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Experimental Benchmarking of Spin Tracking Algorithms for Electric
Dipole Moment Searches at the Cooler Synchrotron COSY

Known CP violating sources in the Standard Model of Particle Physics are not sufficient
to explain the predominance of the observed matter in the Universe. Additional sources
beyond the Standard Model are required. These sources can manifest in permanent
electric dipole moments (EDMs) of elementary particles. Searches for neutral particles
already started decades ago, but no value significantly different from zero has been ob-
served. The current upper limit for the neutron amounts to 2.9 · 10−26 e cm (90% C. L.).
New measurement methods for protons and deuterons in dedicated electrostatic storage
rings are proposed. As an intermediate step, essential requirements and limitations
are studied by the JEDI (Jülich Electric Dipole moments Investigations) collaboration
at the existing magnetic storage ring, the Cooler Synchrotron COSY. A first direct
measurement of the deuteron EDM is planned, which employs a radiofrequency (RF)
Wien filter to create an EDM related spin polarization signal. In the scope of this
thesis a new framework providing a convenient environment for simulation and analysis
was created to model this new method. It interfaces with the existing simulation code
COSY INFINITY to calculate transfer maps for the particle beam and spin coordinates.
These maps are used to perform repetitive tracking. New transfer map based algorithms
have been implemented to extend the functionality for time-varying electromagnetic
fields.

One of the major requirements for storage ring based EDM searches is a long spin
coherence time, which limits the available time to conduct the measurement. Important
contributions to spin decoherence arising from path-lengthening of individual particles
and from intrinsic spin resonances have been discussed and verified by simulation
studies. To cancel those contributions, storage ring parameters like betatron tunes,
chromaticities and momentum compaction factors require precise adjustment. The
measured locations of longest spin coherence times confirmed the model predictions for
different betatron tunes. Based on a conservative definition, spin coherence times of
about 750 s have been achieved during these studies at COSY. The long spin coherence
time allowed for the benchmarking of the new algorithms for time-varying fields. An
existing RF solenoid running on an artificial spin resonance was used to introduce
vertical polarization oscillations. Theoretical calculations predict a dependence of the
oscillation amplitude on the solenoid frequency. These calculations were successfully
verified by simulations and measurements. Also analytical estimates of the EDM related
polarization could be confirmed by the new algorithms. Systematic contributions
mimicking this signal arise from misalignments and field imperfections of the RF
Wien filter or the storage ring magnets. Calculations predicted that an RF Wien filter
rotation about the longitudinal axis by 0.1mrad produces a similar signal as an EDM
of dd ≈ 5 · 10−19 e cm. The same order of magnitude was obtained by randomly shifting
the quadrupole magnets in vertical direction assuming a Gaussian distribution with a
width of σy = 0.1mm. Finally, orbit correction methods to suppress these systematic
contributions were applied in simulations. These partially compensated the false EDM
signal contributions from misalignments of the static storage ring elements.
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Experimentelles Benchmarking von Spin Tracking Algorithmen zur Suche
nach elektrischen Dipolmomenten am Kühlersynchrotron COSY

Bekannte Quellen von CP Verletzung im Standardmodell der Teilchenphysik reichen
nicht aus, um den Materieüberschuss im bekannten Teil des Universums zu erklären,
sodass weitere Quellen jenseits des Standardmodells nötig werden. Diese Quellen
können zu messbaren elektrischen Dipolmomenten (EDMs) beitragen. In den seit
mehreren Dekaden durchgeführten Messungen mit neutralen Teilchen konnte bisher
kein von Null verschiedenes EDM beobachtet werden. Die derzeit präziseste Messung
für das Neutron EDM lieferte ein oberes Limit von 2,9 · 10−26 e cm (90% C. L.). Die
Nutzung von dedizierten elektrischen Speicherringen für Messungen mit Protonen,
Deuteronen und leichten Kernen wurde vorgeschlagen. Die Voraussetzungen und Limi-
tierungen werden derzeit von der JEDI (Jülich Electric Dipole moments Investigations)
Kollaboration am bestehenden magnetischen Speicherring, dem Kühlersynchrotron
COSY, untersucht. Ebenfalls ist eine erste direkte Messung des Deuteron EDMs unter
Verwendung eines hochfrequenten (HF) Wien Filters geplant, die ein EDM bezogenes
Spin-Polarisationssignal erzeugt. Im Rahmen dieser Arbeit wurde ein neues Framework
entwickelt, welches eine komfortable Umgebung zur Simulation und Analyse bereitstellt,
um diese Messmethode zu überprüfen. Dieses Framework ist mit dem bestehenden Sim-
ulationscode COSY INFINITY verknüpft, der es ermöglicht Transferabbildungen für
die Koordinaten der Teilchen und deren Spins zu berechnen. Die iterative Anwendung
dieser Abbildungen ermöglicht die zeitliche Entwicklung der Koordinaten zu simulieren
(Tracking). Eine Hauptvoraussetzung für die EDM Experimente in Speicherringen
ist eine lange Spinkohärenzzeit, da diese die verfügbare Messzeit limitiert. Wichtige
Beiträge zur Spindekohärenz, die einerseits aus einer Weglängenänderung von einzelnen
Teilchen resultieren und andererseits durch intrinsische Spinresonanzen hervorgerufen
werden, wurden diskutiert und in Simulationen überprüft. Um diese Beiträge zu min-
imieren, müssen Parameter des Speicherrings, u. a. Arbeitspunkte, Chromatizitäten und
„momentum compaction”-Faktor präzise eingestellt werden. Die Modellvorhersagen
zur Maximierung der Spinkohärenzzeit wurden durch Messungen bei verschiedenen
Arbeitspunkten bestätigt. Unter Verwendung einer konservativen Definition wurden
Spinkohärenzzeiten von etwa 750 s erreicht. Dies ermöglichte eine Validierung der
neuen Algorithmen die zur Simulation von HF Feldern implementiert wurden. Ein ex-
istierender HF Solenoid wurde verwendet, um Oszillationen der vertikalen Polarisation
hervorzurufen und zu untersuchen. Theoretische Berechnungen, die eine Abhängigkeit
der Oszillationsamplitude von der Solenoidfrequenz vorhersagen, wurden erfolgreich in
Simulationen und Messungen reproduziert. Ebenfalls wurden analytische Schätzungen
des EDM-abhängigen Polarisationsaufbaus durch auf den neuen Algorithmen basieren-
den Simulationsrechnungen bestätigt. Systematische Beiträge, die einen ähnlichen
Polarisationsaufbau produzieren, entstehen durch Fehlaufstellungen und Feldfehler des
HF Wien Filters bzw. der Elemente des Speicherrings. Hier haben Berechnungen gezeigt,
dass eine Rotation des HF Wien Filters von 0,1mrad um die longitudinale Achse einen
ähnlichen Aufbau wie ein Deuteron EDM von dd ≈ 5 · 10−19 e cm ergeben. Die gleiche
Größenordnung wurde auch durch zufällige, vertikale Verschiebungen der Quadrupole
unter Annahme einer Normalverteilung mit einer Breite von σy = 0,1mm erreicht.
Zur Unterdrückung dieser systematischen Beiträge wurden Orbitkorrekturmethoden
untersucht. Mit diesen war eine anteilige Kompensation des nicht EDM bezogenen Po-
larisationsaufbaus, der durch Fehlaufstellungen der Speicherringelemente hervorgerufen
wird, möglich.
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Chapter 1

Introduction

Physics aims for a description of nature in mathematical models. Fundamental symme-
tries play an important role in these models. A prominent example is the Standard
Model of Particle Physics (SM), which describes the smallest constituents of matter,
the elementary particles, and their interactions. Although it was verified by many
experimental observations, it currently lacks for an explanation of the observed matter
over antimatter dominance in the known part of the Universe [1]. A disappearance
of antimatter during the evolution of the Universe requires a violation of certain
fundamental symmetries. This violation can manifest in permanent electric dipole
moments (EDMs) of elementary particles. Their existence is strongly suppressed in the
SM. However, significantly larger EDMs are predicted by models, which incorporate
physics beyond the Standard Model (BSM). Hence, experimental searches for EDMs
bear the potential to reveal their various sources [2], but require a high statistical and
systematical sensitivity. Although the search for permanent EDMs in neutral systems
like neutrons already started decades ago, a non-vanishing value could not be observed
up to now [1]. In general, the applied measurement methods aim for a detection of a
spin polarization signal arising from the interaction of a potential EDM with electric
fields. Since charged particles are accelerated by electric fields, experimental methods
avoiding particle evasion from the experimental area are mandatory. For that reason,
particle storage rings seem to be an ideal choice satisfying this requirement. EDM
measurements for muons have already been performed in storage rings [3], while the
current experimental EDM limit for protons is deduced from theoretical considerations
applied to the results of atomic EDM measurements [4]. Future direct measurements
for proton and deuteron are proposed in dedicated storage rings utilizing pure electric
or a combination of electric and magnetic fields [5, 6]. Feasibility studies are conducted
within the JEDI (Jülich Electric Dipole moment Investigations) collaboration at the
existing storage ring [7], the Cooler Synchrotron COSY [8, 9]. The magnetic ring
COSY accelerates and stores polarized protons and deuterons with a momentum up
to 3.8GeV/c. A first direct measurement of the deuteron EDM is foreseen. The experi-
mental requirements are investigated by measurements and theoretical considerations,
which demand a precise model of the storage ring. One of the existing models is based
on the software framework COSY INFINITY [10]. Within the scope of this thesis a
comprehensive extension and benchmarking of this model has been performed. Experi-
mental efforts have been carried out and accompanied to validate the new algorithms
implemented to this model. The structure of this thesis is designed as follows.

Chapter 2 gives a general definition of EDMs, an overview of theoretical sources and
their connection to a matter antimatter asymmetry in the Universe. Furthermore the
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2 Chapter 1: Introduction

current experimental results for neutral and charged particles, i.e. proton and electron
are discussed.

Chapter 3 illustrates the beam and spin dynamics in particle storage rings. Relevant
storage ring parameters characterizing the particle motion like tunes, chromaticities
and momentum compaction factor are described. Important spin resonances and their
connection to EDM measurement methods in storage rings are pointed out.

Chapter 4 depicts the Cooler Synchrotron COSY and its magnetic lattice setup. Addi-
tionally, the experimental setup and data acquisition of the polarization experiments
are discussed.

In Chapter 5 the associated simulation framework used for accelerator and storage ring
modeling is illustrated. The development of new algorithms, i.e. for the simulation of
radiofrequency (RF) fields in the simulation framework, is presented. Finally, the bench-
marking results of the calculated storage ring parameters compared to measurement
results is shown.

In Chapter 6 the benchmarking process of the static storage ring is continued and an
important quantity for EDM measurements in storage rings, the spin coherence time,
is discussed. The connection of storage ring parameters to the spin coherence time is
pointed out. Required conditions of the lattice setup to achieve long spin coherence
times are evaluated and verified by measurements.

In Chapter 7 the implementation of RF fields is tested. Oscillations of the spin
polarization induced by an RF solenoid are investigated and compared to particle
tracking simulations and analytical estimates.

Chapter 8 makes use of the validated algorithms to depict the EDM measurement
method and the expected polarization signal. Systematic contributions mimicking
an EDM like signal are examined by introducing misalignments of the storage ring
elements. The prospects of orbit correction routines to reduce this contributions are
explored.

In Chapter 9 the results are summarized and an outlook is given.



Chapter 2

Motivation
This thesis is written in the context of the recently founded JARA-section: FAME1. One
task of this section is the search for mechanisms, which are responsible for the matter-
antimatter asymmetry in the Universe. The focus of this thesis is the investigation
of electric dipole moment (EDM) measurements in storage rings. Permanent EDMs
of particles are generated by processes and interactions that violate parity and time
reversal transformations. The latter are connected to CP violation, as mentioned
in Section 2.2.3. These processes are a postulated requirement for the creation of
the matter-antimatter asymmetry in Universe. Details about the asymmetry, the
fundamental discrete symmetries in physics as well as EDMs are discussed in this
chapter.

2.1 Matter-Antimatter Asymmetry

The matter-antimatter asymmetry is one of the big, unsolved puzzles of cosmology.
Astrophysical observations show, that at least the known part of the Universe is matter
dominated and there is no evidence for primordial antimatter [11, 12]. This excess of
matter can be expressed by the baryon-to-photon density ratio, also known as baryon
asymmetry, ηBAU. This quantity is used as parameter for cosmological models and can
be measured in two independent ways [13]. From Big-Bang-Nucleosynthesis (BBN)
and from the angular distribution of the cosmic microwave background (CMB). Both
approaches have been investigated and result in [14, 15]:

ηBAU = nB − nB̄
nγ

= (6.047± 0.074) · 10−10(CMB) , (2.1)

5.7 · 10−10 ≤ ηBAU ≤ 6.7 · 10−10(BBN, 95 % C. L.) . (2.2)

Here, nB (nB̄) denotes the baryon (anti-baryon) density, and nγ the photon density.
In fact, the anti-baryon density is zero. But, according to theory, an equal amount of
matter and antimatter produced in the big bang is predicted. Two explanations could
resolve the reason for the measured asymmetry:

1. Separated regions of matter and antimatter could have been formed during the
evolution of the Universe and the milky-way is part of a matter dominated region.

2. Asymmetric annihilation processes of matter and antimatter result in the mea-
sured excess of matter.

1Jülich Aachen Research Alliance - Forces and Matter Experiments
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4 Chapter 2: Motivation

The former case could be identified by the measurement of a single heavy nuclei
in primary cosmic rays. Since the production of secondary anti-nuclei is strongly
suppressed, a single anti-nucleus of 3He or preferably carbon would be enough for an
indication of anti-stars and anti-galaxies in the Universe [16]. The search is currently
performed experimentally by the AMS experiment [17], which is also part of the
JARA-FAME section.

For the latter case (asymmetric annihilation), the following three conditions formulated
by Sakharov [18] need to be fulfilled:

1. Baryon number violation: Obviously, there must be processes, which violate
the baryon number conservation, otherwise no asymmetry between baryons and
anti-baryons could be generated.

2. Violation of C and CP symmetries: Processes must violate charge conjuga-
tion symmetry (C) and charge conjugation plus parity transformation symmetry
(CP). This is required to produce an imbalance in the production of baryons and
anti-baryons.

3. The Universe is out of thermal equilibrium: In thermal equilibrium each
process occurs as often as its reverse process and there would be no net change
of baryon numbers.

CP violating processes can manifest in EDMs. This will be discussed in the following
sections.

2.2 Discrete Symmetries and Their Violation

The conservation of fundamental symmetries plays an important role in physics [13].
The search for violations has been of particular interest in the 20th century [19].
Especially the three discrete symmetries: Parity transformation, charge conjugation
transformation and time reversal transformation symmetry have been tested.

2.2.1 Parity Transformation

Parity transformation symmetry implies that a physical process will perform exactly
equal as its mirror image (i.e. under the transformation ~x→ −~x). In 1956, Lee and
Yang recognized that there is no experimental confirmation of this symmetry in weak
processes yet, while there is strong evidence for this symmetry in the strong and
electromagnetic interactions [20]. They suggested to investigate parity violation in beta
decays. Only one year later, Wu et al. performed an experiment observing the beta
decay of polarized 60Co [21]:

60Co→ 60Ni + e− + ν̄e . (2.3)

In this process, the electron is emitted in the direction opposite to the nuclear spin.
Since the velocity flips sign under parity transformation, this result was the first proof
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of parity violation. A further important milestone was achieved by the observation of
charged pion decays [22, 23, 24]:

π− → µ− + ν̄µ , (2.4)
π+ → µ+ + νµ . (2.5)

By measuring the spin of the emitted muon, it was observed that the neutrino spin
is always anti-aligned to the flight direction, while it is aligned in case of an anti-
neutrino. If one assumes massless neutrinos, this result is Lorentz-invariant and fixes
the helicity of the neutrino. Thus, there are only left-handed neutrinos and right-handed
anti-neutrinos [11].

2.2.2 Charge Conjugation Transformation

The second discrete symmetry is the charge conjugation transformation symmetry.
A charge conjugation transformation converts each particle into its antiparticle. The
process in Equation 2.5 is transformed as follows:

π+ → µ+
L + νµ,L

C==⇒ π− → µ−L + ν̄µ,L .
(2.6)

As shown previously, a left-handed anti-neutrino does not occur. Thus, pion decay
processes are a perfect example of the C symmetry violation in the weak sector.

2.2.3 Time Reversal Transformation

The third discrete symmetry is the time reversal transformation symmetry. It implies
that the rates of any physical process are equal, if it runs reverse in time (t → −t).
Tests of this symmetry in strong and electromagnetic interactions showed no evidence
of violation. The first direct observation of T violation in the weak sector was measured
in the decay of neutral kaons [25]. In general, direct measurements of T violation in
the weak sector are hard to perform, since strong and electromagnetic processes are
naturally stronger [11]. A suitable different approach is to take the CPT theorem into
account [26]. According to this theorem, the application of C, P and T transformation,
taken in any order, results in a symmetric process for any “quantum field theory based
on a Hermitian, local (no action at a distance), normal-ordered Lagrangian which is
invariant under Lorentz transformations, and for which the usual field commutation or
anti-commutation rules hold” [13]. Therefore, a T violating process is CP violating at
the same time and vice versa.

2.2.4 CP Violation

As previously shown, the pion decay violates both P and C symmetries. Applying a
combined CP transformation the pion decay process in Equation 2.4 transforms to
Equation 2.5 and at the same time also converts the particles from a left-handed to a
right-handed state. As a consequence, the pion decay processes conserve CP symmetry.
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Instead, violation of CP symmetry was first observed in the neutral kaon sector. As
pointed out by Gell-Mann and Pais, the neutral kaon can transform into its antiparticle
(kaon-mixing) [27]. This process performs by interchange of two virtual W-bosons.
The two kaon states can be expressed in the two mass eigenstates KS and KL, which
have different lifetimes. In the Fitch-Cronin experiment in 1964 [28], CP violation was
detected by measuring the decay rates ofKL into two- and three pions. IfKL had been a
pure CP eigenstate, the decay into two pions would not have been possible, but instead
a few decays into two pions have been measured. The observed CP violation could
be incorporated into the Standard Model via the CKM-Matrix (Cabibbo-Kobayashi-
Maskawa) [29, 30], but this required the proposal of three generations of quarks, even
before the charm quark was detected. Nevertheless, this extension turned out to be
successful. In more recent experiments, the CP violation was also observed in the B
meson sector [31, 32]. The CP violation generated by the CKM mechanisms seems to
be not sufficient to explain the matter-antimatter-asymmetry [33, 34]. Therefore, also
permanent EDMs are proper candidates to search for additional CP violating sources
as discussed in the next section.

2.3 Electric Dipole Moments

2.3.1 Definition

In electrodynamics, the EDM is defined as a separation of the “centers of gravity” of
positive and negative charges in a system. In case of a continuous charge density ρ(~x)
the EDM ~dED can be calculated as follows:

~dED =
∫
V
d~x ~x · ρ(~x) . (2.7)

Analog the magnetic dipole moment (MDM) ~µED is defined as

~µED = 1
2

∫
V
d~x
(
~x×~j(~x)

)
. (2.8)

Here, j(~x) denotes the current density. In particle physics, EDMs and MDMs are
fundamental properties of particles. Since the spin quantization axis is the only marked
direction, the dipole moments are defined either parallel or anti-parallel with respect
to the spin direction [35]:

~d = ηEDM ·
q

2mc
~S , (2.9)

~µ = g · q2m
~S . (2.10)

Here, q is the charge and m the mass of the particle. The speed of light is denoted as c
and ~S is the spin. The dimensionless quantity g is called the g-factor, while in case of
an EDM the parameter ηEDM is used as dimensionless scaling parameter. Since the
neutron has no charge, the quantities for charge and mass of the proton are used in
this case.
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Figure 2.1: Schematic drawing of a particle with electric and magnetic dipole moment
in electromagnetic fields. Applying a parity transformation flips only the sign of the
electric field. A time reversal transformation flips the two dipole moments, provided
that they are associated to the spin vector and η and g are scalars. In addition, the
magnetic field changes its direction. Thus, both symmetries are violated in case of a
nonzero EDM.

For a (neutral) particle with EDM and MDM in electromagnetic fields the non-
relativistic Hamiltonian reads [1]:

H = −~µ ~B − ~d ~E . (2.11)

In case of a P transformation, only the electric field E flips its sign, while for a T
transformation the dipole moments and the magnetic field B are inverted. Thus, both
parity transformation and time reversal transformation symmetry are violated, if d 6= 0.
This is illustrated in Figure 2.1. Assuming the CPT theorem to be valid, this directly
implies CP violation as well.

2.3.2 CP Violating Sources

The weak and strong sectors of the SM contain CP violating sources. Considering also
various extensions of the Standard Model, the contributing CP violating processes to
EDMs of different particles are manifold.
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2.3.2.1 Weak Sector of the Standard Model

The only established sources of CP violation in the SM are contained in the already
mentioned CKM-Matrix in the quark sector and, in case of massive neutrinos, its
counterpart, the PMNS-Matrix (Pontecorvo-Maki-Nakagawa-Sakata) [36, 37] in the
lepton sector. The CKM-Matrix V can be parametrized as [38]:d′s′
b′

 = V ·

ds
b

 , V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 .
(2.12)

Here, d, s, b characterize the flavor eigenstates of the d-type quarks, while d′, s′, b′
denote the basis of eigenstates, which couple to the u-type quarks via exchange of
a W -boson. Explicit values for the entries of the matrix have been constrained in
measurements and are given in [39]. The phase δ accounts for the imaginary content
of this matrix. The position of the phase factors in this matrix can vary in different
parameterizations, but the so called Jarlskog invariant [40]

JCP = |Im(VijVklV ∗ilV ∗kj)| (2.13)

is fixed in any parametrization and directly connected to CP violation. CP symmetry
is conserved, if

2i(m2
t −m2

c)(m2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m2
b −m2

d)(m2
s −m2

d)JCP (2.14)

vanishes [13]. The current measured result for the Jarlskog invariant is [39]

JCP = 3.06+0.21
−0.20 · 10−5. (2.15)

It has been shown, that the one-loop level and two-loop level Feynman diagrams using
only the CKM mechanism do not contribute to a non-vanishing quark EDM. At least
three-loop level diagrams are required, which directly reveals the EDM suppression
[19, 41]. This leads to estimates for the u-quark and d-quark in the order of [19]:

dCKM
q ' 10−34 e cm− 10−35 e cm . (2.16)

For leptons the suppression is even stronger and the first non-vanishing contribu-
tion arises, when four-loop level diagrams are taken into account. This results in a
significantly smaller EDM estimate for the electron [19, 42]:

dCKM
e ≤ 10−38 e cm . (2.17)

In case of nucleon EDMs, the impact of the quark EDMs plays only a minor role.
Considering effective field theory, the effects of CP-odd pion-nucleon couplings at
one-loop level are dominating. For the neutron EDM, this leads to an estimate of
[19, 43]:

dCKM
n ' 10−32 e cm . (2.18)
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This estimate is many orders of magnitude smaller than the sensitivity of current
experimental investigations. For that reason, further sources need to be scrutinized.
They could lead to substantially larger EDMs required for an explanation of the
matter-antimatter asymmetry in the Universe.

2.3.2.2 Strong Sector of the Standard Model

A further suitable source in the SM is known as the θ̄-term. The Lagrangian of the
quantum chromodynamics (QCD) can be supplemented by an additional term [2]:

Lθ̄ = −θ̄ g2
s

64π2 ε
µναβGaµνG

a
αβ , (2.19)

where Gaµν denotes the gluon field strength tensor, εµναβ is the total-asymmetric four-
tensor, gs denotes the strong coupling constant and θ̄ is a dimensionless parameter.
The parameter θ̄ cannot be directly computed, but the EDMs of proton and neutron
created by this contribution have been parametrized with respect to θ̄ in theoretical
calculations, for instance in [44]:

dθ̄n = θ̄ · (−2.9± 0.9) · 10−16 e cm , (2.20)

dθ̄p = θ̄ · (1.1± 1.1) · 10−16 e cm . (2.21)

Naturally, θ̄ is expected to be O(1), but the present neutron EDM limit constrains
[2]

θ̄ < 10−10 . (2.22)

The smallness of this parameter is a totally different situation with respect to the weak
sector and therefore known as the strong CP problem. If one of the quark masses would
be zero, the problem could be resolved and θ̄ could be set to zero. But experimental
results suggest, that this solution is unlikely [13]. Another attempt to solve the problem
required the postulation of a new particle, the axion, which has not been experimentally
observed yet [45, 46, 47].

2.3.2.3 Sources Beyond the Standard Model

Various models beyond the Standard Model also include CP-odd contributions. Since
these contributions can be substantially larger than in the weak sector, EDMs bear the
potential to detect these sources. In Figure 2.2, a schematic overview including some of
the BSM models and their possible contributions to various EDM observables is shown.
For example, the left-right symmetric model primarily creates CP-odd four quark
couplings, which could add to observable EDMs differently. Hence, EDM measurements
for different particles could disentangle the sources beyond the Standard Model from
the θ̄-term. In context of the proposed measurements for protons and light nuclei, this
has been shown in [2]. For instance, the relation of the deuteron EDM dd to the EDM
of its constituents

dd − dp − dn (2.23)
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Figure 2.2: The connection of CP violating sources and the EDMs of various particles.
The different momenta (EDM, magnetic quadrupole moment and Schiff moment)
are shown in red, the effective couplings are shown in blue. Solid arrows represent a
stronger contribution than dashed arrows (adapted from [19, 48, 49]).

indicates a suitable discrimination of the θ̄-term and BSM sources. In case of the
θ̄-term, the deuteron EDM is mainly determined by the EDM of its constituents:

dθ̄d − dθ̄p − dθ̄n = θ̄ · (5.0± 3.7) · 10−17 e cm , (2.24)

while in other scenarios the contribution of the nucleon-nucleon interaction is estimated
to be dominant: ∣∣∣∣∣dD − dp − dndp + dn

∣∣∣∣∣ > 1 . (2.25)

2.4 Experimental Searches in Neutral Systems

After pointing out the scientific prospects of EDM measurements for different particles,
the experimental searches in neutral systems will be discussed in this section.

2.4.1 Neutron

Historically, the neutron was the first particle for which EDM measurements were
proposed and conducted [1, 50]. The first neutron EDM experiment was performed in
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Figure 2.3: Ramsey’s method of separated oscillatory fields consisting of five steps:
(1.) Generating a spin-polarized ensemble. (2.) Inducing a π/2-pulse to flip the spin
perpendicular to fields. (3.) Free precession in parallel magnetic and electric fields.
(4.) Inducing a second π/2-pulse to flip the spin. (5.) Analyzing polarization of the
ensemble (adapted from [1, 51]).

1949 at the Oak Ridge reactor [51]. Ramsey’s method of separated oscillatory fields
was applied to create an observable signal related to the EDM. This method will be
subsequently outlined on basis of Figure 2.3 [1]. It consists of five steps:

1. A method to provide a neutron sample polarized parallel to the main magnetic
field in the measurement apparatus is necessary. In the experiment discussed, the
neutrons were created in the reactor and due to spin-dependent reverse scattering
on a magnetic mirror, the neutron sample was spin-polarized and guided through
the main apparatus.

2. While passing through the apparatus, an RF magnetic field is created by a coil.
The frequency of the field is adjusted to the Larmor frequency of the neutrons in
the main magnetic field. The superposition of the static field and the oscillatory
field slowly moves the polarization into the plane perpendicular to the main
magnetic field. This is called a π/2-pulse.

3. In the third step, the neutron sample enters a region of superimposed static
magnetic and electric fields. Both fields are either aligned to anti-aligned to
each other. They introduce a precession of the perpendicular polarization. The
precession frequency is given by

ω = 2|µB ± dE|
~

. (2.26)

The sign between the two contributions refers to aligned or anti-aligned fields,
respectively.
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4. Behind the the electric field region, a second RF magnetic field induces another
π/2-pulse to the spins of the neutrons. The frequencies of the RF fields in step
2 and 4 are equal. The phases are adjusted with respect to each other. Only
the perpendicular polarization component, which is in phase with the RF field,
flips slowly to the vertical direction, while the other component is essentially
unchanged. Therefore the vertical polarization serves as a measure for the EDM
and allows one to determine the frequency difference for aligned and anti-aligned
fields:

∆ω = ω(E↑↑)− ω(E↑↓) = 4|d|E
~

. (2.27)

The frequency slip transfers to a phase slip between the oscillatory field and
the in-plane spin vector. Thus, the vertical polarization after the π/2-pulse can
change.

5. The vertical polarization is measured, for instance by using the spin-dependent
scattering on a magnetic mirror and counting the reflected neutrons.

The result of this first experiment could be converted to an upper neutron EDM limit
of [51]

|dn| < 5 · 10−20 e cm . (2.28)

This method has established as the general method for neutron beam experiments.

A similar method is applied in more recent ultracold neutron (UCN) EDM experiments.
In these experiments, very low energetic neutrons are contained in a storage cell. Static
parallel magnetic and electric fields inside the cell are used to induce a spin precession.
The small kinetic energy prevents them to overcome the effective potential barriers of
the surrounding materials of below µeV. This neutron configuration allows to suppress
systematic contributions arising from motional magnetic fields ~v × ~E [1]. The current
upper limit was measured at the ILL experiment in Grenoble [52]. Two π/2-pulses with
a duration of two seconds (now separated in time rather than location) have been used
to flip the spin in the storage cell. The free precession lasts around 130 seconds. For
further suppression of systematics mercury (199Hg) was used as a magnetometer. Since
the EDM limit of mercury is below the expected sensitivity of the neutron experiment,
the introduced mimic EDM signal is minor. Overall the current most stringent neutron
EDM limit amounts to [52]:

|dn| < 2.9 · 10−26 e cm . (2.29)

2.4.2 Diamagnetic and Paramagnetic Atoms and Molecules

Neutrons were the natural choice for the first EDM measurements, because they are not
accelerated in external electric fields, like protons or electrons. Thinking of larger neutral
systems like atoms and molecules introduces an additional challenge: The shielding
effect. It states, that the the energy of a neutral system consisting of electrostatically
interacting non-relativistic charged point-like particles with EDMs is unchanged by an
external electric field, because the particles of the system rearrange themselves until the
external field at each location is compensated and a new equilibrium is reached. Thus,
there is no net acceleration of the system either [1]. This statement is called Schiff’s
theorem and has been quantum mechanically proven in [53]. The exact screening is
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violated, if one of the requirements (non-relativistic motion, point-like particles and
only electrostatic interactions) is not fulfilled. Additionally, also CP-odd interactions
of the constituents can contribute to atomic and molecule EDMs [54].

In diamagnetic atoms the finite size of the nucleus and magnetic plus higher-order
interactions between nucleons and electrons give rise to an atomic EDM [55]. The so
called Schiff moment is created by CP-odd nuclear forces. It can arise from the nucleon
EDMs and CP-odd nucleon nucleon interactions and contributes to the electrostatic
potential. Its interaction with the atomic electrons is the major contribution to the
atomic EDM. This allows to deduce limits to the proton EDM using measurement in
diamagnetic systems. Currently, the best limit was obtained in a measurement using
mercury 199Hg [4]. The atoms were polarized by a 254 nm laser system. The precession
of the polarization was measured in two separated cells simultaneously. In one cell the
static magnetic and electric field were aligned, in the other anti-aligned. The precession
frequency was extracted continuously using polarized laser light. The EDM limit could
be determined to [4]:

|d
(

199Hg
)
| < 3.1 · 10−29 e cm . (2.30)

Using the calculated contributions to the Schiff’s moment [56], the proton EDM could
be extracted indirectly from these results [4]:

|dp| < 7.9 · 10−25 e cm . (2.31)

Another class are the paramagnetic atoms and molecules, especially those with one
unpaired electron. In this case, Schiff’s theorem is evaded by relativistic effects [57] and
the resulting atomic/molecular EDM can be interpreted in terms of the electron EDM
[58]. The violation is stronger in heavy atoms, which leads to a substantially larger
atomic EDM than the electron EDM. For thallium, the enhancement factor of the
atomic EDM amounts to 585 [59]. In case of polar molecules, which are polarizable by
a small external electric field, the violation due to relativistic effects is even stronger.
Thus, the electron EDM interacts with a strong effective electric field, which drastically
increases the frequency shift in any precession experiment. The current upper limit for
the electron EDM was measured recently using the polar molecule thorium monoxide
(ThO) [60]. In this experiment, the initial spin states of the ThO pulse were prepared
and selected using laser pumping. As in all previously described methods, the spin
precession was induced by parallel magnetic and electric fields. Afterwards a state
readout laser was used to excite the ThO molecules and produce fluorescence light,
which was measured in photomultipliers. The final result for the electron EDM was
stated to [60]:

|de| < 8.7 · 10−29 e cm . (2.32)

2.4.3 Summary

Up to now all EDM measurements result in upper limits. An overview of the current
upper limits of the EDMs for a selection of particles is listed in Table 2.1. These
measurements set stringent limits to extensions to the SM. For proton and electron
the illustrated limits are deduced from indirect measurements in atoms and molecules.
Therefore, the extraction requires a precise knowledge of the theory describing these
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Table 2.1: Current upper limits of EDM searches in neutral systems.

System Current EDM Limit
Neutron 2.9 · 10−26 e cm (90% C. L.) [52]
199Hg 3.1 · 10−29 e cm (95% C. L.) [4]
Proton 7.9 · 10−25 e cm (95% C. L.) [4]
Electron 8.7 · 10−29 e cm (90% C. L.) [60]
Muon 1.8 · 10−19 e cm (90% C. L.) [3]

systems. Direct measurements of these EDMs could exclude uncertainties and verify
the theoretical calculations. For charged particles, direct measurements in storage rings
are an excellent opportunity. In the g−2 experiment, which was conducted to determine
the anomalous magnetic moment a of the muon, a first direct measurement of the muon
EDM was already performed [61, 3]. A new version of this experiment is currently
setup [62, 63] and further measurements for protons and deuterons [5, 6] as well as
light nuclei are proposed. As previously illustrated, the simultaneous measurement of
EDMs in different systems allows for distinction of different CP violating sources, once
non-vanishing EDMs will be found. In the next section, an introduction into beam and
spin dynamics in accelerators and storage rings will be given. In this context, the muon
measurement method is highlighted and the prospects for direct EDM measurements
in storage rings will be discussed.
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Beam and Spin Dynamics in
Storage Rings
The knowledge of beam and spin dynamics is essential for the investigation of EDM
measurements in storage rings. In this chapter, an introduction into beam and spin
dynamics is given and methods for EDM measurements in storage rings are presented.
The description of the beam dynamics fundamentals are mainly taken from [64] and
have been supplemented by information from [65, 66, 67, 68].

3.1 Beam Dynamics

A beam is defined as an ensemble of particles. The motion of each particle can be
parametrized by its spatial coordinates and momentum. These coordinates form the six
dimensional phase space in beam dynamics. The evolution of the particle coordinates
in phase space is given by the equations of motion of the system.

3.1.1 Coordinate System

Naturally, the time t is often chosen as independent variable to express the evolution
of a system in physics. In beam dynamics this choice is rather inconvenient. A particle
accelerator usually consists of a set of deflectors or magnets with time-independent,
static fields to guide and focus the beam. In the following, the description will focus on
planar storage rings build-up by pure magnetic elements. Usually, these storage rings
are made up of straight and arc sections. The electromagnetic fields of the storage ring
elements define the reference orbit ~rref(s), which is curved in case of a non-vanishing
field. Here, the arc length s is chosen as independent variable, since the electromagnetic
fields are usually known with respect to their location.

A beam usually consists of a set of particles following phase space trajectories close
to the reference orbit. Therefore, a more convenient coordinate system is chosen
to describe the motion. A reference particle is defined, which moves exactly on the
reference orbit ~rref and has the reference momentum ~pref of the beam. A new Cartesian
coordinate system is specified, whose origin moves and coincides with the position
of this reference particle. In Figure 3.1, this is illustrated for the movement from an
initial position si to a final position sf on the reference orbit. The first basis vector ~es
always points parallel to ~pref. The second basis vector ~ex, perpendicular to ~es, lies in
the plane of the storage ring (planar ring). The third vector completes the basis and is

15
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Figure 3.1: Illustration of the common co-moved Cartesian coordinate system used for
the description of beam dynamics in accelerator physics. The corresponding coordinates
(x, y, s) are called curvilinear coordinates.

given by ~ey = ~es × ~ex. The transformation of the basis vectors from si to sf is defined
by a simple rotation [66]:

~ex,f = cos(θ)~ex,i + sin(θ)~es,i , (3.1)
~ey,f = ~ey,i , (3.2)
~es,f = − sin(θ)~ex,i + cos(θ)~es,i . (3.3)

with
θ =

∫ sf

si

ds
ρ(s) =

∫ sf

si

h(s)ds . (3.4)

Here, ρ(s) denotes the bending radius of the reference orbit and h(s) is its inverse, the
curvature. The evolution of the basis vectors is characterized by:

d
ds~ex = h(s)~es ,

d
ds~es = −h(s)~ex . (3.5)

Now, the particle coordinates are given with respect to the origin of the new coordi-
nate system. Since these relative deviations can be considered as small, perturbative
techniques can be used to describe the motion and analyze the system [64]. Given
the position (momentum) of the particle in the lab frame ~r (~p), the projections of
~r − ~rref (~p − ~pref) on ~ex and ~ey are denoted as the radial and vertical coordinates x
and y (px and py), respectively. Furthermore, the momenta are normalized by the
reference momentum p0 = |~pref| resulting in a = px/p0 and b = py/p0. The subscript
“0” denotes the reference particle in the initial state (not taking possible acceleration
and deceleration in electric fields into account). Finally, the four coordinates x, a, y, b
can be used to fully describe the transverse motion of each particle.

The longitudinal phase-space can be characterized by the deviation of the initial kinetic
energy K of a single particle with respect to the reference particle K0:

δK = K −K0
K0

. (3.6)
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Together with the space-like variable

lK = −v0
γ0

1 + γ0
(t− t0) = −κ∆t , (3.7)

it forms a canonical conjugate pair. Here, v0 denotes the velocity and γ0 denotes the
Lorentz factor of the reference particle. In magnetic rings, the curvature in a magnetic
field is proportional to the momentum rather than the kinetic energy. For that reason
often the momentum difference is used:

δ = p− p0
p0

. (3.8)

There are also different conventions used for the second longitudinal coordinate:

∆t = t− t0 , (3.9)
l = −v0∆t , (3.10)
φ = ω∆t . (3.11)

Using these six variables one can define a phase space vector containing the coordinates
of one particle [64]:

~z = (x, a, y, b, lK , δK)T . (3.12)

The coordinate evolution from the location si to sf can be obtained from the transfer
map of the system:

~z(sf ) =M(sf , si) (~z(si)) . (3.13)

The transfer map can be expanded in a Taylor series of the phase space coordinates. A
constant part does not exist, since the reference particle coincides with the origin of the
coordinate system by definition2. The first order expansion forms a so called transfer
matrix M̂ . Assuming that all non-linear terms vanish, the motion of the system can
be fully described by matrix multiplications:

~z(sf ) = M̂(sf , si) · ~z(si) . (3.14)

Unfortunately, the study of the non-linear terms is often crucial, for example, to
determine the long-term stability of a system. Therefore, more complex forms ofM
are mandatory.

2In context of this thesis, the term reference particle is used for a particle traveling on the design
orbit. As soon as perturbing fields from imperfections or RF fields are introduced, this particle
might be deflected and leaves the design orbit of the accelerator, while the origin of the reference
coordinate system remains on the design orbit
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3.1.2 Equations of Motion

The equations of motion for a relativistic particle in electromagnetic fields in a Cartesian
coordinate can be expressed as:

d~r
dt = ~v , (3.15)
d~p
dt = ~F = q

(
~E + ~v × ~B

)
. (3.16)

Equation 3.15 is the definition of the velocity v, while Equation 3.16 is the Lorentz force
law. In the following, the contributions from gradients and higher moments have been
neglected The position vector is given by ~r and the momentum vector is denoted by ~p.
Here, ~E and ~B are the magnetic and electric fields, respectively. These equations need
to be transformed into curvilinear coordinates with s as independent variable. This is
described in [64]. In a first step, the equations for the space-like variables are derived.
In the following, the derivative with respect to s is denoted with the superscript “′”. In
case of a curved trajectory, the derivative of the path-length L of a particle depends
on the horizontal position x in phase space:

L′ = 1 + hx . (3.17)

This reflects, that the circumference of a circle is proportional to its radius. Consequently,
the first two equations for transverse motion are given by [64]:

x′ = L′
dx
dL = (1 + hx)px

ps
= (1 + hx)p0

ps
· a , (3.18)

y′ = L′
dy
dL = (1 + hx)py

ps
= (1 + hx)p0

ps
· b . (3.19)

These relations can be used to express the evolution of time along s:

t′ = 1
v

√
x′2 + y′2 + L′2 = 1

v
(1 + hx) p

ps
(3.20)

with p = |~p|.

