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Introduction

One of the main problems of contemporary fundamental physics research
is the baryon asymmetry of the universe, i.e. the prevalence of matter
over antimatter in the observed universe. At the present moment there’s
no evidence of the existence of primordial antimatter in our galaxy; the
amount of observed antimatter is consistent with its production in sec-
ondary processes. There’s also no detectable background gamma radiation
that would be expected from nucleon-antinucleon annihilations, if matter
and antimatter galaxies were to coexist in clusters of galaxies. [1]

In his 1967 paper, Andrei D. Sakharov formulated three necessary con-
ditions that the primordial universe must have satisfied for baryogenesis.
The discovery of cosmic background radiation and CP-symmetry violation
in kaon systems [2] motivated the formulation of the conditions. The three
Sakharov conditions are:

• violation of the baryon number symmetry;

• violation of the discrete C- and CP-symmetries;

• a departure from thermal equilibrium.

Permanent electric dipole moments (EDMs), if they exist, violate both
the P- and T-symmerties, and hence, via the CPT-theorem, can be linked
to CP-symmetry violation.

The Standard Model (SM) of elementary particles allows formalization
of CP-invariance viloation via the Cabibbo-Kobayashi-Masakawa matrix,
however the EDM values it predicts for, say, the neuteron, lie in the range
10−33 to 10−30 e·cm. [3] This implies that particle EDMs can serve as a
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powerful tool for discovering physics beyond the SM. For example, CP-
violations that are endemic in supersymmetric teories (SUSY) are such as
to span dn values in the range of 10−29 to 10−24 e·cm. [4]

The EDM search project started more than 50 years ago. The first
neuteron EDM experiment was conducted by dr. N.F. Ramsey at the
end of the 1950s. As a result of that experiment, the upper neuteron
EDM bound was set at 5 ·10−20 e·cm. [5] Since then, multiple experiments
of increasingly high precision were carried out, and at present the upper
bound on the neuteron EDM is at 2.9 · 10−26 e·cm. [6, 7]

Up until now, all EDM-searching experiments were performed on electrically-
neutral particles, such as atoms or the neuteron. The idea of searching of a
charged particle’s EDM in a storage ring environment appeared during the
development of the g-2 experiment [8] in Brookhaven National Laboratory.

As a result of the BNL experiments, the upper bound on the muon
EDM was set at 10−19 e·cm. [9] In the 1990s, discussion centered mostly on
the muon EDM experiment [10], however the deuteron was also considered,
in view of its having a similar magnetic anomaly-to-mass ratio.

In 2004, the Storage Ring EDM Collaboration (srEDM) [11] in BNL
proposed experiment 970 for detecting the deuteron EDM on the level
10−27 e·cmin a storage ring. Since 2005, a number of feasibility experiments
were run at the KVI cyclotron facility in Groningen to measure broad range
spin sensitivities for deuteron scattering on carbon near 100 MeV.

Experiments at the Cooler Synchrotron COSY (Forschungszentrum
Jülich, Germany) began in 2008. Later these experiments developed into
a polarized program at COSY with a view of delveloping technologies
required for a storage ring EDM search experiment. In the same year
another deuteron EDM experiment was proposed [12], this time with a
sensitivity level 10−29 e·cmin one year of measurement time.

At the same time it was decided that the proton EDM experiment has
a number of technical advantages ober the deuteron. Among them is the
ability to store two counter-circulating beams simultaneously, which allows
the cancellation of T-even systematic effects. Nevertheless, work at COSY
continued with the deuteron because of the investment already made in
deuteron operation and the sense that any conclusions would apply to
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either proton or deuteron beams. [13, Historical background]
In 2011 the JEDI (Jülich Elecric Dipoe moment Investigations) collab-

oration was formed. [4] The purpose of the collaboration consists not only
in developing technologies for srEDM, but also in performing a first direct
EDM measurement for deuterons.

In 2018, the JEDI collaboration made a first-ever deuteron EDM mea-
surement at COSY. Since in a non-Frozen Spin ring and EDM generates
small-amplitude oscillations of the vertical beam polarization component
(at the deuteron momentum 970 MeV/c used in COSY, the oscillation
amplitude is on the level 3 · 10−10 assuming an EDM d = 10−24 e·cm), a
resonance-type methodology was used [14, 15], which uses a custom-design
RF Wien filter [16, 17] made specially for COSY.

The goal of the present work is to numerically model the 2D Frozen
Spin (FS) method for searching for the deuteron EDM in a storage ring.

In order to reach this goal, the following objectives were formulated:

(1) Study spin decoherence in the neigborhood of spin resonance (frozen
spin regime) and the sextupole method of its suppression.

(2) Study the effect of betatron oscillations on the validity of the EDM
statstic.

(3) Study the effects of lattice optical element misalignments on the
systematic error of the EDM statistic.

(4) Model the spin tune calibration procedure used at flipping the polar-
ity of the storage ring guide field when counter-injecting the beam.

This research deals with the following problems not analyzed by pre-
vious researchers:

(1) Simulation of the spin tune calibration procedure under change of
the beam circulation direction.

(2) Analysis of the effect of betatron oscillations on the EDM statistic.
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(3) Systematization of the universally-encountered EDM measurement
problems.

(4) Classification of FS-type methods of searching for the EDM of a
charged particle in a storage ring.

Defended propositions.

(1) We confirmed the analytical explanation of the mechanism of the
sextupole method for suppressing spin decoherence proposed by Y.V.
Senichev.

(2) We confirmed the proposed equality of spin tunes of particles having
the same value of the effective Lorentz factor, and we found an inter-
pretation fo the effective Lorentz factor as a measure of the particle’s
longitudinal emittance.

(3) We showed that the calibration of the vertical MDM precession an-
gular velocity component by means of observing spin precession in
the horizontal plane is a viable method.

(4) We proved that perturbations to a particle’s spin dynamics due to its
betatron motion introduce a negligibly small (and also controllable,
in the framework of the 2D FS method) systematic error into the
EDM statistic.

(5) We proved that the effective measurement cycle length ranges betwen
2 to 3 polarization lifetimes. 1

(6) We showed the possibility of reaching a mean standard error on the
EDM on the level of 10−29 e·cmin one year of measurement.

(7) We proved that the EDM-faking MDM spin precession angular ve-
locity due to machine imperfections is independent of the actual

1Polarization lifetime here is understood as the period of time during which polarizationi
drops by a factor of e.
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distribution of the imperfections 2, and depends only on the expec-
tation value of the imperfection distribution.

(8) We proved that at the practical level of element alignment precision
non-frequency based EDM measurement methodologies cannot be
used.

Structure of the dissertation. This dissertation consists of an in-
troduction, three chapters, a conclusion, and one appendix.

Chapter one:

(1) Introduces the Frozen Spin concept.

(2) Provides a classification of frozen spin (FS) storage ring (SR) EDM
search methodologies.

(3) Classifies some problems encountered in any FS SR EDM experi-
ment.

(4) Describes the 2D FS method which aims to provide a solution to
those problems.

(5) Describes some lattices that could be used with the proposed method.

In the second chapter we alnalyze the problems outlined in the first
chapter, and their solutions; simuilation results follow.

Considered problems:

(1) perturbations in the particle spin dynamics caused by betatron oscil-
lations, and their effect on the EDM-statistic of the 2D FS method;

(2) spin decoherence in the frozen spin regime;

(3) properties ang magnitude of the EDM-faking spin precession sys-
tematic error induced by machine imperfections;

2In the particular imperfection case considered
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(4) the guide field flipping procedure used for the elimination of the
systematic error within the 2D FS methodology.

A section is dedicated to the investigation of the question of interpre-
tation of the notion of the effective Lorentz factor (γeff) introduced in the
first chapter.

This notion is the foundation of a great deal of the 2D FS methodology.
It can be defined as follows: if two particles’ γeff are equal, then their
spin dynamics are equivalent (specifically, their spin precession angular
velocity vectors have equal orientations and magnitudes), regardless of
the particulars of their orbital motion.

Specifically, what enables us to exclude the EDM-faking MDM preces-
sion from the 2D FS EDM-statistic is the fixing of the γeff characterizing
the beam.

In chapter three we highlighted some of the more important (in the
context of the present research) technologies developed within the EDM
search project carried out at the Cooler Synchrotron (COSY); we also
described the results of the spin coherence time (SCT) optimization studies
done at COSY during the April-May 2019 beamtime.

One phenomenon worth noting is the SCT change observed during
prolonged (destructive) polarimetry measurements, which is (presumably)
caused by the transition from the outer (halo) to the inner (core) beam
layers. The observation of this phenomenon can be explained within the
bounds of the sextupole spin decoherence suppression theory outlined in
this dissertation.

In the conclusion, we summarize some fo the main thesis results:

(1) Effects of spin dynamics that could potentially result in systematic
error were studiedm such as:

• betatron motion-related psrticle spin dynamics pertubrations;

• spin decoherence;

• machine imperfection-related EDM-faking MDM spin preces-
sion.
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(2) For each of the systematic errors, a solution was described, its effec-
tiveness numerically analyzed.

(3) Were formulated:

• the notions of the space and time domains (with respect to the
FS SR EDM measurement methodology);

• the notion of the 2D frozen spin state;

• the necessary conditions of a successful SR EDM measurement;

• the 2D FS (Frequency Domain) method, satisfying all of the
necessary conditions we found.

(4) Frozen and Quasi-Frozen spin lattices were described.

The main body of the dissertation does not include our statistical anal-
ysis of the experiment; it is placed in appendix A. Two aspects of that
analysis worth mentioning are: investigation of the possibility to use a
non-uniform polarization sampling scheme in order to optimize the beam
lifetime; determiation of the maximum effective measurement cycle dura-
tion.

As a result, we came to the conclusion that the non-uniform sampling
scheme is not practical, due to the nature of polarimetry measurement.
Concerning the optimal measurement cycle length, it cannot exceed three
beam polarization life times.



Chapter 1

The Frozen Spin (FS) method

1.1 General introduction

The T-BMT equation

The Thomas-Bargmann-Michel-Telegdi equation describes the dynamics
of a spin vector s in a magnetic field B and electrostatic field E. Its
generalized version, which includes the EDM effect, can be written as (in
the beam rest frame): [18, p. 6]

ds

dt
= s× (ΩMDM + ΩEDM) , (1.1a)

where the MDM and EDM angular velocities ΩMDM and ΩEDM

ΩMDM =
q

m

[
GB −

(
G− 1

γ2 − 1

)
E × β
c

]
, (1.1b)

ΩEDM =
q

m

η

2

[
E

c
+ β ×B

]
. (1.1c)

In the equations above, m, q, G = (g − 2)/2 are respectively the particle
mass, charge, and anomalous magnetic moment; β = v0/c, is its relative
velocity factor; γ its Lorentz factor. The EDM factor η is defined by
d = η q

2mcs, where d is the particle EDM, s its spin.

11
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In the standard formalism it is usual to operate with the (rotational)
one-turn spin transfer matrix: [15, p. 4]

tR = exp (−iπνsσ · n̄) = cos πνs − i(σ · n̄) sinπνs,

where νs = Ωs/Ωcyc, the ratio of the partile’s spin precession frequency to
its cyclotron frequency, is termed spin tune, n̄ defines the spin precession
axis, and is called the invariant spin aixs.

Frozen spin concept

From equation (1.1b) one can see that, in the absence of an EDM, the
direction of a particle’s spin vector can be fixed relative its momentum
vector, i.e. ΩMDM = 0; in other words, one can realize the Frozen Spin
condition.

The advantage of working in the FS-regime: according to equations eqs. (1.1a)
to (1.1c), the MDM and EDM angular velocity vectors are orthogonal,
meaning that htey add in squares in the net frequency, and hence the fre-
quency shift associated with the EDM becomes a second-order effect: [19,
p. 5]

ω ∝
√

Ω2
MDM + Ω2

EDM ≈ ΩMDM +
Ω2
EDM

2ΩMDM
.

This circumstance significantly diminishes the experimental sensitivity.
However, by freezing the particle’s spin in the horizontal plane, the

only remaining MDM angular velocity component is aligned with the EDM
component, and hence adds to it linearly, which greatly improves the sen-
sitivity.

Realization of the FS condition in a storage ring

Storage rings can be classified into three groups:

(1) Purely magnetic (COSY, NICA, etc),

(2) purely electrostatic (Brookhaven AGS Analog Ring),
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(3) combined.

In view of equation (1.1b), the FS condition cannot be realized in a
purely magnetic ring.

For particles like the proton (whose G > 0), a purely electrostatic ring
can be used in the FS methodological framework, if the beam has the
so-called “magic” energy, defined as γmag =

√
(1 +G)/G.

For particles whose G < 0 (deuteron) this is impossible, and one is
required to use a combined ring. To realize the FS condition in a combined
ring, a radial electric field is introduced [12]:

Er =
GBycβγ

2

1−Gβ2γ2
. (1.2)

1.2 FS-based methodologies

In this section we first give two examples of foundational methods for
searching for the EDM in a storage ring, both of which are based on
the FS idea; then we generalize these methods to two mutually-exclusive
categories; we finish with the introduction of the 2D FS method.

We note, too, that apart from the FS method alternative approaches
to the EDM measurement exist, for example [15, 14], in which the beam
polarization freely precesses about the vertical guiding field of the storage
ring.

BNL FS method

The BNL FS method was proposed by the Storage Ring EDM Collabo-
ration of Brookhaven National Laboratory in 2008. [12] It is a combined
ring method. A longitudinally-polarized beam is injected into the ring;
with polarimetry measurements, is spin precession is probed in the hori-
zontal and vertical planes; The EDM signal is the change in the vertical
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polarization component over time, which is expressed by: [12, p. 8]

∆PV = P
ωedm

Ω
sin (Ωt+ Θ0) , (1.3)

where Ω =
√
ω2
edm + ω2

a, ωa, ωedm are the angular velocities generated by,
repsectively, the magnetic and electric dipole moments.

By applyting a radial electric field Er (magnitude defined by equa-
tion (1.2)), it is expected that the ωa component is attenuated by at least
a factor of 109; in view of the smallness of the hypothesized value ωedm,
∆PV ≈ Pωedmt, and hence the maximum amplitude ∆PV is amplified by
109.

