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High Precision Spin Tune Determination at the Cooler Synchrotron in Jülich
Additional sources of the violation of the CP symmetry are required in order to explain the
predominance of the matter in our universe. This mechanism is directly interlinked to physics
beyond the Standard Model and it is one of the most relevant questions in modern particle
physics. Prominent candidates to solve this problem are the permanent electric dipole mo-
ments (EDMs) of elementary particles like electrons, neutrons or protons. Experiments with
neutral particles already started in the middle of the past century and the current results do
not differ significantly from a zero EDM. For charged particles like protons and deuterons,
an experimental setup at an electrostatic storage ring is proposed. Corresponding feasibility
studies are performed by the JEDI (Jülich Electric Dipole moments Investigation) collaboration
at the Cooler Synchrotron (COSY) in order to estimate essential requirements and systematic
limitations.

In the scope of this thesis two important quantities are discussed, the spin tune and the spin
coherence time. The first one is defined as the number of spin rotations during one turn of
the particle bunch in the storage ring. It is shown, that the quantity can be determined in
real time with a high statistical precision, which allows the investigation of systematic effects
with unprecedented accuracy. The spin coherence time denotes a statistical limitation. It is a
measure of how long the spins of the particles are in phase, while they precess in the horizontal
plane. In order to reach a statistical limit of an EDM measurement in the order of 10−29 e cm,
the quantity is needed to be larger than 1 000 s. This work demonstrates how this requirement
is met by reducing the spin tune spread using sextupole magnets.

The main focus of this thesis is on establishing a theoretical foundation of the related data
analysis. Therefore, a naive Bayes approach is used in order to determine the relevant observ-
ables, like the phase or the amplitude of the polarization. In addition, a statistical model is
developed, which describes the time depending decoherence of the particle spins and the drift
of spin tune. This leads to a better understanding of the electromagnetic components in the
storage ring and the orbit of the particle beam.
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CHAPTER 1

Introduction

This thesis is written at the Chair of the III. Physikalisches Institut B of the RWTH Aachen
university. Moreover, it is established in the section FAME1 of the Jülich Aachen Research
Alliance2. The objective of this cooperation is concerned to a better understanding of the
matter-antimatter asymmetry in the universe by performing basic physical research in the field
of nuclear and particle physics. Solving the puzzle of the observed asymmetry is exceedingly
relevant since it holds the key to our very existence.

The focus of this thesis is the investigation of permanent electric dipole moments3 of charged
elementary particles in the context of a storage ring experiment. The existence of those is pos-
tulated in the Standard Model4 of particle physics by the violation of the symmetry of charge-
conjugation-parity5 . Yet, the prediction of the EDMs based on the SM are small and not exper-
imentally measurable. Consequently, the measurement of an EDM enables the possibility to
evolve physics beyond the SM. If the charge-parity-time-theorem6 holds, permanent EDMs of
elementary particles violate CP, since they are generated by processes that violate time reversal
transformations. According to one of the Sakharov conditions, CP violation is ultimately re-
quired for the creation of an asymmetry between the matter and the antimatter in the universe.
This chapter addresses the physical preconditions and the resulting consequences of the rel-
evant processes.

The consideration of the three discrete symmetries (parity, charge and time reversal) play an
important role in modern physics. The search for their violation has been addressed in plenty
of experiments [1] and they can be described as follows

1. Parity Violation: The physical process performs equally as its mirror image, i.e. under
the transformation ~x → −~x

2. Charge Conjugation Violation: Under charge conjugation transformation each particle
converts into its antiparticle.

3. Time Reversal Violation: The rates of all physical processes are equal, independent of
the direction of the time t→ −t.

1 Forces and Matter Experiments: FAME (founded in 2011)
2 Jülich Aachen Research Allianc: JARA
3 permanent Electric Dipole Moments: EDM
4 Standard Model of particle physics: SM
5 Charge Conjugation Parity violation: CP
6 Charge-Parity-Time-theorem: CPT

1



Chapter 1 Introduction

The pion decay

π− → µ− + ν̄µ , (1.1)

π+ → µ+ + νµ (1.2)

denotes a prominent example of a P and C violating process. However, it conserves CP sym-
metry.

The first violation of the CP symmetry was observed in the kaon sector [2] and most re-
cently in the B meson sector [3]. The former process is based on the idea that the neutral
kaon can transform into its antiparticle by the interchange of two virtual W-bosons. The kaon
states are given by the KS and KL eigenstates, which yield different lifetimes. In 1964 the
Fitch-Cronin experiment measured the decay rates of KL into two and three pions. The de-
cay into two pions would not be possible if KL had been a pure eigenstate. Consequently,
the CKM-Matrix (Cabibbo-Kobayashi-Maskawa) has been introduced to explain the observed
CP violation. However, the CKM mechanism is not sufficient to explain the baryogenesis,
which makes a permanent EDM of elementary particles a proper candidate for additional CP
violating sources.

2



1.1 Baryon Asymmetry

1.1 Baryon Asymmetry

The baryon asymmetry is one of the unsolved puzzles in cosmology. Since there is no evid-
ence for primordial antimatter, the excess of matter can be measured by the baryon-to-photon
density ratio

ηBAU =
ηB − ηB

ηγ
= (6.047± 0.074)× 10−10 , (1.3)

where the photon density is given by ηγ = 305/cm3. The variables ηB and ηB correspond to
the baryon and anti-baryon density, respectively. The latter is measured to zero ηB = 0.

A quantitative measurement of the asymmetry was realized by the Cosmic Background Ex-
plorer7 satellite, which recorded data in order to determine the angular distribution of the
cosmic microwave background. An additional measurement is given by the data of the prim-
ordial big-bang-nucleosynthesis. The Standard Model of Cosmology predicts an asymmetry in
the order of ηSM

BAU = 10× 10−18, which is more than 8 orders of magnitude below the observed
one. The unexpectedly large number of baryons of the universe is called baryogenesis. In 1967
Sakharov proved three criteria, which allow the dynamic generation of a baryon asymmetry.

1. Violation of baryon number: There must be a process, which violates the baryon num-
ber conservation. Otherwise, no asymmetry could be generated

2. Violation of C and CP symmetries: In order to produce an imbalance in the production
of baryons and anti-baryons, the charge conjugation symmetry C and in addition the
parity transformation symmetry has to be violated

3. The universe is out of thermal equilibrium: In thermal equilibrium particle production
reactions yield the same rate as the inverse process. Thus, the asymmetry generating
processes must take place far from thermal equilibrium.

The determination of a permanent EDM of elementary particles is an additional source of CP
violating processes.

1.2 Electric Dipole Moments

In electrodynamics the classical definition of an EDM describes the charge separation of the
centers of gravity of positive and negative charges

~dEDM =
∫

V
~x · ρ(~x)d~x , (1.4)

where ρ(~x) denotes the continuous charge density. In analogous the magnetic dipole moment
yields

~µMDM =
1
2

∫
V
~x×~j(~x)d~x , (1.5)

7 Cosmic Background Explorer: COBE
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Chapter 1 Introduction

with the current density~j(~x).

The EDMs and MDMs are fundamental properties of the particles

~d = ηEDM
q

2mc
~S , (1.6)

~µ = g
q

2m
~S (1.7)

and they are either aligned parallel or anti-parallel with respect to the spin quantization axis [4].
Here, the mass and the charge of the particle are indicated by m and q, respectively. In addi-
tion, the speed of light is denoted as c. The g-factor g and the scaling parameter ηEDM are
dimensionless quantities.

The non-relativistic Hamiltonian of a particle with EDM and MDM reads

H = −~µ~B− ~d~E . (1.8)

In the case of a T transformation, only the dipole moments and the magnetic field B are in-
verted and for the P transformation, only the electric field flips its sign. Consequently, both
symmetries are violated assuming d 6= 0. In addition, CP is violated, if the CPT theorem is
valid [5].

1.3 CP violation and EDMs

The already mentioned CKM-Matrix is considered as the only known source of CP violation
in the quark sector of the SM [6]. An analogous is the PMNS-Matrix (Pontecorvo-Maki-
Nakagawa-Sakata), which describes the CP violation in the lepton sector [7]. The predicted
EDMs due to CKM mixing are extremely small since they are generated by a three-loop level
Feynman diagram [8]

dCKM
q ≈ 10× 10−34 e cm− 10× 10−35 e cm . (1.9)

In the case of the electron even four-loop diagrams are needed, which yields [9]

dCKM
e ≤ 10× 10−38 e cm . (1.10)

For the nucleon EDM, the CP-odd pion-nucleon coupling based on the effective field theory
at one-loop level are most relevant and an estimate leads to [9]

dCKM
n ≤ 10× 10−32 e cm . (1.11)

All numbers are way too small in order to be covered by the sensitivity of current EDM exper-
iments. However, the investigation of an additional source of CP violation caused for example
by the strong sector of the SM or by physics beyond the SM is of major interest in modern
physics. In the first case, the dimensionless θ̄-term, which cannot be computed, is directly

4



1.4 EDM Experiments

connected to the neutron and proton EDM [10]

dθ̄
n = θ̄(−2.9± 0.9)× 10−16 e cm , (1.12)

dθ̄
n = θ̄(1.1± 1.1)× 10−16 e cm . (1.13)

The order of the θ̄-term is expected to be O(1), however the present neutron EDM limits con-
strains it to

θ̄ < 10−10 , (1.14)

which is known as the strong CP problem.

Furthermore, another contribution of the EDM caused by CP violation is generated by loops,
which include hypothetical supersymmetric particles. These quark- and chromo-EDMs are
effectively increasing the limits. Consequently, an EDM measured in current experimental
approaches will be a clear sign of new physics.

1.4 EDM Experiments

The first EDM experiment was performed in 1949, where the idle spin precession frequency
of neutrons in static electromagnetic fields was determined. By aligning the electric field par-
allel or anti-parallel to the quantization axis, the spin starts to precess perpendicular to the
polarization of the particle

ω =
2|µB± dE|

h̄
. (1.15)

The sign indicates the flip of the electric fields. After subtracting the two frequencies the
magnetic term cancels out and the EDM signal yields

d =
∆ωh̄
4E

. (1.16)

This basic measurement idea is used as the general method in neutron beams experiments.
Moreover, the current neutron EDM limit is reached in ultracold experimental setups and
yields [11]

|dn| < 2.9× 10−26 e cm (90% CL) . (1.17)

The limit of the electron EDM is derived from experiments with the paramagnetic atom 205Tl,
whereas the atomic limit is measured on the diamagnetic atom 199Hg

|de| < 1.6× 10−27 e cm (90% CL) , (1.18)

|datom| < 3.1× 10−29 e cm (90% CL) . (1.19)
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Chapter 1 Introduction

1.4.1 Charged Particle Experiment

In the case of charged particles, the experimental principle has to be changed since the particles
are accelerated due to the electromagnetic fields. Therefore, storage rings represent an ideal
starting point, since the particles can be kept circulating for a long time interval.

The generic idea of an experimental setup is shown in Fig. 1.1. A particle is deflected by a
radial electric field. An appropriate field strength keeps the particle on a stable circular orbit.
Additionally, its spin is tilted into the vertical direction. According to the Thomas-BMT equa-
tion this process is proportional to the applied electric field and the electric dipole moment
of the particle. One observes that the highest sensitivity is given if the spin is permanently
aligned with the momentum. Consequently, the spin manipulation in the horizontal plane is
of major interest.

Figure 1.1: Count sums N+
U,D(ϕs) and differences N−U,D(ϕs) of Eq. 4.5 with ϕs ∈ [0, 2π) using the counts

NU(ϕs) and ND(ϕs), shown in Fig. 4.1. The vertical error bars show the statistical uncertainties, the
horizontal bars indicate the bin width.

This thesis is part of a feasibility study to investigate the spin motion in a pure magnetic
storage ring (COSY). This leads to a better understanding of the statistical limitations and the
systematic requirements of an EDM storage ring experiment. It is divided into 7 additional
chapters:

• Chapter 2 elaborates the mathematical basis of the analysis used in this thesis. In addi-
tion, it gives a theoretical foundation of the particle and the spin motion in the electro-
magnetic fields of storage rings.

• Chapter 3 shows the experimental setup and the basic technical elements, which are
required to perform the feasibility studies.

• Chapter 4 discusses the analysis methods for the polarization measurement. In addition,
probability density functions are derived to describe time dependend depolarization ef-
fects and the spin tune drift.

6



1.4 EDM Experiments

• Chapter 5 examines the determination of the polarization amplitude and its systematic
implications.

• Chapter 6 concentrates on the spin tune phase measurement by making use of circular
statistics. It closes with the description of the method of the spin tune determination.

• Chapter 7 shows mainly the results of the beamtime in 2015. Here, general systematic
effects are discussed. In addition, the spin coherence time and the spin tune are invest-
igated.

• Chapter 8 concludes the achievements of this thesis and gives an outlook about its im-
plications.

7





CHAPTER 2

Fundamental Statistic and Accelerator
Concepts

2.1 Statistics

In this thesis the estimation of two relevant observables (spin coherence time and spin tune)
of a polarization experiment at a storage ring is discussed. Therefore, a mathematical model is
derived, which is based on a naive Bayesian approach and yields estimators for the phase and
the amplitude of the polarization vector. The relevant theoretical requirements are discussed
at the beginning of this chapter.

Furthermore, the time dependency of the two observables is described by a statistical model.
For this, the knowledge of the particle and the spin motion are of major interest, which is
characterized in the second part of this chapter.

2.1.1 Central Limit Theorem

The central limit theorem (CLT) is of fundamental importance in the field of statistical the-
ory and applied probability. Suppose a sequence of independent and identically distributed
random variables x1, x2, ..., xn with expectation value E[xi] = µ and variance var[xi] = σ2.
Then the Lindberg-Lévy CLT states, that the difference between the sample average and the

expectation value converges in distribution ( D−→) to a Normal distribution [12]

√
n

((
n

∑
i=1

xi

)
− µ

)
D−→ N(0, σ2) , (2.1)

The remarkable property of the CLT consists in the fact, that in Eq. 2.1 no assumption is made
about the shape of the distribution of the individual xi.

2.1.2 Bayes Theorem

The Bayes theorem is another fundamental law in probability theory. Mathematically it can be
written as [13]

P(A|B) = P(B|A)P(A)

P(B)
, (2.2)

9



Chapter 2 Fundamental Statistic and Accelerator Concepts

where P(A) and P(B) are the probabilities that A respectively B is observed. The conditional
probability P(A|B) represents the probability of observing A given that B is true and vice
versa for P(B|A). In terms of Bayesian interpretation, the probability corresponds to a degree
of belief, which is linked to a state before and after taking into account the evidence. In this
sense P(A) is called the prior, which represents the initial degree of belief in A, whereas P(A|B)
denotes the posterior, which corresponds to the degree of belief taking into account B. The ratio
P(B|A)/P(B) is considered as the support B provides for A.

2.1.3 Estimator

A statistic estimator corresponds to a criterion for determining an estimate of a quantity based
on observed data. In the case of a fixed parameter θ, which needs to be estimated, the estimator
is given by a function, which connects the sample space to a set of sample estimates. In general,
it is denoted by a hat above the symbol θ̂. If a random variable X corresponds to the observed
data, the estimator becomes a function of that random variable itself θ̂(X). The estimate of a
particular data set (x = X) is given by θ̂(x), which is a fixed value.

Mean Squared Error, Variance and Bias

Three important quantities, i.e. definitions, are related to a statistic estimator. The mean
squared error (MSE) is given by the expectation value E[] of the squared errors

MSE(θ̂) = E[(θ̂(x)− θ)2] . (2.3)

It corresponds to a measure how far, on average, the estimates θ̂(x) are from a single true
parameter θ.

The variance is simply given by

var(θ̂) = E[(θ̂(x)− E(θ̂))2] , (2.4)

which indicates how far the estimates are from the expected value of the estimates.

Finally, the bias is defined as B(θ̂) = E(θ̂)− θ, which corresponds to the distance between
the average of the estimates and the single true parameter. The quantities are related by

MSE(θ̂) = var(θ̂) + (B(θ̂))2 . (2.5)

If B(θ̂) = 0 the estimator θ̂ is called an unbiased estimator of θ. It is important to note, that the
bias is a property of the estimator and not of the estimates.

The theory of statistics provides four relevant properties of an estimator, which are defined
for a given set of independent and identically distributed random variables.

10



2.1 Statistics

Consistency

An estimator tn of θ is said to be consistent if it converges in probability to the true value of
the parameter [14]

plim
n→∞

tn = θ , (2.6)

where n denotes the number of observations of a given sample x = (x1, ..., xn). In fact, this
behavior is connected to the limit theorems.

Asymptotic Normality

A consistent estimator is asymptotically normal if its distribution around the true parameter θ

represents a Normal distribution with a standard deviation decreasing proportional to 1/
√

n

for an increasing sample size n. Let the symbol D−→ denotes the convergence in distribution,
then tn is asymptotically normal if

√
n(tn − θ)

D−→ N(0, V) , (2.7)

where V or V/n are called the asymptotic variance. The distribution of tn converges weakly
to a Dirac distribution for n→ ∞, which corresponds to the central limit theorems.

Efficiency

Efficiency represents a measure of the goodness of an estimator with respect to an experi-
mental design [15] or to a testing of a hypothesis [16]. Loosely speaking, a more efficient
unbiased estimator tn needs less observations n to achieve a given performance. It is conveni-
ent to define a relative efficiency, which is given by the ratio of two efficiencies obtained for
different procedures. The numerator of the ratio is often chosen as the notional best efficiency
of the estimator, which corresponds to the Cramér-Rao bound. Thus, one gets

e(t) =
1
I(θ)

var(t)
≤ 1 , (2.8)

where I(θ) denotes the Fisher information of the sample, which is defined in the upcoming
section. An estimator is called efficient, if the ratio of the efficiency becomes unity e(tn) = 1.
Additionally, this case corresponds to the minimum variance unbiased estimator (MVUE).
Note that a MVUE estimator is not necessarily efficient since the minimum variance does not
mean equality holds on the Cramér-Rao inequality.

Robustness

An estimator is called robust, if the existence of outliers or of other small deviations from
model assumptions provide more or less the same result [17]. Hence, a breakdown point is

11



Chapter 2 Fundamental Statistic and Accelerator Concepts

defined as the proportion of incorrect observations an estimator can handle until its result
becomes incorrect.

2.1.4 Fisher Information and Cramer-Rao Bound

The Fisher information indicates the amount of information, that a measurable random vari-
able X carries with respect to an unknown parameter θ upon the probability of X depends.
The likelihood function for θ, i.e. the probability function for X, is given by f (X; θ) and is
called the probability density function pdf (or probability mass function) of the random vari-
able X conditional on the value of θ. The score function is defined as the partial derivative
with respect to θ of the natural logarithm of the likelihood function and its expectation value
(first moment) is 0 [18]

E
[

∂

∂θ
log( f (X; θ))

∣∣∣∣θ] = ∫ ∂
∂θ f (x; θ)

f (x; θ)
f (x; θ)dx =

∂

∂θ

∫
f (x; θ)dx = 0 . (2.9)

The interchange of the differential operators is valid as long as the bounds of the space of the
random variable are independent of the parameter. The second moment of the score function
represents the Fisher information and it is given by [18]

I(θ) = E
[

∂

∂θ
log( f (X; θ))2

∣∣∣∣θ] = ∫ (
∂

∂θ
log f (x; θ)

)2

f (x; θ)dx , (2.10)

I(θ) = −E
[

∂2

∂θ2 log( f (X; θ))

∣∣∣∣θ] , if E

[
∂2

∂θ2 log( f (X; θ))

f (X; θ)

∣∣∣∣θ
]
= 0 . (2.11)

Intuitively the Fisher information can be understood as the variability of the gradient of the
score function ∂

∂θ log( f (X; θ)). Probability density functions, for which the score function has
high variability, provide an easier estimation of the parameter and vice versa.

In case of a multivariate parameter space the Fisher information is written in the matrix
form

(I(θ))ij = E
[(

∂

∂θi
log( f (X; θ))

)(
∂

∂θj
log( f (X; θ))

)∣∣∣∣θ]
= E

[(
∂2

∂θi∂θj
log( f (X; θ))

)∣∣∣∣θ] , (2.12)

where the latter transformation is valid, if the parameters are independent of each other.

The Cramér-Rao (CRB) bound defines the minimum variance of an estimator and it is given
by the inverse of the Fisher information [19]. This can easily be shown for an unbiased estim-
ator by the mathematical expression of its expectation value

E
[
(θ̂(X)− θ)

∣∣∣∣θ] = ∂

∂θ

∫
(θ̂(x)− θ) f (x; θ)dx =

∫
(θ̂ − θ)

∂

∂θ
f dx−

∫
f dx = 0 . (2.13)

12
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The latter integral yields 1 and with the substitution ∂ f /∂θ = f ∂ log f /∂θ one gets

1 =
∫
(θ̂ − θ) f

∂ log f
∂θ

dx =
∫ (

(θ̂ − θ)
√

f
)(√

f
∂ log f

∂θ

)
dx . (2.14)

The Cauchy-Schwartz inequality leads to the required statement after squaring down the up-
per equation [∫

(θ̂ − θ)2 f dx
] [∫ (

∂ log f
∂θ

)2

f dx

]
≥ 1 , (2.15)

where the right hand side corresponds to the Fisher information and the left-most factor de-
notes the MSE respectively the variance of the unbiased estimator θ̂. Thus, the precision to
estimate θ is limited by the Fisher information of the likelihood function

var(θ̂) ≥ 1
I(θ) . (2.16)

In the case of multiple parameters θθθ = [θ1, ..., θn]
T ∈ Rd, the Cramér-Rao bound corresponds

to the covariance matrix of the estimator θ̂̂θ̂θ =
[
θ̂1, ..., θ̂n

]T

cov(θ̂̂θ̂θ) ≥ ∂ψ(θθθ)

∂θθθ
I(θθθ)−1

(
∂ψ(θθθ)

∂θθθ

)T

, (2.17)

where ψ(θθθ) = E[θ̂̂θ̂θ] is the expectation vector of the estimator and ∂ψ(θθθ)/∂θθθ denotes the Jac-
obian matrix with its elements ∂ψi(θθθ)/∂θj. In the case of an unbiased estimator (∂ψ(θθθ)/∂θθθ=0),
the CRB reduces to

cov(θ̂̂θ̂θ) ≥ I(θθθ)−1 . (2.18)

2.1.5 Maximum Likelihood Estimator

The method of maximum likelihood is one of the most discussed and outlined estimation
methods in statistical theory. The principle is based on assuming the observations as fixed
parameters, whereas the model dependent parameter θ is allowed to vary freely as a variable
of the likelihood function. The true value of the parameter is given by θ0 and it is a priori
unknown. Thus, the objective is to find an estimator θ̂, which is as close as possible to the true
value.

For a given set of n independent and identically distributed observations x1, x2, ..., xn the
joint density function is specified

f (x1, x2, ..., xn|θ) = f (x1|θ)× f (x2|θ)× · · · × f (xn|θ) , (2.19)

13
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in order to obtain the likelihood [20]

L(θ; x1, x2, ..., xn) = f (x1, x2, ..., xn|θ) = f (x1|θ)× f (x2|θ)× · · · × f (xn|θ) (2.20)

=
n

∏
i=1

f (xi|θ) . (2.21)

Note that x1, x2, ..., xn are the fixed parameters of L, which is a function of the parameter θ

or even a vector of parameters θθθ. In order to simplify subsequent calculations, the product is
transformed into a sum by taking the natural logarithm

logL (θ; x1, x2, ..., xn) =
n

∑
i=1

log f (xi|θ) . (2.22)

The maximum likelihood estimator (MLE) corresponds to the value which maximizes the like-
lihood logL

θ̂ML = arg
{

max
θ

(logL)
}

. (2.23)

Under some conditions, which are discussed and specified in [20], the MLE is consistent and
asymptotically normal.

2.1.6 Directional Statistics

The theory of directional statistics deals with probability density functions, which are defined
in a periodic interval (in the case of a cirlce it is 2π). More generally spoken, it describes a
distribution of unit vectors in Rn and of axes through the origin in Rn or rotations in Rn. In
this thesis, it will be applied with respect to angular data, where the angles 0 ◦ and 360 ◦ are
identical.

Suppose a probability density function p(x) on the line. Furthermore, it is wrapped on the
line around the circumference of a unit circle. Then, the random variable is given by

ϕ = xw = x mod 2π ∈ (−π, π] . (2.24)

The wrapped probability density function yields [21]

pw(ϕ) =
∞

∑
k=−∞

p(ϕ + 2πk) =
1

2π

∞

∑
n=−∞

φ(n)e−inϕ , (2.25)

where φ(n) denotes the characteristic function of the unwrapped distribution at the integer
value n. Thus, the Fourier coefficients of the Fourier transform of the wrapped distribution
corresponds to the Fourier coefficients of the Fourier series obtained for the unwrapped dis-
tribution at integer values.

For a circular random variable defined in the interval (−π, π], the m-th vector moment of
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the circular distribution is specified as [22]

mn = E(zn) =
∫ π

−π
p(ϕ)dϕ = φ(m) . (2.26)

Hence, the first moment is called the mean resultant vector ρ = m1 and its length is given by
R = |m1|. The mean angle yields ϕµ = arg(m1). Note, that the m-th moment is equal to the
characteristic function of the unwrapped distribution for integer arguments. Thus, if φ(n) is
known, the moments of the wrapped distribution can easily be calculated.
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2.2 Beam and Spin Dynamics in Storage Rings

A storage ring experiment which aims for a very precise determination of the electric dipole
moment of charged particles requires a detailed knowledge of the spin motion in electromag-
netic fields. Consequently, it is of fundamental interest to understand the coupling between
the beam and the spin motion. At the beginning of this section, the beam dynamics are dis-
cussed. The generic description of the particle motion is based on the Lorentz force

FL = q
(
~E +~v× ~B

)
, (2.27)

where q is the particle charge, ~E and ~B denotes the electric respectively the magnetic field and
~v represents the velocity of the particle. Subsequently, an introduction of the formalism of
polarized particles is given. In addition, the equation of motion of the spin is derived and
discussed.

2.2.1 Coordinate System and Phase Space

The equation of motion of the particles, which form an ensemble, are parametrized by their
spatial coordinates~r and their momenta ~p. Consequently, the trajectories of the particles are
described by a six-dimensional phase space. Since the storage ring is composed of deflectors
with static electromagnetic fields, the particle motion is time-independent and the arc length s
is chosen as the independent variable.

In addition, it is more convenient to define a Cartesian coordinate system based on curvi-
linear coordinates, whose origin moves exactly on the reference orbit~rref with the reference
momentum ~pref. In the case of a planar ring, the basis vectors~es and~ex span a plane which is
defined by its orthogonal vector~ey = ~es ×~ex. Note that~es is parallel to the momentum vector
of the reference orbit ~pref. Consequently, the coordinate transformation from si to s f , which is
shown in Fig. 2.1, is described by a rotation

~ex, f = cos(θ)~ex,i + sin(θ)~es,i , (2.28)

~ey, f = ~ey,i , (2.29)

~ez, f = − sin(θ)~ex,i + sin(θ)~es,i . (2.30)

The angle θ is given by

θ =
∫ s f

si

ds
ρ(s)

=
∫ s f

si

κ(s)ds , (2.31)

where ρ(s) is the bending radius and κ(s) denotes the curvature.
The transverse motion can be described by the projections of the position x and y respect-

ively of the momenta px and py on~ex and~ey with respect to the reference particle~r−~rref and
~p − ~pref. In addition, the momenta are normalized by the reference momentum p0 = |~pref|
yielding a = px/p0 and b = py/p0. Thus, the transverse motion is given by four coordinates.
The longitudinal phase-space of a particle can be specified by its relative momentum deviation
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θ

si → sf

~ey,i

~es,i

~ex,i

~ey,f

~es,f

~ex,f

Figure 2.1: Sketch of a co-moved Cartesian coordinate system, which is used to describe the particle
motions in a planar accelerator. Its coordinates are called curvilinear.

from the reference particle p0

δ =
p− p0

p0
, (2.32)

or in terms of the reference energy K0

δK =
K− K0

K0
. (2.33)

The corresponding space-like variables are given by

l = −v0∆t and lK = −v0
γ0

1 + γ0
(t− t0) , (2.34)

where v0 denotes the velocity and γ0 the Lorentz factor of the reference particle. Consequently,
the six dimensional phase space yields

~z = (x, a, y, b, lK, δK)
T . (2.35)

Additionally, the coordinate evolution can be expressed in terms of the matrix formalism by a
transfer map of the system

~z(s f ) =M(s f , si)(~z(si)) ≈ M̂(s f , si) ·~z(si) . (2.36)

The hat indicates the first order Taylor expansion ofM, which leads to a simple matrix multi-
plication by the transfer matrix M̂ with the phase space vector.
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2.2.2 Equations of Motion

One way of deriving the equations of motion is given by using the Lagrangian and Hamilto-
nian in curvilinear coordinates. In the following, they are determined based on the transform-
ation of Lorentz force law Eq. 2.27

d~r
dt

= ~v , (2.37)

d~p
dt

= FL = q
(
~E +~v× ~B

)
, (2.38)

into curvilinear coordinates with s as the independent variable. In this case, the derivative of
the path length L with respect to s is given by

L′ =
dL
ds

= 1 + κ(s)x , (2.39)

where κ corresponds to the curvature of the trajectory. Based on that the two equations of
transverse motion yield

x′ =
dx
ds

=
dL
ds

dx
dL

= (1 + κ(s))
px

ps
, (2.40)

y′ =
dy
ds

=
dL
ds

dy
dL

= (1 + κ(s))
py

ps
. (2.41)

In order to describe the longitudinal phase space the energy change due to electric fields

qV = −
∫

~E(x, y, s, t) ·~vdt , (2.42)

has to be taken into account. In addition, a new variable

η = 1− γ = η0(1 + δK)−
qV
mc2 , (2.43)

is introduced, which denotes the ratio of kinetic energy to the energy equivalent of the rest
mass. Consequently, the derivative of lK 2.34 with respect to s yields

l′K =
dlK

ds
= −v0

γ0

1 + γ0
(t′ − t′0) = −

1 + η0

2 + η0

[
(1 + κ(s)x)

1 + η

1 + η0

p0

ps
− 1
]

, (2.44)

where the time derivative

t′ =
dt
ds

=
1
v

√
(x′)2 + (y′)2 + (L′)2 =

1
v
(1 + κ(s)x)

p
ps

, (2.45)

is used. The momentum-like variables are determined in a similar way. Here, only the solu-
tions are given, due to reasons of simplicity. The exact derivations can be found for example
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in [23].

a′ =
da
ds

= (1 + κ(s))

[
1 + η

1 + η0

~Ep2
0

χe,0 ps
+

Bs p0

χm,0 ps
− By

χm,0

]
+ κ(s)

p0

ps
, (2.46)

b′ =
db
ds

= (1 + κ(s))

[
1 + η

1 + η0

~Ep2
0

χe,0 ps
+

Bs p0

χm,0 ps
− Bx

χm,0

]
, (2.47)

where χe,0 and χm,0 are the electric respectively magnetic rigidity

χe,0 =
pv
q

and χm,0 =
p
q

. (2.48)

The energy difference is independent of the position in the ring, thus its derivative yields

dδK

ds
= δ′K = 0 . (2.49)

2.2.3 Transverse and Longitudinal Motion

In this section the dynamic of the particle bunch in a pure magnetic ring is discussed in linear
order. Consequently, the horizontal and vertical motion decouples, which simplifies Eq. 2.40
and Eq. 2.46 to

x′ = a , (2.50)

a = (1 + κ(s))− By

χm,0
+ κ(s)

(
1 +

1 + η0

2 + η0
δK

)
= −(κ(s)2 − k)x + κ(s)δ , (2.51)

where δK is expressed by δ, since it is more convenient in the case of only magnetic fields.
Latter can be written in curvilinear coordinates by expanding the normal components in terms
of normalized fields

Bx(x, y)
χm,0

= 0− k · y + k2 · xy + ... , (2.52)

By(x, y)
χm,0

= κ(s)− k · y + k2 · (x2 − y2) + ... , (2.53)

where k and k2 represents the quadrupole and the sextupole strength, respectively. In order
to describe the transversal motion Eq. 2.50 and Eq. 2.51 are combined to an inhomogeneous
differential equation of second order

horizontal: κ(s)δ = x′′ + (κ(s)2 − k(s))x , (2.54)

vertical: 0 = y′′ + k(s)y . (2.55)

In case of a horizontal focusing (k ≥ 0) the beam is simultaneously defocused in the vertical
plane. The horizontal DGL becomes homogeneous for a vanishing momentum deviation δ = 0
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and it transforms into an equation of Hill’s type. Its solution is similar to a harmonic oscillator
except of the term which depends on the periodic variable s

K(s + C0) = K(s) with K(s) = κ(s)2 − k(s) , (2.56)

where C0 denotes the length of the storage ring. The solution reads

x(s) =
√

εβ(s) cos(Ψ(s) + Ψ0) , (2.57)

where β(s) and Ψ(s) denote the betatron function respectively the betatron phase. The para-
meter ε is called emittance and it will be discussed in the following section. Inserting the
solution into Eq. 2.54 leads to

1
2

β(s)β′′(s)− 1
4
(β′(s))2 + K(s)β(s) = 1 , and Ψ(s) =

∫ s

s0

1
β(s̃)

ds̃ . (2.58)

Taking into account just linear order effects the longitudinal motion in a pure magnetic storage
ring can be derived by considering Eq. 2.44 and Eq. 2.49

l′K = −κ(s)
1 + η0

2 + η0
x +

1
(2 + η0)2 δK , (2.59)

δ′K = 0. (2.60)

where Eq. 2.59 describes the change of the orbit length given a radial offset and a momentum
deviation. A new quantity is introduced, which describes the relation between the momentum
deviation and the radial offset x = D · δ. It is called the dispersion. With the transformation
δK = (2 + η0)/(1 + η0)δ one gets

l′K =

[
−κ(s)

1 + η0

2 + η0
D +

1
(2 + η0)2

2 + η0

1 + η0

]
δ . (2.61)

2.2.4 Beam Emittance and Betatron Tune

By making use of Eq.2.57 and its first derivative and taking into account only conservative
forces the betatron phase Ψ drops out, which leads to the ellipse equation

γ(s) = x2(s) + 2α(s)x(s)x′(s) + β(s)x′(s) = εCS = const. , (2.62)

where the area of the ellipse F = πεCS is time invariant. Thus, the parameter εCS is called
the Courant-Snyder-Invariant and it reflects the Liouville theorem, which states that the six-
dimensional phase space is conserved. This also holds for the individual phase spaces in the
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x

x′

x′max =
√
εγ

xmax =
√
εβ

x0 =
√

ε
γ

x′0 =
√

ε
β

Figure 2.2: Transverse linear particle motion specified by a phase space ellipse. The zero crossings and
the extrema are expressed by the optical functions of the investigated particle

case of a vanishing coupling between them. The parameters

α(s) = −β′(s)
2

, (2.63)

γ(s) =
1 + α2(s)

β(s)
, (2.64)

are called the optical functions or Twiss parameters. They describe the emittance of a single
particle with position x and angle x′ at a particular location s. An example of a linear particle
motion expressed by a phase space ellipse is given in Fig. 2.2.

