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Abstract 

The standard model of particle physics has thus far fallen short of being able to 

explain the observed amount of matter-antimatter asymmetry in the Universe. 

Electric Dipole Moments (EDMs) of fundamental particles are very sensitive probes 

of physics beyond the Standard Model. The JEDI collaboration is dedicated to the 

measurement of the electric dipole moments of charged particles by using a 

polarized beam in storage rings. The goal can be accomplished by performing 

the measurement in a pure electrostatic storage ring, which can freeze the 

horizontal spin precession of protons. As an intermediate step, a smaller 

"prototype" storage ring, capable of using a combination of electric and 

magnetic fields, is proposed to serve as a proof-of-principle and to better 

understand the required systematics. A fundamental parameter to be optimised 

to reach the highest possible sensitivity in the EDM measurement is the Spin 

Coherence Time (SCT) of the stored polarized beam, that is the time interval within 

which the particles of the stored beam maintain a net polarisation greater than 

1/e of its initial value. To identify the working conditions that maximise SCT, 

accurate spin dynamics simulations have been performed on the lattice of the 

prototype ring. This study presents an investigation of the variation of the beam 

and spin parameters that influence SCT as well as an optimisation strategy for the 

sextupole settings to obtain the highest spin coherence time at any given working 

condition of the ring. The study provides a data set of many configurations with 

spin coherence times high enough to meet the sensitivity requirements of the EDM 

measurement. It also analyses the possible design factors that may negatively 

impact SCTs and discusses possible reconfigurations or design upgrades to 

improve these values in the future.
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1. Introduction 

The aim of physics is to arrive at a description of the universe through models, often 

expressed in the language of mathematics, that are capable of making accurate 

predictions about the fate of the systems within its realms. Apart from this, physics 

also aims to answer one of humanity's most burning questions: "Why do we exist?". 

Over millennia of resilience in searching for answers, physics has made remarkable 

progress in understanding the origins and the evolution of the universe. Since the 

discovery that apart from energy, the universe is made up of matter and 

antimatter, the problem whose solutions continue to elude physicists to this day is 

the matter antimatter asymmetry observed in the universe [1]. While matter and 

antimatter can be seen as two sides of the same "universal coin", when seen from 

the perspective of processes like pair production and annihilation, the very fact 

that we exist, implies a fundamental phenomenon that skews the universe in 

favour of matter. 

Based on what physics has uncovered so far about the workings of the universe, 

the dominance of matter over antimatter can only occur if certain conditions are 

met. The most important of these conditions, which were put forward by Sakharov 

[2], is the violation of certain fundamental symmetries. 

One of the most successful and most contested theories in physics today, is the 

standard model. It is in fact the theory that has come the closest to being a theory 

of “everything except gravity”! However, if every postulate of this theory were true, 

then 𝓒𝓟 violation, which is one of those necessary violations of fundamental 

symmetries, would be occurring too rarely to explain the dominance of matter. 

Fortunately, there are other theories which predict higher 𝓒𝓟 violations which may 

even account for this asymmetry. These are known as BSM theories or theories 

"Beyond the Standard Model", which forms the inspiration of a large portion of 

fundamental physics research today. 

One of the avenues to search for 𝓒𝓟 violation is to look for a permanent electric 

dipole moment (EDM) of a fundamental particle, which is a direct manifestation 

of the phenomenon. In other words, the EDM of fundamental particles is a very 

sensitive probe of 𝓒𝓟 violation. The measurement of EDM could therefore enable 

the extension of the standard model and bring physics closer to understanding 

the matter antimatter asymmetry observed in the universe. 
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This being said the measurement of EDMs in fundamental particles can be tricky 

since it requires a very high systematic and statistical sensitivity [3]. The search for 

a permanent EDM in neutral particles has been underway for decades, without 

ever observing a non-zero value with enough certainty [1]. So, the idea which may 

seem intuitively trickier, of measuring the EDM of charged particles, has received 

much attention in recent years. While neutral particles can be trapped at rest, 

charged particles must be confined in motion, which is achieved using storage 

rings. This method was performed successfully for the measurement of the EDM of 

muons as a part of the famous g-2 experiment [4]. While the gyromagnetic 

anomaly of protons being positive as compared to the near-zero value of muons 

makes it more challenging to measure its EDM, future experiments for the direct 

measurement of the proton EDM have been proposed in dedicated storage rings 

[5] [6]. To overcome the challenge of the non-zero gyromagnetic anomaly of the 

proton, the storage rings must either operate with only electric fields or a 

combination of both electric and magnetic fields. 