The expreriment is expected to reach a sensitivity level of 10−29 e · cm
in 107 seconds (6 months) of total measurement time. At this sensitivity
level cross section asymmetry εLR ≈ 5 · 10−6 for the smallest practical
calues of ωa. [12, p. 18] The latter circumstance creates a serious problem
for polarimetry. [19] One way to solve it lies in applying a radial magnetic
field and measuring the net MDM+EDM spin precession frequency. This
is the basic idea of the so-called Spin Wheel method (also called Koop
Wheel), which is considered in the next section.

The only presently known first-order systematic effect of spin dynamics
is the presence of a non-zero average vertical electric field component 〈EV 〉.
In this case, spin precesses about the radial axis at a rate [12, p. 11]

ωsyst ≈
µ〈EV 〉
βcγ2

.

Two circumstances are important here:

• the presence of 〈EV 〉 6= 0 is due to lattice element alignment error;

• This systematic effect changes sign when the beam is injected in the
opposite direction.

The latter is why the clockwise/anti-clockwise beam injection pattern is
used in the 2D FS method. Even though ωsyst changes sign when the beam
circuation direction is reversed (and hence is susceptible to control), this
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methodology does not account for its magnitude. In section 2.3 (numer-
ically, in 2.3), show that at a realistic element element alignment error
standard deviation of 100 µm, the rate at which spin precesses about the
radial axis due to hte MDM is on the level of 50–100 rad/sec. [20] Because
of that, it is impossible to use this methodology in its original form.

We should also mention that attempts at reducing ωsyst only increase
the influence of the so-called geometric phase error. [21, p. 6]

Spin Wheel method

The problems with polarimetry and high spin precession rate highlighted
above are solved in the Spin Wheel method proposed by I. Koop (Novosi-
birsk State University). [22] The main idea behind the method consists in
the following: first, the FS condition is satisfied; then, a radial magnetic
field Bx is turned on, whose magnitude is sufficient to induce spin preces-
sion at a rate of about 1 Hz. Since the field is radial the MDM precession
it causes is aligned with with the EDM one, and hence they add linearly:
ω ∝ ΩMDM + ΩEDM .

The EDM contribution to the net precession frequency is extracted by
comparing cycles with opposite sign Bx: [22, p. 1963]

ΩEDM =
Ωx(+Bx) + Ωx(−Bx)

2
.

The external magnetic field also causes a vertical orbit shift. [22, p. 1963]
This shift can be detected at the pico-meter level by SQUID magnetome-
ters; it is proposed to be used for the calibration of the applied field.

Since, due to the external field, the precession about the radial axis
is 10 times faster than in the original proposal,the task for polarimetry
is greatly simplified. However, there have been voiced doubts regarding
the possibility of measuring the field-induced orbit shift even by means of
SQUIDs.

Also, the problem of machine imperfection-indeuced vertical plane pre-
cession is not solved.
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General classification of FS-type methods

Storage ring-based methods of searching for the EDMs of elementary parti-
cles can be classified into two major categories, which we will call (1) space
domain, and (2) frequency domain methods.

In the space domain frmework, one measures a change in the spatial
orientation of the beam polarization vector caused by the EDM.

The original storage ring, frozen spin-type method, proposed in [12],
is a canonical example of a methodology in the space domain: an initially
longitudinally-polarized beam is injected into the storage ring; the vertical
component of its polarization vector is observed. Under ideal conditions,
any tilting of the beam polarization vector from the horizontal plane is
attributed to the action of the EDM.

Two technical difficulties are readily apparent with this approach:

(1) it poses a challenging task for polarimetry [19];

(2) it puts very stringent constraints on the precision of the accelerator
optical element alignment.

The former is due to the requirement of detecting a change of about
5 · 10−6 to the cross section asymmetry εLR in order to get to the EDM
sensitivity level of 10−29 e · cm. [12, p. 18]

The latter is to minimize the magnitude of the vertical plane magnetic
dipole moment (MDM) precession frequency: [12, p. 11]

ωsyst ≈
µ〈Ev〉
βcγ2

, (1.4)

induced by machine imperfection fields. According to estimates done by
Y. Senichev, if it is to be fulfilled, the geodetic installation precision of
accelerator elements must reach 10−14 m. Today’s technology allows only
for about 10−4 m.

At the practical level of element alignment uncertainty, ωsyst � ωedm,
and changes in the orientation of the polarization vector are no longer
EDM-driven.
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Another crucial problem one faces in the space domain is geometric
phase error. [21, p. 6] The problem here lies in the fact that, even if
one can somehow make field imperfections (either due to optical element
misalignment or spurious electromagnetic fields) zero on average, since
spin rotations are non-commutative, the polarization rotation angle due
to them will not be zero.

By contrast, the frequency domain methodology1 is founded on mea-
suring the EDM contribution to the total (MDM and EDM together) spin
precession angular velocity.

The polarization vector is made to roll about a nearly-constant, defi-
nite direction vector n̄, with an angular velocity that is high enough for
its magnitude to be easily measureable at all times. Apart from easier
polarimetry, the definiteness of the angular velocity vector is a safeguard
against geometric phase error.

This “Spin Wheel” may be externally applied [22], or otherwise the
machine imperfection fields may be utilized for the same purpose (wheel
roll rate determined by equation (1.4)). The latter is made possible by
the fact that ωsyst changes sign when the beam revolution direction is
reversed. [12, p. 11]

Universal SR EDM measurement problems

By way of introduction to the 2D FS measurement methodology, let us
briefly summarize some measurement problems encountered by any EDM
experiment performed in a storage ring; they can be grouped into two big
categories:

• Problems solved by a Spin Wheel:

– spurious electro-magnetic fields;

– betatron motion.

• Problems having specific solutions:
1To which the 2D FS method belongs.
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– spin decoherence;

– machine imperfections.

Perturbations to the spin dynamics

Problems from the first category are ones introducing geometric phase
error. Indeed, both the spurious and the focusing fields, when acting on
a betatron-oscillating particle, perturb the direction and magnitude of its
spin precession angular velocity vector. The effect is a spin kick in the
direction defined by the perturbation.

Assume that the EDM provides a spin kick about the radial (x̂-) axis.
The magnitude of the angular velocity vector has a general form

ω =
√
ω2
x + ω2

y + ω2
z ,

where ωy is minimized by fulfilling the frozen spin condition; ωz (the
constant part of which is due to machine imperfections) can be mini-
mized via the installation of a longitudinal solenoid on the optic axis.2

In the space domain, one also tries to minimize the ω〈Ev〉 contribution to
ωx = ωedm +ω〈Ev〉. Consequently, spin kicks must be minimized to (signif-
icantly) less than ωedm, so as to reduce geometric phase to less than the
accumulated EDM phase.

The benefit of having a Spin Wheel aligned with the EDM angular ve-
locity is that orthogonal MDM contributions to the total angular velocity

21 m long, magnetic field approximately 10−6 T.
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vector add up in squares, and hence their effect is greatly diminished:

ω =
√

(ωedm + ωSW )2 + ω2
y + ω2

z

≈ (ωedm + ωSW ) ·

[
1 +

ω2
y + ω2

z

ω2
SW

]1/2

≈ (ωedm + ωSW ) ·

(
1 +

ω2
y + ω2

z

2ω2
SW

)

≈ ωSW + ωedm +
1

2

ω2
y + ω2

z

ωSW︸ ︷︷ ︸
ε

.

Since our goal is to observe the EDM-related value shift in ω, we need
to minimize random variable ε:

1

2

ω2
y + ω2

z

ωSW
< ωedm.

Let’s make some preliminary estimates. Suppose ωSW ≈ 50 rad/sec
(the reason for choosing this value will be explained shortly), ωedm ≈ 10−9

rad/sec (corresponding to the EDM value 10−29 e· cm). Then, ω2
y + ω2

z

must be reduced to less than 10−7 rad/sec, or equivalently, either angular
velocity to less than 3 · 10−4 rad/sec. This is several orders of magni-
tude greater than the expected standard error on the angular velocity
estimate, [23] and hence should not be a problem to achieve.

One case left to be considered is MDM spin kicks about the x̂-axis.
These are not attenuated, and cause the most trouble. They come in
three varieties: (i) permanent, not caused by optical element misalign-
ments; (ii) semi-permanent, caused by element tilts about the optic axis;
(iii) spurious.

Semi-permanent radial spin kicks (be they caused by magnetic or elec-
tric fields) change sign when the beam revolution direction is reversed from
clockwise (CW) to counter-clockwise (CCW). Spurious kicks can be dealt
with by statistical averaging. Permanent, insensitive to either the guide
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field or the beam circulation direction, cannot be controlled. On the bright
side, their sources should not be present under normal circumstances.

We consider the question of the influence perturbations to the spin
dynamics have on the EDM-statistic in the 2D FS method in section 2.1.

Spin decoherence

Spin coherence is a measure or quality of preservation of polarization in
an initially fully-polarized beam. [18] Spin decoherence refers to the depo-
larization caused by the difference in the beam particles’ spin precession
frequencies.

The difference in spin tunes is due to the difference of the particles’
orbit lengths, and hence their equilibrium energy levels, on which spin tune
depends. One way spin decoherence can be suppressed is by utilization of
sextupole fields. We consider how this can be accomplished in section 2.2.

Machine imperfections

As we have seen, the problem with machine imperfections is twofold:
(i) they are practically impossible to remove at the present level of tech-
nology; but what’s even worse, (ii) their removal leaves one in the space
domain, and opens the measurement up to geometric phase error.

Fortunately for us, the imperfection spin kicks they induce change sign
when the beam circulation direction is reversed. Their magnitude is also
sufficient for use as a Koop Wheel. In more detail, the question of the
machine imperfection MDM precession is considered in section 2.3.

The one remaining difficulty is the accuracy of the Koop wheel roll
direction flipping. This question is considered in section 2.4.

2D FS method

Main features

The method we propose is characterized by two main features:
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(1) It is a frequency domain method;

(2) The fields induced by machine imperfections, instead of being sup-
pressed, are used as a Koop Wheel.

• The Koop Wheel roll direction is reversed by flipping the direc-
tion of the guide field;

• its roll rate is controlled through observation of spin precession
in the horizontal plane.

The advantages of the frequency domain, such as (i) ease of polarime-
try, and (ii) immunity to geometric phase error, have been discussed in
prevous sections. Now we will turn to the description of how machine
imperfection fields can be used as a Koop Wheel.

EDM estimator statistic

Since the angular velocity measured in the frequency domain methodology
includes contributions due to both the magnetic and electric dipole mo-
ments, the EDM estimator statistic requires two cycles to compose: one
in which the Koop Wheel rolls forward, the other backward.

The change in the Koop Wheel roll direction is affected by flipping
the direction of the guide field. When this is done: B 7→ −B, the beam
circulation direction changes from clockwise (CW) to counter-clockwise
(CCW): β 7→ −β, while the electrostatic field remains constant: E 7→ E.
According to the T-BMT equation, spin precession frequency components
change like:

ωCWx = ωMDM,CW
x + ωEDMx ,

ωCCWx = ωMDM,CCW
x + ωEDMx ,

ωMDM,CW
x = −ωMDM,CCW

x , (1.5a)
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and the EDM estimator

ω̂EDMx :=
1

2

(
ωCWx + ωCCWx

)
(1.5b)

= ωEDMx +
1

2

(
ωMDM,CW
x + ωMDM,CCW

x

)
︸ ︷︷ ︸

ε→0

. (1.5c)

To keep the systematic error term ε below required precision, i.e. en-
sure that equation (1.5a) holds with sufficient accuracy, Y. Senichev de-
vised [20] a guide field flipping procedure based on observation of the beam
polarization precession frequency in the horizontal plane.

The idea behind the procedure is outlined in section 2.4; in order for
it to make sense, we need to introduce the concept of the effective Lorentz
factor (see section 1.2 for that).

Frequency estimation and major statistical properties of the
polarimetry data

The details of our analysis of the polarization precession frequency esti-
mation problem can be found in appendix A. In this section, we will only
summarize the main conclusions.

Firstly, the frequency estimate is obtained via fitting a constant-parameter
harmonic function to polarimetry data. Since perturbations in the spin
dynamics (e.g., due to betatron oscillations) induce a mismatch between
the constant-parameter model and the actual data-generating function, re-
gression model specification systematic error is of concern. It is analyzed
in section 2.1. According to our results, the 2D FS method is robust to
this systematic error.

Secondly, polarimetry data are heteroskedastic, i.e., polarimetry mea-
surement error grows toward the end of the measurement cycle. [24] The
Ordinary Least Squares estimation method loses efficiency when fitting
such data; the parameter estimate standard errors provided by it become
biased and inconsistent. However, the expectation values of the estimates
remain valid. Therefore, one can still employ OLS, but together with
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White standard error estimates. But use of heteroskedastic models [25, 26]
is still more appropriate.

Thirdly, beam depolarization places stricter constraints on the dura-
tion of the measurement cycle, than beam loss. Assume a beam with an
infinite lifetime. 3 Obviously, when the beam is fully depolarized, it is
impossible to obtain any information about its spin precession rate; i.e.
there’s a principal bound on the amount of information (denoted FItot)
about the spin precession frequency, which can be gathered from one in-
jection. We will call the period of time during which the polarization drops
by a factor of e the polarization lifetime τd. In Table A.1 we summarized
the amount of collected (relative to FItot) spin precession frequency in-
formation as a function of the measurement cycle length, as well as the
corresponding signal-to-noise ratio. 4 Going by data from the table, the
useful measurement cycle length is limited by three polarization lifetimes.

Fourthly, our simuilations indicate that it is possible to reach a sta-
tistical precision of the 8 · 10−7 rad/sec in the frequency estimate in one
measurement cycle, assuming the polarization lifetime 1,000 seconds, po-
larization samling frequency 375 Hz, and initial polarizaton measurement
error 3%. At 70% acclerator duty this is sufficient to reach 5 ·10−9 rad/sec
standard error of the mean frequency estimate. Such precision is suffi-
cient for the attainment of an EDM estimate at an uncertainty level of
10−29 e·cm.

