sections has the structure quadrupole-dipole-quadrupole-dipole, in which the
quadrupole polarities can be changed. This makes the arc six-fold symmetric.
Stripping injection is performed at the end of one of these arcs (see Figure 1.7).
Furthermore, COSY also contains sextupoles for chromaticity correction. A total
of 18 sextupoles are found in the ring and their configuration affects the spin
decoherence time, an important magnitude for experiments requiring a long lived
polarized beam such as the precursor experiments for the EDM measurement within
the JEDI collaboration.

All the components of the accelerator complex, starting from the source to the final
ring, work under vacuum conditions. For proper experimental conditions a vacuum
pressure of around 10−10-10−11 mbar is needed in COSY, but this requirement is
softer in the IBL where the pressure has to be below 10−7 mbar. The shape of the
vacuum chamber is rectangular in the arcs and circular in the straight sections.
COSY also contains 29 Beam Position Monitors (BPM) distributed along the ring.
These BPMs make it possible to measure the beam orbit. Shottky pick-ups for
revolution frequency, tune and chromaticity measurements are present, together
with a Ionization Profile Monitor to observe the beam profile. Viewer systems for
directly observing the beam are placed in critical locations such as the stripping foil
[23].

1.5 Software

To finish this chapter an small introduction is given for the software used to perform
calculations and simulations. All the tools presented here are open source softwares.

Bmad (also known as ‘Baby MAD’) is a tool for relativistic charged-particle simu-
lations in high energy accelerators and storage rings. Bmad provides a open source
library of subroutines which gives the opportunity to calculate the beam optics [24]
by taking a lattice (magnetic structure of an accelerator) as an input. Bmad has been
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developed at Cornell University’s Laboratory for Elementary Particle Physics and
has been in use since 1996. It is written in Fortran and it has been selected among
other similar software because it allows to study both single and multi-particle
dynamics along any beam line. Optimization algorithms are included in the library.
In addition, in Bmad is possible to track particles using specifically designed codes.
It is developed in a modular, object-oriented structure to maximize flexibility.

In addition, for some tasks during this work the interaction between particles and
matter has been taken into account. This is the case when the interaction of the
beam with the stripping foil is studied. GEANT4 [25] software is used for this
purpose. GEANT4 is a toolkit to simulate the passage of particles through matter.
It is a software mainly developed at CERN (Conseil Européen pour la Recherche
Nucléaire) and it provides all the necessary tools to simulate and at the same time
analyze the beam-foil interaction.

Finally, Python is used as the working horse software to analyze the data gathered
during the many experimental incursions into COSY. It is also used to produce
many of the plots in this work.
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Basic Concepts of Accelerator Physics

In this chapter the theoretical knowledge necessary to understand the rest of the
work is presented. It covers the basics for accelerator optics and beam dynamics. A
special emphasis is placed in the process of injection. For a deeper understanding
of accelerator physics many textbooks are available, e. g. [26] [27] [28].

2.1 Coordinate System

An accelerator is an ensemble of elements producing magnetic and electric fields
to accelerate and guide particles. It is usually a very complex structure, as apart
from the accelerating and guiding equipment many more components are needed for
vacuum production, diagnostics and control.

The evolution of a particle under electromagnetic forces can be described and studied
by Hamiltonian formalism. The choice of the particular coordinate system does not
affect the physical results, but the pursuit of a solution can be mathematically much
easier in one system than in another. There are no symmetries around a point or an
axis in an accelerator which would make the use of polar or cylindrical coordinates
favorable. Instead, there are many elements aligned in a ‘straight’ line, which is
called beam line. Most of the times those elements are not arranged according to
physical reasons, but following practical considerations. This arrangement deter-
mines the ideal path or particles, defined by the physical center of those elements.
This ideal trajectory is called reference orbit. The coordinate system used in this
work is a curvilinear co-moving coordinate system. The coordinate z goes always
parallel to the particles velocity, tangent to its trajectory. The coordinates x and y
form the transverse plane, perpendicular to the z direction. Then, y is defined as
the vertical coordinate, pointing upwards. In this configuration the last coordinate
x has to be pointing to the left when one looks in the direction of the particles. This
coordinate system is called the Frenet-Serret coordinate system, and is the default
system in Bmad. The individual trajectory of the particles is denoted s, where
si = (xi, yi, zi) represents any point within this trajectory.

In accelerator physics the displacement of the particles in the beam in respect to
the reference particle is very small compared with the full accelerator dimensions.
Therefore, each particles position and momentum at any time is given as a deviation
from the reference particles position and momentum, as it can be seen in Fig. 2.1.
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Figure 2.1: Frenet-Serret coordinate system.

2.2 Charged Particle Dynamics

In a ring shaped accelerator like COSY the particles trajectory is formed by numer-
ous curves and straight sections of different lengths. Particles follow the resulting
close path over and over again totaling a very long path length. However, the
individual particles within a beam always have a certain momentum divergence and
without taking any measurements those particles would eventually hit the vacuum
pipe wall and get lost. Therefore, the particles trajectory needs to be repeatedly
corrected by steering the diverging particles back to the ideal trajectory. This is
done withe electromagnetic fields and the force acting over the particles in that case
is the Lorentz force:

F = e (E + v×B) . (2.1)

At relativistic velocities E and B fields have the same effect if E = cB. To get the
same effect as a magnetic field of 1 T and electric field of 3× 108 V m−1 is needed. It
is actually easy to obtain such magnetic fields, while electric fields of that magnitude
are out of reach with ordinary technology. Hence, the bending and focusing of the
particles trajectory is usually done using magnetic fields and the electric ones are
only used for acceleration.

It is assumed that the particle moves in the z direction with v = (0, 0, vz) and for
simplicity only transverse magnetic fields B = (Bx, By, 0) are considered here. Then,
for a particle going through a magnetic field in the horizontal plane there is a balance
between the Lorentz force Fx = −evzBy and the centrifugal force Fx = mγv2

z/ρ, with
ρ representing the bending radius. After using p = mγvz this gives the relation:

1

ρ(x, y, z)
=
e

p
By(x, y, z). (2.2)

There is also a similar expression for the vertical deflection. Now, considering that
the displacements of particles in the transverse directions are very small compared
to the bending radius of the particles trajectory, the magnetic field can be expanded
in the near vicinity of the ideal particle path.

By(x) = By0 +
dBy

dx
x+

1

2!

d2By

dx2
x2 +

1

3!

d3By

dx3
x3 +O(x4). (2.3)
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If this is multiplied by e/p and the eq. 2.2 is used:

e

p
By(x) =

e

p
By0 +

dBy

dx
x+

1

2!

e

p

d2By

dx2
x2 +

1

3!

e

p

d3By

dx3
x3 +O(x4)

=
1

ρ
+ kx +

1

2!
mx2 +

1

3!
ox3 +O(x4). (2.4)

In this last equation each term represent a different multipole. The first one is the
dipole term, followed by the quadrupole, sextupole, octupole,... terms. Specific
magnets are used to obtain such fields. Most of the time a magnet is designed to
produce a field represented by only one of the terms. Each multipole has a different
effect in the particles path: the dipole field bends the trajectory, a quadrupole field
focuses the beam, the sextupole is used for chromaticity correction,... When only the
first two terms of eq 2.4 are used for the calculations of the accelerator properties,
it is considered to be linear beam optics.

In order to understand how a particle behaves under the influence of such fields
the Hamiltonian is derived and then the motion equations obtained from there. The
derivation of the Hamiltonian is not shown here, as it is a long process, but it can be
followed step by step in [28, p. 23-32] or [27, p. 37-39]. In Frenet-Serret coordinates,
after some simplifications and development, the approximation to the Hamiltonian
of a charged particle under magnetic fields looks like (the electric potential, φ = 0,
has been ignored because as it is mentioned before it is usually not used to bend
the trajectory of the particles):

H̃ ≈ −p
(

1 +
x

ρ

)
+

1 + x/ρ

2p

[
(px − eAx)2 + (py − eAy)2]− eAz, (2.5)

where ρ is the curvature radius of the reference orbit, A = (Ax, Ay, Az) is the vector

potential such that B = ∇×A and p =
√
E2/c2 −m2c2. It has also been considered

that px, py � p. From Eq. 2.5 the equations of motion for the transverse plane
are derived. It is assumed that the accelerator only contains transverse magnetic
fields (fields parallel to the particles velocity do not affect the trajectory), hence
Ax = Ay = 0. The magnetic field can then be expressed as

B = Bx(x, y)x̂+By(x, y)ŷ, (2.6)

where the relation to A in the Frenet-Serret coordinates is given by

Bx = − 1

hz

∂Az
∂y

, By =
1

hz

∂Az
∂x

, (2.7)

with hz = 1 + x/ρ. The motion equations are derived from the Hamiltonian using

u′ =
∂H̃

∂pu
, pu = −∂H̃

∂u
, (2.8)

where u stands for any of the transverse coordinates x or y. Then, using the magnetic
fields from Eq. 2.7 in eq. 2.5 and applying the derivatives in Eq. 2.8:{

x′′ − ρ+x
ρ2

= ±By
Bρ

p0
p

(
1 + x

ρ

)2
,

y′′ = ∓Bx
Bρ

p0
p

(
1 + x

ρ

)2
.

(2.9)
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Here p is the individual particle momentum, while p0 is the momentum of the refer-
ence particle. Bρ = p0/e is the magnetic rigidity, which describes the ‘resistance’ of
a particle to be deflected in a magnetic field. The upper and lower signs correspond
to positive and negative charged particles respectively. Then, the fields are expanded
up to the first order in x and y to calculate the linear beam optics (only dipole and
quadrupole fields included):

By = −B0 +
∂By

∂x
x = ∓B0 +B1x, Bx =

∂By

∂x
y = B1y, (2.10)

where B0/Bρ = 1/ρ is the dipole field which defines the close orbit of the beam in
the accelerator. Hence, Eq. 2.9 becomes:{

x′′ +Kx(z)x = 0, Kx = 1/ρ2 ∓K1(z),

y′′ +Ky(z)y = 0, Ky = ±K1(z).
(2.11)

In this last equation K1(s) = B1/Bρ is known as the effective focusing function.
If the case of a quadrupole magnet is taken (it has no dipole field, so there is no
bending) where 1/ρ = 0, it can be seen that Kx = −Ky. This shows that an
horizontally focusing quadrupole is vertically defocusing, while the opposite is also
true. When the periodic boundary conditions of a circular accelerator are applied
to Eq. 2.11 the focusing functions Kx and Ky are also periodic in z. This makes
Eq. 2.11 a Hill’s equation and its solutions are described by the Floquet theorem
[29].

2.2.1 Transfer Matrix Formalism

Now the letter u is used again to represent any of the coordinates x or y. Eq. 2.11
takes the form:

u′′ +Ku(z)u = 0. (2.12)

Usually accelerator components have uniform or nearly uniform magnetic fields,
so the functions Ku(z) are constant in z. Taking into account that in a circular
accelerator Ku has to be periodic with the periodicity L given by the orbit length
(Ku(z + L) = Ku(z)), the solution for the Hill’s equation is:

u(z) =


a cos

(√
Kz + b

)
, K > 0,

az + b, K = 0,

a cosh
(√
−Kz + b

)
, K < 0.

(2.13)

The constants a and b are determined by the initial values u0 and u′0. u′ = du
dz

represents the angle of the projection of the particles trajectory in the z − u-plane.
From now on u′ is used as the second axis of the u coordinate phase space instead
of the momentum projection. Now, consider

u(z) =

{
u(z)
u′(z)

}
(2.14)

as the betatron state vector. Then, the solution of Eq. 2.11 can be written as
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Figure 2.2: Dipole magnet with face angles e1 and e2 [24].

u(z) = M(z|z0)u0(z), (2.15)

where M(z|z0) is the betatron transfer matrix. In the case of a constant focusing
function K, the transfer matrix looks like:

M(z|z0) =



(
cos
√
Kl 1√

K
sin
√
Kl

−
√
K sin

√
Kl cos

√
Kl

)
, K > 0 : focusing quadrupole,(

1 l

0 1

)
, K = 0 : drift space,(

cosh
√
Kl 1√

|K|
sinh

√
|K|l

−
√
|K| sinh

√
|K|l cosh

√
|K|

)
, K < 0 : defocusing quadrupole,

(2.16)
where l = z − z0. The matrix for a pure dipole magnet with its faces perpendicular
to the trajectory of the particle is obtained by making Kx = 1/ρ2 and the result is:

Mx(z|z0) =

(
cos θ ρ sin θ
−1
ρ

sin θ cos θ

)
, (2.17)

where θ = l/ρ is the bending angle and ρ is the bending radius. If the faces are not
perpendicular to the beam horizontal and vertical focusing and defocusing effects
appear. Those effects can be represented by using the transfer matrix

Me1 =


1 0 0 0

tan e1
ρ

1 0 0

0 0 1 0
0 0 − tan e1

ρ
1

 , (2.18)

where the angles e1 and e2 are shown in Fig. 2.2. The advantage of expressing the
solution of Eq. 2.11 in matrix notation is that the solution of an interval made up
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of sub-intervals is just the product of the transfer matrices of the sub-intervals. For
example if z1 ∈ (z0, z2):

M(z2|z0) = M(z2|z1)M(z1|z0). (2.19)

Using these matrices, particle motion can be tracked through the accelerator ele-
ments. Each component of the accelerator can be represented by a matrix as it has
been shown in Eq. 2.16 and 2.17. A couple of important characteristics of such 2x2
matrices are:

• detM = 1,

• |Trace (M)| ≤ 2.