The Jülich Electric Dipole moment Investigations or "JEDI" collaboration aims to 

build such a dedicated storage ring. This dedicated storage ring will perform the 

measurement by putting the particles in a "frozen spin" state, meaning that the 

particles which are injected into the ring with spins that are aligned with their 

momentum will, if not for the effect of an EDM, continue to stay aligned with the 

momentum at all times. This isolates the EDM effect from other storage ring 

phenomena, thus allowing for a direct measurement. 

By running precursor experiments on an existing storage ring [7] which only uses 

magnetic fields, the JEDI has accumulated crucial data on the systematics of a 

proton EDM experiment at a dedicated all-electric ring and conducted a 

feasibility study [8]. At this existing storage ring known as COSY, located at the 

Jülich Forschungszentrum in Jülich, Germany, JEDI has also performed a direct 

measurement of the deuteron EDM, whose preliminary results were recently 

presented [9]. 

However, despite the remarkable experimental achievements at COSY, there still 

exists a vast divide in the systematics, the working principles and the operating 

circumstances between COSY and the dedicated all-electric ring. To bridge this 

gap, the JEDI collaboration proposes to build and conduct experiments at a 

prototype storage ring. This ring will be the first storage ring to achieve frozen spin 

for protons and will use a combined electric and magnetic field for confinement. 

The ring is currently being investigated for its performance and sustainability via 

simulations of beam and spin dynamics on a software adaptation of the original 

design proposed by JEDI. 



  

3 

 

 Introduction 

This thesis presents one such simulation study of an idealised model of the 

prototype storage ring. Through simulations of beam and spin dynamics of a frozen 

spin bunch of particles using the BMAD software toolkit, this thesis will explore the 

nature of frozen spin storage of particles with simultaneous electric and magnetic 

fields, observe and model the various effects that modify particle spin and the 

overall bunch polarization, and conclude with a method to optimise the 

parameters of the beam to maximize the sensitivity of a potential EDM 

measurement. The structure of this thesis is outlined here: 

The following sections of this chapter briefly describe the scientific motivation 

behind the experiment to measure proton EDM: the matter-antimatter asymmetry, 

𝓒𝓟 violation as a possible source, the 𝓒𝓟 violating nature of EDM, and past 

attempts at measuring it. 

Chapter 2 goes into detail about the specific formalisms used to describe the 

beam and spin dynamics in particle storage rings. Relevant parameters as well as 

specific terminology which characterise the particle motion, such as betatron 

tunes, spin tunes, chromaticity, and also spin coherence time are defined and 

described here. 

Chapter 3 applies the specific concepts discussed in the previous chapter, to the 

task of measurement of proton EDM. Technical details of possible strategies to 

measure EDM using devices of different specificity are discussed along with 

methods of managing systematic uncertainties. This chapter also outlines the 

staged approach employed by JEDI to achieve its goal of a precise measurement 

of proton EDM. 

Chapter 4 gives relevant details about the precursor experiments conducted by 

JEDI at COSY. 

Chapter 5 describes in detail the simulation study performed on the prototype 

storage ring model, the tools used, the parameters explored, as well as the 

strategy developed to optimise these parameters to maximise the precision and 

sensitivity of the storage ring to the proton EDM measurement. 

Chapter 6 presents the results of tests of this optimisation strategy at various beam 

configurations of the idealized prototype ring model, as well as a discussion on the 

implications of these results. 

Chapter 7 discusses possible directions for future research in this area. 

Finally, chapter 8 summarises the outcomes of this study and concludes the thesis. 
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1.1 Scientific Motivation 

For a while now, physics has been grappling with one of its most puzzling questions: 

"why is there more matter than antimatter in the universe?"  

From what is known about the history of the universe, shortly after the big bang it 

went to a phase of rapid exponential expansion, in a process called inflation [10]. 

After inflation stopped, the temperatures in the universe were still high enough that 

particle antiparticle pairs could continue to be produced at thermal equilibrium, 

in a process called pair production [11]. Once the universe cooled down just 

enough so that pair production was no longer accessible, the matter produced 

quickly began to annihilate with the antimatter, into photons (see Figure 1). 