In the case of a particle ensemble of N particles the particle distribution can often be estim-
ated by a Gaussian function

ρ(x, x′) = N · exp
(
−σ22x2 − 2σ12xx′ + σ11x′2

2ε1σ
x

)
, (2.65)

where the beam matrix is given by σ̂x

σ̂x =

(
σ11 σ12

σ12 σ22

)
=

(
Var(x) Cov(x, x′)

Cov(x, x′) Var(x′)

)
, (2.66)

which is defined by the phase space ellipse of multiple particles with different Courant-Snyder-
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Invariants

σ̂x =
(

x x′
)

σ̂x

(
x
x′

)
= 1 . (2.67)

The parameter ε1σ
x in Eq. 2.65 is called the r.m.s beam emittance. That is 39.3% of the particles

are localized in the phase space ellipse specified by ε1σ
x .

ε1σ
x = det(σ̂x) =

√
σ11σ22 − σ2

12 . (2.68)

In the case of acceleration or deceleration, the r.m.s. beam emittance varies, which is called
adiabatic damping. Thus, a normalized emittance is defined

εN = βγε , (2.69)

where β and γ denote the relativistic Lorentz parameters.
An additional important quantity is the betatron tune, which describes the phase advance

of the particle per turn divided by 2π

Q =
µ

2π
. (2.70)

The phase advance depends on the circumference of the accelerator C and it is given by

µ(C) =
∫ s+C

s

ds̃
β(s̃)

. (2.71)

Accordingly, the transfer matrix can be expressed by

M̂ =

(
cos(µ) + α sin(µ) β sin(µ)
−γ sin(µ) cos(µ)− α sin(µ)

)
. (2.72)

In the case of no coupling and taking into Liouville’s theorem, the two-dimensional phase
space volume is conserved and the eigenvalues of the matrix equal unity. In order to provide
stable solutions they have to be complex, which yields to

λ1,2 =

∣∣∣∣ cos(µ)±
√
(cos µ)2 − 1

∣∣∣∣ = 1 , (2.73)

→ λ1,2 = e±iµ = e±i2πQ . (2.74)

2.2.5 Dispersion and Chromaticity

The solution of the inhomogeneous differential equation, which describes the transverse particle
motion, can be expressed by a full set of homogeneous solution and one particular solution of
the inhomogeneous partial

xg(s) = x(s) + xD(s) . (2.75)
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For a magnetic ring the latter (dispersive) term corresponds to the momentum deviation of a
particle

xD(s) = D(s)δ , (2.76)

where D(s) is called the dispersion function, which is periodic and its solution is given by

D(s) =
√

β(s)
2 sin( µ

2 )

∫ s+C

s
κ(s̃)

√
β(s̃) cos

(
Ψ(s̃)−Ψ(s)− µ

2

)
ds̃ . (2.77)

In addition, the momentum-depending path-length change of the particle with respect to
the reference orbit C0 can be described by the momentum compaction factor αp

∆C
C0

= αpδ = αp
∆p
p

. (2.78)

Thus, the relation between the dispersion and momentum compaction factor is given by

αp =
1

C0

∫ s+C0

s
D(s̃)κ(s̃)ds̃ . (2.79)

The dispersion depends on the curvature κ(s) of the particle and it is based on the varying
bending powers of the main dipoles for particles with different momenta.

Another momentum depending effect is the chromaticity, which takes into account the
momentum-depending focusing strength of the focusing elements in the ring. In fact, the
quadrupole strength are changed by

k(p) = − q
p

∂By

∂x
= − q

p0

∂By

∂x
1

1 + δ
≈ k0(1− δ) . (2.80)

This induces a tune change and the so called natural chromaticity is given by Q′n

∆Qquad = Q′n · δ± 1
4π

∮
β(s̃)κ(s̃)ds̃ · δ , (2.81)

where the plus and the minus sign correspond to the vertical and radial motion, respectively.
In order to compensate this tune changes sextupole magnets can be used, which add an addi-
tional tune variation

∆Qsext = Q′sext · δ = ± 1
4π

∮
β(s̃)k2(s̃)D(s̃)ds̃ · δ . (2.82)

Note that two sextupole families are required in order to correct chromaticities in both planes,
where they act only in the dispersive regions. Since the curvature in the vertical direction is
relatively small in a planar ring, the vertical dispersion almost vanishes. A definition of the
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chromaticity is given by the relative tune change

ξ =
Q′

Q
. (2.83)

2.2.6 Spin and Polarization Formalism

The theoretical description of the beam polarization is based on the spin formalism. In the
following, latter is discussed for the spin- 1

2 - and spin-1-particles.

Spin-1/2-particles

In order to describe the state of a single spin- 1
2 -particle, the two component Pauli spinor is

used

ψ =

(
u
d

)
, (2.84)

where u and d denote the two complex amplitudes, which satisfy the normalization |u|2 +
|d|2 = 1. Assuming a Cartesian coordinate system (~e1, ~e2, ~e3), the two components of the spinor
correspond to the two different spin states along the quantization axis ~e3. In the case of a spin-
1
2 -particle the associated hermitian operators are given by the Pauli spin operators

~̂S =
h̄
2
~σ , (2.85)

where h̄ denotes Planck’s constant divided by 2π. The four matrices

σ0 =

(
1 0
0 1

)
, σ0 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.86)

form a complete basis of the hermitian 2× 2-matrices. The expectation value of the operator
Â is equivalent to the observable

< Â >=< φ|Â|ψ >= ψ† Âψ , (2.87)

where the density matrix yields

ρ = |ψ >< ψ| =
(|u|2 ud?

u?d |d|2
)

. (2.88)

The star indicates the complex conjugated of the variable. Consequently, the expectation value
can be expressed by the trace of the product of the density matrix and the corresponding
operator

< Â >= TrρÂ , (2.89)
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which simplifies to

~S =< ~̂S >
h̄
2

Trρ~σ =
h̄
2

 2Re(ud?)
Im(ud?)
|u|2 − |d|2

 (2.90)

for a single particle

In a storage ring experiment, more than 109 particles are usually investigated. Thus, the
expectation value of the spin observables for the whole ensemble is measured, which yields
the density matrix

ρ =
1
N


N
∑

i=1
|u(i)|2

N
∑

i=1
u(i)d(i)?

N
∑

i=1
u(i)?d(i)

N
∑

i=1
|d(i)|2

 . (2.91)

It can be written in terms of the Pauli spin operators

ρ =
1
2

(
σ0 + ~P~σ

)
, (2.92)

where ~P denotes the polarization vector of the particle ensemble, which is given by the sum
of the spin operators

~P =
1
N

N

∑
i=1

~Si . (2.93)

Consequently, the vertical polarization along the quantization axis is specified by

Pv =
Nm= 1

2 − Nm=− 1
2

Nm= 1
2 + Nm=− 1

2
, (2.94)

where Nm= 1
2 and Nm=− 1

2 denote the number of particles in the particular quantization state.

Spin-1-particles

The formalism of a spin-1-particle takes into account a third component of the spinor in order
to describe the state of an individual particle

ψ =

a1

a2

a3

 , (2.95)
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where the states along the quantization axis are given by m = −1, 0, 1. The basic spin operators
yield

Ŝ1 =
h̄√
2

0 1 0
1 0 1
0 1 0

 , Ŝ2 =
h̄√
2

0 −i 0
i 0 −i
0 i 0

 , Ŝ3 = h̄

1 0 0
0 0 0
0 0 −1

 . (2.96)

Consequently, nine independent hermitian matrices are required to characterize a spin-1-
system. Therefore, a second-rank tensor is constructed by the outer product of the spin oper-
ators. In order to express the nine operators exclusively in terms of Ŝ1, Ŝ2, Ŝ3 and the identity
matrix I, the tensor is split into a symmetric and an asymmetric contribution. Subsequently,
in standard Cartesian notation, a set of ten operators is constructed by

Ŝij =
3
2
(
ŜiŜj + ŜjŜi

)
− 2Iδij , i, j ∈ 1, 2, 3 , (2.97)

where δij denotes the Kronecker delta. Nine operators are independent, because of the de-
pendency relation

Ŝ11 + Ŝ22 + Ŝ33 = 0 . (2.98)

The density matrix for a spin-1-particle ensemble can be written as

ρ =
1
3

[
I +

3
2

3

∑
i=1

PiSi +
1
3

3

∑
i=1

3

∑
j=1

PijSij

]
, with Pij = Pji , (2.99)

where Pi and Pij specify the polarization states. In the case of an axial symmetry about the
quantization axis, the density can be expressed by

ρ =
1
3

[
I +

3
2

P3Ŝ3 +
1
2

P33Ŝ33

]
. (2.100)

In Cartesian notation the vector PV and tensor PT polarization yield

PV =
Nm=1 − Nm=−1

Nm=1 + Nm=0 + Nm=−1 , (2.101)

PT =
Nm=1 + Nm=−1 − 2Nm=0

Nm=1 + Nm=0 + Nm=−1 . (2.102)

26



2.2 Beam and Spin Dynamics in Storage Rings

2.2.7 Thomas-BMT Equation

The non-relativistic Hamiltonian of the spin interaction in electromagnetic fields is given by

H = −~µ · ~B− ~d · ~E , (2.103)

where µ and d denote the magnetic and electric dipole moment, respectively. They are funda-
mental properties of the particle and are aligned with the spin axis

~µ = g
q

2m
~S , (2.104)

~d = ηEDM
q

2mc
~S . (2.105)

Here, m and q are the mass and the charge of the particle, respectively. The speed of light is
given by c and ~S denotes the spin. The two dimensionless quantities g and ηEDM are called the
g-factor and the η-parameter.

particle spin in h̄ rest energy in MeV |~µ| in µB or µN g

proton 1
2 938.2720813(58) 2.7928473508(85) 5.585695

deuteron 1 1 875.612928(12) 0.8574382311(48) 1.714025

electron 1
2 0.5109989461(31) 1.00115965218091(36) 2.002319

muon 1
2 105.6583745(24) 4.84197048(11)× 10−3 2.002332

Table 2.1: Magnetic properties of the proton, deuteron, electron and muon.

In tabular 2.1 the magnetic properties of the proton, deuteron, electron, and muon are
presented. In addition, one finds the rest mass and the spin in terms of the Planck constant.
All quantities are determined by experimental measurements, whereas the magnetic dipole
moment is expressed in terms of the Bohr magneton µB (leptons) or the nuclear magneton µN

(hadrons).

µB =
eh

mec
= 5.7883818012(26)× 10−5 eV/T , (2.106)

µN =
eh

mNc
= 3.1524512550(15)× 10−8 eV/T . (2.107)

The anomalous gyromagnetic g-factor is defined as

G = a =
g− 2

2
, (2.108)

where the variable G is commonly used for the hadron and a for lepton sector. In the non-
relativistic case, it yields a = 0. However, corrections based on higher orders provide a small
deviation from this. In the work of [24] a relative precision of 10−9 is realized for the Deuteron.

The according non-relativistic equation of motion for the spin vector ~S in electric ~E and
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magnetic ~B fields reads

d~S
dt

= ~Ω× ~S = ~µ× ~B + ~d× ~E . (2.109)

Consequently, the spin starts to precess with the angular frequency |~Ω| perpendicular to ~Ω in
the presence of electromagnetic fields. Note, that in Eq 2.109 the fields are defined in the rest
frame of the particle. However, in an accelerator, the fields are mostly known in the curvilinear
laboratory reference frame, which leads to the Thomas-BMT equation. The latter describes the
spin motion in the relativistic case. A generalized form, which also takes into account the
electric dipole moment, is given by

d~S
dt

= ~ΩMDM × ~S + ~ΩEDM × ~S , (2.110)

~ΩMDM = − q
m

[(
G +

1
γ

)
~B− Gγ

γ + 1

(
~β · ~B

)
~β−

(
G +

1
1 + γ

)
~β×

~E
c

]
, (2.111)

~ΩEDM = − q
mc

ηEDM

2

[
~E− γ

1 + γ

(
~β · ~E

)
~β + c~β× ~B

]
, (2.112)

where the electric and magnetic fields are defined in the curvilinear laboratory reference frame
and the spin vector in the rest frame of the particle.

2.2.8 Vertical and Horizontal Polarization

In the following, the scattering frame as a Cartesian system with ~ez pointing along the mo-
mentum of the deuteron beam is defined. The unit vector~ey points along the vector specified
by the cross product of the momentum of the incident and scattered deuteron ~pinc × ~pout. Fi-
nally, the ~ex vector completes a right-handed coordinate frame. The differential cross section
for the elastic scattering of polarized deuterons onto an unpolarized target in units of the un-
polarized differential cross section σ0 can be written as [25]

σ/σ0 = 1 +
3
2

PY Ad
y +

2
3

PXZ Axz

+
1
3
(

PXX Axx + PYY Ayy + PZZ Azz
)

, (2.113)

where PI denote the components of the deuteron vector polarization and the PIK the Cartesian
moments of the deuteron tensor polarization given the indices (I, K = X, Y, Z). Ad

y and Ad
ik

are the vector and the tensor analyzing power of the deuteron, respectively. All observables
depend on the scattering angle θ(ϑ, φ). With the relations

PXX + PYY + PZZ = Axx + Ayy + Azz = 0 (2.114)

one defines ∆A ≡ Axx − Ayy to eliminate Axx + Ayy. Further, one can use an additional right-
handed coordinate system that is fixed in space, where the z-axis points in beam direction,
~ey upwards, and ~ex sideways. By measuring the azimuth φ of the outgoing deuteron clock-
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2.2 Beam and Spin Dynamics in Storage Rings

wise from the positive x-axis looking in the beam direction the scattering frame is given by a
rotation of the fixed frame by φ.

The polarization of a deuteron beam maintained by the atomic source is specified by the vec-
tor polarization Pξ = m+ −m− and the tensor polarization Pξξ = 1− 3m0. Here, mx denotes
the fractional populations of the magnetic sub-states x = −1, 0, 1 with respect to the quantiza-
tion axis Ŝ = (Θ, Φ). The quantity Ŝ is called the spin alignment axis and provides symmetry
under rotation. In the fixed frame the occurring components of the vector polarization and
tensor moments in Eq. 2.113 are given by

PY = Pξ sin Θ sin(Φ− φ) ,

PXZ =
3
2

Pξξ sin Θ cos Θ cos(Φ− φ) ,

P∆ = PXX − PYY =
3
2

Pξξ sin2 Θ cos 2(Φ− φ) ,

PZZ =
1
2

Pξξ

(
3 cos2 Θ− 1

)
. (2.115)

Consequently, the differential cross section as a function of Pξ , Pξξ , Θ, Φ and φ yields

σ/σ0 = 1 +
3
2

Pξ Ad
y sin Θ sin(Φ− φ)

+
1
2

Pξξ Axz sin(2Θ) cos(Φ− φ)

+
1
8

Pξξ A∆ [1− cos(2Θ)] cos (2(Φ− φ))

+
1
8

Pξξ Azz [3 cos(2Θ) + 1] . (2.116)

Vertical Polarization

In the case of a vertically polarized beam, the spin alignment axis becomes Ŝ =
(

π
2 , 0
)
. In-

serting this values in the equation of the differential cross section of a polarized beam on a
unpolarized target Eq. 2.116 leads to

σver/σ0 = 1

+
3
2

Pξ Ad
y cos φ

+
1
4

Pξξ Ad
∆ cos 2φ

− 1
4

Pξξ Ad
zz . (2.117)
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Horizontal Polarization

For a beam polarization aligned to the vertical axis of the fixed frame the spin alignment axis
becomes Ŝ =

(
π
2 , π

2

)
and the differential cross section is given by

σ/σ0 = 1 +
3
2

Pξ Ad
y cos φ

+
1
4

Pξξ A∆ cos 2φ

− 1
4

Pξξ Azz . (2.118)

Θ(t) = Ωst , (2.119)

where Ωs = 2π frevνs denotes the angular frequency of the horizontal spin precession for a
reference particle in an ideal ring. The azimuthal angle of the spin alignment axis for vanishing
imperfections is Φ = 0. This results in Ŝ = (Ωst, 0) and the following differential cross section

σ/σ0 = 1 −3
2

Pξ Ad
y sin Ωst sin(φ)

+
1
2

Pξξ Axz sin(2Ωst) cos(φ)

− 1
8

Pξξ A∆ [1− cos(2Ωst)] cos (2φ))

+
1
8

Pξξ Azz [3 cos(2Ωst) + 1] . (2.120)
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CHAPTER 3

Experimental Setup and Data Acquisition

The results, which are discussed in this work, are based on experimental data provided by
the COler SYnchrotron (COSY) facility at the Forschungszentrum Jülich. A sketch of the ac-
celerator is shown in Fig. 3.1. It provides a beam momentum range from 0.3 GeV to 3.7 GeV
and its circumference is 184.3 m. The unique feature of the apparatus is the ability to store
and accelerate polarized protons and deuterons. In addition, several devices are assembled
in order to manipulate the polarization of the particle bunch. Thus, COSY represents an ideal
machine to study systematic effects on the road to a final electric dipole moment experiment.
At the beginning of this chapter, the individual components and devices of the storage ring
are introduced. After that, the principle of the data processing is discussed.

Figure 3.1: Sketch of the COSY facility
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Initially, the atomic source provides vector or tensor polarized H– or D– [26]. After pre-
accelerating the particles in the cyclotron JULIC they pass the low-energy polarimeter for first
diagnostics. The injection of the particle ensemble into the storage ring takes place via a charge
exchanging stripper carbon foil. The RF-cavity specifies the revolution frequency and thus the
momentum of the ions. In the case of a deuteron beam, it is set to pD = 0.97 GeV/c. The
beam emittance can be reduced by the operation of the 100 keV electron cooler. An radio-
frequency solenoid allows to manipulate the spins of the particles. The EDDA detector allows
determining the polarization and the spin tune of the particle ensemble.

In particular, the RF solenoid tilts the intially vertical polarization into the horizontal plane.
The polarization starts to precess once it has an horizontal component. The frequency of the
precession divided by the frequency of the beam stored in the ring is called the spin tune.
It can be measured by extracting the particles onto a carbon target. The particle spin can be
determined by using the formalism for spin-1 particles 2.2.6 The extraction is provided by a
white noise electric field, which is generated by a superposition of different sinusoidal signals.
The detection of each particle is counted as an event and it is analyzed independently.

3.1 The COSY Storage Ring

In the following the devices, which are relevant in the context of this thesis, are discussed.

EDDA Detector

Figure 3.2: Sketch of the EDDA polarimeter

The EDDA detector was originally designed for the determination of proton-proton elastic
scattering excitation functions for momentums from 0.5 GeV/c to 2.5 GeV/c [27]. A schematic
overview of EDDA is given in Fig. 3.2. The detector is composed of ring and bar scintillators
in an arrangement that wraps completely around the beam pipe downstream of the carbon
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3.1 The COSY Storage Ring

target. The latter is movable in the vertical direction. For the current experimental setup the
polarimeter is divided into four parts (up, right, down, left). This allows forming asymmetries
of the counting rates of the detected events. The spin depending signal is induced by an elastic
scattering of the ion beam onto the unpolarized carbon target.
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RF Solenoid

The radio-frequency (RF) solenoid, which is shown in Fig. 3.3, provides a sinusoidal magnetic
field parallel to the beam momentum vector. According to the Thomas-BMT Eq. 2.110 the spins
of the particles are kicked as soon as they possess a component perpendicular to the magnetic
field. The solenoid can be operated on resonance, i.e. on the spin precession frequency. Latter
is specified by the spin tune, which is given by the spin revolution per particle turn in the ring.
This modus operandi is applied to flip the initial vertical polarization of the beam by means
of a half Froissart-Stora scan [28] into the horizontal plane.

Figure 3.3: The RF Solenoid

100 keV Electron Cooler

The 100 keV electron cooler reduces the emittance and the momentum spread of the ion beam
(deuterons) by providing a coaxial electron beam with the same mean longitudinal velocity but
a smaller transverse velocity spread than the ion beam [29]. As soon as the electrons are close
to the deuterons the Coulomb interaction leads to an energy transfer between the oppositely
charged particles, which reduces the velocity spread of the ion beam. In addition, the electron
cooler can be used to change the momentum of the deuteron beam by mismatching the mean
longitudinal velocities of the electron beam. In this case, the COSY lattice remains unchanged.

Ion Beam Profile Monitor

The principle of the Ion Beam Profile Monitor (BPM) is based on the measurement of scintilla-
tion light induced by the interaction of the beam and residual gas [30]. Evaluating the optical
functions at the local interaction position allows the reconstruction of the transverse ion beam
widths. Thus, the Ion BPM represents a minimally invasive tool to determine the distribution
of the particles of the ensemble.
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3.2 Data Acquisition

3.2.1 Time Stamping System

In order to determine the precession frequency of the spin in the horizontal plane, each event
is assigned to a number of particle turns in the storage ring n. The COSY RF cavity signal
is pre-scaled and put on a time-to-digital-converter (TDC) [31]. The precision of the TDC
and the system controller is 92.59 ps with a full range of 6.4 µs. The system controller and
the TDC operate synchronized with a full range of 0.21 s (15 bit) respectively 6.7 s (20 bit). For
time measurements beyond this maximum range the corresponding offsets have to be counted
within the data analysis, thus the signals on the TDC have to be more frequent than once per
6.7 s and the read out trigger for the DAQ has to come at least every 0.21 s. This method
provides a precise time stamp for every signal since the start of the run.

The data are divided into two different data streams within the DAQ using two different se-
quences of event numbers. The TDC readout is asynchronous, i.e. whenever data are available
the system controller reads out these data and send them to the attached readout computer.
In addition, whenever a read-out trigger occurs, the system controller reads out the complete
crate including the TDC and sends the data to the attached computer, as well. The latter event
stream contains a time stamp from the system controller and is synchronized with the rest of
the DAQ. Before the data are analyzed, both data streams are merged together by assigning
all asynchronous data to the next synchronized event.

3.2.2 Frequency of the RF Cavity

The analysis takes the COSY RF as the reference signal in order to determine the horizontal
spin precession, because the spin tune is defined as the spin rotations per particle turn in the
ring. After each one hundredth period, a signal from the COSY RF system is forwarded to the
TDC, which allows the interpolation of the period time TRF,i of the turns in between

TRF,i =
tRF,i+1 − tRF,i

100
, (3.1)

tRF,i,j = tRF,i + j · TRF,i , j = 0..99 , (3.2)

where tRF,i,j is the time after the jth turn after the last COSY RF signal tRF,i.
Each event is assigned to an integer turn number n ∈ Z by comparing the event time tev to

the last time stamp delivered by the COSY RF cavity tRF,i. This happens every nps = 100 re-
volutions of the particle bunch to reduce fluctuations due to the measurement method. How-
ever, it is short enough to account for macroscopic variations of the cavity itself. Consequently,
the product of the pre-scale factor nps and the number of COSY RF signals nRF defines the mi-
croscopic turn interval, in which the turn number of the event n is determined after the last
COSY RF signal tRF,i

n = nps · nRF +

⌊
tev − tRF,i

TRF

⌋
. (3.3)

Here, TRF ≈ 1 332 ns denotes the average time of the COSY period which is a priori given by
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the user as a constant value and it must be close to the true one. The floor function bargc
provides the greatest integer value of the argument and it considers that every pass of the
bunch through the cavity marks the beginning of a next turn. Note that only the second sum-
mand of Eq. 3.3 depends on the period of COSY RF TRF. Thus, the turn number of the event n
is independent of TRF since the reference time tRF is read out every 100 turns.

Figure 3.4: a) Distribution of the period time of the RF cavity signal for a run of 200 s. b) Projection of
the y-axis for the whole run.

In Fig. 3.4 a) the time distribution of the COSY RF period TRF, which is determined for every
100 periods of the RF cavity, is shown in nanoseconds for an entire run of 200 s. It is given by
the time difference of two consecutive time signals of the COSY RF divided by the prescale
factor

TRF,i =
tRF,i+1 − tRF,i

nps
. (3.4)

In addition, the y-axis projection for the whole run is given in Fig. 3.4 b). One observes a
Gaussian distribution with the mean value µTRF = 1 332.27 ns and a standard deviation of
σTRF = 0.021 ns. The width could either originate from a true fluctuation of the frequency
of the RF cavity or from the measuring method of the time signals. Latter is performed by
a discriminator which converts the analog sine wave signal of the cavity into a logical signal.
Since the period of the COSY RF is approximately given by 1.3 µs, the slope of the analog signal
is quite flat. This leads to a fluctuation of the timing signals determined by the discriminator.
Additionally, an unstable baseline of the discriminator could induce a similar effect. However,
it is reduced by averaging out the COSY period by taking just every hundredth period. The
main principle of the spin tune analysis is based on assigning each recorded event a turn
number n, which is guaranteed by the unambiguous determination of particle turn number.
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3.3 Event Rate

The event rates RX = ṄX = dNX/ dn are measured in each detector quadrant X = (L , U , R , D)

in order to determine the horizontal and vertical polarization. The centers of the quadrants are
located at φL ≈ 0◦, φU ≈ 90◦, φR ≈ 180◦ and φD ≈ 270◦, covering polar angles from ϑ = 9◦

to 13◦, and an azimuthal range of ∆φX ≈ 90◦. The event rates in each detector quadrant are
obtained by the integration over the solid angle

RX = Idt

∫
X

aX(ϑ, φ)σ(ϑ, φ)dΩ . (3.5)

Here, aX(ϑ, φ) denotes the combined detector efficiency and acceptance, I [s−1] the beam in-
tensity and dt [cm−2] the target density, σ(ϑ, φ) the spin-dependent cross section. Equation
2.116 represents the cross section depending on the polarization, the azimuthal φ and the po-
lar angle ϑ. Hence, the event rates in each detector are coupled to the polarization, which is
described in the upcoming sections in more detail.

Figure 3.5: Counting rates of each detector quadrant for a 200 s cycle.

In Fig. 3.5 the counting rates of the four detector quadrants are shown for a 200 s cycle.
Very few events are detected during the first 80 s because the beam is prepared by bunching
and cooling. As soon as the white noise extraction of the beam onto the carbon target starts
the event rates increase, which corresponds to the first little bump at 80 s. The larger second
bump at 90 s represents the moment in time where the RF solenoid is switched on for 4 650 ms
in order to flip the spin into the horizontal plane. This indicates that the transverse magnetic
field of the RF solenoid is not perfectly aligned to the momentum of the particles, which results
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in a displacement of their trajectory due to the Lorentz force. Consequently, particles will be
kicked to another orbit, which leads to a higher extraction rate.

In addition, the RF solenoid induces the spin to be tilted from the initial vertical direction
into the horizontal plane. This process is illustrated by the decreasing rate in the right detector
and the increasing rate in the left one after switching on the RF solenoid. After the flip, the
counting rates stay roughly constant for the rest of the cycle. This is achieved by the operation
of a feedback system (Schneider box). It adjusts the voltage of the white noise extraction
such that a constant extraction rate is maintained. The absolute value of the counting rates of
each detector are different since the acceptances of the individual detectors are not identical.
Additionally, the beam is not exactly going through the geometric center of the detector, which
also yields to asymmetric counting rates.

3.4 Vertical Asymmetry

For two point-like detectors placed at φL = 0◦ and φR = 180◦ the number of detected events
NL, NR during a macroscopic time interval ∆tmac yields

NR = Idtσ0R∆tmac

(
1− 3

2
Pξ Ad

y R
+

1
4

Pξξ Ad
∆R −

1
4

Pξξ Ad
zzR

)
, (3.6)

NL = Idtσ0L∆tmac

(
1 +

3
2

Pξ Ad
y L

+
1
4

Pξξ Ad
∆L −

1
4

Pξξ Ad
zzL

)
. (3.7)

The analyzing powers Ad
y , Ad

∆ and Ad
zz are assumed to be the same for all detectors quadrants

Ad
y = Ad

y X
, Ad

∆ = Ad
∆X and Ad

zz = Ad
zzX, with X = (L , U , R , D). In order to determine the ver-

tical polarization and to cancel out variations of the beam intensity a conventional calculation
of the left-right asymmetry εLR yields

εLR =
NR − NL

NR + NL

=
σ0L

(
1 + 3

2 Pξ Ad
y +

1
4 Pξξ

(
Ad

∆ − Ad
zz
))
− σ0R

(
1− 3

2 Pξ Ad
y +

1
4 Pξξ

(
Ad

∆ − Ad
zz
))

σ0L

(
1 + 3

2 Pξ Ad
y +

1
4 Pξξ

(
Ad

∆ − Ad
zz
))

+ σ0R

(
1− 3

2 Pξ Ad
y +

1
4 Pξξ

(
Ad

∆ − Ad
zz
))

=
(σ0L − σ0R)

(
1 + 1

4 Pξξ

(
Ad

∆ − Ad
zz
))

+ (σ0L + σ0R)
3
2 Pξ Ad

y

(σ0L + σ0R)
(
1 + 1

4 Pξξ

(
Ad

∆ − Ad
zz
))

+ (σ0L − σ0R)
3
2 Pξ Ad

y
. (3.8)

σεLR =

√
4N2

RNL + 4NRN2
L

(NR + NL)4 =

√
4NLNR

(NR + NL)3 . (3.9)

Thus, for a vanishing tensor polarization Pξξ = 0 the left-right asymmetry of the counting
rates is proportional to the vector polarization εLR ∝ Pξ . If the integrated spin-independent
differential cross sections are exactly the same σ0L = σ0R the left-right asymmetry simplifies
to εLR = 3

2 Pξ Ad
y . However, for σ0L 6= σ0R the left-right asymmetry is not simply given by the

product of the analyzing power and the polarization but is biased and distorted. In order to
reduce the systematic shift of this effect the so-called cross-ratio method is applied.
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3.4 Vertical Asymmetry

3.4.1 Two Polarization States

The experimental setup provides an initial vertical polarization of the particle ensemble, which
alternates between the cycles from the up p+ξ to the down p−ξ state. The notation plus and
minus in front of the variable ξ corresponds to the respective state. The cross-ratio εCR

LR allows
a cancellation of geometric misalignments and the detector acceptances. The concept of the
cross-ratio is based on dividing the product of the counting rates of two different detector
rates measured for two different polarization states by the product of the other detectors for
the opposite polarization states

εCR
LR =

1− r
1 + r

= |Ad
y |Pξ ,

r2 =
Np+ξ

R Np−ξ

L

Np−ξ

R Np+ξ

L

, (3.10)

where Np+ξ

X denotes the counting rate of the polarization state p+ξ and Np−ξ

X of the polarization
state p−ξ for the detector quadrants X = L, R. Note that the term in front of the brackets in
Eq. 3.7 drops out by calculating the cross-ratio r2. However, the statement εCR

LR = |Ad
y |Pξ is just

valid, if both polarization states have the same amplitude p+ξ = p−ξ , which is not necessarily
provided by the atomic source.