For the longitudinal space-like coordinate, the energy change due to electric fields has
to be taken into account. Therefore, a new quantity η is defined, which expresses the
ratio of kinetic energy to the energy equivalent of the rest mass:

η = γ − 1 = K0(1 + δK)− qV
mc2 = η0(1 + δK)− qV

mc2 , (3.21)

V = −
∫
~E(x, y, s, t) · ~v dt . (3.22)

The energy changes collected along s, which in general are position and time dependent,
are contained in η. Finally, the derivative of lK with respect to s can be expressed
as:

l′K = −v0
γ0

1 + γ0
(t′ − t′0) = −1 + η0

2 + η0

[
(1 + hx) 1 + η

1 + η0

p0
ps
− 1

]
, (3.23)

yielding the third equation of motion.
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To derive the equations of motion of the momentum-like variables, Equation 3.16 has
to be transformed into the curvilinear coordinate system. Taking Equation 3.5 into
account, it follows:

d
ds~p(s) = d

ds(px~ex + py~ey + ps~es)

= (p′x~ex + p′y~ey + p′s~es) + (px~e ′x + py~e
′
y + ps~e

′
s)

= (p′x~ex + p′y~ey + p′s~es)− h(s)~ey × ~p(s)
= ~F (s)t′

⇒ d
ds (px, py, ps) = ~F (s)t′ + h(s) · (ps, 0,−px) .

(3.24)

Using Equations 3.20 and 3.21, the first term can be expressed as:

~F (s)t′ = q( ~E + ~v × ~B)t′ = (1 + hx)
[

1 + η

1 + η0

~E

χe0

p2
0
ps

+ ~p×
~B

χm0

p0
ps

]
. (3.25)

Here, the quantities magnetic rigidity and electric rigidity

χm = p

q
and χe = pv

q
(3.26)

have been introduced. Dividing Equation 3.24 by p0 results in the equations of motion
for the transverse momentum-like variables:

a′ = (1 + hx)
[ 1 + η

1 + η0

Ex
χe0

p0
ps

+ Bs
χm0

p0
ps
b− By

χm0

]
+ h

ps
p0

, (3.27)

b′ = (1 + hx)
[ 1 + η

1 + η0

Ey
χe0

p0
ps
− Bs
χm0

p0
ps
a+ Bx

χm0

]
. (3.28)

The derivative of the sixth variable vanishes by definition:

δ′K = 0 , (3.29)

since all energy changes are treated in η. In many applications, δK is used to investigate
the evolution of energy deviations along s. In this case, the magnitude of V needs to
be regularly absorbed into δK .

Note, that the same set of linear equations of motion can be derived using Lagrangian
and Hamiltonian methods in curvilinear coordinates. The Lagrangian for a charged
particle in an electromagnetic field is given as follows [69]:

L(s, x, y, ṡ, ẋ, ẏ; t) = −mc2

√
1− ~v2

c2 − eΦ + e~v · ~A , (3.30)

~v2 = v2
s + v2

x + v2
y , (3.31)

~v · ~A = vsAs + vxAx + vyAy . (3.32)

Here, m and e denote the mass and the charge of the particle, Φ is the electrostatic
potential and ~A is the magnetic vector potential. The speed of light is given as c. To
derive the equations of motion in curvilinear coordinates, the common Hamiltonian is
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computed and a Legendre transformation is used to change the independent variable
to s. A detailed description of this method is given in [69].

In summary, the equations of motion of the system in curvilinear coordinates are given
by [64]:

x′ = (1 + hx)p0
ps
· a , (3.33)

a′ = (1 + hx)
[ 1 + η

1 + η0

Ex
χe0

p0
ps

+ Bs
χm0

p0
ps
b− By

χm0

]
+ h

ps
p0

, (3.34)

y′ = (1 + hx)p0
ps
· b , (3.35)

b′ = (1 + hx)
[ 1 + η

1 + η0

Ey
χe0

p0
ps
− Bs
χm0

p0
ps
a+ Bx

χm0

]
, (3.36)

l′K = −1 + η0
2 + η0

[
(1 + hx) 1 + η

1 + η0

p0
ps
− 1

]
, (3.37)

δ′K = 0 , (3.38)

with
p0
ps

=
√

η(2 + η)
η0(2 + η0) − a

2 − b2 . (3.39)

3.1.3 Field Expansion

In this section, the field expansions of electric and magnetic fields in curvilinear
coordinates are discussed. Assuming time-independent fields in a planar ring, both
fields can be expressed by scalar potentials V , which satisfy Laplace’s equation [64]:

∆V = 1
1 + hx

∂

∂x

(
(1 + hx)∂V

∂x

)
+ 1

1 + hx

∂

∂s

(
(1 + hx)∂V

∂s

)
+ ∂2V

∂y2 = 0 . (3.40)

Using an ansatz

V (x, y, s) =
∞∑
k=0

∞∑
l=0

ak,l(s) ·
xkyk

k!l! (3.41)

and inserting it into Equation 3.40 leads to an recursion relation for the coefficients
ak,l(s). All coefficients ak,l(s) can be calculated from given values of ak,0(s) and
ak,1(s).

In accelerator physics, the fields are usually characterized in terms of multipole
components. For simplification the following discussion focuses on s-independent
magnetic potentials, which excludes longitudinal fields. Furthermore,it is assumed,
that each multipole order is spatially separated from each other. Thus, the curvature
vanishes (h = 0) except for dipole fields. The dipole field terms in V are defined by
k + l = 1. For an ideal planar ring the radial magnetic fields Bx vanish. This requires
a1,0 = 0 for the magnetic case. The second parameter a0,1 defines the vertical dipole
field strengths. The next higher order is given by the quadrupole terms, characterized by
k+ l = 2. Here, the parameter a1,1(s) defines the gradient of a normal quadrupole field,
which is mainly used for beam focusing. Rotating a normal quadrupole by 45° around
the s-axis results in a skew quadrupole, which is commonly used for correction of the
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coupling between the horizontal and vertical phase spaces. The parameter a2,0(s) equals
to half of its gradient. Each quadrupole field can be represented by a superposition of
normal and skew part. The highest order considered are the sextupole fields, which are
described by the coefficients with k + l = 3. They can also be characterized by their
normal (a2,1(s)) and skew terms (a3,0(s), rotation by 30°). Since the resulting fields
are non-linear, they contribute to non-linear transverse motion. Taking only normal
components into account, the normalized fields can be expanded to [67]:

Bx(x, y)
χm0

= 0− k · y + k2 · xy + . . . , (3.42)

By(x, y)
χm0

= h− k · x+ 1
2k2 · (x2 − y2) + . . . . (3.43)

Here, k and k2 denote the quadrupole and sextupole strengths, respectively.

3.1.4 Transverse Motion

In this section, the linear motion in the transverse phase space in case of a storage
ring built up only by transversal magnetic fields will be discussed. Allowing only
components to linear order, the horizontal and vertical motion decouples and is similar.
In this case, the Equations 3.33 and 3.34 can be simplified to:

x′ = a , (3.44)

a′ = (1 + hx)
(
− By
χm0

)
+ h

(
1 + 1 + η0

2 + η0
δK

)
= (1 + hx)(−(h− k · x)) + h+ hδ

= −(h2 − k)x+ hδ .

(3.45)

In the last step, the variable δK has been transformed to the relative momentum
difference δ, since it is more suitable in case of only magnetic fields. Equations 3.44
and 3.45 can be combined to an inhomogeneous differential equation of second order
[66]:

x′′ + (h2 − k)x = hδ (3.46)

and similar for the vertical case:

y′′ + ky = 0 . (3.47)

Thus, a positive k refers to horizontal defocusing and vertical focusing simultaneously.
Assuming no momentum deviation (δ = 0), Equation 3.46 transforms into an equation
of Hill’s type [70]. It is similar to an harmonic oscillator except the s-dependent
frequency, which is not necessarily constant, but periodic. In a storage ring of length
C0, the following relation holds:

K(s+ C0) = K(s) with K(s) ≡ h2(s)− k(s) . (3.48)

The solution of the homogeneous part of Equation 3.46 can be written as:

x(s) =
√
ε · β(s) cos (Ψ(s) + Ψs0) . (3.49)
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Insertion leads to the relations:
1
2ββ

′′ − 1
4β
′2 +K(s)β = 1 , (3.50)

Ψ(s) =
∫ s

s0

1
β(s̃)ds̃ . (3.51)

The constant parameter ε will be discussed in the subsequent section. The parameters
β(s) and Ψ(s) are called the betatron function and betatron phase, respectively. The
betatron function can be obtained by numerical integration or from the linear part of
the transfer map.

3.1.4.1 Phase Space Ellipse and Beam Emittance

Equation 3.49 and its first derivative can be combined by eliminating the betatron
phase Ψ(s) + Ψs0 . This results in an ellipse equation given by:

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′(s) = ε . (3.52)

Here, the two further optical functions

α(s) = −β
′(s)
2 , (3.53)

γ(s) = 1 + α2(s)
β(s) (3.54)

have been introduced. The area of the ellipse is given by F = πε. According to Liouville’s
theorem the phase space volume in the six dimensional phase space is conserved, if
the particle dynamics can be explained by canonical equations of motion and only
conservative forces are present. Considering both transverse and the longitudinal phase
space as uncoupled, this holds also true for them. This is reflected by the s-independent
parameter ε ≡ εCS, which is called the Courant-Snyder-Invariant [71]. The particle
motion at a particular location s = s0 is illustrated in Figure 3.2. The extreme values
and the values at the zero crossings of x and x′ can be also described by the optical
functions.

A beam consists of particles with different Courant-Snyder-Invariants and thus dif-
ferent phase space amplitudes. Often the particle coordinate distribution in the two
dimensional phase space can also be characterized by an ellipse. The equation of the
phase space ellipse can be written as [65]:

(
x x′

)
σ̂−1
x

(
x
x′

)
= 1 . (3.55)

The beam matrix is denoted by σ̂x and can be expressed as [65]:

σ̂x =
(
σ11 σ12
σ12 σ22

)
=
(

Var(x) Cov(x, x′)
Cov(x, x′) Var(x′)

)
. (3.56)
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𝑥max = 𝜖𝛽 

𝑥0
′ = 𝜖 𝛽  

𝑥0 = 𝜖 𝛾  

𝑥max
′ = 𝜖𝛾 

𝑥 ′ 

𝑥 

Figure 3.2: Linear transverse particle motion described by a phase space ellipse in
(x, x′). The extreme values and zero crossings can be expressed by the optical functions
(adapted from [64]).

In many cases, a Gaussian function is suitable to describe the particle distribution:

ρ(x, x′) = N exp
(
−σ22x

2 − 2σ12xx
′ + σ11x

′2

2ε1σ
x

)
. (3.57)

The parameter ε1σ
x is connected to the determinant and is called the r.m.s. beam

emittance:
ε1σ
x = det(σx) =

√
σ11σ22 − σ2

12 . (3.58)

39.3% of all particles are contained in the phase space ellipse characterized by ε1σ
x .

This definition of beam emittance is not unique [72, 73, 74, 75]

ε2σ
x = 4 · ε1σ

x , (3.59)
ε95%
x = 6 · ε1σ

x , (3.60)
ε3σ
x = 9 · ε1σ

x , (3.61)

and required to know for comparison purposes. Usually, the beam is produced in
a particle source and injected into the storage ring. At the injection point, it is of
particular interest to match the phase space ellipse of the beam and the shape of the
ellipse defined by the optical functions in Equation 3.52. In the perfectly matched case,
the beam matrix can be also expressed by the optical functions of the storage ring at
injection:

σ̂x = ε1σ
x

(
β −α
−α γ

)
. (3.62)
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During acceleration or deceleration the emittance shrinks or grows. This process is
called adiabatic damping. For that reason, a normalized emittance εN can be introduced
as follows:

εN = βγε . (3.63)

Here, β and γ denote the relativistic Lorentz parameters and scale the emittance
according to the momentum change.

3.1.4.2 Betatron Tune and Stability Criterion

Once the beam is injected, it is desirable to track the evolution of the particle trajectory
along the storage ring. The solution of the homogeneous part, given in Equation 3.49,
can be used to derive the transfer matrix of the coordinates in terms of the optical
functions. Setting the initial conditions at s = s0 to

x0 = x(s0) , x′0 = x′(s0) , Ψs0 = 0 ,
α0 = α(s0) , β0 = β(s0) , γ0 = γ(s0) , (3.64)

the transformation matrix is fully defined by [65]

(
x(s)
x′(s)

)
=


√

β
β0

(cos Ψ + α0 sin Ψ)
√
ββ0 sin Ψ

α0−α√
ββ0

cos Ψ− 1+αα0√
ββ0

sin Ψ
√

β0
β (cos Ψ− α0 sin Ψ)

(x0
x′0

)
. (3.65)

Thus, the transfer matrix for a full turn can be expressed as:

M̂ =
(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
. (3.66)

Here, µ denotes the betatron phase advance in a full turn:

µ =
∫ s+C0

s
Ψ(s̃)ds̃ . (3.67)

According the Liouville’s theorem the two-dimensional phase space volume is con-
served (in case there is no coupling). For that reason, all eigenvalues must have unit
magnitude:

|λ1,2| =
∣∣∣∣cosµ±

√
(cosµ)2 − 1

∣∣∣∣ != 1

⇒ |cosµ| ≤ 1
⇒ µ must be real .

(3.68)

The edge cases λ1,2 = ±1 can be excluded due to practical purposes: A slightest
imperfection would lead to a non-stable solution. Thus, in a stable, periodic system all
eigenvalues needs to be complex. They can be expressed as λ1,2 = e±iµ = e±i2πQ. The
phase advance per turn divided by 2π is defined as the betatron tune:

Q = µ

2π . (3.69)
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𝑥′ 

𝑥 

Figure 3.3: Different particles travel on different phase space ellipses. The phase advance
per turn is illustrated by the red arrows and is denoted as the tune. The tune is the
same for each particle considering only linear motion (adapted from [64]).

It characterizes the advance that each particle performs on the phase ellipse in each
turn as illustrated in Figure 3.3. Constraining the solution for β to positive values only,
it is possible to extract a unique solution of the optical functions at position s from
the transfer matrix according to [64]:

α = M11 −M22
2 sinµ , (3.70)

β = M12
sinµ , (3.71)

γ = − M21
2 sinµ . (3.72)

3.1.4.3 Dispersion

The complete solution xg(s) of Equation 3.46 consists of a full set of homogeneous solu-
tions, discussed in the previous sections, and a particular solution of the inhomogeneous
equation:

xg(s) = x(s) + xD(s) . (3.73)

In connection to optics xD(s) is called the dispersive part. In case of a magnetic storage
ring, it is usually associated with the momentum deviation of a particle according to:

xD(s) = D(s) · δ . (3.74)

The function D(s) is called the periodic dispersion function. Inserting Equation 3.73
into Equation 3.46 leads to the following differential equation:

D′′(s) +K(s)D(s) = h(s) . (3.75)
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Its solution is given by

D(s) =
√
β(s)

2 sinµ/2

∫ s+c

s
h(s̃)

√
β(s̃) cos [Ψ(s̃)−Ψ(s)− µ/2] ds̃ . (3.76)

Similar to the β-function, the dispersion can also be extracted from the transfer map.
Given the linear transfer matrix M̂ , the dispersion function and its derivative satisfy
the following equation [64]:DD′

1

 = M̂

DD′
1

 =

M11 M12 M16
M21 M22 M26

0 0 1


DD′

1

 . (3.77)

The dispersion and its derivative can be extracted according to:

D = (1−M22)M16 +M12M26
2−M11 −M22

, (3.78)

D′ = (1−M11)M26 +M21M26
2−M11 −M22

. (3.79)

The momentum deviation of a particle is also associated with a path-length change
with respect to the reference particle. This is described by the momentum compaction
formalism. To first order, it is given by:

∆C
C0

= αp
∆p
p

. (3.80)

The parameter αp denotes the momentum compaction factor. It can be directly
connected to the dispersion function and the curvature of the storage ring:

αp = 1
C0

∫ s+C0

s
D(s̃)h(s̃)ds̃ . (3.81)

It is important for the stability of the longitudinal motion of the beam, as will be
discussed in a subsequent section.

3.1.4.4 Chromaticity

The dispersion is connected to the curvature h(s) and occurs due to a mismatch of
bending power of the main dipoles in presence of a momentum deviation. A similar
effect can be observed for the focusing strengths. Effectively, all quadrupole strengths
k are reduced for particles with larger momenta [66]:

k(p) = −q
p

∂By
∂x

= − q

p0

∂By
∂x

1
1 + δ

≈ k0(1− δ) . (3.82)

This effect is schematically illustrated in Figure 3.4. The tune change associated with
a momentum deviation is given by:

(∆Q)quad = Q′,n · δ = ± 1
4π

∮
β(s̃)k(s̃)ds̃ · δ . (3.83)
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Quadrupole Sextupole 

focal point 

𝛿 > 0 ⇒ 𝑥 = 𝐷 ⋅ 𝛿 > 0 

𝛿 = 0 ⇒ 𝑥 = 𝐷 ⋅ 𝛿 = 0 

𝛿 < 0 ⇒ 𝑥 = 𝐷 ⋅ 𝛿 < 0 

Figure 3.4: The focusing strengths of a magnetic quadrupole depends on the particle
momentum. This effect is called chromaticity. Sextupoles generate a local quadrupole
component depending on the radial position of the particle. In dispersive regions, they
can correct for chromatic effects (adapted from [66]).

Here, the negative sign corresponds to the radial, the positive sign to the vertical
motion. The quantity Q′,n is called the natural chromaticity. It can be compensated by
sextupole fields in dispersive regions, where a local gradient can be defined as follows:

q

p

∂By
∂x

= k2 · x = k2 ·Dδ . (3.84)

The total chromaticity is the sum of the induced tune changes:

∆Q = (∆Q)quad + (∆Q)sext = Q′ · δ = ± 1
4π

∮
β(s̃)

[
k(s̃)− k2(s̃)D(s̃)

]
ds̃ · δ . (3.85)

In general, at least two sextupole families are required to correct the chromaticities in
both planes. Often the chromaticity is expressed relative to the corresponding betatron
tune:

ξ = Q′

Q
. (3.86)

Note that the quantities α, β, γ, Ψ, µ, D, Q and Q′ defined in the previous sections
exist for the radial and the vertical phase space, respectively. But in a perfect planar
ring the dispersion in the vertical direction vanishes, since a curvature does not exist.

3.1.4.5 Field Errors

Up to now, the motion in an ideal storage ring was considered. In this section, distributed
perturbations, i. e. dipole or quadrupole field errors, in the storage ring and their
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influence on the beam motion are investigated. First, a localized dipole field error ∆By
at the location si is introduced, which induces an angular kick:

∆x′(si) = q

p
∆By(si) . (3.87)

A set of N dipole field errors distributed in the entire storage ring can be parametrized
by a function F(s):

F (s) =
N∑
i=1

∆x′(si)δ(si − s) . (3.88)

These kicks lead to a disturbed closed orbit xc(s), which in general does not agree with
the reference orbit. Neglecting momentum deviations it is defined by the differential
equation:

x′′c +K(s)xc = F (s) . (3.89)

It can be shown, that the disturbed closed orbit along the ring is given by [68]:

xc(s) =
√
β(s)

2 sinQπ

∫ s+C0

s
F (s̃)

√
β(s̃) cos [Ψ(s̃)−Ψ(s) +Qπ] ds̃

= Q ·
√
β(s)

2 sinQπ

∫ φ+2π

φ

[
β3/2(φ̃)F (φ̃)

]
cos(Q(φ− φ̃+ π))dφ̃ ,

(3.90)

where the transformation φ(s) = Ψ(s)
Q was applied in the last step. Furthermore, the

closed orbit solution can be expressed by using a Fourier series, which yields:

f(φ) = β3/2(φ)F (φ) =
∞∑

k=−∞
fk · eikφ , (3.91)

fk = 1
2π

∮
β3/2(φ)F (φ)e−ikφdφ , (3.92)

xc(s) =
√
β(s)

∞∑
k=−∞

Q2fk
Q2 − k2 e

ikφ . (3.93)

This relation directly shows, that betatron tunes close to an integer values lead to huge
amplitudes. This condition, which is called an integer resonance, has to be avoided for
stable operation. The Fourier amplitude is called the integer stopband integral.

In general, orbit distortions of any kind are undesirable and in practice a distributed
set of radial and vertical corrector magnets is used to correct these orbit deviations.
From Equation 3.90 a direct relation between angular kicks and the resulting orbit
change can be obtained. This allows one to calculate the orbit change ∆xi at position
si with respect to an angular kick ∆x′j at position xj , which can be expressed by a
simple relation [76]:

∆xi = Oij ·∆x′j . (3.94)

Usually, the positions si are the locations of the beam position monitors (BPMs) in
the storage ring, which are used to determine the orbit at several positions in the
ring. In this case, the matrix Ô is called the Orbit Response Matrix (ORM). Besides
calculation of the ORM, which requires a precise model of the storage ring, the entries
Oij can be measured by variation of the angular kicks induced by the corrector magnets.
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Consequently, the ORM entries are determined by the resulting orbit shifts at each
BPM. Solving the equation system

xc(si) = −
∑
j

Oij∆xj (3.95)

for each BPM i simultaneously yields the needed angular kicks to correct the disturbed
orbit xc(s). But, since either the number of BPMs and correctors might be unequal,
or the ORM is necessarily well-conditioned, the orbit correction often results in a
minimization problem. Various algorithms can be applied to find the optimum solution
for this minimization problem.

Besides dipole field errors, also distributed quadrupole errors can disturb the beam
motion. They are strongly associated with the betatron motion and lead to a change
of the β-functions and tunes. Small tune changes can be approximated by [65]:

∆Q = 1
4π

∮
β(s̃)∆K(s̃)ds̃ . (3.96)

Here, the quadrupole errors are considered by a variation of the quadrupole strengths
given as K(s) = −k(s) in the radial and K(s) = k(s) in the vertical case. The change
of the betatron function is given by:

∆β(s) = β(s)
2 sin(Q2π)

∫ s+C0

s
∆K(s̃)β(s̃) cos (2 [Ψ(s̃)−Ψ(s) +Qπ]) ds̃ . (3.97)

For betatron tunes close to a half integer the induced changes become large. This can
be explained by reconsidering Equation 3.68. Half integer tunes correspond to the
edge cases λ1,2 = ±1. These eigenvalues define the transition from bound elliptical
solutions with two complex eigenvalues to unbound hyperbolic solutions with two real
eigenvalues, of which one is larger than unity. Thus, the motion in the second case
becomes unstable, which is called a half integer resonance.

In general, the beam resonance conditions are given by the following equation:

m ·Qx + n ·Qy = k , k,m, n ∈ N . (3.98)

The sum |m|+ |n| characterizes the order of the resonance. The resonance strength
strongly depends on the multipole content of the storage ring.

3.1.5 Longitudinal Motion

In the preceding sections, the transverse motion has been discussed, which is similar
in both transverse planes. For the longitudinal motion, Equations 3.37 and 3.38 are
reconsidered. This discussion is restricted to pure magnetic fields and small values of
the two longitudinal coordinates, for which the linearized equations are valid:

l′K = −h1 + η0
2 + η0

x+ 1
(2 + η0)2 δK , (3.99)

δ′K = 0 . (3.100)
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3.1.5.1 Phase Slip Factor

Equation 3.99 describes a potential time-of-flight change in case of radial offsets and
energy deviations. The contribution from betatron oscillations tends to average out
to first order [64], but there is a contribution arising from momentum deviations at
locations of non-zero dispersion: x = D · δ. In connection with the substitution of δK
by δ, this yields:

l′K =
[
−h1 + η0

2 + η0
D + 1

(2 + η0)2 ·
2 + η0
1 + η0

]
· δ . (3.101)

(3.102)

The phase slip factor ηph is used to describe the revolution time change in case of
momentum deviations:

∆T
T0

= −ηph
∆p
p0

= −ηphδ . (3.103)

Making use of Equation 3.101 it can be expressed as:

ηph = −v0∆T
C0δ

= 1
C0δ

1 + γ0
γ0

∫ C0

0
l′K(s̃)ds̃

= − 1
C0

1 + γ0
γ0

∫ C0

0

[
h

1 + η0
2 + η0

D − 1
(2 + η0)2 ·

2 + η0
1 + η0

]
ds̃

= 1
γ2

0
− αp .

(3.104)

Here, the definition of the momentum compaction factor αp given in Equation 3.80
was used. The first term in the second last line describes the contribution from path-
lengthening in case of a non zero curvature as shown in Equation 3.17. The second
term is the revolution time change induced by a velocity variation. The phase slip
factor has a strong impact on longitudinal beam focusing, as will be discussed in the
next section.

3.1.5.2 Synchrotron Oscillations

The different revolution times for different momenta can be used to focus the beam in
the longitudinal direction by a time-varying electric field. In this section, the influence
of a homogeneous RF electric field of a cavity is investigated:

E(t) = E0 · cos(ωt) . (3.105)

Assuming a thin cavity of length L, its effect can be approximated as a kinetic energy
kick:

∆K(l) = qV0 cos(φ(t)) = qV0 cos
(
φ0 −

ω

κ
· lK

)
. (3.106)

The effective voltage difference per pass is denoted as V0. The kinetic energy kick
also depends on the phase: φ = ωt. Thus, it is connected to the time of arrival of an
individual particle at the cavity. The spatial transverse coordinates, as well as the time
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of arrival, are not affected by this particular cavity representation, but the transfer
functions for the momentum-like variables can be represented as follows [64]:

af = p0,i
p0,f

ai, bf = p0,i
p0,f

bi , (3.107)

δK,f = K0
K0 + qV0 cos(φ0)δK,i + qV0

K0 + qV0 cos(φ0) ·
[
cos

(
φ0 −

ω

κ
· lK

)
− cos(φ0)

]
.

(3.108)

This is a typical example, where the collected energy changes (see Equation 3.21)
are absorbed to the optical coordinates. In case the reference particle is accelerated,
p0,i
p0,f

< 1 and K0 +qV0 cos(φ0) > 0. This leads to a shrinking of the phase space volumes
in all three dimensions, which was previously described as adiabatic damping.

The repetitive interaction of such a cavity in a storage ring can be represented by
the combination of the transfer maps of the static storage ring and the RF cavity. A
different definition for the momentum-like variable is used, such that the phase space
is conserved, although the kinetic energy might change:

δ̃K = ∆K
K0

. (3.109)

The nominator still describes the absolute energy difference between an individual
particle and the reference particle, but the denominator is kept constant in contrast to
Equation 3.108. In the following, the phase slip factor is also defined with respect to
the momentum deviation with a constant denominator. For the static storage ring, the
linear transfer map can be written as:

lK,f = lK,i + ηph

(
γ0

1 + γ0

)2
C0 · δ̃K,i , (3.110)

δ̃K,f = δ̃K,i . (3.111)

Applying the transformation due to a subsequent thin cavity only changes the second
coordinate. The linearization of the cosine functions yields:[

cos
(
φ0 −

ω

κ
· lK

)
− cos(φ0)

]
= −ω

κ
· sin(φ0) · lK . (3.112)

Thus, the second coordinate after one turn can be expressed by:

δ̃K,f = −qV0
K0

ω

κ
sin(φ0) · lK,i +

[
1− qV0

K0

ω

κ
ηph ,

(
γ0

1 + γ0

)2
C0 sin(φ0)

]
δ̃K,i . (3.113)

The trace of the new transfer map M̂ can be used to determine the regions for stable
bound solutions. The phase advance per turn for the synchrotron motion µsync is given
by [64]:

cos(µsync) = Tr M̂
2 = 1− qV0

2K0

ω

κ
ηph

(
γ0

1 + γ0

)2
C0 sin(φ0) . (3.114)
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Analog to the transverse motion | cos(µsync)| ≤ 1 is required for a stable solution.
Hence, the relation between phase slip factor ηph and reference phase φ0 needs to be
maintained. Assuming a beam of positively charged particles stable motion can only
be achieved for:

ηph > 0→ φ0 ∈ [0, π] , (3.115)
ηph < 0→ φ0 ∈ [π, 2π] . (3.116)

The parameter ηph is energy-dependent and may flip its sign during acceleration. Thus,
a cavity phase-jump may be required to preserve stable motion. The corresponding
energy is denoted as transition energy:

γtr = 1
√
α0

. (3.117)

The second term in Equation 3.114 is usually significantly smaller than unity and can
be treated perturbatively. This approximately yields:

µsync =
√
qV0
K0

ω

κ
ηph

(
γ0

1 + γ0

)2
C0 sin(φ0)

=
√

2πh · qV0ηph sin(φ0)
β0p0

.

(3.118)

Here, the cavity frequency was substituted by ω = 2πh/T0 with the harmonic number
h, which defines the ratio of cavity frequency and revolution frequency. The synchrotron
tune is defined analog to the transverse betatron tunes:

Qsync = µsync
2π . (3.119)

It is usually in the order of 10−3 and hence much smaller than the betatron tunes,
which often exceed one. This difference limits the coupling of the transverse and the
longitudinal phase spaces.
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3.2 Spin Dynamics

The layout of a storage ring based EDM experiment requires a detailed investigation
of the spin dynamics in storage rings The spin motion is strongly coupled to the beam
motion, which is denoted as spin-orbit-coupling. In the scope of this thesis, the spin
motion in a magnetic storage ring for protons and deuterons was explored. Hence, in
this section a general description of the spin equations of motion is given, but the
subsequent discussion focuses mainly on pure magnetic storage rings. The information
on spin dynamics is mainly taken from [77].

3.2.1 Polarization Formalism

First, the formalism for the description of the polarization for an ensemble of spin-1
2 -

and spin-1-particles is given. The following description is based on the information in
[78, 79, 80].

3.2.1.1 Spin-1
2-particles

The state of a single spin-1
2 -particle can be expressed as a two component Pauli spinor

[81]:

ψ =
(
u
d

)
. (3.120)

The two complex amplitudes u and d satisfy the normalization condition: |u|2 + |d|2 = 1
In the following discussion, the Cartesian coordinate system (~e1, ~e2, ~e3) is used. Here, ~e3
is chosen as spin quantization axis. The two spinor components correspond to the two
different spin states m = ±1

2 along the spin quantization axis. Each spin observable is
connected to an hermitian operator. In case of spin-1

2 -particles, these operators can be
defined using the Pauli spin operators:

~̂S = ~
2~σ (3.121)

with
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.122)

The three Pauli matrices can be extended by the identity matrix:

σ0 =
(

1 0
0 1

)
. (3.123)

Together the four matrices are a complete basis of the hermitian 2× 2-matrices. An
observable is defined as the expectation value of the associated operator Â. It is given
by:

〈A〉 = 〈ψ|Â|ψ〉 = ψ†Âψ . (3.124)
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In this context, it is convenient to define the density matrix:

ρ = |ψ〉〈ψ| =
(
|u|2 ud∗

u∗d |d|2

)
. (3.125)

The expectation value can also be expressed by the trace of the product of the density
matrix and the operator:

〈Â〉 = Tr ρÂ . (3.126)

In case of a single particle, this yields:

~S = 〈 ~̂S〉 = ~
2 Tr ρ~σ = ~

2

2 Re(ud∗)
2 Im(ud∗)
|u|2 − |d|2

 . (3.127)

Often, in simulation codes, which can be used to track the spin motion in accelerators,
~S is treated as a classical vector, which can be used to describe the spin precession
in electromagnetic fields. Usually, each spin is represented by such a vector, which is
normalized to unity.

In general, billions of particle are injected and stored in a particle storage ring and
one is rather interested in the expectation value of the spin observables for the whole
ensemble. Given an ensemble of N particles, the density matrix can be extended to:

ρ = 1
N


N∑
i=1
|u(i)|2

N∑
i=1

u(i)d(i)∗

N∑
i=1

u(i)∗d(i)
N∑
i=1
|d(i)|2

 . (3.128)

Expanded in terms of Pauli spin operators, it reads:

ρ = 1
2
(
σ0 + ~P~σ

)
. (3.129)

The vector ~P is the polarization vector of the ensemble, which contains the expectation
values of the spin operators:

~P = 1
N

N∑
i=1

~Si . (3.130)

Assuming a beam composed of Nm= 1
2 and Nm=− 1

2 particles in the particular quan-
tization state, the vector polarization PV along the quantization axis is defined as
[77]:

PV = Nm= 1
2 −Nm=− 1

2

Nm= 1
2 +Nm=− 1

2
. (3.131)
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3.2.1.2 Spin-1-particles

In case of spin-1-particles, a three component spinor is needed to fully describe the
state of an individual particle [78]:

ψ =

a1
a2
a3

 . (3.132)

The three components belong to the three quantization states m = 1, m = 0 and
m = −1 along the quantization axis. The basic spin operators can be expressed as:

Ŝ1 = ~√
2

0 1 0
1 0 1
0 1 0

 , Ŝ2 = ~√
2

0 −i 0
i 0 −i
0 i 0

 , Ŝ3 = ~

1 0 0
0 0 0
0 0 −1

 . (3.133)

To characterize a spin-1-system a set of nine independent hermitian matrices is required.
Taking the 3×3 identity matrix into account, at least five further matrices are required.
A second-rank tensor can be constructed by the outer product:Ŝ1

Ŝ2
Ŝ3

(Ŝ1 Ŝ2 Ŝ3
)

=

Ŝ1Ŝ1 Ŝ1Ŝ2 Ŝ1Ŝ3
Ŝ2Ŝ1 Ŝ2Ŝ2 Ŝ2Ŝ3
Ŝ3Ŝ1 Ŝ3Ŝ2 Ŝ3Ŝ3

 . (3.134)

Basically, these nine operators could be used as a basis for the 3×3 hermitian operators,
but for simplicity the commonly used operators Ŝ1, Ŝ2 and Ŝ3, as well as the identity
matrix I should be retained. For this purpose, the tensor is split in the symmetric and
antisymmetric contributions:

ŜiŜj = 1
2
(
ŜiŜj + ŜjŜi

)
+ 1

2
(
ŜiŜj − ŜjŜi

)
= 1

2
(
ŜiŜj + ŜjŜi

)
+ i~

2 εijkŜk .
(3.135)

In the last step, the commutation relation for angular momenta has been used, which
reveals the connection between the commonly used spin operators and the asymmetric
part. Therefore, only the symmetric part is relevant to complete the set of basis
operators. In the standard Cartesian notation, the following operators are used as a
basis:

I, Ŝ1, Ŝ2, Ŝ3,

Ŝij = 3
2
(
ŜiŜj + ŜjŜi

)
− 2Iδij , i, j ∈ {1, 2, 3}

(3.136)

This is a set of ten operators, where only nine are independent. The dependency
relation is given by:

Ŝ11 + Ŝ22 + Ŝ33 = 0 . (3.137)

Conventionally the following normalization is applied to the basis operators Âi:

Tr ÂiÂj = 3δij . (3.138)
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Thus, the density matrix for an ensemble of spin-1-particles can be expanded in terms
of these operators:

ρ = 1
3

I + 3
2

3∑
i=1

PiSi + 1
3

3∑
i=1

3∑
j=1

PijSij

 , with Pij = Pji . (3.139)

In case of an ensemble of spin-1-particles, the parameters Pi and Pij characterize
its polarization state. The injected particles are usually produced in a polarized ion
source. Using external magnetic fields a set of sub-states is selected along a defined
quantization axis. Often it exists an axial symmetry about the quantization axis. In
this case, only two parameters Pi and Pij are required to characterize the system, once
the quantization axis is defined. If the 3-axis is chosen as quantization axis, the density
matrix can be simplified to:

ρ = 1
3

[
I + 3

2P3Ŝ3 + 1
2P33Ŝ33

]
. (3.140)

Considering Nm=1, Nm=0 and Nm=−1 particles of the beam in the particular quantiza-
tion state, the vector polarization PV and tensor polarization PT along the quantization
axis are defined by [77]:

PV = Nm=1 −Nm=−1

Nm=1 +Nm=0 +Nm=−1 , (3.141)

PT = Nm=1 +Nm=−1 − 2Nm=0

Nm=1 +Nm=0 +Nm=−1 . (3.142)

Besides the Cartesian notation presented here, the spin-1 system can also be charac-
terized by spherical tensor operators [77].

3.2.2 Connection of Beam and Spin Coordinate Systems

The preceding illustration of the polarization formalism was performed in the Cartesian
coordinate system (~e1, ~e2, ~e3). In this coordinate system,the ~e3-direction is used as
quantization axis. The coordinate system defined for description of beam dynamics in
a planar storage ring (see Section 3.1.1) possesses two basis vectors ~ex and ~es in the
ring plane. The ~ey-direction is perpendicular to the plane and points along the vertical
guiding fields. The natural choice is to select the ~ey-axis as quantization axis:

(~e1, ~e2, ~e3) ≡ (~ex, ~es,−~ey) . (3.143)

Assuming a positive magnetic guiding field along the vertical direction, a positive ion
beam circulates clock-wise in the storage ring. For this particular choice the co-moved
coordinate system of spin dynamics rotates counter-clockwise due to the opposite
directions of ~e3 and ~ey. Thus, the rotation is performed in positive mathematical sense,
which is advantageous for practical purposes.
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Table 3.1: Magnetic properties for proton, deuteron, electron and muon [82].

Particle S in ~ mc2 in MeV |~µ| in (µB , µN ) g G or a

proton 1
2 938.272 081 3(58) 2.792 847 350 8(85) 5.585 695 1.792 847

deuteron 1 1875.612 928(12) 0.857 438 231 1(48) 1.714 025 −0.142 987

electron 1
2 0.510 998 946 1(31) 1.001 159 652 180 91(36) 2.002 319 1.159 652 · 10−3

muon 1
2 105.658 374 5(24) 4.841 970 48(11) · 10−3 2.002 332 1.165 920 · 10−3

3.2.3 Equations of Motion in Rest Frame

The Hamiltonian, which describes the spin interaction in electromagnetic fields in
the particle rest frame, was given in Equation 2.11. The associated non-relativistic
spin equation of motion for the spin vector ~S in electric and magnetic fields can be
expressed as:

d~S
dt = ~Ω× ~S = ~µ× ~B + ~d× ~E . (3.144)

It reflects a spin precession in the plane perpendicular to ~Ω with an angular frequency
of |~Ω|. The definitions for the magnetic dipole moment ~µ and electric dipole moment ~d
have been presented in Equations 2.9 and 2.10, respectively. The MDMs for several
particles are determined from experimental measurements. Commonly, the MDM
magnitudes are expressed in terms of the Bohr magneton for leptons or in terms of the
nuclear magneton for hadronic systems [82]:

µB = 5.788 381 801 2(26) · 10−5 eV/T , (3.145)
µN = 3.152 451 255 0(15) · 10−8 eV/T . (3.146)

The magnetic properties for proton, deuteron, electron and muon are summarized in
Table 3.1. The anomalous gyromagnetic g-factor G or a is defined as

G = a = g − 2
2 . (3.147)

Here, G is usually used in the hadronic sector, while a is more common in the leptonic
sector. Historically, anomalous gyromagnetic g-factor is related to the Dirac equation
[83] for leptons. In the non-relativistic case, it yields g = 2 and a = 0. Corrections to
the electromagnetic coupling introduce a small contribution to the anomalous g-factor.
The values of g and G given in Table 3.1 correspond to the definition in Equation 2.10.
Here, the charge and mass of the individual particle are taken into account.