Effective Lorentz factor

Spin dynamics is described by the concepts of spin tune νs and invariant
spin axis n̄. Spin tune depends on the particle’s equilibrium-level energy,

3Apart from anything else, this implies non-destructive polarimetry.
4The ratio is computed accoding to the used polarization signal and measurement error

models.
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Table 1.1: Amount of gather information (in percents of absolute max-
imum), as a function of hte measurement cycle, and the corresponding
signal-to-noise ratio.

Info (%FItot) Cycle length (×τd) SNR
95 3.0 0.4
90 2.3 1.1
70 1.2 5.5
50 0.7 11.7

expressed by the Lorentz factor:
νBs = γG,

νEs = β2γ
(

1
γ2−1 −G

)
= G+1

γ −Gγ.
(1.6)

Unfortunately, not all beam particles share the same Lorentz factor.
A particle involved in betatron motion will have a longer orbit, and as
a direct consequence of the phase stability principle, in an accelerating
structure utilizing an RF cavity, its equilibrium energy level must increase.
Otherwise it cannot remain the bunch. In this section we analyze how the
particle Lorentz factor should be modified when betatron motion, as well
as non-linearities in the momentum compaction factor are accounted for.

The longitudinal dynamics of a particle on the reference orbit of a
storage ring is described by the system of equations:{

d
dt∆ϕ = −ωRFηδ,
d
dtδ = qVRFωRF

2πhβ2E (sinϕ− sinϕ0) .
(1.7)

In the equations above, ∆ϕ = ϕ − ϕ0 and δ = (p− p0) /p0 are the de-
viations of the particle’s phase and normalized momentum from those of
the reference particle; VRF , ωRF are, respectively, the RF voltage and
frequency; η = α0 − γ−2 is the slip-factor, where α0 is the momentum
compaction factor defined by ∆L/L = α0δ, L being the orbit length; h is
the harmonic number; E the total energy of the particle.
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The solutions of this system form a family of ellipses in the (ϕ, δ)-
plane, all centered at the point (ϕ0, δ0). However, if one considers a particle
involved in betatron oscillations, and uses a higher-order Taylor expansion
of the momentum compaction factor α = α0 + α1δ, the first equation of
the system transforms into: [27, p. 2579]

d∆ϕ

dt
= −ωRF

[(
∆L

L

)
β

+
(
α0 + γ−2

)
δ

+
(
α1 − α0γ

−2 + γ−4
)
δ2

]
,

where
(

∆L
L

)
β

= π
2L [εxQx + εyQy], is the betatron motion-related orbit

lengthening; εx and εy are the horizontal and vertical beam emittances,
and Qx, Qy are the horizontal and vertical tunes.

The solutions of the transformed system are no longer centered at the
same single point. Orbit lengthening and momentum deviation cause an
equilibrium-level momentum shift [27, p. 2581]

∆δeq =
γ2

0

γ2
0α0 − 1

[
δ2
m

2

(
α1 − α0γ

−2 + γ−4
0

)
+

(
∆L

L

)
β

]
, (1.8)

where δm is the amplitude of synchrotron oscillations, and(
∆L

L

)
β

=
π

2L
[εxQx + εyQy] , (1.9)

is the betatron motion-related orbit lengthening. εx and εy are, respec-
tively, the horizontal and vertical beam emittances, Qx and Qy are the
horizontal and vertical betatron tunes.

We call the equilibrium energy level associated with the momentum
shift (1.8), the effective Lorentz factor :

γeff = γ0 + β2
0γ0 ·∆δeq, (1.10)

where γ0, β0 are the Lorentz factor and relative velocity factor of the
reference particle.
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Observe, that the effective Lorentz factor enables us to account for
variation in the value of spin tune due to variation in the particle orbit
length. It is crucial in the analysis of spin decoherence (see section 2.2)
and its suppression by means of sextupole fields.

It plays a big role, as well, in the successfull reproduction of the MDM
component to the total spin precession angular velocity.For that reason,
we would like to refer the reader to section 2.5.

1.3 Frozen- and Quasi-frozen spin lattice

There exist two design approaches to the problem of measuring the deuteron
EDM inside a storage ring: (i) the Frozen Spin (FS) lattice, and (ii) the
Quasi-frozen spin (QFS) lattice.

In the following sections we will consider variants of both type lattices.

The Frozen Spin lattice

In an FS-type lattice, the horizontal projection of a beam particle’s spin
vector is continuously aligned with its momentum vector. In order to real-
ize the continuity condition, combined E+B-field cylindrical spin-rotators
are inserted into the accelerator arc sections. An example of a FS-type
lattice [28] is shown in Figure 1.1. This ring is 145.85 m in length and
is designed for the deuteron beam injection energy 270 MeV. An RF cav-
ity is used in order to suppress linear spin decoherence effects by time-
averaging the beam particles’ kinetic energies. The RF voltge used is
V = 100 kV, RF frequency fRF = 5 · frev, where the cyclotron frequency
frev = 1.00 MHz. The remaining non-linear decoherence effects are sup-
pressed by means of three 5 sextupole families.

The main purpose of the FS lattice design is to maximize the EDM
signature signal. However, it is important to note that, strictly speaking,
the FS condition is fulfilled only for the reference particle. This is because,
as follows from equation (1.1b), for any given E- and B-fields there exists

5Some authors use two families [18] in this lattice.
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Figure 1.1: A FS lattice variant. Cylindrical E+B spin-rotators are used
in the arc sections to fulfill the continuous FS condition. (Image is taken
from [28].)

a unique value of the Lorentz factor γ at which ΩMDM
y = 0. Hence, even

in a FS lattice, most particles’ spin vectors are frozen only approximately.

Quasi-Frozen Spin lattice

In the QFS design concept, one gives up the continuity property of the
FS state, requiring only that the spin phase advance (in the rest frame)
in the electrostatic (ΦE

s ) and magnetic (ΦB
s ) elements was zero on average
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(at each turn): [28] ∑
i

ΦE
s,i = −

∑
j

ΦB
s,j.

Following the definition of spin tune (see section 1.1), a particle’s spin
vector placed into an electromagnetic field turns by angle Φs = νs · Φ,
where Φ is the momentum angle of turn, νs spin tune.

A particle’s angular momentum, when placed into a magnetic field B
is

ωB =
q

m

B

γ
,

into an electrostatic E:

ωE =
q

E

E × β
cβ2γ

,

from which follow the expressions for spin tune in the electrostatic and
magnetic fields: {

νBs = γG,

νEs = β2γ
(

1
γ2−1 −G

)
.

(1.11)

The QFS lattice design has the advantage of simplicity over the FS one:
there’s no need to use a combined-field cylindrical spin rotators; in both
QFS lattice variants we consider below are used either (i) straight Wien
filters, or (ii) cylindrical electrostatic and magnetic elements separately.
On the other hand, due to the appearance of a vertical spin precession
axis component n̄y, the maximum EDM signal amplitude is less compared
with the pure FS case. The attenuation factor [29]

J0(Φs) ≈ 1− Φ2
s

4
,

where Φs is the maximum horizontal plane spin phase advance.
Assume the phase advance does not exceed π ·γG/2n; in this context n

is the lattice periodicity. Since the deuteron anomalous magnetic moment
G = −0.142, J0 ≥ 0.98 for the QFS lattices considered below.
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QFS lattice design “6.3”

A QFS design lattice [28] in which E- and B-fields are separated in space
is presented in Figure 1.2. Negative radius electrostatic cylindrical deflec-
tors are used to compensate the spin phase advance related to the MDM
precession in the arc sections. [29] The ring is 166.67 m length long and is
designed for 270 MeV injection energy. For the suppression of linear spin
decoherence effects, an RF cavity is used, with voltage V = 100 kV, and
operating frequency fRF = 5 · frev, where frev = 0.87 MHz. Non-linear
decoherence effects are suppressed means of six sextupole families.

Figure 1.2: QFS lattice design variant with spatially separated E- and
B-fields. (Image taken from [28])
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QFS lattice design “E+B”

The lattice design in Figure 1.3 utilizes plain, straight, static Wien filters.
This allows one to: a) exclude non-linear electrostatic field components
present in curved electrostatic fields, and b) simplify the lattice from the
engineering point of view.

The lattice is 149.21 m in length, the injection energy is 270 MeV. The
linear spin decoherence effects suppressing RF cavity has a longitudinal
voltage V = 100 kV, and frequency fRF = 5 · frev, with frev = 0.98 MHz.
Four sextupole families are used in the suppression of non-linear decoher-
ence effects.

Figure 1.3: Straight Wien filters QFS lattice variant. (Image taken
from [28])



Chapter 2

Universal SR EDM measurement
problems and their solutions

Universal SR EDM measurement problems can be classified into two groups:
(i) problems that can ba solved by introducing a spin wheel, and (ii) prob-
lems needing specialized solutions.

Problems of the first category follow from the instability of the in-
variant spin axis. Among those are, for example, local electromagnetic
field perturbaitons, as well as perturbations to the particle spin dynam-
ics caused by betatron oscillations. In both cases the particle invariant
spin axis deviates from is equilibrium (closed orbit) orientation for a short
period of time.

Problems needing specific solutions include spin decoherence and EDM-
faking MDM spin precession. In this part we analyze the essence of each of
these problems, describe their possible solutions, and perform correspond-
ing simulations.

2.1 Perturbations to the spin dynamics

Problem statement

The invariant spin axis of a particle involved in betatron oscillations wob-
bles about its reference orientation. [30, p. 11] For this reason, the ampli-
tude of the T-BMT equation solution for the vertical spin vector compo-

31
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nent:

sy =

√(ωyωz
ω

)2

+
(ωx
ω

)2

· sin (ω · t+ φ)

=

√
(n̄yn̄z)

2 + n̄2
x · sin (2π · νs · nturn + φ) , (2.1)

becomes a time-varying function. If a particle’s invariant spin axis (as well
sa spin tune) varies in a sufficiently big range, use of a constant parameter
harmonic function as a model for fitting the measured signal will introduce
the model specification systematic error. Errors of this type reflect on the
validity of the model parameter estimates, i.e. the frequency estimate,
and hence require analysis.

Spin tune variability is especially problematic in this respect, since it
directly affects the phase of the signal; however, this problem can be solved
by introducing sextupole field elements into the beamlinr, as is described
in section 2.2. For this reason, we will focus on the variation of n̄ in this
section.

Simulation

The simulation setup was as follows: a particle offset from the reference
orbit in the vertical direction by 0.3 mm, is injected multiple times into
an imperfect FS-type lattice [28], in which we suppress spin decoherence
caused by vertical plane betatron oscillations (see section 2.2) by using
the corresponding sextupole family. Machine imperfections are simulated
as E+B element tilts about the optic axis. Imperfections introduced this
ways do not perturb the closed orbit (that is, the reference orbit — as well
as the orbit of the betatron-oscillating particle — is the same for every
injection.)

Each trial, E+B element tilts are randomly distributed as α ∼ N(µi, 3 ·
10−4) degrees, i ∈ {1, . . . , 11}, where µi varies in the range [−1.5·10−4,+2.5·
10−4] degrees. Non-zero expectation µi simulated the introduction of a spin
wheel driver into the beamline. [22] Magnitudes of µi and σα were picked
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for better detalization of the effect. At bigger values, it is more difficult
to distinguish the νs and n̄ variation effects.

Another aspect of the simulation worth mentioning is that the particle
injection energy of 270 MeV, which is not exactly the FS energy for this
lattice (270.0092 MeV is the most precise value we could obtain). Because
of this the invariant spin axis n̄ points mostly in the vertical direction
(deviating from it by no more than 51° at higher spin wheel roll rates);
its radial component (determining the spin vector’s vertical component’s
oscillation amplitude) is relatively small, and hence the more sensitive to
perturbations caused by the betatron motion.

Spin tracking was done in COSY Infinity [31], for 1.2 · 106 beam rev-
olutions; every 800 revolutions νs and n̄ were computed (using proce-
dure TSS [32, p. 41]) at the phase space point occupied by the parti-
cle at the moment, which gives us the first data set (νs(n), n̄(n)), n be-
ing the revolution number. The corresponding spin vector components
(strkx (n), strky (n), strkz (n)), computed by the tracker (procedure TR [32, p. 41]),
make up the second set of data series used in the analysis.

Analysis

Using the first data set we computed the expected sgeny (t) “generator”

time series, according to equation (2.1), as well as the “ideal” series sidly ,
in which we assumed constant values νs = 〈νs(t)〉 and n̄ = 〈n̄(t)〉.

Our hypothesis is that the betatron motion will introduce a discrepancy
between the ideal harmonic model

f(t) = a · sin(ω · t+ δ), (2.2)

and the tracker data, by varying the spin precession axis n̄, and hence
the amplitude of the fitted signal. The “ideal” series serves as the basis
for analysis, since it perfectly corresponds to the regression model; the
“generator” series accounts for the variation of n̄, while still remaining
within the bounds of the regression model. The “tracker” series is our
closest approximation to the real measurement data.
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In order to cross-compare the series, we a) computed and analyzed
the residuals ε1(t) = sgeny (t) − sidly (t) and ε2(t) = strky (t) − sidly (t); b) fitted
model (2.2) to the three time series and compared the fit quality; c) com-
puted the standard deviations of the n̄ components at different spin wheel
roll rates.

Figure 2.1: Comparator residuals as functions of time. Top panel: ε1
residual; bottom panel: ε2 residual

In Figure 2.1 we observe that the “generator” is almost identical to the
“ideal” series, with ε1 ≤ 1 · 10−6 (even though its oscillation frequency is
slightly off) for the duration of the cycle, while the “tracker” series deviates
from it at the level ε2 ≤ 2 · 10−5. The discrepancy betweem ε1 and ε2 is
observed systematically at all spin wheel roll rates (see Figure 2.2b), and
does not have an explanation so far.