Figure 3.6: Left-right asymmetry of individual polarization states and their cross-ratio for a typical 200 s
cycle.

In Fig. 3.6 a typical example of the left-right asymmetries for each of the two polarization
states ε

p+ξ

LR , ε
p−ξ

LR and the cross-ratio εCR
LR for a π/2 flip are shown. The extraction onto the carbon

target starts at 80 s. Shortly after the operation of the RF solenoid, the initial value εCR
LR ≈ −0.2

jumps to zero at around 90 s. Additionally, the asymmetries of each polarization state are
presented. They show a larger absolute initial polarization value of the up-state p+ξ = ε

p+ξ

LR,i −
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ε
p+ξ

LR,f ≈ −0.26 (blue) compared to down-state p−ξ = ε
p−ξ

LR,i− ε
p−ξ

LR,f ≈ 0.17 (red). The indices i and
f represent the initial respectively the final value of the left-right asymmetry. Subsequently,
the cross-ratio in Eq. 3.10 becomes more complicated because of p+ξ 6= p−ξ . However, it
represents an ideal method to specify the moment in time where the polarization is flipped
completely into the horizontal plane p+ξ = p−ξ = 0 since εCR

LR = 0 is independent of the
absolute values of the individual initial polarization amplitudes.

In fact, the quantities ε
p+ξ

LR and ε
p−ξ

LR are proportional to the fraction of the number of vector
polarized particles N↑,↓ compared to the total number of particles of the ensemble Ntot

ε
p+,−ξ

LR = |Ad
y |Pξ = |Ad

y |
N↑,↓

Ntot
. (3.11)

Thus, the atomic source ensures a higher percentage of vector polarized particles for the up-
state than for the down-state. A deeper understanding of this and additional information
about the operation of the atomic source can be found in [32].

Once the spin vector provides a component in the horizontal plane, it starts to precess. The
frequency fs is given by the spin tune νs times the RF cavity frequency fRF

fs = νs fRF ≈ 0.1609 · 750 kHz ≈ 120 kHz . (3.12)

In order to realize a complete spin flip the frequency of the RF solenoid has to be close to the
spin precession frequency to fulfill the resonant condition. Additionally, it is crucial that the
solenoid is switched off at the right moment. This ensures a maximally statistical sensitivity
since the vertical polarization vanishes. In the upcoming sections, two analysis methods are
discussed in order to unfold the horizontal spin precession.
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CHAPTER 4

Data Analysis

At the beginning of this chapter two different analysis methods are introduced, which are
implemented to determine the spin tune νs and the amplitude ε of the spin precession in the
horizontal plane. In a simplified model, the probability density function of recording an event
at the turn number n can be written as

ps(n; ε, ϕs, νs) =
1

∆n
(1 + ε sin(2πνsn + ϕs)) , (4.1)

where ∆n denotes the macroscopic turn interval and ϕs is the phase shift of the spin precession.
The first analysis method cancels out acceptance and flux variations during a macroscopic

measurement interval by forming asymmetries mapping the counts of the Left(L), Up (U),
Right (R) and Down (D) detector quadrants. An initial overview of this technique can be found
in [33] and a more detailed discussion is given in this thesis. The second analysis method is
based on the discrete turn Fourier transform, which provides Fourier coefficients as estimators
of the parameters in Eq. 4.1.

Afterward, the statistical properties of the estimators are discussed. In particular, it is shown
that the estimator of the amplitude parameter is biased. In addition, the Cramér-Rao bound
of each parameter is determined in order to specify a lower bound of the statistical error of the
estimated parameter.

At the end of this chapter, a more sophisticated probability density function based on a
Rayleigh distributed spin tune of the particles is derived.
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4.1 Mapping Method

In order to determine the spin tune given in Eq. 4.1 the time depending horizontal polarization
has to be determined. For this purpose, asymmetries are formed using the counts of the Up
(U) and Down (D) detector quadrants to cancel out possible acceptance and flux variations
during the measurement. The quadrants are centered at φU ≈ 90◦, and φD ≈ 270◦, covering
polar angles from ϑ = 9◦ to 13◦, and an azimuthal range of ∆φU ≈ ∆φD ≈ 90◦.

It is not possible to determine the spin precession frequency fs directly from the observed
event rates by a simple least squares fit with νs as a parameter using Eq. (3.5), because at a
detector rate of≈ 5 000 s−1 and a spin precession frequency of fs = |νs| · fRF ≈ 0.16 · 750 kHz =

120 kHz, only about one event is detected per 25 spin revolutions. Hence, as described below,
an algorithm is applied that maps all events into one oscillation period to accumulate enough
statistics to extract properly the amplitude, the frequency and the phase of the precession. The
algorithm generates asymmetries, which are largely independent of variations of acceptance
or flux, and yields to a distribution of the polarization that oscillates around zero.

4.1.1 Spin Phase Advance ϕs

The main problem of unfolding the idle spin precession in the horizontal plane is based on
the fact that approximately every 25th turn of the bunch only one event is detected in each
of the four detector quadrants. Thus it is not possible to calculate up-down asymmetries,
which are proportional to the horizontal polarization, in real-time. In the following section,
the procedure to accumulate sufficient statistics during a macroscopic time interval ∆Tmac is
described. If not mentioned explicitly the time interval corresponds to ∆n = 106 turns and
accordingly lasts for ∆Tmac ≈ 1.3 s. This corresponds to a period time of the RF cavity of
TRF = 1/ fRF ≈ 1.3 µs.

As described in section 3.2.2 a turn number n ∈ Z is assigned to each recorded event Eq. 3.3.

Hence, it is possible to calculate the spin phase advance ϕ
ν0

s
s of each event by assuming the

number of spin precession in the horizontal plane per particle turn in the ring ν0
s (spin tune)

ϕ
ν0

s
s (n) = 2πν0

s n . (4.2)

Each of the macroscopic turn intervals is analyzed independently, and the events are mapped
into a 4π interval

ϕ
ν0

s
s,map(n) ≡ ϕ

ν0
s

s (n) mod 4π . (4.3)

This yields the event counts for the up NU(ϕ
ν0

s
s,map(n)) and the down ND(ϕ

ν0
s

s,map(n)) detector
quadrant, respectively. An example is given in Fig. 4.1. Here, Ntot = 10107 events were
recorded in the time interval t ∈ [2.6 s, 3.9 s] after the polarization was tilted into the horizontal
plane. In addition, they are mapped within the 4π interval and divided into Nbins = 20 bins.
Each bin contains between 75 and 200 events depending on the detector quadrant and the

mapped spin phase advance ϕ
ν0

s
s,map. The statistical error of each bin content is given by the

square root of the number of entries σN =
√

N since the underlying process is interpreted as a
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4.1 Mapping Method

Figure 4.1: (a): Counts NU and ND after mapping the events recorded during a macroscopic turn in-
terval of ∆n = 106 turns into a spin phase advance interval of 4π. The vertical error bars show the
statistical uncertainties, the horizontal bars indicate the bin width.

Poisson process. A least squares fit is performed by a sine function with three free parameters

Nfit(ϕs) = Noffset + Namp sin(ϕ
ν0

s
s,map + ϕ

ν0
s

s,fit) . (4.4)

The quantities Namp and ϕ
ν0

s
s,fit are the amplitude and the phase of the sine. Noffset denotes the

offset of the function.

The spin precession is unfolded as soon as the assumed spin phase advance ϕ
ν0

s
s (n) of each

detected event is close to the real phase advance of the particle. In other words, the spin
phase advance is mapped properly into the 4π interval of each macroscopic interval when
the assumed spin tune matches the true one ν0

s ≈ νs. The event rates of the up detector
quadrants are shifted by |ϕD

s,fit|+ |ϕU
s,fit| ≈ π with respect to the down detector. This becomes

obvious in Eq. 2.120 where the spin dependent cross section is expressed as a function of the
azimuthal scattering angle. Since the argument of the sine is given by the position of the
detector quadrants located at φU ≈ 90◦ and φD ≈ 270◦, a sign flip is obtained for the spin
dependent part of the cross section. Thus, the rate of one detector quadrant becomes maximal
whilst the other detector quadrant reaches its minimum.

The rates of the separate detector quadrants are strongly depending on the individual de-
tector acceptance. Thus, the amplitude Namp corresponds not directly to the amplitude of the
spin precession, but also on the total number of detected events (Ntot ≈ Noffset ·Nbins) and thus
on the detector geometry and acceptance, respectively. To cancel out these systematic effects,
asymmetries are formed by using both detectors.
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4.1.2 Up-Down Asymmetries

Figure 4.2: Count sums N+
U,D(ϕs) and differences N−U,D(ϕs) of Eq. 4.5 with ϕs ∈ [0, 2π) using the counts

NU(ϕs) and ND(ϕs), shown in Fig. 4.1. The vertical error bars show the statistical uncertainties, the
horizontal bars indicate the bin width.

In the following, the spin phase advance ϕ
ν0

s
s (n) depending on the assumed spin tune ν0

s
and mapped into a 4π interval will be denoted by ϕs. A sinusoidal waveform that oscillates
around zero is obtained by defining four new event counts for the two quadrants (X = U or D)
are defined,

N±X (ϕs) =

{
NX(ϕs)± NX (ϕs + 3π) for 0 ≤ ϕs < π

NX(ϕs)± NX (ϕs + π) for π ≤ ϕs < 2π .
(4.5)

The equations provide sums, N+
U (ϕs) and N+

D (ϕs), and differences, N−U (ϕs) and N−D (ϕs), of
counts depicted in Fig. 4.2. While the sums are constant, the differences oscillate around zero,
and the asymmetry,

ε(ϕs) =
N−U (ϕs)− N−D (ϕs)

N+
U (ϕs) + N+

D (ϕs)

=
3
2

pξ

σ0U Ad
y U
− σ0D Ad

y D
σ0U + σ0D

sin(ϕs + ϕ) , (4.6)

in the range ϕs ∈ [0, 2π) is independent of beam intensity and target density and is propor-
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4.1 Mapping Method

tional to the sine of the spin phase advance. In Fig. 4.3 the asymmetry ε(ϕs) is shown for a
measurement interval between 2.6 s and 3.9 s.

Figure 4.3: Measured asymmetry ε(ϕs) of Eq. 4.6 fitted with ε(ϕs) of Eq. 4.7 to extract amplitude ε̃

and phase ϕ̃, using the yields N+,−
U,D (ϕs) of Fig. 4.1 (b) for a single turn interval of ∆n = 106 turns at a

measurement time of 2.6 s < t < 3.9 s.

A least squares fit performed to the data by the function

εfit(ϕs) = A sin(ϕs) + B cos(ϕs) , (4.7)

yields the black curve in Fig.4.3 and provides an estimator of the amplitude ε̃ respectively the
phase ϕ̃ parameter. The amplitude is proportional to the horizontal vector polarization pξ ,
which can be determined if the cross section σ0X and the analyzing power Ad

y X
are known for

both detectors (X=up, down). A linear combination of both trigonometric functions is chosen
in order to provide two parameters (A and B), which are maximal uncorrelated since the two
functions are orthogonal to each other. Thus, the amplitude and the phase yield

ε̃ =
√

A2 + B2 =
√

0.24312 + 0.11212 = 0.2677± 0.0137 , (4.8)

ϕ̃ = atan2(B, A) = atan2(0.1121, 0.2431) = (0.432± 0.052) rad , (4.9)

where atan2 denotes the arctangent of the arguments A and B [34]. The amplitude corresponds
to a typical value for the initial asymmetry of polarization state p+ξ . The statistical error are
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given by

σ̃2
ε =

A2σ2
A + B2σ2

B
A2 + B2 , (4.10)

σ̃2
ϕ =

B2σ2
A + A2σ2

B
(A2 + B2)2 . (4.11)

They are compatible with the Fisher information σth
ε =

√
2/N = 0.014 given the total number

of events Ntot = 10107. A more detailed discussing of the statistical error can be found at end
of this chapter.

Two assumptions must hold in order to determine and to unfold the asymmetry properly
during a macroscopic time interval ∆Tmac:

• The spin tune of the beam has to be stable during ∆Tmac, otherwise the sinusoidal func-
tional form of the event distribution would get smeared and thus the amplitude would
be underestimated.

• The in-plane vector polarization should not drop too fast during a macroscopic turn
interval ∆n. This causes a false amplitude estimation because the depolarization effect
is not linear. Generally speaking the spin coherence time (SCT) has to be large or the
macroscopic time interval small enough.
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4.2 Discrete Turn Fourier Transform

4.2 Discrete Turn Fourier Transform

In this section, another analysis approach of the data is discussed by introducing the discrete
time Fourier transform. It is more precise to speak of a discrete turn Fourier Transform (DTFT),
since the measurement observable is based on a discrete integer turn number n and not on a
time stamp. After a general overview about Fourier transforms a more detailed implementa-
tion of the DTFT regarding the signal processing is given.

4.2.1 Fourier Transform

The general principle of the Fourier Transform is well known and it is discussed in manifold
topics. The continuous Fourier Transform of an integrable function f ∈ L1(Rn) is given by

F( f )(t) =
1

(2π)
n
2

∫
Rn

f (x)e−it·x dx , (4.12)

where dx is an n-dimensional volume element, i denotes the imaginary unit and x · t represents
the dot product between the vectors x and t. The inverse transformation yields

f (x) = F−1 f̂ (x) =
∫

Rn
f̂ (t)e−it·x dt , (4.13)

Assuming a simple model of the spin motion f̂ corresponds to a 1-dimensional time periodic
probability density function f̂ (t) = A cos(ωst + ϕs) (Eq. 4.1), where ωs is the angular spin
precession frequency and ϕs denotes the phase of the spin oscillation. Hence the operator F−1

transforms the signal from the time domain t into the frequency domain ω

f (ω) =
∫ ∞

−∞
f̂ (t)e−it·ω dt . (4.14)

4.2.2 Discrete Fourier Transform

As described in section 3.2.2 each detected event is assigned to a turn number n ∈ N. Thus,
the variable of f̂ becomes discrete. Mathematically this is related to the Delta comb, which is
constructed by the sum of the Dirac delta functions δ(t− n

fRF
)

f (ω) =
∫ ∞

−∞

∞

∑
n=0

f̂ (t)δ
(

t− n
fRF

)
e−it·ω dt

=
∞

∑
n=0

f̂ [n] e
−in·ω

fRF

=
∞

∑
n=0

f̂ [n] e
−i2πn·ω

ωRF , (4.15)
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where the square brackets indicate that the argument of f̂ is discrete and fRF represents the RF
cavity frequency. With the relation ν = ω

ωRF
Eq. 4.15 yields

f (ν) =
∞

∑
n=0

f̂ [n] e−i2πn·ν (4.16)

with f̂ [n] = A cos(2πνsn + ϕs) , (4.17)

where νs = ωs
ωRF

denotes the spin tune. Given a finite measurement interval, a discrete causal
rectangular window function w[n] is used to describe the data. Since a multiplication in the
turn domain ĝ[n] = f̂ [n] · ŵ[n] corresponds to a convolution in the spin tune domain g(ν) =
f (ν) ∗ w(ν), one obtains

ŵ[n] =


0 n < 0

1 for 0 ≤ n < N

0 n ≥ N

(4.18)

g(ν) = f (ν) ∗ w (ν) = ( f ∗ w) (ν)

=
∫ ∞

−∞
f (ν− λ)w(λ)dλ

=
∞

∑
n=0

f̂ [n] ŵ[n]e−i2πn·ν =
N−1

∑
n=0

ĝ[n]e−i2πn·ν , (4.19)

with the number of samples in the measurement interval N = ∆n. The discrete Fourier trans-
forms of both functions are well known and the running index of the sum goes from 0 to N− 1
samples

f (ν) =
A
2
(δ(ν− νs) + δ(ν + νs)) , (4.20)

w(ν) =
N−1

∑
n=0

e−i2πn·ν =
1− e−i2πνN

1− e−i2πν
, (4.21)

⇒ g(ν) =
A
2

∫ ∞

−∞
(δ(λ− ν + νs) + δ(−λ + ν + νs))

1− e−i2πλN

1− e−i2πλ
dλ

=
A
2

[
1− ei2π(νs−ν)N

1− ei2π(νs−ν)
+

1− ei2π(νs+ν)N

1− ei2π(νs+ν)

]
. (4.22)

In practice, it is not possible to generate a continuous distribution of g (ν) since the difference
between two adjacent values of ν cannot be infinitesimally small. As a consequence, the values
of ν become discrete, and the sampling interval of the spin tune domain is given by ∆νk = 1

N
yielding ν[k] = νk = ∆νk, k = k

N , with k ∈ Z. Thus, the equidistant and discrete sequence of
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the turn signals is discretely transformed into the spin tune domain

gνk =
N−1

∑
n=0

ĝ [n] e−i2πnνk

=
N−1

∑
n=0

ĝ[n] [cos (2πnνk)− i sin (2πnνk)] , (4.23)

with νk =
k
N

and k ∈ [0, N − 1] , (4.24)

where Euler’s formula is used. The granularity of the spin tune values ∆νk depends on the turn
number of the measurement interval ∆n = N. The interval ∆n can be artificially increased by
adding zero entries at the beginning and the end. This decrease the spaces in the spin tune
domain. The technique is called ’zero padding’ and it generates smoother distributions of gνk .
Thus, it is more likely to hit the true frequency by obtaining the maximal magnitude of the
amplitude.

The experiment provides a sequence of signals ĝ[n], which are based on random processes.
The probability of detecting an event per one turn of the bunch is small� 1 and consequently,
most of the turn entries are zero

ĝ[n] =

{
1 for n = n(nev)

0 else .
(4.25)

Thus, it is not possible to obtain the exact turn distribution ĝ[n] from the retransformation
of gνk . Consequently, the summation is given by the sequence of the total number of events
nev ∈ [1, Nev]. The discrete Fourier coefficients are given by the real and the imaginary part of
gνk

aνk = <(gνk) =
2

Nev

Nev

∑
nev=1

cos (2πνkn(nev)) , (4.26)

bνk = =(gνk) =
2

Nev

Nev

∑
nev=1

− sin (2πνkn(nev)) . (4.27)

The factor 2/Nev takes into account the normalization based on Parseval’s theorem for real
input data [35]. The amplitude and the phase yield

ενk = |gνk | =
√
=(gνk)

2 +<(gνk)
2 =

√
a2

νk
+ b2

νk
, (4.28)

ϕνk = arg(gνk) = atan2 (=(gνk),<(gνk)) = atan2 (bνk , aνk) . (4.29)

The statistical error of the amplitude is equal to the statistical error of real respectively the
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imaginary part of gνk . Using Gaussian error propagation one gets

σενk
= σaνk

= σbνk
= σDTFT

=
2

Nev

√√√√ Nev

∑
nev=1

(cos (2πνkn(nev)))
2

=
2

Nev

√√√√ Nev

∑
nev=1

(sin (2πνkn(nev)))
2

=

√
2

Nev
. (4.30)

Accordingly, the statistical error of the phase is given by

σ2
ϕνk

=
σ2

DTFT
ε2

νk

, (4.31)

where the identities 4.30 are used. The statistical error scales reciprocally with the amplitude,
which is in conformity with the theoretical derivation based on the Cramér-Rao bound of a
sinusoidal oscillation. Thus, for larger amplitude values the phase estimation becomes more
precise.
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4.3 Parameter Estimation

Both methods discussed in the previous sections provide two independent parameter estim-
ators Ã(ãνk) and B̃(b̃νk). In the case of the mapping method, the estimators correspond to
the orthogonal, i.e. independent, parameters of the asymmetry fit shown in Fig. 4.3. For the
discrete turn Fourier transform Ã and B̃ the parameters are simply given by the Fourier coef-
ficients, which are orthogonal, as well. In the following, the estimation of the amplitude, the
phase, and the spin tune are discussed in a more general way. Afterwards, a more detailed
discussion is addressed by an individual chapter for each parameter, where in particular sys-
tematic effects of the estimators are considered.

Suppose two independent and Normally distributed random variables A and B. Then the
estimated amplitude reads

ε̃ =
√

Ã2 + B̃2 ≥ ε =
√

A2 + B2 . (4.32)

It is biased in the positive direction since it is defined as the square root of the sum of the
squares of the variables (Eq. 4.28 and Eq. 4.8). Even though the estimators Ã and B̃ are consist-
ent, asymptotic Normal, efficient and unbiased, the amplitude is systematically overestimated,
which becomes more and more significant for small amplitudes and low statistics.

In order to provide a better understanding of this effect, a set of turn numbers n is generated
by Monte Carlo simulations with N0 = 500 events according to

pνs
n (n; ε, νs, ϕνs) =

1
∆n

[1± ε0 sin(2πνsn + ϕνs)] , n ∈ (0, ∆n) , (4.33)

where νs denotes the spin tune and ∆n = 2× 106 is the measurement interval.

Amplitude Estimator

For the simulation, two different true amplitude values (ε0,red = 0.05 and ε0,black = 0.5) are
chosen. The true phase value is fixed to ϕs = −1. The corresponding distributions of 2500
estimators are shown in Fig. 4.4 for the variables Ã and B̃ as well as for the amplitude and the
phase.

The randomly generated data is analyzed by the discrete turn Fourier transform 4.2. Note
that the spin tunes for the analysis and for the random data generation are exactly the same.
The upper plots of Fig. 4.4 show the distributions of the Fourier coefficients. Both distribu-
tions correspond to a Normal distribution since the number of randomly generated events for
each estimator is large N0 = 500 (asymptotic normality and consistent 2.1.3). However, the
amplitude estimator is biased, which becomes obvious for small true amplitudes. An example
is given by the distribution shown in red in the lower left-hand side of Fig. 4.4, where the true
amplitude is set to ε = 0.05 and the mean value of ε̃ yields

ε̂mean =< ε̃ >= 0.09 > ε = 0.05 . (4.34)

Note, that although the amplitude estimator is biased, it is consistent and asymptotic normal,
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Figure 4.4: Upper two plots: distributions of the estimator of the parameter A and B based on random
data analyzed by the discrete turn Fourier transform. The true amplitude value is set to ε = 0.05 (red)
and ε = 0.5 (black), whereas the phase is fixed to ϕs = −1. Lower plots: distribution of the amplitude
and phase estimator obtained by Ã and B̃.

since it converges to the true value for sufficient large statistics ε̂mean =
N0→∞

ε. The underlying

distribution is called Rice distribution. In chapter 5 its characteristics and implications will be
discussed. In particular, several approaches are presented to reduce the systematic bias of the
amplitude estimator and to determine a proper confidence interval.

Phase Estimator

Since the phase is defined on a 2π interval ambiguities exists for −π and π. In chapter 6
it is shown that the DTFT phase estimator is unbiased if the theory of directional statistics
is taken into account. Latter takes into account the phase jump by wrapping the probability
density function around the circumference of a unit circle. In addition, its probability density
function yields a non-Gaussian distribution. Thus, in the case of a small true amplitude (lower-
right hand side plot), the first moment of the unwrapped distribution represents a biased
estimator ϕ̂mean =< ϕ̃s > 6= ϕs. However, for large true amplitudes or high statistics, the mean
value of the phase distribution becomes consistent, asymptotic normal and unbiased. This is
represented by the distributions, which is shown on lower right-hand side plot of Fig. 4.4 in
black.

An overview of the amplitude and phase parameters respectively estimators can be found
in table 4.1. One observes, that even for relatively large true amplitudes the estimator of the
amplitude is biased within its standard error (error on the mean), whereas the phase estimator
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becomes unbiased.

ε < ε̃ > ϕs [rad] < ϕ̃s > [rad]
0.05 0.900± 0.001 −1 −0.684± 0.027
0.5 0.504± 0.001 −1 −1.002± 0.003

Table 4.1: Mean value and the standard deviation of the estimated amplitude and phase compared to
the true ones

Henceforward two different notations are used for the amplitude and the phase estimator,
respectively:

• The amplitude estimator obtained by the mapping or the discrete Fourier transform is
indicated by ε̃ (phase ϕ̃s).

• A more sophisticated estimator, which considers the systematic positive bias or the wrapped
probability density function, is denoted by ε̂ (phase ϕ̂s).

Spin Tune Estimator

The spin tune is determined by taking into account the phase information or rather the turn
derivative of the phase. This becomes obvious in Eq. 4.28, where the phase parameter depends
on the spin tune, which is chosen to obtain the Fourier coefficients Eq. 4.26. The relation of
phase and angular frequency yields

ωs(n) = 2πνs(n) =
dϕs(n)

dn
, (4.35)

where n denotes the turn number of the bunch. Thus, the spin tune is determined from the
interpolation of two consecutive phase estimators. In the case of a known functional form of
the turn depending phase, the change of the spin tune is proportional to the turn derivative of
this function. A more detailed discussion of the spin tune determination is given in chapter 6.

4.3.1 Standard Error Estimation

The Cramér-Rao bound 2.1.4 represents the lower bound of the standard error of an estimator
σθ or a vector of estimators σσσθ . It is given by the inverse of the Fisher information. For the
probability density function of the spin precession it yields

I(ϕs, νs, ε) = −
∫ ∆n

0

∂2

∂θ2 log ps(n; νs, ϕs, ε)ps(n; νs, ϕs, ε)dn , (4.36)

where ε denotes the amplitude, ϕs the phase, and νs the spin tune.
The analytical solution of the integral in Eq. 4.36 is discussed in appendix A.2 and the Fisher
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information matrix reads

I(ϕs, νs, ε) =


1−
√

1− ε2 π
2 ∆nε2 0

π
2 ∆nε2 4π2

3 ∆n2(1−
√

1− ε2) 0

0 0
1√

1−ε2
−1

ε2

 . (4.37)

Furthermore, the covariance matrix is given by the inverse of the Fisher information mat-
rix 2.17

cov(ϕs, νs, ε) = (I(ϕs, νs, ε))−1

=


1−
√

1−ε2

2−2
√

1−ε2−ε2− 3ε4
16

− 3ε2

8π∆n
(

2−2
√

1−ε2−ε2− 3ε4
16

) 0

− 3ε2

8π∆n
(

2−2
√

1−ε2−ε2− 3ε4
16

) 3(1−
√

1−ε2)

4π2∆n2
(

2−2
√

1−ε2−ε2− 3ε4
16

) 0

0 0 ε2
√

1−ε2

1−
√

1−ε2


≈
 8

ε2 − 12
2π∆nε2 0

− 12
2π∆nε2

24
4π2∆n2ε2 0

0 0 2

 .

(4.38)

The latter transformation takes into account the Taylor series expanded at small amplitudes
ε� 1.

One observes, that the lower bound of the standard error of the phase and of the spin tune
scale with the inverse of the amplitude. Additionally, latter depends reciprocally on the length
of the macroscopic turn interval. Since the estimators are asymptotic Normal, all standard
errors scale with the inverse of the square root of the number of events N0 detected during the
macroscopic turn interval ∆n (see Eq. 2.7). If the phase nor the spin tune are a priori unknown,
the lower bounds of the standard errors yield

σCRB
ϕ̃s

=

√√√√ 1−
√

1− ε2

N0

(
2− 2

√
1− ε2 − ε2 − 3ε4

16

) ≈ √ 8
ε2N0

, (4.39)

σCRB
ν̃s

=

√√√√ 3(1−
√

1− ε2)

4π2∆n2N0

(
2− 2

√
1− ε2 − ε2 − 3ε4

16

) ≈ √ 24
4π2ε2∆n2N0

, (4.40)

σCRB
ε̃ =

√√√√ ε2
√

1− ε2

N0

(
1−
√

1− ε2
) ≈ √ 2

N0
. (4.41)

In the case of the mapping method or the discrete turn Fourier transform the spin tune is fixed
and subsequently, it is assumed to be known. Therefore, the Fisher information matrix 4.37
reduces to 2 dimensions depending on the estimator vector θ̃̃θ̃θ = (ϕ̃s, ε̃). Thus, the standard
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errors become

if νs is known: σCRB,νs
ϕ̃s

=

√√√√ 1

N0

(
1−
√

1− ε2
) ≈ √ 2

ε2N0
, (4.42)

if ϕs is known: σ
CRB,ϕs
ν̃s

=

√
3

N04π2∆n2(1−
√

1− ε2)
≈
√

6
4π2∆n2ε2N0

. (4.43)

Hence, it is possible to compare the lower bounds of the standard errors σσσCRB
θ̃

with the stand-
ard deviations of the estimator distributions obtained by the MC data σσσMC

θ̃
. The latter can be

found in Fig. 4.4. In other words, it can be tested, if the second moment of the MC distributions
represents a biased estimator of the standard error of the respective parameter θ̃̃θ̃θ = (ϕ̃s, ε̃). The
results are shown in table 4.2, where the MC data is compared with the exact evaluation of
σσσCRB

θ̃
and with the solution obtained for the Taylor expand (ε � 1). One sees, that for a true

σε̃ σϕ̃s [rad]
ε MC data exact Taylor MC data exact Taylor

0.5 0.060 0.057 0.063 0.125 0.122 0.127
0.05 0.050 0.063 0.063 1.355 1.27 1.27

Table 4.2: First and second of the estimated amplitude and phase compared to the true ones

amplitude of ε = 0.5 the second moment of the MC distribution lies in between the exact and
the Taylor solution. Thus, both results σMC

ϕ̃s
and σMC

ε̃ are biased estimators of the standard er-
ror of the respective parameters. Additionally, the Taylor series expand provides a significant
deviation from the exact value of the standard error.

However, in the case of ε = 0.05 the Taylor solution coincides almost with the exact result.
Here, the MC data provides a smaller estimator of the amplitude standard error σMC

ε̃ < σCRB
ε̃

since the distribution of ε̃ is asymmetric (lower left plot in Fig. 4.4). The second moment of the
MC distribution overestimates the standard error of the phase σMC

ϕ̃s
> σCRB

ϕ̃s
since it is defined

in the interval ϕ̃s ∈ (−π, π].

4.3.2 Conclusion

In the previous sections, it was shown, that the probability density function of the amplitude ε̃

and the phase estimator ϕ̃s are not Normally distributed. Thus, their first and second moments
are biased estimators of the true value and its standard error, respectively. A more detailed
discussion is given in the chapters 5 and 6.
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4.4 Probability Density Function

In order to describe the probability of a particle being detected in the up or down detector,
the probability density function of the turn number pn(n) has to be identified. So far, the spin
precession frequency is assumed to be the same for all particles, i.e. the conditional probability
function of the turn number, which depends on the spin tune νs, yields

pνs
n (n; ε, νs, ϕνs) =

1
∆n

[1± ε0 sin(2πνsn + ϕνs)] , n ∈ (0, ∆n) , ∆nZ , (4.44)

where ϕνs denotes the phase of the spin tune and ε0 = |Ad
y |Pξ corresponds to the analyzing

power times the fraction of the vector polarized particles of the ensemble.

Note that for the probability density function in Eq. 4.44 the spin tune is assumed to be
known and it is identical for all particles. Thus, pνs

n (n; ε, νs, ϕs) corresponds to the conditional
probability density distribution of the turn number n given the occurrence of a fixed spin tune
νs. The two detector quadrants are considered by the indices plus and minus and the phase
shift between both detectors is assumed to be exactly π. The normalization factor is approx-
imately given by 1/∆n, since the measurement interval is large compared to one revolution of
the particle bunch. Thus, the contribution of the oscillation term is negligible. In addition, the
parameter ε0 corresponds to the initial vector polarization, which is provided by the atomic
source.