3.2.4 Generalized Thomas-BMT Equation

In Equation 3.144, the spin vector and the electric and magnetic fields are defined in
the rest frame of the particle, but in accelerator physics the fields are usually known in
the curvilinear laboratory reference frame. Thus, the equation has to be transformed
into the laboratory reference frame. This results in the Thomas-BMT equation [84, 85].
It describes the spin motion of relativistic particles in homogeneous electromagnetic



38 Chapter 3: Beam and Spin Dynamics in Storage Rings

fields. Usually, the Thomas-BMT equation refers only to the interaction of the magnetic
dipole moment with the fields. Here, a generalized form is presented, which also includes
the contribution of the electric dipole moment [35]:

d~S
dt = ~ΩMDM × ~S + ~ΩEDM × ~S , (3.148)

~ΩMDM = − q

m

[(
G+ 1

γ

)
~B − Gγ

γ + 1
(
~β · ~B

)
~β −

(
G+ 1

γ + 1

)
~β ×

~E

c

]
, (3.149)

~ΩEDM = − q

mc

ηEDM
2

[
~E − γ

γ + 1
(
~β · ~E

)
~β + c~β × ~B

]
. (3.150)

The spin vector ~S is defined in the rest frame of the particle, whereas the electric field
~E and magnetic field ~B are evaluated in the curvilinear laboratory reference frame.
Recent efforts aim to also include additional terms arising from higher moments, i.e.
field gradients, in simulation codes [86]. Since the additional contributions are expected
to be small in comparison to the experimental sensitivity limits, predicted for the
direct measurements at the Cooler Synchrotron, they have not been included in the
applied simulation software used within this thesis, yet. Instead this work focuses on
the benchmarking and investigation of systematic limitations for EDM measurements
arising from the dominating MDM part contained in Equation 3.148, neglecting also
non-linear contributions with respect to the spin.

In the following, the implications on spin motion for protons and deuterons in presence
of explicit transverse or longitudinal magnetic and electric fields assuming a vanishing
EDM are illustrated. Two different scenarios are considered: In the first scenario, the
influence of a vertical magnetic field of 1T along the negative vertical axis in a pure
magnetic storage ring is evaluated. Analog a radial electric field, which produces an
equivalent Lorentz force (| ~E| = |c~β × ~B|), in a pure electric ring is considered. In
the second scenario, a storage ring bending radius of ρ = 10m is assumed and the
required pure magnetic or electric fields are scaled according to the beam momentum.
The electromagnetic field strengths are shown in Figure 3.5 for a momentum range
of 0.1 to 10GeV/c. The magnetic field strengths of the first scenario is constant by
definition, while it scales linearly in the second scenario. Since the magnetic bending
radius is inverse proportional to the momentum, the required magnetic field strengths
for protons and deuterons is equal in both scenarios. In case of pure electric guiding
fields, the particle mass is relevant. The required electric field strengths exceeds the
currently technically achievable field strengths at higher momenta. That is one of
the major reasons, why conventional storage rings usually employ magnetic guiding
fields.

The total ~ΩMDM-vector can be divided into contributions from parallel and perpendic-
ular field components3:

~ΩMDM = ~ΩB⊥ + ~ΩB‖ + ~ΩE⊥

= − q

γm

[
(1 +Gγ) ~B⊥ + (1 +G) ~B‖ −

(
Gγ + γ

γ + 1

)
~β ×

~E

c

]
.

(3.151)

3with respect to the particle motion
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Figure 3.5: Magnetic (a) and electric field strengths (b) required for two different
storage ring scenarios and various momenta of protons and deuterons. The first scenario
demands a Lorentz force FL, which is equivalent to the Lorentz force produced by a
pure transverse magnetic field of 1T. In the second scenario, either a pure magnetic or
pure electric storage ring with a constant bending radius of 10m is considered. The
shown field strengths scale linearly with the variation of the Lorentz force amplitude
and reciprocally with the bending radius, respectively.
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Figure 3.6: Induced spin rotation frequency in case of a pure vertical magnetic (a) or
pure radial electric field (b) according to Equation 3.151. Various momenta for protons
and deuterons are chosen. For comparison purposes, the electric field strength is scaled
in order to produce a Lorentz force, which is equivalent to a Lorentz force produced
by a transverse magnetic field of 1T. For comparison, the cyclotron frequencies are
shown as dotted lines.
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Figure 3.6 shows the absolute value of ~ΩMDM in case of pure magnetic or electric
transverse fields. Here, the first scenario of a Lorentz force corresponding to a magnetic
field strength of 1T is presented. The cyclotron frequency, given as

~Ωcyc = − q

γm

(
~B⊥ −

~β × ~E

β2c

)
, (3.152)

expresses the rotation of the momentum induced by the electromagnetic fields according
to:

d~p
dt = ~Ωcyc × ~p . (3.153)

Its value is shown as dotted lines for the different scenarios. Due to relativistic effects,
the cyclotron frequency decreases for increasing momenta. In the non-relativistic
limit, the spin precession frequency ~ΩMDM agrees with Equation 3.144. Thus, the
interaction of the magnetic dipole moment with electric fields vanishes, while it takes
the value ΩMDM = | ~µs·~ · ~B| for magnetic fields. Here, s = 1

2 for protons and s = 1 for
deuterons. For increasing momenta the impact of electric fields increases rapidly. In
the ultra-relativistic limit, a constant Lorentz force requires also constant magnetic
and electric fields. Hence, for magnetic and for electric fields the term proportional to
Gγ in equation 3.151 becomes dominant. Due to the negative G in the deuteron case,
this leads to a decrease of the spin precession frequency in the momentum regime up
to 10GeV/c.

The comparison of the cyclotron and spin precession frequencies reveals a single crossing
point of the frequencies in case of protons in the pure electric case. This can be obtained
mathematically by comparing Equations 3.151 and 3.152:

~̃ΩMDM = ~ΩMDM − ~Ωcyc = − q

γm

[
Gγ ~B⊥ + (1 +G) ~B‖ −

(
Gγ − γ

γ2 − 1

)
~β ×

~E

c

]
.

(3.154)
At the crossing point the precession speeds of the momentum vector and spin vector
are equal. Thus, a spin vector, which is initially aligned to the momentum direction,
stays aligned to the momentum direction. Hence, this is called the “frozen spin” effect.
For protons, the corresponding “magic” momentum amounts to:(

Gγ − γ

γ2 − 1

)
= 0 ⇒ p = mc√

G
≈ 0.7GeV/c . (3.155)

This configuration is relevant for the EDM measurement methods discussed in Section
3.3.

In order to predict the influence on spin arising from imperfection fields in the accelerator
or from the introduction of a new element for spin manipulation, the ratios of the spin
precession frequencies for different momenta are examined. The results are illustrated
in Figure 3.7. On the one hand, the frequency ratio of transverse electric to magnetic
fields is shown. On the other hand, the ratio induced by a longitudinal compared to a
transverse magnetic field of same strength is presented. In case of protons, the electric
to magnetic spin frequency ratio continuously grows and finally reaches unity in the
ultra-relativistic limit. Due to the negative G of deuterons the ratio decreases at the
end of the illustrated interval. Considering momenta up to 10GeV/c the longitudinal
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Figure 3.7: Figure (a) shows the ratio of spin precession frequencies induced by a
radial electric field and a vertical magnetic field according to Equation 3.151. Each
field strength is scaled to act with an equal Lorentz force on a proton or deuteron
moving along the longitudinal direction. Figure (b) pictures the ratio of spin precession
frequencies for vertical and longitudinal magnetic fields in the same momentum range.

to transverse magnetic field spin frequency ratio increases only for deuterons, but
decreases for protons. In the ultra-relativistic limit, longitudinal fields become inefficient
for protons and deuterons.

3.2.5 Spin Motion in Terms of Particle Coordinates

The phase space coordinates of the stored particles are usually expressed in the co-
moved curvilinear coordinate system defined in Section 3.1.1. The spin equation of
motion can also be formulated in terms of these particle phase space coordinates as
pointed out by Courant and Ruth [87]. For this purpose, the derivative of the spin
vector with respect to the ring angle θ is obtained. Reformulating Equation 3.148
yields:

d~S
dθ = ρ

d~S
ds = ρt′

d~S
dt = ρt′

[
~ΩMDM + ~ΩEDM

]
× ~S . (3.156)

In the following, only the magnetic dipole moment in a pure magnetic ring is considered.
To first order, the transverse and longitudinal magnetic field can be written as:

~B⊥ = 1
v2

(
~v × ~B

)
× ~v = p

q

(
1− x

ρ

) (
~v′ × ~v

)
= p

q

(
1− x

ρ

)[
y′′~ex +

(1
ρ
− x′′

)
~ey −

1
ρ
y′~es

]
,

(3.157)

~B‖ = p

q

(
y

ρ

)′
~es . (3.158)

Here, the longitudinal field was obtained using Maxwell equations and assuming a van-
ishing Bs component on the reference orbit. Instead of the (~ex, ~ey, ~es) coordinate system,
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the (~e1, ~e2, ~e3) defined in Section 3.2.1 is utilized. Neglecting the EDM contribution
Equation 3.156 can be expressed as

d~S
dθ = ρt′~ΩMDM × ~S = ~S × ~F . (3.159)

For small transverse and longitudinal perturbation fields, it follows:

F1 = ρ(1 +Gγ)B1
χm

= ρy′′(1 +Gγ) , (3.160)

F2 = ρ(1 +G)
B‖
χm

= ρ(1 +G)B2 − y′B3
χm

= −(1 +Gγ)y′ + ρ(1 +G)
(
y

ρ

)′
, (3.161)

F3 = ρ(1 +Gγ)B3
χm

= −(1 +Gγ) + (1 +Gγ)ρx′′ . (3.162)

Analog to Equation 3.24, the equations for the spin vector components in the rotating
frame can be obtained:

d
dθ (S1, S2, S3) = ~S × ~F + (S2,−S1, 0) . (3.163)

Considering only the reference orbit of a perfect magnetic accelerator, the vector ~F
can be simplified to:

~F = −(1 +Gγ)~e3 . (3.164)

In this case, the solution of the linear equation system presented in Equation 3.163 is
trivially solved: S1

S2
S3

 =

cos(Gγθ) − sin(Gγθ) 0
sin(Gγθ) cos(Gγθ) 0

0 0 1


S1,i
S2,i
S3,i

 , (3.165)

where i denotes the initial conditions. Similar to Equation 3.68 the eigenvalues of the
spin transfer matrix for the ideal ring are given by

λ1,2 = e±iGγθ, λ3 = 1 . (3.166)

This illustrates that in an ideal ring, the spin component along the ~e3-axis is preserved,
while the perpendicular components precess in the ~e1-~e2-plane. In this case, the vertical
axis is called the spin closed orbit or invariant spin axis ~nc. Analog to the betatron
tune, one also can define a spin tune, which represents the number of spin rotations
per revolution. According to the eigenvalues in Equation 3.166 it amounts to

νs = Gγ (3.167)

for the ideal ring. To avoid confusion, for the spin motion the American notation for
tunes ν is chosen, while the tunes of the particle motion are denoted in the European
Notation by Q.
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3.2.6 Spinor Equation and Spin Transfer Matrix

Equation 3.159 can be rewritten as [77]:

d~S
dθ = ~n× ~S, ~n = Gγ~e3 − F1~e1 − F2~e2 . (3.168)

Here, additional vertical fields along the ~e3 axis have been neglected and the F3
component has been exchanged by the average value Gγ. This equation can be
transformed into the two-component spinor formalism introduced in Section 3.2.1. This
yields:

dψ
dθ = − i2Hψ = − i2(~σ~n)ψ = − i2

(
Gγ −ξ
−ξ∗ −Gγ

)
ψ . (3.169)

Here, H denotes the spin precessing kernel and the ~F -components, representing the
perturbing fields, have been expressed in a complex notation:

ξ(θ) ≡ F1 − iF2 . (3.170)

The spinor equation directly illustrates, that the spinor components are conserved only,
if the perturbing fields vanish. In general case, the spinor equation can be solved by
the “time” evolution operator. Considering a spinor given at an initial angle θi, the
state at a final angle θf is obtained by:

ψ(θf ) = T exp

 θf∫
θi

− i2H(θ)dθ

 · ψ(θi) = t(θf , θi) · ψ(θi) . (3.171)

Here, the operator T is the “time” ordering operator. The spin transfer matrix is
defined for the general case and is denoted by t. Assuming, that the magnetic fields
in an accelerator element are piecewise constant along θ, the spin transfer matrix for
each element can be easily calculated using the T-BMT equation. Consequently, the
spinor wave function at the final location f is given by the product of the spin transfer
matrices of each element, which is finally multiplied by the initial spinor state. The
spin transfer matrix for a full turn, also called the one turn map, can be represented
as:

t(θi + 2π, θi) = e−
i
2νs~nco~σ·2π . (3.172)

Here, the spin tune νs and the spin closed orbit ~nc are defined for the general case
including perturbation fields. Since the Pauli Matrices supplemented by the identity
matrix form a complete basis of the hermitian 2× 2-matrices, the spin transfer matrix
can be parametrized as follows:

t = t0σ0 − it1σ1 − it2σ2 − it3σ3 . (3.173)

Using this expansion, the spin transfer matrix T for the classical spin vector ~S can be
written as (~S = T · ~Si):

T =

t20 + t21 − t22 − t23 2(t1t2 − t0t3) 2(t1t3 + t0t2)
2(t1t2 + t0t3) t20 − t21 + t22 − t23 2(t2t3 − t0t1)
2(t1t3 − t0t2) 2(t2t3 + t0t1) t20 − t21 − t22 + t23

 . (3.174)
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On the reference orbit of an ideal magnetic ring:

t0 = cos
(
Gγ

2 θ

)
, t3 = sin

(
Gγ

2 θ

)
, t1 = t2 = 0 , (3.175)

and the one turn map T equals to the solution given in the previous section. For
particles performing betatron and synchrotron oscillation, the phase space coordinates
vary in each revolution. Hence, the spin precession axis and the spin phase advance
about this axis are different each turn. The definition of the spin closed orbit can be
extended to the invariant spin field [88] or equilibrium spin field ~n(~z) taking the phase
space motion ~z into account. It satisfies the following condition:

~n(~zf ) = A(~zi)~n(~zi) . (3.176)

Here, A is the phase space dependent spin transfer matrix (A(~0) = T ). The initial and
final phase space coordinates are denoted by i and f , respectively. It is important to
note, that, in general, ~n(~z) is not an eigenvector of A(~z). Taking the quasiperiodicity
into account, a phase space dependent spin tune can be defined as the average number
of spin precessions per turn. For this purpose, the phase space coordinates are usually
transformed to the action-angle-variables J, φ, where J denotes the invariant amplitudes
of the phase space motion. In many cases, the extended definition of the spin tune
only depends on the the amplitudes J and is therefore called the amplitude-dependent
spin tune. More details on this formalism are given in [89].

3.2.7 Depolarizing Resonances

The spin motion is affected by the perturbing fields represented by ξ defined in Equation
3.170. Due to the repetitive motion in a circular accelerator and storage ring, ξ can be
expanded into a Fourier series [77]:

ξ(θ) = F1 − iF2 =
∑
K

εKe
−iKθ . (3.177)

The Fourier amplitude εK is called the resonance strength corresponding to a resonance
tune specified byK. The resonance strength can be expressed in terms of the perturbing
fields B1 and B‖, as well as in terms of the phase space coordinates:

εK = 1
2π

∮ [
(1 +Gγ)B1

χm
+ (1 +G)

B‖
χm

]
eiKθds

= 1
2π

∮ [
(1 +Gγ)(ρy′′ + iy′)− iρ(1 +G)

(
y

ρ

)′]
eiKθdθ .

(3.178)

3.2.7.1 Classification

The spin resonance type can be classified by the value of K as presented in Table
3.2. Assuming that vertical misalignments of the focusing quadrupoles are the main
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Table 3.2: Classification of depolarizing spin resonances. K is the resonance tune and
P the super periodicity of the accelerator/storage ring. The variables j, k,ms,mx,my

are integer values (adapted from [77]).

K resonance type
j imperfection resonance
kP ±Qy intrinsic resonance
j + kP ±msQsync ±mxQx ±myQy higher-order resonance

contribution, the resonance strengths simplifies to:

εK = 1
2π (1 +Gγ)

∮
y′′eiKθds

= 1
2π (1 +Gγ)

∮ 1
χm

∂Bx
∂y

yeiKθds

= 1
2π (1 +Gγ)

∮
Bx
χm

eiKθds ,

(3.179)

by taking Equations 3.42 and 3.47 into account. Two main contributions lead to
a vertical offset of the particle trajectory with respect to the field free quadrupole
centers:

y = (yc − yoffset) + yβ . (3.180)

The first term refers to the closed orbit offset with respect to the quadrupole centers.
Here, yc is the closed solution in the reference coordinate system given in Equation
3.93 and yoffset refers to the random offsets of the quadrupole centers in this system.
The second term is the betatron motion of the particle defined in Equation 3.49, here
denoted by yβ . These two terms contribute to different classifications of spin resonances
listed in Table 3.2.

The closed orbit yc (as well as yoffset) correspond to the periodic fixed point solution of
the orbital transfer map. Hence, it only contributes to to the imperfection resonances,
which are associated to the integer resonance tunes. Assuming that the misalignments
of the quadrupoles and the corresponding radial perturbing fields are known, they
could be substituted into Equation 3.179 to calculate the resonance strength. Due
to the periodicity it is sufficient to evaluate the loop integral for only one turn to
determine the resonance strength. In case there are no misalignments, the resonance
strength is zero. That is the reason, why this type of resonance is called imperfection
resonance.

In case of pure quadrupole fields, the betatron motion yβ is independent of the closed
orbit solution. Instead, the resulting resonance strength is strongly connected to the
vertical betatron tune. The betatron motion is only quasi-periodic, because integer
betatron tunes have to be avoided for stability reasons. Thus, the betatron phase is
different after each turn and a calculation of the loop integral for only one turn in
order to evaluate the resonance strength is not sufficient. Instead the integral has to
be averaged over a certain number of turns to obtain the resonance strength. The spin
resonances associated to the betatron motion are classified as intrinsic spin resonances
of the accelerator, since they occur in absence of any imperfection. The resonance
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strength usually depends on the phase space amplitude of the individual particle, i.e.
the Courant-Snyder invariants εCS.

Further important spin resonances occur in case of phase space coupling (coupling
resonances) and synchrotron motion, i.e. the momentum oscillations (synchrotron
sideband resonances). In the first case, the resonance strength can be minimized by
coupling correction routines, which are applied during the setup of the accelerator
configuration [90]. In the latter case, the momentum oscillations induce a oscillation of
the spin phase advance per turn, which has an impact on the resonance strength. The
derivation of the resonance strength modification is illustrated in the next section.

3.2.7.2 Synchrotron Sideband Resonances

Up to linear order, the synchrotron motion of a off-momentum particle can be
parametrized to first order as:

δ = δ̂ cos(Qsyncθ + φ) . (3.181)

Here, a smooth oscillation along the ring angle θ is assumed. The momentum deviation
δ has been introduced in Section 3.1 and φ is an arbitrary phase. The spin precession
rate in each turn oscillates in case of momentum deviations:

Gγ = Gγ0

(
1 + ∆γ

γ0

)
= Gγ0

(
1 + β2

0 δ̂ cos(Qsyncθ + φ)
)
. (3.182)

The integrated spin phase advance yields:

θ∫
0

Gγdθ = Gγ0θ + Gγ0β
2
0

Qsync
δ̂ sin(Qsyncθ + φ) . (3.183)

In the following, the illustrative analytical solvable model of an isolated spin resonance
with the resonance tune K is considered. Only the dominating summand of Equation
3.177 is taken into account. As long as the strengths of nearby resonances are small
compared to their distance in spin tune space δν = Gγ −K, this model can be used
to investigate the effect of spin resonances. Consequently, the perturbing term of the
spinor equation simplifies to:

ξ = εKe
−iKθ , (3.184)

and hence the spinor equation for this particular case reads [77]:

dψ
dθ = − i2

(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)
ψ . (3.185)

To study the pure impact of the disturbing fields the equation is transformed into the
interaction picture. Therefore a new spinor is defined according to [77]:

ψ = e−
i
2

∫ θ
0 Gγdθσ3ψI . (3.186)
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The new spinor equation in this frame is given by:

dψI
dθ = − i2

 0 −εKe−i(Kθ−
∫ θ

0 Gγdθ)

−ε∗Ke
i(Kθ−

∫ θ
0 Gγdθ) 0

ψI . (3.187)

It can be easily observed, that in case the resonance strength vanishes the spinor in this
frame is constant, since the coordinate system and the spinor have the same precession
speed and direction around the vertical axis. The driving term in the spinor equation
can be expanded into a Fourier series:

εKe
−iKθ−

∫ θ
0 Gγdθ =

∞∑
m=−∞

εKJm(g)e−i(K−Gγ0−mQsync)θ

with g = β2
0Gγ0
Qsync

δ̂ .

(3.188)

The terms for m 6= 0 are called the synchrotron sideband resonances. In case the
condition |εKJm(g)| < Qsync holds, the contribution of each sideband resonance is
separated from the others. This allows one to treat them as isolated resonances.
The effective resonance strengths of each sideband resonance is modified by a Bessel
function:

ε̃K = εKJm(g) . (3.189)

Finally, two numerical examples are considered. Subsequent chapters deal with the ex-
amination of protons and deuterons at an energy around 1GeV/c. In an ion synchrotron,
the synchrotron tunes are typically around Qsync ≈ 10−3. Thus, two subsequent syn-
chrotron sidebands are separated by the same amount. The maximum momentum
deviation is considered to be also in the order of δ̂ = 10−3. The ratio of the effective
resonance strengths of the first sideband resonances m = ±1 and of the the main
resonance m = 0 for the given numerical estimates can be obtained:

protons:
∣∣∣∣ ε̃K(m = ±1)
ε̃K(m = 0)

∣∣∣∣ ≈ 0.9 , deuterons:
∣∣∣∣ ε̃K(m = ±1)
ε̃K(m = 0)

∣∣∣∣ ≈ 0.02 . (3.190)

Considering a main resonance strength ε̃K(m = 0)� Qsync the synchrotron sidebands
are well separated in these scenarios.

3.2.7.3 Induced Spin Resonances by a Radiofrequency Device

A further class of spin resonances are artificially introduced spin resonances. They can
be provided by RF electromagnetic fields. In general case, these fields can introduce
additional spin rotations as well as beam excitations. In this section, RF elements that
produce a negligible beam excitation are considered. Such situation can be realized by
an RF solenoid with a longitudinal magnetic field. Alternatively, also an RF device
providing a superposition of transverse electric and magnetic fields in a Wien filter [91]
configuration can be used. For this device, the strengths of superimposed transverse
electric and magnetic fields are adjusted to cancel the net Lorentz force. This allows one
to construct spin rotators with minimized beam excitation about the transverse and
longitudinal axes. A field strength variation implies a change of the resonance strength,
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while the frequency of the RF device controls the resonance tune. The frequency can
also be expressed in terms of the resonance tune of the RF device:

νrf = 2π frf
frev

, (3.191)

where frev denotes the revolution frequency. Since the RF device is located at a
particular position in the ring with a small length compared to the ring circumference,
it can be approximated by a point-like device. The spin resonance condition is fulfilled
in case [92]:

νrf = νs + k, k ∈ Z . (3.192)

The strength of the RF device can be parametrized in terms of its rotation vector ~Ω
and maximum rotation angle α0. Considering an oscillating longitudinal magnetic field
of an RF solenoid Bsol = B̂sol cos(νsolθ + φ), the rotation vector is given by:

~Ω = − q

γm
(1 +G) ~Bsol . (3.193)

The maximum rotation angle α0 per pass depends on the maximum field strength and
can be obtained by integration:

α0 =
tpass∫
0

Ω dt . (3.194)

Using tpass = Lsol/v, this yields:

αsol = (1 +G)
Lsol∫
0

B̂sol
χm

ds . (3.195)

In the previous step, the field variation during one particle passage has been neglected.
In case of an RF Wien filter, a similar derivation can be pursued. Assuming perfectly
adjusted field strengths ( ~̂Ewf = −~v × ~̂Bwf) oscillating with same frequency and phase,
this leads to the a maximum rotation angle of:

αwf = (1 +G)
γ

Lwf∫
0

B̂wf
χm

ds . (3.196)

The additional γ in the denominator reflects the same amount of spin rotation for
transverse electric and magnetic fields in the ultra-relativistic limit, if they produce an
equal Lorentz force contribution. Further note, that an explicitly vanishing EDM was
not required for these derivations, since the EDM induced spin rotation is connected
to a non-vanishing Lorentz force. Thus, an RF Wien filter does not interact with any
particle EDM.

In the following, an RF device with an arbitrary spin rotation axis ~Ω characterized
by its orientation ~m in a storage ring is considered. At the particular location of the
RF device the spin precession per turn in the static storage ring can be characterized
by the spin tune νs and the spin closed orbit, here denoted as ~n. The subsequent
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illustration of the formalism strongly benefited from internal discussions [93, 94]. The
spinor equation of this configuration reads:

dψ
dθ = − i2 [νs(~n~σ) + νo(θ)(~m~σ)]ψ . (3.197)

The first term in the square brackets characterizes the rotation induced by the static
ring, and the second term takes the contribution of the RF device into account. The
parameter νo(θ) reflects the spin rotations induced by the RF device and can be
parametrized as:

νo(θ) = α0
2π cos(νrfθ + φ)

∞∑
k=−∞

2πδ(θ − 2πk) . (3.198)

In this section, the effects of betatron and synchrotron oscillation are neglected and
only the reference particle is considered. The equation is transformed into the resonance
precessing frame (here: K = νrf)

ψ = e−
i
2νrfθ(~n~σ)ψK , (3.199)

which changes the spinor equation according to:

dψK
dθ = − i2e

i
2νrfθ(~n~σ) [δν(~n~σ) + νo(θ)(~m~σ)] e−

i
2Kθ(~n~σ)ψK

= − i2T (θ)ψK .

(3.200)

The first term accounts for the difference between spin tune and resonance tune
δν = νs − νrf. The second term can be treated as a small perturbation as long as
the spin rotation induced by the RF device is small compared to the spin precession
frequency in the storage ring. Using the following relation for Pauli matrices:

(~a~σ)(~b~σ) = (~a ·~b)σ0 + i(~a×~b)~σ , (3.201)

the operator T (θ) can be simplified to:

T (θ) = δν~n~σ

+ νo(θ) cos(νrf · θ) [~n× (~m× ~n)]~σ
+ νo(θ) sin(νrf · θ) [~m× ~n]~σ
+ νo(θ) (~m · ~n)~n~σ .

(3.202)

It is important to note, that the first and the last term act in the same plane as the
spin precession induced by the static ring. Hence, they shift or modulate the spin
tune of the static ring within the resonance precessing frame. However, the second
and third term act perpendicular to that plane and induce a spinor oscillation in
the precessing frame. In the next step, the θ-dependent perturbations are averaged,
since they are considered to be small ν(θ)� 1. The summation of the discrete spin
rotations induced by the RF device is defined by νo(θ). It is replaced by a continuously
acting perturbation with averaged strength, assuming that νrf is not a ratio of two
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rational numbers with a small denominator. In this case, the following relations can be
applied:

1
2π

∫ 2π

0
sin(νrfθ)dθ = 1

2π

∫ 2π

0
cos(νrfθ)dθ = 1

2π

∫ 2π

0
sin(νrfθ) cos(νrfθ)dθ = 0 ,

(3.203)
1

2π

∫ 2π

0
sin(νrfθ) sin(νrfθ)dθ = 1

2π

∫ 2π

0
cos(νrfθ) cos(νrfθ)dθ = 1

2 . (3.204)

Applying these relations leads to an effective θ-independent operator T̃ :

T (θ) → T̃ = δν~n~σ

+ α0
4π cos(φ) [~n× (~m× ~n)]~σ

+ α0
4π sin(φ) [~m× ~n]~σ .

(3.205)

The spin rotation axes of the first (~n), the second (~n×(~m×~n)) and the third term (~m×~n)
are perpendicular to each other. Together they build a basis, in which the initial spinor
can be expanded. Assuming only one term of T̃ is non-zero, the spinor component along
this direction would be preserved, while the perpendicular contributions precess in this
frame. In case of δν = 0, only the spin interaction induced by the RF device remains.
In the following discussion, the spin motion in absence of the RF device is denoted as
unperturbed, although the spin closed orbit might be tilted. The perturbation induced
by the RF device, which leads to a variation of the spin component parallel to the spin
closed orbit, can be characterized by a specific resonance strength. In the new frame,
the resonance strength is given by:

|εK | =
√(

α0
4π cos(φ) [~n× (~m× ~n)]

)2
+
(
α0
4π sin(φ) [~m× ~n]

)2

= α0
4π |~m× ~n| .

(3.206)

Only if the spin closed orbit of the static ring in absence of an RF device ~n and the spin
rotation axis in the RF device ~m are not parallel, an oscillation of the spin component
parallel to the spin closed orbit of the static ring is induced. The formal solution to
Equation 3.200 can be represented as

ψK(θ) = e−
i
2 T̃ θψK(0) . (3.207)

Using the Equations 3.127, 3.199 and 3.207, the components of the classical spin vector
can be calculated according to

Si = ψ†(0)e
i
2 T̃ θe

i
2νrfθσie

− i
2νrfθe−

i
2 T̃ θψ(0) . (3.208)

Here, the spin vector has been normalized to unity and the relation:

ψK(0) = ψ(0) (3.209)

has been used. The evolution of the spin components Si given in Equation 3.208 will
be explored in Section 3.2.8.2.
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3.2.8 Perturbation of Spin Motion due to Depolarizing Resonances

After classifying the different types of spin depolarizing resonances in particle storage
rings, their impact on spin motion is studied in more detail. For this purpose different
scenarios are examined. The first scenario deals with the influence of a spin resonance
in case of a constant particle momentum. In the second scenario, the crossing of spin
resonances utilizing a constant acceleration is explored. The last scenario covers the
spin motion expressed in Equation 3.208 and illustrates the connection of the spin
closed orbit and the spin rotation axis of an RF device.

3.2.8.1 Spin Motion at Constant Momentum or Constant Acceleration

In this scenario, the unperturbed spin closed orbit is oriented in the vertical direction
and the unperturbed spin tune is given by νs = Gγ. Introducing an isolated spin
resonance ξ = εKe

−iKθ with the strength εK , the spinor equation given in Equation
3.169 and transformed into the resonance precessing frame can be expressed as [77]:

dψK
dθ = − i2 (δνσ3 − εRσ1 + εIσ2)ψK (3.210)

with

ψK(θ) = e−
i
2Kθσ3ψ(θ) , (3.211)

εK = εR − iεI , (3.212)
δν = Gγ −K . (3.213)

The spin tune and the spin closed orbit in the precessing frame are given by:

λ =
√
δ2
ν + |εK |2 , (3.214)

~nc = εR
λ
~e1 −

εI
λ
~e2 −

δν
λ
~e3 . (3.215)

The spin vector precesses around the spin closed orbit vector as illustrated in Figure 3.8.
The orientation of the spin closed orbit as well as the magnitude of the spin tune depend
|εK | on the resonance strength and the difference between resonance and unperturbed
spin tune δν . In case δν vanishes, the spin closed orbit lies in the horizontal plane and
the spin tune amounts to the resonance strength. If the ratio δν/|εK | approaches ±∞
the magnitude of the vertical spin closed orbit grows steadily. If the spin is injected
parallel to the spin closed orbit in the resonance precessing frame, it does not precess in
this frame. The average projection of the spin vector onto the vertical axis amounts to
δ/λ. If the unperturbed spin tune Gγ is slowly changed, such that the spin vector can
follow the spin closed orbit adiabatically, the average spin component is still remains
at this ratio. The situation is different, if a vertically oriented spin vector is injected
into the perturbed system. In this case, the spin precesses around the spin closed orbit
and the average projection onto the vertical axis amounts to the ratio δ2/λ2. This
illustrates, that for values δ/λ close to unity the impact of a resonance is negligible in
many situations, while the average projection onto the vertical axis vanishes, when the
unperturbed spin tune Gγ matches the resonance tune.
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Figure 3.8: Figure (a) illustrates the precessing spin vector with respect to an arbitrary
orientation of the spin closed orbit ~nc. In Figure (b), the averaged vertical spin
component with respect to the ratio of deviation from resonance δ ≡ δν to resonance
strength ε ≡ |εK | is shown. In the “adiabatic crossing” case, a spin vector stays aligned
to the spin closed orbit, while the resonance is crossed. The “Sy = 1 injected“ case
deals with an initially vertical spin injected at a certain δ/ε value. The spin precession
reduces the averaged vertical spin component 〈Sy〉.
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In the following, the resonance crossing process is studied in more detail. A linear
change of the difference between the unperturbed spin tune and the resonance tune
can be parametrized as:

α = dδν
dθ = dGγ

dθ −
dK
dθ . (3.216)

The first term characterizes the acceleration process, where the magnitude of γ is
changed, while a change of the resonance tune in the second term can be introduced by
betatron tune variations in case of intrinsic resonances or by changing the frequency of
the RF device in case of artificially introduced resonances. The ratio between the final
vertical polarization Pf and the initial vertical polarization Pi of a beam after crossing
an isolated resonance can be calculated by the Froissart-Stora-formula [95]:

Pf
Pi

= 2 · exp
(
−π|εK |

2

2α

)
− 1 . (3.217)

Here, a complete resonance crossing from δν → −∞ to δν → ∞ is assumed. Three
different scenarios can be identified:

• α� |εK |2: In this case, the crossing speed α is much smaller than the resonance
strength. Thus, the spin/polarization vector can follow the spin closed orbit
adiabatically and the complete polarization is flipped (Pf = −Pi). In this case,
the vertical polarization during the crossing process is described by the red curve
in Figure 3.8.

• α� |εK |2: The crossing of the resonance occurs quickly and the the spin depolar-
izing resonance is barely noticed. Consequently, the polarization along the spin
closed orbit is preserved in this case as well (Pf = Pi).

• α ≈ |εK |2: The crossing speed and the squared resonance strength are approxi-
mately of the same order of magnitude. In terms of polarization preservation,
this is the most critical case. The polarization is partially lost after crossing the
resonance (|Pf | < |Pi|).

The initial polarization of an ion beam is completely determined by the setup of the
polarized ion source. For ions no effective mechanism to increase the polarization of
the particle ensemble after injection into an accelerator or storage ring is available.
Thus, during the acceleration process it is absolutely mandatory to maintain the
polarization, while crossing spin depolarizing resonances. If the relation of the spin
resonance crossing speed and the resonance strength matches the third criterion in the
previous list, the polarization will be partially lost after crossing. Different methods
are commonly used in accelerators to avoid such a polarization loss. They rely on
transforming the condition of item three into the conditions of either item one or two.
Hence, either the crossing speed needs to be increased or decreased or the resonance
strength needs to be varied. Different routines are applicable for imperfection and
intrinsic resonances. In case of imperfection resonances a harmonic correction of the
closed orbit [96] can be performed requiring a particular variation of the corrector
magnet strengths to increase or decrease the imperfection resonance strength. In many
cases this is not sufficient, such that so called (partial) snakes are introduced [97]. They
generate a strong spin rotation around a defined axis and can enhance the resonance
strength, such that a full spin flip is induced.
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Intrinsic resonances can be crossed by adjusting the resonance crossing speed. The
variation of the energy gain per turn induced by the RF cavity is often not sufficient.
Instead, a quick variation of the betatron tune can be induced by tune jump quadrupoles
[98] to introduce a fast change of the resonance tune. In other scenarios the resonance
strength is enhanced by the usage of an RF dipole with a radial magnetic field [99]. The
frequency of the RF dipole is adjusted close to a vertical betatron sideband frequency.
Near intrinsic spin resonances connected to the vertical betatron tune, this enhances
the resonance strength in two different ways [100, 101]. First, the radial RF field
introduces additional resonant spin rotations. Second, vertical betatron oscillations are
excited, which enhance the resonance strength of the intrinsic resonance.

3.2.8.2 Spin Motion in Presence of an Arbitrarily Oriented Radiofrequency
Device

RF devices are planned to generate an EDM related spin resonance, which introduces
a corresponding measurable polarization signal. Simulation routines for such devices
have been implemented and benchmarked within this thesis. In this section, the spin
motion described by Equation 3.208, which has been used for the benchmarking
process, is illustrated in detail. As already pointed out in Section 3.2.7.3, the effective
operator T̃ characterizing the spin motion can be divided into contributions parallel
and perpendicular to the spin closed orbit ~nc. For that reason, it is convenient to
introduce a new coordinate system (~e⊥1 , ~e⊥2 , ~e‖). The basis vectors are defined with
respect to the original coordinate system as follows:

~e‖ = ~nc , (3.218)
~e⊥1 = ~e⊥2 × ~e‖ , (3.219)
~e⊥2 = ~nc × ~e1/|~nc × ~e1| . (3.220)

In this particular choice, the third basis vector ~e⊥2 is constructed such that the ~e1-
component vanishes for any orientation of ~nc. In case of an unperturbed static ring, the
new coordinate system coincides with the original one ((~e⊥1 , ~e⊥2 , ~e‖) = (~e1, ~e2, ~e3)).

The vector components of the spin closed orbit ~nc and the spin rotation axis of the
RF device in the new coordinate system are denoted as ñ1, ñ2, ñ3 and m̃1, m̃2, m̃3,
respectively. They are related to their components in the original (~e1, ~e2, ~e3)-system in
the following way:
ñ1
ñ2
ñ3

 =

0
0
1

 ,
m̃1
m̃2
m̃3

 =


1√

n2
2+n2

3

[
m1(n2

2 + n2
3)−m2n1n2 −m3n1n3

]
1√

n2
2+n2

3
(m2n3 −m3n2)

m1n1 +m2n2 +m3n3

 . (3.221)
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In the following, the three Pauli matrices are reassigned to the three basis vectors of
the new coordinate system. Here, the basis vector ~e‖ is used as new quantization axis.
Hence, the effective operator T̃ defined in Equation 3.205 can be rewritten to:

T̃ = δνσ3

+ α0
4π cos(φ) [m̃1σ1 + m̃2σ2]

+ α0
4π sin(φ) [m̃2σ1 − m̃1σ2] .

(3.222)

In this particular representation, the static ring is assumed to be the unperturbed
system, although the spin closed orbit might be tilted. The perturbing terms introduced
by the RF device are connected to the Pauli matrices σ1 and σ2 via the components
of the spin rotation axis in the RF device given in the new coordinate system: m̃1
and m̃2. The representation in the new coordinate system depicts, that the resonance
strength is given by:

|εK | =
α0
4π

√
m̃2

1 + m̃2
2 . (3.223)

The evolution of the spin components can be calculated using Equation 3.208. In the
following the on-resonance case δν = 0 is studied. The component S̃3 characterizes the
projection of the spin vector onto ~e‖. It is preserved, if the RF device is turned off.
The evolution of S̃3 in presence of a running RF device is illustrated here. It depends
on the initial orientation of the spin vector at θ = 0. The evaluation of Equation 3.208
yields:

S̃1(0) = 1 : S̃3(θ) = m̃1 sin(φ)− m̃2 cos(φ)√
m̃2

1 + m̃2
2

sin
(
α0
4π

√
m̃2

1 + m̃2
2 · θ

)
, (3.224)

S̃2(0) = 1 : S̃3(θ) = m̃1 cos(φ) + m̃2 sin(φ)√
m̃2

1 + m̃2
2

sin
(
α0
4π

√
m̃2

1 + m̃2
2 · θ

)
, (3.225)

S̃3(0) = 1 : S̃3(θ) = cos
(
α0
4π

√
m̃2

1 + m̃2
2 · θ

)
. (3.226)

In case the spin vector initially points along one of the perpendicular basis vectors,
the interaction with the RF device generates an oscillating spin vector projection
onto the spin closed orbit. The oscillation frequency is determined by the resonance
strength, while the oscillation amplitude depends on the relation of the components
m̃1 and m̃2 with respect to the initial phase φ of the field of the RF device For a spin
vector initially parallel to the spin closed orbit, the amplitude amounts to unity. These
equations illustrate, that the spin perturbation introduced by an RF device can be
used to probe for the magnitude of the components m̃1 and m̃2. As discussed below,
the EDM is proportional to m̃1 in certain configurations of the RF device. This idea
is considered as a possible method for measuring EDMs in magnetic storage rings as
discussed in the subsequent section.
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3.3 EDM Searches in Storage Rings

In Section 2.4, methods for measuring the EDMs of neutral particles have been
elaborated. This section focuses on the EDM search for charged particles in storage
rings and some of the proposed methods are described. Until now, the muon is the only
particle, whose current EDM limit was determined by a storage ring experiment [3].