These conditions come from the stability requirements of the particle motion in the
accelerator and are proven in [27, p. 48-50]. The matrix M(z|z0) only depends on
the function K between z and z0. Until now the phase spaces x and y have been
treated separately. This is accurate as long as there is no coupling, which can be
given for example by the existence of longitudinal fields in the accelerator (only
transverse fields have been considered in the derivation of the Hamiltonian). In any
case, if x and y are coupled it is necessary to use 4x4 matrices instead of 2x2 ones:

x
x′

y
y′

 = M4x4 (z|z0)


x0

x′0
y0

y′0

 , (2.20)

but in the case of a decoupled system M4x4 reduces to

M4x4 (z|z0) =

(
Mx (z|z0) 0

0 My (z|z0)

)
, (2.21)

with Mx(z|z0) and My(z|z0) being the 2x2 transfer matrices from before. The same
logic is followed when also including the longitudinal phase space. In that case, a
6x6 matrix is necessary: 

x
x′

y
y′

z
∆p
p

 = M6x6 (z|z0)



x0

x′0
y0

y′0
z0

∆p
p
|0

 . (2.22)

This last matrix codes all the information about the linear beam behavior in an
accelerator section from z0 to z. Off momentum particles (∆p

p
6= 0) are also consid-

ered here. The effects of the momentum deviation are neglected in drift spaces and
quadrupoles (this is only an approximation, the dependence of the beam focusing
on the particles momenta is a higher order correction). However, the effect caused
by momentum deviation in bending dipole fields has to be taken into account
and it is known as dispersion (D(z)). Off-momentum particles follow dispersive
trajectories in the accelerator, with a displacement in the bending plane given by
xD = D(z)∆p/p. This trajectories are in general not of the same length as the ideal
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orbit. Then, the path length is a function of the momentum. The relation between
the deviation of the path length and the momentum deviation of particles is known
as momentum compaction factor and is given by:

α =
∆L/L

∆p/p
=

1

L0

∮
D(z)

ρ(z)
dz, (2.23)

where L0 is the ideal path length and ρ(z) is again the bending radius. This last
expression is derived in [26, p. 76-77].

2.2.2 Beta Function and Emittance

Up to now the individual behavior of the particles through an arbitrary structure
of magnets has been studied. This is not enough to understand the properties of
a beam with many particles. The collective beam conduct is the decisive factor
when developing a system of beam optics, so the techniques need to be extended
to understand the composite beam. For this purpose it is necessary to go back
to Hill’s equation in its simplest form (Eq. 2.11), without taking into account any
momentum deviation and making 1/ρ = 0. Then Kx(z) = −K1(z) = −Ky(z), with
K1 = B1/Bρ being the effective focusing. Now, Hill’s equation in the horizontal
plane looks like:

x′′(z) +Kx(z)x(z) = 0. (2.24)

The solution for this differential equation is given by [26, p. 77-78]:

xi(z) =
√
εi
√
β(z) cos [Ψ(z) + φi] , (2.25)

where ε is a constant which is called emittance and β(z) is the beta function. In
addition, φi represents the phase for an arbitrary particle i, and the function Ψ(z)
is given by:

Ψ(z) =

∫ z

0

dσ

β(σ)
. (2.26)

The separation of ε and β(z) in Eq. 2.25 is done on an ad hoc basis, even if it seems
mathematically arbitrary at this point. The maximum amplitude of the sinusoidal
motion is given by

E(z) = ±
√
εβ(z). (2.27)

Now, if the derivative respect to z of Eq. 2.25 is calculated the next equation is
obtained:

x′i(z) = −
√
ε√

β(z)

[
−β

′(z)

2
cos (Ψ(z) + φi) + sin (Ψ(z) + φi)

]
. (2.28)

Define α ≡ −β′(z)/2 and then combine Eq. 2.25 and Eq. 2.28 to get rid off the
function Ψ(z) in the expression. If the general relation cos2 µ + sin2 µ = 1 is also
used the result gets the form:

x2
i

β(z)
+

(
α(z)√
β(z)

xi +
√
β(z)x′i

)2

= εi. (2.29)
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α√(ε/β) 

Figure 2.3: The phase space ellipse in x− x′-plane.

Finally, by defining

γ ≡ 1 + α2(z)

β(z)
, (2.30)

Eq. 2.29 now looks like:

γ(z)x2
i (z) + 2α(z)xi(z)x′i(z) + β(z)x′2i (z) = εi. (2.31)

This is the general equation for an ellipse in the x − x′-plane with an area given
by A = πεi. So the integration constant called emittance which is first used in
Eq. 2.25 now takes a new meaning: it is within a factor π the area of the ellipse. β,
α and γ are known as the Courant-Snyder parameters or twiss parameters.
Then, for a particle with certain initial conditions X0 = (x0, x

′
0) at z0, its evolution

can be tracked along the accelerator by solving Eq. 2.31 and the trajectory vector
X describes an ellipse in phase space. Each particles trajectory describes its own
ellipse. However, as the functions β, α and γ are equal for all the particles in any
position of the accelerator (they are defined by the focusing function K, which is
a property of the accelerator and not of the beam) all the individual ellipses in
the same position z have the same shape, but different amplitude. The amplitude
depends on X0 = (x0, x

′
0).

Up to now all calculations have been done for the x axis, but the same procedure
can be followed for y and the results are identical. Every particle describes its own
phase ellipse in the y − y′-plane, whose shape will depend on the focusing function
K in y and its amplitude on the initial conditions Y0 = (y0, y

′
0).

It has been shown that each particle has its own associated emittance, but there
are many particles in the beam moving within different amplitude ellipses in phase
space. It is not possible to measure every particle’s trajectory individually, so a
collective emittance of the beam is defined instead. For this purpose it is assumed
that the equilibrium distribution of transverse charge density within the beam is
defined by a Gaussian distribution:

20



ρ(x, y) = a exp

(
− x2

2σ2
x

− y2

2σ2
y

)
. (2.32)

In Eq. 2.32 the horizontal and vertical beam sizes are defined by σx and σy, which
correspond exactly to a standard deviation on the particle distribution. Using the
maximum sinusoidal amplitude shown before in Eq. 2.27 an emittance (εSTD) can be
assigned to all the particles which lie within one standard deviation from the beam
center by the relation

σ(z) =
√
εSTDβ(z) (2.33)

for any of the two transverse coordinates. It can be calculated by using εSTD =
σ2/β(z). From now on the emittance of one standard deviation is used to represent
the emittance of the entire beam and it will be denoted using simply ε. Eq. 2.33
now defines the envelope of the beam. The β(z) function depends on the focusing
at each position z. This can be considered as a measurement of the cross section of
the beam and the two signs only indicate that there is an envelope at both sides of
the beam center. According to Louville’s theorem [30], the phase-space distribution
function is constant along the trajectories of the system, which means that it is
constant in time. This theorem stands as long as the particles obey the canonical
equations of motion, which is generally true in accelerators. This implies that the
emittance is conserved along the accelerator. So, when β(z), α(z) and γ(z) change
along the trajectory of the beam, the ellipse shape and position change with them
following Eq. 2.31, but the area of the ellipse always stays constant.

Finally, it is necessary to mention that any accelerator needs to have enough space in
the transverse plane of its vacuum pipe for the beam. This defines the geometrical
acceptance of the accelerator and it is given by the biggest ellipse that can fit in
the vacuum pipe. Being d the distance from the vacuum pipe center to the walls:

A =
d2

β
|min. (2.34)

2.2.3 Periodic Magnetic Structure and Tune

In closed lattice accelerators the beam sees the same magnetic structure in every
revolution. Then, the focusing function is periodic, with K(z) = K(z + L). In
that case, the solution of Eq. 2.11 is the same, but this time β(z), α(z) and γ(z)
are also periodic with the same periodicity as K(z). However, in an open lattice
such as a transfer line between two accelerators, the function β(z) at any point z is
determined by the initial values of β, α and γ at z0.

The number of betatron oscillations (oscillations around the beam axis z) that a
particle undergoes per revolution in a closed lattice is known as tune. The relation
between the tune and the betatron phase advance is

Q =
∆Ψ

2π
=

1

2π

∮
dz

β(z)
, (2.35)
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Figure 2.4: Tune diagram with Qx in the horizontal axis and Qy in the vertical axis.
All coupled resonances up to third order are shown together with a possible working
point [26, p. 112].

where ∆Ψ = Ψ(z + L)−Ψ(z). If nQ is an integer number for an arbitrary value of
n, it means that each n revolutions the particle goes through the same position of
the accelerator with the same betatron phase (which means same amplitude) and
experiences the same forces. Then, the amplitude of the oscillations is enhanced
until the particle is lost. This is called optical resonance. The lower the value of n
is the bigger the strength of the resonance. The integer number n determines which
multipole drives the resonance. Being p an arbitrary integer number:

• Q = p⇒ dipole,

• 2Q = p⇒ quadrupole,

• 3Q = p⇒ sextupole,

• 4Q = p⇒ octupole.

However, an accelerator has two tune values: Qx and Qy. This makes reality even
more complex. For higher orders of multipoles the betatron phases in both transverse
directions are coupled and optical resonance occurs if

nQx +mQy = p, (2.36)

where n, m and p are integer numbers. These are called the coupled resonances and
|n|+ |m| is known as the resonance order. Therefore, choosing the proper Qx and Qy

values is essential in an accelerator. This pair of values is called working point and
has to be as far as possible from optical resonances. In Fig. 2.4 the working point is
placed in a diagram together with the lines defining the solutions for Eq. 2.36. This
working point can be used to compare the real accelerator and a model of it, as it
is done in Chapter 5.
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Figure 2.5: Local bump produced with the magnets HK1, HK2 and HK3. The
values of the β, α and Ψ functions in the same positions as the magnets are also
highlighted [26, p. 129].

Unfortunately, not all particles travel with the same momentum within a beam. This
momentum deviation causes particles to have slightly different tunes. The spread
of the tune values caused by momentum deviations is known as chromaticity.

2.2.4 Local Orbit Bump

It is often necessary to shift the beam deliberately in a certain position z of the
accelerator without affecting the rest of the ring. This is called an orbit bump.
It is always performed using small dipole magnets which are added to the existing
lattice of the accelerator. Those magnets are able to kick the beam by a certain
angle κ. In the case of COSY an horizontal orbit bump is used at injection. The
magnets responsible to create such bump have the ability to increase and decrease
the dipole fields very fast and are called bumper magnets. In theory, a local orbit
bump can be performed using 2, 3 or 4 magnets. The more are used, the better the
control of the orbit shift. With only two magnets the orbit bump is only possible if
they are located in certain positions, determined by the lattice. With three magnets
it is almost always possible to create a local orbit bump, but only the displacement
at a certain point or the angle at the same point can be controlled, never both at the
same time. Finally, with four magnets the displacement and angle of the bumped
orbit at any position are under control. In COSY there are 3 bumper magnets
available, so only the theory related to a three magnet bump is shown here. [26, p.
127-135] has a full theoretical description of the three cases.

In Fig. 2.5 the working principle of the three magnet local bump is shown. The first
of the magnets, named HK1, kicks the beam out of the ideal orbit with an angle
κ1. Then, as a result of the focusing (remember that there are more lattice elements
between the magnets, even if those are not shown in Fig. 2.5 for simplicity) the
beam starts to perform oscillations around the ideal orbit. Then, it is again kicked
by the second magnet HK2 and finally HK3 is responsible to bring the beam back to
the ideal orbit path. Consider that the beam is originally in the ideal path when it
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reaches the first magnet and then is kicked by an angle κ1 horizontally. The initial
state is now

X1 =

(
x1

x′1

)
=

(
0
κ1

)
. (2.37)

Then, the state in the position z3 of Fig. 2.5 is given by:(
x3

x′3

)
= M (z3|z1)

(
x1

x′1

)
, (2.38)

where M(z3|z1) is the transfer matrix between z1 and z3. Then, in order to be back
at the ideal orbit the state of the beam at z3 has to be given by

X3 =

(
0
−κ3

)
(2.39)

and the be kicked by the last magnet HK3 by an angle κ3. In addition, the magnet
HK2 is located between HK1 and HK3. The effect of the kick κ2 at z2 to a beam
traveling in the ideal orbit would be seen in z3 as:(

x3

x′3

)
= M (z3|z2)

(
0
κ2

)
. (2.40)

These two corrections to the ideal orbit in the positions z1 and z2 by the magnets
HK1 and HK2 respectively can be added to obtain the state in z3, which has to be
the one given in Eq. 2.39 in order to have a local bump.