However, at the end of this annihilation phase the universe somehow had lots of 

matter left over which would not exist, if matter and antimatter exhibited similar 

behaviour. This is known as the matter-antimatter asymmetry, and a reliable 

quantity to measure it is the baryon asymmetry number: 

𝜂𝐵�̅� =
𝑁𝐵 −𝑁�̅�
𝑁𝛾

 { 1 } 

 

Figure 1: A depiction of the history of the universe from the Big Bang until today, where the 

timescale is represented as labels at the bottom, and our solar system’s location (not to scale) is 

pointed out on the right. Pair production was no longer accessible since after the lepton epoch 

(marked with a red arrow), somewhere between 10 and 100 s after the big bang, after which the 

matter-antimatter asymmetry became a permanent feature of the universe. 

Here, 𝑁𝐵 is the baryon density, 𝑁�̅� is the antibaryon density, and 𝑁𝛾 is the cosmic 

background radiation photon density just before the baryon annihilation. The 

baryon asymmetry number was accurately measured by two experiments: one 
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which determined the abundance of light elements produced during big bang 

nucleosynthesis (BBN), and the other that observed temperature fluctuations in 

the cosmic microwave background within the Wilkinson microwave anisotropy 

probe (WMAP). The numbers measure by these experiments [12] (observations) 

show reasonable agreement with each other. 

However, the estimations based on the standard model [12] seem to not agree 

with their measurements. Shown below are the numbers measured by each 

experiment. 

𝜂𝐵�̅�
𝐵𝐵𝑁 = 6.07−0.33

+0.33 × 10−10

𝜂𝐵�̅�
𝑊𝑀𝐴𝑃 = 6.16−0.156

+0.153 × 10−10

𝜂𝐵�̅�
𝑆𝑀 ≈ 10−18

 { 2 } 

Physicists are currently exploring two avenues that might explain this imbalance. 

One theory is that our galaxy and its neighbourhood exist in a part of the universe 

that is dominated by matter, implying that there may be other parts which might 

be dominated by antimatter. This is being explored by experiments such as the 

alpha magnetic spectrometer (AMS) [13], a cosmic ray detector on the 

International Space Station, in its search for antimatter and its related signatures. 

The other theory is that baryogenesis and baryon annihilation are fundamentally 

asymmetric processes. For this to be true, certain conditions need to be met. These 

were summarised by Andrei Sakharov in 1967 [2]: 

• Violation of baryon number: since the number of the universe was initially 0, 

a baryon number violation is necessary for there to be an excess of baryons. 

• Violation of 𝓒 and 𝓒𝓟 symmetries: a disparity in the probability of particle 

and antiparticle creation can only exist if the symmetries of charge 

conjugation (𝓒) and simultaneous charge-parity conjugation (𝓒𝓟) are 

violated. 

• Violation of thermal equilibrium: if the asymmetric baryogenesis is in thermal 

equilibrium then the rate of the forward process would be the same as that 

of the reversed one, preventing the build-up of the excess baryons. 

Among these, the second requirement has received a lot of attention from 

physicists in recent years due to the vast disagreement between theory and 

observation. So, the concepts of discrete symmetries and their violations are 

discussed below. 

1.1.1 Symmetries and transformations 

Symmetry is the term used to refer to a system which is invariant under certain 

transformations. For instance, if a system is unchanged after rotating it, the system 
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is said to have rotational symmetry. Rotational symmetries are an example of a 

continuous symmetry. But in the context of the Sakharov conditions, the concept 

of interest is discrete symmetries, in which systems remain invariant under discrete 

transformations. 

1.1.1.1 Parity transformations 

A system having parity (𝒫) symmetry remains invariant after one of its spatial 

dimensions are inverted. In other words, the system remains in invariant after being 

mirror-reflected. If the "state" of the system is given by the function Ψ(𝑥, 𝑡) which 

depends on its spatial position at a given time, then a party transformation can 

be represented as: 

Ψ(𝑥, 𝑡)
𝒫
→Ψ(−𝑥, 𝑡) { 3 } 

Here, the “reflection” is implemented with the reversal of the spatial dimension 𝑥 

of the system. Parity violations were first observed by Wu [14] in the beta decay of 

𝐶𝑜27
60 . 