Turn Depending Spin Tune

The turn depending spin tune νs(n) can be derived by the definition of the angular frequency.
Latter is defined as the derivation of the phase with respect to the turn number and it is
identical to the spin tune change corrected by the factor 2π. Thus, the turn depending vari-
ation of the phase of the ensemble δϕs(n) determines the change of the angular frequency

δνs(n) =
1

2π
δωνs(n) =

1
2π

dδϕνs(n)
dn

. (4.45)

The turn depending spin tune yields

νs(n) = ν0
s + δνs(n) = ν0

s +
1

2π

dδϕνs(n)
dn

. (4.46)

The quantity ν0
s corresponds to the initial spin tune. Note that ϕνs corresponds to the phase of

the spin tune and not to the phase of the spin precession ϕs since the spin tune is defined by
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the ratio of the spin precession frequency fs and the RF cavity frequency fRF

νs =
fs

fRF
, (4.47)

⇒ ∆νs

νs
=

∆ fs

fs
− ∆ fRF

fRF

=
∂ϕs
∂t

2π fs
−

∂ϕRF
∂t

2π fRF
=

1
2πνs

∂ϕνs

∂n
(4.48)

In the following, the phase of the spin tune is denoted by ϕs.

4.4.1 Marginal Probability Density Function of Spin Tune and Phase

Suppose that the spin tunes of the individual particles of the ensemble are distributed. In
addition, the spin tune of the particle on the reference orbit is defined as νref

s . In good approx-
imation, the marginal probability density distribution of νs can be described by a Rayleigh
distribution [36]

pνs(νs; νref
s , σR,νs) =

νs − νref
s

σ2
R,νs

e
− (νs−νref

s )2

2σ2
R,νs , for νs ≥ νref

s . (4.49)

The scale parameter σR,νs indicates the width of the distribution, i.e. for larger σR,νs the spin
tune spread of the ensemble is wider. The expectation value of the Rayleigh distribution cor-
responds to the mean spin tune of the ensemble and it reads

µνs = E(νs) = νref
s +

√
π

2
σ2

R,νs
. (4.50)

It is assumed turn invariant if the orbit of each particle and the bending magnets are stable
over time. Note that for the time depending drifts the parameters of the spin tune model
become turn depending. It is possible to distinguish between a global shift of the spin tunes
νref

s (n) and a time depending widening of the spin tune distribution σR,νs(n). Latter induces a
faster depolarization, whereas the global shift has no impact on the amplitude spectrum.

The turn dependend phase shift of the spins between each particle i and the reference
particle is given by

ϕs,i(n) = 2π(νs,i − νref
s )n , for νs ≥ νref

s . (4.51)

It is important to note that the phase provides an unambiguity at 2π. Consequently, the theory
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of directional statistics is applied to identify the wrapped probability density function [22]

pw
ϕs
(ϕs; σR,νs , n) =

∞

∑
k=0

1
4π2n2σ2

R,νs

(ϕs + 2πk)e
− 1

4π2n22σ2
R,νs

(ϕs+2πk)2

, (4.52)

pw
ϕs
(ϕs; σϕs(n)) =

∞

∑
k=0

1
2σ2

ϕs
(n)

(ϕs + 2πk)e
− 1

4σ2
ϕs (n)

(ϕs+2πk)2

(4.53)

⇒ pw
ϕs
(z; σϕs(n)) =

1
π

∞

∑
t=−∞

φRay

(
t,

σϕs(n)√
2

)
e−itϕs

=
1
π

∞

∑
t=−∞

(
1−
√

πσϕs(n)te
−σ2

ϕs (n)t
2 [

erfi
(
σϕs(n)t

)
− i
])

eikϕs , (4.54)

where erfi denotes the imaginary error function and z = eiϕ is the circular variable. In fact,
pw

ϕs
corresponds to a wrapped Rayleigh distribution truncated at 2π with the phase scale para-

meter σϕs(n) =
√

2πnσR,νs . It can be expressed by the characteristic function of its unwrapped
distribution φRay [22] (Eq.2.26).

Figure 4.5: Left: wrapped probability density function of the phase for three different phase scale para-
meters (blue: σϕs = 1; red: σϕs = 2; black: σϕs = 3). Right: average phase of the ensemble as a function
of the phase scale parameter.

For a larger scale parameter, the particle spins are distributed more uniformly since they
are wrapped at 2π. Consequently, the average phase of the ensemble increases. Latter can be
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identified by the first moment of the wrapped Rayleigh distribution [22]

< zk=1 > =
∫ 2π

0
pw

ϕs
(z; σϕs(n))e

iϕs dϕs

= φRay
(
k = 1, σϕs(n)

)
= 1−

√
πσϕs(n)e

−σ2
ϕs (n)

[
erfi

(
σϕs(n)

)
− i
]

, (4.55)

which can be expressed in terms of the characteristic function evaluated at the integer para-
meter k = 1. Taking the argument of 4.55 leads to the mean phase of the ensemble

µϕs(σϕs(n)) = arg
(
< zk=1 >

)
=

π

2
− arctan

(
1−√πσϕs(n)e

−σ2
ϕs (n)erfi

(
σϕs(n)

)
√

πσϕs(n)e
−σ2

ϕs (n)

)

=
π

2
− arctan

(
1√
π

eσ2
ϕs (n)

σϕs(n)
− erfi

(
σϕs(n)

))
, (4.56)

which is plotted on the right hand side of Fig. 4.5. One observes that the expectation value of
the phase starts at zero, is strictly monotonically increasing and converges to π for large phase
scale parameter. Thus, the phase of the ensemble performs a half rotation in the horizontal
plane.

The analytical expression of the expectation value of the phase as a function of the turn
number and the spin tune scale parameter can be derived by using joint bivariate probability
density functions. This is presented in the following sections.

4.4.2 Joint Bivariate Probability Density Function

The joint bivariate probability density function based on the turn number and the spin tune
is given by the product of the conditional probability distribution pνs

n and the marginal pdf of
the spin tune pνs (Bayes’ theorem)

pn,νs

(
n, νs,; ε, ϕs, σR,νs , νref

s

)
= pνs

n (n; ε, νs, ϕs) · pνs

(
νs; σR,νs , νref

s

)
=

(νs − νref
s )

∆nσ2
R,νs

e
− (νs−νref

s )2

2σ2
R,νs · (1± ε sin [2πνsn + ϕs]) , (4.57)

with n ∈ (0, ∆n) and νs ≥ νref
s .

An example of Eq. 4.57 is given in Fig 4.6 for the parameters ∆n = 106 turns, νref
s = 0.1609,

σR,νs = 10−4, ε = 0.25 and ϕs = 0. The values of the y-axis are shifted by the reference spin
tune νref

s . The turn axis is cut into three pieces and each interval covers 50 turns and each gap
corresponds to 25000 turns.

For small turn numbers, the probability density function shows a sinusoidal pattern weighted
by the Rayleigh distribution. The period of this structure is given by 1/νref

s ≈ 6.2 turns. In the
second interval, the initial vertical elliptical-like bands are tilted towards the left side, since
the spin tune increases in the direction of the y-axis. Consequently, the period of the spin
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Figure 4.6: Joint bivariate probability density function of the turn number and the spin tune pn,νs ( 4.57).
The x-axis (number of particle turns) is cut into three intervals and each lasts for 50 turns. The size of
the gaps is set to 25000 turns. The parameters are set to ∆n = 106 turns, νref

s = 0.1609, σR,νs = 10−4,
ε = 0.25 and ϕs = 0. The values on the y-axis are shifted by the reference spin tune νref

s .

precession decreases

Ts(νs) =
1

fcyc (νref
s + νs)

≤ Tref
s =

1
fcycνref

s
, for νs ≥ 0 , (4.58)

which leads to a smooth rotation towards the left direction. In the last interval of Fig. 4.57 this
process is further advanced.

4.4.3 Marginal Probability Density Function of Turn Number

Since the observable of the experiment is given by the turn number n, it is of major interest to
identify its marginal probability density function pn(n), which corresponds to the probability
of a particle being detected at a given turn number. The integration of pn,νs with respect to the
spin tune is derived in appendix A.3 yielding

pn(n) =
∫ ∞

0
pn,νs (n, νs)dνs (4.59)

=
1

∆n

[
1 + ε0

([
1−
√

πγs(n)e−γ2
s (n)erfi (γs(n))

]2
+ πγ2

s (n)e
−2γ2

s (n)
) 1

2

×

sin

[
Ωs(n) +

π

2
− arctan

(
eγ2

s (n)
√

πγs(n)
− erfi (γs(n))

)] ]
, (4.60)
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where erfi denotes the imaginary error function. The fundamental oscillation is given by the
spin tune νs and the phase ϕs

Ωs(n) = 2πνsn + ϕs . (4.61)

The turn depending damping term is defined by the spin tune spread σR,νs

γs(n) =
√

2πσR,νs n . (4.62)

For a vanishing width of the spin tune distribution σR,νs = γs(n) = 0, the marginal pdf reduces
to pνs

n (n)(Eq. 4.44), which makes perfect sense. For large turn numbers, the perturbation term
converges to −ε0 sin(2πνsn) because of the infinity limit identity

√
πxe−x2

erfi(x) =
x→∞

1 . (4.63)

Consequently, the probability density function becomes constant pn(n) = 1
∆n and the oscilla-

tion vanishes since the individual spins are distributed Uniformly. In fact, pn(n) corresponds
to the integral of the vertical projections of the joint bivariate probability function given in
Fig. 4.6. An example of the marginal pdf of the turn number is shown in Fig. 4.7 with the
same parameters used in Fig 4.6. In this representation, the oscillations are not visible since
the precession is fast. The marginal pdf oscillates around the reciprocal of the macroscopic
turn interval 1/∆n, which coincides with the infinite limit.

Figure 4.7: Marginal probability density function of the turn number pn(n) for the first 10000 particle
turns with the parameters ∆n = 106 turns, νref

s = 0.1609, σR,νs = 10−4, ε0 = 0.25 and ϕs = 0.

Furthermore, one observes a decreasing amplitude of the oscillation, since the particle spins
decohere. The envelope is simply given by the amplitude term in Eq. 4.60. It’s turn depending
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functional form yields

ε(γs(n)) = ε0

([
1−
√

πγs(n)e−γ2
s (n)erfi (γs(n))

]2
+ πγ2

s (n)e
−2γ2

s (n)
) 1

2

. (4.64)

This allows to specify the spin coherence time τSCT as a function of the spin tune spread σR,νs .
Former is defined as the moment in time where the amplitude reaches 1/e of its initial value.
The relation between τSCT and σR,νs is obtained by solving numerically the equation

ε(γs(τSCT)) =
1
e

⇔ γs(τSCT) =
√

2πσR,νs τSCT ≈ 1.571

⇔ τSCT ≈
1.571√

2π

1
σR,νs

=
0.3536
σR,νs

, (4.65)

since the damping factor is proportional to the product of the turn number and the scale para-
meter in Eq. 4.62. Thus, the spin coherence time depends reciprocally on the scale parameter,
where the constant of proportionality yields AσR,νs

= 0.353603.
Another ansatz in order to identify the functional form of the turn depending amplitude is

based on the theory of directional statistics. In Eq. 4.52 it is shown that the wrapped probability
density function of the phase can be expressed in terms of the characteristic function of the
Rayleigh distribution. In addition, the length of the mean resultant vector, which corresponds
in this case to the amplitude of the polarization, is given by the absolute value of the first
moment of the circular distribution [22], which is derived in Eq. 4.55

| < zk=1 > | = |φRay
(
k = 1, σϕs(n)

)
|

=

∣∣∣∣∣1−√πσϕs(n)e
−σ2

ϕs (n)
[
erfi

(
σϕs(n)

)
− i
] ∣∣∣∣∣

=

([
1−
√

πσϕs(n)e
−σ2

ϕs (n)erfi
(
σϕs(n)

)]2
+ πσ2

ϕs
(n)e−2σ2

ϕs (n)
) 1

2

=

([
1−
√

πγs(n)e−γ2
s (n)erfi (γs(n))

]2
+ πγ2

s (n)e
−2γ2

s (n)
) 1

2

. (4.66)

The latter representation corresponds exactly to the one derived based on the integration of
the joint bivariate probability density function (Eq. 4.59 and Eq. 4.64). Thus, both theoretical
concepts provide the same result of the turn depending amplitude model function, since the
parameters σϕs = γs =

√
2πσR,νs n are defined identically.

4.5 Conclusion

In this chapter, a two parameter model, which is based on the width of the spin tune dis-
tribution σR,νs and the spin tune of the particle on the reference orbit νref

s , was derived for
the turn depending phase and amplitude. Both, the theory of directional statistics and the
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integration of the joint bivariate probability density function, leads to the same results. Fur-
thermore, the relation between the spin coherence time τSCT and the scale parameter of the
spin tune distribution was identified. On the left-hand side of Fig. 4.8 the distributions of the

Figure 4.8: Left: turn depending phase deviation of the ensemble from the reference particle for differ-
ent spin tune spread parameters and the amplitude parameter ε = 0.25. Right: amplitude distribution

turn depending phase are shown for three different spin tune scale parameters (blue: σR,νs =

5 · 10−8; black: σR,νs = 1 · 10−9; red: σR,νs = 5 · 10−9). In all cases, the initial phase starts at zero
and afterwards, it increases strictly monotonically until it converges to π. In fact, the distri-
bution corresponds to the first circular moment of the phase pdf (Eq. 4.56) shown in Fig. 4.5.
In addition, the distribution of the amplitude is displayed on the right-hand side based on the
amplitude parameter ε = 0.25.
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CHAPTER 5

Amplitude Determination

In the previous chapter, it was shown, that the mapping method and the discrete turn Four-
ier transform provide an estimator of the phase ϕ̃ and of the amplitude ε̃ for each macro-
scopic turn interval. However, the estimator of the amplitude is biased. Consequently, a
more sophisticated estimator ε̂ is introduced based on the measurement of ε̃ and the stand-
ard deviation σ. In fact, the moments of the probability density function are discussed, which
describes the distribution of the estimator given a true amplitude value and its standard de-
viation pR(ε̃; ε, σ). Latter is called the Rice distribution. After the comparison of the different
estimators, the results of a typical amplitude distribution are discussed.
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5.1 Rice Distribution

Suppose that in the case of a vanishing true amplitude signal ε =
√

A2 + B2 = 0 the two
uncorrelated parameters A ∼ N(0, σ2) and B ∼ N(0, σ2) are normal random variables, with
mean value 0 and a standard deviation, which is specified by the number of detected events

σ =
√

2
N (4.30). The central limit theorem (2.1) ensures that for a large number of detected

events N this assumption holds. It follows that the estimated magnitude ε̃ =
√

Ã2 + B̃2 is
Rayleigh distributed [37]

pR(ε̃; ε = 0, σ) =
ε̃

σ2 exp
(
− ε̃

2σ2

)
, (5.1)

with the most probable value σ. The quantities Ã and B̃ are estimated according to the two
methods described in chapter 4. They are both consistent, asymptotic normal and unbiased.
However, the probability that ε̃ reaches very high or low values is not null, even if the analyzed
signal has zero amplitude. Consequently, the estimated amplitude ε̃ is positively biased.

If the signal provides a non-zero amplitude ε > 0 the probability density function of ε̃

follows a Rice distribution

pR(ε̃; ε, σ) =
ε̃

σ2 exp
(
− ε̃2 + ε2

2σ2

)
I0

(
εε̃

σ2

)
, (5.2)

where I0 is the modified Bessel function of the first kind of order 0. In fact, the Rice distribution
corresponds to the integral over the estimated phase ϕ̃ of a joint probability density function
of two Normal distributed random variables Ã and B̃ with mean value A and B and the same
standard deviation σ

f (Ã; A) f (B̃; B)dÃ dB̃ =
1

2πσ2 e−
(Ã−A)2

2σ2 · e−
(B̃−B)2

2σ2 dÃ dB̃ . (5.3)

Note that the transformation into polar coordinates (Ã = ε̃ sin(ϕ̃) and B̃ = ε̃ cos(ϕ̃)) and the
Jacobian J = ε̃ has to be taken into account. A derivation of pR is given in appendix A.4. One
should highlight that the Rice distribution is independent of the phase parameter ϕ.

It is helpful to define a signal-to-noise ratio (SNR) γSNR = ε/σ and γ̃SNR = ε̃/σ, respectively.
Considering the Jacobian of the latter transformation dε̃

dγ̃SNR
= σ the Rician distribution can also

be written as

pR(γ̃SNR; γSNR)dγ̃SNR = γ̃SNRe−
γ̃2

SNR+γ2
SNR

2 I0 (γSNRγ̃SNR)dγ̃SNR , (5.4)

which is independent of the standard deviation. Note that the term signal-to-noise ratio is
used widely in the field of signal processing, where a measured signal is in general disturbed
by white noise. However, in the experimental context addressed in this thesis, every event
contributes as a noiseless signal. Thus, the present signal-noise-ratio is given as the ratio of
the actual signal and the standard deviation, which depends on the number of detected event.

For large γSNR the Rice distribution converges to a Normal distribution with mean ε̂ ≈ ε̃R
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and standard deviation σε̃R ≈ σ, where ε̂R denotes the Rician amplitude estimator and σε̃R

represents its standard deviation. In addition, the positive bias becomes small ε̃bias
γSNR → ∞
= 0.

Hereinafter, the parameter σ written down without any index will denote the standard devi-
ation, which depends on the number of detected events N

σ =

√
2
N

. (5.5)

It specifies the standard deviation of the Normal distribution of the random variables A and
B. According to the central limit theorem, the estimators Ã and B̃ are Normally distributed, as
well 2.1.

Figure 5.1: Three examples of the Rice distribution with the standard deviation σ =
√

2/500 and differ-
ent true amplitudes ε1 = 0.05, ε1 = 0.2, ε1 = 0.5, which are represented by the vertical lines. Addition-
ally, the first moments of each distribution are given.

In Fig 5.1 three examples of the Rice distribution Eq. 5.2 are shown for different true amp-
litudes ε but identical standard deviation σ =

√
2/500. The vertical lines correspond to the

true value ε. It is obvious, that the expectation value ε̂R = E[pR(ε̃; ε, σ)] does not coincide
with ε since pR(ε̃; ε, σ) is asymmetric. In fact, the inequality ε̂Rice > ε holds for all values of
the amplitude ε ∈ (0, ∞) and of the standard deviation σ ∈ (0, ∞). In the upcoming sections,
it will be shown, that the positive bias ε̃bias = ε̂R − ε increases for smaller true amplitudes ε

and larger standard deviations σ.
In the following, three different approaches, which reduce the positive bias of the amplitude

estimator, are discussed. First, the moments of the Rice distribution are taken into consider-
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ation, whereas a conventional and a scaled 2nd moment estimator are specified. The second
approach is based on a maximum likelihood estimation (MLE) and the last one is connected
to the Feldmann-Cousin algorithm.

5.1.1 Moments of Rice Distribution

The νth moment of the Rice distribution Eq. 5.2 can be analytically expressed by [38]

< ε̃ν >= (2σ2)
ν
2 Γ
(

1 +
ν

2

)
1F1

[
−ν

2
; 1;− ε2

2σ2

]
, (5.6)

where F is the hypergeometric function and Γ denotes the gamma function. For integer values
of ν/2, F becomes a polynomial in its arguments and in particular the second moment yields

< ε̃2 >= ε2 + 2σ2 (5.7)

With <̂ ε̃2 > =< ε̃2 >= ε̃2, an estimator of ε2 is given by

ε̂2
2nd = ε̃2 − 2σ2 , (5.8)

⇒ ε̂2nd =
√

ε̃2 − 2σ2 . (5.9)

In the case of ε̃2 < 2σ2, the argument of the square root becomes negative. This is physically
meaningless since it violates the a priori knowledge that the amplitude assumes real positive
values. In fact, the probability distribution p

(
ε̂2

2nd; ε, σ
)

follows a non-central χ2 distribution,
which is derived in appendix: A.5 In particular, it is shown, that the probability of p

(
ε̂2

2nd < 0
)

is not zero. Even for large γSNR the estimator is biased, which can be seen by expanding ε̂ about
ε

ε̂2nd ≈ ε

(
1− σ2

2ε2

)
= ε

(
1− 1

2
γ2

SNR

)
. (5.10)

A better estimator is established by taking into account the first moment of the Rice distri-
bution, which is given by

< ε̃ > = (2σ2)
1
2

√
π

2 1F1

[
−1

2
; 1;− ε2

2σ2

]
(5.11)

=

√
π

2
σe−

ε2

4σ2

[(
ε2

2σ2 + 1
)

I0

(
ε2

4σ2

)
+

ε2

2σ2 I1

(
ε2

4σ2

)]
(5.12)

=

√
π

8
σe−

γ2
SNR
4

[(
γ2

SNR + 2
)

I0

(
γ2

SNR
4

)
+ γ2

SNR I1

(
γ2

SNR
4

)]
. (5.13)

Consequently, the variance of the estimated amplitude yields

σ2
ε̂2nd,cor

=< ε̃2 > − < ε̃ >2 (5.14)

= ξ(γSNR)σ
2 , (5.15)

68



5.1 Rice Distribution

where ξ(γSNR) is obtained by factoring out σ2 and by the substitution of the signal-to-noise
ratio. The correction factor ξ(γSNR) is defined as

ξ(γSNR) = 2 + γ2
SNR −

π

8
e

γ2
SNR
2

[
(γ2

SNR + 2)I0

(
γ2

SNR
4

)
+ γ2

SNR I1

(
γ2

SNR
4

)]2

. (5.16)

In Fig. 5.2 the scale factor is shown as a function of the signal-to-noise ratio. It starts at
ξ(0) = 2− π

2 and converges to unity for large γSNR. Thus, the corrected standard deviation
of the estimated amplitude σε̂,cor is always smaller than the one based on the number of de-

tected events σ =
√

2
N . In fact, the scale factor takes into account, that the width of the Rice

distribution 5.1 becomes narrower for a decreasing signal-to-noise ratio.

Figure 5.2: The scale factor 5.16 of the amplitude variance as a function of the signal-to-noise ratio γSNR.

The Eq, 5.14 can also be written as

< ε̃2 > − < ε̃ >2= 2σ2 + ε2 − ε̃2 = ξ(γSNR)σ
2 (5.17)

⇔ 2 + γ2
SNR −

ε̃2

σ2 = ξ(γSNR) (5.18)

⇔ γSNR =

√
ξ(γSNR) +

ε̃2

σ2 − 2 . (5.19)

This expression has an unique solution for all ε̃
σ ≥

√
π
2 since ξ(0) = 2− π

2 . The exact result of

Eq. 5.19 is obtained iteratively using the definition h(γSNR) =
√

ξ(γSNR) +
ε̃2

σ2 − 2. Therefore

the iteration |hi(γSNR,0)− γSNR,i−1| ≤ ε starts with an initial value γSNR,0 and converges until
it reaches a lower limit ε. hm denotes the m-th composition of the function h, i.e. hm(γSNR) =

h(...h(h(γSNR))). This method is presented in [39] and it is called the Koay inversion fix point
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technique. Finally, the corrected 2nd moment amplitude estimator and its standard deviation
yields

ε̂2nd,cor =
√

ε̃2 + (ξ(γSNR)− 2)σ2 (5.20)

=
√

ε̃2 + σ2
ε̂2nd,cor

− 2σ2 , (5.21)

σ2
ε̂2nd,cor

= ξ(γSNR)σ
2 . (5.22)

5.2 Maximum Likelihood Estimator

In order to avoid an unphysical estimator, the maximum likelihood method is implemented
to determine ε̃2. In general, the likelihood function is defined as the product of the joint PDFs
of a sample containing N independent observations ε̃i 2.1.5

L =
N

∏
i=1

pR(ε̃i; ε) . (5.23)

Here, it is assumed that the standard deviation σ is a priori known, thus the function L has
only one unknown parameter ε. In the case of one observation ε̃ per macroscopic turn interval
∆n, the sum ends at N = 1. Taking the logarithm of Eq. 5.23 and making use of Eq. 5.2 one
gets

logL = log
[

ε̃

σ2 exp
(
− ε̃2 + ε2

2σ2

)
I0

(
εε̃

σ2

)]
(5.24)

∼ − ε2

2σ2 + log I0

(
εε̃

σ2

)
. (5.25)

The ML estimator is given by the global maximum of logL

ε̂ML = arg
{

max
ε

(logL)
}

. (5.26)

This is realized numerically, since the parameter ε enters Eq. 5.25 in a nontrivial way. In Fig. 5.3
the likelihood function in Eq. 5.25 is shown for three measured amplitudes ε̃ and the standard
deviation σ2 = 2/500. For larger ε̃ the maxima are located at ε > 0, whereas for smaller values
(here ε̃ = 0.05) the function decreases monotonically. In this case the estimator yields ε̂ML = 0,
which is physically meaningful but obviously biased. Analytically the maximum is given by

d logL
dε

= − ε̂ML

σ2 +
ε̃I1

(
ε̃ε̂ML

σ2

)
σ2I0

(
ε̃ε̂ML

σ2

) !
= 0 (5.27)

⇔ ε̂MLI0

(
ε̃ε̂ML

σ2

)
= ε̃I1

(
ε̃ε̂ML

σ2

)
, (5.28)

where I1 denotes the modified Bessel function of first kind and first order.
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Figure 5.3: Three log-likelihood functions 5.25 for different measured amplitudes ε̃ with a standard
deviation σ2 = 2/500. For the red and the blue curves, the maxima (best estimator) are located in the
region ε > 0. The black curve decreases monotonically and yields ε̃ML = 0

5.3 Feldmann-Cousin Algorithm

Another approach obtaining proper confidence intervals of the amplitude estimator is given
by the Feldmann-Cousin algorithm [40]. Therefore, the likelihood ratio of the Rician probabil-
ity density function and its functional value for the most probable value εbest is formed

RR(ε̃, ε) =
pR(ε̃; ε)

pR(ε̃; εbest)
. (5.29)

Confidence intervals are constructed by selecting all values of ε̃ for which the ratio is largest
until the desired coverage is reached. A better understanding of the method is given in Fig. 5.4.
Here, the likelihood ratio 5.29 and the Rician distribution 5.2 are shown as a function of the
estimated amplitude for two different true amplitude parameters ε = 0.1 and ε = 0.4 but
same conventional standard deviation σ = 0.2. Henceforward, all values of RR(ε̃selected, ε)

are selected until the integral of pR(ε̃selected; ε) reaches the desired target value. In the case
of a 68.3% confidence interval the blue area in Fig. 5.4 corresponds to approximately 68.3 %.
The blue curve in the upper plot represents the included respectively largest values of the
likelihood ratio within the interval.

On the left-hand side of Fig. 5.5 a 2-dimensional map of the Rice distribution 5.2 is shown.
The statistical error is set to σ =

√
2/50. The black curve represents the most probable value

εbest(ε̃), which denotes the global maximum of the y-axis projection of the respective bin, as
a function of the estimated amplitude. An evident positive bias arises, which increases for
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Figure 5.4: Two examples of the construction of the Feldmann-Cousin confidence interval for ε = 0.1,
ε = 0.4 and σ = 0.2. The blue area in the lower plots corresponds to the 68.3% confidence of the Rician
distribution, whereas the colored curve in the upper plots represents the largest values of the likelihood
ratio RR according to the 68% coverage.

smaller estimated amplitudes.

The right-hand side of Fig. 5.5 shows the corresponding map of the likelihood ratio RR(ε̃, ε)

in Eq. 5.29. The two blue curves indicate the 68.3 % standard deviation. In other words 68 %
of the x-axis projection of the map on the left-hand side is covered within this interval. The
confidence interval of the true amplitude given for a fixed ε̃ is enclosed by two horizontal
lines. Therefore, a vertical line is drawn at ε̃, which intersects the lower and upper bounds
(blue curves). The horizontal intersection lines define the confidence interval. This procedure
is illustrated by the dotted white lines for ε̃1 = 0.2 and ε̃2 = 0.7. The confidence intervals
yield ε(ε̃1) ∈ [0, 0.28] and ε(ε̃2) ∈ [0.46, 0.87]. The latter result spans approximately the same

interval as using Gaussian error (which is biased) [ε−
√

2
50 = ε− 0.2, ε +

√
2

50 = ε + 0.2] →
∆σ

gaus
ε = 0.4 ≈ ∆σFC

ε (ε̃2) = 0.41.

If the estimator of the amplitude represents the final result, the determination of the Feldmann-
Cousin interval is sufficient. However, a subsequent analysis demands a probability density
function of ε depending on a given parameter ε̃. Therefore, the assumption of a constant prior
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5.3 Feldmann-Cousin Algorithm

Figure 5.5: Left: Two dimensional map of the Rice distribution 5.2 with standard deviation σ =
√

2/50.
In addition the most probable value of the true amplitude as a function of the estimated amplitude
εbest(ε̃) is shown in black. Right: Likelihood ratio 5.29 constructed according to the Feldmann-Cousin
algorithm. The blue curve indicates the 68.3% confidence interval and the horizontal dashed white lines
corresponds to the confidence interval of the respective estimated amplitude ε̃ (vertical dashed white
lines). The black curve represents the 68.3 % coverage of the y-axis projection based on the Bayes’
theorem.

probability for ε is used. This yields

p̃R(ε; ε̃) =
pR(ε̃; ε)p(ε)

p(ε̃)

=
pR(ε̃; ε)p(ε)∫ ∞
0 pR(ε̃; ε)dε

(5.30)

∼ RR(ε̃, ε)

according to the Bayes’ theorem [41]. The constant prior probability p(ε) ensures the normal-
ization of 5.30

∫ ∞
0 p̃R(ε; ε̃)dε = 1. It is important to note that the probability density function

of ε is proportional to the likelihood ratio p̃R(ε; ε̃) ∼ RR(ε̃, ε). The latter is given by the y-axis
projection of the distribution on the right hand-side of Fig. 5.5. Two examples are shown in
Fig. 5.6 for the estimated amplitudes ε̃ = 0.1 and ε̃ = 0.4. The blue area covers 68.3 % of the
largest values of RR(ε̃, ε).

Additionally, the probability density function of ε is shown in red. In the case of ε̃ = 0.1 the
x-axis is scaled that both distributions match exactly. This is possible since the distributions
are proportional to each other and thus both yield the identical 68.3 % confidence interval.
The same scale is used for ε̃ = 0.4. Here, the probability density function becomes lower and
wider. However, both distributions provide equivalent results for the 68.3 % coverage.
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Figure 5.6: Comparison between the amplitude likelihood ratio (black) and the probability density func-
tion of the true amplitude (red) obtained for a given ε̃ = 0.1 and ε̃ = 0.4. The blue area represents 68.3 %
of the largest values of RR(ε̃, ε).

On the right-hand side of Fig.5.5 the black curves indicate the 68.3 % confidence interval of
RR(ε̃, ε) and pR(ε; ε̃), respectively. They are based on the Bayes’ theorem and one observes
a significant deviation compared to the results from the Feldmann-Cousin algorithm (blue
curve).
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5.4 Comparison of Estimators

The amplitude estimators ε̂2nd, ε̂2nd,cor and ε̂ML are benchmarked by generating nẼ = 106

random variables Ẽ according to the Rice distribution in Eq. 5.2. Again, the signal-to-noise

ratio γSNR = ε
σ is used given a standard deviation of σ =

√
2

500 . Thus, the amplitude, i.e. the
reciprocal signal-to-noise ratio is given by

ε = σγSNR = γSNR

√
2

500
(5.31)

1
γSNR

=
1
ε

√
2

500
. (5.32)

Figure 5.7: Both plots show the different estimators of the amplitude normalized by the true one as a
function of the reciprocal signal-to-noise ratio. The left-hand side illustrates a zoom of the plot on the
right-hand side. The red data points correspond to the 2nd moment estimator ε̂2nd from Eq. 5.9. The the
yellow ones are corrected by the scaling factor ε̂2nd,cor as shown in Eq. 5.20. The red curve represents
the second order Taylor estimate of the 2nd moment estimator 5.10. The ML estimator 5.26 is shown in
black and the blue band covers the 68.3 % Feldmann-Cousin confidence interval 5.3.

For each value of γSNR the arithmetic mean of the generated random variables µẼ is cal-
culated. The estimators ε̂2nd and ε̂2nd,cor are determined according to Eq. 5.9 and Eq. 5.20,
respectively. The conventional estimator is given by ε̃ = µẼ . In order to obtain ε̂ML, the like-
lihood function 5.25 is applied for each Ẽ to identify the best estimate of the random variable
Ẽ . The arithmetic mean of the maximum likelihood estimators µẼML

corresponds to the best
estimator for a given ratio of ε and σ.

Figure 5.7 shows the results in red (ε̂2nd), yellow (ε̂2nd,cor) and black (ε̂ML). Here, the nor-
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malized estimator ε̂
ε is plotted against the reciprocal signal-to-noise ratio in order to avoid

singularities at γSNR = 0. Consequently, an unbiased estimator yields ε̂
ε = 1 and the 68.3 %

confidence interval of each data point is given by σε̂ =
σ

ε·nẼ = 1
γSNR·

√
106 .