X3 = M (z3|z1)

(
0
κ1

)
+M (z3|z2)

(
0
κ2

)
=

(
a11 a12

a21 a22

)(
0
κ1

)
+

(
b11 b12

b21 b22

)(
0
κ2

)
(2.41)

=

(
0
−κ3

)
.

Eq. 2.41 gives a system of equations from where κ2 and κ3 can be calculated as a
function of κ1:

κ2 = −a12

b12

κ1, (2.42)

κ3 = −
(
a22 −

a12

b12

b22

)
κ1. (2.43)

Hence, as it can be seen in Eq. 2.42 and Eq. 2.43, the necessary kicks for a local
bump are only dependent on the transfer matrix elements. The transfer matrix
is determined by the lattice only, so the kick strengths depend on the accelerator
components and not on the beam orbit. The amplitude of the displacement can be
chosen by choosing the appropriate κ1 value.
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Figure 2.6: Sketch of injection process on the left. The acceptance of the accelerator
together with the emittance of the injected beam on the right [26, p. 141].

2.3 Charge-exchange Injection

Now that the most basic concepts of beam dynamics are explained, the injection
process is studied theoretically. Injection covers the final stage of the transfer of the
beam from one accelerator to another, either from a linear to a circular machine
or from one circular machine to another. The design aims are to achieve the
transfer with little beam loss and with the minimum or defined dilution of the beam
emittances. However, any particle injected outside the accelerators acceptance will
hit the vacuum pipe wall at some point and will be lost. Injection can therefore be a
complicated process as the injected beam has to be placed into (or at least close to)
the orbit of the circular machine, without significantly disturbing the orbiting beam.

The main problem of injection is that an injected beam always lies out of the
acceptance of the accelerator just before entering the vacuum chamber (see Fig. 2.6),
as a > d. Without the help of a bending magnet the injected beam would eventually
hit the vacuum chamber. Thus, is necessary to have such a magnet to precisely
match the angle and position of the orbit. However, the magnet has to be switched
off before the beam completes one revolution or it will be deflected again and hit the
wall. This requires magnets which can ramp their field very fast and then decrease
it again before the beam competes a revolution. This job is performed by the
previously mentioned bumper magnets. Furthermore, when particles are injected
they take a finite volume in phase space, given by

∆V = ∆x∆x′∆y∆y′∆z
∆p

p
. (2.44)

This leads to the main rule of injection: a particle can not be injected in the same
phase space volume of an existing particle without losing the already present one.

When the emittance of the injected beam is smaller than the acceptance of the
machine and the particles circulating in the accelerator do not lose energy signifi-
cantly, injection can continue filling different sections of the phase space which are
adjacent but separated. This is the so called ‘stacking’ method and is usually done
with protons and heavy ions because of their low energy loss due to synchrotron
radiation. It can be performed in separated injections or in a multi-turn continuous
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injection. The former is the case in COSY.

A popular and effective method of injection is the charge-exchange injection method.
It consists on driving negatively charged ions into an stripping foil. This stripping
foil stripes the electrons from the ions and then protons (or deuterons) go into
the accelerator. However, apart from stripping the electrons this foil also causes the
particles to experience multiple scattering and energy losses. The analytical formula
for the root mean square scattering angle in a target is given by [31, p. 644]

θrms ≈ πN

(
2zZe2

pv

)2

ln
(
204Z−1/3

)
t, (2.45)

where N is the number or atoms per unit volume of the target, z and Z are the
charge of the projectile and the target, respectively, e the electronic charge, p and v
the momentum and velocity of the projectile and t the target thickness. The mean
energy loss for such a charge-exchange foil and 0.1 ≤ βγ ≤ 1000 is well described
using the Bethe-Bloch formula [32, p. 447]〈

−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βγ)

2

]
, (2.46)

where

Table 2.1: Variables used in the Bethe-Bloch formula 2.46.

Symbol Definition Value or Unit

K 4πNAr
2
emec

2 0.307 075 MeVcm2

g

z charge number of incident particle
Z atomic number of target
A atomic mass number of target g

mol

β speed normalized to c β = v
c

me electron rest mass 511 keV
c speed of light 299.792 km

s

γ Lorentz factor γ = 1√
1−β2

Tmax Maximum energy transfer to electron eV
I mean excitation energy eV
δ(βγ) density effect correction to ionization energy loss

This leads to a root mean square momentum deviation per passage through the foil

δrms =
∆p

p
=

γ

1 + γ

∆Ek
Ek

, (2.47)

where Ek is the kinetic energy. The effect of this two phenomena in the transverse
and longitudinal emittances of the beam is studied in [33]. After n passages through
the foil:

εn = ε0 +
n

2

(
βθ2

rms +
D2

β
δ2
rms + βD′2δ2

rms

)
, (2.48)

where β is the value of the function β(z), D is the dispersion and D′ is the derivative
of the dispersion at the stripping foil position. Then, the emittance of the beam
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Figure 2.7: Sketch of injection in COSY. The beam coming from the IBL is shown in
green color, while the beam circulating at COSY is shown in blue. After hitting the
stripping foil the injected beam losses its electrons and becomes a proton/deuteron
beam, hence its blue color.

hitting the stripping foil grows linearly with the number of times the beam passes
through it. If the foil is then placed in the orbit of the circulating beam this can
lead to a big emittance increase and, therefore, when the accelerator acceptance is
surpassed by the beam emittance, to beam losses. Hence, the stripping foil is usually
located at a certain offset from the ideal orbit.

2.3.1 Injection in COSY

As many particles as possible have to be injected in the COSY ring for optimal
beam intensity. Injection is performed using a multi-turn charge-exchange method
in which H− and D− ions coming from the cyclotron are driven into a stripping foil.
COSY has around 184 m in circumference. With γ and β being the relativistic γ
factor and the normalized velocity respectively, the revolution frequency for 45 MeV
protons is given by:

Ek = (γ − 1)mproton = 45 MeV⇒ γ ≈ 1.048⇒ β =
1

γ

√
γ2 − 1 ≈ 0.2992,

so

frev =
L

βc
≈ 2× 10−6 s = 2 µs.

This means that the first particles being injected at COSY during a 20 ms injection
cycle have completed around 104 revolutions by the time the last particles are
injected. A very similar result is obtained for 76 MeV deuterons.

The stripping foil is made up a 20 µg cm−2 deep C12 [34]. It is located in the same
vacuum pipe but at a certain horizontal offset from the COSY nominal orbit to
avoid beam losses. A sketch of the injection process is shown in Fig. 2.7.

As it can be seen in Fig. 2.7 the beam of H− or D− ions coming from the cyclotron
(blue line) enters the injection dipole (see Fig. 2.8) from a side and it is bent to the
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Figure 2.8: Technical drawing of the injection dipole (dipole number 23) in COSY
[35].

left. On the other hand, the beam which is already circulating at COSY (remember
that it is a multi-turn injection) is bent to the opposite direction, as it has the
opposite charge. Therefore, both beams are placed in parallel directions. It is
after this bending that the injected beam hits the stripping foil and is stripped
of its electrons, but the cycling beam does not hit the stripping foil because of
the horizontal offset between both beams (see Fig. 2.12). The offset between the
injected and circulating beam can be controlled using the three bumper magnets.
These bumper magnets distort the orbit of the circulating beam in COSY and create
a local orbit bump, thus controlling the distance between both beams. The injection
sequence is the following:

• The H− (or D−) beam comes from the cyclotron through the IBL and enters
the injection dipole, which places the injected beam parallel to the orbit in
COSY, but at an horizontal nominal offset of ∆x = 50 mm, following the path
towards the edge of the stripping foil.

• The orbit in COSY is horizontally bumped using the three injection bumper
magnets. The orbit bump is a compensated bump, so that it does not affect
the orbit outside the injection section. With this bump, the orbit is placed at
the same position as the injected beam, hitting the stripping foil edge.

• The injection begins as the same time as the intensity in the bumper magnets
start to decrease linearly to 0. This decrease in intensity takes the same time as
the duration of the injection macro-pulse. Hence, the orbit bump is maximum
when injection starts and after 20 ms the orbit is back at its original position
(see Fig. 2.9).

The reduction of the bump allows the injected beam to ‘paint’ different sections of
the horizontal acceptance phase space. As the orbit shifts away from the injection
beam axis the injected particles are accepted into different phase space sections as
seen in Fig 2.10.
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Figure 2.9: Injection macro-pulse (in blue) and the bumper magnet intensity (in
green). The injection takes place from t0 to t1, where usually t1 − t0 = 20 ms.
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Figure 2.10: Sketch of the phase space filling process for the x−x′ phase space. The
gray shadow represents the acceptance of the ring. The orange shadow represents
the emittance of the injected beam. The evolution of the injection process is shown
from left to right, starting from the situation when the bump is maximum and the
orbit matches the injected beam position and finishing at the situation when the
bump has already disappeared.
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Figure 2.11: The top four images show the evolution of the phase space (from left to
right) for an off-axis injected beam and the four bottom images show the evolution
of a beam with mismatched twiss parameters (β, α and γ). The coordinate u stands
for x or y. The phase space area at the end is bigger than at the beginning for both
cases [36].

Y

Z
X

(0,0)

50mm

C12 foil

Injected beam

25mm

Figure 2.12: Schematic view of the stripping foil inside the vacuum chamber of
COSY. The ideal orbit goes through the (0, 0) point in the image. The injected
beam is shown hitting the edge of the stripping foil.

The emittance of a beam which is injected off axis in an accelerator grows following
the betatron motion equations (Eq. 2.13) as the particles oscillate around the orbit
of the accelerator. The same occurs if the angles of both beams do not match. The
evolution of a beam which has been injected off-axis is shown in Fig. 2.11, together
with a beam with mismatched twiss parameters. At the same time, the number
or revolutions that the orbiting beam hits the stripping foil is limited by moving it
away from the foil as fast as possible. This prevents the beam emittance to grow too
much, as it would happen if the beam would hit the stripping foil for an arbitrarily
large number of turns n (see Eq. 2.48).

The injection process explained until now concerns the horizontal plane injection.
Regarding to the vertical plane the acceptance of the machine is smaller so the phase
space area is filled easier. This makes the injection simpler and it is enough to match
the vertical emittance of the injected beam with the vertical acceptance of COSY.
The momentum deviation of the injected beam, which is given by the cyclotron,
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cannot be easily manipulated and the filling of the longitudinal acceptance of COSY
(∆p
p

= 0.5%) is then fulfilled by the energy losses in the stripping foil.
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Injection Beam Line Optimization

In this chapter the focus lies on the optimization of the Injection Beam Line (IBL).
The optimization of the IBL first requires to have all the information about the beam
coming out of the cyclotron. For that purpose different experiments and results are
presented. Then, with the help of the computer software Bmad, the IBL is optimized
for injection. Not all the measurements in this chapter were carried out in the same
beam times, thus the beam could have small differences between them.

3.1 Beam Characterization in the IBL

As it is mentioned before, the IBL is a transport line from the cyclotron to the
synchrotron. It is an open lattice. In order to analyze the properties of the beam
along the IBL the initial conditions have to be known. These initial conditions
are given by the source and cyclotron configurations and are dependent on many
parameters such as extraction voltages and cyclotron frequency. It is important to
determine the characteristics of the beam at the beginning of the IBL so that its
evolution can be calculated using simulations based on the IBL settings. In order
to measure the properties of the beam when it comes out of the cyclotron, several
methods can be used. In this case the emittance is measured first and then, once a
reasonable result is found, the twiss parameters (β, γ and α) are calculated. Finally,
the energy and momentum uncertainty are measured and the image of the beam in
the IBL is then complete.

The emittance measurement is carried out using two different and independent meth-
ods and afterwards the results are compared. These methods are the quadrupole
scan method and the slit scan method. An unpolarized H− beam is used in
both methods because of beam availability, but the methods are equally applicable
for any type of D− beam.

3.1.1 Emittance Measurement Using Quadrupole Scan Method

Setup

The quadrupole scan method is used to calculate the transverse emittances of the
beam. It consists of varying the quadrupole strength and analyzing how this affects
the beam size in the measurement point, which is located a certain drift distance D
after the quadrupole. A sketch of the system is visible in Fig. 3.1.
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Figure 3.1: Quadrupole scan sketch. The quadrupole is represented by the gray box
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Figure 3.2: Measured beam profiles for x and y at the MWPC for kQIN2 = 0.96 m−2

and kQIN2 = −1.28 m−2.