In Figure 2.2b we see that the standard deviations of both residuals
exhibit the same dependence on the spin wheel roll rate as that of νs



CHAPTER 2. UNIVERSAL SR EDM MEASUREMENT PROBLEMS
AND THEIR SOLUTIONS 35

Table 2.1: Model parameter estimates (slow SW)

Series Par. Value St.Err AIC

sidly

f̂ 4.220359687911 6.9 · 10−11

-62093â 0.12514597851 4 · 10−11

δ̂ −1.50 · 10−8 4 · 10−10

sgeny

f̂ 4.2203596911 1.9 · 10−9

-52142â 0.125145979 1 · 10−9

δ̂ −1.6 · 10−8 1.2 · 10−8

strky

f̂ 4.2203603 1.3 · 10−6

-34567â 0.12514597 3.7 · 10−7

δ̂ −4 · 10−6 6 · 10−6

(Figure 2.2a, bottom panel), but show indifference toward the behavior of
n̄. This is an indication that frequency variation contributes a great deal
more to the discrepance between model (2.2) and the tracker data than
the presumed amplitude variation caused by the wobbling of n̄ during
betatron oscillations.

Table 2.1 characterized the model fit quality with respect to the used
data set at the slowest spin wheel roll rate. We observe that the cross-
differences between the parameter estimates at different time series are
not statistically significant. Even though the variation of the spin pre-
cession angular velocity dagraded the fit quality, it did not introduce any
statistically-significant bias into the estimates.

Conclusions

The question of the influence of betatron motion on the EDM statistic in
the FD method should be considered in view of three circumstances:

(1) The signal amplitude oscillations (as estimated by ε2) are small.
They occur at the 10−4 level (when α ∼ N(0, 3 · 10−2) degrees),
whereas the expected polarization measurement error is on the or-
der of percents. This means the superposition of this systematic er-
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ror with the random measurement error will exhibit no statistically-
significant systematicity.

(2) The correllation coefficient between the amplitude and frequency
estimates is not significant. The amplitude oscillations affect the â-
estimate foremost; their effect on the ω̂-estimate is secondary, and
is described by the correlation coefficient. Since it is less than 10%,
even if the oscillations happen to be strong enough to affect the
amplitude estimate, their effect on the frequency estimate will be
reduced by at least a factor of 10.

(3) This systematic effect is controllable. And this point is the major
advantage of the FD methodology. By applying an external Spin
Wheel, the n̄ oscillations can be continuously minimized as much as
necessary, without changing the experiment pattern.

2.2 Spin decoherence

Spin coherence refers to a measure or quality of preservation of polarizaion
in an initially fully-polarized beam. [18, p. 205]

The spin vectors of a polarized beam injected into a storage ring begin
precessing about the vertical (guiding) field. The precession frequency
depends on the particle equilibrium energy level, which differs across the
beam particles.

This circumstance doesn’t pose a problem when the beam is vertically
polarized; however, the FS SR EDM measurement method requires that
the polarization vector be aligned with the beam’s momentum vector, i.e.
lay in the horizontal plane. Hence, spin decoherence is an inherent problem
of the FS methodology.

In the present section we analyze the origins of spin decoherence, the
sextupole method of its suppression, as well as the simulation results prov-
ing the effectiveness of the method.
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As an introduction, though, we estimate the spin coherence time re-
quired for the measurement of the EDM in the framework of the space
domain methodology.

Spin coherence time requirements

Operating in the space domain FS methodological framework in a perfectly-
aligned lattice, 1 the spin coherence time (SCT) is determined by the
minimal detectable angle by which the polarization vector deviates from
the beam orbit plane as a result of the EDM precession alone. For the
sensitivity level of 10−29 e · cm this angle is approximately 5 · 10−6. [12]

According to the T-BMT equation,

ΩEDM,x = η
qEx

2mc
,

where η is the proportionality coefficient between the EDM and spin, in
the deuteron case equal to 10−15, for the given sensitivity level. [18, p. 206]

For the deuteron BNL FS ring, Ex = 12 MV/m, [12, p. 19] therefore
ΩEDM,x ≈ 10−9 rad/sec. Hence we obtain that, in order to reach a de-
tectable level of at least 1 µrad one needs an SCT on the order of 1,000
seconds. [18, p. 207]

Origins of decoherence

Spin decoherence in a particle beam is caused by the difference between the
beam particles’ spin precession angular velocities, which is, in turn, a result
of the difference between their orbit lengths and initial momenta. Spin
tune dispersion can be described by the concept of the effective Lorentz-
factor, which was introduced in section 1.2.

From equations (1.6) for spin tune in electrostatic and magnetic fields
it follows that the spin tunes of two particles having equal values of the
effective L-factor are equal, regardless of their trajectories in the accel-
erator. This principle is the basis for the proposed sextupole field spin

1In fact, perfect element alignment is a pre-requirement of the space domain.



CHAPTER 2. UNIVERSAL SR EDM MEASUREMENT PROBLEMS
AND THEIR SOLUTIONS 38

decoherence suppression theory, as well as the procedure for flipping the
polarity of the storage ring’s guide field, which is required for injecting the
deuteron beam in the opposite direction in order to cancel the EDM-faking
MDM spin precession.

Sextupole field spin decoherence suppression theory

In order to minimize spin decoherence related to particle betatron motion
and momentum spread, sextupole (or octupole) fields can be used. [18,
p. 212]

A sextupole of strength

Ssext =
1

Bρ

∂2By

∂x2
,

(where Bρ is the magnetic rigidity) modifies the first-order momentum
compaction factor as [27, p. 2581]

∆α1,sext = −SsextD
3
0

L
, (2.3)

and simultaneously the orbit length as(
∆L

L

)
sext

= ∓SsextD0βx,yεx,y
L

, (2.4)

where D(s, δ) = D0(s) +D1(s)δ denotes the dispersion function.
One can formulate the principle of the sextupole field effect in the

following way. A particle in an accelerator does betatron oscillations about
some closed orbit. Due to dispersion, the closed orbit is different for
different particles in the beam. 2 A sextupole field works like a prism,
focusing (or defocusing) the particles’ closed orbits.

In the next sections we will denote the decoherence associated with
horizontal/vertical betatron oscillations, respectively synchrotron oscilla-
tions, X-/Y-, and D-decoherence. Sextupole families aimed at reducing X-,
Y-, and D-decoherence will be denoted, respectively, GSX, GSY, GSD.

2Each closed orbit corresponds to a different equilibrium energy level
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From equations (2.3), and (2.4) one can see that one needs to use three
sextupole families, placed respectively in the maxima of the βx, βy (for the
X-,Y-types), and D0 (for the D-type) functions, in order to suppress spin
decoherence in the beam.

Simulation in an ideal ring

In order to check the capability of the sextupole field spin decoherence
suppression method we carried out a simulation in which we used the FS-
type lattice described in section 1.3. Since the lattice is perfectly aligned,
spin precession occurs only about the vertical (ŷ) axis.

SCT optimization is done at 270.00 MeV energy, the orbital and spin
transfer maps of the lattice are computed up to the fifth order in the Taylor
expansion.

Three sextupole families are used, suppressing the X, Y-, and D-type
decohrence respectively. Each sextupole family’s field gradient is opti-
mized separately (the gradients of the other two families are set to zero).
We optimize the sextupoles separately because otherwise we run into a
numerical problem with the TSS procedure. 3

The sextupole gradient optimization procedure is as follows. First, the
lattice’s transfer maps are computed at the given value of gradient. Then,
using TSS, we compute the spin tune and invariant spin axis (ISA) Taylor
expansions over phase space

νs(x, a, y, b, `, δ) = a0 + a1,xx+ a2,xx
2 + a1,yy + . . .

Depending on the sextupole family being optimized, we pick the coefficient
at the square of the corresponding phase space variable (a2,x, a2,y, or a2,δ)
from the spin tune Taylor expansion. The absolute value of the coefficient

3We also studied the possibility of finding the optimal set of gradient values, by directly
computing the relevant spin tune Taylor expansion coefficients in the 3D gradient space mesh.
The question needs further investigation, but at this point we doubt that all three families can
be optimized simultaneously. This could be the reason why in [18, p. 219] only two sextupole
families are used in the lattice codenamed BNL.
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is used as the objective function: i.e., at the optimal gradient, spin tune
does not depend (parabolically) on the corresponding phase space variable.

The Simplex algorithm was used for optimization. [33, p. 37]
In Figure 2.3 we plotted the spin tune dependence on the particle

phase space coordinate before and after turning on the relevant sextupoles.
One can see that in all three cases the parabolic dependence has been
suppressed. However, there remains a linear term, which is insensitive to
the sextupole fields. The linear term is observed when modeling the spin
dynamics in tree different simulation software: COSY INFINITY, MODE,
and also MAD (from private communication with Y. Senichev). Based on
that, one can hypothesize that the linear term is not a numerical artifact
of COSY INFINITY, but rather has a physical basis. This question needs
further analysis, but at this point it is thought that this term can be
suppressed by adjusting the RF cavity parameters. [18, p. 210, 219]

Transfer of decoherence into the vertical plane in an

imperfect lattice

The purpose of this simulation is to show that the sextupole approach to
the suppression of spin decoherence is agnostic to spatial orientation.

We injected an ensemble of 30 particles, uniformly distributed along
the vertical axis in the range y ∈ [−1,+1] mm, into an imperfect FS
lattice. Since the analysis is based only on the tracker data, and does not
involve the TSS procedure [32], the beam was injected at the strict FS
energy 270.0092 MeV.

Imperfections are simulated as E+B element tilts about the optic axis
by angles picked from the normal distribution Θtilt ∼ N(0, 1·10−4) radians.
Since such imperfections preserve the Lorentz force, they do not perturb
the particle orbital dynamics (i.e., the closed orbit) and affect only the spin
dynamics. The magnitude of the standard deviation reflects the realistic
element alignment precision.

In Figure 2.4 we show the standard deviation of the ensemble spin
vector radial component distribution before and after turning on the sex-
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tupoles. Since the particles move in an imperfect lattice, their spin vectors
rapidly turn about the radial axis. This makes σsx a rapidly oscillating
function exhibiting no long-term growth trend (the slope of the trend line
is (2 ± 2) · 10−8 1/sec). This means there’s no spin decoherence in the
horizontal plane. When the sextupoles are turned on, the σsx amplitude
is reduced by a factor of 10.

In Figure 2.5 the same statistic is shown for the vertical spin vector
components. A long-term trend is observed (the slope is (4.5 ± 0.6) ·
10−7 1/sec) prior to turning on the correcting sextupoles. The sextupole
correction does not reduce the oscillation amplitude, but suppresses the
accummulation of dispersion (the slope drops to (5± 6) · 10−8 1/sec).

Analysis of spin decoherence in an imperfect lattice

The following tests were done with a planar bunch of 30 particles injected
into a FS lattice with E+B elements tilted about the optic axis by angles
picked from N(0, 5 · 10−4) radians.

The particles were normally-distributed in the vertical plane y−z along
the ŷ-axis as in y ∼ N(y0, 0.1) mm (all other phase space coordinates are
zero). The offset y0 varied in the range [−1,+1] mm. Initially all spins in
the ensemble were longitudinally oriented: S(t = 0) = (0, 0, 1).

We also varied the gradient GY of the GSY sextupole. GY varied in
the range [G0

Y − 5 · 10−3, G0
Y + 5 · 10−3], where G0

Y = −5.77 · 10−4 is the
optimal gradient for this particular imperfection distribution. The value
G0
Y was found by minimizing the coefficient a2 of the Taylor expansion

νs(y) ≈ a0 + a1 · y + a2 · y2 +O(y3).
There were 10 injections per each value of GY .
Since the TSS procedure was used, to ensure its stability, the beam

was injected at 270 MeV (as opposed to the strict FS 270.0092 MeV), and
the orbital and spin transfer maps were computed up to the third order
Taylor expansion.

After that, the beam is tracked through the lattice for 1.2 · 106 turns,
which is approximately equivalent to 1.2 seconds. Data used in the analysis
were collected every 800 turns.
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What we collected: (a) TSS procedure results: spin tune and the ISA
components, and (b) spin (SX , SY , SZ) and phase space (X,A, Y,B, T,D)
vector components. We also recorded the Taylor expansions of νs, n̄,
orbital, and spin transfer maps of the lattice at each GY value.

Based on the spin vector component data we computed the ensemble
polarization:

P =

∑
i si

|
∑

i si|
. (2.5)

Its vertical component is fitted by f(t; a, f, φ) = a · sin(2π · f · t + φ),
where all three parameters (â, f̂ , φ̂) are estimated.

Sextupole field effect on spin tune and invariant spin axis

In Figure 2.6 we showed the dependence of spin tune on the particle’s
vertical offset from the reference orbit: νs(y) ≈ a0 +a1 · y+a2 · y2 +O(y3).
In Figure 2.6a one can observe the unbending of the parabola when GY →
G0
Y .

An equivalent dependence for the vetrical component of the ISA is
shown in Figure 2.7. In Figure 2.7a we observe that the ISA component
behaves the same way as spin tune when GY → G0

Y . Just as in the case
of an ideal lattice, in Figure 2.7b one can observe the presence of a linear
term in n̄y(y), insensitive to the sextupole fields.

In the figures above, the values of spin tune and ISA were computed as
univariate functions of the vertical offset; all other phase space coordinates
were set to reference values. While analyzing the tracker data we noted
that the ISA components (as well as spin tune) of a particle do not oscillate,
as one would expect from the figures, but remain nearly constant. We
hypothesized that the νs and n̄ dependencies on the vertical offset and its
derivative (y′ ≡ a) compensate each other when the particle moves along
a real trajectory. In the next figures we depicted νs, n̄ at their true phase
space trajectories in the storage ring.

In Figure 2.8 are depicted the particle trajectories in the (Y,B) phase
plane, obtained in tracking the particles through the imperfect lattice.
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In Figures 2.9, 2.10, 2.11, and 2.12 are plotted, respectively: spin tune,
the radial, vertical, and longitudinal components of the ISA, computed
at the trajectories plotted in Figure 2.8, in two cases: (1) sextupoles are
turned off, and (2) GSY sextupoles are turned on.

From the analysis of the figures, we can gather the following:

(1) in the sextupoles-off case, both νs and the direction of n̄ are mostly
(modulo the linear Taylor expansion term) fixed by the value of the
particle’s transverse emittance;

(2) in the sextupoles-on case, the mean levels of νs and n̄ of different
particles come together, and the betatron motion effect, related to
the presence of a linear Taylor expansion term, becomes apparent.