One observes, that the likelihood method provides an unbiased estimator until 1
γSNR
≈ 0.3,

while ε̂2nd decreases instantaneously. The red curve corresponds to the second order Taylor
approximation of the expectation value of the 2nd moment estimator in Eq. 5.9. It describes
the red data points in a good agreement until 1

γSNR
≈ 0.5, but drops faster for larger values.

For 1
γSNR

> 1.4, the mean of the random variables is larger than the standard deviation. Con-
sequently, the argument of the square root in Eq. 5.9 becomes negative and ε̂2nd corresponds
to a complex number.

The corrected 2nd moment estimator ε̂2nd,cor gives a more stable result. It is almost constant
for all signal-to-noise ratios. In addition, it provides a slightly underestimated normalized
amplitude ratio ε̂2nd,cor

ε ≈ 1. However, one still faces the problem of a negative argument
of the square root in Eq. 5.20. It occurs, as soon as the inequality ε̃2 + ξ(γSNR)σ

2 < 2σ2 is
fulfilled. Since the conventionally estimated amplitude can assume all values greater than
zero ε̃ ≥ 0 and since the minimal scale factor is given by ξ(γ0) = 2 − π

2 , the right-hand

side of the inequality becomes dominant for larger standard deviations σ =
√

2
N . Thus, the

probability, that the corrected 2nd moment estimation fails is increased for smaller values of ε̃

and larger values of σ.
The likelihood estimator ε̂ML shows a local minimum at 1

γSNR
≈ 0.7. Afterwards, it increases

until the signal-to-noise ratio reaches approximately 5. For larger γSNR it converges to zero.
The behavior of ε̂ML depends on the interplay between the probability to obtain ε̃ML = 0
(black curve in Fig. 5.3), which becomes larger for smaller amplitudes ε (larger 1

γSNR
), and the

simultaneously increasing ratio ε̃ML
ε > 0 obtained for a non-zero ML estimator. However,

even for small true amplitudes the probability to obtain ε̂ML 6= 0 does not vanish, since also
larger estimated amplitudes ε̃ are allowed according to the Rice distribution in Eq. 5.2. Thus,
for large 1

γSNR
the distribution of the likelihood estimators based on the random variable ẼML

contains either zero values or relatively large normalized amplitude estimators ε̂
ε � 1.

The blue band indicates the 68.3 % Feldmann-Cousin confidence interval. In the represent-
ation of Fig. 5.7 it becomes broader with increasing 1/γSNR since the y-axis corresponds to the
normalized estimator. Thus, the upper and lower limits of the confidence interval are divided
by ε. Additionally, the lower bound reaches zero at approximately 1/γSNR ≈ 0.6. This means,
that for larger values of 1/γSNR the 68.3 %, confidence interval entirely covers the left part of
the white vertical line of the right-hand side plot in Fig. 5.5.

5.5 Efficiency of Estimators

In the case of high statistics, i.e. a sufficiently large number of estimators obtained for an
identical measurement setup, the corrected 2nd moment estimator ε̂2nd,cor yields the most
convincing result. However, the experiment provides only one amplitude estimator per mac-
roscopic measurement interval. Thus, besides of the determination of an unbiased estimator,
it is of major interest to identify the probability, that ε̃ and σσ̃ yield a physically meaningful
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result. In other words, an efficiency is defined as

εε̂ =
Nvalid

Ntot
, (5.33)

where Nvalid denotes the number of meaningful results and Ntot is the number of the total
number of estimators.

In the case of the 2nd moment estimators ε̂2nd and ε̂2nd,cor a valid estimator is obtained,
when the argument of the square root in Eq. 5.9 respectively Eq. 5.20 is not negative. A deeper
understanding of the pdf of ε̂2

2nd is given in appendix A.5, where the filled area in Fig. A.1
represents the integrated probability of an non-physical solution. For the maximum likelihood
estimator ε̂ML, a meaningful result is defined, if the maximum of the likelihood function in
Fig. 5.3 assumes numbers not equal to zero.

Figure 5.8: The efficiency to obtain a physically meaningful estimator is shown as a function of the
reciprocal signal-to-noise ratio for the three different approaches discussed in the previous sections
(the 2nd moment in red, the corrected 2nd moment in yellow, the maximum likelihood in black).

In Fig. 5.8 the efficiency of each estimator is shown as a function of the reciprocal signal-to-

noise ratio with Ntot = 105 and a typical standard deviation of σ =
√

2
500 . For small γSNR < 0.3

all efficiencies yield unity, i.e. for every estimated amplitude ε̃ a valid estimator ε̂ is identified.
In the case of larger signal-to-noise ratios, the quantity εε̂ decreases, whereas the results of
the 2nd moment (red) and the maximum likelihood (black) estimator are almost identical.
However, once the estimator ε̂2nd fails, the maximum likelihood estimator yields ε̂ML = 0,
which is an appropriate result. Both distributions converge to 1

e , which can be understood by
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evaluating the integral of the pdf in Eq. A.32 for large 1
γSNR
→ ∞ or ε→ 0

Ntot − Nmin
valid = Ntot

∫ 0

−2σ
p(ε̂2

2nd; ε, σ)dε̂2
2nd

= Ntot

∫ 0

−2σ

1
2σ2 e−

ε̂2
2nd+2σ2

2σ2 dε̂2
2nd = Ntot

e− 1
e

, (5.34)

from −2σ to 0. The integral represents the probability, that ε̂2
2nd assumes negative values and

consequently, the minimal number of valid estimators is given by Nmin
valid = Ntot(1− 1−e

e ) =
Ntot

e , which leads to a minimal efficiency of εmin
ε̂2nd

= εmin
ε̂ML

= 1
e .

The efficiency of the corrected 2nd moment estimator εε̂2nd,cor
is larger, since the argument

of the square root is corrected by the scale factor ξ(γSNR). Thus, estimators obtained by the
mapping method or the discrete turn Fourier transform, which fulfill the inequality

ε̃2 > (ξ(γSNR)− 2)σ2 , (5.35)

yield proper results. For large 1
γSNR

the scale factor in Eq.5.16 assumes ξ(0) = 2− π
2 and the

right-hand side of Eq. 5.35 becomes −π
2 σ. Thus, the maximal number of non-valid estimators

is given by

Ntot − Nmin
valid = Ntot

∫ 0

− π
2 σ

p(ε̂2
2nd,corr; ε, σ)dε̂2

2nd,corr (5.36)

= Ntot

∫ 0

− π
2 σ

1
2σ2 e−

ε̂2
2nd,corr+

π
2 σ

2σ2 dε̂2
2nd,corr = Ntot(1− e−

π
4 ) . (5.37)

Consequently, the minimal efficiency yields εmin
ε̂2nd,cor

= e−
π
4 ≈ 0.456.

5.6 Amplitude Spectrum

An example of a turn depending amplitude spectrum ε̃(νs, n) is shown in Fig. 5.9 for an idle
spin precession in the horizontal plane. On the left-hand side the results obtained by the
mapping method are presented. The right-hand side is based on the results obtained by the
discrete turn Fourier transform. The scan interval varies from νscan

min = 0.1609655 to νscan
max =

0.1609765, which yields a total range of ∆νscan = 1.2 · 10−5. A protruding maximum of the
amplitude ε̃max = ε̃(νmax) appears at νmax ≈ 0.160971, which leads to a first estimate of the
spin tune. The spectra of both methods provide similar results within the given resolution.

In order to evolve a better understanding of the respective distribution, the integral of the y-
axis projections over the total cycle length is shown in Fig. 5.10. The error bars σε̃ correspond
to the 68.3 % confidence interval determined by the Feldman-Cousin algorithm introduced
in section 5.3. The red data points represent the results obtained by the mapping method,
which yields systematically larger values than the discrete turn Fourier transform displayed
in blue ε̃map > ε̃DFT. The difference occurs mainly due to the fact, that for the former method
the number of bins Nbins has to be chosen for the asymmetry distribution, which yields an
additional systematic positive bias. The sum of the y-axis projections forms a spectrum which
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Figure 5.9: Two examples of the turn depending amplitude spectrum ε̃ for an idle spin precession in
the horizontal plane, which lasts for n = 70 · 106 turns (≈ 90 s). The spin tune scan is performed from
νscan

min = 0.1609655 to νscan
max = 0.1609765, i.e. in a full range of ∆ν0

s = 1.1 · 10−5.

Figure 5.10: The y-axis projection of the 3rd bin of the x-axis of Fig. 5.9. The red data points corres-
pond to the mapping method and the blue ones represent the result obtained by the discrete Fourier
transform.
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corresponds to a sinc(x) = sin(x)/x distribution. This corresponds to the Fourier transform
representation of a sinusoidal function in the frequency domain.

5.6.1 Main Lobe

The full width at half maximum (FWHM) of the main lobe in Fig. 5.10 is approximately given
by

δν ≈ 1
∆n

, (5.38)

where ∆n denotes the number of particle revolutions in the ring during a macroscopic meas-
urement interval. In the case of ∆n = 106, the FWHM yields δν = 10−6.

This becomes clear by evaluating the Fourier transform G(ν) of a sine-like function f (n) =
A cos(2πνn) within a finite turn interval ∆n. As mentioned in section 4.2, a multiplication in
the turn domain corresponds to a convolution in the spin tune domain.

G(ν) =
∫ ∞

−∞
F(ν− λ) ∗W(λ)dλ

=
∫ ∞

−∞

A
2
[δ(λ− ν + νs) + δ(λ + ν + νs)] ·

sin(2πλ∆n)
2πλ

dλ

=
A
2

[
sin(2π(ν− νs)∆n)

2π(ν− νs)
+

sin(2π(ν + νs)∆n)
2π(ν + νs)

]
. (5.39)

Here, the function W corresponds the Fourier transform of a rectangular window function
w(n) = 1 for n < ∆n. The function 5.39 is symmetric about the y-axis and it provides two
main peaks at ν = νs and ν = −νs. To estimate the width of the main lobe the first zero-
crossings of the function in Eq. 5.39 are identified, which occurs at

π(ν− νs)∆n = δν∆n = ±π (5.40)

⇒ δν =
1

∆n
q.e.d. . (5.41)

This result represents the uncertainty principle of the Fourier transform, which states that for
a more concentrated g(n) the Fourier transform G(ν) must be more spread out. Or differently
spoken: the longer the measurement interval the narrower the main lobe

∆nδν ≥ 1 . (5.42)

5.6.2 Maximum Likelihood Fit

In Fig. 5.11 the turn depending amplitude is shown for two cycles recorded for different runs.
A run is specified by a set of cycles, which were performed with the same settings of the
storage ring. Thus, the decoherence of the particle spins should change from run to run. Con-
sequently, both distributions yield a differently decreasing amplitude pattern. The analysis is
based on a fixed assumed spin tune νs for the whole cycle. A better estimation of νs is discussed
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in the upcoming chapters.
In section 4.4.3 an expression for the turn depending amplitude is derived based on the

assumption of a Rayleigh distributed spin tune

ε(n) = ε0

([
1−
√

πσϕs ne−(σϕs n)2
erfi

(
σϕs n

)]2
+ π(σϕs n)

2e−2(σϕs n)2
) 1

2

. (5.43)

where σϕs =
√

2πσR,νs corresponds to the scale parameter of the Rayleigh distribution and ε0

denotes to the initial vertical vector polarization of the particle ensemble. The red curve in
Fig. 5.11 represents a maximum likelihood fit based on the function

L =
N

∏
i=1

p̃R(ε (ni, σR,νs , ε0); εi) . (5.44)

Here, the probability density function p̃R derived in the previous sections and the Bayes’ the-
orem stated in Eq. 5.30 are used. The respective pdf of each data point is represented by the
underlying scatter plot given by the color scale. Accordingly, the spin coherence times yield

τ
long
SCT = (184.17± 151.55)× 106 turns , (5.45)

τshort
SCT = (38.10± 11.91)× 106 turns . (5.46)

The amplitude parameters ε0 are compatible with each other within their statistical error since
both cycles are performed with the same polarization state.

5.7 Conclusion

In the previous sections, it is pointed out, that the amplitude estimator is positively biased.
Several techniques are presented in order to minimize the bias. The most stable estimator is
given by the corrected 2nd moment estimator εε̂2nd,cor

. In particular, it provides proper res-
ults for small signal-to-noise ratios. However, the probability that εε̂2nd,cor

becomes physically
meaningless increases with decreasing γSNR until it reached its minimum at approximately
1− 0.456. Thus, the Feldmann-Cousin algorithm corresponds to the most convenient method.
Note that it provides asymmetric confidence intervals, which have to be taken into account if
the data is used for a further analysis.

In fact, the probability density function of the amplitude p̃R(ε; ε̃, σ) can be derived based
on the Rice distribution and the Bayes’ theorem. Consequently, it is possible to identify the
pdf of the true amplitude ε, which depends on the estimated amplitude ε̃ and the standard
deviation obtained by the discrete Fourier transform σ. Furthermore, the spin coherence time
τSCT is determined by a maximum likelihood fit. The fit function is based on the assumption
of a Rayleigh distributed spin tune with the scale parameter σR,νs and the spin tune on the
reference orbit νref

s .
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Chapter 5 Amplitude Determination

Figure 5.11: Turn depending amplitude for two cycles from runs with different settings of the sextupole
magnets. The red curve represents a maximum likelihood fit based on Eq. 5.44. The probability density
function of the amplitude based on the measured amplitude is indicated by the color scheme.
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CHAPTER 6

Phase Determination

The spin tune νs is determined by means of the phase information ϕ̃ obtained by the asym-
metry distribution in Fig. 4.3 or by the discrete Fourier Transform (Eq. 4.28). It is supposed that
the assumed spin tune ν0

s is fixed to a constant value for the analysis of the whole cycle. Thus,
it acts as a baseline with respect to the turn derivative of the phase ∂ϕs(n)/∂n. Consequently,
the turn depending spin tune can be split into a constant term ν0

s and a part, which specifies
the turn depending deviation between the true value νs(n) and ν0

s

νs(n)
ν0

s
= 1 +

δνs(n)
ν0

s

= 1 +
δ fs(n)

fs
− δ fRF(n)

fRF

= 1 +
1

2πν0
s

∂ϕs(n)
∂n

. (6.1)

Here, fs corresponds to frequency of the spin precession and fRF denotes the RF cavity fre-
quency. Observing the phase difference ϕs(n) allows the determination of the turn depending
spin tune νs(n).

νs(n) = ν0
s +

1
2π

∂ϕs(n)
∂n

, (6.2)

Note that Eq. 6.1 is independent of the cavity frequency fRF.
In the following, several approaches are discussed in order to provide a proper estimator

of the phase parameter ϕ̃s and of its confidence interval σϕ̃s . First, the wrapped probability
density function of the phase is derived. Hereinafter, the maximum likelihood method is
used to show that the phase estimator is unbiased. In addition, the confidence interval of the
phase estimator is determined based on the Feldmann-Cousin algorithm. Finally, the theory
of directional statistic is used to identify a proper confidence interval based on the estimated
amplitude ε̃.

At the end of this chapter, the interpolation of the spin tune based on the phase estimator is
described, which also includes the discussion of its statistical error.
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Chapter 6 Phase Determination

6.1 Wrapped Probability Density Function

Up to now, the standard deviation of the phase has been determined conventionally by

σϕ̃ =
σε̃

ε̃
=

√
2

ε̃
√

N
=

√
2

γ̃SNR
, (6.3)

where ε̃ denotes the estimated amplitude obtained by the mapping method or discrete Fourier
transform, N represents the number of detected events and γ̃SNR is the estimated signal-to-
noise ratio. In chapter 5 it was shown, that the estimator of the amplitude is biased because
it is composed of the square root of the sum of two quadratic independent random variables.
Hence, Feldmann-Cousin intervals are constructed, which cover the requested coverage. Ac-
cordingly, distributions of the true amplitude ε are identified depending on ε̃. However, no
analytical representation exists to describe these distributions. Thus, look-up tables are gener-
ated in order to construct proper confidence intervals.

An estimator of the phase standard deviation is obtained in a similar way. Therefore, the
joint probability density function of two Normal distributed random variables A and B from
Eq. 5.3 is evaluated. In comparison to section 5 the integration is performed with respect to
the amplitude parameter ε̃ ∈ (0, ∞)

pϕ(ε̃, ϕ̃; ε, ϕ, σ)dε̃ dϕ̃ =
ε̃

2πσ2 e−
(ε̃2+ε2)

2σ2 · e−
2ε̃ε(sin(ϕ) sin(ϕ̃)+cos(ϕ) cos(ϕ̃))

2σ2 dϕ̃ dε̃ , (6.4)

pϕ(ϕ̃; ε, ϕ, σ)dϕ̃ =

[∫ ∞

0

ε̃

2πσ2 e−
(ε̃2+ε2)

2σ2 e−
2ε̃ε cos(ϕ̃−ϕ)

2σ2 dε̃

]
dϕ̃

=
e
−ε2

2σ2

2π

[
1−
√

πε cos(ϕ̃− ϕ)√
2σ2

e
ε2 cos2(ϕ̃−ϕ)

2σ2 erfc
(

ε cos(ϕ̃− ϕ)√
2σ2

)]
dϕ̃, (6.5)

where erfc denotes the complementary error function. The probability density function can
be written as a function of two parameters, namely the signal-to-noise ratio γSNR = ε

σ =√
2γ†

SNR and the difference between the estimated and the true value ∆ϕ = ϕ̃− ϕ. In addition,
the complementary error function erfc can be expressed in terms of the Kummer confluent
hypergeometric function 1F1 of first kind

√
π cos(x)ex2

erfc(x) =
√

π cos(x)ex2
(1− erf(x))

=
√

π cos(x)ex2 − 1F1(1,
1
2

, x2)− 1 , (6.6)

where erf denotes the error function. Accordingly, the probability density function of the
phase is given by

pϕ(ϕ̃; γ†
SNR, ∆φ) =

e−(γ†
SNR)

2

2π

(
1F1

[
1;

1
2

;
(

γ†
SNR cos ∆ϕ

)2
]
−
√

πγ†
SNR cos ∆ϕe(γ†

SNR cos ∆ϕ)
2
)

.

(6.7)

Apparently, Eq. 6.7 has not been extensively discussed in other scientific work, thus neither
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6.1 Wrapped Probability Density Function

a name nor a proper notation exists, yet. In the following, the subscript ϕ will indicate the
denotation of the probability density function given in Eq. 6.7. The domain of definition of the
estimated phase is given by ϕ̃ ∈ (−π, π]. Additionally, pϕ(ϕ̃; γSNR, ϕ) represents a wrapped
probability density function, which is constructed by wrapping the pdf on the line around the
circumference of a unit circle [42]. The normalization is ensured, since the integral from −π to
π yields unity

∫ π
−π pϕ(ϕ̃)dϕ̃ = 1.

Figure 6.1: Probability distributions for different true phases ϕ1 = 1 ; ϕ2 = −π
2 ; ϕ3 = π

2 , but same
standard deviation σ2 = 2

500 and amplitude ε = 0.05

In Fig. 6.1 three examples of pϕ(ϕ̃; ε, ϕ) are shown for different true phase values ϕ1 =

0 ; ϕ2 = −π
2 ; ϕ3 = π

2 and the same standard deviation σ =
√

2/500. The true amplitude is
chosen relatively small ε = 0.05 compared to σ (γSNR � 1) in order to unfold the characteristic
behavior of pϕ(ϕ̃; ε, ϕ). The distribution is symmetric about the mean value ϕ̂ϕ =< ϕ̃ >. Its
variance σ2

ϕ̃ϕ
depends on the standard deviation σ and the true amplitude ε. In the following,

three different approaches are discussed to determine a proper estimator of the phase ϕ̃ and
its standard deviation σϕ̃ .
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6.1.1 Maximum Likelihood Estimator

The maximum likelihood estimator ϕ̂MLE is obtained by taking the logarithm of Eq. 6.5

logL = log

e
−ε2

2σ2

2π

[
1−
√

πε cos(ϕ̃− ϕ)√
2σ2

e
ε2 cos2(ϕ̃−ϕ)

2σ2 erfc
(

ε cos(ϕ̃− ϕ)√
2σ2

)]
dϕ̃

 (6.8)

∼ log
ε cos(ϕ̃− ϕ)√

2σ2
+

ε2 cos2(ϕ̃− ϕ)

2σ2 + log erfc
(

ε cos(ϕ̃− ϕ)√
2σ2

)
. (6.9)

The global maximum of logL is given by

0 !
=

d logL
dϕ

(6.10)

0 =
sin(ϕ̃− ϕ̂MLE)

cos(ϕ̃− ϕ̂MLE)
+

ε2

2σ2 sin (2[ϕ̃− ϕ̂MLE]) +
ε√

2πσ2
sin(ϕ̃− ϕ̂MLE)e

ε2

2σ2 cos2(ϕ̃−ϕ̂MLE) . (6.11)

The right hand side becomes zero if sin(ϕ̃− ϕ̂MLE)
!
= 2πk for k ∈ Z. Thus, the estimated value

ϕ̃ = ϕ̂MLE denotes an unbiased, 2π-periodic maximum likelihood estimator of the phase.

6.1.2 Circular Moment Estimator

According to the theory of directional statistics, the m-th moment of a wrapped probability
distribution pw(ϕ) based on the random variable ϕ is given by [43]

ẑm =
∫ π

−π
p(z)zm dz =

∫ π

−π
p(ϕ)eimϕ dϕ , (6.12)

with z = eiϕ = cos ϕ − i sin ϕ, ϕ = arg z,|z| =
√
<(z)2 +=(z)2. Here, = and < denote the

imaginary and the real part of z, respectively.
Consequently, the m-th moment of pϕ(ϕ̃; ε, ϕ) in Eq. 6.5 reads

ẑm =
∫ π

−π

e
−ε2

2σ2

2π

[
1−
√

πε cos(ϕ̃− ϕ)√
2σ2

e
ε2 cos2(ϕ̃−ϕ)

2σ2 erfc
(

ε cos(ϕ̃− ϕ)√
2σ2

)]
eimϕ̃ dϕ̃ . (6.13)

There exists no analytical representation of this integral for m ∈ N and ϕ ∈ (−π, π]. Thus,
a numerical solution is required to obtain the first circular moment (m = 1) of pϕ(ϕ̃; ε, ϕ)

respectively the circular estimator of the phase

ϕ̂circ = arg ẑ1 = atan2
(
=(ẑ1),<(ẑ1)

)
. (6.14)

In the left part of Fig. 6.3 the true phase ϕ is shown as a function of ϕ̂circ for a given standard

deviation σ =
√

2
500 and a true amplitude ε = 0.05. Evidently, ϕ̂circ represents an unbiased

estimator of the phase over the full range ϕ ∈ (−π, π].
In the previous section, it has been shown, that the standard deviation of the phase σϕ̃ is
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6.1 Wrapped Probability Density Function

independent of the phase value itself. Thus, the true value can be set to ϕ = 0 without loss of
generality: σϕ̃ ≡ σϕ̃(ϕ = 0)). Furthermore, the integral is split into a sine and a cosine term.
The first circular moment (m = 1) yields

ẑ1(ϕ = 0) =
∫ π

−π

e
−ε2

2σ2

2π

[
1−
√

πε cos ϕ̃√
2σ2

e
ε2 cos2 ϕ̃

2σ2 erfc
(

ε cos ϕ̃√
2σ2

)]
(cos ϕ̃− i sin ϕ̃)dϕ̃ , (6.15)

The integral of the sinus vanishes
∫ π
−π p(ϕ̃)ϕ sin(ϕ̃)dϕ = 0, since it is an odd function. The

solution of the cosine term is more complicated and it is derived in appendix A.6. Sub-
sequently, the following expressions are obtained for the imaginary respectively real part

=(ẑ1) = 0 , (6.16)

<(ẑ1) =

√
π

2

√
ε2

4σ2 e−
ε2

4σ2

[
I0

(
ε2

4σ2

)
+ I1

(
ε2

4σ2

)]
, (6.17)

Rz1 = |ẑ1|

=

√
(=(ẑ1)2 + (<(ẑ1)2

=

√
π

2

√
ε2

4σ2 e−
ε2

4σ2

[
I0

(
ε2

4σ2

)
+ I1

(
ε2

4σ2

)]
, (6.18)

where Rz1 ∈ (0, 1) denotes the length of the mean resultant, which corresponds to the sum of
all vectors of the population. The first circular moment of the phase corresponds to the true
one ϕ̂circ = atan2

(
=(ẑ1),<(ẑ1)

)
= ϕ = 0, since the imaginary part yields zero.
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6.1.3 Confidence Interval of Estimated Phase

The Feldmann-Cousin algorithm, which was already discussed in section 5.3), allows the con-
struction of the confidence interval. Therefore, the wrapped probability density function in
Eq. 6.7 is evaluated for different true phase values ϕ ∈ [−π, π) as a function of the estimated
phase ϕ̃ ∈ [−π, π). The horizontal projection on the left-hand side plot of Fig. 6.2 shows the
pdf for a given true amplitude ε =

√
2 · 0.02 and standard deviation σ =

√
2/500. Obvi-

ously, the Feldmann-Cousin estimator of the phase is unbiased, since the most probable value
coincides with the estimated one ϕbest(ϕ̃) = ϕ̂FC = ϕ̃.

Figure 6.2: The plot on the left-hand side shows the probability density functions of the estimated phase
pϕ(ϕ̃; ε, ϕ) for a given true amplitude ε =

√
2 · 0.2 and a standard deviation σ =

√
2/500. Additionally,

the most probable value ϕbest(ϕ̃) is given by the black line. On the right-hand side the likelihood ratio
R(ϕ̃, ϕ) = p(ϕ̃; ϕ)/p(ϕ̃; ϕbest) is shown.

On the right-hand side of Fig. 6.2, the likelihood ratio Rϕ(ϕ̃, ϕ) = pϕ(ϕ̃; ϕ)/pϕ(ϕ̃; ϕbest) is
shown. It is symmetric about the unbiased estimator ϕ̂FC, since the wrapped pdf is invariant
under the substitution ϕ̃ ←→ ϕ, i.e. pϕ(ϕ̃; ε, ϕ, σ) = pϕ(ϕ; ε, ϕ̃, σ). Therefore, the confidence
interval of the phase is independent of the estimated phase ϕ̃ itself and the quantity σFC

ϕ̃ (ε, σ)

depends only on the true amplitude and its standard deviation.
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6.1 Wrapped Probability Density Function

In order to determine the 68.3 % confidence interval, the following integral is solved

0.683 !
=
∫ σFC

ϕ̃ (γSNR)

−σFC
ϕ̃ (γSNR)

pϕ(ϕ̃; ε, ϕ)dϕ̃

=
e−(γ†

SNR)
2

π

∫ σFC
ϕ̃ (γSNR)

0

(
1F1

[
1;

1
2

;
(

γ†
SNR cos ∆ϕ

)2
]
−
√

πγ†
SNR cos ∆ϕe(γ†

SNR cos ∆ϕ)
2
)

dϕ̃

= −γ†
SNR
2π

erf(γ†
SNR sin σFC

ϕ̃ (γSNR)) +
e−(γ†

SNR)
2

π

∫ σϕ̃,FC(γSNR)

0
1F1

[
1;

1
2

;
(

γ†
SNR cos ∆ϕ

)2
]

dϕ̃ .

(6.19)

The results are shown on the right hand side of Fig. 6.3 as the data points in magenta. For
a vanishing amplitude γSNR = 0 one obtains σFC

ϕ̃ ≈ 0.683 · π = 2.14 since the first term of
Eq. 6.19 vanishes and the integrand becomes unity

1F1

[
1;

1
2

; 0
]
= 1 , (6.20)

⇒ 0.683 =
σFC

ϕ̃ (γSNR = 0)

π
. (6.21)

For relatively large signal-to-noise ratios γSNR > 4, σFC
ϕ̃ converges towards the conventional

estimator σconv
ϕ̃ = 1

γSNR
.

Circular Standard Deviation of a Wrapped Normal Distribution

One can find two definitions of the standard deviation of a wrapped Normal distribution,
which is given by

fWN(ϕ; µ, σ) =
1

σ
√

2π

k=∞

∑
k=−∞

e
(ϕ−µ+2πk)2

2σ2 . (6.22)

Here, µ and σ denote the mean and standard deviation of the unwrapped distribution. In fact,
it exists a bounded one σcirc

ϕ̃,b ∈ (0,
√

2) and an unbounded one σcirc
ϕ̃,ub ∈ (0, ∞)

σcirc
ϕ̃,b =

√
2(1− |ẑ1|) =

√
2(1− Rz1) , (6.23)

σcirc
ϕ̃,ub =

√
−2 ln |ẑ1| =

√
−2 ln Rz1 . (6.24)

Since the pdf of the phase in Eq. 6.5 does not correspond to a wrapped Normal distribution,
both approaches yield a biased estimator for the phase standard deviation. Nonetheless, it is
helpful to compare the results in order to obtain a deeper understanding of the principle of
circular moments.
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6.1.4 Conclusion

The lower plot of Fig. 6.3 shows the 68.3 % confidence interval as a function of the signal
to noise ratio γSNR = ε

σ . The green and the black curves correspond to the bounded and
unbounded case, respectively. In magenta, the results of the Feldmann-Cousin algorithm are
shown. The red curve represents the conventional approach given in Eq. 6.3 and the blue

Figure 6.3: Upper plot: the true phase value ϕ is shown against the estimated one ϕ̂circ. Lower plot:
The 68.3% confidence interval obtained by the bounded (green) and unbounded (black) 2nd moment
estimation based on directional statistics. The blue points represent the 2nd moment of the linear pdf
and the red curve corresponds to the conventional estimation of standard deviation σcon

ϕ = 1
γSNR

. In
magenta the result of the Feldmann-Cousin algorithm is shown.

data points are obtained by evaluating the 2nd central moment of a linear probability density
function

σ2
ϕ̃,2nd =

∫ π

−π
(ϕ̃− ϕ̂)2 p(ϕ̃)dϕ̃ . (6.25)

For large SNR all methods coincide. However, for γSNR < 2 a significant deviation occurs.
Especially the results obtained by the conventional and the unbounded estimator becomes
physical meaningless for γSNR � 1, since they assume values larger than 2π, which exceeds
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6.1 Wrapped Probability Density Function

the domain of definition of ϕ̃. The 2nd moment of the linear pdf starts at σmax
ϕ̃,2nd = 1.8138 = 2π√

12
,

which corresponds to the standard deviation of a Uniform distribution within the interval
of 2π. However, from the theory of directional statistics, one knows that σϕ̃,2nd represents
not a proper estimator. Additionally, the 68.3 % confidence interval obtained by the bounded
circular 2nd moment σϕ̃,b provides incorrect results, since it is based on the assumption of a
wrapped Normal distribution. In the following, the Feldmann-Cousin estimator is chosen as
the most convenient one. It is defined by the solution of the integral in Eq. 6.19.

Hitherto the probability density function of the phase pϕ(ϕ̃; ϕ, ε, σ) and its 68.3 % confidence
interval σCF

ϕ̃ (ε, σ) has been estimated as a function of the true amplitude and the standard devi-
ation. However, the amplitude ε̃, estimated based on the mapping method or discrete Fourier
transform, is biased by a positive shift and the true amplitude is a priori unknown. A deeper
discussion of this subject can be found in chapter 5. In the following, an expression of the
probability density function depending on the estimated amplitude p̃ϕ(ϕ; ϕ̃, ε̃, σ) is derived
by using the Bayes’ theorem.

6.1.5 Confidence Interval of True Phase

Based on the Bayes’ theorem [44] the joint probability density function of ε and ϕ can be
written as

p̃(ε, ϕ; ε̃, ϕ̃, σ) =
p(ε̃, ϕ̃; ε, ϕ, σ)p(ε)p(ϕ)

p(ε̃)p(ϕ̃)

=
p(ε̃, ϕ̃; ε, ϕ, σ)p(ε)

p(ε̃)

=
p(ε̃, ϕ̃; ε, ϕ, σ)p(ε)∫ ∞

0 pR(ε̃; ε, σ)dε
. (6.26)

The first reformation is valid since the symmetry about the phase substitution ϕ⇔ ϕ̃ provides
p(ϕ̃) = p(ϕ). For the latter step, the normalized distribution of the y-axis projection of the
amplitude likelihood ratio (right-hand side of Fig.5.5) is integrated with respect to ε. In fact,
this corresponds to the denominator in Eq. 5.30, where the probability density function for the
true amplitude pR(ε; ε̃, σ) has been derived.

The integration of Eq. 6.26 with respect to the true amplitude corresponds to the marginal
probability density function of the true phase

p̃ϕ(ϕ; ε̃, ϕ̃, σ) =
∫ ∞

0
p̃(ε, ϕ; ε̃, ϕ̃, σ)dε

=
1

2π

∫ ∞

0

e−
2ε̃ε cos(ϕ−ϕ̃)

2σ2 p̃R(ε; ε̃)

I0
(

ε̃ε
σ2

) dε . (6.27)

The exact derivation can be found in appendix A.7. Note that the function p̃R(ε, ε̃) has no
analytical solution and the integral is solved numerically.