3.3.1 Parasitic Method

The current EDM limit of the muon was determined parasitically during the g − 2
experiment in Brookhaven [61]. Primarily, this experiment was designed to measure the
anomalous magnetic moment a of the muon. For this purpose, a storage ring consisting
of a magnetic guiding field and electric focusing elements was employed. The experiment
was performed utilizing muons with ”magic“ momentum to minimize the interaction
between electric fields and the magnetic dipole moment (see also Equation 3.155). The
muon spins were initially placed in the horizontal plane, where they precesses around
the vertical guiding field. The precession frequency is connected to the anomalous
magnetic moment (νs = Gγ) as shown in Equation 3.148. The limited muon lifetime
leads to continuous decays of the muons during the store. Due to maximum parity
violation in the muon (anti-muon) decay, the preferred direction of the emitted electron
(positron) is connected to the spin direction of the muon (anti-muon). This enabled
the measurement of the spin precession frequency by determining the counting rates of
emitted electrons (positrons). For a vanishing EDM (~ΩEDM=0), the spin precession in
such a ring takes place exactly in the horizontal plane. Consequently, the spin closed
orbit is aligned to the vertical direction. A non-vanishing EDM introduces a tilt of this
precession plane [3] as shown in Figure 3.9, because ~ΩEDM ⊥ ~ΩMDM. Hence, the tilt
angle ξ can be characterized by the ratio of EDM and MDM contribution (Equations
3.148 and 3.154):

tan ξ = ηEDMβ

2a . (3.227)

This tilt corresponds to a radial contribution to the spin closed orbit and as long the
EDM compared to the MDM is small: nx ≈ ξ holds. Therefore, an oscillation of a
vertical polarization is induced, which in fact was used for the muon EDM measurement.
The most stringent upper limit obtained is [3]:

|dµ| < 1.8 · 10−19 e cm . (3.228)

Future experiments measuring the muon g-2 precession also aim to improve the current
upper bound on the muon EDM.

The sensitivity of this measurement method strongly depends on the amplitude of the
induced vertical polarization oscillation. The maximum oscillation amplitude is given
by A = sin ξ. Assuming ultra-relativistic muons and a muon EDM of 1 · 10−19 e cm the
tilt amounts to ξ ≈ 9 · 10−4. This can be compared to a potential proton or deuteron
EDM measurement based on this method. Protons and deuterons possess a two to
three orders of magnitude larger anomalous magnetic moment than muons. Hence, an
EDM measurement at a beam momentum of 1GeV/c and an EDM of 1 · 10−19 e cm
would induce a significantly smaller tilt angle ξ. The values are ξ ≈ 4 · 10−6 for the
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Figure 3.9: Tilt ξ of the spin closed orbit ~nc due to spin interaction in the guiding
fields of a magnetic storage ring. The contributions of MDM and EDM to the spin
precession frequency vector ~Ω are perpendicular to each other. The tilt induces an
oscillation of a vertical spin component.

proton and ξ ≈ −3 · 10−5 for the deuteron case, respectively. EDM magnitudes of
|dp| ≈ 2 · 10−17 e cm and |dd| ≈ 3 · 10−18 e cm would be required to produce the same
tilt angle as in the muon scenario described. In terms of polarimetry small tilt angles are
very challenging. For that reason, further measurement methods have been proposed
[5, 6].

3.3.2 Frozen Spin Method

The Frozen Spin method is based on the idea to increase the sensitivity of the measured
signal by increasing the tilt angle ξ. As indicated in Figure 3.9, the tilt angle is defined
by the ratio of ~ΩEDM and ~ΩMDM. Thus, an enhancement of the tilt angle can be
achieved by minimizing the MDM induced precession with respect to the momentum
vector, as defined in Equation 3.154. In a pure electric storage ring, this is possible for
protons at the ”magic“ momentum (see Equation 3.155). For deuterons, this method
is only available when using a superposition of magnetic and electric bending fields,
as proposed in [6]. In case of a non-zero EDM the tilt angle within this method is
maximized to ξ = π

2 . At the same time the precession frequency is significantly reduced,
because the MDM contribution is completely canceled. For particle spins initially
aligned to the momentum direction, the interaction of the EDM with the guiding fields
of the storage ring will cause a slow buildup of a vertical polarization, which serves an
an indication of a non-zero EDM.
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The statistical sensitivity for the proton case in a pure electric ring has been investigated
in [5]. In this reference it is given by:

σd(p) = 2~
PAE

√
NcyclefTtotτp

. (3.229)

Here, P denotes the beam polarization, A is the analyzing power of the polarimeter and
E is the electric field strength of the guiding fields. The effective detection efficiency is
f . The number of stored particles per measurement cycle is given by Ncycle. Besides
this parameters, also the total measurement time Ttot and the spin coherence time for
protons τp are important. Latter characterizes, for which amount of time the particle
spins stay aligned to each other and participate at the vertical polarization buildup.
A numerical example using P = 0.8, A = 0.6, E = 10.5MV/m, f = 0.011/2, Ncycle =
4 · 1010, Ttot = 107 s, and τp = 103 s yields a statistical sensitivity of

σd(p) = 1.8 · 10−29 e cm . (3.230)

In summary, EDM experiments using the frozen spin method would be conducted
on an imperfection spin resonance tune. Systematic contributions arising from field
imperfections and device misalignments might also lead to a tilt of the invariant spin
axis. Hence, they can introduce a not EDM related vertical polarization buildup. For
instance, spurious radial magnetic fields, which couple to the magnetic dipole moment,
give rise to a growing vertical polarization component. Measurements using clockwise
and counter-clockwise beams within the same storage ring are considered to identify
these contributions. In pure electric fields both beams would share the same closed orbit,
but radial magnetic fields would act differently on the clockwise and counter-clockwise
beams. Thus, they introduce a splitting of the vertical orbit of both beams, which
is detectable by beam position monitors. A more complete list of systematic error
contributions is also discussed in [5].

Dedicated pure electric or combined magnetic/electric storage rings for EDM searches
are not yet available. Unfortunately, the frozen spin method is not applicable in a pure
magnetic ring. Therefore, a different method using an RF Wien filter is proposed to
enhance the sensitivity compared to the parasitic method in a pure magnetic ring like
the Cooler Synchrotron COSY.

3.3.3 RF Wien Filter Method

This method is based on the insertion of an RF Wien filter to introduce an EDM
related polarization signal [102, 103]. The spin tune of an ideal pure magnetic ring
without EDM is given by νs = Gγ, which directly reveals that a ”magic“ momentum
does not exist. In case of a non-vanishing EDM, it couples to the motional electric
field ~ΩEDM ∝ ~β × ~B. As discussed in section 3.3.1, this leads to a tilt of the spin
closed orbit: nx = n1 ≈ ξ. But as pointed out, the resulting oscillation signal of the
vertical polarization is significantly smaller compared to the muon measurement. An
enhancement of this signal can be achieved by introducing an induced spin resonance
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of an RF Wien filter. The two relevant parameters m̃1 and m̃2 given in Equation 3.221
and evaluated for n1 � 1, n2 � 1, n3 ≈ 1 can be expressed as:

m̃1 = m1 −m3n1 , (3.231)
m̃2 = m2 −m3n2 . (3.232)

These parameters determine the amplitude of the induced polarization oscillation
in case the spins are initially perpendicular to the spin closed orbit of the static
storage ring, as discussed previously. The coefficients mi define to the spin rotation
axis in the RF device given in the (~e1, ~e2, ~e3)-coordinate system. Reconsidering the
RF Wien filter concept discussed in the previous sections, the RF Wien filter is
designed for a minimized beam excitation, while a spin rotation axis is induced about
the the ~e3-direction. Consequently, the coefficient m̃1 is proportional to n1, which
contains the EDM related tilt due to the motional electric fields in the storage ring.
Assuming the EDM contribution is the sole contribution to a non vertical spin closed
orbit, the induced resonance strength as defined in Equation 3.223 is proportional
to the EDM magnitude. Thus, in the ideal setup, this method can be applied for a
EDM measurement. But also in this method systematic contributions due to field
imperfections and misalignments can introduce a tilt of the spin closed orbit in the
static storage ring, which is not related to the EDM. These effects will be discussed in
Chapter 8. A different approach to illustrate the RF Wien filter method is illustrated in
[102]. In this reference, the authors explain the measurement method by a modulation
of the spin tune induced by the RF Wien filter in a unperturbed machine and show,
that the Fourier series expansion of this modulation possesses a 0-mode contribution,
which leads to a vertical polarization buildup related to the EDM. Since the 0-mode
contribution is the essential contribution in the frozen spin method, the RF Wien filter
method has been denoted as a method based on the ”partially frozen spin“ effect.

Studies towards a final conception for a dedicated ring are supported by measurements
in pure magnetic rings, e.g. the Cooler Synchrotron COSY in Jülich. Along with these
studies, first EDM measurements at COSY at a lower sensitivity level are planned
using the RF Wien filter method [7, 104]. Within this thesis, different aspects for the
use of this method at COSY are explored:

• Similar to the frozen spin method the spin coherence time limits the measurement
period in a single particle store. A study of relevant beam optics parameters
to achieve a long spin coherence time as an requirement for the RF Wien filter
method has been conducted in Chapter 6.

• Further the study of EDM measurement method requires the development and
benchmarking of simulation procedures for RF fields in transfer map based
tracking codes (Chapter 5). Their implementation has been verified in Chapter 7
during the investigation of artificial spin resonances induced by an RF solenoid.

• Finally, the new algorithms for RF fields have been applied for a systematic
investigation of field imperfections and misalignments faking an EDM signal in
the RF Wien filter method. Details are presented in Chapter 8.

In the next chapter an overview of the accelerator complex and the experimental
environment for these studies is given.





Chapter 4

Experimental Setup at COSY
In this chapter, the accelerator complex around the Cooler Synchrotron COSY [8, 9] of
the Forschungszentrum Jülich and the utilized experimental setup for the polarization
measurements are described.

4.1 The Accelerator Facility COSY

The accelerator facility at the Forschungszentrum Jülich consists of (polarized) ion
sources, the cyclotron JULIC and the synchrotron and storage ring COSY. They are
interconnected by injection and transfer beam lines. The individual areas are illustrated
in the following.

4.1.1 Polarized Ion Source

Similar to Ramsey’s method of oscillatory fields described in Section 2.4.1, the first
requirement for a polarization experiment is a source of polarized particles. In Jülich,
a polarized source for negatively charged hydrogen and deuterium ions is in operation.
the following information are mainly taken from [105]. The ions are produced by direct
charge exchange of colliding hydrogen/deuterium and cesium beams:

H0 + Cs0 → H− + Cs+ . (4.1)

The neutral hydrogen/deuterium beam is produced in an atomic beam source. An RF
dissociator is used to provide the atom beam, which afterwards passes two sextupole
magnets. The first magnet is utilized to select a certain spin state defined by the
electron spin orientation in the atoms. The second magnet acts as a achromatic lens
to focus the beam towards the collision and ionization region. Before reaching the
ionization region, the electron polarization is transformed to a nuclear polarization
using RF transition units. Two RF transition units are available to select the desired
spin states. The cesium beam is produced in the opposite part of the source. It is
required for the production of the negatively charged hydrogen/deuterium ions in the
ionization region. The afterwards negatively charged ions are deflected by 90 degree into
the injection beam line. A static Wien filter is used to separate the ions from electrons
and to align the beam polarization with respect to the cyclotron main magnetic field.
This way, the polarization is preserved during the subsequent pre-acceleration process
in the cyclotron.

61
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Figure 4.1: Overview of the accelerator complex around COSY in Jülich

During the past years, many test experiments towards EDM measurements have been
performed utilizing polarized deuteron beams. Commonly, three different deuteron
polarization states are provided for these experiments. The first two states are optimized
for a maximized positive or negative vertical vector polarization together with a
vanishing tensor polarization. The setup of the third state was chosen to provide
vanishing vector and tensor polarizations.

4.1.2 The Cooler Synchrotron COSY

The H− (D−) ions are accelerated up to momenta of 300MeV/c (600MeV/c) in the
cyclotron JULIC. A 100m beam line is employed to further guide them towards the
main synchrotron and storage ring COSY [8, 9]. This is depicted schematically in
Figure 4.1. A stripping injection is used to inject the particles into the COSY storage
ring. In this process, the negatively charged ions pass a thin foil and the two electrons
are stripped off. The resulting polarized protons or deuterons are stored in COSY. This
stripping mechanism is one order of magnitude more efficient than directly injecting
H+ or D+ ions [105] and also allows one to stack new injections on top of already
stored particles.
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COSY is based on a racetrack design with a circumference of about 183.4m [8, 9].
The synchrotron principle enables a further acceleration of the stored particles up
to momenta of 3.8GeV/c. This requires a continuous ramping of the magnetic fields
according to the beam momentum. The RF acceleration cavity is located in one of
the straight sections. Once the desired energy is reached, the stored particle beams
can be used at internal experiments at several target locations in the straight sections.
In the past, several experiments like the ANKE [106], the WASA [107] and the PAX
[108] experiment have been conducted at the internal target locations. Additionally,
the beam can also be extracted to external target stations.

The acronym COSY results from the utilization of cooling systems based on two
different principles [109]. The following illustration is mainly based on this reference.
Since 1993, an 100 keV electron cooler has been used to shrink the phase space volume
after injection. In the electron cooler region, an electron beam is injected and placed
coaxial to the stored proton or deuteron beam [110]. This electron beam possesses a
smaller velocity spread in transverse and longitudinal direction than the ion beam.
Due to Coulomb interactions between the ions and the electrons, energy is transferred
between the two systems. This energy transfer reduces the velocity spread of the ion
beam. Effective cooling requires the same mean velocity of the ion and the electron
beam. The maximum electron energy of 100 keV limits the cooling range to roughly
600MeV/c for protons and 1200MeV/c for deuterons. A more detailed description of
the 100 keV electron cooler is given in section 4.1.2.3. Additionally, a 2MeV electron
cooler has been recently installed to enable electron cooling in the full momentum range
of COSY [111]. Besides electron cooling, stochastic cooling is available for protons
and deuterons. The corresponding range depends on the ion velocity. For protons it is
given by 1500MeV/c to 3300MeV/c [109]. It is utilized to limit beam heating due to
interactions in the internal experiments and maintain an equilibrium between heating
and cooling [109].

4.1.2.1 Ion Optics

The 183.4m long racetrack design of COSY consists of two 180° arcs, each 52m long,
which are separated by two straight sections with a length of 39.7m, respectively. An
overview of the magnetic structure is depicted in Figure A.1 in the Appendix.

Eight quadrupole families4 (MQT1-MQT8), each consisting of four quadrupoles, are
located in the straight sections [98]. They are arranged in four quadrupole triplets
(either FDDF or DFFD5) per straight section. The adjustment of the quadrupole
strengths enables a telescope configuration with a 1:1-imaging and a betatron phase
advance of either π or 2π per straight section. For that reason, the straight sections
are denoted as the “Target Telescope” and the “Cooler Telescope”, respectively. In
case of a phase advance of 2π the linear transfer matrix of the horizontal and vertical
coordinates becomes a unity matrix for each straight section. Thus, in linear order the
straight sections are ion optically transparent and do not affect the optical functions in
the arc sections. This is the intended configuration for the currently conducted EDM
test experiments.

4A quadrupole family is a set of identical quadrupoles connected to the same power supply
5F = horizontally focusing quadrupole, D = horizontally defocusing quadrupole
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In the arc sections, 24 dipoles and 24 quadrupoles guide and focus the beam. They
are grouped into six identical mirror symmetrical unit cells with a FODO-OFOD
structure6. The arc quadrupoles are combined into six families of four quadrupoles
(MQU1-MQU6), which enables the tuning of the ion optics in different configurations.
The two focusing (defocusing) magnets of the two cells opposite to each other belong
to the same family. Hence, both arcs are also mirror symmetric with respect to the
center of the straight sections. A sixfold symmetry (P = 6) is created by equally
powering each cell. The betatron functions and the horizontal dispersion function for
a particular choice of this configuration (Qx = 3.62 and Qy = 3.59) are shown in
Figure 4.2. The acceleration of polarized protons requires the crossing of intrinsic spin
resonances [112], but as discussed in the previous chapter, a higher super periodicity
P suppresses certain intrinsic spin resonances. Unfortunately, the proton acceleration
to the maximum momentum also requires the crossing of the transition energy of the
lattice. Usually, this is achieved by shifting the transition energy due to a strengths
variation of the quadrupole families MQU3 or MQU4. This reduces the lattice to a
twofold symmetry (P = 2). The additionally introduced intrinsic resonances can be
suppressed by adjusting the quadrupole strengths [113]. The variation of MQU4 further
allows one to minimize the dispersion in the straight sections. This is used to optimize
the conditions for the internal experiments. An example for the optical functions in
this configuration is also shown in Figure 4.2.

The sextupole magnets are the highest multipole order mounted at COSY. Initially,
eight sextupole magnets were placed in the straight sections (MX1-MX8), but one of
them, MX1, was removed during the installation of the 2MeV electron cooler. The ten
sextupole magnets in the arcs are grouped into three families (MXS, MXL, MXG). In
case of a minimized dispersion in the straights, these families can be used to correct
the horizontal and vertical chromaticities. The chromaticity change induced by each
family varies due to a significant difference of the optical functions at the sextupole
locations.

During the test experiments described within this thesis, a minimized dispersion
configuration has been used. The MQU4 family has been employed to minimize the
dispersion, while the MQU1/MQU5 and MQU2/MQU6 families have been used to
adjust both betatron tunes, preserving the twofold symmetry. In routine operation the
horizontal and vertical betatron tunes are usually located between 3.55 and 3.7. The
sextupole magnets in the arcs have been used to vary the chromaticities and study
their impact on spin motion, especially on the spin coherence time.

4.1.2.2 Spin Manipulators

The polarization of the injected ion beam is initially oriented parallel to the spin closed
orbit of COSY. In context of the EDM experiments, spin manipulators are required
to rotate the spin into the plane perpendicular to the spin closed orbit. This enables
studies of the spin tune and the lifetime of the precessing polarization denoted as
spin coherence time. The corresponding spin resonance strengths introduced by these
devices have been already discussed in Section 3.2.7.3.

6the “O” denotes the space between focusing and defocusing quadrupoles. At COSY a guiding dipole
is located there.
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Figure 4.2: The optical functions of the COSY lattice in two configurations. A tele-
scope configuration with betatron phase advances of 2π is used in the straights. (a):
The quadrupole strengths of the focusing and the defocusing quadrupoles are equal,
respectively. This leads to a sixfold symmetry of the lattice. (b): The quadrupole of
the family MQU4 is adjusted to minimize the dispersion in the straights. This reduces
the optics to a twofold symmetry (layout adapted from [114]).

At present, different RF spin manipulators are installed. Figure 4.3 depicts the RF
solenoid located in the first arc of COSY. It has a length of 57.5 cm and an average
diameter of 21 cm [115]. A nominal current of 10A produces an integrated longitudinal
field

∫
B̂soldl = 0.67T mm. The RF solenoid is routinely used for flipping the vector

polarization of the beam. Recently, also a RF Wien filter has been commissioned [104].
An explosion drawing is shown in Figure 4.4. It produces superimposed radial magnetic
and vertical electric fields, whose strengths can be adjusted independently from each
other. Thus, it can be operated as a pure magnetic or electric dipole, but also in an RF
Wien filter configuration. Its length is about 0.6m. A nominal current in the coil of 5A
produces a magnetic field of

∫
B̂wfdl = 0.175T mm. In this case, the required electric

field amounts to
∫
Êwfdl = 24.1 kV for a Lorentz force compensation in Wien filter

configuration. Due to a different shape of the magnetic and electric fringe fields a local
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Figure 4.3: Image of the RF solenoid located in the first arc of COSY (taken from
[115]).

Figure 4.4: Explosion drawing of the RF Wien filter located in the first arc of COSY
(taken from [104]).

Lorentz force compensation is not achievable. Here, the aim is a global minimization
to reduce the resonance strength contribution arising from the excitation of betatron
oscillations [100].

4.1.2.3 100 keV Electron Cooler

The 100 keV electron cooler is located in the center of the Cooler Telescope. A schematic
drawing is depicted in Figure 4.5. The electron beam is produced in a flat thermionic
cathode in the electron gun [117]. The electrons, electrostatically accelerated to the
velocity of the stored ion beam in COSY, are guided and focused by a longitudinal
magnetic field, which is generated by the gun solenoid. A subsequent toroid is used
to deflect the electrons by 90° into the drift solenoid region with a length of 2m. In
this region the paths of the approximately 2.5 cm wide electron and the ion beam
overlap. The effective cooling length is roughly 1.5m long [118]. At the end of the
cooling region, the electron beam is separated from the ion beam in a second toroid
towards the collector solenoid. Before dumping, it is electrostatically decelerated to the
gun potential. The main purpose of the electron cooler is the reduction of the beam
emittances and the momentum spread of the ion beam in the low momentum region of
COSY. Cooling at injection energy also allows one to apply a cooling-stacking-injection
technique [109]. Here, the ions are cooled between subsequent injections to increase
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Figure 4.5: Layout of the 100 keV electron cooler located in the center of the Cooler
Telescope (taken from [116]).

the total number of stored particles. Furthermore, the electron cooling at injection
energy optimizes the conditions for beam diagnostics conducted at higher energies
[109], where the beam emittances are additionally reduced by adiabatic damping.

In the current experiments, polarized deuteron beams with a momentum of 970MeV/c
are used. Electron cooling is applied to minimize the beam widths and improve the
conditions for polarization experiments. This is an important requirement for spin
coherence times (see Chapter 6). Further, the control of the beam chromaticities is
mandatory. A variation of the electron velocity can be used to slightly decelerate or
accelerate the ion beam. At the same time, the COSY lattice remains unchanged. The
beam chromaticities can be obtained from tune measurements at the different beam
velocities. Afterwards, they can be corrected by an appropriate selection of sextupole
families.

4.1.2.4 Diagnostics

The control of the particle beam requires a precise knowledge of accelerator and beam
parameters. The following list summarizes a selection of important parameters and
measurement methods required during the setup of the EDM test experiments:

Beam Position The horizontal and vertical beam position is measured by a set of
about 30 beam position monitors (BPMs) in the horizontal and vertical plane,
respectively. Due to different shapes of the beam pipe a rectangular tube design
has been chosen for the arcs, while cylindrical tubes are used in the straight
sections [119]. A typical BPM consist of 130mm long electrode pairs [120]. Each
turn, the bunched ion beam generates signals on the electrodes. The signals of
the two opposite electrodes are combined to a difference and a sum signal. The
latter is proportional to the intensity of the beam, while the ratio of difference
and sum signal allows one to determine the beam position with respect to the
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center of the BPM. A linear dependence between this ratio and the beam position
is achieved by the diagonally cut structure of the rectangular or cylindrical tubes.
The beam position can be controlled by a about 20 corrector magnets distributed
in the ring. An overview is given in Figure A.2 in the Appendix.

Beam Intensity Beam intensity monitoring is required to estimate the amount of
particles in the ring. On one hand, it provides information about the beam
lifetime, required for the optimization of the accelerator setup. On the other
hand, it permits conclusions about the beam interaction rate with the internal
target. A beam current transformer (BCT) is used to measure the current I of
the stored ion beam. Knowing the revolution frequency frev of the circulating
beam, the number of stored ions N is given by:

N = I

e · frev
. (4.2)

Beam Profiles Profile measurements are used to determine the transverse ion beam
widths. Taking the values of the optical functions at the measurement location
into account, enables the calculation of the beam emittances. In synchrotrons,
non-destructive methods for beam profile monitoring are preferred [121]. For
this purpose, ionization profile monitors (IPM) are a suitable choice. An IPM
is located in the first half of the second arc of COSY. Ions and electrons are
produced in collisions of the circulating ion beam with residual gas atoms. Biased
electrodes of the IPM produce an electric field to accelerate the ions / electrons
towards a micro-channel plate (MCP) [122]. A high field homogeneity is required
to achieve straight trajectories, needed to reconstruct the beam profiles. The
accelerated electrons hit a phosphor screen mounted behind the MCPs. The
created light spots are recorded by CCD cameras. A spatial resolution of about
100 µm is achievable.

Betatron Tunes and Chromaticities The knowledge of the betatron tunes is required
to avoid betatron resonances as well as intrinsic spin resonances during the
accelerator setup. At COSY, tune measurements are performed by the excitation
of coherent betatron oscillations [123]. These excitations are achieved by a
stripline unit. Commonly, a network analyzer is used to sweep the excitation
frequency of the stripline unit in a predefined range. At the same time, it
evaluates the induced signal on a single BPM electrode, either in the horizontal
or in the vertical direction. Resonant oscillations occur, if the excitation frequency
matches a betatron sideband frequency. From these measurements the fractional
part of the betatron tunes can be determined. As previously noted, the beam
chromaticities can be obtained by repetitive tune measurements for different ion
beam velocities, which are induced by a variation of the electron acceleration
voltage of the electron cooler.

A selection of recorded diagnosis measurements for a typical experimental setting is
presented in the last section of this chapter.
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4.2 EDDA Polarimeter

The goal of a storage based EDM experiment is the detection of an EDM related
polarization signal. This requires precise polarimetry of the proton and deuteron
polarization. In the EDM test experiments the existing EDDA7 detector [124] is used
as a polarimeter. In this section, the detector principle, layout and data acquisition is
presented. A more detailed description is given in [125].

4.2.1 Detector Principle and Layout

The principle of the detector is the observation of elastically scattered protons or
deuterons emerging in interactions of the circulating beam with an internal target.
A carbon block target mounted above the stored beam has been selected during the
experiments described within this thesis. Once the stored beam has reached its final
conditions required for the experiment, the beam is moved closer to the target and the
measurement period is initiated. Different methods have been considered to achieve
a continuous rate of elastic scatterings during measurement periods of hundreds of
seconds. A set of corrector magnets could be combined to create an orbit bump, which
slowly moves the ion beam towards the carbon target. Here, the target interaction
rate of the outermost beam particles is adjustable by the magnitude variation of the
orbit bump. This method has been replaced recently, due to an observed effect on
spin motion induced by the variation of the additional magnetic fields of the corrector
magnets. The alternative method utilizes an RF electric field produced by the stripline
unit. A white noise signal in a frequency interval around a sideband of the betatron
oscillation frequency is used to heat the beam in vertical direction. Since the target is
mounted above the beam, the outermost ions elastically scatter on the carbon block.

For spin-1/2-particles the polarization-dependent elastic scattering cross section σ is
given by [78]:

σ = σ0 [1 +AyPy cosφ−AyPx sinφ] . (4.3)

Here, σ0 is the cross section for an unpolarized beam and Px and Py denote the vector
polarizations in the transverse directions. The analyzing power Ay characterizes the
spin dependent part of the cross section. It depends on the momentum of the incident
particle and the polar scattering angle ϑ. The angle φ is the azimuthal angle in the
x-y-plane. In case of spin-1-particles the polarization-dependent elastic scattering cross
section σ can be written as [78]:

σ = σ0

[
1 + 1

2AzzPzz +
(3

2AyPy + 2
3AxzPxz

)
cosφ

+ 1
6 (Axx −Ayy) (Pxx − Pyy) cos(2φ)

+
(
−3

2AyPx + 2
3AxzPyz

)
sin(φ)

+ 1
3 (Axx −Ayy)Pxy sin(φ)

]
.

(4.4)

7Excitation function Data acquisition Designed for Analysis of phase shifts
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Figure 4.6: Sketch of the EDDA detector (taken from [125]).

The tensor polarization terms are denoted by Pij , (i, j ∈ x, y, z) and the different
analyzing powers are defined by Ai and Aij . Assuming an initial beam polarization
setup providing a negligible tensor polarization, Equation 4.4 transforms to Equation
4.3 plus additional factors 3

2 :

σ = σ0

[
1 + 3

2AyPy cosφ− 3
2AyPx sinφ

]
. (4.5)

These factors are based on the particular definition described in Section 3.2.1. They
reflect the fact, that for a vanishing tensor polarization, the maximum achievable
vector polarization is 2

3 .

The polarization measurement is performed by measuring the angular dependency of
the events detected in the EDDA detector. The layout of the EDDA detector enables
the observation of the angular dependency of the scattered particles. A setup of two
scintillator layers is used. The inner layer consists of 32 bars mounted cylindrically
around the beam pipe oriented parallel to the beam direction. These bars separate
the azimuthal angle in equally sized segments. They are combined into four groups
each containing eight bars and covering an azimuthal angle of 90°. The center of each
group is located directly above, beside or below the center of the beam pipe. Hence,
the groups are denoted as up, down, left or right depending on their geometrical
arrangement as shown in Figure 4.6. The outer layer consists of cylindrical scintillator
half rings mounted perpendicular to the bars. Two facing half rings cover a certain
polar scattering angle range. Thus, the choice of a subset of rings allows to restrict
the recorded events to a defined range of polar scattering angles. For the particular
setup, the four downstream rings providing an angular range from 9° to 14.4° have
been selected [125]. Each detector quadrant covers a certain solid angle Ω. This allows
one to define average analyzing powers according to:

A
c
y =

∫
Ay cosφ dΩ∫

dΩ , (4.6)

A
s
y =

∫
Ay sinφ dΩ∫

dΩ . (4.7)

Assuming a perfect alignment of the four detector quadrants, As
y = 0 for the left and

right quadrants, while Ac
y = 0 for the up and down quadrants. Thus, using Equation
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4.5 and assuming equal detection efficiencies and acceptances of the four quadrants,
the average cross section can be written as:

σ = σ0

(
1 + 3

2A
c
yPy

)
for left and right , (4.8)

σ = σ0

(
1 + 3

2A
s
yPx

)
for up and down . (4.9)

Consequently, the scattering event rates towards the left and right quadrants are
sensitive to the vertical beam polarization Py. Similarly, the scattering towards the up
and down quadrant is affected by the radial beam polarization Px. The asymmetries of
the scattering event rates L,R,U,D in two facing regions are proportional to vertical
or radial beam polarization, respectively:

εLR = L−R
L+R

= 3
2A

c,L
y Py , εUD = U −D

U +D
= 3

2A
s,U
y Px . (4.10)

Here, the following relations hold for the analyzing powers for the left, right, up and
down quadrant: Ac,L

y = −Ac,R
y , A

s,U
y = −As,D

y . Furthermore, the magnitudes of the two
averaged analyzing powers are equal (|Ac,L

y | = |A
s,U
y |) in the particular arrangement.

In case of a temporally constant discrepancy between acceptances or efficiencies of
facing quadrants, the corresponding asymmetry is shifted by a constant offset.

4.2.2 Data Acquisition

The following description of the data acquisition has been taken from [125]. The light
yield produced by a scattered particle passing the scintillator material is detected by
photomultiplier tubes (PMTs). The sum of the PMT signals from the group of four
scintillator rings are generated. Similarly, also the sums of the PMT signals of the eight
scintillator bars corresponding to one detector quadrant are produced. Thresholds and
coincidences are setup to select deuteron-carbon elastic scattering events. If the required
conditions are met, a trigger signal associated to a certain detector quadrant is released.
In recent beam times average analyzing powers of Ây = 0.37± 0.02 could be obtained
by optimizing the thresholds [125]. The four trigger channels (one for each quadrant)
are connected to a time-to-digital converter (TDC). Each trigger signal of the four
quadrants leads to a recorded scattering event with an associated timestamp. Besides
these four signals, a logical signal corresponding to the COSY RF cavity frequency,
prescaled by a factor 100, is used as a TDC input. Since the revolution frequency
for a deuteron beam at p = 970MeV/c amounts to 750 602.5Hz, the prescaled signal
produces an event each 0.13ms. This guarantees, that the full operational range of the
TDC will not be exceeded and each event time can be precisely recorded. In addition,
the frequency information of the cavity allows one to assign a revolution number (turn)
to each recorded scattering event. Depending on the experimental setup, also the
RF signals of the spin manipulators are used as further TDC inputs. They provide
information about the state of the particular spin manipulator during the cycle. In
summary, an event file containing the timestamps of the scattering events and the
prescaled RF signals is produced in each measurement. Further details are given in
[125].
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4.3 Typical Measurement Setup

Various beam conditions are required depending on the different purposes of the
experiments. In this section, a typical setup is presented. The time period starting
from the initial particle injection procedure until the end of the measurement period
and ramp down of the COSY magnets is called a cycle. At the end of each cycle, the
magnets are ramped down to allow for the next injection. Subsequent cycles sharing
the same accelerator and beam conditions define a run. One exception is the choice
of different initial polarization states in various cycles of the same run. Most of the
experiments are performed with vector polarized deuteron beams. A typical cycle
consists of the following steps:

1. A vector polarized ion beam is injected into COSY. The initial beam polarization
is parallel to the spin closed orbit of COSY, i.e. almost vertical and parallel to
the dipole guiding fields. Commonly three different polarization states are used.

2. Acceleration of the deuteron beam to the final momentum of 970MeV/c is
performed

3. Beam preparation phase before the measurement period: Electron cooling of
bunched or coasting beam is applied to reduce the beam emittances and mo-
mentum spread. If necessary, also machine parameters like betatron tunes and
chromaticities are adjusted to study their influence on spin motion and polariza-
tion. Furthermore, a correction of the horizontal and vertical orbit is conducted
during this period.

4. After cooling, a vertical orbit bump is applied to move the beam to a position
directly below the carbon target of the EDDA detector

5. White noise is fed to the stripline unit to heat the beam in vertical direction and
initiate scattering processes of the outermost deuterons onto the internal carbon
target.

6. The initial beam polarization is manipulated by using the RF solenoid or the RF
Wien filter. This step depends on the purpose of the current experimental run.

7. The following step is the measurement period. Scattering events are recorded
continuously for a subsequent analysis of the polarization behavior. Typically this
period lasts hundred seconds and more until most deuterons have been removed
from the beam.

8. Finally, in some experimental runs a horizontal and vertical betatron tune
measurement is conducted, before the COSY magnets ramp down at the end of
each cycle. This way a continuous monitoring of the tunes over several runs is
achieved.

Figure 4.7 depicts a selection of recorded diagnostic and detector signals for a typical
cycle with a length of about 210 s. After acceleration to the final momentum, electron
cooling is applied for about 75 s. The measured profiles illustrate the significant
reduction of the beam emittances. At 80 s a global orbit correction is performed and
the beam is moved closer to the the carbon target. This results in a slightly increased
detector rate and a radial and vertical shift of the measured profiles. A continuous
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(a) (b)

(c) (d)

Figure 4.7: Summary of plots for diagnosis of a typical measurement cycle. Figures (a)
and (b) illustrate the measured horizontal and vertical profiles in a cycle. The electron
cooling period, orbit correction and measurement period are clearly visible. Figure
(c) illustrates the BCT signal, where vertical noise was fed to the stripline starting at
about 90 s. Figure (d) depicts the recorded detector events summed over all detector
quadrants.

detector rate is achieved by the vertical extraction noise turned on at about 85 s. The
measurement periods last until 195 s in the cycle. Finally, the beam is debunched and
excited two times for a horizontal and vertical betatron tune measurements. Since the
beam is close to the edge of the target, this leads to small beam losses and enhanced
detector rates.





Chapter 5

Development and Setup of the
Simulation Framework
The preparation and evaluation of the experiments require a fast and powerful simula-
tion framework. In the scope of this thesis a new framework written in the programming
language C++ has been developed. It interfaces with existing software tools to model
the beam and spin dynamics of the particles in an accelerator and storage ring like the
Cooler Synchrotron COSY. An overview of this framework has been already presented
in [126]. In the first section of this chapter, the layout of this framework is discussed.
Afterwards, the available and developed algorithms for the study of beam and spin
motion within this framework are presented. Finally, benchmarking results of the
implemented COSY model with experimental results are covered in the last section.

5.1 Layout of the Simulation Framework

The description of the simulation framework layout can be divided into two main
aspects. The first aspect is the illustration of external programs and embedded libraries
of the new framework, for which the codename COSY Toolbox has been established.
The second aspect is the internal class hierarchy to model the accelerator and evaluate
the results.

5.1.1 Interfaced Software Tools

Figure 5.1 gives an overview of the used software tools. The configuration of the
ion beam setup, i.e. initial emittances and momentum spread as well as the lattice
configuration is defined in the framework COSY Toolbox. The framework gains its main
functionality from the arbitrary order beam and spin dynamics simulation and analysis
code COSY INFINITY [10], the ROOT framework [127, 128] and the open-source
library Armadillo [129]. These software tools are described in the following:

COSY INFINITY The code COSY INFINITY developed at the Michigan State Uni-
versity allows the quantitative study of the beam and spin dynamics for a defined
accelerator lattice. Although the name may suggest otherwise, it is not directly
related to the Cooler Synchrotron COSY. The code provides differential algebraic
methods to efficiently calculate the transfer maps for orbital and spin coordinates.
These maps express the final coordinates of a particle behind an accelerator
element in terms of their initial coordinates in front of the element. The map
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COSY  
Toolbox 

COSY  
Lattice 

COSY  
Infinity 

Armadillo 

ROOT 

Ion beam 
conditions 

Figure 5.1: Layout of the simulation framework. The ion beam settings and accelerator
lattice are implemented in a new framework COSY Toolbox, which interfaces existing
simulation codes and libraries.

calculation is based on the solution of the equations of motion [130], presented
in the Sections 3.1 and 3.2. Different algorithms are available to solve these
equations to arbitrary order in terms of the initial coordinates. Several routines
for electrostatic and magnetic elements, like dipoles and quadrupoles, are avail-
able to provide the required field information for the transfer map calculation
[131]. The evaluation of the transfer maps enables the calculation of the optical
functions, tunes, chromaticities, closed orbits and various other parameters of
the lattice. Furthermore, parallelized multi-particle tracking over several millions
of turns is available. Here, each particle is defined by its initial orbital and spin
coordinates. The repetitive application of the transfer maps results in the final
coordinates after each turn. The new framework COSY Toolbox takes care of
the production of the input files for COSY INFINITY, triggers the execution
and finally reads in the simulation results for further processing.

ROOT ROOT is a modular scientific software framework for data processing, whose
development was started at CERN8. Huge amounts of data can be efficiently
stored in binary ROOT files. The stored information can be accessed and fast
evaluated in subsequent analysis routines. A large repository of C++ classes is
available to finally visualize the results. In the COSY Toolbox framework this
functionality is used to process the COSY INFINITY results. The huge amount
of information about the particle coordinates of subsequent turns in tracking
simulations are preprocessed and stored in the binary file format. This drastically
reduces the required amount of disk space.

8Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear Research)
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Armadillo Armadillo is a high quality C++ linear algebra library. It provides fast and
easy access to operations like matrix inversion and solving of linear equation
systems. In the COSY Toolbox framework it is mainly used for the closed orbit
correction routines. Here, it calculates orbit response matrices based on COSY
INFINITY results and allows for their (pseudo-)inversion using singular value
decomposition.

5.1.2 Class Hierarchy

The class hierarchy of the COSY Toolbox framework is depicted in Figure 5.2. The
classes are assigned to different categories. The simulation setup provides the basis
of the beam and the accelerator lattice representation. It contains information about
the particle type, the beam momentum and other beam details. In addition, also
information about the computation order used in the differential algebraic algorithms
and additional parameters required for the COSY INFINITY configuration are stored
in this class. The particles of a beam are created by a ParticleGenerator class. It
has direct access to the lattice information to retrieve information about the optical
functions and machine parameters. This enables the random generation of the initial
particle orbital coordinates according to predefined distributions, i.e. given by the
beam emittances and momentum spread for normal distributed beam particles. The
elements of the COSY accelerator are represented by individual classes in the framework.
They are divided into static and RF elements. A set of elements is grouped into an
ElementList, which can contain either static or RF elements. The entire accelerator
or storage ring is finally represented by an object of the class Beamline consisting of
several ElementLists. The beam and beamline objects contain all information, which
are mandatory for the simulation tasks. Currently, a calculator and a tracker class are
implemented. The former is used to calculate the transfer maps and retrieve the lattice
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Figure 5.2: Class structure implemented in the COSY Toolbox framework.
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parameters. The latter prepares and executes parallelized tracking simulations for the
given beam information and a fixed number of turns. For this purpose, each element of
the beam line adds its COSY INFINITY representation to an input file. Subsequently,
this input file is extended by required commands for calculation or tracking provided in
the internal language COSYScript of COSY INFINITY. The results are automatically
stored to the ROOT binary file format. Analysis classes access these files, process the
stored information and finally visualize results either for single particles or for the full
bunch of particles.

5.2 Utilized and Developed Algorithms

In this section a collection of algorithms used within the framework is presented. These
algorithms are either part of the COSY INFINITY framework or extensions to it, which
combine existing and further developed methods into new routines. These routines can
be easily accessed by the COSY Toolbox framework.