Hence, Figures 2.10 and 2.11 are evidence that not only are the frequen-
cies but also the directions of the beam particles’ spin precession angular
velocity vectors are equalized when sextupole fields are used to suppress
spin decoherence. The longitudinal component of the ISA is insensitive to
the sextupole fields, as evidenced by Figure 2.12.

In Figure 2.13 we plotted the mean levels of the radial and vertical
ISA components’ as functions of the mean spin tune level. Based on
this figure, we conclude in section 2.5 that particles having equal effective
Lorentz factor values are equivalent in terms of their spin dynamics in the
general (direction and magnitude of the spin precession angular velocity
vector) sense. 4

Analysis of the sextupole spin decoherence

suppression mechanism

From equations (1.6) and (1.8), the dependence of spin tune of the particle
equilibrium energy can be expressed as:

νs = Gγ0 +G
γ2

0 − 1

γ0
·C0 ·f1(εx, εy, Qx, Qy)+G

γ2
0 − 1

γ0
·C0 ·f2(α1, 〈∆K/K〉2),

4At least this seems to be true when operating in the frozen spin regime.
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where C0 is a constant, f1 and f2 are defined in equation (1.8).
Since a betatron-oscillating particle does also synchrotron oscillations,

the effect of sextupole fields on it is a superposition of effects. A particle
injected onto the reference orbit, but having an initial energy offset, does
only synchrotron oscillations. Consequently, sextupole fields affect its spin
tune by only modifying the momentum compaction factor, i.e. f2.

In view of that, we carried out a simulation in which we consecutively
injected two beams of 30 particles: in the first one, the D-bunch, particles
were distributed as δ ∼ N(0, 0.5 · 10−6), in the second one, the Y-bunch,
as y ∼ N(0, 0.5) mm. All the other phase space coordinates were set to
zero at injection.

The tests were done in the ideal FS lattice in order to exclude effects
associated with perturbations of non-reference (betatron) orbits. For the
D-bunch, only the GSD sextupoles were turned on; for the Y-bunch –
GSY. The sextupole gradients were varied ±5 · 10−3 of the corresponding
family’s optimal gradient value.

Spin tracking was done for 1.2 · 106 turns, data were recorded every
800 turns.

In Figure 2.14 we plotted the longitudinal phase space portraits of
both bunches. We see that the D-bunch phase portraits are practically
all centered at the same point, 5 and that their emittances do not change
when the sextupole strength is varied.

At the same time, the Y-bunch phase portraits vary with the sextupole
field strength. We observe that the the ellipse centers (i.e. the equilib-
rium energy levels) are most compressed at a gradient value that is not
optimal (the phase portraits for the latter occupy the middle panel). This
observation was what motivated us to try to inject the D-bunch in the
first place. We explain this phenomenon by the superposition of the orbit
length and momentum compaction factor effects.

For a more thorough analysis of the sextupole field effects on the func-
tions f1 and f2 we plotted time-averaged spin tune level as a function of

5When zooming in, one can see that the ellipse centers are slightly different, but this
difference is insensitive to the sextupole gradient value, and most likely is a result of finite
statistics.
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the corresponding time-averaged energy level at different sextupole field
strengths (Figure 2.15). 6 One can see from the figure that the point
distribution density in the D-bunch plot does not vary as we change the
gradient; the only thing that does change is the functional dependence of
spin tune on the mean energy level, as is expected from the functional form
of f2 (cf. section 1.2). Hence, we concluded that the signature of the sex-
tupole field momentum compaction effect is the change in the functional
form of 〈νs〉 = f(〈∆K/K〉).

In the Y-bunch plot one observes two effects: both the point distribu-
tion density (i.e. the beam’s longitudinal emittance) and the functional
form of 〈νs〉(〈∆K/K〉) change. Since the functional form change is at-
tributed to the momentum compaction factor effect, we attribute the point
density to the orbit length effect.

Conclusion: The simulation confirms statements (2.3) and (2.4).

2.3 Machine imperfections error

Systematic errors due to physical imperfections of the accelerator lattice,
including optical element misalignments, are causative to an EDM-faking
signal related to MDM spin precession [18, p. 230] Rotational magnet mis-
alignments are particularly problematic in this respect, since they induce
parasitic horizontal magnetic field components Bx and Bz, both of which
precess spin in the vertical plane; the one in which the EDM is searched
for.

Y. Senichev made analytical estimates [20] of the radial component of
the spin precession angular velocity. From the T-BMT equation, and the
expression for the Lorentz force, its radial component can be expressed as

σ
[
ΩMDM
x

]
=

q

mγ

G+ 1

γ

σ [Bx]√
n
, (2.6)

6Practically, we took spin tune and ISA values corresponding to actual particle trajectories
in the accelerator. So, “correspondence” here means that spin tune and kinetic energy are
strictly linked to one another via a trajectory.



CHAPTER 2. UNIVERSAL SR EDM MEASUREMENT PROBLEMS
AND THEIR SOLUTIONS 46

where n is the number of tilted spin-rotator elements, 7 and σ [Bx] =
Byσ [δh] /L, with the misalignment error standard deviation σ [δh]. Assu-
ing σ [δh] = 100 µm, and spin-rotator length L = 1 m, σ

[
ΩMDM
x

]
≈ 100

rad/sec. [20]
We analyzed the particle spin dynamics in the imperfect FS and QFS

lattices using COSY Infinity. [31] Our simulation results tend to confirm
the above estimates.

Imperfection field implementation When implementing machine im-
perfections we followed recommendations given in [18, p. 235]. A small
perturbation of the magnetic field acts like a proportional rotation of the
spin vector. For this reason we implemented the E+B element tilt as a
product between the element’s spin transfer matrix and the correspond-
ing rotation matrix, a “spin kick.” Such an implementation guarantees
the preservation of the closed orbit. This orbit preservation is physically
grounded in the fact that when a spin-rotator is tilted, there emerges a
compensating electric field keeping the Lorentz force constant.

According to equation (1.1b), a change in the MDM precession an-
gular velocity associated with the presence of a parasitic magnetic field
(Bx, 0, Bz) is

∆ΩMDM =
q

m
G · (Bx, 0, Bz),

hence the spin kick angle

Θkick = t0∆ΩMDM ,

where t0 = L/v0 is the reference particle’s time of flight through the ele-
ment.

Tilt distribution dependence

This series of simulations was carried out in order to prove (or reject)
the validity of two theses concerning the machine imperfection systematic

7The estimates were made for the FS lattice described in section 1.3.
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error: (1) the induced MDM spin precession angular velocity component is
independent of the particular element tilt distribution, and depends only
on the mean tilt angle; and (2) this dependence is linear.

The simulation was set up as follows: in the FS lattice described in
section 1.3 E+B elements were randomly tilted about the optic axis by
angles Θtilt. After building the third-order spin and orbital transfer maps,
we computed the Taylor expansions of the spin tune and spin precession
axis (SPA). The zero-order terms of the Taylor expansions represent the
spin tune and SPA of the reference particle.

The reference particle spin precession angular velocity is calculated
according to equation: [15, p. 4]

Ω = 2π/τ0 · νs · n̄,

where τ0 = f−1
rev = 10−6 seconds is the particle’s time of flight through the

full lattice.
The simulation was carried out 11 times; each time the spin-rotator

tilt angles were picked from a normal distribution N(µ0 · (i−5), σ0), where
µ0 = 10 ·σ0 = 10−4 rad, i ∈ {0, . . . , 10}. The simulation results are plotted
in Figure 2.16.

One can observe from the figure that a tilt distribution at which the
mean tilt angle is equal to 10−4 radians, the beam polarization vector
precesses in the vertical plane at the rate of 500 rad/sec. This agrees
with the estimates mentioned above (section 2.3), because in them a tilt
error standard deviation of 10−4 rad is assumed at 100 tilted elements. In
that case, the mean tilt angle standard deviation is 10−5, and hence MDM
precession occurs at a rate up to 50 rad/sec with a probability 67%, and
up to 100 rad/sec with a probability 95%.

Figure 2.17 shows the results of a simulation in which six randomly-
picked E+B elements were pair-wise tilted by opposite angles, while one
element was tilted by an angle µi = (i− 5) · 10−6 rad, i ∈ {0, . . . , 10}.

Both simulations were done at the strict FS energy 270.0092 MeV.8

8At this energy, in the ideal lattice, νs and n̄ are undefined in the beam rest frame used
in COSY Infinity. This corresponds to the situation when spin does not precess in any plane
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One can see that the compensated elements do not contribute to the spin
precession.

Comparison of the CW vs CCW beams’ spin

precession angular velocities

In Figure 2.18 we plotted the relative difference between the CW and
CCW beams’ radial SPA/angular velocity components in the case of both
the normally-distributed and mutually-compensated tilt cases.

For the raidal SPA component the relative difference was computed as

δn̄x =
n̄CWx (〈Θtilt〉)− n̄CCWx (〈Θtilt〉)

n̄CWx (〈Θtilt〉)
;

for the angular velocity:

δΩx =
ΩCW
x (〈Θtilt〉)− ΩCCW

x (〈Θtilt〉)
ΩCW
x (〈Θtilt〉)

.

In the figures, one can observe that in either case both beams’ SPA is
oriented the same way; there is some difference between the beams’ spin
tunes, but it stays below the percent level. The spin tune difference grows
bigger as the spin wheel roll rate (proportional to the mean tilt angle) gets
slower. The spin tune difference may indicate that the lattice is asymmet-
ric, with respect to the spin dynamics, relative to the beam circulation
direction (i.e. time reversal). It may be explained by a difference between
the CW and CCW beams’ closed orbits.

2.4 Guide field flipping

Two aspects of the problem need to be paid attention to:

(either horizontal or vertical), which corresponds to the realization of the 3D FS condition in
an ideal lattice.
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(1) What needs to be kept constant from one measurement cycle to the
next;

(2) How it can be observed.

The goal of flipping the direction of the guide field is to accurately
reproduce the radial component of the MDM spin precession frequency
induced by machine imperfection fields. This point should not be over-
looked: a mere reproduction of the magnetic field strength would not suf-
fice, since the injection point of the beam’s centroid, and hence its orbit
length — and, via equations (1.10) and (1.6), spin tune, — is subject to
variation. (Apart from that, the accelerating structure might not be sym-
metrical, in terms of spin dynamics, with regard to reversal of the beam
circulation direction.)

What needs to be reproduced, therefore, is not the field strength, but
the effective Lorentz factor of the centroid.

Regarding the second question, we mentioned earlier that the Koop
Wheel roll rate is controlled through measurement of the horizontal plane
spin precession frequency. This plane was chosen because the EDM an-
gular velocity vector points (mainly) in the radial direction; its vertical
component is due to machine imperfection fields, and is small compared
to the measured EDM effect. Therefore, in first approximation, when we
manipulate the vertical component of the combined spin precession angu-
lar velocity, we manipulate the vertical component of the MDM angular
velocity vector.

The effective Lorentz factor calibraion procedure consists in the follow-
ing.

Calibration algorithm

Let T denote the set of all trajectories that a particle might follow in the
accelerator. T = S

⋃
F , where S is the set of all stable trajectories, F

are all trajectories such that if a particle gets on one, it will be lost from
the bunch.

Calibration is done in two phases:
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(1) In the first phase, the guide field value is set so that the beam par-
ticles are injected onto trajectories t ∈ S.

(2) In the second phase, it is fine-tuned further, so as to fulfill the FS
condition in the horizontal plane. By doing this, we physically move
the beam trajectories into the subset S|Ωy=0 ⊂ S of trajectories for
which ωy = 0.

Spin tune (and hence precession frequency) is an injective function
of the effective Lorentz-factor γeff , which means ωy(γ

1
eff) = ωy(γ

2
eff) →

γ1
eff = γ2

eff . The trajectory space T is partitioned into equivalence classes
according to the value of γeff : trajectories characterized by the same γeff
are equivalent in terms of their spin dynamics (possess the same spin
tune and invariant spin axis direction), and hence belong to the same
equivalence class. Since ωy(γeff) is injective, there exists a unique γ0

eff at

which ωy(γ
0
eff) = 0:

[ωy = 0] = [γ0
eff ] ≡ S|Ωy=0.

If the lattice didn’t use sextupole fields for the suppression of deco-
herence, S|Ωy=0 would be a singleton set. We have shown in 2.2 that if
sextupoles are utilized, then ∃D ⊂ S such that ∀t1, t2 ∈ D: νs(t1) = νs(t2),
n̄(t1) = n̄(t2). By adjusting the guide field strength we equate D = S|Ωy=0,
and hence S|Ωy=0 contains multiple trajectories. 9

Therefore, once we ensured that the beam polarization does not precess
in the horizontal plane, all of the beam particles have γ0

eff , equal for the
CW and CCW beams.

In order to confirm that the proposed calibration procedure works, we
need to show that:

(1) S|CWΩy=0 = S|CCWΩy=0 , that is Ωy = 0 for the same set of trajectories

(equivalently, the same γeff) in the CW and CCW cases.
9Strictly speaking, even if sextupoles are used there remains some negligible dependence of

spin tune on the particle orbit length (linear decoherence effects, cf. 2.2). Because of that, the
equalities for νs and n̄ are approximate, and the set S|Ωy=0 should be viewed as fuzzy: we will
consider trajectories for which |ωy| < δ for some small δ as belonging to [ωy = 0].
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(2) ∀t1, t2 ∈ S|CCWΩy=0 : νs(t1) = νs(t2), n̄(t1) = n̄(t2), i.e., the same sex-
tupole fields reduce decohrerence in the CW and CCW beams.

Practically, we do this by:

(1) computing the dependencies νs(z), z ∈ {x, y, δ} for the CW and
CCW beams;

(2) computing the discrepancy ε(z) = νCWs (z)− νCCWs (z).

If the discrepancy is small in a wide range of z, then

(1) sextupole decoherence suppression works for both beams without
gradient value change;

(2) spin tune (respectively γeff) is equal for both beams, and hence their
Spin Wheels roll at the same rate.

The n̄CW , n̄CCW tilt angles relative to the closed orbit plane are deter-
mined by the accuracy of setting Ωy = 0.