In section 5.1 it was shown, that the Rician distribution 5.4 can be written as a function of
the estimated signal-to-noise ratio γ̃SNR with a unique parameter γSNR. In this representation,
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pR(γ̃SNR; γSNR) is independent of the standard deviation σ. Consequently, only one map is
given based on the Rician distribution pR(ε̃; ε, σ) with σ = 1. In addition, the integrand in
Eq. 6.27 can be expressed as a function of the signal-to-noise ratio

p̃ϕ(ϕ; γ̃SNR, ϕ̃) =
1

2π

∫ ∞

0

e−γ̃SNRγSNR cos(ϕ−ϕ̃) p̃R(γSNR; γ̃SNR)

I0 (γ̃SNRγSNR)
dγSNR . (6.28)

The corresponding probability density function p̃R(γSNR; γ̃SNR) is presented on the left-hand
side of Fig. 6.4. The black curves indicate the 68.3 % confidence interval.

Figure 6.4: Left: probability density function of the true signal-to-noise ratio given a measured one
γ̃SNR. Right: corresponding pdf of the phase difference ∆ϕ = ϕ − ϕ̃ denoted in Eq. 6.28. The black
curves indicate the 68.3 % confidence interval.

The phase distribution in Eq. 6.28 is shown on the right-hand side of Fig. 6.4. In particular,
it is presented for different estimated signal-to-noise ratios and as a function of the difference
between the true and the estimated phase value ∆ϕ = ϕ− ϕ̃. Finally, the probability density
function of the signal-to-noise ratio and the phase can be determined for each estimated signal-
to-noise ratio based on the results presented in Fig. 6.4.

The 68.3 % coverage of the y-axis projection is given by the two black curves. Since the
probability density function is invariant under phase transformation, the estimator of the con-
fidence interval yields

0.683 !
=
∫ σCF

ϕ̃ (γ̃SNR)

−σCF
ϕ̃ (γ̃SNR)

p̃ϕ(ϕ; γ̃, ∆ϕ)d∆ϕ

= 2
∫ σCF

ϕ̃ (γ̃SNR)

0
p̃ϕ(ϕ; γ̃, ∆ϕ)d∆ϕ . (6.29)

The index CF is meant analogously to the Feldmann-Cousin confidence interval obtained for
the phase based on the true signal-to-noise ratio in Eq. 6.19.
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6.2 Phase Spectrum

In Fig. 6.5 the quantity σCF
ϕ̃ (γ̃SNR) (black data points) is compared to the standard deviation

of the phase σconv
ϕ̃ = 1

γSNR
assuming a Gaussian pdf (red curve). In addition, the confidence

interval σCF
ϕ̃ (γSNR) is shown by the green data points. For the latter, the asymmetric structure

of the Rice distribution pR is not taken into account. All quantities are independent of the
standard deviation σ, since they are expressed as a function of the signal-to-noise ratio. For
a vanishing amplitude signal γSNR = 0 both results yield σϕ̃(γSNR) = σϕ̃(γ̃SNR) = 0.683π.
This corresponds to the confidence interval of a Uniform distribution defined on the interval
[−π, π). Within the interval 1 < γSNR < 4 one obtains σCF

ϕ̃ (γ̃SNR) > σCF
ϕ̃ (γSNR) and for

γSNR > 4 the results of all approaches coincide.

Figure 6.5: Confidence interval depending on the true σϕ̃(γSNR) (green) and the estimated signal-to-
noise ratio σϕ̃(γ̃SNR) (black). For comparison, the standard distribution of the discrete Fourier trans-
form is shown in red.

6.2 Phase Spectrum

A spin tune phase distribution for a typical cycle (70 · 106 turns) based on a spin tune scan is
shown in Fig. 6.6. The scan range spans ∆ν0

s = 6 · 10−7. In order to obtain a smooth structure
of the phase distribution, the initially wrapped phase ϕ̃s ∈ [−π, π) is unwrapped by adding
2π whenever ∆ϕ̃s > π or subtracting 2π whenever ∆ϕ̃s < −π. Here,

∆ϕ̃s(n) = ϕ̃s(n + 1)− ϕ̃s(n) (6.30)

represents the difference of two consecutive phase values in the turn domain. The phase wrap-
ping in vertical direction (spin tune domain) is realized by adding or subtracting 2π, whenever
the difference of two consecutive spin tune bins yield a difference larger than π respectively
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−π

∆ϕ̃s(ν
0
s ) = ϕ̃s(ν

0
s + ∆ν0

s )− ϕ̃s(ν
0
s ) . (6.31)

Figure 6.6: Phase spectrum for a typical cycle based on spin tune scan. The initially wrapped phase is
unwrapped by subtracting or adding 2π, which leads to a smooth phase distribution.

Three vertical projections (n1 = 9.5 · 106 ; n2 = 29.5 · 106 ; n3 = 59.5 · 106) of the phase
distribution are displayed on the left-hand side of Fig 6.7. In good approximation, the phase is
a linear function of the assumed spin tune. The intersection of the straight lines corresponds
to the spin tune estimator ν̃s,best, which is closest to the true value. The linear phase equation
as a function of the assumed spin tune reads

ϕ̃(ν0
s ) = 2π(ν0

s − ν̃s,best) . (6.32)

Three horizontal projections (ν0
s,1 = 0.16097070 ; ν0

s,2 = 0.16097085 ; ν0
s,3 = 0.16097100) are

presented on the right-hand side of Fig 6.7. Again, the data can be described by a linear
function ϕ̃(n), where the slope decreases for an increasing spin tune

ϕ̃(n) = 2πn(ν̃s,best − ν0
s ) , (6.33)

Note that the slope becomes zero for ν̃s,best = ν0
s .
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6.2 Phase Spectrum

Figure 6.7: Left: vertical projections of the phase spectrum in Fig. 6.6 for different turn numbers. Right:
horizontal projections for different assumed spin tune.

6.2.1 Maximum Likelihood Fit

An example of a phase distribution is shown in Fig. 6.8. The analysis is performed based on
a fixed assumed spin tune for the whole cycle. Note that the error bars do not correspond to
a Gaussian probability density function, but are specified by Eq. 6.27 derived in section 6.1.5.
In fact, they represent the 68.3 % confidence interval of wrapped probability density function.
The latter depends on the estimated amplitude ε̃ and standard deviation σ.

An analytic expression of the turn depending phase ϕs(n) (Eq. 4.56) is derived in sec-
tion 4.4.1. It is based on the assumption of Rayleigh distributed spin tunes. A linear fit para-
meter is included in order to take into account the deviation between the fixed assumed spin
tune and the true mean spin tune of the ensemble

∆ωs = 2π(νref
s − ν0

s ) , (6.34)

where the factor 2π considers the transformation from the phase into the spin tune space. A
maximum likelihood fit is performed with N estimated amplitude εi respectively phase ϕs,i
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values based on its probability density function pϕ(ϕ; ε̃, ϕ̃) (Eq. 6.28)

L =
N

∏
i=1

p̃ϕ(ϕfit
s
(
ni, σR,νs , ∆ωs, ϕ0

s); εi, ϕs,i
)

. (6.35)

ϕfit
s (n, σR,νs , ∆ωs, ϕ0

s) = ϕ0
s + ∆ωsn− arctan

(
e(
√

2πσR,νs n)2

√
2ππσR,νs n

− erfi
(√

2πσR,νs n
))

, (6.36)

where ϕ0
s is the initial phase and σR,νs denotes the scale parameter of the spin tune distribution.

The parameter ∆ωs specifies the reference spin tune νref
s 6.34, which corresponds mathematic-

ally to the limit at infinity νs(n→ ∞) = νref
s .

Figure 6.8: Turn depending phase distribution obtained for a fixed assumed spin tune. The red curve
represents a maximum likelihood fit of the phase based on Eq. 6.35.

Even though the probability density function is symmetric about the maximum likelihood
estimator ϕ̂s,MLE, the errors σ∆ωs and σσR,νs

of the parameters are asymmetric due to the non-
linearity of the fit function ϕfit

s . This fact is reflected in Fig.6.9, where two contour plots are
shown for the 2-dimensional parameter space ∆ωs and σR,νs . The 68.3 % and the 95.4% con-
fidence interval are represented in blue and in black, respectively. Both structures shape an
inclined and oval form, which is obviously asymmetric. Thus, the maximum likelihood para-
meters are listed with their asymmetric 68.3 % confidence interval. In addition, the covariance
between both parameters is shown, which denotes an important quantity in order to determ-
ine the confidence interval of the turn depending spin tune σνs .

In the example shown in Fig. 6.8, the spin tune of the reference particle is determined to

νref
s = ν0

s +
1

2π
∆ωs = 0.16097084867

(
+0.39
−0.31 × 10−9) . (6.37)

This yields a precision of the order of 10−10. The scale parameter of the spin tune distribution
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6.2 Phase Spectrum

Figure 6.9: Contour plot of the two parameters ∆ωs and σR,νs . The 68.3 % confidence interval is shown
in blue, whereas the black line indicates the 95.4% confidence level.

and the spin coherence time are given by

σR,νs =
(
6.85+0.56

−0.65
)
× 10−9 , (6.38)

τSCT =
0.2325 turns

σR,νs

=
(
33.94+2.77

−3.22
)
× 106 turns . (6.39)

Note that the amplitude spectrum ε(n) of each cycle provides an estimator of τSCT, as well.
Consequently, the spin coherence time is specified by means of two independent analysis
methods (phase and amplitude spectrum). A more detailed discussion of this topic is given in
chapter 7, where the results of the beamtime in 2013-2015 are presented.

97



Chapter 6 Phase Determination

6.3 Combination of Individual Detectors

In this section three procedures are discussed in order to combine the events of the individual
detectors. Therefore, it is helpful to define the phase shift between the individual detectors as

∆ϕ̃ = ϕ̃U
s − (ϕ̃D

s + π) . (6.40)

For this purpose, it must be ensured that the phase of the up detector is wrapped in the interval
ϕ̃U

s ∈ [0, π], where the down detector possesses ϕ̃D
s ∈ [−π, 0]. Three methods are investigated

to determine ϕ̃s for a combined data set

1. The weighted average of ϕ̃U
s and ϕ̃D

s is formed.

2. The discrete Fourier transform of a complete data set, where the events of the up detector
are shifted by π with respect to the down detector.

3. The asymmetry determination based on the mapping method explained in section 4.1.2.

6.3.1 Weighted Average

The conventional calculation of the weighted average yields

ϕ̃s,wa =
ϕ̃U

s · σ2
ϕ̃D

s
+ (ϕ̃D

s + π) · σ2
ϕ̃U

s

σ2
ϕ̃U

s
+ σ2

ϕ̃D
s

, (6.41)

where the standard deviation of the phase σX
ϕ̃s

(X=U, D) is given by the estimated amplitude ε̃

and the number of detected events N in the macroscopic measurement interval ∆n

σϕs =
1

ε̃
√

2N
. (6.42)

Without loss of generality, the phase of the up detector is set to ϕ̃U
s = 0, which yields

ϕ̃s,wa = − ∆ϕ̃

1 +
(

σ
ϕ̃D

s
σ

ϕ̃U
s

)2 (6.43)

= − ∆ϕ̃

1 + NU
ND
·
(

ε̃U
ε̃D

)2 , (6.44)

with the standard deviation

σ2
ϕ̃s,wa

=
σ2

ϕ̃D
s

σ2
ϕ̃U

s

σ2
ϕ̃D

s
+ σ2

ϕ̃U
s

(6.45)

=
2

(NUε̃2
U + NDε̃2

D)
. (6.46)
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In the case of ε̃U = ε̃D and NU = ND, the phase is given by ϕ̃s,wa = −∆ϕ̃
2 , which becomes null

if the phase difference yields ϕ̃U
s = ϕ̃D

s + π. Thus, if the phase shift between both detectors
matches exactly π, the weighted average is coherent with the up detector and shifted by π

with respect to the results of the down detector.

6.3.2 Discrete Fourier Transform of two Sinusoidal Functions

The linearity of the Fourier transform F (a · f + b · g) = aF ( f ) + bF (g) and the time shift
F ( f (n− a)) = e−iaνsF ( f (n)) are used to determine the arithmetic mean of the Fourier trans-
form of two sinusoidal functions with a tiny phase shift and different amplitudes but same
frequencies

f (n) =
1
2
[PU(n)− PD(n)] (6.47)

=
1
2

[
εU cos(2πνsn + ϕ̃U

s ) + εD cos(2πνsn + ϕ̃D
s )
]

(6.48)

=
1
2
[εU cos(2πνsn)− εD cos(2πνsn− ∆ϕ̃)] . (6.49)

For the latter transformation, the phase of the up detector is set to zero and the definition of
the phase difference from Eq. 6.40 is used. Thus, the Fourier transform is given by

F ( f (n)) =
1
2
[εUF (cos(2πνsn))− εDF (cos(2πνsn− ∆ϕ̃))] (6.50)

=
1
2

[
εUF (cos(2πνsn))− εDe−i∆ϕ̃F (cos(2πνsn))

]
(6.51)

=
1
2

[
F (cos(2πνsn))(εU − εDe−i∆ϕ̃)

]
. (6.52)

Consequently, the phase yields

ϕ̃s,DFT = atan2 (εD sin ∆ϕ̃, εU − εD cos ∆ϕ̃) (6.53)

= atan2
(

sin ∆ϕ̃,
εU

εD
− cos ∆ϕ̃

)
, (6.54)

since it is defined as the arctangent of the ratio of the imaginary and the real part. For εU = εD,
one obtains ϕ̃s = atan2 (sin ∆ϕ̃, 1− cos ∆ϕ̃) = −∆ϕ̃

2 , which corresponds to the result of the
weighted average approach. However, the combined DFT solution is independent of the
counting rates, because every event is weighted equivalently. This reflects the a priori assump-
tion of the π difference between the detectors. The standard deviation is given by

σ2
ϕ̃s,DFT

=
2

ε2N
(6.55)

=
2

1
4 (ε

2
U + ε2

D − 2εUεD cos ∆ϕ̃)(NU + ND)
, (6.56)
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with ε2 = 1
4 (ε

2
U + ε2

D− 2εUεD cos ∆ϕ̃). Thus, for a phase shift, different from−π, the statistical
error increases, because both amplitudes do not combine in a maximal positive way anymore.
Hence, this approach takes into account the phase shift ∆ϕ̃ and it will be equal or larger than
σϕ̃s,wa . However, the π shift constraint is prejudicial, since it precludes the possible systematic
phase deviation between both quadrants. Thus, it is more convenient to use the weighted
average approach in order to determine the phase by merging the results of both detectors.

6.3.3 Asymmetry (Mapping Method)

For the asymmetry approach, the counting rates of both detectors are combined with regard
to the technique described in section 4.1.2. The results of the individual detector quadrants
are merged in terms of minimizing systematic effects like the variation of the particle flux or
time depending geometric misalignments. Since the phase is determined by the arctangent of
two independent amplitude parameters it is not possible to find an analytic representation of
the quantity ϕ̃s,map. However, the π-shift assumption between both detectors holds, as well.
Consequently, the statistical error can be handled in a similar way as discussed in the previous
section.

6.4 Conclusion

In this chapter, the wrapped probability density function of the phase parameter based on
the discrete turn Fourier transform was derived. It was shown, that the first circular moment
is unbiased. In addition, confidence intervals were estimated using Bayes’ theorem. Finally,
a maximum likelihood fit was performed with the model function of the phase derived in
chapter 4 and based on the wrapped pdf. This allows the measurement of the spin coherence
time and the difference between the assumed spin tune used for the analysis and the true
value. In the following section, the determination of the turn depending spin tune will be
investigated based on the estimated phase and amplitude value.
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6.5 Spin Tune Determination

In this section the determination of the turn depending spin tune is discussed for the same
cycle which is shown in Fig. 6.8. Assuming a Rayleigh distributed spin tune distribution the
turn depending spin tune yields

νs(n) = νref
s (n) +

√
π

2
σR,νs(n) , (6.57)

where νref
s denotes the spin tune of the particle on the reference orbit and σR,νs corresponds

to the width of the spin tune distribution. In the following both parameters become turn
dependend in order to account for linear time depending drifts of the magnetic elements, of
the RF cavity or of the orbit

νref
s (n) = νref

s,0 + νref
s,1 n , (6.58)

σR,νs(n) = σR,νs,0 + σR,νs,1n . (6.59)

A change of the reference spin tune corresponds to a global spin tune drift, which does not
affect the amplitude but the phase spectrum. However, both observables are sensitive to a
change of the width of the spin tune distribution. Consequently, a global maximum likelihood
fit of both distribution allows to distinguish between both effects.

6.5.1 Global Maximum Likelihood Fit

Figure 6.10: Global maximum likelihood fit for the amplitude and phase spectrum based on the prob-
ability density functions derived in the previous chapters. The fit function provides turn depending
parameters of the spin tune distribution.

An example of a global maximum likelihood fit is shown by the black curves in Fig. 6.10.
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The data points represent the estimated values (ε̃ and ϕ̃s) obtained by the discrete turn Fourier
transform and the error bars denote the respective standard deviation σ. The color scheme
shows the corresponding probability density functions derived in the previous chapters (p̃ϕ

and p̃ε). One observes, that the initial vertical polarization of the beam is tilted into the hori-
zontal plane during the first 13× 106 turns. The likelihood, which has to be minimized, reads

L =
N

∏
i=1

p̃ϕ(ϕs
(
ni; θϕθϕθϕ); ε̃i, ϕ̃s,i, σi

)
+

N

∏
i=1

p̃R(ε (ni; θεθεθε); ε̃i, σi) , (6.60)

θϕθϕθϕ ∈
{

σR,νs,0; σR,νs,1; νref
s,0 ; νref

s,1 ; ϕ0
s

}
and θεθεθε ∈ {σR,νs,0; σR,νs,1; ε0} . (6.61)

The two global parameters σR,νs,0 and σR,νs,1 consider the turn depending width of the spin
tune distribution. The initial phase and amplitude are given by ϕ0

s and ε0, respectively. A turn
depending spin tune drift is regarded by the parameters νref

s,0 and νref
s,1 , which are exclusively

determinable in the phase spectrum.
The results of the maximum likelihood fit are shown in table 6.1. One observes a linear

spin tune drift, which is specified by the parameter νref
s,1 = (−1.89± 0.67)× 10−16. The as-

sumed spin tune used for the analysis νs,0 deviates from the reference spin tune by νref
s,0 =

(6.45± 2.55)× 10−9. In addition, the linear change of the spin tune width yields σR,νs,1 =

(2.66± 1.61)× 10−17. The initial width is given by σR,νs,0 = (3.71± 1.10)× 10−9.

Phase Amplitude

ϕ0
s = (−2.48± 0.23) rad ε0 = 0.2396± 0.0223

σR,νs,0 = (3.71± 1.10)× 10−9

σR,νs,1 = (2.66± 1.61)× 10−17

νref
s,0 = (6.45± 2.55)× 10−9

νref
s,1 = (−1.89± 0.67)× 10−16

Table 6.1: Parameters obtained by the global maximum likelihood fit based on the data shown in
Fig. 6.10.

Consequently, the turn depending mean value of the spin tune yields

∆µνs(n) = νs(n)− νs,0 = νref
s,0 + νref

s,1 n +

√
π

2
(σR,νs,0 + σR,νs,1n) . (6.62)

In the latter equation the assumed spin tune is subtracted. The result of the mean spin tune
is presented by the red color in Fig. 6.11. One obverses a linear decreasing behavior since
the sum νref

s,1 + σR,νs,1 = −1.6× 10−16 is negative. The corresponding error band is calculated
by Gaussian error propagation and its minimum σmin

µνs
≈ 8.9× 10−10 is reached at approxim-

102



6.5 Spin Tune Determination

ately nmin ≈ 32× 106 turns. The Cramér-Rao bound based on the Fisher information yields
(Eq. 4.40)

σCRB
νs
≈
√

24
4π2ε2(∆n)2N0

= 3.27× 10−10 , (6.63)

where the average amplitude is assumed to be ε = 0.1 . In addition, approximately N0 ≈ 105

particles were detected during the measurement interval of

∆n = nfit,f − nfit,i = (84− 14)× 106 = 72× 106 turns . (6.64)

The minimal statistical error based on the maximum likelihood fit is more than 2 times larger
than the Cramér-Rao bound

∆σνs = σmin
µνs
− σCRB

νs
= 5.32× 10−10 . (6.65)

Note that the Cramér-Rao bound is calculated for a spin tune based on a Delta distribution,
i.e. all particles of the ensemble exhibit the same spin tune. However, the parameters σR,νs,0

and σR,νs,1 take into account the Rayleigh distributed particle spins. Thus, the statistical error
of the mean spin tune value increases for larger spin tune distribution widths. In first order,
the latter quantity corresponds to the chromaticity of the ring, i.e. it is a measure of the energy
dependence of the focusing strength, which can be manipulated by sextupole magnets.

Figure 6.11: Turn depending spin tune interpolation. The red color corresponds to the mean value of
the spin tune and the blue color indicates the reference spin tune.
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The turn depending spin tune of the reference particle reads

∆νref
s (n) = νref

s,0 + νref
s,1 n . (6.66)

This observable depends mainly on the magnetic configuration of the bending dipoles and the
beam orbit. The result is shown by the blue error band in Fig. 6.11. It is shifted by σR,νs,0 and
not exactly parallel to the mean spin tune value (blue band), because the mean value drifts
additionally by σR,νs,1. The minimal statistical error of the reference spin tune is reached at
nmin = 37× 106 and yields σmin

νref
s

= 5.42× 10−10.
The turn depending error is presented in Fig. 6.12 and it is calculated by

(σνref
s
(n))2 = (σνref

s,0
)2 + n2 · (σνref

s,1
)2 + n · cov(νref

s,0 , νref
s,1) , (6.67)

where cov(νref
s,0 , νref

s,1) denotes the covariance between the constant νref
s,0 and the linear νref

s,1 para-
meter. The minimum of the function yields

d(σνs(nmin))
2

dn
= 2nmin(σνref

s,1
)2 + cov(νref

s,0 , νref
s,1)

!
= 0 (6.68)

⇒ nmin = −1
2

cov(νref
s,0 , νref

s,1)

σνref
s,1
)2 = −1

2
ρ(νref

s,0 , νref
s,1)

σνref
s,0

σνref
s,1

. (6.69)

where ρ(νref
s,0 , νref

s,1) ∈ (0, 1) indicates the correlation between νref
s,1 and νref

s,2 . In case of a minimal
correlation ρ(p1, p2) = 0 the smallest error is obtained at the beginning of the cycle nmin = 0.
For a stronger correlation nmin increases until the ratio 0.5σνref

s,0
/σνref

s,1
is reached. The covariance

yields to ρ = −0.977, which represents a strong negative correlation between the two paramet-
ers. Thus, the turn number, for which σref

νs
becomes minimal, is given by nmin = 37.01× 106

turns.
The minimal statistical error of the reference spin tune differs from the Cramér-Rao bound,

as well. Following reasons are proposed to explain this deviation:

• The spin tune is not stable over time and it drifts by approximately ∆νs ≈ 10 × 10−9

during the cycle.

• The spins are distributed according to a Rayleigh distribution, which causes a different
Cramér-Rao bound of the spin tune.

• The amplitude decreases within a cycle due to the decoherence of the spins.

• Gaussian error propagation is not the proper method in order to handle asymmetric
errors.
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Figure 6.12: Statistical error of the interpolated spin tune as a function of the turn number n. The red
color corresponds to the mean value of the spin tune and the blue color indicates the reference spin
tune.
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CHAPTER 7

Results

At the beginning of this chapter systematic effects of the turn discrete Fourier transform are
discussed based on the assumed spin tune or by analyzing the results of the individual detect-
ors. Here,mainly the results of the beamtime in May 2015 are discussed. The motivation for
this experiment was to increase the spin coherence time by varying the strength of different
sextupole magnets in the ring. This setup allowed to determine the spin tune parasitically
since the polarization was tilted into the horizontal plane and the spin underwent an idle
precession. Thus, it was possible to study several systematic effects like different extraction
methods or the impact of the electron cooler. Furthermore, long cycle times (≈ 1 000 s) were
realized to demonstrate the feasibility of very long polarization lifetimes. The long-term meas-
urements should also lead to a better understanding of the spin tune drifts. A summary of the
relevant runs discussed in this chapter is given in appendix A.1.
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7.1 Systematics of the Phase Estimation

In this section, systematic effects of the analysis based on the mapping method and discrete
Fourier transform will be discussed. The estimation of the systematic error of the phase de-
termination σ

sys
ϕs implies the discussion of three different aspects.

1. The assumed fixed spin tune chosen for the analysis.

2. The number of bins of the asymmetry distribution in the case of the mapping method.

3. The comparison of the results obtained by the individual detectors.

Figure 7.1: The difference of the statistical error obtained by the mapping and the Fourier method.

The results of the phase standard deviation obtained by both methods σ
map,stat
ϕ̃s

and σDFT,stat
ϕ̃s

are not identical. In fact, the width of the distribution, normalized by the statistical error of
the mapping method

∆σstat
ϕs

(n) =
σDFT,stat

ϕs (n)− σ
map,stat
ϕs (n)

σ
map,stat
ϕs (n)

, (7.1)

yields σ∆σstat
ϕs

= 0.021. The results of 5049 cycles are presented in Fig. Fig. 7.1. Hence, the
estimations of the statistical error differ between both methods. In particular, the mean value
of the distribution µ∆σstat

ϕs
= 0.011 indicates that on average the Fourier transform provides

significantly greater statistical errors compared to the mapping method

σDFT,stat
ϕ̃s

= µ∆σstat
ϕs
· σmap,stat

ϕ̃s
, (7.2)
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This becomes obvious since the amplitude estimator of the mapping method is systematically
larger than the one obtained by the discrete Fourier transform ε̃map > ε̃DFT. The systematic
bias is based on the fact, that in the case of the mapping method the number of bins of the
asymmetry distribution has to be set. This leads to larger amplitude estimators and therefore
to a smaller standard error of the phase (Fig. 6.5). In the following, further systematic effects
of the phase determination are discussed.

7.1.1 Assumed Spin Tune

Figure 7.2: Turn depending phase for different assumed spin tunes. The variation of the assumed spin
tune yields 4 · 10−8, which is indicated by the values in the right box shown in different colors.

Both analysis methods are based on an assumed spin tune ν0
s , which is fixed for the whole

cycle. In Eq. 6.33 it is stated that the turn depending phase estimator ϕ̃s(n) depends linearly on
ν0

s . Thus, in Fig. 7.2 five phase distributions are shown for different assumed spin tunes, where
ν0

s varies in steps of 1 · 10−8. One observes that the linear parameter changes in equidistant
steps.

In order to estimate the systematic error of the phase caused by the choice of the assumed

109



Chapter 7 Results

spin tune, the results of ϕ̃s(ν0
s ) obtained for kmax = 201− 1 different assumed spin tunes

ν0
s (k) = ν0

s − k · ∆ν0
s

∆k

= −0.16097083− k · ∆ν0
s

∆k
, with integer index k = 0, 1, .., kmax (7.3)

are compared for the same cycle. The fraction ∆ν0
s /∆k = 2 · 10−10 corresponds to the spin

tune change per increment by one of the integer index k. This yields to a total scan interval
of ∆ν0

s kmax/∆k = 4 · 10−8. Furthermore, the estimated phase value ϕ̃s(n, k) depending on the
turn number n and the assumed spin tune ν0

s (k) is corrected by the shift due to the variation
of the assumed spin tune

ϕ̃cor
s (n, k) =ϕ̃s(n, k)− 2πn[ν0

s (k)− ν0
s (k = 0)] (7.4)

=ϕ̃s(n, k) + 2πnk
∆ν0

s
∆k

. (7.5)

The factor 2π originates from Eq. 6.2, which describes the relation between the spin tune νs

and the phase ϕ̃s.

For each macroscopic turn interval the arithmetic mean of ϕ̃cor
s (n, k) is formed by summing

over all assumed spin tunes and it serves as a reference value compared to the estimated one

µϕ̃cor
s (n) =

1
201

kmax

∑
k=0

ϕ̃cor
s (n, k) , (7.6)

∆ϕ̃cor
s (n, k) = (ϕ̃cor

s (n, k)− µϕ̃cor
s (n))/σstat

ϕ̃s
(n, k) . (7.7)

Here, ∆ϕ̃cor
s (n, k) denotes the difference between the corrected phase value and the arithmetic

mean normalized by the statistical error of the phase σstat
ϕ̃s

. In Fig. 7.3 the distribution of ∆ϕ̃cor
s

based on 201 assumed spin tunes is shown. The red color corresponds to the results of the
discrete Fourier transform and the blue color represents the mapping method. The statistical
error of the phase shall be corrected by the standard deviation of the respective distribution

σ
map,νs
ϕ̃s

= (σ
map
∆ϕcor

s
+ 1) · σmap,stat

ϕ̃s
= 1.092 · σmap,stat

ϕ̃s
, (7.8)

σDFT,νs
ϕ̃s

= (σDFT
∆ϕcor

s
+ 1) · σDFT,stat

ϕ̃s
= 1.006 · σDFT,stat

ϕ̃s
. (7.9)

Each analysis is performed with the same data but a different assumed spin tune. Thus, the
observed standard deviations σ

map,νs
ϕ̃s

= 0.092± 0.0012 and σDFT,νs
ϕ̃s

= 0.006± 7 · 10−5 are inter-
preted as a systematic bias inherent in each of the analysis methods. The results of the discrete
Fourier transform are preferred since they show a more robust behavior. The mean values of
each distribution µ

map,νs
ϕ̃s

= (0.51± 17) · 10−3 and µDFT,νs
ϕ̃s

= (7.5± 10.1) · 10−6 are compatible
with zero. This indicates that the underlying systematic process is random nature.
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7.1 Systematics of the Phase Estimation

Figure 7.3: Phase deviation due to the variation of the assumed spin tune for the mapping method
(blue) and the discrete Fourier transform (blue), respectively.

7.1.2 Number of Bins of the Asymmetry Distribution

To estimate the impact of the number of bins Nbins used for the asymmetry distribution (Fig. 4.3),
the phase values obtained for different Nbins are compared. For this purpose the weighted
arithmetic mean for each macroscopic turn interval is calulated

µϕs(n) =
Nmax

bins

∑
Nbins=1

ϕs(n, Nbins)

[σstat
ϕs

(n, Nbins)]2
·
(

Nmax
bins

∑
Nbins=1

1
[σstat

ϕs
(n, Nbins)]2

)−1

, (7.10)

where the sum of the sequences contains all addends until the maximum number of bins
Nmax

bins = 150 is reached. A distribution of the differences between the phase value and the
arithmetic mean normalized by the statistical error

∆ϕNbins
s (n, Nbins) =

ϕs(n,Nbins)−µϕs (n)
σstat

ϕs (n,Nbins)
(7.11)

is shown for Nbins = 30 in the left part of Fig. 7.4. The width σNbins
∆ϕs

= 0.074 corresponds to
the factor, which scales the statistical error considering systematic fluctuations of the analysis
due to the choice of Nbins. Once again, the mean value of the distribution is not significantly
different from zero, thus the fluctuations are totally random.

In the right part of Fig. 7.4 the widths of the respective distribution are shown for Nbins =

[1, 150]. A clear minimum is located in the range of Nbins = [20, 50]. It is recommended to
chose a number of bins within this interval to reduce the systematic effects and to minimize
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Figure 7.4: Left: Distribution of the difference between the phase and its arithmetic mean for N = 30
normalized to the statistical error. Right: Standard deviation of the distribution shown on the left-hand
side as a function of the number of bins of the asymmetry distribution.

the scaling factor of the statistical error, which yields approximately

σ
map,Nbins
ϕ̃s

= (σ
map,Nbins
∆ϕs

+ 1) · σmap,stat
ϕ̃s

≈ 1.07 · σmap,stat
ϕ̃s

. (7.12)

7.1.3 Pull Distribution

In order to perform the analysis of each detector individually the counting rates N−,+
X of the

quadrants (X=U, D) are formed according to Eq. 4.5

εU(ϕs) =
N−U (ϕs)

N+
U (ϕs)

= pξ Ad
y,U sin(ϕs + ϕ̃U) , (7.13)

εD(ϕs) =
N−D (ϕs)

N+
D (ϕs)

= pξ Ad
y,D sin(ϕs + ϕ̃D) . (7.14)

This yields one amplitude ε̃X = pξ Ad
y,X respectively one phase ϕ̃X (X=U, D) estimator for each

quadrant.
In Fig. 7.5 an example of the different phase determinations is given. The blue data points

represent the up detector, whereas the phase distribution of the down detector is shown in
red. In good approximation, the shift of the phase values is given by ϕ̃U

s − ϕ̃D
s ≈ π, which is

caused by the different azimuthal angles (φU = 0 and φD = π) stated in the definition of the
spin depending cross section in Eq. 2.120. For comparison, the phase distribution obtained by
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7.1 Systematics of the Phase Estimation

Figure 7.5: Comparison between the phase results of the individual detectors (up quadrant in blue and
down quadrant in red) and the results obtained by the combination of both detector quadrants (black).
(A.1)

calculating the asymmetry of both detectors ϕ̃s is shown in black. Since the counting rate of the
up detector NU enters as the positive term to the asymmetry (Eq. 4.6), the phase distribution
ϕ̃U

s is almost identical to ϕ̃s. Additionally, the error bars of the individual detectors are larger
by a factor of approximately σ

ϕ̃U,D
s
≈
√

2σϕ̃s , since the estimator of the phase standard error
scales in good approximation with the reciprocal square root of the total number of detected
events σϕ̃s ∝ N−0.5.