5.2.1 Calculation of Transfer Maps

The calculation of transfer maps to arbitrary order is an important feature of COSY
INFINITY. These maps can be used to efficiently study the dynamics of an repetitive
system like a storage ring [132]. They relate the final to the initial phase space
coordinates based on the solution of the equations of motion of the system under
consideration:

~zf =M
(
~zi, ~d

)
. (5.1)

Here, the vector ~d contains additional parameters of the system, which can be defined
to study their influence on the transfer map. A similar transfer map can be obtained
for the spin:

~Sf = A
(
~zi, ~d

)
· ~Si . (5.2)

The transfer map calculation requires an analytical description of the magnetic and
electric fields, since they are part of the equations of motion. In COSY INFINITY, these
descriptions are provided in various routines for individual elements as discussed before.
The initial setup of COSY INFINITY allows one to use either hard edge representations
or fringe field models to describe the particular field fall-off (see Section 5.2.3). These
field descriptions are used during the evaluation of the equations of motion. Often,
these equations can not be solved analytically. In this case, it is still possible to find a
solution to arbitrary order using numerical integration methods [132, 133]. In COSY
INFINITY different methods are available [130]. One of them is the implementation
of an eighth-order Runge-Kutta integrator with automatic step-size control using a
seventh-order algorithm. This integrator is used within this thesis, inter alia, to obtain
the transfer maps of the rectangular guiding dipoles of the Cooler Synchrotron COSY
including the default fringe field descriptions implemented in COSY INFINITY.
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5.2.2 Transfer Maps for RF Fields

Commonly, a static arrangement of magnetic or electrostatic elements is considered for
the study of beam dynamics in storage rings. Once the one turn map is calculated, it
can be repetitively applied for all subsequent turns, since it contains the full information
of the dynamics of the system. Because the fields of each element are static, the transfer
map does not depend on the fifth phase space coordinate lK . This coordinate is related
to the time or more specifically to the time deviation with respect to the reference
particle ∆t. As soon as time-varying fields are taken into account, such a dependence is
introduced. The most frequent elements with time-varying fields are RF cavities. The
corresponding fields are often shaped sinusoidally and used to accelerate the particles
to their final energy and to preserve the longitudinal bunch structure. During a store,
the cavity frequency matches the beam revolution frequency (or a particular higher
harmonic of it). Hence, the oscillation phase of the cavity fields with respect to the
reference particle stays constant for each turn. A recalculation of the transfer map for
subsequent turns is not required. Considering oscillating fields with a frequency, which
is not a multiple of the revolution frequency, this condition is not fulfilled. In general,
this is the case for RF spin manipulators, whose frequencies are often adjusted with
respect to the spin precession frequency of the stored beam. Naively, a recalculation
of the transfer map with respect to the time of arrival of the reference particle is
required each turn. This would imply a huge computational effort in long-term tracking
applications. For that reason, new algorithms have been developed and implemented
to reduce the computational time. In the following, these algorithms are illustrated for
the case of an oscillation longitudinal field of an RF solenoid.

A fast but less accurate approach is a representation of the oscillating field by a simple
spin kick. In this approach the RF solenoid is treated as a point-like device. Since
~β · ~B = 0, the RF solenoid does not influence the motion of the reference particle. Only
the spin vector of the reference particle is rotated around the longitudinal axis by an
angle ψ:

ψ = (1 +G) · q
p

∫ lsol

0
Bsol(tarrival, s)ds . (5.3)

Approximately, this spin rotation angle can be applied for every particle of the beam
depending on its time of arrival at the solenoid location tarrival. This quantity can be
obtained from the turn number n, the revolution frequency frev and the time deviation
∆t, which can be obtained from the fifth phase space coordinate of each individual
particle:

tarrival = n

frev
+ ∆t . (5.4)

The rest of the storage ring is expressed by a one turn map, starting and ending at
the solenoid location, but excluding the point-like solenoid itself. This map transforms
the orbital and spin coordinates between the subsequent interactions of the solenoid.
In tracking simulations, the spin kick ψ has to be calculated and executed between
each application of the transfer map of the static storage ring. This serves as an
approximation of the beam and spin motion influenced by the oscillating field of an
RF solenoid.

A second ansatz has been implemented to improve the accuracy by using a map
representation of the RF device, but at the same time avoiding the computationally
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expensive recalculation for every revolution. In the following, a solenoid field given
by

Bsol = B̂sol(x, y, s) · sin(2πfRF t+ φ0) = B̂sol(x, y, s) · sin(φ+ φ0) (5.5)

is considered. In map form, the time dependence is expressed by a Taylor expansion
of the sine wave in terms of the fifth phase space coordinate. This expansion has to
cover at least a full period of the field oscillation. An individual particle arrives at the
solenoid at

φarrival + φ0 = 2πfRF tarrival + φ0 . (5.6)

For an arbitrary oscillation frequency, this phase can take on any value. In terms of a
Taylor expansion, deviations from φ+ φ0 = 0 can not be treated as small deviations.
Hence, even for the reference particle a sufficiently large computation order is required.
A reduction of the required computation order is achieved by the following approach
chosen for implementation. The oscillating field is represented by 36 instead of one
transfer map. Each map is an individual expansion at different values of φ0 denoted as
φ0,i:

φ0,i = 2i+ 1
2 · 1

36 · 2π, i ∈ [0, 35] . (5.7)

The tracking routine has been extended, such that RF devices of this type are available.
The following steps are performed for a tracking simulation of a bunch of particles:

1. When the location of the RF device is reached along the reference trajectory, the
phase φarrival is calculated for each individual particle.

2. Each particle is assigned to a particular map i depending on its phase φarrival.
The map satisfying the condition φarrival ∈

[
φ0,i − 1

2 ·
1
36 · 2π, φ0,i + 1

2 ·
1
36 · 2π

]
is

selected.

3. Each map contains an expansion about the point φ0,i. This point does not agree
with the phase φarrival of the reference particle. For that reason, the fifth phase
space coordinate of each particle is shifted taking the distance φarrival − φ0 into
account. This corresponds to a transformation into a local coordinate system,
required before applying the individual transfer map in tracking.

4. The particular transfer map is applied to the phase space coordinates of each
particle.

5. The shifts of the fifth phase space coordinates performed in the third step are
reversed. After this step all phase space coordinates are expressed in the global
coordinate system again.

6. The particles are grouped back into one bunch and the subsequent transfer map
can be applied.

Various implementations are available to express the spatial field dependence defined
in Equation 5.5 [134]. The currently used implementation of the time-varying solenoid
is based on a thin solenoid approximation with a hyperbolic tangent approximating
the fringe fields of the longitudinal field:

B̂z, sol(s) = B0
2 tanh(l/2R) · [tanh(s/R)− tanh((s− l)/R)] . (5.8)
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Besides the solenoid, also an RF Wien filter has been integrated into the code. Its
implementation is based on a superposition of the existing templates for electrostatic
and magnetic bending dipole elements, which are rotated appropriately. In COSY
INFINITY, the curvature of the reference trajectory is automatically calculated at
each integration step according to the reference particle deflection due to vertical
magnetic and radial electric fields, respectively. In general, this curvature is zero
outside of the guiding dipoles. This assumes, that all field components on the reference
trajectory belong to the accelerator design. Consequently, constant terms of the transfer
maps vanish per definition. Introducing time-varying fields, which deflect the reference
particle, this deflection may be different each turn. For this purpose, the reference
trajectory is subsequently defined for the situation when the RF fields are off. In this
scenario, the particular device can be replaced by a drift space. To preserve a valid
calculation of the phase space motion, the automatic calculation of the curvature has
to be taken into account. For the implementation of the RF Wien filter, it has been
turned off. Consequently, constant terms are introduced to the transfer maps, if the
reference particle is deflected by the time-varying fields. Hence, particles, which are
initially traveling on the reference trajectory for a disabled Wien filter, are deflected
and leave the design orbit, if the Wien filter is running.

The control of the two different RF devices, solenoid and Wien filter, is realized by two
associated RFElement classes within the COSY Toolbox framework. ElementLists for
either a set of static elements or an RF element are grouped together into a Beamline
object. During execution, the transfer map of each element is calculated and stored
to disk. For tracking applications all maps associated to the same ElementList are
combined to a single transfer map. Then, these combined maps are applied to the
orbital and spin coordinates in subsequent order until the desired number of revolutions
is reached.

5.2.3 Fringe Fields and Misalignments

Often, a realistic field profile can be described by a rise of the field magnitude in the
entrance fringe field region, a constant flat top value and a fall-off in the exit fringe field
region. Sufficiently far away from the element the field vanishes. Usually, the fringe
field regions of a magnetic element are small compared to its extent along the reference
trajectory. For that reason, these magnetic field distributions are often approximated
by a hard edge model in simulations. The real field distribution is replaced by a
constant field present over a constant effective length leff along the reference trajectory.
Assuming the flat-top value is reached at the center of the element at s = 0, the
effective length is given by:

leff =
∫∞
−∞B(s) ds
B(0) , with B(s)→ 0 for s→ ±∞ . (5.9)

Consequently, the element is represented by a constant field region B(0) · leff9 connected
to field free regions in front and behind the element. This simplification often leads
to optimistic results of beam dynamics studies [135]. Instead of the hard edge model,
COSY INFINITY provides the option to use fringe fields following Enge functions

9in case of multipoles, constant gradients are considered
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Figure 5.3: Influence of the fringe fields (FF) on the reference trajectory based on the
example of a sector bend (not to scale). The comparison shows a hard edge model
compared to modeled fringe fields using Enge functions.

[133, 136]. Considering a one-sided fringe field, the main field is modulated by the
following function:

F (d) = 1
1 + exp[a1 + a2 · (d/D)2 + · · ·+ a6 · (d/D)6] . (5.10)

In this representation, d is the distance to the effective field boundary in s-direction (at
the entrance or exit respectively) and D is a scaling parameter. In COSY INFINITY the
full aperture of the element is commonly used for D. Default values for the coefficients
ai are implemented for electric and magnetic fields and different multipole orders. The
multiplication of two modulation functions is required to take entrance and exit fringe
fields into account. In the simulations, this fringe field representation is chosen and the
default ai are used.

Fringe fields can significantly influence the quadrupole strengths in comparison to
the strengths obtained by the hard edge model [135]. Also the deflection in guiding
dipoles is affected. This is depicted in Figure 5.3. The algorithm implemented in COSY
INFINITY forces a symmetric solution for the reference trajectory with respect to the
center of the dipole. In the hard edge model, the reference trajectory outside a dipole
is a straight line, while it describes a circle with constant radius inside the dipole.
The length of the circular trajectory corresponds to the effective length. A fringe field
representation based on Enge functions affects the particle trajectory in the fringe
field regions due to a different arrangement of the field components. In general, this
introduces changes of bending radius and angle. For many common applications, these
variations of bending angle and radius are negligible. Nevertheless, the total sum of
the deflections in all guiding dipoles per revolution slightly deviates from 2π in this
scenario. This leads, for example, to a tiny change of the calculated spin tune compared
to the nominal one (hard edge model). For the calculations within this thesis, the total
bending angle has been restored to its design value by scaling the main field for each
guiding dipole. This also corrects the spin tune to its nominal value. The remaining
small offsets of the trajectory compared to the hard edge model are treated as part of
the new reference trajectory. Thus, they do not lead to spatial offsets with respect to
the magnetic centers of adjacent elements.



Chapter 5: Development and Setup of the Simulation Framework 83

To take spatial shifts, tilts and rotations of the optical axis into account, various com-
mands are implemented into COSY INFINITY. These commands do not directly affect
the transfer map of the misaligned element, but perform a coordinate transformation
of the phase space coordinates in front and behind of the element. A combination of
these commands is required to model a certain misalignment of an element. These
combinations have been realized in routines within the COSY Toolbox framework.
These routines generate the particular part of the source code for the COSY INFINITY
input file. All misalignments have been defined with respect to the center of the element.
Thus, the transfer map of the misaligned element is generated in the following way:

1. A transfer map of a field-free drift is used to transfer the phase space coordinates
to the center of the element. At this location, the optical axis is transformed by
the necessary shifts, tilts and rotations. The transfer map of a field-free drift
with equal length as the first one is applied in opposite direction to return to the
new initial point of the reference trajectory.

2. The original transfer map of the non-misaligned element is applied, since the
misalignments are governed by the transformations of the optical axis in the
previous step.

3. The transformation applied in the first item is reversed to complete the transfer
map calculation of the misaligned element.

In general, the application of misalignments also introduces constant terms into the
transfer maps and induce a change of the closed orbit solution (see Section 3.1.4.5).

5.2.4 Orbit Diagnosis and Correction

The orbit diagnosis and control system of the Cooler Synchrotron COSY consists of
several BPMs and corrector magnets as discussed in the previous chapter. Closed
orbit studies require the integration of these elements into the simulation code. In
ideal case without misalignments and field imperfections, all correctors are disabled.
Hence, the design reference trajectory inside a corrector magnet usually describes
a straight line. This is similar to the situation of time-varying fields as previously
discussed. A new template for a corrector magnet based on the existing guiding dipole
template has been implemented to COSY INFINITY. For the transfer map calculation
the curvature has also been fixed to zero, independent from the applied corrector
field. Some correctors within the storage ring COSY are realized as additional coils
mounted on the quadrupole magnets. These have been represented by a corrector
magnet object with additional quadrupole component. Thus, each corrector magnet
is represented by an object with spatial extent, instead of a point-like kick used in
various other simulation codes. These new templates are interfaced by a new class
added to the COSY Toolbox framework. A BPM is represented as a specially flagged
drift space to determine the closed orbit coordinates at certain positions in the storage
ring. One application of these elements is the calculation of the orbit response matrix,
as discussed in Section 3.1.4.5. Here, the corrector fields are varied and the induced
closed orbit changes are evaluated. The orbit change at each BPM per angular kick
induced by each corrector magnet is stored in the matrix class of the Armadillo library.
Matrix inversion methods can be used to find the corrector strength required to correct
a distorted closed orbit induced by simulated storage ring imperfections.
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5.2.5 Repetitive Tracking

Considering a ring circumference of 183.4m, a storage time of 1000 s and revolution
frequencies in the order of 1MHz, the length of a single particle trajectory in a
complete store amounts to more than 1011 m. Efficient methods are needed to study
the evolution of the phase space on this scale. The periodic structure of a storage
ring allows the repetitive application of the same one turn map in subsequent turns.
This drastically reduces the computational effort compared to a continuous numerical
integration based on Runge-Kutta methods. Often, a storage ring can be considered as
a Hamiltonian system. In this case, the transformation of the phase space coordinates
satisfies the symplectic condition [137]. One implication of this condition is the phase
space conservation according to Liouville’s theorem. Thus, transfer map based codes
often aim to maintain this condition in long-term tracking simulations. It is important
to note, that this maintenance does not necessarily lead to more accurate results. In
general, the transfer maps obtained by the numerical integration methods presented
here, do not fulfill the symplectic condition. For this purpose, various algorithms are
implemented into COSY INFINITY to restore the symplectic motion. One of these
algorithms is applied in the tracking routines responsible for transfer maps representing
only static elements. The new implementation for time-varying fields uses various
transfer maps for different groups of particles. Here, the existing algorithms do not
guarantee to restore the symplectic motion in the particular implementation [138]. For
that reason, these algorithms are currently disabled in case of time-varying fields. New
algorithms are subject of on-going studies.

5.3 Benchmarking of the Accelerator Model

The COSY lattice is one of the major ingredients for the beam and spin dynamics
simulations. An online accelerator model containing the specific setups of the experi-
mental runs is available in the control system software. It is based on the lattice design
and simulation code Methodical Accelerator Design 8 (MAD-8) [139]. The locations,
effective lengths and field strengths of the magnetic elements have been transferred to
a new accelerator model used within the COSY Toolbox and COSY INFINITY. The
descriptions of the elements and especially their fringe fields of different simulation
codes vary in different codes. Thus, the validation of the model requires a proper bench-
marking with experimental measurements. Recent experimental runs use a storage ring
setup with a vanishing dispersion in the straights as discussed in Section 4.1.2.1. For
the benchmarking process, the simulated dispersion in the straights is minimized by
an additional variation of the strength of quadrupole family MQU4. Furthermore, the
simulated nominal horizontal and vertical betatron tunes are adjusted to the measured
quantities by scaling the quadrupole strengths of the MQU1/MQU5 and MQU2/MQU6
families in the model.

5.3.1 Betatron Tune Variations Induced by Quadrupoles

According to Equation 3.96, a measured tune change induced by a quadrupole strength
variation can be used to obtain the value of the betatron functions at the quadrupole
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Figure 5.4: Changes of the horizontal (a) and vertical (b) betatron tunes induced by
variations of the quadrupole strength of the MQU5 family. The points indicate the
measurement, the solid lines represent the simulation. The offsets of this lines have
been scaled artificially.

location. Unfortunately, all main quadrupoles at COSY are powered in families of four
magnets. Thus, only an average betatron function at the four locations can be retrieved.
Instead of a comparison of the betatron function, also the induced tune changes can
be compared directly to validate the model. A series of tune measurements for the
variation of each quadrupole family has been performed. The quadrupole strength of
each family was varied in a certain range, according to the implemented calibration
factors of the control system software. In the arcs the range was usually ∆k

k = ±4 %,
in the straights about a factor two smaller, because beam loss occurred for greater
values. For each setting the tunes were measured. Similar changes were simulated
using nominal tunes adjusted to Qx = 3.64 and Qy = 3.565 in the accelerator model.
Exemplary, the comparison of a typical measurement with the simulation result is shown
in Figure 5.4. The linear approximation is only valid for small changes of the quadrupole
strengths. In most measurements this linear behavior is in fact observed over the full
variation range. Only in a few measurements a quadratic coefficient appears. Linear
fits are applied to extract the slopes of the measured tune changes. Figure 5.5 depicts
the comparison between measurement and simulation for the 14 main quadrupole
families. The error bars are approximated according to the estimated accuracy of
the tune measurements. Some of the measurements, i.e. the horizontal measurement
using MQT6 or the vertical measurement using MQT7, reveal larger discrepancies. In
case the particular measurement suffers from an enhanced scattering of the measured
tune values, the error bars are scaled accordingly to provide a χ2/ndf10 = 1. This is
reflected in the larger error bar of the fitted slope. For these particular measurements
a larger discrepancy between measurement and simulation is expectable. Overall, the
comparison of measurements and model calculations reveals a good agreement for most
quadrupole families. A direct comparison of the values obtained in measurements and
simulations is given in Table B.1 and Table B.2. A further optimization of the model
is the goal of present studies.

10number of degrees of freedom
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Figure 5.5: Fitted linear coefficients of horizontal (a) and vertical (b) tune changes in
case of quadrupole strengths variations. The x-axes list all main quadrupole families
in the straights and arcs of COSY. The points represent measured data, the colored
bars correspond to the simulation.

5.3.2 Chromaticity Variations Induced by Sextupoles

In a further study, the chromaticity changes induced by the sextupole families located
in the arcs was investigated. This is of particular interest for the spin coherence time
studies. The three sextupole families MXS, MXL and MXG are available due to
their non vanishing dispersion at their locations. The chromaticities were measured for
different sextupole strength settings of these families. For these measurements a cycle of
about 60 s was used. The deuteron beam was bunched and electron cooling was applied.
A variation of the beam momentum was induced by a variation of the electron cooler’s
gun voltage as described in Section 4.1.2.3. For each sextupole strength and electron
cooler voltage setting, the betatron tunes have been measured. The chromaticity at a
particular sextupole setting can be obtained from the tune change in linear order with
respect to a momentum variation. The measured chromaticity variation for different
sextupole settings is illustrated in Figure 5.6. Here, two sextupole families have been
kept at constant strengths, while the strength of the third family was varied.

In the following, the model was benchmarked against these chromaticity measurements.
The measured chromaticities amount to ξx = −4.68± 0.05 and ξy = 2.60± 0.05, when
all sextupole magnets were turned off. The calculation of the natural chromaticities
of the bare model results in ξx = −1.06 and ξy = −1.08, which are both negative as
expected. Additional sextupole components of the guiding dipoles are one candidate to
explain these large discrepancies. Measurement results of these sextupole components
are presented in [140]. The implementation of these components changes the horizontal
chromaticity to ξx = −1.41 and increases the vertical chromaticity to ξy = −0.63.
Thus, the change provides the correct tendency, but is about one order of magnitude
too small. For further comparison of measurements and model calculations, the sex-
tupole components of the dipoles are artificially scaled to reproduce the measured
chromaticities in case all sextupoles are turned off. The influence of each sextupole
component depends on the betatron and dispersion function at its location. In the
underlying algorithm, the least needed changes are calculated by also taking the values
of the betatron functions and the dispersion at the dipole locations into account.
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Figure 5.6: Changes of the horizontal (a) and vertical (b) chromaticity induced by
variations of the sextupole strength of the MXS family. The points indicate the
measurement, the solid lines represent the simulation. The natural chromaticity of the
model has been adjusted to the measured value.

This algorithm results in purely negative sextupole components of the dipoles up
to strengths of k2 = −0.08m−3. Using this setup as the nominal configuration, the
chromaticity changes induced by sextupole variations are studied. The chromaticity
change with respect to a sextupole strength variation is determined by a linear fit and
compared to model calculations (see Figure 5.7). This linear relation is predicted in
Equation 3.85. The measured and simulated values are summarized in Table B.3 and
Table B.4. In some measurements, small discrepancies occur, which are larger than
the statistical uncertainties of the measurements. Nevertheless, these deviations are in
the order of only 2 % to 8 % of the corresponding chromaticity value. This reflects the
good reproduction concerning relative lattice parameter changes.
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Figure 5.7: Fitted linear coefficients of horizontal (a) and vertical (b) chromaticity
changes in case of sextupole strengths variations. The x-axes lists all sextupole families
in the arcs of COSY. The points represent measured data, the colored bars correspond
to the simulation.
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5.3.3 Measurements of the Dispersion Function and the Phase Slip Factor

A last benchmarking test is performed using a measurement of the dispersion function
and the phase slip factor ηph. First, the phase slip factor is determined. Similar as in
the chromaticity measurement, the momentum of the unbunched ion beam was shifted.
The induced change of the revolution frequency was measured. This is shown in Figure
5.8. Relative measurement uncertainties of 10−6 are assumed. A linear function is
fitted to determine the phase slip factor ηph = 0.5844± 0.0001 with a χ2/ndf = 7.5/5.
A model calculation yields: ηmodel

ph = 0.6006. In the various chromaticity measurements
described in the previous section, the phase slip factor was measured parasitically. Here,
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Figure 5.8: Measured shift of the revolution frequency induced by a momentum
variation. The solid line shows a linear fit. The slope of the fit yields a phase slip factor
of ηph = 0.5844± 0.0001 with a χ2/ndf = 7.5/5.
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Figure 5.9: Measurement of the horizontal dispersion function. Figure (a) shows a
measurement of the horizontal orbit for the nominal beam momentum (black) and
induced momentum variations of about ±2.7 % (red, blue). The dashed line is a linear
interpolation of the measurement points. Figure (b) represents the difference orbit of the
two measurements (“+2.7 %”−“0 %”, “0 %”−“−2.7 %”) normalized to the momentum
variation yielding the dispersion function. This is compared to the model calculation
shown by the green solid line.
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the fluctuation of the phase slip factor is in the order of 0.02 for different sextupole
settings. One source of this fluctuation are additional quadrupole components. They
occur, if the beam is not centered in the sextupoles. In the model the beam is perfectly
centered and these effects are not included. With regard to this fluctuations, a very
good agreement is observed.

The dispersion function relates a momentum deviation to a horizontal orbit change.
Thus, a measurement of the dispersion function can be accomplished by measuring
the horizontal orbit for different beam momenta. The orbit measurement is performed
using the BPMs of COSY, which requires a bunched beam. The momentum shift is
commonly induced by a variation of the revolution frequency preset by the RF cavity.
This frequency shift can be converted to a momentum shift using the measured phase
slip factor. Figure 5.9 illustrates the orbit measurements without momentum change
and with induced momentum variations of about ±2.7 %. The orbit deviations with
respect to the nominal orbit are calculated and normalized to the momentum change to
retrieve the dispersion function. The discrepancies between the two measurements with
different momentum variations provide an estimate of the measurement uncertainty.
The dispersion in the straight sections has been artificially adjusted to zero during the
setup of the model. The simulated magnitude of the dispersion function in the arcs is
equal, since the lattice setup in the model is fully symmetric. The almost vanishing
dispersion in the straights is reproduced in the measurements. Also the majority of
measurements in the arcs agrees well with the predicted magnitudes of the dispersion
function. Here, the measurement at s = 160m sticks out, since it points either to an
asymmetric dispersion function or a faulty BPM. Further measurements are required
to revise this conspicuousness.

In summary, the benchmarking results reveal a promising agreement between measured
and simulated quantities. In the following this model is used to prepare and to evaluate
the polarization test experiments, which are described in the next chapters.





Chapter 6

Spin Coherence Time Studies
The methods proposed for EDMmeasurements require a long lifetime of the polarization
precessing perpendicular to the spin closed orbit of the storage ring. Different precession
speeds of the various particles stored in the ring lead to a spin decoherence and a
vanishing polarization. The time until the initial polarization drops below a certain level
is denoted as the spin coherence time (SCT). In this chapter, different contributions to
the spin decoherence are illustrated and discussed. COSY INFINITY calculations based
on the model described in the previous chapter are used to validate the theoretical
considerations. Subsequently, conditions to maintain a long SCT in the COSY storage
ring are obtained. Finally, they are verified by experimental results.

6.1 Motivation

In an ideal planar magnetic storage ring, the trajectory of the reference particle is fully
defined by the deflection in the guiding dipoles. Due to a vertical spin closed orbit in
absence of an EDM, the associated perpendicular plane is referred to as the horizontal
plane in the following. As already discussed, the spin tune of the reference particle is
energy dependent and given by:

νs = Gγ . (6.1)

The momentum of the stored particles slightly varies, which introduces a spin tune
change. In case the beam is unbunched, it amounts to the constant value:

∆νs = G∆γ = Gγβ2 ∆p
p0

. (6.2)

The deviation of the spin phase advance in the horizontal plane can be defined as:

∆φ = ∆νs · θ = ∆νs · 2π · n . (6.3)

Here, n is the number of revolutions. This spin tune spread leads to a rapidly decreasing
polarization component in the horizontal plane. Figure 6.1 illustrates the spin tune
changes for typical momentum deviations for protons and deuterons at COSY. The
results from COSY INFINITY calculations (markers) are in perfect agreement with
Equation 6.2 (solid lines). The currently performed experiments use a deuteron beam
with a momentum of 970MeV/c and a revolution frequency of 750 kHz. Assuming a
spin tune spread of about 10−5, an additional full spin precession with respect to the
reference particle is achieved in only 100 000 revolutions. This results in tiny SCTs
in the order of several milliseconds, which are not sufficient for the planned EDM
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Figure 6.1: Spin tune deviations ∆νs induced by momentum deviations of an individual
particle. Unbunched proton (a) or deuteron (b) beams with different reference momenta
are considered. Points illustrate tracking results, while the solid lines express theoretical
calculations.

experiments. The first order effect given in Equation 6.2 can be canceled by bunching
the beam. Similarly, focusing of the beam eliminates additional linear contributions
to ∆φ introduced by the the transverse phase space motion. Figure 6.2 depicts the
momentum oscillation and the associated ∆φ assuming an initial momentum deviation
of 10−4 from the reference momentum of 970MeV/c. The initial spin vectors have been
aligned and placed in the horizontal plane, hence ∆φ(n = 0) = 0. In linear order ∆φ
oscillates, as shown in Equations 3.182 and 3.183. These oscillations lead to a spread
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Figure 6.2: Synchrotron oscillations of the momentum deviation of an individual
deuteron in a bunched beam (black). Due to the energy dependent spin tune, the
momentum variation introduces a change of the spin phase advance each turn. The
red line illustrates the angle between the spin vector of the individual particle with
respect to a reference particle on the ideal closed orbit.
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of the spin directions of different particles in the horizontal plane, decreasing the beam
polarization. The amplitude of these oscillations is given by

Gγ0β
2
0

Qsync
δ̂ , (6.4)

where δ̂ is the amplitude of the momentum deviation. In the present example, it is
below 0.01 and the effective polarization decrease is marginal. But, considering larger
momentum spreads and greater anomalous magnetic moments, it might be necessary
to decrease the synchrotron tune to limit the magnitude of ∆φ. Two important
contributions to the synchrotron tune are the RF cavity voltage and the phase slip
factor ηph (see Equations 3.118 and 3.119). The latter strongly depends on the lattice
configuration and has to be taken into account during the layout of the experiment.

Besides the linear contributions discussed in this section, a proper treatment of non-
linear effects are required to achieve long spin coherence times in COSY. The following
discussion focuses on this contributions.

6.2 Theoretical Considerations on Spin Decoherence

In this section, the second order effects leading to a spin tune deviation with respect
to the reference particle in a bunched beam are discussed. They contribute to a spin
tune shift of individual particles and introduce a continuously growing ∆φ. Assuming
an ideal storage ring the spin tune of the reference particle is defined by Equation 6.1.
Since it travels on its reference trajectory, strength changes of quadrupoles or higher
order multipole magnets do not influence on the spin tune. The spin tunes of all the
other particles in the bunch are generally affected by those changes. Thus, the spin
tune spread has to be controlled with respect to the reference particle. In the following,
theoretical predictions are compared to COSY INFINITY spin tracking simulations.
For the calculation of the spin tune deviation an efficient algorithm is required.

6.2.1 Algorithm for Spin Tune Spread Calculation

Considering only the reference particle, its spin component in the horizontal plane
precesses by an amount of φ0 = 2πGγ per revolution. For an individual particle, this
precession rate varies as already observed in Figure 6.2. An equal precession rate of the
horizontal spin component is a necessary condition to achieve a long spin coherence
time. Additionally, an equal orientation of the spin precession axes of all particles in the
bunch is favorable. A phase space dependent tilt of this axis is introduced by intrinsic
spin resonances. This is taken into account by the extension of the spin closed orbit to
the invariant spin field. Tilts of this axis tend to become small, if the distances between
the nominal spin tune and the resonance tunes are large compared to the resonance
strength as discussed in Section 3.2.8.1. Since the nominal spin tune is usually chosen
at a sufficient distance to a spin resonance, the implemented algorithm focuses on the
calculation of the average precession rate of each individual particle in the horizontal
plane. For the calculation an individual particle with an initially longitudinal spin
direction is launched in a tracking simulation and its motion is calculated for 200 000



94 Chapter 6: Spin Coherence Time Studies

turns. In the next step, the spin phase advance in the horizontal plane φixz between
subsequent turns i and i+ 1 is determined. The deviation from the reference spin tune
is calculated by averaging:

∆νs =
∑
i(φixz − φ0)∑

i 2π . (6.5)

Since the deviations (φixz − φ0) are small compared to the fluctuations of φixz in
individual turns, it is mandatory to take the quasiperiodicity of the phase space motion
in the averaging process into account. The synchrotron oscillation frequency is small
with respect to the revolution frequency, while the betatron oscillation frequencies
exceed it by a factor of about 3.6 (Qx, Qy). In case of the common deuteron experimental
setup the synchrotron oscillation frequency amounts to about 300Hz compared to a
revolution frequency of 750 kHz. Thus, the number of terms included in the summation
in Equation 6.5 is constrained to cover an integer number of synchrotron oscillations
within the amount of tracked revolutions. This way the bias introduced to ∆νs is
minimized. A similar method was also performed in [141]. Since the number of tracked
turns is also about three orders of magnitude larger than the number of turns per
synchrotron oscillation, the bias is further reduced.

6.2.2 Contributions to Spin Tune Spread

This section discusses the different contributions introducing a deviation of the spin
precession rate for an individual particle. One source is an average path length change
due to betatron and synchrotron oscillations [142]. This has been previously discussed
in [143]. A second source is the presence of intrinsic resonances.

6.2.2.1 Path Lengthening

The following ansatz has been taken from [143] for reinvestigation and comparison to
spin tracking simulations. Intermediate results have been published in [144, 145]. The
revolution time of the reference particle is given by the ratio of ring circumference and
reference velocity:

T0 = C0
v0

. (6.6)

A deviation of the revolution time for an individual particle can be expressed by its
path length change per turn ∆C and its velocity change ∆v . A second order expansion
yields:

∆T
T0

= ∆C
C0
− ∆v

v0
− ∆C

C0

∆v
v0

+
(∆v
v0

)2
. (6.7)

The path length changes due to betatron and synchrotron motion are considered to be
uncoupled. They can be expressed as:

∆C
C0

=
(∆C
C0

)
β

+
(∆C
C0

)
∆p

=
(∆C
C0

)
β

+ α0
∆p
p0

+ α1

(∆p
p0

)2
.

(6.8)
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Here, α0 and α1 denote the momentum compaction factor of first and second order,
respectively. The velocity deviation can also be expressed in terms of the momentum
deviation:

∆v
v0

= 1
γ2

0

∆p
p0
− 3β2

0
2γ2

0

(∆p
p0

)2
. (6.9)

The combination of the previous equations yields:

∆T
T0

=
(∆C
C0

)
β

+ (α0 −
1
γ2 )∆p

p0
+
(
α1 + 3β2

0
2γ2

0
− α0
γ2

0
+ 1
γ4

0

)(∆p
p0

)2

=
(∆C
C0

)
β
− ηph

∆p
p0

+
(
α1 + 3β2

0
2γ2

0
+ ηph

γ2
0

)(∆p
p0

)2
.

(6.10)

The term
(

∆C
C0

)
β
· ∆p
p0

has been neglected, since terms like x · ∆p
p0

tend to vanish,
when averaged over a long time period, since the betatron and synchrotron tunes
are substantially different. For a bunched beam the average revolution time for each
particle is constant by definition. It follows:〈∆T

T0

〉
=
〈(∆C

C0

)
β

〉
− ηph

〈∆p
p0

〉
+
(
α1 + 3β2

0
2γ2

0
+ ηph

γ2
0

)〈(∆p
p0

)2〉
= 0 . (6.11)

Here, the angle brackets denote an averaging over time. The averaged path length
change due to betatron motion can be expressed in terms of the beam chromaticities
Q′x and Q′y and the Courant-Snyder invariants εx and εy [146].〈(∆C

C0

)
β

〉
= − π

C0
εxQ

′
x −

π

C0
εyQ

′
y . (6.12)
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Figure 6.3: Average path length change due to horizontal betatron motion for different
horizontal chromaticities and phase space amplitudes. The points correspond to tracking
results, the solid lines depict theoretical calculations.
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Figure 6.3 depicts simulation results compared to Equation 6.12 for the average path
length change in case of different Courant-Snyder invariants εx in radial phase space.
The initial εy and momentum deviation have been set to zero. The chromaticities were
adjusted by variation of the strengths of the arc section sextupole families in the COSY
ring. Using the second order relation

∆p
p0

= 1
β2

∆γ
γ0
− 1

2β4
0γ

2
0

(∆γ
γ0

)2
, (6.13)

Equation 6.11 can be transformed to:〈∆T
T0

〉
=
〈(∆C

C0

)
β

〉
− ηph
β2

0

〈∆γ
γ0

〉
+ 1
β4

0

(
α1 + 3

2γ2
0

[
β2

0 + ηph
])〈(∆γ

γ0

)2〉
= 0 .

(6.14)

The spin tune deviation given by ∆νs = G∆γ can be minimized by canceling the
energy change. Two conditions can be derived from Equation 6.14:〈∆γ

γ0

〉
= β2

0
ηph

〈(∆C
C0

)
β

〉
+ 1
ηphβ2

0

(
α1 + 3

2γ2
0

[
β2

0 + ηph
])〈(∆γ

γ0

)2〉
(6.15)

⇒
〈(∆C

C0

)
β

〉
= 0 (6.16)

∧ κ ≡
(
α1 + 3

2γ2
0

[
β2

0 + ηph
])

= 0 . (6.17)

Figure 6.4 shows a comparison to simulation results, which are in very good agreement
with the theoretical formulas. The connection between horizontal chromaticity/κ and
the spin tune deviation is clearly reproduced. If the beam chromaticities and κ are
minimized, the spin tune deviation introduced by path lengthening vanishes. A similar
behavior is obtained for the vertical chromaticity.
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Figure 6.4: Spin tune deviations calculated for the horizontal (a) and longitudinal
(b) phase spaces using different horizontal chromaticities/different values of κ and
various phase space amplitudes. The points correspond to tracking results, the solid
lines depict theoretical calculations.
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6.2.2.2 Intrinsic Resonances

The strengths of intrinsic resonances strongly depend on the amplitudes of phase space
motion, i.e. the Courant-Snyder invariants. Thus, the spin motion of different particles
is affected incoherently, which could introduce spin tune deviations. In this section, the
impact of a single isolated resonance with strength εK = εR − iεI and the resonance
tune K is considered. Effects on spin motion in the resonance precessing frame have
been discussed intensively in Section 3.2.8.1. Here, some of the results are summarized.
The solution of the spinor equation of motion for a two component spinor is given
by:

ψ(θ) = e
i
2Kθσ3 exp

[
− i2 (δνσ3 − εRσ1 + εIσ2)

]
ψ(0) . (6.18)

The values for the radial and longitudinal spin component can be computed via:

Sx(θ) = ψ†(θ)σ1ψ(θ) , (6.19)
Sz(θ) = ψ†(θ)σ2ψ(θ) . (6.20)

From these quantities the spin phase advance in the horizontal plane φxz with respect
to θ can be calculated by

dφxz
dθ = d

dθatan2(Sz(θ), Sx(θ)) . (6.21)

To obtain the spin tune deviation ∆νs, the averaged spin phase advance has to be
calculated. The spin tune in the resonance precessing frame is given by λ =

√
δ2
ν + |εK |2

(Equation 3.214) with δν = Gγ −K. Thus, the spin tune deviation yields:

∆νs =
∫ 2π/λ

0 dθ dφxzdθ
2π/λ . (6.22)

Figure 6.5: Calculated spin tune deviation for a particle with an initial longitudinal
spin vector in presence of an isolated spin resonance at K = 4.4 with a strength of
εR = 10−3 and εI = 0.
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In Figure 6.5, this is exemplarily shown for K = 4.4 and |εK | = 10−3. In case the
distance to the resonance δν � |εK |, the spin tune deviation can be expressed as:

∆νs = sign(δν)λ− δν ≈
|εK |2

2δν
. (6.23)

The strong intrinsic resonances are related to vertical betatron motion. In general,
the corresponding resonance strengths depend on the vertical betatron oscillation
amplitudes. Thus, up to second order the spin tune deviation is proportional to the
Courant-Snyder invariant:

∆νs ∝ εy . (6.24)

This proportionality behavior is similar to the path lengthening introduced by vertical
betatron motion. Consequently, the spin tune deviation from intrinsic resonances
can be corrected by an opposite deviation due to path lengthening in presence of a
non-vanishing vertical chromaticity. For the nominal betatron tunes of about 3.6, there
is no strong intrinsic spin resonance for deuterons in the accessible momentum range
of COSY. Thus, the effect of intrinsic resonances is subsequently demonstrated for the
protons. The intrinsic resonance strengths of COSY have been already investigated in
[112]. Within this thesis, COSY INFINITY simulations based on the present model
configuration are used to determine the resonance strengths of the different intrinsic
resonances in the operational range. A special adjustment of the COSY optics, i.e.
required for the crossing of the transition energy, is not taken into account, since the aim
of this study is the demonstration for different momenta, but fixed quadrupole strengths
k1. Figure 6.6 depicts the various resonance strengths. The intrinsic resonances appear
at K = n · P ± (Qy − 2), where P is the super periodicity. The value 2 needs to be
subtracted from the vertical betatron tune to consider the phase advance of 2π in
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Figure 6.6: Calculated intrinsic resonance strengths for various vertical Courant-Snyder-
invariants. The lattice configuration with zero dispersion in the straights benchmarked
in the previous chapter has been used.
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each telescopic straight section. Since COSY possesses six similar cells in the arcs,
the strongest resonance appears at K = 8 − Qy. The additional resonances do not
vanish, since in the ideal case the lattice setup with dispersion free straights offers
only a two-fold symmetry. Furthermore, the straights are not perfectly transparent,
which is also included in the present model. Note that, for resonance crossing studies
the resonance strengths with respect to normalized emittances are in general of more
interest due to adiabatic damping. This normalization is not performed in the present
study, since the impact and overlap of intrinsic resonances (Equation 6.23) should be
explored for resonance strengths εK , which are constant for all beam momenta and
δν .

6.2.3 Spin Tune Spread of Protons and Deuterons at COSY

In this section, the spin tune deviations for protons and deuterons are investigated in
the COSY momentum range. To illustrate the effect of intrinsic resonances, a more
detailed description for protons is presented. Two different lattice configurations are
utilized. In the first setup, the strengths of the sextupole families in the arc sections
are adjusted to minimize the horizontal and vertical chromaticities, as well as the value
of κ. In the second setup, the arc section sextupoles are turned off completely and the
sextupole components of the guiding dipoles are tuned to match with the measured
relative chromaticities of ξx = −4.68 and ξy = 2.60 in absence of active sextupole
magnets. The κ factor defined in Equation 6.17 is currently not determinable in real
experiments at COSY due to the unknown contribution depending on α1. Hence, κ
could not be tuned to a measured value, but varies due to its energy dependency. For
the current investigation it takes on values between six and seven.