1.1.1.2 Charge conjugation transformation  

A charge conjugation transformation turns a system’s particles into antiparticles: It 

is denoted by: 

Ψ(𝑥, 𝑡)
𝒞
→ Ψ̅(𝑥, 𝑡) { 4 } 

…where the bar represents the same system, but with antiparticles instead of 

particles. Violations of the 𝒞 symmetry can be seen within the standard model 

itself, where neutrinos with spins aligned with their momentum undergo weak 

interactions whereas antineutrinos with spins aligned with their momentum do not. 

1.1.1.3 Time Reversal transformation 

A time reversal transformation reverses the flow of time, essentially reversing the 

direction of all moving objects in the system: 

Ψ(𝑥, 𝑡)
𝒯
→Ψ(𝑥, −𝑡) { 5 } 

Violations of the time reversal symmetry were observed in 1998 by the CPLEAR 

collaboration, with an experiment based at CERN, on the neutral kaon system [15]. 
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1.1.1.4 𝒞𝒫𝒯 Theorem 

𝒞𝒫𝒯 symmetry being obeyed by a system is a requirement of the Lorentz-invariant 

local quantum field theory, within which each combination of all the three 

transformations results in a symmetric process [16]. This is known as the 𝒞𝒫𝒯 

theorem. 

1.1.2 𝒞𝒫 violation in the Standard Model 

A 𝒞𝒫 transformation is a combined transformation of a system, where a 𝒫 

transformation is followed by a 𝒞 transformation.  𝒞𝒫 violation was first observed in 

the neutral kaon sector, by the famous Fitch-Cronin experiment [17] in 1964, and 

the evidence has been widespread in experiments and reviews ever since. This 

eventually led to the incorporation of 𝒞𝒫 violation into the standard model via the 

Cabbibo-Kobayashi-Maskawa, or CKM matrix, which describes in its elements, the 

strength of the flavour-changing weak interactions, and the strength of the 𝒞𝒫 

violation in its phase angle [18]. 

While this formalism has been successful in explaining the observed 𝒞𝒫 violation in 

the weak sector, comparable effects have not been found in the strong sector, 

despite the Lagrangian of Quantum Chromodynamics having 𝒞𝒫 violating terms. 

This is known as the strong 𝒞𝒫 problem [19]. Furthermore, the predictions of the 

CKM matrix still do not account for the matter-antimatter asymmetry observed in 

the universe [20]. Therefore, efforts are being made by the physics community to 

find additional sources of 𝒞𝒫 violation, many of which may manifest as a 

permanent electric dipole moment of a particle. 

1.2 Electric Dipole Moment 

The basic definition of an Electric Dipole Moment (EDM) is given by the shift in the 

“centre of charge” of a system, which for a continuous system located at the 

origin, can be expressed by: 

𝑑 = ∫𝜌(𝑟)𝑟 ∙ 𝑑𝑟 { 6 } 

…which is analogous to the expression for the Magnetic Dipole Moment (MDM), 

given by: 

𝜇 = ∫(𝑟 × 𝑗(𝑟)) ∙ 𝑑𝑟 { 7 } 

Here, the integrals are over all space, and 𝜌(𝑟) and 𝑗(𝑟) are the charge and 

current densities at a location 𝑟 from the origin. 
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Since at the particle level, the only quantization axis available is the spin axis, these 

quantities can be represented as multiples of the spin: 

𝜇 = 𝑔
𝑞

2𝑚
�⃗⃗�

𝑑 = 𝜂
𝑞

2𝑚𝑐
�⃗⃗�
 { 8 } 

Here, 𝑞 and 𝑚 are the charge and mass of the particle, 𝑐 is the speed of light. 𝑔 

and 𝜂 are dimensionless quantities, known as the gyromagnetic and gyroelectric 

ratios. 

1.2.1 𝒞𝒫 violation and EDM 

The presence of a permanent EDM on fundamental particles would violate 𝒫 and 

𝒯 symmetries. This can be demonstrated by defining the state of the system in an 

external magnetic and electric field as a Hamiltonian, which has both MDM and 

EDM terms: 

𝐻 = −𝜇 ∙ �⃗⃗� − 𝑑 ∙ �⃗⃗� { 9 } 

Applying the 𝒫 and 𝒯 operators on this system would modify the system and thus 

the Hamiltonian. If the Hamiltonian changes in value, the system is said to violate 

the symmetry.  