A bias, caused for example by systematic displacements of the detector quadrants, is studied
by comparing the ratio of the difference between the individually estimated phase values and
their statistical errors

gϕ̃U
s −ϕ̃D

s
=
|ϕ̃U

s − ϕ̃D
s | − π√

σ2
ϕ̃U

s
+ σ2

ϕ̃D
s

. (7.15)

For this purpose, the systematic effects discussed in the previous section are taken into account
by scaling the statistical error

σ
map,tot
ϕ̃s

=

√(
σ

map,νs
ϕ̃s

)2
+
(

σ
map,Nbins
ϕ̃s

)2
(7.16)

=
[√

0.092 + 0.072 + 1
]
· σmap,stat

ϕ̃s

= 1.11 · σmap,stat
ϕ̃s

,

σDFT,tot
ϕ̃s

= σDFT,νs
ϕ̃s

(7.17)

= 1.005 · σDFT,stat
ϕ̃s

.
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Here it is assumed, that the systematic effects of the mapping method are independent and
random nature.

The distribution of gϕ̃U
s −ϕ̃D

s
corresponds to a pull-distribution and its width yields an estim-

ator to what extent the statistical error has to be scaled. Fig. 7.6 shows the results of gϕ̃U
s −ϕ̃D

s

for 10169 phase values obtained by the mapping method (blue) respectively the DFT method
(red). The analyzed data is obtained from different experiments, which were performed dur-
ing the beamtimes from 2013 to 2015. Thus, an extremely high significance is reached due to a
long-term data acquisition.

Figure 7.6: Pull distribution of the phase for to the up and down detector quadrants. The discrete
Fourier transform is shown in red, whereas the result of mapping method corresponds to the blue
color. (A.1)

The confidence intervals of both distributions are close to unity, thus the corrected statistical
errors σ

map,tot
ϕ̃s

and σDFT,tot
ϕ̃s

provide reasonable results. However, they shall be corrected by

σ
map,U,D
ϕ̃s

= σ
map
g

ϕ̃U
s −ϕ̃D

s
· σmap,tot

ϕ̃s
= 0.998 · σmap,tot

ϕ̃s
, (7.18)

σDFT,U,D
ϕ̃s

= σDFT
g

ϕ̃U
s −ϕ̃D

s
· σDFT,tot

ϕ̃s
= 1.02 · σDFT,tot

ϕ̃s
, (7.19)

in order to incorporate systematics of the analysis methods. The mean values of both distri-
butions µDFT

g
ϕ̃U

s −ϕ̃D
s
= −0.0101± 0.0101 and µ

map
g

ϕ̃U
s −ϕ̃D

s
= −0.0079± 0.0099 are compatible with null.

This indicates that the phase difference based on the individual detectors is not systematically
shifted and accordingly no systematic effects like geometric displacements of the detectors are
observable.
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7.1 Systematics of the Phase Estimation

7.1.4 Conclusion

In the previous sections systematic effects of both analysis methods were discussed in order
to estimate possible biases. Therefore, experimental data obtained during different beamtimes
and from different years were used. The systematic errors were taken into account by scaling
the statistical ones. The analyzed data contains a broad spectrum of different cycles within a
time range of two years. Thus, it seems reasonable to estimate a systematic bias based on this
data.
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7.2 General Experimental Considerations

In order to determine the spin tune, which is defined as the spin revolutions around the in-
variant spin axis per particle turn in the ring, with the best possible accuracy, one has to ensure
that the beam polarization lies completely in the horizontal plane. Thus the initially vertical
polarized beam is tilted by the mean of a resonant RF solenoid. To monitor this process the
cross ratio of the vertical polarization is specified according to Eq. 3.10.

7.2.1 Resonant Spin Flip

In order to ensure that the solenoid operates on the spin resonance a Froissart-Stora scan is
performed followed by a fixed frequency scan. The Froissart-Stora scan provides a π-flip
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Figure 7.7: Cross ratio of a Froissart-Stora scan. ( A.1)

of the polarization by passing through a resonance of a magnetic device with a transverse
magnetic field operating on the frequency of the spin oscillations. The ratio of the final p f and
initial pi polarization is given by

p f

pi
= 2e−πε2/(2|α|) − 1 , (7.20)

where ε is the resonance strength of the solenoid and α denotes the speed of the passage across
the resonance. For the adiabatic condition ε2/ |α| � 1 there is almost no depolarization and a
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total reversal of the polarization can be realized

p f

pi
= −1 . (7.21)

The frequency of the RF solenoid is synchronized with the spin precession frequency f res
sol =

fs + h fRF. The harmonic is set to h = 1 and it yields a first estimation of f res
sol . Since the spin

precession frequency is not constant on a time scale of days and in particular due to changes
of the accelerator settings, the solenoid frequency, and the timings had to be observed and
adjusted from time to time to provide an optimzied spin flip into the horizontal plane.

7.2.2 Beam Revolution Period

The results of the turn based spin tune analysis are independent of the RF cavity frequency fRF,
since each event is unambiguously assigned to a turn number n. Nevertheless, it is important
to study the revolution frequency of the beam fbeam, since latter defines the energy of the
particles respectively the Lorentz factor γ, which is directly connected to the spin tune

νs = Gγ , (7.22)

where G is the anomalous magnetic moment of the deuteron.

The period time of the beam Tbeam is composed by two observables. First, the time signal of
the RF cavity tRF, which allows determining its period TRF = tRF,i+1 − tRF,i, acts like a baseline.
In addition, the arrival time of the events tev with respect to the last COSY RF signal enables
to specify the beam period

Tbeam = TRF + ∆tev , (7.23)

where ∆tev = tev,i+1 − tev,i denotes the deviation of the relative arrival time of two detected
events. The relative spin tune change due to a variation of the beam period is given by

∆νs

νs
=

∆γbeam

γbeam
=

β2
beam
ηp

∆ fbeam

fbeam
= −β2

beam
ηp

∆Tbeam

Tbeam
, (7.24)

where ηp denotes the slip factor, which depends on the momentum compaction factor and the
beam momentum.

In order to provide a quantitative value of β2
beam/ηp the spin tune change ∆νs induced by

a frequency shift of the COSY RF ∆ fRF was investigated. Therefore, the initial COSY RF was
changed after 30 s of idle spin precession to a different value fs,jump = ∆ fRF + fs,base. After
additional 30 s, the frequency was set back to the base value in order to be sensitive to any
systematic effects like a time depending drift of the COSY RF or of the spin tune. The scan
was performed in steps of ∆ fRF ≈ 0.15 Hz and several cycles were taken for each setting. The
results are shown in the upper plot of Fig. 7.8, where the spin tune jump is plotted versus the
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frequency shift. A linear least squares fit to the data yields

∆νs

∆ fRF
=

β2
beam
ηp

νs

fRF
= αRF(νs, fRF) = (76.91± 0.34) ns . (7.25)

The residuals in the lower part of Fig. 7.8 approve, that the linear model is a reasonable as-
sumption and that the statistical errors of the spin tune shift are properly determined.

Figure 7.8: Upper plot: spin tune change ∆νs versus the shift of the COSY RF ∆ fRF. A linear least
squares fit is performed to the data and shown in red. Lower plot: residual of the data and the linear
fit. (A.1)

Inserting the base values of the spin tune νs = 0.16097416346± 1.7× 10−9 and of the COSY
RF fRF = (750 599.036± 0.011)Hz allows determining the fraction

β2
beam
ηp

=
fRF

νs

∆νs

∆ fRF
= 0.3572± 0.0015 , (7.26)

It depends on the COSY lattice since ηp is connected to the momentum compaction factor α,
which is a quantity defined by the settings of the storage ring. In conclusion, the spin tune
change due to a shift of the COSY RF is linear over the whole scan interval. The stability of
ωRF is studied in the upcoming section.
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Figure 7.9: a) Time depending distribution of the RF cavity period TRF for one cycle. The z-axis is chosen
logarithmic. b) Y axis projection of the entire cycle. The red curve represents a least squares fit by a
double Gaussian Eq. 7.26. c) Time depending mean values µTRF of the individual Gaussian distribution.
The red and the blue curves represent a least squares fit by a linear function. d) Time depending widths
σTRF of the corresponding Gaussian distribution. Again, the curves represent a least squares fit by a
linear function. (??

7.2.3 RF Cavity Period

In this section, the drift of the COSY RF period TRF during a cycle and in addition its long-
term stability is studied. A time depending distribution of TRF for a 200 s cycle is shown in
Fig. 7.11 a). In b) the vertical projection of the whole cycle is presented, where the red curve
corresponds to a least squares fit by a double Gaussian

f (TRF) = che
− 1

2

( TRF−µT,h
σT,h

)2

+ cle
− 1

2

( TRF−µT,l
σ2,l

)2

. (7.27)

Here, µT,h and µT,l are the mean values and σT,h and σT,l denote the width of the individual
distributions, where the subscript h and l correspond to the distribution with the higher re-
spectively lower mean period. One sees that both parameters deviate from each other, whereas
the larger mean value yields a broader width. The time depending values of µT and σT are
shown in Fig. 7.11 c) respectively d). The difference between the individual mean values yields
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∆µTRF = µT,h − µT,l = 0.0054 ns, which corresponds to a frequency shift of ∆ fRF = −3.04 Hz.
Since the normalization parameters ch and cl are compatible with each other, it is assumed,
that both frequencies contribute in equal parts to the beam momentum. If the change between
both frequencies occurs fast compared to the time the beam needs to adapt the momentum,
the beam energy yields exactly the mean value of both energies defined by µT,h and µT,l.

A linear least squares fit is performed in order to unfold a time depending drift of the COSY
RF frequency. One observes, that the linear fit parameters of both Gaussian distributions
∆µT/∆t are slightly positive. The frequency shift within a 200 s interval is given by

∆ f h
RF(t = 200 s) = −∆TRF(t = 200 s)

T2
RF

= −
∆µT,h

∆t · 200 s
(µ0

T,h)
2

= −(0.54± 0.29)Hz , (7.28)

∆ f l
RF(t = 200 s) = −

∆µT,l
∆t · 200 s
(µ0

T,l)
2

= −(0.33± 0.23)Hz , (7.29)

which corresponds to a spin tune change of

∆νh
s (t = 200 s) =

νsβ2
beam

ηp

∆ f h
beam

f h
beam

= −(4.14± 2.22)× 10−8 , (7.30)

∆νl
s(t = 200 s) =

νsβ2
beam

ηp

∆ f l
beam

f l
beam

= −(2.53± 1.76)× 10−8 . (7.31)

Consequently, a stable frequency of the COSY RF cavity is one important precondition in order
to stabilize the spin tune over a whole cycle.

A long-term measurement of the COSY RF is shown in Fig. 7.10. One observes a fast and a
slow oscillation. Thus, a least squares fit by the function

Tfit
RF(t) = T0

RF + T1
RF sin(2π f short

osci t + ϕshort
osci ) + T2

RF sin(2π f long
osci t + ϕ

long
osci ) , (7.32)

is performed. The fit parameter associated to the fast oscillation corresponds to a daily pattern
with f short

osci = (1.0012± 0.0003)days. Its phase ϕshort
osci defines the time of the day when the

maximum (2 h0 min) respectively minimum (14 h0 min) is reached. Consequently, in the case
of a temperature correlation a maximum temperature would lead to a smaller frequency of the
COSY RF.

The period of the slower oscillation yields f long
osci = (17.919± 0.008)days. The maximal spin

tune change due to the drift of the COSY RF is specified by the amplitude parameter of the
oscillations

∆ f osci
RF =

2(T1
RF + T2

RF)

(T0
RF)

2
≈ 0.5 Hz , (7.33)

⇒ ∆νosci
s = 76.91 ns · f osci

RF = 3.85 · 10−8 , (7.34)

where the calibration factor obtained from Fig. 7.8 is used. The amplitude of the daily spin
tune variation is given by ∆ν

day
s ≈ 1.65 · 10−8. One should note, that the statistical errors

obtained by the least squares fit are not reasonable since the χ2 is quite high. However, the
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Figure 7.10: Long-term measurement of the COSY RF TRF. The red curve represents a least squares fit
with the function based on two independent oscillations Tfit

RF(t).

daily pattern and the long term drift is clearly identified.

7.2.4 Event Arrival Time

A time distribution of all events detected within a 200 s cycle is shown in Fig. 7.11 a) and b).
The x-axis represents the time in cycle in seconds and the y-axis shows the arrival time of the
detected event tev with respect to the last RF cavity timestamp tRF,n in nanoseconds

ttRF
ev = tev − tRF,n , (7.35)

where n denotes the period number of the cavity RF in which the event is detected. For a
better readability the z-axis is chosen logarithmic. The event distribution allows studying the
longitudinal phase space of the particles since the longitudinal position of each particle in the
beam is specified by ttRF

ev relative to the cavity position. Thus, the time scale of the y-axis can
be substituted by the circumference of COSY.

The extraction onto the carbon target starts around tsol = 80 s. Simultaneously, the RF solen-
oid was switched on in order to flip the initially vertical polarization into the horizontal plane.
The examples shown in Fig. 7.11 a) and b) were performed with two different conditions of
cooling. In a) the electron cooler was activated during the whole cycle, whereas for b) no
cooling was applied.

The data points in Fig. 7.11 c) represent the mean values µttRF
ev

of each macroscopic time bin
∆Tmac in Fig. 7.11 a) (red) and b) (blue). In the no cooling case a linear decreasing behavior
of µttRF

ev
is observed, whereas for the steadily cooled beam it stays constant. This indicates

that the mean longitudinal position of the extracted particles moves over time relatively to the
location of the RF cavity. This corresponds to a mismatch of the COSY RF and the frequency
of the detected particles, which might be explained by a higher momentum of the ensemble
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Figure 7.11: a) and b) Time in turn distribution ttRF
ev of all events during a 200 s cycle. a) was performed

with continuous cooling and b) without any cooling. The scale of the z-axis is chosen logarithmic.
In addition, the mean values (c) respectively the standard deviations (d) of ttRF

ev for each time bin are
given. The data points in red correspond to the setup with a continuously cooled beam and the blue
data points to a uncooled beam. ( ??

compared to the one defined by the RF cavity ∆ fbeam = fbeam − fRF. The time depending
frequency shift is given by the time derivative of µttRF

ev
and in the case of no cooling it yields

approximately

∆ fbeam

fbeam
= −∆Tbeam

Tbeam
= −

∂µttRF
ev
(t)

∂t
≈ 10−10 , (7.36)

⇔ ∆ fbeam = 10−10 fbeam ≈ 0.75 mHz . (7.37)

For the constantly cooled beam the time derivative almost vanishes, which indicates that the
frequency of the detected events is equal to the one provided by the cavity. In Fig. 7.11 d)
the standard deviation σttRF

ev
of the respective time bin distribution is shown. For the cooled

beam (red) the longitudinal spread of the particles stays constant since the electron cooler
ensures that the momentum spread of the particles is small and almost time-invariant. The
uncooled beam (blue) provides a larger standard deviation σttRF

ev
which increases over time,

and the momentum spread grows linearly in good approximation. A decreasing arrival time
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Figure 7.12: Four time depending distributions of the residuals obtained by subtracting the mean values
of µres

ttRF
ev ,i

(black) and σres
ttRF
ev ,i

(blue) from each data point. In addition, the Pearson correlation coefficients

ρ based on both distributions are given. (A.1)

of the detected event with respect to the COSY RF signal induces an increasing longitudinal
width of the beam. In order to quantify the correlation, the mean values µ̄ttRF

ev
and σ̄ttRF

ev
of each

distribution are subtracted from the respective data points

µres
ttRF
ev ,i

= µttRF
ev ,i − µ̄ttRF

ev
, with µ̄ttRF

ev
=

1
Nbins

Nbins

∑
i=1

µttRF
ev ,i , (7.38)

σres
ttRF
ev ,i

= σttRF
ev ,i − σ̄ttRF

ev
, with σ̄ttRF

ev
=

1
Nbins

Nbins

∑
i=1

σttRF
ev ,i , (7.39)

where Nbins represents the number of time bins. Four different distributions of µres
ttRF
ev

(black) and

σres
ttRF
ev

(blue) are shown in Fig. 7.12. A strong negative correlation becomes obvious, whereas the

Pearson product-moment correlation coefficient

ρ =
∑Nbins

i=1

(
µttRF

ev ,i − µ̄ttRF
ev

) (
σttRF

ev ,i − σ̄ttRF
ev

)
√

∑Nbins
i=1

(
µttRF

ev ,i − µ̄ttRF
ev

)2
√

∑Nbins
i=1

(
σttRF

ev ,i − σ̄ttRF
ev

)2
(7.40)

yields values close to−1. Thus, a time depending longitudinal widening leads to a decreasing
ttRF
ev .
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7.3 Extraction Methods

In this section, the spin tune drift caused by different extraction methods will be studied. The
experimental setup provides the bump extraction and the white noise extraction technique
in order to realize an elastic scattering of the deuteron beam onto the carbon target. In the
following, the results of both techniques are investigated.

7.3.1 Vertical and Horizontal Bump Extraction

The bump extraction technique is based on steering the beam onto the carbon block by means
of a magnetic dipole field. A radial field leads to a vertical and a vertical field to a radial
displacement of the beam. After passing the target and two additional quadrupole magnets
the beam is brought back to the reference orbit by a second magnetic dipole. Altogether the
phase of the betatron oscillation advances by a half period. Thus, this method is called the
local vertical or horizontal π-bump. A linear increasing and time depending magnetic field
ensures that the beam is extracted entirely.

In Fig. 7.13 two examples of a spin tune phase distribution are shown, which are obtained
by the magnetic bump extraction methods. The vertical bump corresponds to the blue data
points and the horizontal one to the points given in magenta. For both methods, one observes
a strong parabolic behavior, which corresponds to a significant linear spin tune change. A
simple quadratic phase model is assumed, which leads to

νs =
1

2π

dϕsn
dn

=
1

2π
(ϕs,1 + 2ϕs,2n) . (7.41)

The horizontal bump technique induces a negative spin tune drift, while the vertical bump
corresponds to a positive one.

The corresponding interpolated spin tune based on Eq. 7.41 is shown in Fig. 7.14. Again,
the same color scheme is used as given in Fig. 7.13. The respective spin tune drifts per particle
turn yield

∆νver
s

∆n
=(−1.03 ± 0.01)

10−15

turn
, (7.42)

∆νhor
s

∆n
=(3.00 ± 0.03)

10−15

turn
. (7.43)

For the horizontal extraction one observes a large positive spin tune drift, whereas the vertical
bump provides a negative drift which is approximately 1/3 smaller. Two independent sources
are candidates for this effect.

Magnetic Dipole Fields

Firstly, according to the Thomas-BMT equation 2.110 the magnetic fields of the kickers directly
act on the spin motion. A radial magnetic field induces a vertical spin build up out of the
horizontal plane. On average the spin vectors of the ensemble are distributed uniformly at the
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Figure 7.13: Comparison of the phase distributions based on white noise (red), vertical (blue) and hori-
zontal (magenta) local bump extraction. (A.1)

kicker magnet and thus the expected spin build up vanishes since the kicks cancel out to zero.
Consequently, no spin tune change should be observed due to radial magnetic fields.

Considering vertical dipole fields the spin vector will be rotated around the vertical axis
according to the direction and the strength of the magnetic field, which leads to a kick of the
spin

ϕs = νsφbeam = γGφbeam , (7.44)

where φbeam denotes the angle between the vector of the initial beam momentum and the
momentum vector at the extraction point. The two refocusing quadrupoles, which are located
between the dipoles, provide a non-commutative compensation of the spin rotation. This leads
to a time depending spin tune change. In particular, the spin vector is not completely returned
to the initial state at the position of the detector, since it is not exactly located in the center of
the magnetic dipoles.

Path Lengthening

Additionally, the spin tune is changed by the path lengthening of the particle orbit due to the
local bump. The relation between the relative change of the Lorentz factor and the orbit yields
to

∆ν
length
s

νs
= γ2β2 ∆L

L
. (7.45)
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Figure 7.14: Interpolated spin tune obtained for the white noise extraction (red), the vertical (blue) and
the horizontal (magenta) local bump extraction.

The so-called π−bump method provides a beam displacement within one-half of a betatron
period. The betatron tune for COSY is generally given by about 3.6, which results in an orbit
period length of LCOSY/3.6 = 50 m, where LCOSY ≈ 180 m denotes the circumference of the
complete ring. Since the bump is realized within a half period the total length between the
two magnetic dipoles is Lbump = 25 m.

In Fig. 7.15 a sketch of the local orbit bump is shown. The red curve represents the envelope
of the betatron oscillation before the extraction starts βmax

z (tini) = 1 mm. After switching on the
magnetic dipole magnets the amplitude increases to a maximal displacement of βmax

z (tfin) =

10 mm, which is delineated by the blue line. To estimate the length difference of the particle
orbit ∆L one has to compare the arc lengths of the curvatures Lini and Lfin, which can be
calculated by

L(βmax
z ) =

∫ b

a

√
1 + f ′(x)dx =

∫ Lbump

0

√
1 +

(
πβmax

z
25

)2

cos2
( π

25
x
)

dx . (7.46)

Here a = 0 m and b = Lbump = 25 m defines the x-axis interval and f (x) = βmax
z sin(π/25x)

is the functional form of the curve. The elliptic integral of second kind in Eq. 7.46 provides no
analytical solution, however numerical calculation yields

∆L = Lfin − Lini ≈ 25.00001 m− 25.0000001 m = 10−5m . (7.47)

Thus, the relative change of the spin tune due to vertical respectively horizontal path length-
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Figure 7.15: Sketch of the vertical respectively horizontal π-bump extraction. The red curve represents
the betatron amplitude before and the blue one after extraction onto the carbon target.

ening is given by

∆ν
length
s

νs
= γ2β2 ∆L

L
= 0.268 · 10−5m

180 m
≈ 1.5 · 10−8 . (7.48)

This yields a spin tune shift of ∆ν
length
s = −0.1609 · 1.5 · 10−8 = −2.41 · 10−9. The results

are one order of magnitude smaller than the measured one during a cycle for a vertically
extracted beam ∆νver

s = −8.16 · 10−8. One explanation for the deviation might be given by the
quadrupole magnets, which are placed in between the two magnetic steerers to focus back the
beam to the reference orbit. Particles with a larger betatron amplitude pass the quadrupole
magnets more and more off-centered and will see a time depending change of the vertical
component of the magnetic field, which leads to an additional non-commutative spin rotation.

7.3.2 White Noise Extraction

The white noise extraction is realized by a time depending vertical electrical field E⊥(t). This
process heats the beam by enlarging the amplitude of the particle phase space. The field is gen-
erated by a superposition of several sinusoidal electrical wave signals with different frequen-
cies. It is possible to connect the power supply of the electric plates to the so-called Schneider
box, which measures the change of the beam current to provide a feedback in order to stabilize
the extraction rate to a constant level during the whole cycle. Consequently, the number of de-
tected events and therefore the statistical accuracy of the spin phase determination is constant
for each macroscopic interval ∆n and in the case of no depolarization.

A typical example of a phase distribution based on the white noise extraction is shown as the
red data points in Fig 7.13. One observes a tiny quadratic drift of the phase, which corresponds
to a small spin tune change, which is presented by the red curve in Fig. 7.14. In Sec. 4.4.1 it
was shown, that under the assumption of a Rayleigh distributed spin tune the turn depending
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phase change is described by

ϕs(n) = ϕ0 +
π

2
− arctan

exp
(
(
√

2πσR,νs n)
2
)

√
π
√

2πσR,νs n
− erfi

(√
2πσR,νs n

) , (7.49)

where erfi denotes the imaginary error function, n is the turn number and σR,νs corresponds to
the scale parameter of the Rayleigh distribution, i.e. the width of the spin tune distribution.
Note that this model does not take into account any time depending systematic effects of the
storage ring like variations of the magnetic fields or geometric beam fluctuations.

7.3.3 Conclusion

In the last sections three different extraction methods were discussed. In the case of the hori-
zontal bumped technique a large spin tune change is observed since a time depending vertical
magnetic field is applied, which directly manipulates the spin motion. The vertical extraction
method shows a smaller but opposite spin tune change. Relating thereto the calculated spin
tune drift induced by the path-lengthening is one order of magnitude too small in order to
describe this effect. However, a non-perfectly aligned vertical magnetic field to the invariant
spin axis contributes to an additional time depending spin tune drift. Finally, the white noise
extraction based on a random electrical field generator yields the smallest spin tune change of
all methods. Thus, this technique provides a minimal invasive extraction of the beam onto the
carbon target.
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7.4 Spin Tune Investigations (Beam time June/May 2015)

One of the main motivations of the beam time performed in May and June 2015 was the in-
vestigation of the spin coherence time τSCT. Therefore, a polarized 0.97 GeV/c deuteron beam
was injected into the storage ring and its polarization was tilted into the horizontal plane by
means of the RF solenoid in order to realize an idle spin precession. The impact on the spin
coherence time for different ring settings was studied by several measurement series. In the
upcoming sections the results are discussed.

7.4.1 Variation within a Cycle

In the previous section the spin tune drift based on different extraction methods was discussed.
It was shown that the white noise extraction corresponds to the minimally invasive technique.
However, three additional processes cause a turn depending spin tune phase variation.

1. The depolarization of the spin ensemble leads to a non-linear drift of the spin tune phase
if the spin tune distribution of the particles is assumed to be Rayleigh distributed. Note
that this process does not change the spin tune of the reference particle itself.

2. If the beam period Tbeam is not stable over time, the spin tune varies according to the
considerations derived in section 7.2.3. The exact relation is experimentally determined
and discussed in Eq. 7.25.

3. Time depending changes of the magnetic elements in the ring, which either varies the
energy of the particle bunch or change the orbit of the beam, leads to additional spin
tune variations.

The first process is estimated by the spin coherence time τSCT, which can be determined sim-
ultaneously by the phase and amplitude spectrum. Note that the spin coherence time is cor-
related to the width of the spin tune distribution σR,νs . This allows identifying the functional
form of the time depending spin tune phase based on the depolarization effect. The second
item can be studied by the investigation of the RF cavity frequency. In order to investigate
implications of the statement a very high precision of the orbit measurement and the currents
in the bending dipoles is required.

Depolarization

In chapter 6.5 it was shown, that the depolarization process can be described by the width
of the spin tune distribution σR,νs . In the following, it is assumed that this parameter is time
invariant σR,νs(n) = σR,νs,0 = const.. Two cycles from different runs, which provides differ-
ent spin coherence times, are shown in Fig. 7.16. The black data points represent estimated
parameters obtained by the discrete turn Fourier transform. The color scale corresponds to
the associated probability density functions derived in the previous chapters. The 68.3% con-
fidence interval is represented by the black error bars. The gray curves show the result of a
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global maximum likelihood fit, which minimizes the likelihood function

L =
N

∏
i=1

p̃ϕ(ϕs
(
ni; θϕθϕθϕ); ε̃i, ϕ̃s,i, σi

)
+

N

∏
i=1

p̃R(ε (ni; θεθεθε); ε̃i, σi) . (7.50)

Figure 7.16: Turn depending amplitude and phase distribution for a long and short spin coherence time.
The color scheme represents the probability density function according to the estimated values of the
discrete turn Fourier transform. The gray curves correspond to a global maximum likelihood fit with
the model functions derived in the previous chapters. (A.1)

130



7.4 Spin Tune Investigations (Beam time June/May 2015)

The parameter vector reads θϕθϕθϕ ∈
{

σR,νs,0; νref
s,0 ; νref

s,1 ; ϕ0
s

}
and θεθεθε ∈ {σR,νs,0 ε0} and the num-

bers are given in table 7.1.

long short

ε0 0.2295± 0.0082 0.255± 0.022

ϕ0
s (−1.59± 0.25) rad (−3.25± 0.38) rad

σR,νs,0 (1.26± 0.34)× 10−9 (8.56± 0.53)× 10−9

νref
s,0 (−0.38± 1.65)× 10−9 (10.6± 4.5)× 10−9

νref
s,1 (1.9± 2.9)× 10−17 (−24.5± 12.1)× 10−17

Table 7.1: Parameters obtained by the global maximum likelihood fit based on the data for a long and
short spin coherence time shown in Fig. 7.16.

The associated model function of the phase yields

ϕs(n; θϕθϕθϕ) =
π

2
+ ϕ0

s + 2π(νref
s,0 n + νref

s,2 n2)− arctan

(
e(σϕs n)2

σϕs n
− erfi

(
σϕs n

))
, (7.51)

with σϕs =
√

2πσR,νs . In addition, the amplitude yields

ε(n; θεθεθε) = ε0

([
1−
√

πσϕs ne−(σϕs n)2
erfi

(
σϕs n

)]2
+ π(σϕs n)

2e−2(σϕs n)2
) 1

2

. (7.52)

Both functions depend on σϕs . In the first order, this quantity is coupled to the sextupole
settings. Consequently, it is assumed to be constant for all cycles recorded within the same
run. However, the linear drift of the reference spin tune νref

s,1 can vary from cycle to cycle. It
takes into account the variation of the beam frequency, the change of the current in the bending
magnets or a drift of the beam orbit during a cycle. The ratio

rνref
s,1

=
νref

s,1

σνref
s,1

(7.53)

is shown in Fig. 7.17 for 474 cycles. One observes a Gaussian distribution with negative mean
and a standard deviation of σr

νref
s,1

= 2.93± 0.01. Thus, the decreasing reference spin tune

corresponds to a significant statistical process. In the following sections, one possible source
of this effect is discussed by investigating the period of the beam revolution in the ring.
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Figure 7.17: The ratio of the linear parameter of the reference spin tune and its standard deviation. In
addition, a Gaussian function is shown based on a least squares fit. (A.1)

Period of the Beam

The change of the reference spin tune induced by the drift of the beam frequency fbeam yields

∆νref
s =

β2
beam
ηp

νs

fbeam
∆ fbeam

= 0.3572
νs

fbeam
∆ fbeam , (7.54)

where ηp is the slip factor and βbeam denotes the ratio of the particle velocity and the speed of
light. In addition, the variation of the reference spin tune is given by the linear drift parameter

∆νref
s (n) = νref

s,1 n =
β2

beam
ηp

νs

fbeam
∆ fbeam(n) (7.55)

⇒ νref
s,1 n =

β2
beamνs

ηp
· ∆ fbeam(n)

fbeam

= −β2
beamνs

ηp
· ∆Tbeam(n)

Tbeam

= −β2
beam
ηp
· ∆Tbeam(n)

Ts
. (7.56)

The ratio yields β2
beam/ηp = 0.3572. In addition, the period of the spin precession is given by

Ts = Tbeam/νs ≈ 8.28 µs.

The beam period is determined by two observables. In particular, the RF cavity period TRF

acts like a baseline. In addition, the difference between two event arrival times with respect to
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the last RF cavity time stamp tRF
ev is a measure of how much the beam period deviates from the

beam frequency Tbeam

∆Tbeam = ∆TRF +
∆tev

∆n
= ∆TRF +

tRF
ev,i − tRF

ev,j

ni − nj
with i, j ∈ (1, .., Nev) . (7.57)

The variable n corresponds to the turn number of the detected event, which is specified by the
indices i and j.