Figure 6.7 illustrates the spin tune deviations for five particles with different horizontal
phase space amplitudes. The red curve depicts the variation of the phase slip factor ηph
for the different reference momenta. As already mentioned, the lattice configuration is
not adjusted for different momenta intentionally. Thus, a vanishing phase slip factor
required to maintain longitudinal phase focusing is not avoided and the associated
crucial amplification of the spin tune deviations is outlined. In the first scenario, the
horizontal chromaticity is minimized. Consequently, the betatron motion induces no
energy change according to Equation 6.15 and the spin tune deviation vanishes for all
particles. Note that, the oscillation of the spin phase deviation ∆φ discussed in the first
section of this chapter is not part of this study. In particular for a vanishing ηph the
impact of such an oscillation is expected to be large and might drastically reduce the
precessing polarization component, although ∆νs is minimized. In the second scenario
the non-vanishing horizontal chromaticity leads to a spin tune deviation, which is
clearly observed. This deviation diverges at ηph = 0, which is located at Gγ ≈ 4.1.
Considering, for example, εx = 1mmmrad and a proton momentum of 1GeV/c, the
absolute chromaticity has to be reduced to about |Q′x| ≈ 0.01 to reach |∆νs| ≤ 10−9

for this particular lattice setup. A similar behavior of the spin tune deviation is also
observed for the longitudinal phase space. As expected, the deviation is minimized
for κ ≈ 0, if ηph 6= 0 simultaneously. Otherwise, a diverging behavior occurs around
ηph = 0, too.

Up to now, only the effects of path lengthening have been illustrated. Considering the
vertical phase space, a strong impact of intrinsic resonances is expected. Figure 6.8
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Figure 6.7: Spin tune deviations for individual protons with various horizontal betatron
amplitudes in a bunched beam considering different reference momenta. Figure (a)
shows the situation for minimized horizontal chromaticity, Figure (b) corresponds to
ξx = −4.68.

shows the calculation results for the spin tune deviations in the entire reference
momentum range for protons. Together with the intrinsic resonances the location of
ηph = 0 is indicated. Five different values for εy are investigated. The influence of path
lengthening is suppressed in the first scenario with a vanishing vertical chromaticity.
Thus, no divergence of ∆νs is observed for a vanishing ηph. However, a similar ∆νs-
response as predicted in Figure 6.5 appears at the locations of the intrinsic resonances.
The strongest resonances at K = n · 6 ± (Qy − 2) are responsible for the largest
spin tune deviations. In the shown momentum interval, only one strong resonance at
K = 8 − Qy exists, but the results at the edges of the momentum interval indicate
the large contribution of resonances located at K = −2 +Qy and 4 +Qy. In between
these strong resonances, the spin tune deviation for the different εy crosses zero at
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Figure 6.8: Spin tune deviations for individual protons with various vertical betatron
amplitudes in a bunched beam with respect to different reference momenta. Figure
(a) shows the situation for minimized vertical chromaticity, Figure (b) corresponds to
ξy = 2.60.

nearly the same value of Gγ. Two interesting effects appear when comparing the
two scenarios. First, a strong spin tune deviation around ηph = 0 occurs, which is
similar to the observations for the horizontal and longitudinal phase spaces. Second,
the locations of the zero crossings are shifted due to the overlapping contributions of
intrinsic resonances and path lengthening. For an isolated intrinsic resonance a pure
shift is expected, since the second order contributions (discussed in Section 6.2.2) are
proportional to εy. But even for large δν the spin tune deviation induced by a specific
resonance remains at a certain non-vanishing magnitude. Thus, the contributions from
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Figure 6.9: Spin tune deviations for individual protons with various vertical betatron
amplitudes in a bunched beam with respect to different reference momenta. Figure
(a) shows the situation for minimized vertical chromaticity, Figure (b) corresponds to
ξy = 2.60. This figure depicts a detail of Figure 6.8.

different intrinsic resonances overlap and considering the required level of ∆νs to
achieve a long SCT, they can not be fully treated as isolated. Additionally, also higher
than second order contributions enter at smaller scales. Thus, a perfect overlap of the
zero crossings for different εy is not guaranteed.

For a more detailed investigation, Figure 6.9 depicts a detail of the momentum range
around 1GeV/c to 1.5GeV/c for the two scenarios. On this scale, also the induced spin
tune deviations from the small intrinsic resonances are observable, but the zero crossing
locations for different values of εy are still not distinguishable. The locations of the
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zero crossings are expected to provide the longest spin coherence times. The induced
shifts of these zero crossing locations are proportional to the vertical chromaticity,
which controls the amount of path lengthening for individual particles. Thus, an
adjustment of the vertical chromaticity by the sextupole magnets allows one to move
the zero crossing location to a desired reference beam momentum. The actual value
of the SCT finally depends on the beam emittances, the stability of the machine
and the proximity to the zero crossing locations for different emittances. Hence, once
the desired momentum is fixed, a detailed lattice layout study has to be performed
to scrutinize the spin coherence time expectable in the final experiment. Here, also
variations of the quadrupole strengths have to be considered, since they influence the
resonance strengths and the betatron tunes, which define the locations of the intrinsic
resonances.

In the scope of this thesis, deuterons at the currently used beam momentum of
970MeV/c at COSY are investigated. For that purpose, the final discussion within this
section deals with the spin tune deviations observed in case of deuterons. Figure 6.10
illustrates these deviations for the horizontal, vertical and longitudinal phase spaces
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Figure 6.10: Spin tune deviation for individual deuterons with various betatron (a,b)
and synchrotron (c) amplitudes in a bunched beam with respect to different reference
momenta. The experimental measured conditions ξx = −4.68 and ξy = 2.60 have been
kept constant.
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using the lattice setup of the second scenario, which has been adjusted to the measured
chromaticities. Compared to the proton case, these deviations are in general orders of
magnitude smaller, since the anomalous magnetic moment is approximately a factor
13 smaller and there are no intrinsic resonances in the COSY momentum range for
the nominal betatron tunes Qx = 3.62 and Qy = 3.585. The additional spread towards
larger momenta mainly arises due to a smaller absolute value of ηph and an increased
nominal spin tune Gγ. The deviations at a momentum of 970MeV/c are in the order
of ∆νs ≈ 10−7 or even less. To further reduce these remaining deviations, a study of
the sextupole configurations is conducted.

6.2.4 Spin Tune Spread Minimization and Predictions for Measurements
at COSY

In the previous section, the strong connection of the spin tune deviations with respect
to the beam chromaticities and the parameter κ was shown. Therefore, it can be
concluded, that the spin tune deviations can be strongly influenced by a variation
of the sextupoles. At least three families are required to independently vary the two
beam chromaticities and κ. Since the induced changes of these parameters hinges on
the dispersion at the sextupole locations, the three available families MXS, MXL and
MXG have been selected for this study. An algorithm for the minimization of the spin
tune deviations has been developed and is subject of this section. These algorithm acts
as follows: A set of 15 particles (five distributed in horizontal, vertical and longitudinal
phase space, respectively) is tracked for several sextupole configurations. For each
configuration, the spin tune deviation of each particle with respect to the reference
particle is calculated. Figure 6.11 depicts the results retrieved for the variation of the
sextupole family MXL in two iterations. As expected, the response is linear and at
certain sextupole strengths a vanishing spin tune spread is observed. Together with
the two other sextupole families, this forms a linear equation system allowing one to
minimize the spin tune spread for all particles simultaneously. The solution determines
the sextupole strengths of MXS, MXL and MXG for which the spin tune spread is
minimized in all three sub-phase spaces. Two iterations are performed to locate this
minimum. Initially, all sextupole families are turned off. The first iteration induces
sextupole changes on a larger scale to locate roughly the best operational point. These
sextupole values are used as starting point for the second iteration to further refine the
optimum point. The resulting sextupole configuration is adopted in order to calculate
the required chromaticities and κ for a minimized spin tune spread.

The results for different vertical betatron tunes are shown in Figure 6.12. As expected,
the horizontal chromaticity and the parameter κ are supposed to vanish for a minimized
spin tune spread. The optimum vertical chromaticity depends on the value of the
vertical betatron tune. At Qy = 3.84, the intrinsic resonance K = −4 +Qy appears,
since the nominal spin tune about Gγ ≈ −0.16. The marker at 3.69 is missing, due to
an unstable beam motion at the beam resonance Qx + 2Qy = 11 in the simulations.
If the impact of intrinsic resonances is not taken into account, a long spin coherence
time could be observed at vanishing vertical chromaticities. The theoretical results
indicate, that also for the deuteron case, these resonances play an important role.
Two vertical betatron tunes, Qy = 3.585 and Qy = 3.86 have been chosen for an
experimental verification of the presented theoretical estimates. The former tune is
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Figure 6.11: Algorithm to find the optimum sextupole configuration with minimized
spin tune deviation. The spin tune deviation for individual particles from the horizontal
[(a) and (b)], vertical [(c) and (d)] and longitudinal [(e) and (f)] phase space with respect
to a change of the sextupole strengths k2,MXL of the MXL family is illustrated. Together
with the information of MXS and MXG, a linear equation system is constructed to
obtain the optimum sextupole settings. In the first iteration [(a), (c) and (e)] a larger
strength interval is selected, while the second iteration [(b), (d) and (f)] serves for a
fine-tuning.
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Figure 6.12: Simulated optimum settings of the chromaticities ξx and ξy and the
parameter κ for minimized spin tune spread with respect to different vertical betatron
tunes. A lattice setup with minimized dispersion in the straights and a deuteron
reference momentum of p = 970MeV/c is selected.

the nominal operating tune, where a long SCT is required for the EDM studies at
COSY. The calculations predict a small positive vertical chromaticity close to zero
as best operational point. The latter tune aims for a measurement of a long SCT
at a vertical chromaticity substantially different from zero to validate the simulated
influence of intrinsic resonances. The corresponding experimental results are discussed
in the subsequent section.

6.3 Spin Coherence Time Measurements

In this section, the experimental results for spin coherence time measurements for
deuterons at 970Mev/c at two different lattice configurations are presented. First, the
measurement setup and the analysis method to obtain the SCT is illustrated.

6.3.1 Measurement Setup and Analysis Method

A measurement run consists of several cycles with same experimental setup except
for a varying initial polarization state. During the beam time associated to these
measurements, two polarization states were used for the SCT studies. Both states
possessed a vertical vector polarization of slightly different amplitude and opposite
sign and a negligible tensor polarization. A typical cycle setup has been presented in
Section 4.3. The polarized beam with about 109 deuterons per injection was accelerated
to its final momentum of 970MeV/c. In case of the nominal vertical betatron tune
Qy = 3.585, the beam was electron cooled for about 75 s. To achieve the higher betatron
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Figure 6.13: Measured left-right-asymmetry εLR with respect to turn/time in the cycle.
The black points show the accumulated data for one run and polarization state 1, the
red points correspond to polarization state 2. A polarization flip from the vertical
direction into the horizontal plane was set up. A new zero-point of the horizontal axes
has been selected as time shortly after the flip was completed.

tune Qy = 3.86, a different setup was necessary, since several betatron resonances
needed to be crossed between the nominal tunes at injection and the final tunes
required for the experiment. For this purpose, the beam was electron cooled at the
nominal betatron tunes. Afterwards, additional quadrupole ramps using the MQU1/2
and MQU5/6 families were applied to shift the vertical betatron tune up to Qy = 3.86
keeping the already injected beam. Due to beam heating during the betatron resonance
crossing, additional electron cooling time was reserved for emittance reduction after the
final betatron tune was reached. Furthermore, a global orbit correction was applied in
both scenarios, reducing the measured orbit Root Mean Square (RMS) to below 3mm.
After the cooling period, the beam was moved directly below the EDDA carbon target
using a vertical orbit bump applied by variation of four vertical corrector magnets.
A controlled vertical heating using white noise on the stripline unit was activated
to obtain a constant detector count rate for the remaining cycle duration of about
100 s. About five to ten seconds later, the RF solenoid was turned on running at a
frequency close to a spin resonance frequency. A slow ramp of the solenoid frequency
lasting a few seconds was applied to move the beam polarization from the vertical
direction into the horizontal plane according to the Froissart-Stora method. The
solenoid was turned off exactly on the spin resonance frequency. Consequently, the
beam polarization precessed in the horizontal plane and the spin coherence time could
be measured. Figure 6.13 exemplarily shows the measured left-right-asymmetry εLR
for all events of the two polarization states accumulated in one measurement run.
For equal detector acceptances and efficiencies, this asymmetry is proportional to
the vertical vector polarization (Equation 4.10). The polarization flip induced by the
solenoid was adjusted such that the left-right-asymmetries of both polarization states
agree after the frequency ramp, when the solenoid was turned off. In general, This
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setup produces the largest polarization amplitude in the horizontal plane. Its decay is
studied to retrieve the spin coherence time. For that purpose, a new time scale with
an origin shortly after the flip was defined. The left-right-asymmetries shown in Figure
6.13 reveal a large offset of about −0.28 for a vanishing vertical vector polarization,
which hints towards different detector acceptances/efficiencies for the left and right
quadrant. In the most recent beam time, a significant contribution to this offset could
be traced back to a malfunction of one of the detector half rings, which has been fixed
recently. Additionally, a strong impact on the offsets of the measured asymmetries
connected to the adjustment of the trigger thresholds has been observed.

The fast precession of the polarization in the horizontal plane leads to a sinusoidal
oscillation of the radial polarization component Px at the location of the EDDA
detector. This manifests in a measurable oscillation of an up-down-asymmetry, which
is proportional to the Px component. The amplitude decay of this oscillation relates to
the SCT, while its frequency allows one to obtain the spin tune with a relative precision
of 10−9 in a measurement period of about 100 s using a setup with sufficiently long SCT
[147]. The corresponding analysis method, also illustrated in [147], provides amplitude
and frequency information. It has been slightly adapted, which will be exemplarily
discussed in the following. A detailed systematic study of the analysis method is scope
of a different thesis [148]. The detector event rate in a typical cycle is about 5000 s−1.
Given a spin tune of about −0.16 and a revolution frequency of 750 kHz, this results in
about one event per 24 revolutions. Thus, a direct least squares fit of the Px oscillation
is not applicable. Rather, an algorithm is defined, which maps the recorded events of
a certain interval into one oscillation period. The accumulation of events permits a
least squares fit to extract the amplitude and phase of the oscillation. Each recorded
event i contains information about the detector quadrant, in which it was generated,
and a precise timestamp ti. Furthermore, the associated turn number ni, in which the
event was recorded, can be obtained. A first guess of the spin oscillation frequency, i.e.
the spin tune in a turn based analysis, is obtained from the calculation of the Fourier
amplitudes A. For determination of the amplitude A, values of the spin tune νs in a
certain interval in a certain interval are assumed. All recorded events in the up and
down detector quadrants of one cycle in a run are processed as follows:

ci = ±1 (+: up, -: down) , (6.25)

Ar = 1
N

N∑
i=1

ci cos(2πνsni) , (6.26)

Ai = 1
N

N∑
i=1

ci sin(2πνsni) , (6.27)

A =
√
A2
r +A2

i . (6.28)

Figure 6.14 shows the calculation for an assumed value νs,central = 0.1609711 and three
different interval widths. A positive fractional number is sufficient as central value,
since the sign and the integer part of the spin tune could not be resolved with only
one detector and only Px measured. The first scan using an interval width of 10−7

is used to roughly locate the temporal average of the spin tune in each cycle. In the
two subsequent scans the interval is centered at the location of the maximum of the
previous scan and its width is reduced by one order of magnitude, respectively. The
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Figure 6.14: Fourier amplitudes calculated according to Equation 6.28 for different
assumed spin tune values νs using all events detected in up and down detector quadrants
in one cycle. The difference with respect to a central value νs,central was determined.
In the first scan (a) with an interval of 10−7 a value νs,central = 0.1609711 was selected.
The second and third scan with intervals of 10−8 (b) and 10−9 (c) used the location of
the maximum in the preceding scan as value for νs,central.

slight asymmetry in the Fourier amplitude spectra, especially for the second scan, hints
at a small drift of the spin tune during the cycle. The location of the maximum of the
last scan provides the best guess ν0

s used for the event mapping into one oscillation
period.

The applied mapping algorithm aims for the minimization of an offset due to different
detector acceptances/efficiencies as follows: The full measurement period is split into
turn bins with a width of 106 turns (1.33 µs), which are analyzed independently. The
events of each turn bin recorded in the up and down detector quadrant are mapped
into an individual spin phase interval of 4π. Therefore, the spin phase advance φs
limited to a 4π-interval is calculated for each event according to

φs = 2πν0
sni mod 4π . (6.29)

Based on this quantity, the event counts in up and down detectors with respect to the
spin phase NU (φs) and ND(φs) are determined.
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Figure 6.15: Up-down-asymmetry after sorting the events of up and down detector
quadrant recorded according to their spin phase advance φs. Data recorded in a turn
interval of 106 turns have been used. The solid line shows a sinusoidal fit to the data.

Subsequently, an asymmetry εUD defined in a 2π-interval is obtained as follows:

N±X (φs) =
{
NX(φs)±NX(φs + 3π) for 0 ≤ φs < π
NX(φs)±NX(φs + π) for π ≤ φs < 2π , (6.30)

εUD(φs) = N−U (φs)−N−D (φs)
N+
U (φs) +N+

D (φs)
= 3

2 P̂x
σ0,UA

s,U
y − σ0,DA

s,D
y

σ0,U + σ0,D
sin(φs + φ0) . (6.31)

This mapping algorithms tends to cancel a systematic offset of the calculated asymmetry.
Thus, the asymmetry is directly proportional to the horizontal polarization.

Figure 6.15 exemplarily shows a measured asymmetry for a turn bin of 106 turns
located directly after the flip of the polarization into the horizontal plane. Estimates
for the amplitude ˜̂εUD and phase φ̃0 are obtained by a sinusoidal fit using:

εUD(φs) = Ã cos(φs) + B̃ sin(φs)

⇒ ˜̂εUD =
√
Ã2 + B̃2, φ̃0 = atan2(Ã, B̃).

(6.32)

The amplitude estimate corresponds to the polarization component precessing in the
horizontal plane averaged in the particular turn bin. From here, it is referred to as
the envelope of the up-down-asymmetry. The same mapping and fitting procedure is
applied for every turn bin. This allows one to measure the decay rate, i.e. the SCT, of
the polarization in the horizontal plane, as well as the walk of the phase throughout
subsequent turn bins.

In Figure 6.16, the fitted amplitude and phase estimates are depicted for two cycles of
different runs with setups providable clearly distinguishable SCTs. A detailed study of
the sextupole conditions applied in these runs is performed in the next section. The
first cycle illustrates a vanishing envelope during the measurement period, while the
magnitude of the envelope is preserved in the second cycle. Although the polarization
is expected to be lost after 40 s in the first cycle, the extracted envelope takes on always
positive values. Statistical fluctuations paired with a free phase in the fitting routine
introduce this positive bias for the extracted envelopes [149, 150]. This bias becomes
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Figure 6.16: Fitted amplitude and phase estimates for various turn intervals of 106

turns throughout a cycle. Figure (a) and (c) depict a cycle with fast polarization decay,
while figure (b) and (d) show a slow decay. The phase is fitted by a second order
polynomial.

substantially larger, if the real horizontal polarization reaches values closer to zero.
To reduce this bias, the analysis algorithm is extended for an smoothing procedure
using the information of neighboring phase estimates. These phase estimates describe
a parabolic curve in both cycles, as long as the horizontal polarization is reasonable
large. From a second order polynomial fit the smooth turn-dependent phase φ0(n)
is obtained and extrapolated beyond regions with non-vanishing polarization. This
turn-dependent phase φ0(n) can be related to a linear change of the spin tune during
the cycle:

νs(n) = ν0
s + 1

2π
dφ0(n)
dn . (6.33)

Using this quantity, the same mapping procedure is repeated, replacing Equation 6.29
by

φs = 2πνs(n) · ni . (6.34)

This enforces a phase offset φ0 = 0 in Equation 6.31 for regions with non-vanishing
polarization. Hence, the estimate for the envelope of the horizontal polarization can be
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Figure 6.17: Fitted amplitude estimates for various turn intervals of 106 turns through-
out a cycle. The sinusoidal fits (Figure 6.15) have been performed with a fixed phase
based on the information obtained by the polynomial fit shown in Figure 6.16.

extracted by fitting the newly generated up-down-asymmetries, similar to Figure 6.15.
For this purpose, a simplified functional form is used:

εUD(φs) = ˜̂εUD sin(φs) . (6.35)

Figure 6.17 shows the envelopes of the up-down-asymmetries obtained for the two
cycles. For a vanishing polarization, the values are now oscillating around zero. Note
that a trustworthy extrapolation of the phase is required to reduce the bias of the
envelope in this analysis method. Since most cycles have a parabolic behavior of the
phase on a 100 s time scale, the described scheme is applied to obtain graphs similar
to Figure 6.17 for each run. The weighted averages over the horizontal polarization
envelopes of different cycles with same polarization state are calculated for each run.
They are used to obtain the SCT for different setups.

6.3.2 Experimental Results

The theoretical calculations and simulations predict a strong dependence of the SCT
on the beam parameters like emittances and momentum spread paired with lattice
parameters like the chromaticities and a parameter κ defined in the first section of
this chapter. For a systematic exploration of the spin coherence time, chromaticity
measurements have been performed to find ranges for a variation of the sextupole
strengths. Additionally, the beam emittances have been measured using the beam profile
monitor, while the momentum spread could be estimated from the time distribution of
the recorded events (Figure 4.7).

6.3.2.1 Chromaticity Measurements

Chromaticity measurements have been performed for the two lattice configurations
with different vertical betatron tunes: Qy = 3.585 and Qy = 3.86. A linear relation
between the sextupole strength variations and the associated chromaticity changes
has already been demonstrated in Section 5.3.2. Due to a variation of the quadrupole
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Table 6.1: Results of the chromaticity measurements for two vertical betatron tunes:
Qy = 3.585 and Qy = 3.86.

Qy = 3.585 Qy = 3.86
ξx ξy ξx ξy

ξn −4.68± 0.05 2.60± 0.05 −5.83± 0.08 2.3± 0.1
aS ·m−3 0.78± 0.01 −0.58± 0.01 0.91± 0.02 −0.38± 0.03
aL ·m−3 0.78± 0.02 −3.71± 0.02 1.02± 0.03 −3.88± 0.04
aG ·m−3 2.18± 0.03 −1.66± 0.03 2.56± 0.04 −1.89± 0.06
χ2/ndf 14/18 19/18 9/14 12/14

strengths required for the adjustment of the vertical betatron tune, different propor-
tionality factors between chromaticities and sextupole settings are expected. About 20
chromaticity measurements using different sextupole strengths have been performed.
These sextupole strengths were defined by a grid. During these measurements, the
strengths of the sextupole families MXS, MXL and MXG have been varied in ranges
of 5m−3 to 10m−3, respectively. Finally, the measured chromaticities ξx and ξy were
individually fitted according to:

ξ = ξn + aS · k2,MXS + aL · k2,MXL + aG · k2,MXG . (6.36)

The fit results are summarized in Table 6.1.

Based on the predictions obtained from Figure 6.12, a vanishing horizontal chromaticity
and different values of the vertical chromaticity are desired to study the spin coherence
time for different betatron tunes. A range of the vertical chromaticity that covers at least
values from zero up to two was selected. Simultanously, the horizontal chromaticity was
minimized. The required sextupole strengths for these conditions ranges are depicted
in Figure 6.18. For both vertical betatron tunes examined, the families MXS and
MXL are adjusted to provide a change of the vertical chromaticity preserving the
horizontal chromaticity at the same time. Thus the sextupole strengths of MXS and
MXL are proportional. The proportionality factor was obtained from the results given
in Table 6.1. Based on results of preceding studies during this beam time the strength of
MXG was adjusted to k2,MXG = 1.41m−3 and kept constant. Therefore, the sextupole
configuration is fully characterized by the value of MXS. The black points correspond
to the locations at which SCT measurements were performed during the beam time as
shown later. The colored bands show the 1σ-confidence interval of the chromaticity
measurements for the given sextupole values.

The parameter κ is proportional to the contribution from the longitudinal motion.
Unfortunately, its magnitude is not accessible in measurements. A large momentum
acceptance of the storage ring would be required to obtain the momentum compaction
factor of second order α1 from beam momentum variations. Similarly to the chromatic-
ities, this parameter also depends on the sextupole strengths. Therefore, an order of
magnitude estimate of the spin tune deviations due to path lengthening induced by
synchrotron motion is performed. Subsequently, it is compared to the contribution from
vertical betatron motion (Equation 6.15). For this purpose, the changes of Q′y and κ in
the selected sextupole range have been extracted from model calculations. In case of
the nominal betatron tune Qy = 3.585, the value of the absolute vertical chromaticity
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Figure 6.18: Measured chromaticities with respect to the different run setups chosen
for the SCT studies at Qy = 3.585 (a) and Qy = 3.86 (b). Here the strength of the
MXS family is selected as independent variable. The strength of the MXL family was
changed to maintain a minimized horizontal chromaticity, while the strength of the
MXG family was kept constant. The black points indicate the locations chosen for the
SCT measurements and the colored bands illustrate the 1σ-confidence intervals.
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Q′y changes by about 17 between the smallest and largest strengths of MXS used.
In the same sextupole range, model calculations predict a change of κ of about 1.7
only, which is one order of magnitude smaller. The induced spin tune changes depend
on the product of chromaticities (κ) and the Courant-Snyder-Invariants (momentum
spread). For the particular beam used during the experiments the emittances and the
momentum spread are estimated in the subsequent section.

6.3.2.2 Beam Emittances and Momentum Spread

Figure 4.7 illustrates measurements of the beam profiles as well as the time resolved
recorded events. These measurements correspond to a sextupole setting used at nominal
tune in context of this SCT study. Due to an observed influence of the electric field of
the profile monitor on spin tune and spin coherence time, the profile measurements are
commonly performed in separate cycles with equal lattice setup as for the SCT studies.
These measurements allow one to estimate the beam emittances. In the following the
RMS emittances as defined in Section 3.1.4.1 are obtained from the widths of measured
profiles. For that purpose, five profile measurements taken between 90 and 95 s seconds
after injection are averaged. At this time, electron cooling and orbit correction were
already completed. The accumulated signals are depicted in Figure 6.19. The dashed
lines correspond to a fit of single Gaussian function, while the solid lines represent a
superposition of two Gaussian functions. The latter case is used to take the cooled core
and the uncooled tails of the beam into account. It shows an almost perfect agreement
with the measured data. The fitted amplitudes A and widths σ are shown in Table 6.2.

The momentum spread of the beam can be estimated from the recorded detector events
using a similar approach. For that purpose, the events recorded in the same time
interval are accumulated. As seen in Figure 6.20, this clearly reveals the longitudinal
bunch structure. Also here fits of single and double Gaussian functions are applied.
The results are shown in Table 6.3. The goodness of fit is drastically improved by a
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Figure 6.19: Accumulated data for five measurements of the horizontal (a) and vertical
(b) beam profiles. The black points show the measurement, the blue dashed and the
red solid line correspond to fits of a single Gaussian function and a superposition of
two Gaussian functions, respectively.
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Table 6.2: Fit results for amplitudes and widths of the profile measurements.

Single Gaussian Double Gaussian
horizontal vertical horizontal vertical

A1 111.6± 0.3 97.3± 0.4 103.6± 0.6 91.5± 0.7
σ1/mm 1.893± 0.007 1.540± 0.007 1.69± 0.01 1.39± 0.01
A2 - - 11.3± 0.6 8.5± 0.7

σ2/mm - - 5.6± 0.2 5.0± 0.3
χ2/ndf 1997/635 1410/635 884/633 779/633
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Figure 6.20: Accumulated detector events recorded in a five second measurement
interval with respect to the time within a turn. Fits of a single Gaussian and a
superposition of two Gaussian functions have been performed. This allows one to
estimate the longitudinal bunch width.

Table 6.3: Fit results for amplitudes and widths of the accumulation of time resolved
events.

Single Gaussian Double Gaussian
A1/103 13.74± 0.04 8.4± 0.2
σ1/ns 33.01± 0.06 23.9± 0.3
A2/103 - 6.5± 0.2
σ2/ns - 39.9± 0.2
χ2/ndf 3428/205 1206/203

double Gaussian function, but the large χ2/ndf hints to additional systematic effects.
The widths can be associated with a momentum spread assuming harmonic oscillations
in the longitudinal phase space. The conversion from the time deviation with respect
to the center of the bunch to the momentum deviation δ is given by:

c∆t→δ = 2πQsyncfrev
ηph

≈ 0.033 µs−1 . (6.37)
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Using the single Gaussian approximation, this leads to an estimated momentum spread
of

δ1σ = σδ ≈ 1 · 10−4 . (6.38)

Using this result, the beam emittances can be straightforwardly estimated from the
single Gaussian fit of the measured beam profiles. For the radial direction it can be
retrieved according to:

ε1σ
x = σ2

x −D2
xσ

2
δ

βx
. (6.39)

The values of the betatron functions βx and βy and the dispersion function Dx at the
location of the beam profile monitor are extracted from model calculations, yielding:

βx ≈ 21.2m , (6.40)
βy ≈ 7.1m , (6.41)
Dx ≈ 2.0m . (6.42)

Taking the single Gaussian approximations, this leads to the following beam emit-
tances:

ε1σ
x ≈ 0.2mmmrad , (6.43)
ε1σ
y ≈ 0.3mmmrad . (6.44)

Finally, the induced spin tune changes by path lengthening due to vertical and lon-
gitudinal phase space motion can be investigated, making use of Equation 6.15. For
that purpose individual particles possessing Courant-Snyder-Invariants and momentum
spreads similar to the corresponding RMS beam emittances and the beam momentum
spread are compared to each other. In the selected sextupole variation range, the ratio
of the spin tune changes induced by vertical and longitudinal phase space motion is
given by the quotient of:

∆
〈(∆C

C0

)
β

〉
= − π

C0
ε1σ
y ∆Q′y ≈ −9 · 10−8 (6.45)

and
∆κ ·

〈(∆p
p0

)2〉
≈ ∆κ · 1

2
(
δ1σ
)2
≈ 8 · 10−9 . (6.46)

Here, ∆Q′y ≈ 17 and ∆κ ≈ 1.7 obtained in the previous section have been used. Hence,
the expected variation of the spin tune spread induced by the vertical phase motion
is approximately one order of magnitude larger than induced by the longitudinal
motion. The contribution from the horizontal phase space is minimized due to an
almost vanishing horizontal chromaticity. This validates a direct investigation of the
connection between the SCT and the vertical chromaticity, although the absolute
contribution of the longitudinal phase space is not determinable, since the value of α1
could not be obtained from measurements.
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6.3.2.3 Spin Coherence Time Measurements at Qy = 3.585

The spin coherence time strongly depends on the beam emittances and chromaticities.
In the following the SCT measurement results at the nominal vertical betatron tune
are evaluated. For this purpose a fit function is defined, which is oriented towards the
spin tune spread contributions characterized in Section 6.2.2. Since the influences of
radial and longitudinal phase space motion are estimated to be substantially smaller
than the influence of the vertical one, the fit function is simplified in order to take
only the vertical emittance connected to a varying value of the vertical chromaticities
into account. This fit function describes the evolution of the envelope of the up-down
asymmetry ε̂UD,p(n) with respect to the number of turns n in the following way:

ε̂UD,p(n) = Ap ·
√
Pr(n)2 + Pi(n)2 , (6.47)

Pr(n) = 1
N
·
N∑
j=1

cos(∆φjs(n)) , (6.48)

Pi(n) = 1
N
·
N∑
j=1

sin(∆φjs(n)) , (6.49)

∆φjs(n) = Gγ0β
2π

ηphC0
· cy · εjy ·

(
Q′y − cir

)
· n . (6.50)

The factor Ap denotes a scaling factor of the normalized initial polarization in the
horizontal plane

√
Pr(n)2 + Pi(n)2. The value of Ap depends on the polarization state

p ∈ {1, 2}. The polarization is calculated by averaging over N “particles” representing
this beam. Each particle j possesses a characteristic spin-phase-advance deviation
∆φjs(n), which depends linearly on the turn number. Up to this point, this function
is similar to the template function generation given in [125, 151]. The characteristic
spin-phase-advance deviation ∆φjs(n) used in the analysis presented here, is directly
related to the contributions illustrated in Section 6.2.2. The chromaticity measurement
results a used to preset the value of Q′y for each particular run fitted. In presence of
intrinsic resonances, the minimum spin tune deviation does not necessarily coincide
with zero chromaticity, as illustrated during the theoretical discussion. This is taken
into account by introducing an additional parameter cir.

The Courant-Snyder-Invariant εjy of an individual particle in vertical phase space varies.
The corresponding distribution has been generated assuming a Gaussian distribution
of the vertical amplitudes y of the beam particles. Further assuming uncoupled linear
phase space motion, the corresponding maximum amplitude ymax follows a Maxwell-
Boltzmann-distribution in two dimensions considering the two dimensional vertical
phase space. This can be translated to εjy ∝ y2

max,j . The probability density function
(pdf) for a beam emittance of ε1σ

y = 1mmmrad is shown in Figure 6.21. In the fitting
process N = 1000 particles are used to represent the beam. Their values of εjy are
randomly generated according to the shown pdf. The factor cy is used for a global
scaling of the beam emittance. Thus, the functional form is determined by four free
parameters A1, A2, cy, cir.

In the following analysis, the envelopes of the up-down-asymmetries measured in
different runs are fitted independently. Consequently, cy and cir can not be determined
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Figure 6.21: Probability density distribution for Courant-Snyder-Invariants of vertical
phase space εy of individual particles for a beam with a vertical beam emittance
ε1σ
y = 1mmmrad. Only linear phase space motion and no coupling have been taken
into account.

independently, since both lead to a similar scaling of ∆φjs(n). For that reason, cy is
used as fitting parameter, while cir is fixed according to the model estimate shown
in Figure 6.12. An exemplary fit result is shown in Figure 6.22. It illustrates, that
the defined function is able to describe the evolution of the horizontal polarization.
Since, the fall-off is not describable by an exponential function, a threshold definition
to estimate the SCT is not obvious. Within this thesis, the SCT is defined as the
amount of time, until the normalized envelope drops below exp(−0.5) = 60.6 % of its
initial value. Historically, this goes back to a definition according to a Gaussian width
of 1σ [125], but it bears two advantages. First, this threshold is crossed in regions,
where the phase of the precessing polarization is well known (see Figure 6.16). Second,
shorter measurement intervals are sufficient to determine the SCT. The fitting routine
to extract the SCT estimate consists of several steps. First, the best estimates of A1,
A2 and cy are determined by a simultaneous fit to the data of both polarization states.
In the next step, the scaling parameters A1 and A2 are fixed at their best estimates
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Figure 6.22: Exemplary fit result using the fit function defined in Equation 6.47. The
small band shows an 1σ-confidence interval for fixed amplitude scaling factors.
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Figure 6.23: Variation of the amplitude scaling factors to obtain an estimate for the
uncertainty of the extracted spin coherence time. Figure (a) shows the χ2 for different
values of the scaling factors. Figure (b) depicts the best fit (solid line) and the fit
results obtained for an χ2 increased by one (dashed lines).

to determine the confidence interval for the envelope fall-off depending on cy. This
constant level of the scaling parameters is required, since assuming a threshold of 100 %
instead of 60.6 % would be used, the SCT is independent from the uncertainties of the
fitted scalings. The resulting 1σ-confidence band is also shown in Figure 6.22. The
intersection of the fitted function and the edges of its confidence band yield an estimate
of the SCT and its corresponding uncertainty. The impact of the scaling parameter
uncertainties on the SCT value is investigated by a different method. For that purpose,
the fixed values of A1 and A2 are scaled until the resulting χ2 of a new fit increases by
one. This is exemplarily shown in Figure 6.23. The dashed curves in the right figure
correspond to the best fits for a scaled amplitude. For each of them, the time until
the envelope reaches 60.6 % of its new initial value is extracted and used as a second
uncertainty estimate. In the following, the larger uncertainty of both contributions is
used as estimate of the SCT uncertainty.

An overview of all fit results using the first polarization state of the run set taken
at nominal tune of Qy = 3.585 is shown in Figure 6.24. For illustration the initial
horizontal polarization has been normalized using the best estimate of A1 of each
run. The fit results show a very good agreement for all different sextupole settings. A
further improvement could not be achieved by replacing the probability distribution
function of the emittances shown in Figure 6.21 by one taking the double Gaussian
shape of the measured beam profiles into account (see Figure 6.19). With the modified
emittance distribution a steep fall-off at early times is introduced, which is caused by
the larger phase space amplitudes. Thus, this approach has not been further considered
within this thesis.

Applying the described method to determine the SCT, the spin coherence time τ and its
reciprocal is extracted for each sextupole configuration. The results are summarized in
Figure 6.25. The maximum SCT is observed at k2,MXS = 2.34m−3. At this setting, no
horizontal polarization loss occurred during the measurement interval. Consequently,
the analysis algorithm suggests a nearly infinite SCT. A proper estimation of the
uncertainty based on this algorithm fails at this location. Also, large uncertainties for
SCTs of several hundred seconds based on a measurement interval of only 100 seconds
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Figure 6.24: Overview of the horizontal polarization decay with respect to different
sextupole settings measured at a nominal tune of Qy = 3.585. The best fits are shown
as solid curves. The initial horizontal polarization of each run was normalized to unity.

are expected due to the required extrapolation of the fit function. This is directly seen
for the second largest SCT value in Figure 6.25. A longer measurement interval is
required for a better estimation as discussed later. However, the measurement results
can be used to verify the model calculations. The measured vertical chromaticity
for the maximum SCT amounts to ∆Q′y,meas(k2,MXS = 2.34m−3) = 0.29± 0.07. Con-
sidering the neighboring measurement results, the optimum ∆Q′y,meas tends to be
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Figure 6.25: Extracted spin coherence times τ , defined as time when the polarization
has fallen below 60.6 % of its initial amplitude, for different sextupole settings. The
right figure illustrates the reciprocal of the SCT. The algorithm applied for SCT
extraction estimates an infinite SCT at k2,MXS = 2.34m−3 and also error intervals well
above the axis range shown. This point is indicated by a small arrow.

at a slightly smaller sextupole strength. The model calculation predicts ∆Q′y,mod =
ξy · Qy ≈ 0.18 · 3.585 = 0.65 as the optimum value. Compared to the measured
chromaticities at the neighboring points ∆Q′y,meas(k2,MXS = 2.14m−3) = −1.86± 0.07
and ∆Q′y,meas(k2,MXS = 2.53m−3) = 2.45± 0.07 the observed deviation between mea-
surement and simulation is small. Different sources for the existing deviation can
be noted: First, uncertainties present in the lattice model, which have been already
observed during the benchmarking process, could introduce slightly different intrinsic
resonance strengths. They would shift the optimum chromaticity value predicted by the
model calculation. Second, an off-centered beam in sextupoles introduce betatron tune
variations for different sextupole configurations. In the measurements, this changes
were compensated by tiny adjustment of the quadrupole strengths. Third, a drift
of the machine chromaticities during the SCT measurements, as well as a widening
of the beam during the cycle has not been taken into account and could lead to
further systematic shifts. However, the model fully satisfies the aim to find the required
machine parameters for a long SCT. Furthermore, it validates the theoretically derived
and simulated contributions to the spin tune spread.

The estimated vertical beam emittance amounts to ε1σ
y ≈ 0.3mmmrad. This value can

be compared to results of the fit parameter cy, which has been determined from the
measured polarization data. Figure 6.26 shows the values for the runs with different
sextupole settings. The run with the longest SCT at k2,MXS = 2.34m−3 has been
excluded due to the “infinite” SCT. The larger error bars for measurements close to
this setting reflect the greater uncertainties at large SCTs. Four out of the six fits yield
values ε1σ

y ≈ 0.23 to 0.33mmmrad. The two values near k2,MXS = 2m−3 amount to a
factor of two smaller emittances. These two runs and the one with the longest SCT
were taken at last in corresponding measurement series. Thus, a suitable drift of the
machine could have introduced a bias to the SCT measurement and the extraction of
the optimum point. A misconfigured parameter cir in the fitting function can introduce
a bias to extracted vertical emittances. Tests reveal, that this bias is not sufficient
to explain the deviation by a factor 2. Additional contributions not included in the
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Figure 6.26: Results for the fit parameter cy, which corresponds to the vertical RMS
beam emittance.

simplified fit function might lead to a variation of the extracted vertical emittances. A
similar parabolic behavior is also observed for other measurement series and requires a
more detailed investigation.