The beam profile is recorded by a Multi Wire Proportional Chamber (MWPC). In
this experiment the quadrupole QIN2 is used and the drift distance is of D = 2.3 m.
The experimental setup is located in an external area connected to the IBL. The
MWPC measures the beam intensity by 64 wires in x axis and another 64 wires in y
axis. This wires are separated by 1 mm from each other. Fig. 3.2 shows the recorded
intensity for different quadrupole strength values.

It can be seen that the beam profile matches the expected Gaussian shaped profile
approximation at the location of the MWPC. The measured data is fitted with the
function in Eq. 3.1 to calculate the beam width.

f(x) = a · exp−
(x−µ)2

2σ2 . (3.1)

The standard deviation of the fitted Gaussian function is considered to be the beam
size (σrms ≡ σ). This process is repeated for different quadrupole strengths, from
-20% to 16% of the maximum intensity in steps of 4%. Thus, the beam size for x and
y axes is obtained from the fits for each quadrupole strength value. Fig. 3.3 shows
the variation of the beam size squared as a function of the quadrupole strength
kQIN2.
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Figure 3.3: Beam size squared as a function of QIN2 strength.
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Figure 3.4: Beam matrix element representation in phase space.

Emittance Calculation

The relation between the beam width at the MWPC and the quadrupole strength
can be obtained by using the transfer matrix formalism [37]. σbeam is the matrix
which describes the ellipse in the phase space for axis x or y (see Fig. 3.4):

σbeam =

(
σ11 σ12

σ21 σ22

)
, (3.2)

where σ12 = σ21.

From literature it is known that 〈x2〉 is related to σ11 as shown in Eq. 3.3. The
same is true for the case of y instead of x. All the emittance calculation process is
explained here for x axis, but is identical for y axis.

σ11 =

∫ ∫
dxdx′f (x, x′)x2 =

〈
x2
〉

if 〈x〉 = 0. (3.3)

In the same way, σ12 = σ21 = 〈xx′〉 and σ22 = 〈x′2〉. For a Gaussian distribution
centered at 0 the variance 〈x2〉 is equal to σ2, so σ11 is directly equal to the measured
σ2

rms. Furthermore, σbeam is related to the emittance by
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ε =
√
|σbeam| =

√
σ11σ22 − σ2

12

=

√
〈x2〉 〈x′2〉 − 〈xx′〉2.

(3.4)

As explained in Sec. 2.2.2 the emittance is conserved under conservative forces
where Louiville theorem applies, which is the case of the IBL, so the position z
of the calculation does not affect the result. Being D the drift distance between the
quadrupole and the MWPC and l the effective length of the quadrupole QIN2, an
expression for the beam width squared (σ2

rms = 〈x2〉 ) as a function of the quadrupole
strength k is derived using

M =

(
1 D
0 1

)
·

 cos
(√

kl
)

1√
k

sin
(√

kl
)

−
√
k sin

(√
kl
)

cos
(√

kl
)  ,

σbeam = M · σibeam ·MT , (3.5)

where σibeam is the beam matrix at the position zi just before entering the quadrupole.
Eq 3.6 is solved and the expression for the first matrix element is the following one:

σ11 =
〈
x2
〉

= σi11

(
cos
(√

kl
)
−
√
kD sin

(√
kl
))2

+ σi12

(
cos
(√

kl
)
−
√
kD sin

(√
kl
))( 1√

k
sin
(√

kl
)

+D cos
(√

kl
))

+ σi22

(
1√
k

sin
(√

kl
)

+D cos
(√

kl
))2

= σ2
rms.

(3.6)

Eq. 3.6 gives the beam size squared as a function of quadrupole strength k and the
beam parameters in front of the quadrupole. The next step is to fit Eq. 3.6 into
the data from Fig. 3.3a and 3.3b so that the initial beam parameters are calculated
from the fit coefficients. Then the beam emittance is calculated from them. The
problem comes with the negative values of k, which lead to square root of negative
values in Eq. 3.6. This is usually solved using a different matrix containing cosh and
sinh functions and some minor changes. This solution arises the need to fit different
functions for negative k and positive k values. In order to make the process simpler,
the sinusoidal functions are expanded into polynomials using Taylor’s expansion
around 0.

Second Order Approximation The sinusoidal functions are expanded up to
the second term. Using only one term can also be considered, but it makes the
calculations less accurate. On the other hand, more terms can be considered in the
Taylor expansion, but in that case the expressions become longer and not practical
to handle.

sin (α) ≈ α− α3

6
+O

(
α5
)
, (3.7)

cos (α) ≈ 1− α2

2
+O

(
α4
)
. (3.8)
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Now these approximations are substituted in Eq. 3.6 and the result is given in
Eq. 3.9.

σ11(k) =

[
σi11

l6D2

36

]
· k4 −

[(
l5D

6
+
D2l4

3

)
σi11 + 2

(
D2l5

12
+
Dl6

36

)
σi12

]
· k3

+

[(
l4

4
+ l2D2 +

4l3D

3

)
σi11 + 2

(
7
l4D

12
+
l5

12
+

2D2l3

3

)
σi12 +

(
l6

36
+
D2l4

4
+
Dl5

6

)
σi22

]
· k2

−
[(
l2 + 2lD

)
σi11 + 2

(
2Dl2 +

2l3

3
+D2l

)
σi12 +

(
D2l2 +

4Dl3

3
+
l4

3

)
σi22

]
· k

+
[
σi11 + 2 (D + l)σi12 + (l +D)2 σi22

]
.

(3.9)

This expression describes the behavior of σ2
rms = σ11 as a function of the quadrupole

strength k, up to the fourth order. The data in Figure 3.3 is fitted by a fourth order
polynomial ( Ak4 + Bk3 + Ck2 + Ek + F ). Equaling this fourth order polynomial
to Eq. 3.9 gives the relations between the beam matrix components and the fit
coefficients. Those relations are

σi11 =
36A

l6D2
, (3.10)

σi12 = −
B +

(
l5D

6
+ D2l4

3

)
σi11

2
(
D2l5

12
+ Dl6

36

) , (3.11)

and then 3 equations are left from which σi22 can be extracted. Using one of them:

σi22 =
C −

(
l4

4
+ l2D2 − 4l3D

3

)
σi11 − 2

(
7 l

4D
12

+ l5

12
+ 2D2l3

3

)
σi12

l6

36
+ D2l4

4
+ Dl5

6

. (3.12)

Now, the last two coefficients from the fit which are not used to determine the beam
matrix elements can be related to the other 3 coefficients:

E = −
[(
l2 + 2lD

)
σi11 + 2

(
2Dl2 +

2l3

3
+D2l

)
σi12 +

(
D2l2 +

4Dl3

3
+
l4

3

)
σi22

]
,

(3.13)
F = σi11 + 2 (l +D)σi12 + (l +D)2 σi22. (3.14)

In Eq. 3.13 and 3.14 σi11, σi12 and σi22 are replaced with the expressions from Eq 3.10, 3.11
and 3.12. Then, the coefficients E and F are shown as a function of the coefficients
A, B and C plus the constants l and D. Thus, the fit does not really contain 5
independent coefficients, but only 3 instead. The results of such fits are shown in
Fig. 3.5.

The uncertainties are propagated from the fit coefficients to the emittance by the
relation in Eq. 3.4. The calculation is the following: first P0, P1,... are used to
express the coefficients of Eq. 3.9

P0 ≡
36

D2l6
,
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Figure 3.5: Beam size squared as a function of QIN2 strength with fourth order
polynomial fit. The χ2 test shows that the fit of the data points by the model falls
inside the standard deviation for the x axis, but it lies outside for the y axis. Both
fits are performed with the same assumptions in the measurement uncertainties.

P1 ≡
l4

4
+ l2D2 +

4l3D

3
,

P2 ≡ 2

(
7l4D

12
+
l5

12
+

2D2l3

3

)
,

P3 ≡
l6

36
+
D2l4

4
+
Dl5

6
,

P4 ≡
l5D

6
+
D2l4

3
,

P5 ≡ 2

(
D2l5

12
+
Dl6

36

)
.

Then, the beam matrix elements are expressed as a function of the fit coefficients
A, B and C in addition to the constant coefficients P0, P1,... :

σi11 = P0A, (3.15)

σi12 = −B + P4σ
i
11

P5

= −B + P4P0A

P5

, (3.16)

σi22 =
C − P1σ

i
11 − P2σ

i
12

P3

=
C − P1P0A+ P2

B+P4P0A
P5

P3

. (3.17)

So |σbeam| is expressed as:

|σibeam| = σi11σ
i
22 −

(
σi12

)2
=
P0A

P3

[
C − P1P0A+

P2

P5

(B + P4P0A)

]
− (B + P4P0A)2

P 2
5

.

(3.18)

Here the derivatives ∂|σbeam|
∂A

, ∂|σbeam|
∂B

, ∂|σbeam|
∂C

are taken considering that all the
coefficients P0, P1,... are constant. The uncertainty is given by
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δ|σbeam| =

[(
∂|σbeam|
∂A

δA

)2

+

(
∂|σbeam|
∂B

δB

)2

+

(
∂|σbeam|
∂C

δC

)2

+ 2
∂|σbeam|
∂A

∂|σbeam|
∂B

σAB + 2
∂|σbeam|
∂A

∂|σbeam|
∂C

σAC + 2
∂|σbeam|
∂B

∂|σbeam|
∂C

σBC

] 1
2

,

(3.19)

where σij represents the covariance between the parameters i and j. Finally,

δε =
δ|σbeam|

2
√
|σbeam|

. (3.20)

The measured emittances and the corresponding uncertainties are shown in Ta-
ble 3.1.

Table 3.1: Emittance results for quadrupole scan method.

Axis A [m10] B [m8] C [m6] ε[mm ·mrad]
X (4.1± 0.1)× 10−9 (−5.0± 0.2)× 10−7 (1.44± 0.06)× 10−5 18.9± 0.4
Y (2.0± 0.1)× 10−9 (−2.8± 0.1)× 10−7 (1.00± 0.05)× 10−5 14.8± 0.4

3.1.2 Emittance Measurement Using the Slit Scan Method

Setup

The slits method is a commonly used method for emittance measurement. It consists
on cutting the incident beam through slits and then measuring the partial beams
(beamlets) which go through in a screen located at a certain distance L. It is
important to note that this measurement technique does not rely on any interference
between the beamlets that go trough different slits. Then, instead of using many
slits at the same time, only one can be used at a time. The principle can be seen
in Fig. 3.7. The smaller the width of the slit is the better for the measurement, a
point source beam would be the optimal case.

In the case of COSY there is not any slit plate as the one shown in Fig. 3.6a
along the IBL. However, there is a configurable slit system after the cyclotron which
allows to construct a 1 mm wide slit (1 mm is the minimum, it can also be wider)
in both x and y directions (see Fig. 3.6b). This slits can then be moved to scan
the beam. This way the measurement can be done for different slit positions and
the results are equivalent to the ones obtained with a multiple slit plate. A sketch
of the measurement principle in COSY can be seen in Fig. 3.7. Furthermore, this
configuration allows for a more precise measurement than the multiple slit plate
system, because all the beam can be scanned without leaving gaps between slit
positions. For the experiment the x direction slit is moved along the axis while the
slit in y is left totally open, so that it does not disturb the beam. Once all the beam
is scanned in x direction the process is repeated for the slit in y, this time being the
slit in x the one which is left completely open.
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Figure 3.6: Comparison of two slit systems, the one from [39] on the left and the on
in COSY on the right.
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Figure 3.7: Sketch of a slit measurement. The incident beam comes from the left
and impacts with the slit plate. The beamlets that go through the slits are then
measured in a screen after traveling the distance L. Measured quantities Xi and xi
are shown, x′i is derived from them.
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Figure 3.8: The scintillation foil, called screen, and camera sketch.

The beam going through the slit is recorded using a scintillation foil, called ’screen’,
which is rotated α ≈ π

4
rad respect to the z axis (see Fig. 3.8). When the beam

hits the foil light is emitted by scintillation. This light is captured by a camera and
saved as an image. The images taken for different slit positions are analyzed with
a specially in-house designed software and the beam distribution in the screen is
extracted.

Emittance Calculation

The objective is to calculate the emittance of the beam using the information from
the screen and slit positions. Fig. 3.10 only shows the y axis scan case, but the same
process is also repeated for the x direction.