Simulation

In the simulation, we use an imperfect FS lattice [28], in which the E+B
spin rotator elements are tilted about the optic axis by angles

α ∼ N(0, 5 · 10−4) rad.

Spin decoherence is being suppressed. The simulation is repeated three
times; each time only one sextupole family is turned on. Each family’s
sextupole gradieent is optimized according to the procedure described in
section 2.2.

The beam kinetic energy is 270.00 MeV. We compute third-order Tay-
lor expansions of the spin and orbital transfer maps.

The main body of the simulation consists in the following: using the
TSS [32, p. 41] procedure of COSY Infinity we compute the νs and n̄ third-
order Taylor expansions for the lattice traversed in the forward direction.
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Then, using the combinations of procedures MR and SMR [18, p. 233], we
reverse the lattice’s orbital and spin transfer maps, and compute νs and n̄
for the reversed lattice (as it is seen by the counter-circulating beam).

Results

The test results are shown in Figures 2.19, 2.20, and 2.21. Specifically,
in Figures 2.19a, 2.20a, and 2.21a we plotted CW and CCW beams’ νs
and n̄y as functions of the particle’s transverse (x, y) and energy (δ) phase
space coordinates, respectively. One can see that the νCWs and νCCWs de-
pendencies (as well as n̄CWy and n̄CCWy ) differ, but at the same time the
beams’ ∆Ωy discrepancy does not exceed ±3 · 10−6 rad/sec; the spin tune
discrepancy is below 10−13, that of the transverse components of n̄ the
10−8 level. Figures 2.19b, 2.20b, and 2.21b show the difference between
the CW & CCW beams’ spin precession angular velociy vectors’ radial
components as a function of their vertical component difference. One can
observe, that when the difference ∆Ωy < 10−7 rad/sec (this is the statisti-
cal precision of a frequency estimate achievable in one cycle), the difference
∆Ωx < 10−8 rad/sec (i.e., an order of magnitude less than the statistical
precision). This confirmes that the equalization of the vertical plane MDM
precession frequencies of counter-circulating beams by means of equalizing
their horizontal plane precession frequencies is a viable technique.

2.5 Spin tune equivalence of trajectories of
equal effective Lorentz factor

In the context of the spin wheel roll direction change procedure, it is im-
portant to consider the question of the CW and CCW beams’ equivalence
in trems of their spin dynamics.

Our analysis starts from Statement 1: particles having an equal effec-
tive Lorentz factor value have equal spin tunes, i.e. are equivalent in their
spin dynamics. This is a consequence of equation (1.6).

In the next sections we will consider two formulations of Statement 1:
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A. when interpreting the effective L-factor as the expectation value of
the particle energy;

B. the multivariate function νs(x, a, y, b, `, δ) is agnostic to the paricle’s
trajectory in the transverse phase planes (x, a), and (y, b), that is, it
can be reduced to a multivariable function νs(γeff).

Formulation A

In this section we will consider Statement 1, interpreting the effective
Lorentz factor as the expectation value of a particle’s Lorentz factor.

In order to test this formulation we carried our the following simulation:
we injected three 10-particle bunches (X, Y, and D) into the ideal FS
lattice. The orbital and spin transfer maps were computed up to the
third-order Taylor expansion; the particle injection energy was 270 MeV.
The X-bunch particles were uniformly distributed along the radial axis in
the range ±1 mm; those of the Y-bunch, along the vertical axis in the
range ±1.318 mm; 10 the D-bunch particles were distributed by ∆K/K0

in the range ±10−4. Then, spin tracking was done for 12,000 turns, with
data recorded every 80 turns.

The recorded data were:

(i) the particle phase space coordinate z = (x, x′, y, y′, `, δ), where
` = − (t − t0)v0

γ0

1+γ0
is its longitudinal phase offset, δ = ∆K/K

is the energy offset;

(ii) spin tune νs(z).

Based on these data we computed the particles’ time-average spin tune
〈νs〉, energy offset 〈∆K/K〉, and longitudinal and transverse emittances.

Simulation results are presented in Figure 2.22. The top panel is a
plot of 〈νs〉 as a function of 〈∆K/K〉 for the betatron-oscillating bunches

10This range was chosen in order to equalize the transverse emittances of the particles. The
initial coordinate offset determines the betatron oscillation amplitude A, which is related to the
beta function β and transverse emittance ε as in A =

√
εβ.
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when the sextupoles are turned off. One can see from the figure that,
at the same mean energy level, the horizontal plane betatron oscillating
particles have a different spin tune from that of the vertical plane betatron
oscillating particles. This means, as far as we can tell, that Statement 1
in formulation A is disproved.

We hypothesized that the difference in the plotted lines’ slopes is re-
lated to the spatial dependence of the momentum compaction factor.

This hypothesis is based on our analysis of the sextupole field suppres-
sion effects’ signatures, described in detail in section 2.2. In order to test
this hypothesis we repeated the experiment at different values of the GSX
sextupole gradient, taken from the range ±5 ·10−3. The simulation results
are shown in Figure 2.22. The same dependence is plotted as previously,
but only for the X-bunch. As one can see, when the gradient is varied the
slope varies with it. The same behavior as was observed in section 2.2.

In order to check the hypothesis about the spatial dependence of the
momentum compaction factor we computed the dependencies of the mean
energy levels of the X- and Y-bunch particles on their betatron tune-
normalized transverse emittances (Fiugre 2.23). According to equation (1.9),
the orbit lengthening of particles with equal Q-normalized transverse emit-
tances must be equal. The equilibrium energy level shift of a particle is
proportional to its orbit lengthening via the momentum compaction fac-
tor; hence the slope difference seen in Figure 2.23 is evidence that the
momentum compaction factors experienced by the X-, and Y-bunches are
different.

The observed longitudinal dependence of the momentum compaction
factor is further confirmed by equation (15) of reference [27], in which we
find:

α0 = 〈D0

ρ
〉, α1 = 〈D1

ρ
〉 +

1

2
〈D′20 〉,

where D(s) = D0(s) + D1(s) · δ is the dispersion function, ρ the radius
of the clsed orbit. In first approximation, dispersion exists only in the
horizontal plane and is zero in the vertical plane, meaning that the spatial
dependence of the dispersion function reflects on the spatial dependence
of the momentum compaction factor.
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For comparison, the same tests were carried out with linear Taylor
expansions of the spin and orbital transfer maps. The results are shown
in Figures 2.24b, and 2.24a. As one can see in Figure 2.24a, all particles
doing betatron oscillations in the vertical plane share the same value of the
mean energy level, which is an indication that they share the same closed
orbit, which in turn means there’s no dispersion in the vertical plane. In
this case, from Figure 2.24b follows that their spin tunes are equal.

In Figure 2.25 are plotted the particle longitudinal emittance as a func-
tion of its Q-normalized transverse emittance. As one can see, the trans-
verse emittances induce the longitudianl emittances at different rates, de-
pending on the betatron oscillation plane. In the linear case, vertical plane
betatron oscillations do not induce synchrotron oscillations at all.

Conclusion: formulation A of Statement 1 is false.

Formulation B

Using COSY Infinity we compute the Taylor expansion of spin tune νs(z),
where

z = (x, a, y, b, `, δ),

` = −(t− t0)v0
γ − 1

γ
,

δ =
∆K

K
.

In the present section we will test formulation B of Statement 1: the
multivariate function νs(z) can be expressed as a function of a single scalar
parameter: νs(γeff). We will not assume any formal expression of γeff .

If formulation B is correct, there exists a coordinate system (with one
axis being νs), in which horizontal plane betatron oscillating particles are
indistinguishable, in terms of spin tune, from vertical plane betatron os-
cillating particles. This coordinate system, hence, must not include coor-
dinates from the transverse phase space planes (x, a), and (y, b).
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Therefore, we will look at the space P = (`, δ, νs). If formulation B is
correct, differences between particles’ transverse phase plane trajectories
must not reflect on their trajetctories in P .

We used the same data in this analysis as in the previous section.
In Figure 2.26a νs(z) is plotted as a function of (`, δ) when z is the

real trajectory the particle takes in the storage ring. We observe:

(1) the same stratification of the mean spin tune levels as in figures in
section 2.2;

(2) the stratification is more pronounced for the X-bunch (blue dots),
than for the Y-bunch (red dots).

The latter can be explained by the greater magnitude of the disper-
sion function in the horizontal plane. Note that at equal values of the
Q-normalized transverse emittance 11 (i.e. at equal orbit lengthenings, if
equation (1.9) is to be believed), horizontal plane betatron oscillating par-
ticles have a greater longitudinal emittance than those oscillating in the
vertical plane.

Due to this fact, we decided to plot the same dependence, but to pick
particles based on the equality of their longitudinal, instead of transverse,
emittances. In Figure 2.26b we observe that particles having similar mag-
nitudes of their longitudinal emittance have also silimar mean spin tune
levels.

Conclusion: formulation B is confirmed by simulation; the effective
Lorentz factor reflects the magnitude of the particle’s longitudinal emit-
tance.

In view of Figure 2.13, one can also conclude that particles with equal
effective L-factor values are spin dynamics-equivalent in the general sense,
by which we mean that they have not only equal values of spin tune, but
the same orientation of the invariant spin axis. 12

11Q-normalized is εα ·Qα, where α ∈ {x, y}.
12At any rate, this seems to be true in the FS regime of operation.
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(a) n̄ component.

(b) Comparator residuals. Top panel: ε1 residual; bottom panel: ε2 residual

Figure 2.2: Standard deviation vs spin wheel roll rate.
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(a) Radial offset

(b) Vertical offset
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(c) Energy offset

Figure 2.3: The dependence of a particle spin tune on its initial offset from
the reference particle.
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(a) Sextupoles off

(b) Sextupoles on

Figure 2.4: Standard deviation of the radial spin vector component distri-
bution in a bunch.
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(a) Sextupoles off

(b) Sextupoles on

Figure 2.5: Standard deviation of the radial spin vector component distri-
bution in a bunch.
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(a) Full range.

(b) Detalization.

Figure 2.6: Spin tune νs as a function of the particle’s vertical offset from
the closed orbit. Color marks different GY values.
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(a) Full range.

(b) Detalization.

Figure 2.7: Vertical component n̄y of the invariant spin axis as a function
of the particle’s vertical offset from the closed orbit. Color marks different
GY values
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Figure 2.8: Particle trajectories in the (Y,B) phase space.
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(a) Sextupoles off.

(b) Sextupoles on.

Figure 2.9: Particle spin tunes computed at their trajectories in an imper-
fect FS lattice.
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(a) Sextupoles off.

(b) Sextupoles on.

Figure 2.10: Particle’s radial ISA components computed at their trajecto-
ries in an imperfect FS lattice.
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(a) Sextupoles off.

(b) Sextupoles on.

Figure 2.11: Particle’s vertical ISA components computed at their trajec-
tories in an imperfect FS lattice.
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(a) Sextupoles off.

(b) Sextupoles on.

Figure 2.12: Particle’s longitudinal ISA components computed at their
trajectories in an imperfect FS lattice.
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Figure 2.13: Mean level of the radial and vertical ISA components versus
the correcponding value of spin tune.
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(a) D-bunch phase portraits.

(b) Y-bunch phase portraits.

Figure 2.14: Longitudinal phase space particle portraits. Asterisks mark
the ellipse centers. Colors mark trajectories of particles with differing
initial vertical offset from the reference orbit.
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(a) For the D-bunch.

(b) For the Y-bunch.

Figure 2.15: Particle mean spin tune level as a function of its equilibrium
level energy at different sextupole strengths.
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(a) Spin precession axis n̄ components.

(b) Angular velocity Ω components.

Figure 2.16: Reference particle’s spin precession axis and angular velocity
components as functions of the mean E+B element tilt angle. Element tilts
are normally distributed. Color identifies the component; radial (blue) and
vertical (orange).
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(a) Spin precession axis n̄ components.

(b) Angular velocity vector Ω components.

Figure 2.17: Reference particle’s spin precession axis and angular veloc-
ity components as functions of the mean E+B element tilt angle. Three
mutually-compensated tilt pairs plus an uncompensated rotation. Color
identifies the component; radial (blue) and vertical (orange)



CHAPTER 2. UNIVERSAL SR EDM MEASUREMENT PROBLEMS
AND THEIR SOLUTIONS 74

(a) Normally distributed E+B element tilts.

(b) Mutually-compensated element tilts.

Figure 2.18: Relative difference between the CW and CCW beams’ spin
precession axis and angular velocity radial components. Color marks the
compared variable: spin precession axis (blue) and abgular velocity (or-
ange).
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(a) Spin tune and invariant spin axis as functions of the particle’s horizontal offset from
the closed orbit.

(b) Difference between the CW & CCW beams’ radial spin precession angular velocity
components as a function of the differnce between their vertical components (calibration
plot).

Figure 2.19: Simulation results in the case fo horizontal plane betatron
motion-related spin decoherence.
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(a) Spin tune and invariant spin axis as functions of the particle’s vertical offset from the
closed orbit.

(b) Difference between the CW & CCW beams’ radial spin precession angular velocity
components as a function of the differnce between their vertical components (calibration
plot).

Figure 2.20: Simulation results in the case fo vertical plane betatron
motion-related spin decoherence.
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(a) Spin tune and invariant spin axis as functions of the particle’s energy offset from the
reference energy.

(b) Difference between the CW & CCW beams’ radial spin precession angular velocity
components as a function of the differnce between their vertical components (calibration
plot).

Figure 2.21: Simulation results in the case fo vertical plane synchrotron
oscillations-related spin decoherence.
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Figure 2.22: Particle mean spin tune level as a function of its mean kinetic
energy level. Top panel: sextupoles are off for both injected bunches.
Bottom panel: X-bunch dependencies at different GSX gradients.
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Figure 2.23: Longitudinal emittance dependence of the mean energy level.
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(a) Mean energy level dependence on particle transverse emittance

(b) Mean spin tune dependence on mean energy.

Figure 2.24: Simulation results in the case of linear transfer maps.
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(a) Non-linear transfer maps.

(b) Linear transfer maps.

Figure 2.25: Longitudinal emittance as a function of Q-normalized trans-
verse emittance.
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(a) Particles picked according to the values of their Q-normalized transverse emittances.