An additional measurement using the sextupole settings that provide the longest
SCT has been performed. For this purpose a longer measurement period of about
700 s was set up. The initial period of the cycle containing electron cooling, orbit
correction and polarization flip to the horizontal plane were preserved. A continuous
detector rate demanded the reduction of the vertical heating amplitude. Figure 6.27
shows the results obtained in this measurement. The right figure depicts the fitted
phase of the up-down-asymmetry obtained for one cycle of this run. This reveals,
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Figure 6.27: Figure (a) illustrates the envelope of the up-down-asymmetry for runs with
extended measurement interval at the optimum sextupole setting k2,MXS = 2.34m−3

obtained from Figure 6.25. The black points correspond to an initial electron cooling
time of 75 s, while for the red points cooling was turned on for the whole cycle. Due to
limited measurement time, only one cycle was available for the particular run with
continuous cooling. Figure (b) depicts the estimated phase of the up-down-asymmetry
measured in one cycle of the run with initial cooling of 75 s. It is no longer describable
by a second order polynomial.
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that the phase no longer varies according to a second order polynomial on this time
scale. Thus, a fixing of the phase has not been performed to extract the evolution
of the envelope. Instead, the fitting results based on a variable phase are shown
in the left figure. The black points correspond to an average over all cycles of this
run at k2,MXS = 2.34m−3 with the initial electron cooling duration of 75 s. The
horizontal polarization, preserved for about 150 s, starts to drop rapidly at later times.
A spin coherence time of approximately 450 s is observed. This underlines the limited
prediction power of measurement intervals of only 100 s for SCTs beyond several
hundred seconds, as discussed earlier. Additional runs performed at the neighboring
sextupole configurations k2,MXS = 2.14m−3 and k2,MXS = 2.53m−3 also provide smaller
SCTs than estimated in the shorter measurement periods, but k2,MXS = 2.34m−3 is
still close to the optimum sextupole setting providing the longest SCT. However, the
beam widths and the momentum spread increase as soon as the electron cooling force
is turned off. Since the spin decoherence strongly depends on these quantities, an
increased decoherence is expected at later times. This statement is supported by an
additional measurement with continuous electron cooling during the entire cycle as
shown in red in Figure 6.27. This configuration provides a measured polarization, which
is preserved significantly longer. Here, also an additional phase space mixing process
introduced by electron cooling might increase the SCT, but the verification demands
a more detailed simulation study. Unfortunately, only one cycle was recorded for the
continuous electron cooling setup with this sextupole configuration, since this run was
taken at the very end of the requested beam time.

6.3.2.4 Spin Coherence Time Measurements at Qy = 3.86

For verification of the model predictions presented in Figure 6.12, a second measurement
series was conducted at a vertical betatron tune of Qy = 3.86. The right graphs of
Figure 6.18 illustrate the different sextupole values of the MXS family used for this
measurement series. The envelopes of the up-down-asymmetries are fitted by the same
functional form as described in the previous section. Figure 6.28 depicts the overview
of the fit results for the first polarization state. In the runs with fastest decohering
polarization, the shape of the fitted curve deviates from the data points, while at small
decoherence, the evolution of the normalized distribution can be well explained by
the selected function. Around k2,MXS = 3.16m−3 the largest SCT values are observed.
For a closer investigation, three runs around this MXS sextupole strength have been
taken with a tripled measurement period. Here, the modification of the cycle setup also
requires a reduction of the heating noise used to establish a continuous detector rate.
Figure 6.29 illustrates the evolution of the horizontal polarization for these runs. The
fit function still provides a good description of the measured data for the increased
range. The corresponding SCT values are obtained using the same algorithm as in
the previous section. The resulting SCT values are shown in Figure 6.30. The black
circles depict the SCT estimates obtained in the shorter measurement periods, while
the red squares belong to the longer measurement periods. The points taken at longer
periods reveal a significantly shorter spin coherence time in comparison with the
measurements at shorter periods and with similar settings. Also in a direct comparison
of the data points, the normalized polarization drops significantly faster in the first
80 s measurement time for the longer measurement periods. This could be caused due
to the variation of the measurement configuration. The prolongation of the cycle leads
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Figure 6.28: Overview of the horizontal polarization decay with respect to different
sextupole settings measured at a vertical betatron tune of Qy = 3.86 and a measurement
interval of about 80 s. The best fits are shown as solid curves. The initial horizontal
polarization of each run was normalized to unity.
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Figure 6.29: Overview of the horizontal polarization decay with respect to different
sextupole settings measured at a vertical betatron tune of Qy = 3.86 and a measurement
interval of about 270 s. The best fits are shown as solid curves. The initial horizontal
polarization of each run was normalized to unity.
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Figure 6.30: Extracted spin coherence times τ measured for different sextupole settings
at betatron tune Qy = 3.86. The right figure illustrates the reciprocal of the SCT. The
black circles correspond to runs with a shorter, the red squares belong to runs with a
longer measurement intervals. The algorithm applied for SCT extraction estimates a
maximum SCT at about k2,MXS = 3.16m−3.

to different timings for the magnet ramps. An impact on the chromaticities arising
from the magnetic hysteresis of the dipole magnets has already been observed, but
the order of magnitude of this effect still needs to be clarified in further investigations.
Additionally a potential machine drift leaving the zero horizontal chromaticity setting
could introduce a decrease of the spin coherence time. Also the impact of a strength
variation of the vertical noise needs a detailed study to clarify the origin of the SCT
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decrease. Different vertical distances between the target location and the beam center,
which influence on the required vertical heating power to establish the detector event
rate, already showed a clear impact on the SCT. In these studies, a decreasing SCT
was observed for larger target distances, if the contribution from vertical phase space
motion is not perfectly compensated by the sextupole settings. After the discussion of
potential systematic effects, the comparison of measurements and model calculations
is examined. In the data set connected to the vertical betatron tune of Qy = 3.86, the
maximum SCT is observed at k2,MXS = 3.16m−3 and corresponds to

τ = 759+63
−51 s . (6.51)

The same order of magnitude has been also observed during a 1500 s measurement
period using a precooled beam [152]. Taking also the neighboring points into account,
the optimum sextupole strength is approximately k2,MXS = 3.2m−3. This value corre-
sponds to a vertical chromaticity of ∆Q′y,meas = 4.4± 0.2 in comparison to a model
calculation of ∆Q′y,mod ≈ 1.29 · 3.86 = 4.98. This confirms that a long spin coherence
time can be obtained at a non vanishing vertical chromaticity as predicted by model
calculations. These calculations slightly exceeds the approximated measurement value
similar to the result obtained for the nominal tune Qy = 3.585, but still provide a very
good estimate of the required sextupole configuration.

6.4 Summary

In this chapter, two sources of spin decoherence, namely the impact of path length-
ening and intrinsic resonances, have been discussed. The theoretical derivations were
supported by numerical simulations based on the benchmarked COSY model. A strong
connection between the spin coherence time and the beam chromaticities and second
order momentum compaction factor has been pointed out. The values of these parame-
ters required in order to achieve a long spin coherence time have been calculated for the
experimental setup at COSY using a deuteron beam with a momentum of 970MeV/c.
Measurements were conducted to verify these predictions for different vertical betatron
tunes. SCTs of of several hundred seconds were achieved at parameter values close to
the predicted beam chromaticities. This achievement provides a mandatory requirement
of the RF Wien filter method for EDM measurements in the COSY storage ring.





Chapter 7

Spin Resonances Induced by a
Radiofrequency Solenoid

7.1 Motivation

EDM measurements based on the RF Wien filter method are planned to be performed
at the COSY storage ring. In this method an artificial spin resonance is created,
whose resonance strength is proportional to the magnitude of an EDM. This resonance
induces a tiny buildup of the vertical polarization used as measurement signal. A long
SCT is required to preserve the polarization, which initially precesses perpendicular
to the spin closed orbit of the static ring. SCTs of several hundred seconds could be
achieved for a pre-cooled beam in measurements presented in the previous chapter
and provide the desired order of magnitude for the planned experiments. The study
of systematic contributions of this method requires the simulation of RF fields. New
algorithms to simulate RF fields have been recently implemented into COSY INFINITY
as described in Chapter 5. To validate these algorithms, benchmarking with analytical
predictions and measurement results needs to be performed, before an investigation of
the the RF Wien filter method can be carried out. Artificial spin resonances induced
by an RF solenoid introduce an oscillation of the vertical polarization and serve as a
perfect test scenario for these algorithms, which could be examined in measurements at
COSY. The behavior of the vertical polarization oscillation in presence of synchrotron
oscillations has already been studied in [153, 154]. In these references, the oscillation
of the momentum deviation has been taken into account, which leads to a variation of
the spin phase advance per turn and reduces the resonance strength for the individual
particle. This resonance strength is proportional to the oscillation frequency of the
vertical polarization. Thus, the vertical spin component of individual particles oscillate
with a different frequency, which leads to a reduction of the vertical polarization of
the beam over time. In further calculations also the variation of the time of arrival of
the individual particle at the location of the RF solenoid shows an important impact
on the resonance strengths [155, 156, 93]. This includes a significant dependence of
the oscillation frequency of the RF field on the polarization behavior . The underlying
theory, which takes both effects into account, is presented in the next section. It
adapts the results given in [155, 156] and strongly benefited from internal discussions
[93, 94] Experimental studies at different solenoid spin resonance frequencies have been
performed and are described afterwards. The benchmarking results of the algorithms
implemented into the numerical tracking applications are illustrated at the end of this
chapter.
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7.2 Resonance Strength Variations due to Synchrotron
Motion

This section illustrates the theoretical considerations for deuterons, which perform
synchrotron oscillations in an ideal magnetic storage ring. The following derivation
makes greater use of the formulas presented in the Sections 3.2.7.2, 3.2.7.3 and 3.2.8.2.
In case an RF longitudinal field is turned on at a spin resonance frequency (Equation
3.192), an artificial spin resonance is created. The resonance strength of the reference
particle is given by Equation 3.206:

|εK | =
α0
4π . (7.1)

Here, the values for a vertical spin closed orbit of the static ring (~n = ~e3) and a
longitudinal RF field (~m = ~e2) have been applied. The maximum spin rotation angle
in the solenoid per pass α0 = αsol has been defined in Equation 3.195. Note, that
the derivation of Equation 7.1 is based on a set of preconditions. First, the resonance
strengths is assumed to be significantly smaller than the spin precession frequency:
|εK | � Gγ0. Second, the resonance tune K = νsol is not a ratio of two rational
numbers, with a small denominator. This allows one to approximate the RF solenoid
spin perturbation by

ξ = |εK |e−iνsolθ (7.2)

considering scales of several million turns.

In the next step, the derivation is extended for the study of synchrotron oscillations.
The oscillations of the time deviation τ ≡ ∆t and momentum deviation δ in the
longitudinal phase space can be approximately expressed by:

τ = τmax sin(Qsyncθ + ϕ) , (7.3)
δ = δ̂ cos(Qsyncθ + ϕ) . (7.4)

Here, a restoring force of the RF cavity linear in τ leads to phase space motion according
to a harmonic oscillator. The amplitudes τmax and δ̂ are connected by the relation
(Equation 6.37):

δ̂ = −2πQsyncfrev
ηph

τmax . (7.5)

To calculate a variation of the resonance strength, the impact of synchrotron oscillations
on spin motion is considered. As previously discussed the momentum oscillation
introduces an oscillation of the spin precession rate (see Equations 3.182 and 3.183).
The spin phase advance of the precession about the spin closed orbit in an unperturbed
static ring can be expressed as:

θ∫
0

Gγdθ = Gγ0θ −
2πGγ0β

2
0frev

ηph
τmax [sin(Qsyncθ + ϕ)− sin(ϕ)] . (7.6)

This changes the spin directions of various particles. A second effect arises from the
variation of the time of arrival at the solenoid due to the oscillation of τ . Thus, the
spins of the individual particles are affected by a different amount during the same
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turn due to the time-varying field. The time-dependent field strength of the solenoidal
field is given by:

Bsol = B̂sol cos(ωsol(t+ τ) + φ)
= B̂sol cos(ωsol(t+ τmax sin(Qsyncθ + ϕ)) + φ)
= B̂sol cos(νsolθ + 2πνsolfrevτmax sin(Qsyncθ + ϕ) + φ) .

(7.7)

Several ways are accessible to incorporate these two effects for the study of the spin
perturbations. One opportunity is to include these effects into the spinor equation
given in Equation 3.197. Here, the spin tune νs has to be replaced by Gγ taking the
energy oscillation due to synchrotron motion into account. Furthermore, the definition
of the parameter νo(θ) (see Equation 3.198) needs to include the contribution of the
oscillating field. This requires a modification of the term νrfθ ≡ νsolθ taking the full
argument of the cosine in Equation 7.7 into account. The solution of this equation
includes the additional contribution induced by synchrotron motion. The same result
can be obtained by using the formalism presented in Section 3.2.7.2, which discusses
the synchrotron sideband resonances. This particular approach is discussed in the
following. The perturbing term of the spinor equation is given by:

ξ = |εK | · exp (−i [νsolθ + 2πνsolfrevτmax sin(Qsyncθ + ϕ) + φ]) . (7.8)

Here, the oscillating solenoidal field is represented by a variation of the phase defined
in the complex exponential function. A further modification introduced by synchrotron
oscillations is also incorporated. Applying the transformation into the interaction
picture, the driving term of the spinor equation can be expanded into a Fourier series
according to:

|εK | · e−i(νsolθ+2πνsolfrevτmax sin(Qsyncθ+ϕ)+φ−
∫ θ

0 Gγdθ)

=
∞∑

m=−∞
e−iφ̃|εK |Jm(g)e−i(νsol−Gγ0−mQsync)θ

with φ̃ = φ+ 2πGγ0β
2
0frev

ηph
τmax sin(ϕ)−mϕ

and g =
(
−Gγ0β

2
0

ηph
− νsol

)
· 2πfrevτmax .

(7.9)

In the following, only resonance strengths |εK | � Qsync are considered. Thus, only
the mode m = 0 leads to a significant contribution to spin motion, if the resonance
condition νsol = Gγ0 + k, k ∈ Z is fulfilled. Similar to Section 3.2.7.2, the resonance
strength is modified by a Bessel function:

ε̃K = εKJ0(g) , (7.10)

but this time it also depends on the resonance tune of the solenoid νsol. Inserting the
spin resonance condition yields:

g =
[
Gγ0

(
− β

2
0

ηph
− 1

)
− k

]
· 2πfrevτmax . (7.11)
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This reveals a strong connection between the resonance strength and the choice of k,
which is defined by the relation between solenoid and spin precession frequencies. Note,
that for g = 0 the resonance strength is independent of τmax and remains unchanged.
To examine this effect in more detail, the variation of the vertical spin component is
evaluated. Therefore, the results are transferred to Equations 3.224 - 3.226, resulting
in:

S̃1(0) = 1 : S̃3(θ) = cos(φ̃) sin
(
αsol
4π J0(g) · θ

)
, (7.12)

S̃2(0) = 1 : S̃3(θ) = sin(φ̃) sin
(
αsol
4π J0(g) · θ

)
, (7.13)

S̃3(0) = 1 : S̃3(θ) = cos
(
αsol
4π J0(g) · θ

)
. (7.14)

Consequently, the oscillation frequency of the vertical spin component (Sy = −S̃3),
which is given by the resonance strength, is modified by the Bessel function term. In
case the initial spin vector is perpendicular to the vertical direction, also the phase
φ̃ has to be taken into account. It strongly depends on the phase relations between
the spin phase in the horizontal plane, the phase of the solenoid field and the phase of
the synchrotron motion of the individual particle, respectively. For an initially vertical
spin direction, this phase dependence drops out.

In the experiments to investigate the artificial resonance of an RF solenoid, an initially
vertically polarized beam is used. At a defined time in the cycle the solenoid is turned on
to activate the resonance and act continuously on spin motion. This induces oscillations
of the vertical spin component of the individual particles of the deuteron beam. To
calculate the behavior of the vertical polarization, the distribution of the synchrotron
amplitudes τmax of the particles in the bunch has to be considered. For this particular
study, the width of the τ distribution is larger compared to the spin coherence time
studies described earlier (see Section 6.3.2.2). The measured widths for different runs
using single Gaussian fits vary and are in the order of 70 ns to 85 ns. For a width
σ = 75ns the calculated τmax-distribution is shown in Figure 7.1. As mentioned in the
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Figure 7.1: Distribution of the maximum amplitude of the time deviation τmax with
respect to the reference particle. Here, a τ -distribution according to a Gaussian with
a width σ = 75ns has been assumed. This corresponds to the illustrated Maxwell-
Boltzmann-distribution for τmax in two dimensions.
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previous chapter, it follows a Maxwell-Boltzmann-distribution in a two-dimensional
phase space.

The behavior of the vertical polarization is obtained using an ensemble of particles with
a randomly distributed synchrotron amplitude τmax according to this distribution. The
results of analytical calculations are depicted in Figure 7.2. The upper figure shows the
oscillation of the vertical spin component assuming a reference oscillation frequency
fosc = αsol

4π frev = 1Hz and different values for τmax. The value k = −1 corresponds to
the resonance frequency of 871 kHz for a deuteron beam with p = 970MeV/c at COSY,
which is set as solenoid frequency. For larger values of τmax, the resonance strength
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Figure 7.2: Figure (a) illustrates the calculated oscillation of the vertical spin component
for deuterons with different time deviation amplitudes τmax in presence of an RF
solenoid. A reference momentum of 970MeV/c is selected, which corresponds to a
revolution frequency of approximately 750 kHz. The solenoidal field oscillates with
a frequency of 871 kHz (k = −1). Figure (b) depicts the behavior of the vertical
polarization in case the spins of a bunch of 1000 particles are considered. The τmax-
distribution was randomly selected following a distribution according to Figure 7.1. A
second solenoid frequency of 630 kHz (k = 1) is shown for comparison.
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decreases as expected, which leads to a smaller oscillation frequency with respect
to the reference particle. The lower figure shows the calculated vertical polarization
behavior for 630 kHz (k = 1) and 871 kHz (k = −1) using an ensemble of 1000 particles
representing the beam. Due to the different oscillation frequencies of individual spins
the vertical polarization amplitude decreases over time. Furthermore, the reduction
depends on k as expected from Equation 7.11. Intermediate results of this phenomenon
based on spin tracking simulations have been already presented in [144].

In the following, the damping time until the envelope of the vertical polarization
undercuts a certain threshold is explored. Similar to the spin coherence time studies a
threshold level of 60.6 % of the initial vertical polarization is selected. To determine the
time period, until this threshold is reached, the envelope of the vertical polarization is
examined. For this purpose, the absolute values at the extrema of the oscillating vertical
polarization are interpolated. The crossing of the 60.6 % barrier defines the damping
time. Since the damping time scales reciprocally with the reference oscillation frequency
fosc, the number of oscillations Nosc, until this threshold is reached, is characteristic for
the combination of the beam reference momentum and the value of k. The obtained
results are illustrated in Figure 7.3. For this study, the values of α0 and Qsync are
kept constant over the full momentum range. Furthermore, the τmax-distribution is
scaled accordingly in order to take adiabatic damping into account. This reduces the
momentum spread at larger reference momenta. This tends to increase the number of
oscillations Nosc towards larger beam momenta for all values of k. For k = 1 and k = 2
values of the beam momentum exist, at which the envelope of the vertical polarization
is entirely preserved. These momenta correspond to the condition [156]:[

Gγ0

(
− β

2
0

ηph
− 1

)
− k

]
= 0 , (7.15)
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Figure 7.3: Calculated number of polarization oscillations until the vertical polarization
envelope reaches a threshold of 60.6 % of its initial value. The figure depicts five
different solenoid frequencies characterized by k for different deuteron momenta in the
COSY range. A τ -distribution according to a Gaussian with a width σ = 75ns has
been assumed for the particle bunch at a momentum of 970MeV/c. Adiabatic damping
has been taken into account for the calculation at different momenta.
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which is equivalent to J0(g) = 1. Hence, the resonance strengths of all particles are
equal and independent of τmax.

7.3 Measurements of the Vertical Polarization Oscillation

In this section, the theoretical predictions are verified using experimental data at a
momentum of 970MeV/c. First, the chosen measurement setup and analysis method
are presented.

7.3.1 Measurement Setup and Analysis Method

The deuteron beam setup was similar to the configuration chosen for the SCT studies.
Two polarization states possessing opposite vertical vector polarizations and a negligible
tensor polarization were used. Various cycles with the same machine configuration but
alternating polarization state of the beam were combined to one run. The deuteron beam
was injected, accelerated to 970MeV/c and electron-cooled. A sextupole configuration
with long SCT obtained in preceding measurements was selected to minimize the second
order contributions described in the previous chapter. After switching off the electron-
cooling, the voltage of the RF cavity was non-adiabatically raised to increase the
momentum spread of the beam. This aimed for an increase of the vertical polarization
damping, which was preferred for these studies. Vertical extraction noise was enabled
to produce a continuous scattering event rate. About 10 s after turning on the noise
the solenoid was switched on and kept running for a measurement period of about 80 s.
Different magnetic field strengths and spin resonance frequencies have been investigated.
In the following, the results for three different resonance frequencies 630 kHz (k = 1),
871 kHz (k = −1) and 1662 kHz (k = −2) are compared. Unfortunately, the smallest
frequency of 120 kHz (k = 0), which promises the longest preservation of the vertical
polarization envelope, was not accessible due to the limitations of the resonance circuit
layout of the solenoid.

This measurement series was taken in the last week of the fall beam time of 2013. For
the study of systematic contributions, two important notes have to be made. First,
the vertical heating voltage was set to a fixed value, since the detector rate feedback
was not yet available during these runs. Consequently, the event rate was larger at the
beginning of each cycle and drops steadily towards the end similar to the beam current
measured at the BCT. This rate change could have introduced systematic effects to the
measured vertical polarization. Second, while the polarized ion source ran absolutely
stable during the first half of the particular beam time, issues with the cesium part
of the source lead to several interruptions during this measurement period. Thus, the
number of recorded events for the runs at 871 kHz (k = −1) is significantly reduced
due to a smaller beam current. Furthermore, the solenoid frequency had to be slightly
adjusted multiple times during the measurement period to correct for small drifts
of the spin tune in COSY and to maintain the spin resonance condition. For larger
solenoid frequencies, this maintenance was hard to achieve, which can be observed by
polarization oscillations not centered around zero. These runs are filtered and discarded
during the data analysis as discussed below.
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In each run, the events recorded in the left and right detector quadrants for all cycles
running with the same polarization state are accumulated over time. This results in
the four event rates NL,1(t), NR,1(t), NL,2(t) and NR,2(t). Here, the subscript letter
denotes the detector quadrant, while the number reflects the polarization state. As
previously discussed, the left-right-asymmetry of the event rates is proportional to the
vertical polarization of the corresponding polarization state as long as the detector
acceptances and efficiencies are equal for both quadrants. Otherwise a deviation between
the polarization and the measured asymmetry is introduced. This deviation can be
canceled at lowest order by calculating a cross-ratio using all four event rates according
to [157]:

εCR =
√
NL,1 ·NR,2 −

√
NL,2 ·NR,1√

NL,1 ·NR,2 +
√
NL,2 ·NR,1

∝ Ac,L
y P y . (7.16)

Here, P y denotes the average vertical polarization of both polarization states. The
time-dependent cross-ratios have been calculated for all runs of this measurement series.
The binning of the event rates has been adjusted according to the expected polarization
oscillation frequencies to ensure a reasonable number of bins per oscillation. To obtain
the relevant parameters, i.e. oscillation frequency and damping time, the following fit
function has been defined:

Py(t) =
{
n0 · (1 + c0) for t ≤ t0
n0 ·

(
1
N

∑N
i=1 S

i
y(t− t0) + c0

)
for t > t0

, (7.17)

Siy(t) = cos (J0(gi) · 2πfosct) , (7.18)

gi =
[
Gγ0

(
− β

2
0

ηph
− 1

)
− k

]
· 2πfrevcττ imax . (7.19)

Here, n0 is a normalization parameter and c0 accounts for an off-resonance behavior,
which introduces an offset of the oscillation. The activation time of the solenoid is
defined by t0. The vertical polarization is determined by the sum over the vertical
spin components Siy. A value of N = 1000 particles is used in the fitting process. Each
particle possesses an individual value τ imax, randomly set according to the distribution
shown in Figure 7.1. The parameter cτ allows for a global scaling of the distribution
width. The parameter fosc denotes the reference oscillation frequency of the vertical
spin component of the reference particle. Overall five fit parameters n0, c0, t0, fosc
and cτ are obtained by the fitting routine for each run. The other parameters are
determined either from theory, i.e. G, model calculations, i.e. ηph, or measurement
setup, i.e. frev, k, γ0, β0. The results based on this analysis routine are discussed in the
next section.

7.3.2 Experimental Results

For the analysis the measured cross-ratios are normalized to unity. Exemplary fit results
are shown in Figure 7.4 for two different solenoid frequencies (630 kHz (k = 1) and
871 kHz (k = −1)). In both cases, the oscillation frequencies are comparable. Similar
results have been also published in [158]. The decrease of the polarization oscillation
amplitudes varies for the different solenoid frequencies as predicted by the theory. As
expected, this also increases the number of oscillations in the same time range for k = 1
similar to Figure 7.2. The fitting range is limited to the first six oscillation periods. In
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Figure 7.4: Measured cross-ratios (normalized) for two runs with different solenoid
frequencies of 630 kHz (k = 1) (a) and 871 kHz (k = −1) (b), but approximately the
same solenoid field strengths. The solenoid was turned on at 0 s, when the vertical
polarization starts to oscillate. Fits according to Equation 7.17 have been performed
(red line). The residuals of the fits are shown below the graphs, respectively.

this range the fit function describes the polarization behavior sufficiently well. The
deviations between measurement and theoretic curve increase at later times. Here, the
run at k = −2 illustrated in Figure 7.5 serves as a prominent example. At later times,
the oscillation amplitude is significantly larger in comparison to the description of the
fit function. This behavior could be caused by a real τ -distribution, which deviates
from the description by a single Gaussian function. For example, tails with larger
values of τ lead to a steeper polarization fall off at the beginning, while a smaller
core preserves the polarization amplitude for a longer time. In order to still retrieve a
proper estimate for the damping time the fitting range is reduced to approximately
three oscillation periods for the solenoid frequency of 1662 kHz (k = −2).
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Figure 7.5: Example for a measured cross-ratio (normalized) for a runs with a solenoid
frequency of 1662 kHz (k = −2). A fit according to Equation 7.17 has been performed
and is illustrated as the red line. The fit interval is restricted to the first three oscillation
periods.

To validate the fit results, the relation between the the estimated reference oscillation
frequencies and the input values, which control the RF solenoid strength, is evaluated.
In the used operational range, a linear relation between the input value and the resulting
magnetic field strength was determined in preceding studies [159, 160]. This linear
relation is also expected between the input value and the resulting reference oscillation
frequency. Figure 7.6 depicts the reference oscillation frequency with respect to different
input values and solenoid frequencies. The runs for which the fit returns an offset
parameter c0 > 0.2 are discarded, since they posses large off-resonance contributions,
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Figure 7.6: Fitting results of the oscillation frequency defined for the reference particle
shown for different solenoid frequencies characterized by k and for different input values
of the RF solenoid. The colored lines illustrate linear fits for the different frequencies,
respectively. The runs, for which the fit hints towards an off-resonance setup of the
solenoid, have been discarded.
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which bias the results. For the remaining runs, the expected linear behavior is observed
and is characterized by a linear fit. The different slopes reflect the variation of the
field strengths for the same input value, but different resonance frequencies. Since the
resonance circuit of the solenoid is primarily designed for frequencies below 1Mhz, the
resulting field amplitudes decrease at higher frequencies. The observed linear relations
underline the quality of the fits.

Finally, the damping time is extracted from the fit function using the interpolation of
the extrema, as described previously. In Figure 7.7 the obtained values of the damping
time with respect to the different oscillation periods 1/fosc and the different solenoid
frequencies are shown. The colored markers depict the data points, while the colored
lines correspond to analytical calculations. For this comparison, the Gaussian width of
τ assumed in the calculations is slightly increased to σ = 90ns. For illustration, also
impact of variations of the Gaussian width by ±10 % is represented by the colored
bands. Under these conditions, the theoretical predictions are in good agreement with
the damping times for different solenoid frequencies. Thus, the predicted influence of
the solenoid frequency on the damping time could be confirmed. The damping times
obtained for k = −2 are smaller than one oscillation period. Most of the runs taken
with larger oscillation periods at this solenoid frequency are plagued by off-resonance
effects and are discarded in this analysis. The damping time of the runs with k = 1
and k = −2 show a slight increase with respect to the theoretical estimate for larger
oscillation periods. Here, additional systematic effects arise from a variation of the τ
distribution throughout the particle store and the different detector rates for early and
late times in the cycle as discussed previously. Those contributions are not considered
in the error bars presented in Figure 7.7. Further studies are required to estimate their
impact.
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Figure 7.7: Damping time of the vertical polarization envelope with respect to the
duration of the corresponding oscillation period. The measurements for various solenoid
frequencies characterized by k reveal their different influence on the damping time. The
colored lines illustrate an analytical calculation assuming a Gaussian width σ = 90ns
for τ . The colored bands correspond to a change of the Gaussian width by ±10 %.
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7.4 Bechmarking of the Algorithms for RF Fields

In the previous section, the theoretical expectation given in Equation 7.17 could be
successfully confirmed with experimental data. The second purpose of this chapter is
the validation of the newly implemented methods to simulate RF devices in COSY
INFINITY. Two methods have been implemented. The first method considers a simple
kick approach: the particles are tracked through the one-turn-map of the static ring
and after each turn the spin is transformed by a rotation matrix taking into account
the time-varying field strength of the RF device. In the second method, the RF device
is implemented as a transfer map including the time dependence of the field. Thus, also
the transverse phase space coordinates are taken into account during the calculation
of their influence on spin motion. Furthermore, the impact of the RF device on beam
motion can be studied in this approach. More details on these methods are given
in Section 5.2.2. The correct reproduction of the variation of the resonance strength
according to Equation 7.10 is an important test of these methods. In the following, both
methods are applied for a solenoid frequency of 871 kHz (k = −1). The vertical spin
component, which is initially set to unity, is tracked for 20 million turns for different
particles. In Figure 7.8 the results for the reference particle and a particle with an initial
amplitude τmax ≈ 172 ns are depicted. The latter value corresponds to a 2σ-distance to
the beam center assuming a Gaussian distributed τ and applying the fit results obtained
for the run shown in Figure 7.4 (Gaussian distributed τ : σ = 75ns and cτ ≈ 1.15).
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Figure 7.8: Comparison of the two implemented methods for the tracking simulation
utilizing RF fields. The tracking results of the vertical spin component for deuterons
with two different time deviation amplitudes τmax in presence of an RF solenoid in the
ring are illustrated. The setup of the tracking is based on the fit results obtained for
the run at 871 kHz shown in Figure 7.4. The circles represent the tracking results for
the simple kick approach, while the solid lines show the results obtained with a full
map representation.
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The circles represent the tracking results for the simple kick approach, while the solid
lines show the results obtained with a full map representation. Both results are in
excellent agreement with each other and reproduce the decreasing resonance strengths
for particles with larger synchrotron oscillation amplitudes. Since the transverse phase
space coordinates of these particles are initially set to zero, they can only be influenced
by dispersive effects. Their influence on spin motion in this simulation configuration is
negligible.

A second test utilizing the map method is performed comparing the analytical formula
given in Equation 7.17 with tracking simulations for single particles. The fit results
for the solenoid frequency of 630 kHz (k = 1) and the run shown in Figure 7.4 are
applied in the model configuration. Additionally, different initial amplitudes τmax and
an initially vertical spin vector are used. Figure 7.9 shows the results for τmax ∈
{50 ns, 150 ns, 250 ns}. For the smallest synchrotron amplitude, the tracking results
reproduce the analytic formula very well. But, increasing initial amplitudes introduce
significant deviations between the oscillation frequencies obtained in the tracking
simulation and obtained by the analytic formula. The corresponding reason is a
simplification introduced in the analytic formula: A harmonic oscillator behavior for the
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Figure 7.9: Vertical spin oscillation calculated by the analytical formula (lines) compared
to tracking results (markers) obtained with a full map approach for a solenoid frequency
of 630 kHz (k = 1). Different time deviation amplitudes τmax have been used. The
deviations for larger τmax occur due to a simplification in the analytical formula.
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synchrotron motion is assumed, which is equivalent to a restoring force depending linear
on τ . The real restoring force of the RF cavity is defined by the sinusoidal oscillating
electric field. Thus, it is only linear to first order. Large synchrotron amplitudes leave
this linear regime, which leads to additional contributions. These effects are included
in the tracking simulations and further reduce the resonance strength.

As a last test, the tracking results for a bunch of 1000 particles is compared to the
analytical formula as well as the measurement results for the two settings presented in
Figure 7.4. Here, the same τmax values as for the analytical calculation are used. Thus,
the initial synchrotron phases of all particles in the tracking simulation are preset to
zero. The comparison between the measured data, the tracking results and the analytic
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Figure 7.10: Normalized cross-ratios for two runs with different solenoid frequencies
as already depicted in Figure 7.4. The blue line corresponds to tracking results based
on the parameters (solenoid strength, width of particle distribution) obtained by the
particular fit (red line). Both lines nearly cooincide with each other. For a direct
comparison the deviation ∆s-f between the tracking simulation and the analytical
formula has been calculated.
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formula is depicted in Figure 7.10. In addition to the normalized cross-ratio, also the
difference ∆s-f between the results of the tracking simulations and the analytic formula
is calculated. In both cases, ∆s-f keeps below 1‰ on the absolute scale and shows a
beat hinting towards additional effects, which are present in the tracking simulations
rather than a numerical issue. Overall, this validates the implementation of the new
algorithms for RF fields.

7.5 Summary

In this chapter, the derivation of an analytical expression of the spin motion in presence
of an RF solenoid has been presented. The different oscillation frequencies of the vertical
polarization for the various particles in a bunch lead to a damping of the oscillating
vertical polarization over time. The predicted dependence of this damping could be
confirmed in measurements. Furthermore, the predicted spin behavior was used to
benchmark the newly implemented methods for simulation of RF fields in COSY
INFINITY. For small synchrotron amplitudes, they are in excellent agreement with the
theory, while for larger amplitudes they reveal additional contributions with respect to
the analytical formula. These contributions are not included in the analytic formalism
due to a couple of assumptions and approximations, which have been used during its
derivation. For example, the synchrotron motion was assumed to be harmonic, which
is only valid for small synchrotron amplitudes. In summary, the new methods could be
verified and are available to explore the systematic effects on the EDM measurement
method using an RF Wien filter at COSY.





Chapter 8

EDM Measurement Method Using
a Radiofrequency Wien Filter

8.1 Motivation

The algorithms recently developed for the simulation of RF fields have been bench-
marked in the previous chapter. In this chapter, these algorithms are applied to study
the systematic contributions to the EDM measurement method using an RF Wien
filter. The fundamental details of this measurement method have been illustrated in
Section 3.3.3. The currently mounted RF spin manipulators have been described in
Section 4.1.2.2. For the EDM measurement a new type of RF Wien filter based on
a stripline design is foreseen [161]. The orthogonal electric and magnetic fields of an
electromagnetic wave provide the Wien filter condition. Due to an EDM related tilt of
the spin closed orbit ~nc a vertical polarization signal is produced. The corresponding
theory of the polarization behavior in presence of an artificial spin resonance induced
by an RF device has been discussed in Sections 3.2.7.3 and 3.2.8.2. The theoretically
derived formula given in Equation 3.225 expresses the change of the spin component
along the stable spin direction S̃3(θ) for a particle circulating on the closed orbit. The
projection onto the vertical axis Sy(θ) = −S3(θ) = −n3(θ) · S̃3(θ) ≈ −S̃3(θ) at the
location of the polarimeter is used as measurement signal. This approximation is valid
for small tilts of ~nc with respect to the vertical axis. In the following calculations, an
initial spin vector precessing in the plane perpendicular to ~nc (S̃2(0) = 1) is considered.
Expecting a small change per turn, Equation 3.225 can be expanded. Up to first order,
this yields:

S̃3(θ) ≈ α0
4π · [m̃1 cos(φ) + m̃2 sin(φ)] · θ . (8.1)

The change is directly proportional to the maximum spin rotation angle α0 induced by
the RF device, which depends on the field strengths of the Wien filter. Furthermore
a connection between the initial phase φ of the Wien filter with respect to the spin
direction can be observed. This phase dependence couples differently to the parame-
ters m̃1 and m̃2 defined in Equations 3.231 and 3.232. These parameters reflect the
orientations of the spin closed orbit ~nc and the spin rotation axis in the Wien filter ~m
with respect to each other. A tilt of the spin closed orbit is induced by a non-vanishing
EDM (Equation 3.227), but also by imperfections and misplacements of the magnets
of the storage ring. The spin rotation axis in the Wien filter is defined by its field
orientations and misplacement, respectively. The resulting values of m̃1 and m̃2 are
calculated by the utilized simulation framework for different situations. Inserted in

145
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Equation 8.1, the theoretically expected spin component change in all scenarios can be
obtained. Finally, the results are directly compared to the spin tracking results for the
same conditions. This allows for the benchmarking of the code and an estimation of
the systematic limitations of the measurement method, simultaneously.

8.2 Simulation of the RF Wien Filter Method

In the following, the implementation of the Wien filter model into the simulation code
is described. Afterwards different EDM magnitudes and imperfection conditions are
defined and compared to each other in order to extract the systematic contributions.
Intermediate results of the following simulation tasks have been published in [145, 158,
162]

8.2.1 Setup of the Wien Filter Model

Preliminary field calculations for the new RF Wien filter based on the stripline design
are available [161]. Figure 8.1 depicts the evaluated field values at a specific grid for
the maximum amplitudes of vertical magnetic and radial electric fields at a vanishing
vertical coordinate y = 0. For further study, both field strengths are normalized to
unity. In the simulation code COSY INFINITY customizable field models for electric
and magnetic fields are available. Since the transfer map representation uses expansions
up to an arbitrary order, multiple differentiable field descriptions are required, which
need to satisfy Maxwell equations. The layout of the element often allows to exploit
a symmetry with respect to the midplane. This allows one to calculate the three
dimensional field information for static fields satisfying Maxwell equations based on
known field magnitudes in the midplane. The fringe fields in longitudinal direction are
often approximated by Enge functions (see Equation 5.10). In transverse direction,
taylor expansions are commonly used. These simplifications have also been applied to
construct a model for the RF Wien filter in COSY INFINITY. First, a superposition
of the static electric and magnetic fields is generated. The fringe fields are described
by Enge functions in longitudinal direction and polynomial functions in transversal
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Figure 8.1: Field calculations for the vertical magnetic (a) and radial electric field (b)
component of the RF Wien filter based on a stripline design. (data from [161, 163])
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Figure 8.2: Calculated field profiles of the radial electric and vertical magnetic field of
the Wien filter based on [161, 163]. The maximum field value is normalized to unity.
Figure (a) shows the longitudinal profiles for x = y = 0mm, Figure (b) depicts the
transversal profiles for y = z = 0mm. Fits of Enge functions and polynomial functions
are used to describe the fringe fields.

direction, respectively. Second, the time dependency is included by assuming an
oscillation of this fields according to a sine function with defined frequency and phase.
The coefficients of the Enge and the polynomial functions for the magnetic and electric
fields are determined by fits to the field calculations at x = y = 0 and y = z = 0,
respectively. The fit results are shown in Figure 8.2. The calculations predict a steeper
fall-off of the electric fields in longitudinal direction. A good representation of the
calculated field values is achieved by different sets of coefficients for magnetic and
electric fields. Only close to the maximum an increased discrepancy occurs in the
magnetic case, but it is substantially smaller than the mismatch of the fringe fields for
magnetic and electric fields. In transverse direction, the field fall-off is slightly larger
for the magnetic field, but the reduction is still below one permille within ±1 cm. The
extracted coefficients implemented into in the model are given in Table 8.1 and Table
8.2.
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Table 8.1: Parameters of the Enge functions describing the vertical magnetic (a) and
radial electric (b) field of the Wien filter, respectively. The effective length for the
magnetic part (electric part) is leff = 0.807m (leff = 0.814m).