All the calculations shown here are done for the x axis, but the procedure for y is
identical. As it can be seen in Fig. 3.7, x is the coordinate of the slit plate and the
position of the slit is denoted xsj. For the screen the coordinate X is used. Then,
being M the total number of particles before the slit, (xi, yi) and (x′i, y

′
i) describe

the transverse position and momenta for the particle number i = 1, 2, ...,M . x′i is
defined as

x′i ≡
Xi − xi
L

. (3.21)

As it is shown in Sec. 3.1.1, the emittance is defined by Eq. 3.22:

εx =

√
〈x2〉 〈x′2〉 − 〈xx′〉2, (3.22)

where
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Figure 3.9: Full beam image without any filtering with slits. There are markers in
the foil at 1 cm distance from the center in the horizontal and vertical directions.
The apparent distance difference from the center to the markers shown here is due
to the tilting of the foil in z direction. The markers are used for calibration. It
can be seen that the beam center is shifted away from the scintillation foil center.
A double structure can also be appreciated in the vertical direction. This effect is
caused by the cyclotron and cannot be completely avoided.

x

y

Figure 3.10: On the left side the image of the beam after going through the horizontal
slits is shown. The distribution in the right side corresponds to the projection of
the brightness into the y axis.
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〈
x2
〉
≡ 1

M

M∑
i=1

(xi − x̄)2,

x̄ ≡ 1

M

M∑
i=1

xi,

〈xx′〉 ≡ 1

M

M∑
i=1

(xi − x̄)(x′i − x̄′).

(3.23)

If a mask (slit plate) is placed in front of the incident beam, it is clear that the
number of particles behind this mask is N ≤ M . Then, N forms a subset of the
beam. The emittance is calculated for this subset and how accurate the calculation
is depends on how close is N from M. In this case, as there is a movable slit instead
of a slit plate, most of the beam is scanned, so it can be said that N ≈ M . From
now on, only the subset emittance is discussed, but keeping in mind that if N = M
the subset emittance and the total emittance of the beam are equal.

The first task is to express the variables shown in Eq. 3.23 as a function of the
measurable quantities in the experiment. Being j the subscript representing each of
the slit positions, those quantities are:

• xsj = jth slit position.

• nj = Number of particles going throught the jth slit and reaching the screen.

• X̄j = Mean position of the beamlet going through the jth slit in the screen.

• σj = Rms width of the beamlet going through the jth slit in the screen.

• N = The total number of particles going through all slit positions.

Being p the total number of slit positions used to scan the beam, clearly:

n1 + n2 + · · ·+ np = N. (3.24)

The detailed mathematical derivation of the following formulas from the expressions
in Eq. 3.23 is found in [39], here only the result is shown. In order to obtain the
measurable quantities X̄j, σj and nj from the data, a Gaussian type function is
fitted and the background subtracted to each of the obtained distributions (one for
each slit position). The mean position and rms width of the fit, together with the
corresponding uncertainties, are directly related to X̄j and σj of the beamlet. The
number of particles nj that go through the jth slit is proportional to the measured
brightness (integral of the fitted Gaussian function). The uncertainties in the fit
parameters (δµ, δσ and δnj) are propagated to the calculated values 〈x2〉, 〈xx′〉 and
〈x′2〉 using the standard Gaussian error propagation. It is also proven in [39] that
the emittance results obtained with this method are independent of the origin of
the coordinates in x and X. Thus, the only requisite is that x and X have the same
units. Then, the emittance reads:
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ε2x =
〈
x2
〉 〈
x′2
〉
− 〈xx′〉2

≈ 1

N2


[

p∑
j=1

nj (xsj − x̄)2

][
p∑
j=1

[
njσ

2
x′j

+ nj(x̄′j − x̄′)2
]]
−

[
p∑
j=1

njxsjx̄′j −Nx̄x̄′
]2
 ,

(3.25)

and the corresponding uncertainty is given by

δε =
1

2ε
δε2

=
1

2ε

√(
〈x2〉 δ〈x′2〉

)2
+
(
〈x′2〉 δ〈x2〉

)2
+
(
2 〈xx′〉 δ〈xx′〉

)2
. (3.26)

The results obtained by the slit scan method are shown in Table 3.2.

Table 3.2: Emittance results for slit scan method, where u represents any of the
coordinates x or y.

Axis 〈u2〉 [mm2] 〈u′2〉 [mrad2] 〈uu′〉 [mm ·mrad] ε[mm ·mrad]
X 11.2± 0.4 40± 10 11± 1 18.8± 0.2
Y 25.5± 0.4 8± 5 −5.0± 0.4 13.2± 0.2

It can be seen that the results from Table 3.1 and 3.2 are compatible within the
errors for the x axis, even if the measurement methods are independent from each
other and they are carried out in different beam times. On the other hand, the
results in y are within 4σ from each other, this could be an indicator that there is
some process which affects the emittance measurement in y axis in any of the two
methods. The results are summarized in Fig. 3.11.

3.2 Twiss Parameters and Momentum

In order to have all the information about the beam when it goes through the IBL,
the twiss parameters are needed. As it is mentioned in Sec. 2.2.2, the evolution of
the β(z) functions along an open lattice depends on the initial parameters β0 and α0

for any of the transverse directions. Thus, taking into account that the emittance
measurements using the slits are done some drift distance before the beginning of the
IBL, the twiss parameters at that position can be calculated. The twiss parameters
will be denoted βIBL, αIBL and γIBL when the values correspond to the initial position
of the IBL and β0, α0 and γ0 when they belong to the slit positions. Eq. 2.27 gives
the relation between the beam size squared, the β(z) function at the same point
and the emittance. 〈u2〉 is calculated in Table 3.2 for x and y. In addition, it is
mentioned before that for Gaussian distribution centered at 0 〈u2〉 = σ2

u. Thus, from
Eq. 2.27 the twiss parameters at the slit positions are derived:

〈
u2
〉

0
= β0ε⇒ β0 =

〈u2〉0
ε

, (3.27)
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Figure 3.11: The results from the two emittance measurement methods are shown
here. The horizontal lines represent the average values for the emittances in x (blue)
and y (red), with the corresponding uncertainty shown by the shadowed region.

〈uu′〉0 = −α0ε⇒ α0 = −〈uu
′〉0
ε

, (3.28)

〈
u′2
〉

0
= γ0ε⇒ γ0 =

〈u′2〉0
ε

. (3.29)

If the transfer matrix and initial conditions are known, using the evolution matrix
given in [26, p.87] the twiss parameters of any other point in the lattice can be
calculated. There is only drift space between the slits and the beginning of the IBL.
For a drift space of length D the transfer matrix is

M =

(
m11 m12

m21 m22

)
=

(
1 D
0 1

)
. (3.30)

The relation between the twiss parameters at the slit positions and the twiss pa-
rameters at the beginning of the IBL is given by:

βIBL

αIBL

γIBL

 =

 m2
11 2m11m12 m2

12

−m11m21 m11m22 +m12m21 −m22m12

m2
21 −m22m21 m2

22

β0

α0

γ0

 =

1 −2D D2

0 1 −D
0 0 1

β0

α0

γ0

 .

(3.31)
Hence, the β, α and γ values at the beginning of the IBL can be calculated for both
x and y directions.

βIBL = β0 − 2Dα0 +D2γ0, (3.32)

αIBL = α0 −Dγ0, (3.33)
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Figure 3.12: x and y phase spaces at the beginning of the IBL. 104 particles are
randomly placed inside Gaussian distribution functions determined by the twiss
parameters shown in Table 3.3.

γIBL = γ0. (3.34)

The drift distances are Dx = 312 mm and Dy = 242 mm. The results are given in
Table 3.3.

Table 3.3: Twiss parameters at the beginning of the IBL.

βIBL[m] αIBL γIBL[m−1]
X 1.17± 0.06 −1.2± 0.1 2.1± 0.5
Y 1.78± 0.04 0.23± 0.01 0.6± 0.4

The values of β0, α0 and γ0 in Table 3.3 are calculated independently. However,
there is a relation between them given by Eq. 2.30, which can be used as a quick
check that the results are sensible.

β0γ0 − α2
0 − 1 =

{
0.0± 0.8 in x,

0.0± 0.7 in y.
(3.35)

As it is seen in Eq. 3.35 both results are compatible with 0, which is the expected
value given by Eq. 2.30. Finally, the initial x and y phase spaces of the beam at the
beginning of the IBL are shown in Fig. 3.12.

Kinetic Energy and Momentum Deviation

The kinetic energy of the H− beam is also measured. This is done by measuring
the time of flight between two phase probes that are found along the IBL. Once the
distance between both phase probes is known the kinetic energy is calculated using
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Ek = m(γ − 1)c2 = m

 1√
1−

(
v
c

)2
− 1

 c2 = m

 1√
1−

(
d
tc

)2
− 1

 c2, (3.36)

where d is the distance between the phase probes, t is the measured time of flight
and m is the mass of the particles. The momentum deviation is also calculated from
the energy uncertainty. The measured kinetic energy for H− particles is

Ek = (45.125± 0.007) MeV. (3.37)

Therefore, using the relation (Ek + E0)2 = p2c2 + E2
0 and Eq. 2.47 the momentum

deviation in the IBL is given by

∆p

p
= 0.08%. (3.38)

3.3 Quadrupole Optimization

The next step is the optimization of the lattice in the IBL. As it is mentioned in
Sec. 1.4.2, the IBL is composed by 8 sections, each of them with its own purpose.
It starts at the exit of the cyclotron, in the position of the first profile grid, and it
finishes in the stripping foil. The main magnets in the IBL are dipole magnets for
beam bending and quadrupole magnets for beam focusing. There are also several
steering magnets to steerer the beam if necessary, but they are not taken into account
in this optimization. The optimization process consists on tuning the magnetic field
values so that the transfer beam line fulfills some characteristic behavior. Not all
the magnets can be freely tuned. The field strength of the dipole magnets can not
be changed for example, as doing so would change the path of the beam, which
is enclosed by a rigid vacuum pipe. Then, the free parameters are the quadrupole
strengths, noted as k. This magnitude is used to indicate the amount of focusing that
a quadrupole applies to a beam, independently of the beam composition and energy.
When a specific particle and fixed energy beam goes through the quadrupoles, the
magnetic field gradient required to focus the beam as specified by the value k is
given by the product of k with the magnetic rigidity Bρ:

g

[
T

m

]
= k

[
1

m2

]
Bρ[Tm]. (3.39)

For 45 MeV protons Bρ = 0.98 T m and for 76 MeV deuterons Bρ = 1.80 T m.
Then, the optimization of the quadrupole strength can be done without taking into
account the type of beam traveling through the IBL. The sign of k indicates if the
quadrupole is focusing (+) or defocusing (−) in the x plane for a positive charge
particle. The ions traveling through the IBL are always negative charge particles,
because the charge-exchange injection method requires so, hence a positive k value
indicates a defocusing quadrupole in the horizontal plane and vice versa.

However, even if all the quadrupole strengths can be tuned, it is not possible to
do it individually. Quadrupoles are not powered with an individual power supply
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each, but instead they are powered in groups to make things easier. For most of
the sections in the IBL (sections 2 to 7) all quadrupoles in the same section share
the same power supply, but the polarity is alternated. This means that for example
in the case of the second section all 4 quadrupoles (named QI2X, where X is the
quadrupole number) have the same absolute current but alternated sign:

IQI21 = −IQI22 = IQI23 = −IQI24. (3.40)

This implies that the k values of these quadrupoles in the optimization have to be
kept equal in absolute value. The k value for all the section is denoted k2x and
its sign represents the sign of the first quadrupole in the section. Furthermore, the
quadrupole strength values can not take arbitrarily large absolute values, as the
power supplies have certain limits. Those limits for 100% and -100% capacities of
the power supplies are calculated and included in the optimization code.

3.3.1 Optimization

For the optimization an ideal Bmad model of the IBL is used. The parameters
in this model are the original design parameters from SIEMENS. The last part of
the transfer line includes the injection dipole. Given the difficulty to define this
dipole as a usual dipole magnet in Bmad, its 6x6 transfer matrix is experimentally
determined in [35] and shown in Eq. 3.41. Then, the matrix is implemented in the
code.

Mdipole =


0.309 1.695 0 0 0 0.130
−0.509 0.433 0 0 0 0.153

0 0 1.758 3.231 0.0
0 0 0.571 1.618 0 0

−0.114 −0.203 0 0 1 −0.004
0 0 0 0 0 1

 . (3.41)

This transfer matrix is applicable from the position of the last viewer in the last
section of the IBL (z = 91.04 m) to the stripping foil. The sectioning of the IBL can
be seen in Fig. 3.13. The optimization process is dissected for the first two sections,
the rest of them follow the same logic as one of the first two sections. Therefore,
only the purpose of each section is explained.