(b) Particles are picked according to the values of their longitudinal emittances.

Figure 2.26: Spin tune as a function of the particle’s position in the lon-
gitudinal phase space. Colors mark the bunch: blue for X, red for Y.
The corresponding Q-normalized transverse and longitudinal emittances
are shown in the legend.



Chapter 3

Results at COSY

3.1 Synchrotron COSY

Figure 3.1: Synchrotron COSY.

The COSY accelerator facility depicted in Figure 3.1 consists of two
sources of unpolarized H−/D−-ions and one source of polarized H−-ions,
the injector cyclotron JULIC (Jülich Light Ion Cyclotron) [34] capable of
accelerating the H−-ions up to 300 MeV/c and D−-ions up to 600 MeV/c,

83
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and the cooler synchrotron ring COSY with a circumference 184 m accel-
erating protons and deuterons up to 3.3 GeV/c. [35]

Injection into COSY is done via charge exchange of the negative ions
over 20 ms with a linearly decreasing closed orbit bump at the position
of the stripper foil. The polarized source delivers 10 µA of polarized H−-
ions. [35]

Two types of beam cooling are available: electron (energy range in
the “old” and “new” electron coolers: 20–100 keV and 20–2,000 keV,
respectively) and stochastic. The two electron coolers installed in the
straight sections are capable of cooling the beam in the full possible energy
range. Stochastic cooling works in the momentum range 1.5-3.7 GeV/c.

Beam polarization is continuously monitored by an internal polarimeter
EDDA; recently, an additional polarimeter making use of WASA forward
detectors was set up, and a new polarimeter, based on LYSO-scintillators,
is under development and will be installed in the COSY ring in 2019.
Proton polarization of 75% can be achieved up to the highest momen-
tum levels; deuteron vector and tensor polarizations reach up to 60%. [13,
Historical background]

At present, a number of studies with polarized beams are carried out at
COSY with the upshot of developing a future EDM experiment for an elec-
trostatic storage ring. [36, 37, 15, 38, 39, 40] In most studies, parameters
summarized in Table 3.1 are used.

Table 3.1: COSY parameters in most studies.

Parameter Magnitude Dimension
COSY circumference 184 m
Deuteron momentum 970 MeV/c
β / γ 0.459 / 1.126
Anomalous magnetic moment G -0.143
Beam revolution frequency frev 752543 Hz
Measurement cycle length 100–1500 sec
Number of particles in the bunch ≈ 109

The author would like to highlight the following technologies developed
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by the collaboration.

3.2 High precision spin tune measurement

The collaboration has been able to achieve an unprecedented spin tune
measurement sensitivity level of 10−10.

The experiment consisted in the following. An initially vertically-
polarized deuteron beam was injected into the ring. After the preparatory
phase, during which the beam is cooled and bunched, the beam polar-
ization was flipped into the horizontal plane by means of an RF solenoid
inducing an imperfection resonance. [15, p. 7]

After that, the beam was continuously extracted onto a carbon tar-
get, and the up-down cross section asymmetry was measured, which is
proportional the beam’s horizontal polarization component. Due to the
specially designed data acquisition system [41], it was possible to precisely
determine the number of turns the beam had done in the ring by the time
an event was recorded on the detector.

The main problem with this measurement was that spin tune could not
be estimated via a regular model fit to polarimetry data. The spin preces-
sion frequency is approximately 120 kHz, while the detector sampling rate
does not exceed 5 kHz, meaning that only one event could be detected
per every 24 spin rotations about the vertical axis. To solve the prob-
lem of data sparsity all measurements were mapped into one oscillation
period. [38]

This allowed for the estimation of the spin tune at a precision level of
10−10 in a 100 second measurement cycle, which theoretically allows for
the detection of the EDM at the sensitivity level 10−24 e·cm.

3.3 Beam Based Alignment

Beam Based Alignment [40] is a procedure to verify that the beam passes
through the center of a quadrupole. In order to so do, one varies the
strength of the quadrupole and observes the changes this affects in the
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closed orbit. If the beam does not pass through the center of the quadrupole,
the closed orbit will shift; this shift can be described by

∆x =
∆k · x(s0)`

Bρ
· 1

1− k `β(s0)
2Bρ tanπν

·
√
β(s)β(s0)

2 sinπν
cos (φ(s)− φ(s0)− πν) ,

where ∆x is the orbit change; s is the coordinate of the beam position
monitor; s0 is the coordinate of the quadrupole; ∆k is the quadrupole
strength change; ` is the quadrupole length; ν is the betatron tune; φ is
the betatron phase; x(s0) the beam position with respect to the magnetic
center of the quadrupole.

Since the orbit change ∆x(s) is a linear function of the offset of the
beam with respect to the magnetic center of the quadrupole, one can de-
termine the optimal position of the quadrupole by minimizing the function

f =
1

NBPM

NBPM∑
i=1

(xi(+∆k)− xi(−∆k)2 ∝ x2(s0).

The first time, Beam Based Alignment was tested in the November-
December 2017 beam time. The methodology requires that the strength
of a single quadrupole is varied at a time, else the observed effect will be a
superposition of several closed orbit perturbations. Since quadrupoles at
COSY are fed in groups of four, in order to vary the strength of a single
quadrupole, additional coils on the poles of a quadrupole are used. In that
case, the field of a quadrupole becomes a superposition of two quadrupole
fields; however, this does not reflect on the methodology.

During the measurement multiple different bumps were introduced into
the closed orbit at the quadrupole position. This leads to different magni-
tudes of the measured effect on the closed orbit. Thereby multiple points
could be scanned in horizontal and vertical direction to find the optimal
beam position inside the quadrupole. [40, p. 60]

The measurement was repeated in February 2019.
From a surveying procedure the quadrupole position is known to ap-

proximately 0.2 mm. [13, Results and achievements at COSY]
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Especially relevant for the present research are the spin coherence time
optimization studies.

3.4 Spin coherence time optimization
procedure

The initial goal of the spin coherence time (SCT) studies at COSY was to
confirm the possibility of using sextupole fields in the correction of spin
tune dispersion associated with the transverse beam emittances and mo-
mentum dispersion (∆p/p). [42] At the present moment, SCT optimization
is the initial phase of any EDM-related investigation at COSY.

Sextupole spin decoherence suppression is used together with electron
cooling, in order to minimize the beam’s phase space volume, and bunch-
ing, which is used for the suppression of the linear spin decoherence effect
associated with momentum dispersion. The sextupoles, placed in the arc
sections, are used for the suppression of second-order spin decoherence
effects.

Spin decoherence is controlled by means of three sextupole families,
marked respectively: MXG, placed in the maximum of the dispersion func-
tion, and controlling the decoherence associated with ∆p/p; MXS, placed
in the maximum of the horizontal beta-function βx, and controlling the
dispersion effect associated with horizontal betatron oscilaltions; MXL, in
the maximum of βy, controlling the dispersion assiciated with the vertical
betatron oscillations.

Optimization procedure

In this section we describe the optimization procedure using the example
of the 2014 experiment. [43] The SCT optimization experiment was first
performed in 2012, but then only the MXS field strength was varied. In
2014, a comprehensive (the field strengths of all three sextupole families
were varied) SCT optimization study was done for the first time.
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Figure 3.2: COSY ring with marked sextupole positions. (Image taken
from [43].)

To separate the effects related to the beam emittances and the second-
order momentum dispersion (∆p/p)2, the beam was prepared in two dif-
ferent ways.

When studying the effect associated with a large (∆p/p)2, a polarized
deuteron beam injected at p = 0.97 GeV/c momentum is first cooled for
60 seconds, so that its emittance is minimized. After the cooling is turned
off, the beam is bunched (harmonic number h = 1). Bunching is required
to minimize linear spin decoherence effects.

When studying the effect associated with horizontal emittance, 1 the
beam is cooled and bunched simultaneously for the initial 60 seconds,
after which cooling is turned off, and horizontal heating is turned on for
5 seconds. The beam is heated by applying white noise to the horizontal
kicker plates.

In both cases the polarization is vertically-oriented at injection. It is
flipped by an RF solenoid after the beam preparation at the 80-th second.

Polarization is continuously measured by extracting the beam onto
a 17 mm thick carbon target and detecting the scattered deuterons at
the EDDA polarimeter. Extraction is done by applying white noise to the

1Decoherence associated with vertical emittance could not be studied because of acceptance
limitations.
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vertical kicker. Elastic scattering of deuterons on carbon is a spin sensitive
process with a large cross section.

The EDDA scintillators were grouped in four sectors (up, right, down,
left); event rate asymmetry between the left and right sectors is propor-
tional to the beam’s vertical polarization, the one between the up and
down – to the horizontal polarization component. Horizontal plane spin
precession occurs at a a rate which greatly exceeds the polarimeter sam-
pling rate, which is why a special data acquisition system was developed
in 2012. [41]

As a result of the experiment [43] a possibility of reaching an SCT over
1,000 seconds at COSY was shown.

SCT change when going from the external to the

internal beam layers

SCT optimization results obtained during the April-May 2019 beam time
are shown below.

In the Figure series 3.3 the up-down cross section asymmetry measure-
ment results are presented. In the first two figures one can observe that
the rate of depolarization changes from high in the first half (100 to 150
seconds) of the measurement cycle to significantly lower in the second half.
In Figure 3.3a especially, we observe that polarization is increasing in the
130 to 150 second range, before it begins to gradually decrease again.

Such behavior can be explained by the non-uniformity of the polariza-
tion distribution. In the first half of the measurement cycle particles from
the outer (halo) beam layer are being sampled, while by the second half
those get exhausted, and the polarization of the internal (core) layer is
being probed. Since the core is more dense than the halo, the orbit length
(hence spin tune) dispersion is less pronounced for its particles.

SCT dependence on sextupole strength

SCT dependence on the relative strengths of, respectively, the MXL and
MXG sextupoles, measured during the April-May 2019 beamtime is pre-
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sented in Figure 3.4. A resonance-type pattern can be observed.
Since COSY operates at an energy that is significantly far removed

from spin resonance we decided to check if this pattern can be seen (within
the framework of our numerical model) in the FS-type lattice. Spin tune
standard deviation as a function of the corresponding sextupole gradient
is plotted in Figure 3.5. (Data were taken from the simulation described in
section 2.2.) The same resonance pattern is observed as in the experiment.
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(a) SCT = 20.87± 1.49 sec.

(b) SCT = 42.3± 2.2 sec.
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(c) SCT = 70.6± 4.1 sec.

(d) SCT = 302.0± 27.5 sec.

Figure 3.3: Horizontal polarization measurements during SCT optimiza-
tion during the axion search experiment done in April-May 2019.
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(a) MXL sextupole.

(b) MXG sextupole

Figure 3.4: SCT as a function fo the sextupole strength.
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Figure 3.5: Spin tune dispersion as a function of the sextupole field gra-
dient.



Conclusion

The main results of this dissertation are:

(1) Effects of spin dynamics that could potentially result in systematic
error were studiedm such as:

• betatron motion-related psrticle spin dynamics pertubrations;

• spin decoherence;

• machine imperfection-related EDM-faking MDM spin preces-
sion.

(2) For each of the systematic errors, a solution was described, its effec-
tiveness numerically analyzed.

(3) Were formulated:

• the notions of the space and time domains (with respect to the
FS SR EDM measurement methodology);

• the notion of the 2D frozen spin state;

• the necessary conditions of a successful SR EDM measurement;

• the 2D FS (Frequency Domain) method, satisfying all of the
necessary conditions we found.

(4) Frozen and Quasi-Frozen spin lattices were described.

Concluding, I would like to express gratitude to my thesis advisors
Y. V. Senichev and S. M. Polozov for guidigng me in this research, fellow
students A. V. Saleev and E. V. Valetov for fruitful discussions, Institute
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fü Kernphysik (IKP-2) of Forschungszentrum Jülich, and in particular
members of the JEDI Collaboration, for giving me the opportunity to
work on this project and develop as a researcher.



Appendix A

Statistical modeling

In this appendix we analyze the standard error of the spin precession
frequency in the storage ring experiment for searching for the deuteron
EDM. The main body of the analysis begins in section A.2; section A.1
introduces some terms (like sample Fisher information, Fisher information
of a point), but it can be omitted.

Spin precession frequency is determined via fitting a harmonic signal
f(t) = a · sin(ω · t + δ) with constant parameters (a, ω, δ) to polarimetry
data. Polarimetry data are obtained by scattering the polarized beam on a
carbon target. Two important aspects of polarimetry are: (1) decrease of
the number of beam particles at each measurement, and (2) depolarization.

The first aspect motivates the search for a more optimal beam sampling
strategy. In sampling the beam polarization, most informative (in terms of
frequency) are measurements made during a rapid change in the signal(see
section A.1 below). This was the basis of the idea to measure polarization
only when its vertical component crosses zero (frequency-modulated sam-
pling): this way sampling is done in the mose efficient manner, and the
beam lifetime is extended.

We must note, however, that the detector analyzing power is maximal
in at the peaks of the measured signal, and goes to zero in the nodes.
This limits the opportunities of improvement of the sampling effectiveness
by modulated sampling: the most useful (for us) measurement are least
certain, while the least useful can be measured with most certainty.

It also affects the heteroskedasticity of the data: in our simulation we
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used a non-periodic measurement error growth model [24, p. 18], while the
oscillations of the analyzing power introduce periodicity into the error.

Depolarization is another factor restraining the usefulness of extending
the beam lifetime; it puts a much harder bound on the duration of the
measurement cycle, and hence the standard error of the frequency estimate
obtained from a single cycle.

In the next sections we will introduce a detector counting rate model,
the notion of cross section asymmetry, and determine an adequate (in
view of depolarization) length of the polarization measurement cycle. We
will also simulate experimental data in order to assess the potential of the
frequency-modulated polarization samplign frequency.

A.1 Preliminary analysis

The probability of observing the value yi ≡ y(ti) when the expectation
value is µ(ti) and the error is Gaussian is

f(yi|θ) =
1√
2πν

exp

(
−1

2

(yi − µ(ti))
2

ν

)
,

θ = (ν, ω, φ),

µ(ti) = N0 (1 + P sin(ωti + φ)) .