(a)

entrance exit
a1 -0.375 -0.376
a2 2.923 2.924
a3 1.490 1.491
a4 -0.235 -0.232
a5 -0.847 -0.854
a6 0.381 0.383
D 0.1 0.1

(b)

entrance exit
a1 -0.107 -0.109
a2 5.839 5.832
a3 1.635 1.626
a4 0.632 0.772
a5 -1.790 -2.010
a6 0.705 0.803
D 0.1 0.1

Table 8.2: Parameters of the fitted polynomial (f0 ·
(
1−∑ ci · xi

)
) to describe the

transversal fall-off for vertical magnetic and radial electric field of the Wien filter,
respectively.

magnetic electric
c2 −7.727m−2 −0.404m−2

c4 −913.6m−4 −0.003m−4

The different shapes of the magnetic and electric fringe fields prevent a precise local
Lorentz force compensation. An accurate scaling of magnetic and electric field strengths
is required to minimize the excitation of the beam. This is achieved by the following
procedure in the model calculations. The central beam location is represented by a
reference particle starting at zero initial coordinates. In an ideal ring without imperfec-
tions and disabled Wien filter, this particle does not change its beam coordinates, but
turning on the RF Wien filter with local field mismatches excites betatron oscillations
of this particle. If the oscillation frequencies of the Wien filter fields are close to a
betatron sideband frequency, these excitations add up in subsequent turns, amplify the
betatron oscillation amplitude and may lead to beam loss. Consequently, a matching
procedure for electric and magnetic field strengths is most sensitive close to a betatron
sideband frequency. This condition can be prepared by moving either the Wien filter
frequency or the horizontal betatron tune. The former is already fixed, since it needs
to fulfill the spin resonance condition in the EDM experiment. Thus, a variation of
the horizontal betatron tune is used in the following. The simulations are performed
using a deuteron beam momentum of 970MeV/c. This corresponds to a spin tune of
νs ≈ −0.161. The Wien filter frequency is set to 871 kHz (k = −1) (see also Chapter
7). To maximize the sensitivity to a field mismatch, the horizontal betatron tune is
shifted to Qx = 4 + νs ≈ 3.839 by variation of the arc quadrupoles. A nominal vertical
betatron tune of Qy = 3.585 is preserved, simultaneously. The expected magnetic field
amplitude of the Wien filter depends on the particular power amplifier A field strength
of about B̂ = 0.1mT is expected.
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(a) (b)

Figure 8.3: Tracking results for a reference deuteron with a momentum of 970MeV/c.
The horizontal tune is set to Qx = 4−νs and the Wien filter is operating at B̂ = 0.1mT,
Ê = −βc · B̂ and k = −1 (871 kHz). Figure (a) shows the horizontal offset vs. turn
number, in Figure (b) the calculated horizontal Courant-Snyder invariant vs. turn
number is depicted.
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Figure 8.4: Simulated matching procedure of magnetic and electric field strengths to
reduce the maximum Courant-Snyder invariant reached during the tracking simulation
shown in Figure 8.3. The maximum value is plotted vs. an enhancement of the
magnetic field while keeping the electric field constant. The horizontal tune is set to
Qx = 4 + νs ≈ 3.839.

To cancel the Lorentz force in simulations, a corresponding electric field amplitude
of Ê = −βc · B̂ is chosen as starting point for the matching procedure. Subsequently,
the magnetic field is scaled iteratively and the reference particle is tracked for 100 000
turns, respectively. This is exemplarily shown in Figure 8.3 for the initial conditions.
The initially vanishing horizontal offset is affected by the Wien filter excitation and
the amplitude of the betatron oscillations increase. At some point the particle slips out
of resonance with the Wien filter excitation, such that the amplitude decreases again.
This can occur due a slight mismatch of betatron sideband frequency and the excitation
frequency induced by an amplitude dependent betatron tune. In the particular scenario,
the Courant-Snyder invariant reaches magnitudes close to 1mmmrad. This value
can be used as a measure for the field compensation quality. Figure 8.4 depicts the
maxima for different enhancements of the magnetic field with respect to the initial
conditions. The smallest excitation is observed at an enhancement of about 0.08 %. The
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Figure 8.5: Simulated matching procedure of magnetic and electric field strength to
reduce the maximum Courant-Snyder invariant reached during the tracking simulations.
The maximum value is plotted vs. an enhancement of the magnetic field by keeping
the electric field constant. The horizontal tune is set to Qx = 3.62.

Courant-Snyder invariant at the minimum is about 0.7mmmrad. A entirely vanishing
excitation can not be achieved, because it requires a simultaneous minimization of the
particle offset and angular deflection induced by the Wien filter, but the field scaling
is the only free parameter. To further reduce the excitation a sufficient distance to the
betatron sideband frequencies is mandatory. This is verified by a similar simulation
at the nominal tune Qx = 3.62 presented in Figure 8.5. Here, the betatron oscillation
amplitude is reduced by several orders of magnitude. For the following investigation
the enhancement factor providing a minimized excitation is selected and a setup based
on the nominal betatron tunes Qx = 3.62 and Qx = 3.585 is used.

8.2.2 EDM Signal in the Wien Filter Measurement Method

A first reasonable test of the implemented Wien filter model is the benchmark against
the theoretically expected spin interaction in case of an ideal model of the storage ring
and an ideally oriented Wien filter with vertical magnetic and radial electric fields
but a non-vanishing EDM. According to Equation 8.1, tilts of the spin closed orbit
induce a slow variation of the vertical spin component. These tilts are introduced by
imperfection resonances of the spin motion. In case of an ideal storage ring, there is no
tilt due to misalignments and imperfections. The tilt due to a non-vanishing EDM has
been discussed in Section 3.3.1 (Equation 3.227) and leads to a radial component of
the spin closed orbit. The parameters m̃1 and m̃2 in Equation 8.1 are given by

m̃1 = −nx ≈
ηEDMβ

2G , (8.2)

m̃2 = 0 . (8.3)

Hence, Equation 8.1 simplifies to

S̃3(θ) ≈ −α0
4π · nx cos(φ) · θ . (8.4)
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Figure 8.6: Fast oscillation of the vertical spin component of a reference deuteron.
The initial spin vector is placed in the plane perpendicular to the spin closed orbit
(S̃2(0) = 1). An EDM of ηEDM = 10−4 is assumed, which causes a tilt of the spin closed
orbit. The solid line is a fit of a sinusoidal function.

According to this equation a strong connection of the phase of the Wien filter fields
and the vertical spin component change is expected. To verify the theoretical formula,
simulations based on tracking of the reference particle are conducted. An initial
spin with S̃2 = 1 is set up. Figure 8.6 illustrates the variation of the vertical spin
component in the first ten turns assuming an EDM of dd ≈ 5 · 10−19 e cm corresponding
to ηEDM = 10−4. The tracking results are interpolated by the fit of a sine function. The
fast oscillation of the vertical spin component corresponds to the precession around
the tilted spin closed orbit of the static ring. This effect is also present without an
additional RF Wien filter and is used in the parasitic method described in Section
3.3.1. The expected amplitude for the particular configuration of the model can be
estimated by

A ≈
∣∣∣∣ηEDMβ

2G

∣∣∣∣ = 0.16 · 10−3 (8.5)

and agrees well with the tracking results. The fast oscillation not included in Equation
8.4 has been averaged out during the derivation (see Section 3.2.7.3). Instead a slow
change of the average vertical spin component introduced by the RF Wien filter is
predicted. For verification, the spin motion is also investigated for longer tracking
periods as shown in Figure 8.7. Exemplarily, the tracking results for the two phases
φ = 0° and φ = 90° of the Wien filter fields are depicted. The solid lines describe linear
fits. The slopes of these fits corresponds to the average change of the vertical spin
component ∆Sy per turn. As predicted by Equation 8.4 a slow rise occurs for φ = 0°,
while the averaged vertical spin component for a phase of φ = 90° is constant. Figure
8.8 illustrates the results for different EDM magnitudes and various initial phases of
the Wien filter fields. The solid lines represent the theoretical expectation according
to Equation 8.4. As previously described a Wien filter magnetic field amplitude of
0.1mT (slightly increased in order to minimize the beam excitation) is utilized in these
calculations. The buildup scales linearly with the EDM magnitude and disappears for a
vanishing EDM. Furthermore, it scales linearly with the Wien filter field strengths. For
ηEDM = 10−4 the buildup is approximately ∆Sy = 1.6 · 10−9 per turn. Thus, the average
vertical spin component reaches the amplitude given in Equation 8.5 already after
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about 105 turns, which amounts to 0.1 s. In the next sections, various contributions,
which could mimic the EDM signal, and their orders of magnitude are investigated.

(a) (b)

Figure 8.7: Tracking results of the vertical spin component in presence of an EDM
(ηEDM = 10−4) and the RF Wien filter with vertical magnetic field. In Figure (a) the
initial phase of the Wien filter field oscillation is set to φ = 0°, in Figure (b) it is set to
φ = 90°. The solid lines are linear fits used to extract the average change.
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magnetic field of 1 · 104 mT and the corresponding electric field are used. The Wien
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8.2.3 Influence of Imperfections

The change of the vertical spin component depends on the tilt of the spin closed orbit,
but also on a misaligned spin rotation axis within the Wien filter. Those tilts can be
introduced by either misalignments and imperfections of the guiding magnets or the
Wien filter itself. These effects are discussed in the following.

8.2.3.1 Wien Filter Rotations

Considering Equation 8.1, the change of the vertical spin component strongly depends
on the parameters m̃1 and m̃2. A rotation of the Wien filter about the longitudinal axis
will introduce radial magnetic and vertical electric field components on the reference
trajectory. Thus, the spin rotation axis within the Wien filter is also tilted by the same
amount. This can be parametrized by a rotation angle ζ of the Wien filter about the
longitudinal axis. The parameters m̃1 and m̃2 can be expressed as

m̃1 = sin(ζ)− cos(ζ) · nx , (8.6)
m̃2 = 0 , (8.7)

in case one assumes that the only contribution to a tilt of the spin closed orbit of
the static ring is a non-vanishing EDM. Thus, a rotation about the longitudinal axis
modifies the parameter m̃1, which also contains the EDM contribution. For that reason
the same dependence on the phase of the Wien filter fields as for a pure EDM signal
is expected. Figure 8.9 depicts the average change of the vertical spin component in
case of a pure Wien filter rotation and a vanishing EDM. The solid lines represent the
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the Wien filter fields. The EDM is assumed to vanish, but the false signal for different
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Figure 8.10: Average change of the vertical spin component for an initial Wien filter
phase of φ = 0° and different vertical betatron tunes. The EDM is set to zero in
simulations, but a rotation about the longitudinal axis of 0.1mrad is implemented for
either the whole device or magnetic / electric field, respectively. At Qy = 4 + νs an
enhancement due to betatron motion is observed, if one of the fields is rotated alone.

theoretical expectation. In fact, the phase dependence agrees with a pure EDM signal.
For small rotation angles ζ the change of the vertical spin component scales linearly
with the magnitude of ζ. Already for angles of 0.1mrad this change is in the same
order of magnitude as for the pure EDM contribution (ηEDM = 10−4), illustrated in
the previous section. Thus, a precise alignment with respect to the ring plane would
be absolutely mandatory to suppress this systematic effect for the EDM measurement
method.

Besides a rotation of the device, also the rotation of only the magnetic or electric fields
can be considered. This leads to a deviation from the Lorentz force compensation, which
excites betatron oscillations and introduces secondary effects affecting the spin motion
due to the spin interaction with the focusing fields of the storage ring. Theoretical
calculations and measurement results show a strong connection to the vertical betatron
tune [100, 101, 104]. In the following, this connection is studied in context of the
Wien filter EDM measurement method. Figure 8.10 shows the average change of the
vertical spin component for various vertical betatron tunes and a Wien filter phase
φ = 0°. Rotations of the whole device, only the magnetic or only the electric part
are considered, respectively. The solid lines correspond to interpolations between the
various tracking results, which are presented by the markers. In case of a rotation
of the entire Wien filter, the minimization of the beam excitation is preserved. As
a consequence no connection to the vertical betatron tune is observed. Investigating
the effects of magnetic and electric field rotations separately, the sum of both effects
always coincides with a rotation of the whole device. In case the betatron sideband
frequencies are located sufficiently far away from the field oscillation frequency of the
Wien filter, the direct contribution of the Wien filter dominates the change of the
vertical spin component. While the magnetic field contribution nearly vanishes in this
case, the electric field contribution possesses almost the same magnitude as in case
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of a whole device rotation. Moving a betatron sideband frequency close to the field
oscillation frequency (i.e. Qy ≈ 3.839), the impact of betatron motion dominates and
significantly enhances the average growth of the vertical spin component. This needs
to be avoided in the experimental setup.

These results can be interpreted as an order of magnitude estimate of the influence
of field imperfections of the Wien filter. In general, the total spin rotation within the
Wien filter during one pass, can be characterized by a rotation axis and a rotation
angle independent from the particular arrangement and shapes of the fields. In case
this axis is tilted and any change of the vertical spin component constructively adds
up in subsequent turns, a false EDM signal is produced.

8.2.3.2 Ring Imperfections

In this section, the additional tilts of the spin closed orbit due to misalignments and
imperfections of the guiding and focusing magnets of the storage ring are examined.
For this purpose, a perfectly aligned Wien filter is assumed. In this scenario, the
parameters m̃1 and m̃2 are given by

m̃1 = −nx , (8.8)
m̃2 = −nz . (8.9)

Thus, tilts contributing to the radial component of ~nc at the location of the Wien filter
are critical and can influence the measured polarization signal related to an EDM.
These tilts can be introduced by additional radial or longitudinal fields. Different
sources of these fields are considered. Vertical shifts of the quadrupole magnets as well
as rotations of the main bending dipoles about the longitudinal axis lead to radial
magnetic fields on the reference trajectory. But also other shifts, tilts and rotations
are possible sources of a false EDM measurement signal. In case of radial magnetic
fields also the vertical beam motion is affected. Thus, a beam position measurement
can be used to detect those field components. As shown in the following, this requires
a high precision and accuracy of the beam position monitors. For that purpose, a new
type of BPMs based on Rogowski coils is currently under investigation at COSY [164].
In the simulation study presented here, the misalignments are randomly generated
according to Gaussian distributions assuming different widths, since the real values
are not precisely known. The vertical orbit deviations evaluated at the quadrupole
locations rather than the beam position monitor locations are used to investigate
the correlation of a false EDM signal and the measured vertical beam offsets. This
scheme provides an enhanced number of orbit samples, which are well distributed in
the storage ring. For comparison, the vertical orbit RMS defined as

∆yRMS =

√√√√ 1
N

N∑
i=1

y2
i (8.10)

is calculated based on the results of the orbit simulations. Here, yi denotes the vertical
orbit position with respect to the reference coordinate system at the i-th quadrupole.

Figure 8.11 illustrates the variation of ∆yRMS for different widths of the Gaussian
distribution σy, which are used for the randomization of the misplacements. In this
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Figure 8.11: Simulated ∆yRMS as defined in Equation 8.10 in presence of misaligned
quadrupole magnets. Distributed shifts of the quadrupoles in vertical direction are
applied. These misalignments are randomly generated assuming different Gaussian
widths σy.
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Figure 8.12: Average change of the vertical spin component for different initial phases of
the Wien filter fields. The superposition of the false signal due to misaligned quadrupole
magnets (σy = 0.1mm) and different magnitudes of the EDM is investigated. Two
different randomization seeds are illustrated. The solid and dashed lines correspond
to the theoretical expectation. A Wien filter magnetic field of 1 · 104 mT and the
corresponding electric field are used. The length of the Wien filter is about 0.8m.

particular scenario only the quadrupoles are misaligned in terms of shifts in vertical
direction. A linear correlation between σy and ∆yRMS is observed as expected.

Besides the effects on the vertical orbit, the misalignments also lead to additional tilts
of the spin closed orbit, which can introduce a buildup of the average vertical spin
component in case the RF Wien filter is turned on. These induced tilts of the spin
closed orbit are calculated by the simulation software. Figure 8.12 shows the simulated
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dependence of the buildup on the Wien filter phase for two different randomization
seeds, both using σy = 0.1mm. The EDM magnitude is varied to investigate the
superposition of both contributions. The curves reflect the theoretical calculations
based on the extracted tilts of the spin closed orbit. The Wien filter phase corresponding
to the maximum buildup depends on the relation of the nx and nz components, which
in general vary for different locations in the storage ring. Thus, in case of misalignments
the maximum buildup is not necessarily observed at φ = 0°. In contrast, the EDM
related tilt of the spin precession in the guiding dipoles introduces only a radial
component of the spin closed orbit. Thus, in case of a positive EDM the superposition
of EDM signal and false signal due to misalignments always leads to a larger value at
φ = 0°. In the following, only the buildup at φ = 0° is considered, since it provides the
highest sensitivity for an EDM measurement (together with φ = 180°).

To characterize the buildup for a given value of ∆yRMS, the vertical misalignments
are randomly generated for 1000 different randomization seeds. For each seed the
Gaussian width of the misalignment error distribution is scaled to exactly produce a
predefined value of ∆yRMS. In the next step, the absolute |∆Sy| per turn is calculated
for each configuration. For a ∆yRMS = 1mm, the results are shown in Figure 8.13.
The retrieved buildup rates are sorted by magnitude and a 90 % upper confidence
limit is calculated as depicted by the red line. It can be concluded, that 90 % of the
randomized misalignments, which result in a ∆yRMS = 1mm, generate a buildup below
|∆Sy| ≈ 0.95 · 10−9 per turn. The same approach is repeated for different values of
∆yRMS and the corresponding confidence limit is determined. The simulated buildups
of the average vertical spin component for different ∆yRMS are depicted in Figure 8.14.
In the particular case, only randomly distributed vertical shifts of the quadrupoles are
taken into account. The solid line corresponds to the 90 % upper confidence limit in
case of a vanishing EDM. The average buildup of the vertical spin component tends to
increase for larger vertical orbit deviations. The scattering reflects, that the buildup is
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Figure 8.13: Absolute average change of the vertical spin component |∆Sy| per turn
caused by randomized vertical shifts of the quadrupole magnets. The shift magnitude
is scaled to generate a ∆yRMS = 1mm for each randomization seed. The simulated
EDM is set to zero. The red line corresponds to a 90 % upper confidence limit obtained
from the |∆Sy| calculation.
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Figure 8.14: Absolute average change of the vertical spin component |∆Sy| per turn
with respect to different ∆yRMS and an initial Wien filter phase φ = 0° in the
simulation. The different ∆yRMS are generated by randomized vertical quadrupole
shifts assuming Gaussian distributed misalignments. Furthermore different EDM
magnitudes are considered. The solid line shows the 90 % upper confidence limit for
pure misalignments. The dashed line refers to the location for which the false signal by
misalignments is equal to an EDM signal corresponding to ηEDM = 10−4.

not directly proportional to the orbit RMS, but limited below a certain level, which
depends on the vertical orbit RMS. For larger buildup contributions connected to
misalignments, the EDM related buildup becomes indistinguishable. Reducing the
misalignments reveals a plateau in case of a non-vanishing EDM. In case the vertical
quadrupole misalignments produce a ∆yRMS ≈ 1.6mm, the 90 % upper confidence
limit of the pure misalignment related buildup coincides with an EDM related buildup
associated to ηEDM = 10−4. Similar simulations are performed taking only rotations
of the bending dipoles or a superposition of shifts and rotations in all directions and
around all axes for dipoles and quadrupoles into account. The results are shown in
Figure 8.15. The 90 % upper confidence limits slightly change, but still the same order
of magnitude is observed in these scenarios.

As last item of this section, the correlation between the vertical orbit RMS ∆yRMS
either calculated at the locations of the quadrupoles or calculated at the locations
of the beam position monitors ∆yBPMRMS is evaluated. Considering only vertical shifts
of the quadrupoles, this is shown in Figure 8.16. A nearly perfect linear correlation
and only a small spread can be observed. But, note that any influence connected to
misalignments and measurement errors of the BPMs is not included, yet.
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Figure 8.15: Absolute average change of the vertical spin component |∆Sy| per turn
with respect to different ∆yRMS and an initial Wien filter phase φ = 0° in the simulation.
The different ∆yRMS are generated by randomized rotations about the longitudinal axis
(a) or a full set of shifts and rotations of dipoles and quadrupoles assuming Gaussian
distributed misalignments (b). Furthermore, different EDM magnitudes are considered.
The solid line shows the 90 % upper confidence limit for pure misalignments. The
dashed line refers to the location for which the false signal by misalignments is equal
to an EDM signal corresponding to ηEDM = 10−4.
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Figure 8.16: Correlation between the vertical orbit RMS simulated for the locations of
the quadrupoles ∆yRMS and for the locations of the beam position monitors ∆yBPMRMS .
The orbit offsets are generated by randomized vertical shifts of the quadrupole magnets.

8.2.3.3 Orbit Correction

The results discussed in the previous chapter suggest that smaller vertical orbit
deviations reduce the magnitude of false EDM signals introduced by misalignments.
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Figure 8.17: Simulated horizontal and vertical orbit before (a) and after (b) application
of the orbit correction routine. An example with randomly generated shifts and rotations
of dipoles and quadrupoles is shown. The colored boxes illustrate the locations of
dipoles (yellow) and quadrupoles (blue)
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Instead of correcting the a priori unknown misalignments and imperfections of each
magnet, a global orbit correction can be considered to minimize those deviations
by applying additional corrector magnetic fields. Routines for orbit correction are
implemented into the COSY INFINITY framework as discussed in Section 5.2.4.
In these routines, the orbit response matrix is calculated and (pseudo-)inverted to
determine the required corrector strengths required for a minimization of the orbit.
The (pseudo-)inversion is based on a singular value decomposition. In this particular
study the correction algorithm is modified and aims for the minimization of the orbit
deviations at the quadrupole locations instead of the beam position monitors. This
allows for a correction at many locations well distributed in the whole storage ring and
illustrates the optimum results, which is achievable by mounting new BPMs at each
quadrupole. Furthermore, this study reveals, if the false signals can be reduced without
correcting the actual misalignments but introducing additional fields of the corrector
magnets. For that reason, the bias induced by a lack of beam position monitors and
measurement errors is intentionally excluded.

Figure 8.17 exemplarily shows the simulated orbit for an arbitrary misalignment
configuration before and after applying an orbit correction using all correctors. The
orbit deviations are significantly reduced by an orbit correction. The evaluation of
different sets and magnitudes of misalignments reveals that the RMS value can be
reduced by about one order of magnitude using the described correction scheme.

This scheme is applied to investigate the impact on the buildup of the average vertical
spin component. The results for only vertically shifted quadrupoles and a vanishing
EDM magnitude are depicted in Figure 8.18 The reduction of ∆yRMS is accompanied
by a reduction of the false EDM signal. Since no plateau in the distribution of the data
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Figure 8.18: Absolute average change of the vertical spin component |∆Sy| per turn
with respect to different ∆yRMS and an initial Wien filter phase φ = 0° in the simulation.
The different ∆yRMS are generated by randomized vertical quadrupole shifts assuming
Gaussian distributed misalignment errors. Furthermore, an orbit correction is applied,
which generally shifts the points to smaller RMS values. The EDM is set to zero.
The solid lines show the 90 % upper confidence limit calculated for the corresponding
sample.
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Figure 8.19: Absolute average change of the vertical spin component |∆Sy| per turn
with respect to different ∆yRMS and an initial Wien filter phase φ = 0° in the simulation.
The different ∆yRMS are generated by randomized rotations about the longitudinal axis
(a) or a full set of shifts and rotations of dipoles and quadrupoles assuming Gaussian
distributed misalignment errors (b). Furthermore, an orbit correction is applied. The
EDM is set to zero. The solid lines show the 90 % upper confidence limit calculated for
the corresponding sample.

points is observed, a linear function with zero offset is used to also determine the 90 %
upper confidence limit. For that purpose, the slope of the function is adjusted until 90 %
of the simulated points are below the line.The resulting confidence limits before and
after the correction are slightly different. The same effect can be observed for the other
two misalignment scenarios illustrated in Figure 8.19. In all scenarios the confidence
limit increases, but the expected order of magnitude with respect to the remaining
∆yRMS is preserved. For that reason, it can be concluded, that orbit correction provides
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an efficient tool to suppress false EDM signals arising from misalignments for the
particular beam and machine configuration.

In reality the orbit is corrected with respect to the BPM measurements. Additional
studies are conducted using an orbit correction scheme taking the BPM locations into
account. In this case, a similar linear correlation between the vertical orbit RMS and the
buildup of the vertical spin component is observed. Due to the limited number of BPMs,
local regions with larger orbit deviations between the BPMs appear. This distortions
are not detectable by the BPMs and tends to increase the orbit RMS associated to
the quadrupole locations. In general, this leads to an increased ∆yRMS > ∆yBPMRMS ,
which deviates from the correlation shown in Figure 8.16. An associated increase of
the vertical spin buildup by the same factor is not observed. Hence, localized vertical
orbit distortions bias the vertical orbit RMS in quadrupoles as indicator for false EDM
signals. Additional studies have to be carried out based on the currently available
orbit correction abilities taking the limited precision and accuracy of the BPMs into
account. In present experimental studies an optimization of these abilities is examined
and executed [165].

8.2.3.4 Electron Cooler Environment

In the previous studies, the electron cooler magnetic environment has not been taken
into account. The additional effects introduced by the magnetic elements in the electron
cooler chicane are studied in the following. In the current test experiments, the beam is
initially cooled in the first period of the cycle. Afterwards the electron beam is turned
off, while the magnetic elements (solenoids, toroids and correctors) are kept on. The
additional fields on the reference trajectory might also introduce a false EDM signal.
An approximated model of the 100 keV-electron cooler chicane is implemented to study
this effect. This model is shown schematically in Figure 8.20. Since currently no toroid
model is available in the simulation framework, it is approximated by a radial magnetic
dipole to model the beam deflection. The magnitude of the radial deflections are taken
from [117] and linearly scaled considering a deuteron beam momentum of 970MeV/c.
The significantly smaller vertical deflection described in [117] is not converted in this
model approximation. But due to an angular deviation with respect to the longitudinal
axes of the compensation solenoids, the radial motion is also transferred into a vertical
one. Four radial and four vertical corrector magnets are adjusted to minimize the
orbit distortions in the rest of the storage ring. Due to a lack of space, those corrector
magnets are partially exist as additional quadrupole windings or are even located in
front or behind of an adjacent quadrupole triplet. Hence, a false EDM signal due to
the non-commuting spin rotations is expected. Simultaneously, different misalignment
magnitudes of the dipoles and quadrupoles are included into the simulations, but
a vanishing EDM is assumed. The results are illustrated in Figure 8.21. At small
values of the orbit RMS, a plateau of the average vertical spin component change with
respect to the vertical orbit RMS ∆yRMS appears. This effect mimics an EDM signal
corresponding to a value of ηEDM between 10−6 and 10−5 in the simulated setup of the
experiment.
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Figure 8.20: Simulated horizontal and vertical orbits in the electron cooler chicane.
The vertical orbit is scaled by a factor 100. Four radial and four vertical corrector
magnets are adjusted to compensate the orbit distortions due to the toroid magnets,
such that the orbit deviations vanish in the rest of the storage ring. The main solenoid
and the compensation solenoids are shown in pink, the toroids in white (approximated
by small radial kicks), the electron cooler correctors in black, the quadrupoles without
windings in blue and quadrupoles with windings for a radial (vertical) corrector in
red (green). The last element in red depicts the corrector winding mounted on the
ANKE-D1 dipole behind the quadrupole triplet.
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Figure 8.21: Absolute average change of the vertical spin component |∆Sy| per turn
with respect to different ∆yRMS and an initial Wien filter phase φ = 0° in the simulation.
The different ∆yRMS are generated by randomized vertical quadrupole shifts assuming
Gaussian distributed misalignment errors. Furthermore, a model of the 100 keV-electron
cooler chicane is included into the simulation, while the EDM is set to zero.
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8.2.3.5 Full Beam Simulations

Several systematic contributions have been pointed out by studying the spin motion
of the reference particle. In this section, tracking simulations using a distribution
of particles are presented. They aim to verify the numerical predictions in different
scenarios. A sample beam of 1000 deuterons with initial spins S̃2(0) = 1 are utilized. The
initial particle coordinates are randomly generated according to Gaussian distributions
in the uncoupled 2D-phase spaces. The following estimates obtained during the SCT
studies are used:

ε1σ
x = 0.2mmmrad , (8.11)
ε1σ
y = 0.3mmmrad , (8.12)
δ1σ = 10−4 . (8.13)
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Figure 8.22: Change of the vertical polarization due to an EDM according to ηEDM =
10−4 (a) or due to vertically shifts of the quadrupoles (b) in presence of an RF Wien
filter with vertical magnetic field at the “PAX location” of COSY.
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The same machine setup at a reference momentum of 970MeV/c as for the preceding
studies is employed and the electron cooler magnet chicane is not included. Two
different scenarios are simulated: The first scenario describes an ideal ring and no
rotation of the Wien filter, but a deuteron EDM according to ηEDM = 10−4, in the
second scenario the EDM vanishes, but the quadrupole magnets are randomly shifted
in vertical direction. For comparison, the same conditions as for the reference particle
simulations, as shown by red solid lines in Figure 8.8 and Figure 8.12, are used. Given an
initial Wien filter phase φ = 0°, the calculated buildup of the vertical spin component
amounts to ∆Sy / turn = 1.5 · 10−9 (scenario 1) and ∆Sy / turn = −7.2 · 10−10 per
turn (scenario 2). The corresponding results using the beam of 1000 particles are shown
in Figure 8.22. The deuterons are tracked for 20 million revolutions, which corresponds
to approximately 27 seconds. Linear fits confirm the same vertical polarization buildup
rates as calculated for the vertical spin component of the reference particle. This verifies
the estimates of the systematic effects obtained by the reference particle simulations
in the previous sections.

8.3 Summary

In this chapter, the new algorithms for the simulation of RF devices could be successfully
used to estimate systematic contributions of the Wien filter based EDM measurement
method at COSY. The theoretical predictions are in very good agreement with the
tracking results. The investigation reveals large systematic contributions arising from
misalignments of the elements. Wien filter rotations of 0.1mrad about the longitudinal
axis lead to false EDM signals pretending an EDM magnitude of dd ≈ 5 · 10−19 e cm
(ηEDM = 10−4). The same order of magnitude is produced by vertical shifts of the
quadrupoles, which are randomly distributed according to a Gaussian function with a
width of 0.1mm. Latter is caused by additional tilts of the spin closed orbit introduced
by the additional field components. The vertical orbit RMS has been used to quantify
the relation between the vertical orbit distortions and the false polarization buildup.
Applying orbit correction routines, the false contributions from dipole and quadrupole
misalignments could be partially suppressed. Furthermore, the connection between the

Table 8.3: Parameters used for the estimation of the statistical sensitivity of the RF
Wien filter method.

Parameter Value
Anomalous magnetic moment G -0.14

Lorentz factor γ 1.13
Integrated field strength of RF Wien filter B̂wflwf 0.08Tmm

Number of stored particles N 109

Analyzing power A 0.4
Beam polarization P 0.6
Detection efficiency f 0.005

Revolution frequency frev 750 kHz
Spin coherence time τ 1000 s
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magnetic chicane of the 100 keV-electron cooler and a false EDM signal was studied.
A false signal mimicking an EDM between dd ≈ 5 · 10−20 e cm and dd ≈ 5 · 10−21 e cm
was observed. These calculations revealed the systematic limitations of the proposed
EDM measurement method using an RF Wien filter at COSY. These limitations can be
compared to the statistical sensitivity of the RF Wien filter method. This calculation
is based on [166], but the formula was slightly adapted. The statistical sensitivity for a
deuteron measurement is approximately given by

σd = 2~
∣∣∣∣∣ Gγ2

1 +G

∣∣∣∣∣ 1
B̂wflwf

1√
N · fAPfrevτ

(8.14)

Assuming the parameter values given in Table 8.3, the approximated statistical sen-
sitivity amounts to σd ≈ 10−21 e cm in one cycle. For simplification, a polarization
preserved during the entire measurement period was assumed.





Chapter 9

Conclusion and Outlook
The measurement of EDMs are considered to be one of the most promising ways to
find CP violation beyond the presently known sources. EDMs of charged particles can
be measured at storage rings. In the context of this thesis, several aspects of these
measurements have been investigated. A new simulation framework was developed
to study the proposed EDM measurements at COSY. The initial benchmarking of
the COSY model provided a good agreement with experimental measurements. The
calculated changes of storage ring parameters, i.e. betatron tunes, chromaticities and
momentum compaction factor, mostly reproduced the measured quantities at a few
percent level. Studies of the spin coherence time revealed a strong connection to these
parameters, since they are related to path lengthening of individual particles and
introduce a spin tune spread. Additionally, the relation between the spin coherence
time and the locations and strengths of intrinsic spin resonances has been pointed
out. Simulations confirmed the theoretical predictions. Since intrinsic resonances
are associated to the vertical betatron tune, measurements at different tunes were
conducted. In the various measurements, the longest spin coherence times were observed
at measured chromaticities close to the model predictions. A conservative threshold of
60.6 % of the initial polarization was used to quantify the spin coherence time. During a
measurement interval of 280 s, a spin coherence time of τ = 759+63

−51 s could be achieved
applying initial electron cooling for 75 s. This provided one important requirement for
EDM measurements at COSY.

The study of systematic limitations of the RF Wien filter method demanded the
implementation of time-varying fields into the simulation framework. New algorithms
based on transfer map methods were developed. To verify these algorithms, the
polarization evolution in presence of spin resonances induced by an RF solenoid were
measured. The theoretically predicted dependence of the RF solenoid frequency on
the damping of the vertical polarization oscillations was confirmed. Furthermore,
the results based on the new algorithms agreed with the analytical estimates. Thus,
the algorithms successfully benchmarked were applied to evaluate the systematic
contributions providing fake EDM signals. Large systematic contributions due to
misalignments and field imperfections were observed. Rotations of the RF Wien
filter by 0.1mrad or normally distributed vertical shifts of the quadrupoles with
σy = 0.1mm introduced signals mimicking a deuteron EDM of about 5 · 10−19 e cm.
The contributions of quadrupole misalignments could be partially compensated by
applying an orbit correction scheme. Since current experiments also rely on an initial
electron cooling to reduce the beam emittances, a simplified model of the magnetic
chicane of the electron cooler was investigated. It revealed systematic limitations of
about 10−20 e cm. For the same RF Wien filter setup, the statistical sensitivity of a

169
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deuteron EDM measurement was estimated to 10−21 e cm in only one cycle. For this
calculation a polarization preserved in a measurement interval of 1000 s was assumed.

The EDM related polarization buildup in the RF Wien filter method depends on the
relative phases between the oscillating fields and the orientation of the precessing
polarization. This phase relation needs to be preserved by an active feedback utilizing
the precise spin tune measurement. A first version of the feedback system was suc-
cessfully tested recently and could preserve the spin tune by introducing small energy
changes. Furthermore, the predicted phase dependence of the polarization buildup with
respect to the oscillating field could be reproduced. For this purpose, a similar method
using the RF solenoid was applied and the buildup was generated by coupling to the
magnetic dipole moment. Further improvements of the feedback system are currently
under investigation. Since the EDM related polarization buildup is expected to be
small, additional studies improving the present polarimetry capabilities are ongoing.
These aim for an increase of the statistical sensitivity and a simultaneous decrease of
the systematic contributions of the polarization measurements.

The studies presented within this thesis strongly focused on the development of a
precise storage ring model to prepare and evaluate the storage ring experiments. Several
aspects can be considered to further improve this model. Additional contributions to
spin motion, i.e. field gradients and the electric quadrupole moment, need to be included
to investigate their systematic contributions to EDM measurements. Furthermore, the
current implementation of the RFWien filter is based on analytically approximated field
descriptions. Simulations including more realistic three-dimensional field descriptions
are required to verify the estimates of the systematic contributions connected to the
Wien filter. In this context, also alignment routines of the RF Wien filter with respect
to the ring plane needs to be studied. Concerning the misalignments of the storage ring
elements, actual uncertainties of the beam position measurements need to be introduced
to further quantify the present orbit correction abilities. This way, also the locations,
at which BPMs are currently missing, can be identified. Furthermore, an improved
orbit diagnosis system enables more precise measurements of the optical functions
of COSY. Consequently, these measurements allow for a further benchmarking and
improvement of the COSY accelerator model. This is mandatory to achieve a deeper
understanding of the systematic effects towards a first direct EDM measurement of
light charged hadrons.



Appendix A

COSY Layout
This chapter provides a short overview of the layout of the magnetic structure of COSY
and the distribution of beam position monitors and corrector magnets used for the
orbit correction schemes.

Figure A.1 illustrates the locations of the dipoles, quadrupoles and sextupole magnets
of the storage ring. The labels on the inner side indicate the quadrupole families, while
the sextupole families are denoted on the outer side. All dipoles belong to the same
family. The beam injection point is located on the lower left side.

Figure A.2 depicts the locations of the beam position monitors and the corrector
magnets. The corresponding labels of the BPMs are written on the outer side, while
the labels on the inner side belong to the corrector magnets. The colors indicate, if the
particular element measures or corrects in radial (red) or vertical (green) direction,
respectively. Certain corrector windings are mounted on quadrupole magnets. They are
displayed by a recoloring of the associated quadrupole magnet. The corrector magnets
of the electron cooler and the winding of the ANKE-D3 dipole is not included in this
figure.
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Figure A.1: The arrangement of dipole, quadrupole and sextupole families in the Cooler
Synchrotron.
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Figure A.2: Locations of the beam position monitors and the corrector magnets in the
Cooler Synchrotron.





Appendix B

Results of Betatron Tune and
Chromaticity Variations

Table B.1: Changes of the horizontal betatron tune Qx due to quadrupole strength
variations ∆k. The results are given in ∆Qx·k

∆k · 100 for measurement and simulation.

Quadrupole family Measurement Simulation
MQT1 −0.011 12± 0.000 23 −0.012 20
MQT2 0.020 19± 0.000 36 0.020 02
MQT3 0.008 30± 0.000 52 0.008 67
MQT4 −0.003 78± 0.000 22 −0.004 12
MQT5 −0.009 33± 0.000 23 −0.008 56
MQT6 0.019 10± 0.000 92 0.015 12
MQT7 −0.016 97± 0.000 40 −0.016 23
MQT8 0.028 27± 0.000 88 0.028 25
MQU1 −0.002 25± 0.000 13 −0.002 19
MQU2 0.006 55± 0.000 20 0.006 77
MQU3 −0.001 69± 0.000 12 −0.001 75
MQU4 0.006 88± 0.000 04 0.007 11
MQU5 −0.002 67± 0.000 06 −0.002 72
MQU6 0.009 27± 0.000 17 0.009 54

v
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Table B.2: Changes of the vertical betatron tune Qy due to quadrupole strength
variations ∆k. The results are given in ∆Qy ·k

∆k · 100 for measurement and simulation.

Quadrupole family Measurement Simulation
MQT1 0.013 81± 0.000 31 0.013 19
MQT2 −0.009 03± 0.000 32 −0.007 71
MQT3 −0.007 78± 0.000 09 −0.007 49
MQT4 0.015 67± 0.000 19 0.015 30
MQT5 0.014 73± 0.000 69 0.016 88
MQT6 −0.008 75± 0.000 63 −0.009 06
MQT7 0.014 08± 0.000 98 0.016 64
MQT8 −0.008 48± 0.000 47 −0.008 78
MQU1 0.006 66± 0.000 02 0.007 26
MQU2 −0.003 48± 0.000 13 −0.004 25
MQU3 0.007 49± 0.000 05 0.007 50
MQU4 −0.005 11± 0.000 09 −0.005 01
MQU5 0.006 71± 0.000 09 0.006 93
MQU6 −0.004 11± 0.000 03 −0.004 12

Table B.3: Changes of the horizontal chromaticity ξx due to sextupole strength varia-
tions ∆k2. The results are given in ∆ξx

∆k2
in m3 for measurement and simulation.

Sextupole family Measurement Simulation
MXS 0.784± 0.007 0.763
MXL 0.783± 0.019 0.801
MXG 2.178± 0.035 2.349

Table B.4: Changes of the vertical chromaticity ξx due to sextupole strength variations
∆k2. The results are given in ∆ξy

∆k2
in m3 for measurement and simulation.

Sextupole family Measurement Simulation
MXS −0.574± 0.015 −0.535
MXL −3.711± 0.023 −3.628
MXG −1.665± 0.016 −1.568
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