Section 1

The first section of the IBL is designed as an achromat. An achromat is a lattice
that does not add dispersion to the beam. The bending magnets introduce a
dispersion in the beam because different momentum particles are not bent by the
same angle (see Sec. 2.2). This dispersion introduced in the bending magnets has
to be countered by the quadrupole magnets and the face angles of the dipoles. In
transfer matrix formalism, the dispersion vector (the dispersion and its derivative
form the dispersion vector: d = (D,D′)) is composed by the elements M16 and
M26 of the 6x6 matrix. In addition, it is highly preferable to achieve a diagonal
transfer matrix for the whole section, with the diagonal elements as close to 1 or -1
as possible. This last condition ensures that the 6 dimensional phase space will be
the same (diagonal elements equal to 1) or a mirror image (diagonal elements equal
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Figure 3.13: Sketch of the IBL divided in 8 sections.

Figure 3.14: Section 1 from the IBL in the x − z-plane. Pink boxes represent
quadrupole magnets and black rectangles represent dipole magnets. The beam origin
is at (x, z) = (0, 0) and the initial velocity is v = v(0, 1).
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Figure 3.15: Dispersion in x and y along z for section 1 of the IBL.

to -1) at the end of the section as the one at the beginning.

Section 1 is different to the rest (except to section 8, which is used to match the
beam properties to COSY) because not all the quadrupoles are powered by the same
power supply. They are powered symmetrically with

IQI11 = IQI17, IQI12 = IQI16, IQI13 = IQI15 (3.42)

and IQI14 is powered individually. See Fig. 3.14 to identify the quadrupoles. The
reason to do it this way is that this gives more room to fit the parameters of the beam
coming from the cyclotron to the transfer line. The dispersion along the trajectory
for the quadrupole strength values obtained in the optimization is shown in Fig. 3.15.

The obtained k values are shown in Table 3.4. Then, the 6x6 transfer matrix for
section 1 is:

Msection1 =


0.99 0.18 0 0 0 −8 · 10−4

−0.04 0.99 0 0 0 −9 · 10−3

0 0 −0.99 0.05 0 0
0 0 0.11 −0.99 0 0

9 · 10−3 8 · 10−4 0 0 1 0
0 0 0 0 0 1

 . (3.43)

Section 2

Section 2 is designed as a FODO structure. A FODO structure is an alternating
focusing and defocusing quadrupole magnet structure. It is an straight section of
17 m and is constructed with 4 magnets. Section 2 is designed to obtain a diagonal
transfer matrix with π phase advance, which is the equivalent to stating that the
diagonal elements have to be equal to −1 (in the blocks corresponding to x and y
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Figure 3.16: Section 2 in the IBL in the x− z-plane. the beam origin and velocity
are the same as in Fig. 3.14.

phase spaces). Section 2 is shown in Fig. 3.16. There is no bending in this section
so dispersion does not have to be considered. All the quadrupoles here are powered
by the same power supply. The optimization results are in Table 3.4 and after the
optimization the transfer matrix looks like

Msection2 =


−1.00 0.00 0 0 0 0
0.00 −1.00 0 0 0 0

0 0 −1.00 0.00 0 0
0 0 0.00 −1.00 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.44)

The FODO sections have the characteristic that the optimization gives two results
of the same absolute value but opposite sign. With both k values the same transfer
matrix is obtained. This gives the possibility to choose any of them, and the criteria
is that when all sections are put together the solution which makes the β functions
smaller is chosen. This solution is related to the last quadrupole of the previous
section, because if QI17 is a defocusing quadrupole in the horizontal direction then
it is logical that QI21 is chosen as a focusing one, or vice versa.

Sections 3 to 7

The rest of the sections in the IBL up to section 7 are categorized in one of the two
first section categories, either achromats or FODO structures with π or 2π phase
advances. A short summary is given here:

• Sections 3, 4 and 5 form an achromat section all together. To proceed with
the optimization first the middle section, section 4, is optimized as a FODO
structure of π phase advance. In this part all 4 quadrupoles are powered by
the same power supply, it is very similar to section 2. Once the quadrupole
strengths for section 4 are fixed, sections 3 and 5 are added to the simulation
and all the system composed of sections 3, 4 and 5 is optimized together
as an achromat. Sections 3 and 5 are bending sections, but they bend the
beam in opposite directions. Thus, a chicane is formed when merging them
together. All quadrupoles in sections 3 and 5 are powered with the same power
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supply, so there are only two free parameters to optimize in the whole 3,4 and
5 combination: k4x and k3x5x. A unitary diagonal matrix is also possible to
achieve here.

• Section 6 is another FODO structure, but this time is composed of 8 quadrupole
magnets which are powered by the same power supply. Section 6 is optimized
to get a 2π phase advance, with a diagonal and unitary transfer matrix.

• Finally, section 7 is another bending section. It is made up of 4 identi-
cal quadrupole-dipole-quadrupole structures, where all quadrupoles are again
powered together. It is optimized as an achromat, but it is not possible to
achieve a diagonal unitary matrix in y phase space.

Section 8 is responsible to match the β function and the dispersion in x and y planes
to the values at injection point in COSY. However, the COSY model is analyzed
in the next chapter, so the optimization of section 8 is done once the necessary
information is given. The quadrupole strengths obtained in the optimization of
sections 1 to 7 are shown in Table 3.4 under the column ‘Optics 1’.

Table 3.4: Results for IBL optimization.

Section # Variable name Optics 1 [ 1
m2 ]

1 k11−17 3.44
1 k12−16 -3.66
1 k13−15 5.62
1 k14 -5.05
2 k2x ±1.29
4 k4x ±2.13

3 & 5 k3x−5x 3.91
6 k6x ± 1.46
7 k7x 2.17

Using the values of the twiss parameters at the beginning of the IBL obtained in
Sec. 3.2 the β function and the dispersion along the IBL are calculated for the
optimized IBL and the results are shown in Fig. 3.17.
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Figure 3.17: β functions and dispersions along the IBL for Optics 1. βa = βx and
βb = βy.
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Injection Optimization in COSY

This chapter includes the analysis and simulation of the process of injection itself.
The last section of the IBL is also included here because it is responsible to match
the injected beam parameters to COSY. For the calculations related to the ring an
already available model is used, but some meaningful changes are applied.

4.1 Injection Dipole and Beam Steering

In Sec. 2.3.1 the purpose of the injection dipole is explained. The injection dipole
is one of the 24 dipoles responsible to bend the beam in the ring. Therefore, it
has to apply a bending of exactly α = 360/24 = 15◦ to the proton or deuteron
beam circulating in COSY. It is a rectangular magnet. The beam enters the dipole
face with an angle (see Fig. 2.2) of 7.5◦ and leaves it with the same angle but
opposite sign, completing the 15.0◦ bending. However, the injected beam coming
from the IBL enters the injection dipole from one of its sides (see Fig. 2.8). As a
consequence, this beam has to go through a long section of fringe fields, which are
the field components not described by the simple box approximation of the magnet.

In order to study the effects of these fields in the injected beam, a 3D field map
for the injection dipole has been calculated by Jürgen Böker. Placing the origin of
the coordinates in the center of the horizontal iron poles, the effective length of the
magnet is calculated for the two vertical planes going through the center. Here x is
the direction parallel to the short face of the rectangular magnet and z is the one
parallel to the long face. The coordinate system of the beam is respected, so the
positive z direction points in the COSY beam direction and the positive x points
out of the ring. The effective length is given by:

leff =

∫
Bdl

Bmax

. (4.1)

An interpolation between the mesh points of the 3D map is used. The field map is
scaled to the warm magnet field maximum value (Bmax = 0.140 25 T). A magnet is
called ‘warm’ if it has been previously ramped and contains remnant magnetic fields,
otherwise it is defined as ‘cold’. The results are shown in Fig. 4.1. To calculate the
effective length in x only the positive part of the axis is used (see Fig 4.1a) and
then symmetry is applied, because the iron of the magnet affects the field shape for
negative x values.
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leff−z = 1.823 29× 103 mm.

leff−x = 0.499 51× 103 mm.
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(a) Vertical field in x for z = 0. The
left positive peak corresponds to the field
that the particle beams experience. On
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Figure 4.1: Vertical magnetic field component in x and z.

Using this same field map the bending angle is calculated for the injected beam and
the circulating beam. For both of them the initial position and directions are taken
from the ideal orbit direction and angle before entering the dipole magnet. Then,
the evolution under the field map is calculated using a fourth order Runge-Kutta
method [41] to solve the differential equation given by [42]:

d2x

dz2
= −By(x, z)

Bρ

(
1 +

(
dx

dz

)2
)3/2

. (4.2)

The resulting beam trajectories are shown in Fig. 4.2. The circulating beam has
an angle of eCOSYi

= 7.5◦ with respect to the z direction when entering the dipole
magnet. Here the subscript i denotes the initial angle, while the subscript f denotes
final one. According to the calculations the output angle is eCOSYf

= −7.491◦, so
there is a deficit of 0.009◦ in the bending of the COSY beam for a warm magnet.
This magnitude corresponds to 0.15 mrad. If instead the field map is scaled for a
cold magnet (Bmax = 0.1391 T), the exit angle from the dipole for eCOSYi

= 7.5◦

entering angle is eCOSYf
= −7.367◦. This difference corresponds approximately to

4.1 mrad, a considerable gap from the nominal value. Hence, the magnet always
needs to be ramped several times when COSY is started to achieve the warm field.

The injected beam has an exit angle of einjectedf
= −7.680◦ for a warm magnet. It is

clear that if the two beams have to be parallel at the exit of the dipole magnet the
bending is not strong enough for the injected beam. The angular difference between
two beams at the exit is given by
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Figure 4.2: Trajectory of circulating beam (blue) and injected beam (green). The
black rectangle represents the hard edges of the injection dipole magnet given by the
effective lengths in x and z. The blue field region at the top represents the return
field inside the iron. Both trajectories go from right to the left.

eCOSYf
− einjectedf

= 0.189◦ = 3.2 mrad.

Furthermore the nominal horizontal distance between the injected beam and the
COSY beam at the stripping foil is 50 mm as it is mentioned in Sec. 2.3.1. The
calculation using the field map shows that at the location of the stripping foil:

∆d = 54.5 mm.

So, assuming ideal conditions at the entrance of the dipole field, the bending angle
of the COSY beam is close to the nominal value but the bending of the injected
beam is not enough to place both beams in parallel directions. In addition, the
distance between two beams is bigger than expected.

4.1.1 Steerer Calibration in the IBL

The horizontal distance between the edge of the stripping foil and the COSY nominal
orbit can be manually changed (see Fig. 2.12). Thus, having a injected beam at a
different distance from the orbit does not avoid injection but it affects the beam
properties: the further the beam is injected from the orbit the bigger the betatron
oscillations the particles experience, as it can be derived from Eq. 2.13. As the
beam envelope is given by the amplitude of these oscillations (see Eq. 2.27), the
big betatron oscillations cause the beam to be wider in x direction. If the injected
beam phase space surpasses the geometrical acceptance of the ring the particles
lying outside are lost.

In order to control the distance and angle between the ideal COSY orbit and the
injected beam, steerer magnets are placed in the last section of the IBL. These
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magnets are calibrated using the viewer located in the stripping foil and two more
cameras located along section 8 of the IBL. Three magnets are calibrated: S82,
S81A and S84. There is another steerer magnet which was unavailable at the time
of the calibration but is now operational: S83. This last one is not calibrated.
The calibration is carried out by changing the current intensity going through the
magnets and observing how the corresponding kick affects the beam position in the
viewers, located at certain distances from the steerer magnets. The results of the
calibration are given in Table. 4.1 for H− beams. It is straightforward to calculate
the equivalent for D− beams from those values.

Table 4.1: Results of the steerer calibration for H− beams. The sign of the kick uses
the same sign convention as Bmad, a positive kick bends a positive beam to the left
and vice versa.

Steerer name Kick [mrad] / I [%]
S82 (−3.0± 0.2)× 10−2

S81A (15.0± 0.4)× 10−2

S84 (−6.5± 0.5)× 10−2

This gives the possibility to place the beam in the desired horizontal position and
angle with respect to the nominal orbit. It is possible to change the position and
not the angle, or to change the angle without changing the position for example. A
model is used to do the calculations for the required kicks. The behavior of steerers
S82 and S81A is reproducible using the available model for the IBL, but this is not
the case for the steerer 84. Steerer 84 is located inside the field of the injection
dipole magnet and this interaction is not included in the current model.

4.2 Stripping Foil

The stripping foil has a stripping efficiency of more than 90% for 45 MeV H− and
D− beams [44]. However, if once the beam is injected it hits the stripping foil
repetitively the emitance in x and y grows according to Eq. 2.48. To get the rms
scattering angle and energy loss per passage of the particles through the foil the
GEANT4 software is used (see Sec. 1.5).