Event Arrival Time

Firstly, the arrival time of the event with respect to the last RF cavity signal tRF
ev (Eq. 7.35) is

studied. Inserting Eq. 7.57 into Eq. 7.56 yields

νref
s,1 n = −β2

beam
ηp

νs

Tbeam

∂tRF
ev (n)
∂n

≈ −4.32× 10−5 1
ns
· ∂tRF

ev (n)
∂n

. (7.58)

The values of the spin tune and the beam frequency are approximately given by νs ≈ 0.1609741
and fbeam = 1/Tbeam ≈ 750 599 Hz. Thus, the reference spin tune correlates negatively to
the arrival time of the detected event with respect to the last COSY RF signal. This makes
perfect sense, since a particle, which reaches the detector at later times has less energy and
consequently a smaller spin tune.

In Fig. 7.18 the turn depending event arrival time with respect to the last COSY RF signal
is shown for six cycles within the same run. One observes a quadratic behavior of tRF

ev . The
parabolic least squares fits yield negative quadratic parameters in the order of 5× 10−15 ns.
This corresponds to a linear reference spin tune of

νref
s,1 n = −4.32× 10−5 1

ns
× 2n · tRF

ev,2 (7.59)

⇔ νref
s,1 = −4.32× 10−5 1

ns
× 2 ·

(
−5× 10−15 ns

)
≈ 4.32× 10−19 . (7.60)

This value is almost two orders of magnitude smaller than the statistical error of the linear
parameter, which yields ≈ 10−17 (table 7.1). Consequently, the experimental setup is not sens-
itive to observe a spin tune variation due to the change of tRF

ev . Note that the relative change of
the beam frequency based on the event arrival time yields

∆ f tRF
ev

beam
fbeam

= −∆TtRF
ev

beam
Tbeam

= −2
5× 10−15 ns · 100× 106

1 332 ns
= −7.5× 10−10 , (7.61)

during the measurement interval of 100× 106 turns.
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Figure 7.18: Turn depending event arrival time with respect to the last COSY RF time stamp for six
cycles within the same run. The red curve corresponds to a parabolic least squares fit. ( A.1)

RF Cavity Period

A turn depending drift of the RF cavity period causes a change of the reference spin tune,
since the energy of the particle increases. Based on Eq. 7.56 and Eq. 7.57 the linear parameter
is given by

νref
s,1 n = −4.32× 10−5 1

ns
· ∆TRF(n) . (7.62)

Four examples of the turn depending spin tune phase and the corresponding cavity period
are shown in Fig. 7.19. A linear increasing TRF is observed. Thus, a least squares fit based on
the function

TRF(n) = TRF,0 + TRF,1 · n , (7.63)

is performed. In addition, the spin tune phase and the associated amplitude are fitted by a
maximum likelihood function providing the linear reference spin tune drift parameter.

The values of TRF,1 given in Fig. 7.19 are positive and in the order of TRF,1 ≈ 4× 10−12 ns.
This corresponds to

νref
s,1 = −4.32× 10−5 1

ns
· ∆TRF,1

= 1.6× 10−16 , (7.64)
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Figure 7.19: Phase and RF cavity distributions for 4 cycles. The red curve represents either a linear least
squares fit (RF cavity) or a global maximum likelihood fit to the phase and the amplitude.

which is covered by the precision of the linear parameter. Note that the relative frequency
change for a measurement interval of 100× 106 yields

∆ f ∆TRF
beam

fbeam
= −∆T∆TRF

beam
Tbeam

= −4× 10−12 ns · 100× 106

1 332 ns
≈ −3× 10−7 . (7.65)

This number is more than 2 orders of magnitude larger than the effect based on the drift of the
event arrival time.

In Fig. 7.20 the linear fit parameter of the RF cavity period and the linear drift parameter of
the reference spin tune are shown for 100 cycles. On the one hand, one observes the day-night
oscillation of TRF,1, whereas νref

s,1 scatters randomly. The right-hand side of Fig. 7.20 shows the
scatter plot of both quantities. It is obvious that the linear drift of the reference spin tune is not
caused by a change of the RF cavity period since the correlation coefficient is close to zero.
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Figure 7.20: Linear fit parameter of the RF cavity period TRF,1 and linear drift parameter of the reference
spin tune νref

s,1 for 100 cycles. On the right-hand side the scatter plot of both quantities is shown.

Conclusion

In the previous sections the turn dependend drift of the spin tune phase was investigated. It
is found that the depolarization process, which assumes Rayleigh distributed spin tunes of
the ensemble, is not sufficient to describe the measured phase change. Therefore, the turn
dependend period of the beam, which is composed of the RF cavity period and the relative
arrival time of the events, was studied

∆Tbeam(n) = ∆TRF(n) +
∂tev(n)

∂n
. (7.66)

The change of tev is almost three order of magnitudes too small in order to be determined by
the spin tune measurement. In addition, there is no correlation between the linear drift para-
meter of the reference spin tune and the RF cavity has been detected. Thus, the additional
quadratic behavior of the spin tune phase is caused by other underlying unknown systemat-
ics. Note that this process is random nature, which becomes obvious in Fig. 7.17, where the
distribution of the ratio νref

s,1 /σνref
s,1

is shown. It is not possible to judge if the change of the RF
cavity period is based on a true physical process or caused by a systematic drift of the TDC. In
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the latter case, the spin tune phase would be unaffected because the turn dependend drift of
TRF originates from measurement issues of the DAQ. Another possible candidate of the linear
spin tune drift is a time dependend change of the currents in the magnetic dipole magnets.
However, no data is recorded for the magnetic fields of the bending magnets.

7.4.2 Long Term Stability

Cycle to Cycle Fluctuations

Figure 7.21: Spin tune distribution (black curves) for 22 cycles, which last for 70 · 106 turns. All cycles
are taken with the same sextupole settings. The red data points represent the mean of the RF cavity
frequency obtained for the same measurement interval. The axis of the frequency is scaled by the factor
determined in section 7.2.2. (A.1)

In the previous section, it was shown, that another unknown process beside of the depolar-
ization and the RF cavity period drift causes a change of the spin tune phase during a cycle.
The additional turn depending variation of ϕs is described by a quadratic function, which
leads to a linear spin tune drift. In the following, the fluctuations of the spin tune from cycle
to cycle within one run are investigated.

In Fig. 7.21 the turn depending interpolation of the spin tune is shown by the black curves
for 22 cycles. Furthermore, the gray band represents the 68 % confidence interval obtained
by Gaussian error propagation. Since the sextupole settings of the investigated run provide
a long spin coherence time τSCT ≈ 500 s the phase change due to the depolarization is negli-
gible. Consequently, the spin tune drift within a cycle originates basically from the unknown
systematics and the spin tune interpolation yields a linear drift.

In addition, the cycle to cycle fluctuations of the RF cavity frequency fRF are studied. A
typical example of the TRF distribution is shown in Fig. 7.9. Its mean value and its standard
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deviation based on the same measurement interval as used for the spin tune phase determin-
ation are given by the red data points in Fig. 7.21. In order to compare the spin tune with fRF

the axis of the latter quantity is scaled by the factor determined in section 7.2.2

∆νs =
β2

beam
ηp

νs

fRF
∆ fRF = 76.91 ns · ∆ fRF . (7.67)

The RF cavity frequency is stable within its error bars for the whole run, whereas the spin tune
scatters significantly. In addition, the red data points do not coincide with the interpolated
spin tune distributions, thus the jumps from cycle to cycle are not correlated to a change in the
RF cavity frequency.

A possible explanation could be a variation of the magnetic field configuration of the ring
from cycle to cycle. This fluctuation effects directly the spin tune, whereas the RF cavity period
stays unchanged. A reason for this short-term variations might be, that the nominal value of
the magnetic fields of the dipole magnets, which are ramped at the beginning of each cycle
in order to accelerate the deuterons to the desired momentum, are not stable over time. Long
term deviations of νref

s could arise from temperature variations, which should exhibit a day
and night pattern. An additional source of a spin tune variation is given by the long-term
stability of the cavity frequency, since the spin tune depends directly on fRF.

Run to Run Fluctuations

In order to study the spin tune variations due to different experimental setups, i.e. a change
of the parameters of the components in the ring, the spin tune results recorded during a meas-
urement period of more than two weeks are shown in Fig. 7.22. Each data point represents the
reference spin tune of one cycle and the time axis shows the date in [month/day/year] and
the time in [hour:minute]. The generic motivation of the experiment was to improve the spin
coherence time by changing the sextupole magnets, which allowed a parasitical spin tune de-
termination since the required idle horizontal spin precession was naturally provided. In ad-
dition, systematic effects caused by several ring devices were investigated, such as the electron
cooler, the ionization beam profile monitor or the change of the dispersion using quadrupole
magnets.

The first spin tune change in Fig. 7.22 a) is due to the realization of a horizontal orbit bump
provided by the magnetic dipole steerers. This causes a clear jump of ∆ν

bump
s = 7× 10−7, since

the energy of the beam increases due to path lengthening and the vertical magnetic field of the
steerers provides an additional spin kick to the horizontal spin precession. Before the orbit
bump was applied the spin tune stayed almost constant over time. Another significant change
of νs becomes obvious as soon as the orbit correction based on the beam position monitors and
the dipole steerers was applied during the beam preparation.

The impact of the quadrupole magnets on the spin tune can be studied by the data points
located in the blue, green and red circles. First (blue) the quadrupole settings were set to ar-
bitrary values. The green circles represent the case of minimized dispersion in the straight
sections, whereas the red one corresponds to maximized dispersion. The dispersion was ad-
justed by changing the current in five quadrupole families.
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Figure 7.22: Long term spin tune measurement during the beam time in May/June 2015. Relevant
changes of the devices in the ring are indicated by circles or rectangles. ( A.1)
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In Fig. 7.22 b) the effect of the electron cooling and the application of the ion beam profile
monitor can be investigated. The data points in the blue rectangles were taken for short cooling
times tcool = 25 s, whereas the ones in the blue represent longer cases tcool = 120 s− 200 s. The
corresponding spin tune change yields ∆νcool

s = 3 × 10−7. A longer cooling time leads to
larger spin tune values. This indicates, that the momentum of the electrons is larger than the
nominal momentum provided by the RF cavity and the deuterons are constantly adjusted by
the energy of the electron cooler.

The ionization beam profile monitor decreases the spin tune, since the electric ion drift field
perturbates the orbit of the beam. In fact, it is similar to an electric deflector. One observes that
for higher voltages of the electrodes the decrease of the spin tune increases. Thus, the meas-
urement of the spin tune represents a sensitive tool in order to determine any modifications of
the beam orbit caused by the profile monitor.

Day and Night Pattern and Sextupole Studies

Figure 7.23: Spin tune and RF cavity frequency for a measurement interval where just the sextupole
settings were changed. The scale between both quantity axes is given by αRF(νs, fRF) = 76.91 ns. The
blue lines represent a linear least squares fit to the spin tune. (A.1)

In section 7.2.3 it is shown that the RF cavity frequency performs a daily oscillation with an
amplitude of ∆ f day

RF = 0.1 Hz. This corresponds to a spin tune change of ∆ν
day
s = 1.65× 10−8.

The red data points in Fig. 7.23 correspond to TRF. The daily structure is clearly visible during
the measurement interval, which lasts for more than three days. In addition, the correspond-
ing spin tune distribution is shown in black. The axis is scaled by the factor αRF(νs, fRF) =

76.91 ns in order to simplify the comparison of both quantities.
In the examined period only the sextupole settings were changed, thus no additional sys-

tematics should be visible. However, the spin tune increases linearly during the two macro-
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Figure 7.24: Residuals of the spin tune and the linear least squares fit given in Fig. 7.23. The results of
two sextupole families are shown, whereas the red lines correspond to a linear least squares fit to the
respective distribution.

scopic intervals. In addition, no correlation between the daily pattern of the RF cavity fre-
quency is identified. Consequently, another unknown process leads to the linear spin tune
change, which is indicated by the linear least squares fit in blue.

In order to study the impact of the sextupole magnets on the spin tune the two lines are used
as a baseline. The residuals are shown in Fig. 7.24 as a function of the sextupole current, which
is given in percentage of its maximal nominal value. In fact, two different sextupole families
were investigated. The MXS magnets are located at large betatron amplitudes, whereas the
MXG sextupoles are assembled at large dispersion. The red lines in Fig. 7.24 correspond to
a linear least squares fit to the respective data. Note that the spin tune variations within the
same run are in the order of ∆νrun

s = 3 · 10−8. Thus, the width of each distribution obtained
for one sextupole setting is relatively wide. However, in both cases, one observes a linear
increasing spin tune for larger currents, whereas the MXG magnets yield an increased slope.

7.4.3 Long Cycle

In the previous section, the spin coherence time was determined to 280× 106 turns (≈ 370 s)
based on a cycle length of approximately 100 s. In order to prove that the requirement of an
SCT of more than 1 000 s can be fulfilled, the measurement interval was extended to more than
800 s. Since the total number of polarized particles is basically invariant, the extraction rate
was adapted in order to extract the beam for this longer period. The results of the amplitude
distribution obtained for two cycles are shown in Fig. 7.25. One observes an almost constant
polarization during the whole measurement time. A maximum likelihood fit to the data based
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Figure 7.25: Two examples of long cycles with more than 650× 106 turns (≈ 860 s). The spin tune width
is estimated to σR,νs = 5.49× 10−11 by means of a maximum likelihood fit based on the depolarization
model. (A.1)

on the depolarization model yields a spin tune width of

σR,νs = 5.49× 10−11 , (7.68)

which corresponds to

τSCT = 8 486 s . (7.69)

This unprecedented spin coherence time was reached by beam bunching, electron cooling,
sextupole field corrections, and the suppression of collective effects through beam current
limits [45].
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Conclusion

In the scope of this thesis, a mathematical model of the spin tune analysis was derived in the
context of feasibility studies of the JEDI collaboration towards an EDM experiment of charged
elementary particles. In particular, two analysis methods were introduced. Firstly, the map-
ping method, which is discussed in [33], and secondly the discrete turn Fourier transform were
investigated. It is pointed out that the latter one is more robust in terms of systematic effects
and can be mathematically well described. Consequently, the final analysis uses the discrete
turn Fourier transform in order to determine the phase and the amplitude of the spin preces-
sion in the horizontal plane. It was shown that the amplitude estimator is biased, whereas the
phase of the spin tune can be estimated without bias by applying circular statistics. Making
use of a naive Bayesian approach the probability density functions of the true values can be
identified based on the estimators obtained by the turn discrete Fourier transform. Moreover,
systematic effects of the analysis methods were estimated and discussed.

A statistical model explaining time depending depolarization effects and the spin tune drift
was elaborated. This model has basically two parameters, the spin coherence time τSCT and
the time depending spin tune ν0(t). Estimators for τSCT and ν0(t) are determined by a max-
imum likelihood fit based on its probability density functions and the statistical model. This
two quantities depend on the configuration of the electromagnetic field of the storage ring and
the orbit of the particle beam. Consequently, its determination leads to a better understand-
ing of the processes in the storage ring and can be used for systematic studies. As a result
of this work, it was shown that the spin tune undergoes a significant quadratic drift during
a experimental cycle. Unless it was not possible to determine the source of this process, sev-
eral possibilities where excluded, like a time depending drift of the COSY RF or a relative
longitudinal beam movement.

The spin tune is an ideal observable for long term stability measurements, since it correlates
with tiny changes of the experimental environment. In this work, it was shown that for a
cycle length of 100 s and a constant event rate of 5 000/s the spin tune can be determined
with a statistical precision of 10−10 [33]. On the one hand, this achievement allows to study
systematic effects of the spin tune induced by the change of the COSY RF period. On the other
hand, several experimental setups were examined, which investigated the spin tune jumps
due to operational changes of the particular device in the machine. In addition, in [46] a new
method to probe magnetic imperfections of storage rings is described making use of the very
high statistical precision of the spin tune determination. Another application is given by the
measurement of the dispersion of the machine, which is elaborated in the thesis of Fabian

143



Chapter 8 Conclusion

Hinder. Finally, the phase observation can be used for a live feedback system, which corrects
the spin phase in real time [47].

Furthermore, it is shown that the statistical sensitivity level of an intrinsic electric dipole
moment of the deuteron of d < 10−29 e cm requires a spin coherence time of 1 000 s. This
requirement was met through a combination of beam bunching, electron cooling, sextupole
field corrections, and the suppression of collective effects through beam current limits [45].

The exact design of the realization of an upcoming EDM experiments of charged particles is
currently under fruitful discussion. One class of potential storage rings uses the spin tune not
only as a variable to monitor systematic effects but also as a observable which is proportional
to the EDM signal. This would increase the importance of a comprehensive understanding of
the mechanisms which influence the spin movement of the particles. In the view of that fact,
this thesis comprises crucial achievements towards a final experiment, which challenges an
EDM limit of |d| < 10× 10−29 e cm for charged elementary particles.
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APPENDIX A

Appendix

A.1 List of Runs

In the following table the run numbers shown in the result chapter are given. In addition, the
month and the year of the respective beam time is indicated.

Table A.1: List of runs dicussed in the result chapter

Figure Beam Time Run Number

7.5 May 2015 5117
7.6 May 2015 5093 - 5858
7.7 May 2015 5920
7.8 Nov 2015 6084 - 6175
7.9 May 2015 5097

7.11 May 2015 5097 and 5095
7.12 May 2015 5097
7.13 Feb 2013 and May 2015 1770, 2288 and 5117
7.16 May 2015 5183 and 5184
7.17 May 2015 5140 - 5190
7.18 May 2015 5097
7.21 May 2015 5189
7.22 May 2015 4982 - 5163
7.23 May 2015 5130 - 5163
7.25 May 2015 5924
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A.2 Integrals for Fisher Information for Spin Precession

The Fisher information of the probability density function based on the spin precession ps(n)
is given by

I(θ) = −
∫ ∆n

0

∂2

∂θ2 log ps(n; θ)ps(n; θ)dn , (A.1)

The second derivatives with respect to the individual parameters are given by

∂2

∂ϕ2
s

log ps = −
ε [ε + sin(2πνsn + ϕs)]

(ε sin(2πνsn + ϕs) + 1)2 , (A.2)

∂2

∂ε2 log ps = −
sin2(2πνsn + ϕs)

(ε sin(2πνsn + ϕs) + 1)2 , (A.3)

∂2

∂ν2
s

log ps = −
ε(2πn)2 [ε + sin(2πνsn + ϕs)]

(ε sin(2πνsn + ϕs) + 1)2 , (A.4)

∂

∂ϕs
log ps

∂

∂ε
log ps =

ε sin(2(νsn + ϕs))

(ε sin(2πνsn + ϕs) + 1)2 , (A.5)

∂

∂ϕs
log ps

∂

∂νs
log ps = −

2πε2n cos2(2πνsn + ϕs)

(ε sin(2πνsn + ϕs) + 1)2 , (A.6)

∂

∂ε
log ps

∂

∂νs
log ps =

πεn sin(2(2πνsn + ϕs))

(ε sin(2πνsn + ϕs) + 1)2 . (A.7)

(A.8)

In order to solve the integral of Eq. A.1, the phase parameter can be set to zero ϕs = 0 since for
a large macroscopic turn interval ∆n >> 1, the phase averages out.
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The analytical solution of the integrals for the respective parameter yields

I(ϕs) =
1

∆n

∫
ε [ε + sin(2πνsn)]
ε sin(2πνsn) + 1

dn

=
n

∆n
−
√

1− ε2 arctan
(

ε+tan(πνsn)√
1−ε2

)
∆nπνs

+ const. ,

I(ε) = 1
∆n

∫ sin2(2πνsn)
ε sin(2πνsn) + 1

dn

= −
n + ε cos(2πνsn)

2πνs
−

arctan
(

ε+tan(πνsn)√
1−ε2

)
π
√

1−ε2νs

∆nε2 + const. ,

I(νs) =
1

∆n

∫
ε(2πn)2 [ε + sin(2πνsn)]

ε sin(2πνsn) + 1
dn

=
1

3∆n
π2
[
4n3 +

1
π3ν3

s

√
1− ε2

(
2πνsn

[
Li2
(
ω−
)
− Li2

(
−ω+

)]
+ iLi3

(
ω−
)
+ iLi3

(
−ω+

)
+ 2π2ν2

s n2i
[
log
(
1−ω−

)
+ log

(
1 + ω+

)] )]
+ const. ,

(A.9)

where Lis(x) denotes the polylogarithm of s-th order and log(x) is the natural logarithm. The
quantities ω− and ω+ are specified as

ω− =
εe2iπnνs

√
ε2 − 1− i

, (A.10)

ω+ =
εe2iπnνs

√
ε2 − 1 + i

. (A.11)
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Since the macroscopic turn interval is large ∆n >> νs, following terms can be approximated

arctan
(

ε + tan(πνn)√
1− ε2

)
≈ πνsn ,

cos(2πνsn) ≈ 0 (oscillation) ,

Li2
(
ω−
)
≈ 0 (oscillation) ,

Li2
(
ω+
)
≈ 0 (oscillation) ,

Li3
(
ω+
)
≈ 0 (oscillation) ,

Li3
(
ω−
)
≈ 0 (oscillation) ,

log(1−ω−) ≈

2πνsn if |i ε√
ε2−1−i

| > 1

0 if |i ε√
ε2−1−i

| < 1 (oscillation) ,

log(1 + ω+) ≈

2πνsn if |i ε√
ε2−1+i

| > 1

0 if |i ε√
ε2−1+i

| < 1 (oscillation) .

Thus, the definite integrals in Eq. A.9 (0, ∆n] are given by

I(ϕs) = (1−
√

1− ε2) ≈ ε2

2
, (A.12)

I(ε) =
1√

1−ε2 − 1

ε2 ≈ 1
2

, (A.13)

I(νs) = ∆n2 4π2

3
(1−

√
1− ε2) ≈ 4π2

6
∆n2ε2 , (A.14)

where the approximation is based on the Taylor series expand for small amplitudes ε << 1.
The integral of the mixed derivatives are approximately given by

I(ε, ϕs) =
1

∆n

∫
ε sin(2(νsn))

(ε sin(2πνsn) + 1)
dn ≈ 0 , (A.15)

I(ε, νs) =
1

∆n

∫
πεn sin(2(2πνsn))
(ε sin(2πνsn) + 1)

dn ≈ 0 , (A.16)

I(ϕs, νs) =−
1

∆n

∫ 2πε2n cos2(2πνsn)

(ε sin(2πνsn) + 1)2 dn ≈ π

2
∆nε2 . (A.17)

148



A.3 Integral of the bivariat Probability Density Function

A.3 Integral of the bivariat Probability Density Function

The integration of pn,νs

(
n, νs,; ε, ϕs, σνs , νref

s
)

with respect to the whole domain of the spin tune
yields the marginal probability density function of the turn number

pn(n) =
∫ ∞

νref
s

pn,νs (n, νs)dνs (A.18)

=
1

∆n

[
1 + ε sin (2πνsn + ϕs) +

√
2π3/2εσνs ne−2π2σ2

νs n2×(
cos (2πνsn + ϕs)− erfi

(√
2πσνs n

)
sin (2πνsn + ϕs)

) ]
(A.19)

=
1

∆n

[
1 + ε sin [Ωs(n)] +

√
πεγs(n)e−γ2

s (n)
(

cos [Ωs(n)]− erfi [γs(n)] sin [Ωs(n)]
)]

=
1

∆n

[
1 + ε

([
1−
√

πγs(n)e−γ2
s (n)erfi (γs(n))

]2
+ πγ2

s (n)e
−2γ2

s (n)
) 1

2

×

sin

[
Ωs(n) +

π

2
− arctan

(
1−√πγs(n)e−γ2

s (n)erfi (γs(n))√
πγs(n)e−γ2

s (n)

)] ]
(A.20)

=
1

∆n

[
1 + ε

([
1−
√

πγs(n)e−γ2
s (n)erfi (γs(n))

]2
+ πγ2

s (n)e
−2γ2

s (n)
) 1

2

×

sin

[
Ωs(n) +

π

2
− arctan

(
eγ2

s (n)
√

πγs(n)
− erfi (γs(n))

)] ]
, (A.21)

where erfi denotes the imaginary error function and Ωs(n) = 2πνsn + ϕs represents the fun-
damental oscillation, with the phase ϕs and the spin tune νs. The turn depending damping
term is given by γs(n) =

√
2πσνs n and it depends on the spin tune spread σνs . A fundamental

solution of the integral can be found in [48].

A.4 Derivation of the Rician Distribution

Suppose two uncorrelated and Normal distributed parameters A ∼ N(µA, σ2) and B ∼ N(µB, σ2),
with the mean values µA respectively µB and the same standard deviations σ. Then the probab-
ility density function for the quantity ε̃ =

√
Ã2 + B̃2 is given by the integral over the estimated

phase ϕ̃ = atan2(B̃, Ã) of the joint probability density function of the two random variables Ã
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and B̃.

f (ε̃, ϕ̃; ε, ϕ)dε̃ dϕ̃ =
ε̃

2πσ2 e−
ε̃2+ε2

2σ2 · e−
2ε̃ε(sin(ϕ) sin(ϕ̃)+cos(ϕ) cos(ϕ̃))

2σ2 dϕ̃ dε̃ (A.22)

f (ε̃; ε, ϕ)dε̃ =
ε̃

2πσ2 e−
ε̃2+ε2

2σ2

[∫ 2π

0
e−

2ε̃ε(sin(ϕ) sin(ϕ̃)+cos(ϕ) cos(ϕ̃))

2σ2 dϕ̃

]
dε̃ (A.23)

=
ε̃

2πσ2 e−
ε̃2+ε2

2σ2

[∫ 2π

0
e−

2ε̃ε cos(ϕ−ϕ̃))

2σ2 dϕ̃

]
dε̃ (A.24)

=
ε̃

2πσ2 e−
ε̃2+ε2

2σ2 2π I0

(
ε̃ε

σ2

)
dε̃ (A.25)

=
ε̃

σ2 e−
ε̃2+ε2

2σ2 I0

(
ε̃ε

σ2

)
dε̃ . q.e.d. (A.26)

Here the transformation into polar coordinates (Ã = ε̃ sin(ϕ̃) and B̃ = ε̃ cos(ϕ̃)) with the
Jacobian J = ε̃ has been used.

A.5 Probability Density Distribution of the Sum of Squared Random
Variables

The 2nd moment estimator of the amplitude is given by

ε̂2nd =
√

ε̃2 − 2σ2 (A.27)

→ ε̂2
2nd = Ã2 + B̃2 − 2σ2 , (A.28)

where σ =
√

2
N is the standard deviation depending on the number of detected events N

and ε̃ =
√

Ã2 + B̃2 is the estimated amplitude based on the estimated parameter Ã and B̃
obtained by the mapping method respectively discrete Fourier transform. The probability
density function of the sum of k squared and Normal distributed random variables

Z =
k

∑
i=1

X2
i (A.29)

Xi ∼ (µXi , σ2) , (A.30)

with same standard deviation but different expectation value is given by the noncentral chi
squared distribution [49]

p(z; λ, σ, k) =
1

2σ2

( z
λ

) k
4− 1

2
e−

z+λ
2σ2 I k

2−1

(√
λz
σ2

)
, (A.31)

where λ = ∑k
i=1 µ2

i .

In case of Eq. A.28 the parameters yield k = 2 and λ = ε2 = µ2
A + µ2

B, where ε is the true
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amplitude. Consequently, the pdf of ε̂2
2nd is given by

p(ε̂2
2nd; ε, σ) =

1
2σ2 e−

ε̂2
2nd+ε2+2σ2

2σ2 I0


√
(ε̂2

2nd + 2σ2)ε2

σ2

H(ε̂2
2nd + 2σ2) , (A.32)

where H denotes the Heaviside function. Fig. A.1 shows three examples of p(ε̂2
2nd; ε, σ) ob-

tained for the same standard deviation σ = 0.1 but different true amplitudes ε = 0.05 (red),
ε = 0.1 (black), ε = 0.2 (blue). The area below each function is filled for ε̂2

2nd < 0 in order to
illustrate the integrated probability, that the 2nd moment estimator yields a physical meaning-
less result, i.e. the argument of the square root in Eq. A.27 becomes negative. Since this area
increases for a decreasing true amplitude, the probability to obtain meaningful results reduces
for smaller ε.

Figure A.1: Probability density function of the quadratic 2nd moment estimator p(ε̂2
2nd; ε, σ) for the

same standard deviation σ = 0.1 but different true amplitudes ε = 0.05 (red), ε = 0.1 (black), ε = 0.2
(blue). The filled area indicates the integrated probability, that the quadratic 2nd moment estimator
assumes negative numbers.

A.6 Integral of the Circular Moment Cosinus Term

The cosinus term of the first circular moment of the wrapped probability distribution 6.5 of
the phase ϕ̃ is given by

ẑ1 =
e
−ε2

2σ2

2π

∫ π

−π

[
cos(ϕ̃)−

√
πε cos2 ϕ̃√

2σ2
e

ε2 cos2 ϕ̃

2σ2 erfc
(

ε cos ϕ̃√
2σ2

)]
dϕ̃ , (A.33)
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where erfc denotes the complementary error function, ε is the amplitude and σ represents the
standard deviation based on the number of detected events. The first term of the integrand
vanishes, since

∫ π
−π cos(ϕ̃)dϕ̃ = 0. Furthermore, an integration by the substitution

t = cos ϕ̃ , (A.34)

ϕ̃ = arccos t , (A.35)
dϕ̃

dt
=

−1√
1− t2

, (A.36)

is performed. In order to avoid singularities the integration is executed piecewise

ẑ1 =
∫ 0

−π
f (ϕ̃)dϕ̃ +

∫ π

0
f (ϕ̃)dϕ̃ = 2

∫ π

0
dϕ̃ = 2

∫ −1

1
f̃ (t)dt = −2

∫ 1

−1
f̃ (t)dt , (A.37)

which is appropriate, since f (ϕ̃) is even. This leads to

ẑ1 =
e
−ε2

2σ2

π

∫ 1

−1

−t2
√

1− t2

√
πε2

2σ2 et2 ε2

2σ2 erfc

(
t

√
ε2

2σ2

)
dt (A.38)

=
e−k2

√
π

∫ 1

−1
− t2
√

1− t2
ket2k2

erfc (tk)dt , (A.39)

with k =
√

ε2

2σ2 . The complementary error function can be expressed in terms of the Kummer

confluent hypergeometric function erfc(x) = 1− 2x√
π 1F1(

1
2 ; 3

2 ;−x2)

ẑ1 =
e−k2

√
π

∫ 1

−1
− t2
√

1− t2
ket2k2

[
1− 2tk√

π 1F1

(
1
2

;
3
2

;−(tk)2
)]

dt (A.40)

=
e−k2

√
π

∫ 1

−1

[
− t2ket2k2

√
1− t2

+
t3

√
1− t2

2k2
√

π 1F1

(
1
2

;
3
2

;−(tk)2
)]

dt . (A.41)

The second term of the integrand yields zero, since t3√
1−t2

2k2√
π 1F1

( 1
2 ; 3

2 ;−(tk)2) is odd. Con-
sequently, the expression of A.41 simplifies to an elliptic integral

ẑ1 =
e−k2

√
π

∫ 1

−1
− t2ket2k2

√
1− t2

dt (A.42)

= −
√

π

2
ke
−k2

2

[
I0

(
k2

2

)
+ I1

(
k2

2

)]
, (A.43)

which is independent of t respectively the estimated phase ϕ̃. The final result is obtained by
the backsubstitution of k

ẑ1 =

√
π

2

√
ε2

4σ2 e−
ε2

4σ2

[
I0

(
ε2

4σ2

)
+ I1

(
ε2

4σ2

)]
, (A.44)
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where I0 and I1 are the modified Bessel function of first kind and zeroth respectively first order.

A.7 Probability Density Function of the True Phase

The probability density frunction of the true phase based on the Bayes’ theorem is given by

p̃ϕ(ϕ; ε̃, ϕ̃, σ) =
∫ ∞

0
p̃(ε, ϕ; ε̃, ϕ̃, σ)dε

=
∫ ∞

0

p(ε̃, ϕ̃; ε, ϕ, σ)p(ε)
p(ε̃)

dε

=
∫ ∞

0

p(ε̃, ϕ̃; ε, ϕ, σ) p̃R(ε; ε̃, σ)

pR(ε̃; ε, σ)
dε

=
∫ ∞

0

ε̃
2πσ2 e−

2ε̃ε cos(ϕ−ϕ̃)

2σ2 p̃R(ε; ε̃, σ)
ε̃

σ2 I0
(

ε̃ε
σ2

) dε

=
1

2π

∫ ∞

0

e−
2ε̃ε cos(ϕ−ϕ̃)

2σ2 p̃R(ε; ε̃)

I0
(

ε̃ε
σ2

) dε . (A.45)

Here, the expression of p(ε) derived in Eq. 5.30 is used. Furthermore, the analytical represent-
ations in 5.2 and 5.3 enters, which yields a probability density function symmetric about the
phase substitution ϕ⇔ ϕ̃.
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