The likelihood of observing a set of observations y = (y1, . . . , yK),
under the i.i.d. assumption, is the product of propabilities taken as a
function of the parameters:

L(θ|y) =
∏
i

f(yi|θ),

and the log-likelihood

`(θ|y) = −K
2

log 2π − K

2
log ν − 1

2ν

∑
i

ε2i , εi = yi − µ(ti).

The usual assumptions for the error term are zero expectation and strict
exogeneity

E [εi| θ0] = E [tiεi| θ0] = 0,
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and the relations between the mean’s derivatives are

µ′φ = N0P cos(ωt+ φ),

µ′ω = t · µ′φ, ε′ξ = −µ′ξ.

Variance of the frequency estimate

After computing the lok-likelihood derivatives (and their expectation val-
ues), we can construct the Fisher matrix

I(θ0) =

K/2ν 0 0

0 1/ν
∑(

tiµ
′
φ(ti)

)2
1/ν
∑
ti
(
µ′φ(ti)

)2

0 1/ν
∑
ti
(
µ′φ(ti)

)2
1/ν
∑(

µ′φ(ti)
)2

 .

Its determinant

|I(θ0)| =
K

2ν3

(∑(
tiµ
′
φ(ti)

)2
∑(

µ′φ(ti)
)2 −

(∑
ti
(
µ′φ(ti)

)2
)2
)

︸ ︷︷ ︸
Ω

.

The variance-covariance matrix

vcov =


2ν/K 0 0

0 ν
∑

(µ′
φ(ti))

2

Ω ν
∑
ti(µ′

φ(ti))
2

Ω

0 ν
∑
ti(µ′

φ(ti))
2

Ω ν
∑

(tiµ′
φ(ti))

2

Ω

 .

The variance of the frequency estimate

var [ω̂] = ν

∑(
µ′φ(ti)

)2

∑(
tiµ′φ(ti)

)2∑(
µ′φ(ti)

)2

−
(∑

ti

(
µ′φ(ti)

)2
)2 . (A.1)
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Cross-check

Let µ(ti) = φ + ωti. In that case µ′φ(ti) = 1, µ′ω(ti) = ti = ti · µ′φ(ti), the
determinant of the Fisher matrix simplifies to

|I(θ0)| =
K

2ν4

(
K
∑
i

t2i −
(∑

ti

)2
)

=
K3

2ν4

(
1

K

∑
t2i − 〈t〉2

)
=

K

2ν4
·K
∑

(ti − 〈t〉)2︸ ︷︷ ︸
Ω

and the variance-covariance matrix becomes

vcov =


2ν2/K 0 0

0 ν∑
(ti−〈t〉)2 ν

∑
ti

K
∑

(ti−〈t〉)2

0 ν
∑
ti

K
∑

(ti−〈t〉)2 ν
∑
t2i

K
∑

(ti−〈t〉)2

 ,

with the well-known expression for the slope variance

var [ω̂] =
ν∑

(ti − 〈t〉)2 .

Let us denote
(
µ′φ(ti)

)2
= (N0P )2 cos2(ωti + φ) ≡ xi. Eq. (A.1) can be

rewritten in the following form:

var [ω̂] =
ν∑

j xj

(∑
i t

2
i

xi∑
j xj
−
(∑

i ti
xi∑
j xj

)2
)

=
ν∑

j xj
∑

iwi (ti − 〈t〉w)2

=
ν∑

j xj · varw [t]
. (A.2)
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Sampling modulation

Suppose we write the Fisher matrix as a sum:

I(θ0) =
∑
i

Ii(θ0); Ii(θ0) =
1

ν

(√2 · µ′φ(ti)
)−2

0 0

0 t2i ti
0 ti 1

·(µ′φ(ti))2
. (A.3)

Ii(θ0) = −E
[
∂2

∂θ2 log f(yi|θ)|θ=θ0
| θ0

]
could be1 interpreted as the in-

formation about the parameter that’s carried in yi.

µ′φ(ti)

Ii(θ0)

Figure A.1: Fisher information of a point is a parabola of the signal deriva-
tive.

If we attribute each point a weight proportional to its Fisher informa-

tion, i.e. wi = cos2(ωti + φ), 2 the weight of a region where
(
µ′φ(ti)

)2 ≥ 1/2

is greater than that of an equivalent region with
(
µ′φ(ti)

)2
< 1/2 by the

factor:∫ t1

t0

cos2(ωt+ φ)dt =
1

ω

∫ ωt1

ωt0

cos2 θdθ =
∆t

2
+

1

2ω
sinω∆t cosωΣt ≈ 1.9.

1The ti in the structural matrix in eq. (A.3) worries me, because it appears that a point
carries more information simply by virtue of it being measured later in time; but as far as I can
tell the reason for it is that it is assumed that the point labeled as i is the i-th point in a series,
and so a later point is more informative than a point closer to the origin, all other things being
equal. And it’s nothing new; in linear regression we also want our predictors to be as spread
out as possible.

2The variance of ω is proportional to the (2,2)-minor, in which time doesn’t figure, only
the squared cosine.



APPENDIX A. STATISTICAL MODELING 102

1 2 3 4 5 6

−1

−0.5

0.5

1

t

signal(
µ′φ(ti)

)2

Figure A.2: Filled areas are where the points are more informative.

The implication is that increasing the number of points measured dur-
ing the signal’s rise and fall is roughly twice as beneficial as doing so during
the peaks and troughs. 3

A.2 Detector counting rate model

We assume the following model for the detector counting rate:

N(t) = N0(t) ·
(

1 + P · e−t/τd · sin(ω · t+ φ)
)
, (A.4)

where τd is the decoherence lifetime, and N0(t) is the counting rate from
the unpolarized cross-section.

Since the beam current can be expressed as a function of time as

I(t) ≡ N b(t)ν = I0 · eλbt,

λb the beam lifetime, the expected number of particles scattered in the
3This is not accounting for the fact that the certainty of a polarimetry measurement is

inversely proportional to its informativity, as was discussed in the introduction to this appendix.
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direction of the detector during measurement time ∆tc is

N0(t) = p ·
∫ +∆tc/2

−∆tc/2

I(t+ τ)dτ

= p · νN
b
0

λb
eλbt ·

(
eλb

∆tc/2 − e−λb∆tc/2
)

≈ p · νN b
0e
λbt︸ ︷︷ ︸

rate r(t)

·∆tc, (A.5)

where p is the probability of “useful” scattering (approximately 1%).
The actual number of detected particles will be distributed as a Poisson

distribution

PN0(t)(Ñ0) =
(r(t)∆tc)

Ñ0

Ñ0!
· e−r(t)∆tc,

hence σ
[
Ñ0

]2

(t) = N0(t).

We are interested in the expectation value N0(t) = E
[
Ñ0(t)

]
, and its

variance σ [N0] (t). Those are estimated in the usual way, [?] as

〈Ñ0(t)〉∆tε =
1

nc/ε

nc/ε∑
i=1

Ñ0(ti), nc/ε = ∆tε/∆tc,

and

σ
[
Ñ0(t)

]
[∆tε] =

1

nc/ε

nc/ε∑
i=1

(
Ñ0(ti)− 〈Ñ0(ti)〉∆tε

)2

.

(∆tε is the event measurement time, ∆tc is the polarimetry measurement
time.) A sum of random variables, N0(t) is normally distributed.

The standard error of the mean then is

σ [N0] (t) = σ
[
Ñ0

]
(t)/
√
nc/ε =

√
N0(t)

∆tc
∆tε

≈

√
p · νN b

0

∆tε
·∆tc · exp

(
λb
2
· t
)
.
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Relative error grows:

σ [N0] (t)

N0(t)
≈ A√

∆tε
· exp

(
−λb

2
t

)
=

A√
∆tε
· exp

(
t

2τb

)
, A =

1√
p · νN b

0

.

(A.6)

A.3 Cross section asymmetry

A measure of the beam’s polarization is the relative asymmetry of detector
counting rates: [24, p. 17]

A =
N(π2 )−N(−π

2 )

N(π2 ) +N(−π
2 )
. (A.7)

In the simulation to follow, the function fitted to the asymmetry data
is:

A(t) = A(0) · eλd·t · sin (ω · t+ φ) , (A.8)

with three nuisance parameters A(0), λd, and φ.
Due to the decreasing beam size, the measurement of the figure of merit

is heteroscedastic. From [24, p. 18], the heteroscedasticity model assumed
is

σ [A]2 (t) ≈ 1

2N0(t)
. (A.9)

A.4 Measurement time frame

Assuming a Gaussian error distribution with mean zero and variance σ [ε]2,
the maximum likelihood estimator for the variance of the frequency esti-
mate of the cross-section asymmetry A can be expressed as

var [ω̂] =
σ [ε]2

Xtot · varw [t]
, (A.10)
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with

Xtot =

nε∑
j=1

xj =

nzc∑
s=1

nε/zc∑
j=1

xjs,

varw [t] =
∑
i

wi (ti − 〈t〉w)2 , 〈t〉w =
∑
i

witi,

wi =
xi∑
j xj

, xi = (A(0) exp(λdti))
2 cos2(ωti + φ) =

(
µ′φ(ti)

)2
.

In the expression above, Xtot is the total Fisher information of the
sample, and varw [t] is a measure of its time-spread. It can be observed that
by picking appropriate sampling times, one can raise the Xtot term, since it
is proportional to a sum of the signal’s time derivatives. If the oscillation
frequency and phase are already known to a reasonable precision, further
improvement can be achieved by the application of a sampling scheme
in which measurements are taken only during rapid change in the signal
(sampling modulation). Improvement here is limited by the polarimetry
sampling rate.

Both the varw [t] and Xtot terms are bounded as a result of spin tune
decoherence. We can express

∑nε/zc
j=1 xjs = nε/zc · x0s, for some mean value

x0s at a given node s. nε/zc is the number of asymmetry measurements
per node. The period of time during which measuring takes place, ∆tzc, is
termed compaction time. The value of the sum

∑nε/zc
j=1 xjs falls exponentially

due to decoherence, hence x0s = x01 exp (λd · (s−1)·π
ω ). Therefore,

Xtot = nε/zc · x01 ·
exp

(
λdπ
ω nzc

)
− 1

exp
(
λdπ
ω

)
− 1

≡ nε/zc · x01 · g(nzc); (A.11)

x01 =
1

∆tzc

∫ +∆tzc/2

−∆tzc/2

cos2(ω · t)dt =
1

2
·
(

1 +
sinω∆tzc
ω∆tzc

)
, (A.12)

nε/zc =
∆tzc
∆tε

. (A.13)

Eq. (A.11) provides us with a means to estimating the limits on the
duration of the experiment. In Table A.1, the percentage of the total
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Fisher information limit, the time in decoherence lifetimes by which it is
reached, and the signal-to-noise ratio by that time, are summarized. The
signal-to-noise ratios are computed according to:

SNR
4
=
A(0) · e−t/τd
σ [A] (t)

≈
√

2 · p · νN b
0 ·∆tc · A(0) · exp

[
− t

τd
·
(

1 +
1

2

τd
τb

)]
,

(A.14)
in which, from σ [A(0)] /A(0) ≈ 3%, the factor before the exponent is 33.

Table A.1: Total Fisher information, by what time it is reached, and the
corresponding signal-to-noise ratio.

FI limit (%) Reached (×τd) SNR
95 3.0 0.4
90 2.3 1.1
70 1.2 5.5
50 0.7 11.7

Eq. (A.10) can be rewritten in physical terms assuming zero-decoherence
(λd = 0) and uniform sampling with sampling period ∆t:

Xtot =
K∑
k=1

A2(0) cos2(ωtk + φ) =
1

2
A2(0) ·K,

varw [t] =
K∑
k=1

(k∆t− 〈t〉w)2 wk︸︷︷︸
1/K

≈ ∆t2

12
K2 =

T 2

12
,

and so

var [ω̂] =
24

KT 2
·
(
σ [ε]

A(0)

)2

.
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A.5 Simulation

We simulated data from two detectors with parameters gathered in Ta-
ble A.2 for Ttot = 1000 seconds, sampled uniformly at the rate fs = 375
Hz. These figures are chosen for the following reason: the beam size in a
fill is on the order of 1011 particles; if we want to keep the beam lifetime
equal to the decoherence lifetime, we cannot exhaust more than 75% of
it; only 1% of all scatterings are of the sort we need for polarimetry, so
we’re left with 7.5 · 108 useful scatterings. A measurement of the counting
rate N0(t) with a precision of approximately 3% requires somewhere in the
neighborhood of 2,000 detector counts, which further reduces the number
of events to 3.75 · 105 = fs · Ttot. One thousand seconds is the expected
duration of a fill, hence fs = 375 Hz.

Relative measurement error for the detector counting rates is depicted
in Figure A.3; the cross-section asymmetry, computed according to Eq. (A.7),
is shown in Figure A.4. To these data we fit via Maximum Likelihood a
non-linear heteroscedastic model4 given by Eq. (A.8), with the variance
function for the weights given by Eq. (A.9). The fit results are summarized
in Table A.3.

Table A.2: Detector counting rates’ model parameters

Left Right
φ −π/2 +π/2 rad
ω 3 rad/sec
P 0.4
τd 721 sec
τb 721 sec

N0(0) 6730

If our initial frequency estimate obtained from a time-uniform sample
has a standard error on the order of 1 · 10−6 rad/sec, simulation shows the
standard error of the estimate can be improved to ≈ 5.8 · 10−7 rad/sec.

4R package nlreg. [?]
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Table A.3: Fit results

Estimate SE Unit
A(0) 0.400 9.03 · 10−5

λd -0.001 7.86 · 10−7 1/sec
ω 3.000 7.55 · 10−7 rad/sec
φ -1.571 2.25 · 10−2 rad
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Figure A.3: Relative counting rate measurement error for the left and
right detectors as a function of time.
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Figure A.4: Expectation value (red line) and sample measurements (black
dots) of the cross-section asymmetry.
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[34] Bräutigam W, Brings R, Gebel R, Maier R, Schnase A, Jungwirth
HN. H−-Operation of the Cyclotron 7IC as Injector for the Cooler
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