For the simulations 104 particles are shot against the 20µg cm−2 C12 foil. The
resulting histograms for the scattering angle in the x plane and the energy loss for
an incident beam of 45 MeV protons are shown in Fig. 4.3. The scattering angle
is the same for x and y planes, as there is no asymmetry in the scattering (no
incident angle is considered). A normal distribution is obtained. For the energy
loss a Landau type distribution is observed [43]. The rms scattering angle (θrms) in
plane and the most probable energy loss caused by a passage through the foil (∆E)
for 45 MeV protons and 76 MeV deuterons are given in Table 4.2.
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Figure 4.3: GEANT4 simulation results for 45 MeV protons.

Table 4.2: Results of GEANT4 simulations for the stripping foil.

θrms [mrad] ∆E [keV]
p (2.40± 0.02)× 10−2 0.348± 0.002
d (1.45± 0.01)× 10−2 0.408± 0.002

δrms is then calculated using Eq. 2.47. These results are used in Eq. 2.48 for the
emittance growth calculation. However, the β functions and the dispersion at the
stripping foil are still unknown. For that, a COSY model is presented in Sec. 4.3.
The results obtained in the simulations are of the same order of magnitude than the
ones obtained using the analytical approximations in Eq. 2.45 and 2.46, with the
differences always being smaller than a factor 2. For the following calculations the
simulation results are used.

4.3 COSY Orbit and Local Bump

The COSY ring is represented in a model in Bmad. The magnet misalignments have
been measured this year in COSY and those have been included in the model. The
resulting β functions, dispersion and orbit for the injection settings are plotted in
Fig. 4.4.

The result shows that at the stripping foil (initial point of x axis in Fig. 4.4) βx =
14.148 m and βy = 7.043 m. Dispersion vectors are (Dx, D

′
x) = (6.383 m, 0.136) and

(Dy, D
′
y) = (−0.018 m,−0.003). Using these values and the results in Table 4.2 the

emittance growth per passage through the foil is given by

dε

dn
=

1

2

(
βθ2

rms +
D2

β
δ2
rms + βD′2δ2

rms

)
≈

{
4× 10−3 mm mrad in x− x′ phase space,

2× 10−3 mm mrad in y − y′ phase space

(4.3)
for protons, and
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Figure 4.4: β functions (top), dispersion (center) and orbit respect to the ideal
lattice orbit (the ideal lattice orbit does not include the magnet misalignments).
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dε

dn
≈

{
1× 10−3 mm mrad in x− x′ phase space,

1× 10−3 mm mrad in y − y′ phase space
(4.4)

for deuterons. Furthermore, now that the β values in the stripping foil are known,
the optimization for the last section of the IBL is performed to match (as good as
possible) those values at injection. The results are given in Table 4.3.

Table 4.3: Results for optimization of the last section in the IBL.

Section # Variable name Optics 1 [ 1
m2 ]

8 k81 0.42
8 k82 1.33
8 k83 3.26
8 k84 -3.24

4.3.1 Injection Orbit Bump

Shifting the COSY orbit horizontally to match the injected beam position is done
using three bumper magnets as it is explained in Sec. 2.3.1. The kick required in
those bumper magnets depends only on the COSY lattice and is calculated using
Eq. 2.42 and 2.43. In the last two equations the matrix elements represent the
transfer of the beam from the position of the first bumper to the position of the
last one. To create the bump at the injection section of COSY the bumper magnets
MBU1, MBU2 and MBU3 are used. The respective kicks are called κMBU1, κMBU2

and κMBU3. In COSY the magnet numbering begins at the stripping foil, so the
orbit bump is not created by the magnet MBU1 but by MBU2 (see Fig. 2.7). This
happens because the orbit needs to be already shifted at the stripping foil and, thus,
it is created by MBU2, then corrected by MBU3 before going through the injection
point and is finally closed by MBU1 (see Fig. 4.5) after the stripping foil position.
Therefore, to compare with the kicks in Eq. 2.42 and 2.43:

κMBU2 = κ1, κMBU3 = κ2, κMBU1 = κ3.

In order to have a closed orbit bump in COSY the required relations between the
kick strengths are:

κMBU3

κMBU2

= −a12

b12

= −0.428, (4.5)

κMBU1

κMBU2

= −(a22 −
a12

b12

b22) = 0.531. (4.6)

Then, the value κ3 = κMBU3 determines the amplitude of the orbit bump. In this
case, the orbit bump needs to be big enough to reach the stripping foil edge, where
the injected beam is located. The position of the injected beam can be changed
using the steering magnets S82, S81A and S84 and, in addition, the stripping foil
can be manually displaced to different distances from the nominal orbit. The result
for a 50 mm shift in the positive x direction is shown in Eq. 4.7:
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Figure 4.5: Orbit bump at injection section in COSY. z = 0 m is the stripping foil
position. MBU2 is located at z ≈ 172.1 m and it kicks the orbit horizontally. MBU3
is located at z ≈ 179.6 m and corrects the bump in order to have a 50 mm offset in
the stripping foil. Finally, MBU1, which is located at z ≈ 13.1 m, closes the bump
and returns the orbit to its original position.

κMBU3 = 8.139 mrad. (4.7)

The orbit bump is then shown in Fig. 4.5. However, even if the amplitude of the
bump can be controlled, it is not possible to do so with the angle, because only
three bumper magnets are available. The linear relation between the orbit bump
amplitude in the stripping foil and the angle respect to the ideal orbit is shown in
Fig. 4.6.

The amplitude chosen for the bump is given by the distance from the stripping
foil edge to the COSY beam orbit. At the beginning the orbit is shifted inside
the stripping foil. After the injection begins the bump is reduced linearly from the
original shift value to zero, as explained in 2.3.1. Then, the time the beam in COSY
hits the stripping foil is given by how far its edge is placed from the orbit and how
deep does the orbit go inside the stripping foil. Hence, the time the beam center
spends inside the stripping foil is given by

tin = ∆lin
tmac

∆ltot

= (∆ltot −∆lout)
tmac

∆ltot

, (4.8)

where ∆ltot is the bump amplitude, ∆lout is the distance between the nominal orbit
and the foil edge and tmac is the injection macro-pulse duration (as long as it is kept
at the same value as the ramping down of the bumper magnets). A sketch of the
horizontal orbit bump can be seen in Fig. 4.7.

Thus, the number of revolutions the beam hits the stripping foil is given by n =
tinfrev. The emittance growth because of the beam-foil interaction is given by the
product of n with Eq. 4.3 or Eq. 4.4, depending on the beam composition. As the
intention is to fill the acceptance phase space of COSY with the injected beam the
emittance growth because of beam-foil interaction is not a desirable effect. Thus,
the orbit bump has to be calculated to hit the foil on the edge so that it minimizes
∆lin and consequently also tin. In addition, the further the stripping foil edge is
located from the nominal orbit the smaller is tin, but then the betatron oscillations
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of the injected particles become bigger as it is mentioned in Sec. 2.3.1. This also
causes emittance dilution effects to be bigger (see Fig. 2.11).

4.4 COSY Acceptance

In Sec. 2.2.2 the geometrical acceptance of an accelerator is defined. However, this
is not the only definition of the acceptance. Due to different effects which are not
considered in the simple definition given by Eq. 2.34, the initial phase space area
given by the particles which survive over a certain amount of time in an accelerator
is also known as acceptance or admittance. The time the particles need to survive
in the accelerator in order to be considered inside the admittance definition is given
by the process of interest. For example, for injection it is enough to consider the
short term admittance, which is given by the initial phase space of the particles
surviving for a few thousand revolutions in the ring. For processes in which long
beam lifetime is essential, long term admittance is considered. From now on, the
term acceptance denotes the short term admittance of the ring.

For the acceptance calculation 104 particles are initialized in random phase space
locations, at ±100 mm and ±10 mrad horizontally and vertically from the ideal close
orbit at the stripping foil. The x and y phase spaces are considered to be decoupled.
This is a good approximation for COSY at injection, since there are no longitudinal
field components that would couple both phase spaces. The particles are first tracked
during 104 revolutions around the ring using Bmad. It is observed that most of the
particles are lost within the first 10 revolutions. Then, the number of particles
is increased to 40× 103 but the number of revolutions in the ring is reduced to
50, because it consumes a lot of computational time. The resulting short term
admittance for the lattice including the magnet misalignment is shown in Fig. 4.8.

The area of the phase space ellipses from Fig. 4.8 is

A ≈

{
261 · πmm mrad in x− x′ phase space,

42 · πmm mrad in y − y′ phase space.
(4.9)

However, when the orbit is horizontally bumped to the position of the injected
beam the acceptance also changes with the bump. The evolution of the horizontal
acceptance for different orbit bump sizes is shown in Fig. 4.9.
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Results

5.1 Phase Space Filling

On the one hand, the settings of the IBL are fixed by the optimization and the beam
initial conditions are calculated by the emittance measurements (Chapter 3). On
the other hand, the COSY acceptance is calculated for different horizontal bumps
(Chapter 4). Then, it is finally time to inject the beam in COSY. The filling of the
horizontal acceptance of COSY is done by phase space painting, as it is mentioned
in Sec.2.3.1. The orbit bump horizontally shifts the center of the acceptance ellipse
as seen in Fig. 4.9. When the bump is maximum and the injected beam and the
orbit are in the same position, the injected beam phase space center matches the
center of the COSY acceptance ellipse. This matching of the centers is not perfect,
because the angle of the bump can not be controlled with three bumper magnets
(see Fig. 4.6) and this shifts the phase space ellipse also in x′ direction. This problem
can be corrected with the steerers in section 8 of the IBL (explained in Sec. 4.1.1)
and both beams can be matched in position and angle. As the bump decreases,
the center of the COSY acceptance ellipse shifts. However, the injected beam phase
space center stays in the same position as the injected beam does not move. Then,
the particles are continuously injected in different acceptance areas. The sketch of
the process can be seen in Fig. 2.10.

In respect to the vertical direction, the position of the phase space of the injected
beam and the acceptance do not move from each other, because the orbit is not
bumped vertically. Thus, the injection in the vertical plane is simpler as long as
both beam positions are matched together in the stripping foil. The superposition
at the stripping foil of the injected beam phase space ellipse under the optimized
settings of the IBL (Optics 1 in Table 3.4 and 4.3) and the short term admittance
of COSY is shown in Fig. 5.1 for both x and y axis. It can be seen that part of
the beam falls inside the acceptance, but a non-neglectable amount of particles are
injected out of it, being lost.

5.1.1 Matching of the Twiss Parameters

There is, however, a problem in the matching. Together with matching the values of
β at injection, α and the dispersion vectors (D,D′) are also needed to be matched.
How the mismatch of any of these parameters affects the emittance of the injected
beam is given by M. Syphers in [33]. The problem in this case is that it is not
possible to optimize each section individually and at the same time match all the
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Figure 5.1: Simulated phase space matching of the injected beam with COSY
acceptance. The optimized IBL settings and the calculated beam properties are
used. The injected beam shown here is the evolution of the one shown in Fig. 3.12
after the transfer along the IBL.

parameters for both phase spaces. For the results in Table 4.3, only β functions
are matched using section 8 of the IBL, while the mismatch in α is also minimized.
The dispersion vector is not considered. If all the quadrupoles in the IBL are varied
with the goal of matching the twiss parameters and dispersion vector, but not to
optimize the sections, it is possible to achieve a full matching of the IBL to the ring.
The resulting quadrupole strengths are given in Table 5.1. The superposition of the
emittance of the injected beam for such optimization with the acceptance of COSY
in x and y is shown in Fig. 5.2. These calculations are done using Eq. 3.41 as a
model of the injection dipole in the simulations. This model may have to be further
studied in the future.

Table 5.1: IBL quadrupole strengths for β, α, D and D′ matching in the stripping
foil.

Section # Variable name Matched optics [ 1
m2 ]

1 k11−17 0.62
1 k12−16 -0.91
1 k13−15 1.63
1 k14 -4.61
2 k2x -1.11
4 k4x 2.11

3&5 k3x−5x 1.62
6 k6x 0.89
7 k7x 0.51
8 k81 1.29
8 k82 -0.85
8 k83 1.79
8 k84 -2.13
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Figure 5.2: Simulated phase space matching of the injected beam with COSY
acceptance. The IBL settings from Table 5.1 are used in this case.

5.2 Model Testing

In order to test the models of the IBL and COSY and apply the results of the
studies in Chapters 3 and 4, different experiments were performed during several
beam times in May and June.

Starting from the beginning of the trajectory of the particles from the cyclotron to
the ring, the first thing is to analyze the emittance measurements carried out at
the beginning of the IBL. Both measurement methods, the quadrupole scan method
(3.1.1) and the slit method (3.1.2), are independent. The results in x are compatible
within the uncertainties for both methods, while the results in y are withing 4σ from
each other. However, the previously expected values for the emittances of the beam
at the exit of the cyclotron lay around εx = 3.3 mm mrad and εy = 6.6 mm mrad.
Thus, the measured values are larger than the expected ones. Those expected values
are for H+ beams and the measurements are carried out using H− beams, hence the
origin of the difference could come from the ion sources or the cyclotron. The H+ ion
source is not longer operational. Therefore, it is not possible to test the emittance
measurement methods.

The IBL is optimized using the initial conditions of the beam calculated with the
results of the emittance measurements. Then, the optimization of the IBL is tested.
First of all, the optimization results are applied to the FODO sections 2,4 and 6. It
is confirmed that sections 2,4 and 6 produce an imaging of the beam with π or 2π
phase advances under the optimized conditions. When applying the optimization
results to the rest of the sections in Table 3.4, however, the beam does not reach
the stripping foil. The reason behind this may be that the quadrupoles in the
IBL are not only used to focus or defocus the beam, but also to steerer it. This
happens when the beam is not traveling through the center axis of the quadrupole.
Therefore, when the quadrupole settings are changed the kick received by the beam
is also different. This may cause the beam to hit the vacuum pipe walls. In order
to test the full optimized IBL settings the beam coming from the cyclotron needs to
be aligned with the quadrupole center axis. There is another observed issue related
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to the maximum current provided by the power supply for QI83 and QI85. Even if
theoretically the value of k13−15 in Table 3.4 is within the limits of the power supply,
an error pops up when trying to set this value.

Many calculations in Chapter 4 are dependent on the COSY model. This model
exists for many years, but some changes have been made during this work. The
main change is to include the misalignment of all the magnets in the ring. The ring
settings for injection are extracted from the COSY control room and then simulated.
In order to check the validity of the model, the tune (see Sec. 2.2.3) and momentum
compaction factor (see Eq. 2.23) are calculated and also measured in COSY. The
results of the tunes and the momentum compaction factor for the simulated machine
are:

Qx = 0.536, Qy = 0.709, α = 0.270, (5.1)

where Qx and Qy represent the fractional tune (only the decimal part of the tune is
used, because the integer part is not needed to calculate the working point shown in
Fig. 2.4). The momentum compaction factor, α, is approximated by calculating the
sum of the product between the dispersion function value in each dipole magnet and
the bending angle of the same dipole magnet. The result of the sum is finally divided
by the total length of COSY. On the other hand, the fractional tune measurement
is automatized in COSY and yields a result of

Qx = 0.566± 0.007, Qy = 0.637± 0.002. (5.2)

At the same time the momentum compaction factor is measured by changing the
intensity through the magnetic dipoles after injection and then measuring the change
in the revolution frequency of the particles. According to [45] the change in frequency
is given by

∆frev
frev

=
1

γ2

∆p

p
− 1

γ2
tr

(
∆p

p
− ∆B

B

)
− ∆R0

R0

, (5.3)

where γ is the relativistic Lorentz factor and γtr is the transition γ, an important
parameter of the ring when accelerating particles. As the only variable changed for
the measurement is the magnetic field, the rest of terms vanish and the final relation
reads ∆f

f
= 1

γ2tr

∆B
B

. The measured curve can be seen in Fig. 5.3. The slope of the

curve directly gives the value for α, as α = 1/γ2
tr. The fit in Fig. 5.3 gives a result

of

α = 0.292± 0.006. (5.4)

Hence, the measured values of Qx, Qy and α at injection do not match the values
calculated using the model and the discrepancies are of

∆Qx

Qx−measured

= 0.05,
∆Qy

Qy−measured

= −0.11,
∆α

αmeasured

= 0.07. (5.5)

Thus, the model is not a completely faithful description of the machine and improve-
ments are needed. It could be that the quadrupole strengths used for the simulation
do not match the real ones because of some discrepancies in the calibration factors.
Another possibility is that the effective lengths of the magnets are affected by the
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Figure 5.3: Relation between the change of magnetic field in the dipoles with the
measured change in revolution frequency.

cross talking of the magnetic fields with neighboring magnets. This is briefly studied
in [46] and a discrepancies of up to 0.26% in the effective length are found for dipoles
with a steering magnet placed very close to them. This would affect the bending
angle of those dipoles in around 1 mrad. There are dipoles in the ring sandwiched
between two steering magnets, so the effect would be doubled. In order to check
this the orbit in COSY is measured at injection and is shown in Fig. 5.4.

This orbit is compared with the orbit calculated with the model including the
misalignment of the magnets (see Fig. 4.4) and big discrepancies of up to 25 mm are
found in the horizontal orbit. The measured orbit has a displacement towards the
outside of the ring in the arcs and it is more balanced in the straight sections. The
steerer magnets in the ring are off when the orbit is measured, so they can not be
blamed for the discrepancies. Thus, the hypothesis that the dipoles bend the beam
less than required could be accurate, but more measurements are needed to reach
any definitive conclusion.

Fig. 5.4 also shows that for z = 0 m the orbit is already out of the ideal axis for
a bit less than 7 mm in the vertical direction and for around 20 mm in horizontal
one, without any bump. When trying to replicate this orbit in the injection section
(in the region of the last 4 dipoles of the arc section in which injection happens,
from z ∼171 m to z ∼10 m) with the model, different strength horizontal kicks are
introduced in the dipole center positions (only in the ones with steering magnets
close to them). The results show that in order to get the same orbit in the simulation
as the measured one, those kicks would need to be

κBE21 = 0.12 mrad, κBE22 = 1.16 mrad, κBE24 = 1.51 mrad, (5.6)

where BExx is the designation for the dipole number xx. These numbers are
compatible with the hypothesis of the effective length shortening.
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Figure 5.4: Measured horizontal (blue) and vertical (red) orbits at injection in
COSY. The horizontal axis of the plot shows the position in the ring, being the
left corner z = 0 m the stripping foil position and the right corner z ≈ 184 m the
end of the ring.

5.2.1 Injection Optimization

During these beam times the optimization of the injection process is also tested.
Proton beams were available for this beam time. COSY is set at the same conditions
as in the acceptance simulations of Fig. 4.9 because those are the usual injection
parameters and the calculated acceptance is optimum in those injection conditions
(see Fig. 5.2). On the other hand, the optimized conditions of the IBL cannot be
applied because the beam is lost in the transfer line as explained in the previous
section. Thus, it is decided to keep the quadrupole strengths as in the previous
beam times. Then, as the orbit bump builds upon the already existing base orbit,
taking into account that the non-bumped orbit is shifted as seen in Fig. 5.4 the
bump amplitude to reach the same position has to be smaller than for the case of
an ideal orbit.

The injected beam position can be observed with a viewer placed in the stripping
foil. For the circulating beam, however, the current induced in the stripping foil has
to be used as an indirect measurement. When the circulating beam is bumped for
injection it hits the stripping foil and current is induced in it. The measured current
tells if the bump is hitting the foil, but no the certain position of the bumped orbit.
Thus, relying on the model calculations from Sec. 4.3.1, the orbit is bumped by
35 mm, which added to the already existing 20 mm horizontal offset give a total of
55 mm offset in the stripping foil. The edge of the foil is then placed at 52.5 mm
horizontally from the nominal orbit position. Then, looking at the injected beam in
the viewer, the steerers in the end of section 8 of the IBL are tuned to match the
position of the injected beam horizontally with the calculated bumped orbit position.
The measured current in the foil is shown in Fig. 5.5. The vertical position matching
with the orbit of Fig. 5.4 is also taken into account using the vertical steerers located
along the IBL.

Fig. 5.5 shows that the beam hits the stripping foil for a long time during the
injection macro-pulse. This leads to emittance increases given by the product of the
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Figure 5.5: Screenshot of the foil current (blue line) together with the injection
macro-pulse (red line) and the current measured in COSY (brown line). The sharp
foil current peak in the left coincides in time with the ramping up of the bumper
magnets. Thus, it means that the beam stored in the ring from a previous injection
cycle hits the foil and it is lost, that is why the current in COSY decreases at the
same time. When the injection starts (macro-pulse is set to the binary value 1)
the particles start to be injected, so the current in COSY starts increasing together
with the current in the foil, because the orbit is bumped so the cycling beam is
hitting the foil. As the bump goes down with time the intensity of the foil current
decreases because the orbit is shifting away from it. However, this decrease is slow
because even if the beam center is no longer in the foil position, the outer regions of
the beam can still be hitting it. When the injection macro-pulse is finished there is
no orbit bump already and the foil current vanishes. From that point the intensity
measured in COSY does not increase anymore.

revolution number and the values calculated in 4.3. As an approximation, for 5× 103

revolutions hitting the foil (half of the injection macro-pulse) an emittance increase
of 20 mm mrad and 10 mm mrad is expected in x and y phase spaces respectively.
Comparing to the acceptance values in 4.9 the emittance growth is significant but
not too large. However, it has to be taken into account that the direction of the
emittance growth is not determined by the acceptance, so particles are lost even
if the magnitude of the emittance growth does not surpass the magnitude of the
acceptance area.

The spread on the measured revolution frequency shows a value of (∆p/p)rms =
0.3% for a injection dipole current of 312.2 A, as expected for a longitudinally filled
acceptance of ∆p/p ∼ 0.6% (calculated by dividing the vacuum pipe radius with
the maximum dispersion in the ring). The filling of the longitudinal acceptance is
performed by the energy losses when hitting the stripping foil. If a particle losses
too much energy it is also lost. Finally, under these settings the intensity shown in
Fig. 5.6 is obtained in COSY. At the end of the 2 s cycles, the maximum measured
intensity is of 4.04 mA. This corresponds to around 5.41× 1010 particles in the ring.
The maximun values at injection peaks are of 5.0 mA, which corresponds to around
6.25× 1010 particles injected. These measurements are carried out for an intensity
of 1.8 µA in BC81 (the last Faraday cup in the IBL before the stripping foil) which
corresponds to 22.4× 1010 particles reaching the end of the IBL. Using the letter f
to denote efficiency, defined as the ratio between the maximum number of particles
in the ring and the particles reaching the end of the IBL:
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Figure 5.6: Screenshot of the measured intensity in COSY for 2 s cycles. The y axis
shows the current in mA.

Routine operation Achieved maximum Simulated maximum

~ 15% 28% ~ 60%

Spatial matching Full phase space matching
Partial phase space matching

Injection Efficiency

Figure 5.7: Injection efficiencies for different cases.

fInjection =
6.25 · 1010

22.4 · 1010
= 27.9%. (5.7)

This result shows a very similar injection efficiency than the maximum value of
fInjection = 28% achieved in 28/05/2003. As it can be seen in Fig. 5.7, this is
superior to the average injection efficiency by a factor ∼2, but looking at Fig. 5.1
and 5.2 it can be seen that an efficiency of around 60% (before taking into account
the losses in the stripping foil) can be achieved if the position of the beams and the
twiss parameters at injection are matched properly. This value is calculated using
the simulation results and approximating the number of particles from the emittance
of the injected beam that fall inside the acceptance for different orbit bumps during
the process. The reason behind the achievement of a lower injection efficiency than
the calculated maximum injection efficiency (roughly by a factor 2) is believed to be
the impossibility to set the optimized quadrupole strengths in the IBL (Table 3.4)
without losing the beam.
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5.3 Outlook

It is clear that injection studies have to continue in order to increase injection and
capture efficiency in the ring. Injection is a complex process and its optimization
involves many knots that have to be all optimized together. The further development
of the project could include the following aspects:

• As a first step, the calculated injection dipole transfer matrix could be re-
viewed. Using the current model for the injection dipole, when the sections
in the IBL are optimized according to the design specifications, the twiss
parameters and dispersion cannot be matched to the COSY values by using
section 8 of the IBL. Furthermore, varying also the first section in order to
match the twiss parameters is an interesting idea, but then the achromaticity
and the unitarity of the transfer matrix for this section would be lost.

• The optimization of the IBL could be properly applied. This requires a
dedicated beam time of several days, in which the beam coming from the
cyclotron is aligned with the axis of the IBL, thus the quadrupole strengths
can be freely varied without steering the beam. The effect of this optimization
in the injection efficiency is believed to be positive.

• Then, the COSY model could be further improved. This could include but
not be limited to analyze the effect of neighboring magnets in the effective
lengths. The more accurate the model is the better the simulated acceptances
and orbit bumps will match the reality.

• Having a flat horizontal and vertical orbit at injection would be very helpful
to match the position of the injected beam with the bumped orbit in COSY.
This requires to use the COSY steerers at injection to correct the orbit. The
beam based alignment research being currently carried out is also essential to
measure the real orbit of COSY and then be able to calculate the necessary
orbit bump accordingly.

• Finally, the injection process itself can be slightly changed. Instead of injecting
50−55 mm away from the nominal orbit, smaller distances can be considered.
This would require a smaller orbit bump in order to match the injected beam
and the orbit spatially. Therefore, the acceptance of the ring would not shrink
as much as seen in Fig.4.9 and this could lead to a better injection efficiency.
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