Applying the 𝒫 transformation on the Hamiltonian would reverse the direction of 

a spatial dimension, also reversing the charge distribution across space, and thus 

the direction of the electric field. However, magnetic fields wouldn’t be affected 

since they are generated by circular currents. Similarly, the particle spin and its 

associated properties also remain invariant. 

Applying the 𝒯 transformation reverses the direction of all moving objects, 

including spins and currents. The only thing that remains invariant is the electric 

field. The effect of these transformations is also depicted in Figure 2. 

The Hamiltonian under the transformations would become: 

𝒫(𝐻) = −𝜇 ∙ �⃗⃗� + 𝑑 ∙ �⃗⃗�

𝒯(𝐻) = −𝜇 ∙ �⃗⃗� + 𝑑 ∙ �⃗⃗�
 { 10 } 

Both these systems would thus be energetically different as compared to the 

original system, which establishes the symmetry violations. By the 𝒞𝒫𝒯 theorem, it 

can also be said that this system is 𝒞𝒫 violating. 
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1.2.2 Sources of 𝒞𝒫 violation that could contribute to a permanent EDM 

From within the weak sector of the standard model, 𝒞𝒫 violation accounts for an 

EDM of [21] 

𝑑𝑛
𝐶𝐾𝑀 ≈ 10−32 𝑒 ∙ 𝑐𝑚 { 11 } 

…for neutrons, as calculated from the CKM matrix. The strong sector places a 

slightly higher upper limit on the same value: 

𝑑𝑛
�̅� < 1.1 × 10−26 𝑒 ∙ 𝑐𝑚 { 12 } 

Since the predictions of the strong sector are currently challenged by the strong 

𝒞𝒫 problem, the one from the weak sector is currently considered the upper limit 

of the standard model. 

Apart from just the standard model, there are sources of 𝒞𝒫 violation that come 

from models beyond as well (BSM models). These sources are summarized in Figure 

3 [22] [21]. 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Figure 2: The effect of 

parity and time reversal 

transformations on a 

particle (yellow) with an 

electric dipole moment 

(magenta) being subject 

to an external electric field 

(red) via electrodes, and 

magnetic field (blue) via a 

current carrying coil. The 

parity transformation 

(inversion of the vertical 

coordinate) flips the 

electrodes while leaving 

the intrinsic moments and 

magnetic field invariant. 

The time reversal flips the 

intrinsic moments and the 

magnetic field but leaves 

the electric field invariant. 

Both transformed systems 

would behave differently 

than the original, thus 

demonstrating the 

violations of the 

transformations. 
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1.3 Experimental searches for nucleon EDM 

In pursuit of validating the predictions of nucleon EDM by the standard model as 

well as looking for additional sources of 𝒞𝒫 violation, experiments were performed 

by physicists to measure the EDM of nucleons. Two of the most noteworthy are 

described here. 

1.3.1 Direct measurement of neutron EDM 

The first EDM measurement was performed on neutrons, specifically those 

produced by the Oak Ridge nuclear reactor. The experiment generated an EDM 

signal from these neutrons using the Ramsey method [23]. A schematic of the 

experiment is shown in Figure 4. 

The Ramsey method involves five steps: 

1. Neutrons are created in the reactor and undergo spin-dependent reverse 

scattering on a magnetic mirror, which renders them spin-polarized along 

the vertical axis. These neutrons are then guided through to the main 

apparatus. 

2. While passing through the apparatus, an RF magnetic field is created by a 

coil. The frequency of the field is adjusted to the Larmor frequency of the 

neutrons in the main magnetic field. The solenoidal field slowly moves the 

polarization into the plane perpendicular to the main magnetic field. This is 

called a 𝜋 2⁄ -pulse. 

Figure 3: The 

connection of CP 

violating sources and 

the EDMs of various 

particles. The different 

momenta (EDM, 

magnetic quadrupole 

moment and Schiff 

moment) are shown in 

red; the effective 

couplings are shown 

in blue. Solid arrows 

represent a stronger 

contribution than 

dashed arrows. [22] 



  

11 

 

 Introduction 

 

Figure 4: A schematic of the neutron EDM experiment using the Ramsey method, with the stages 

marked on top, and the neutron polarisation direction at those stages are marked in green below. 

The blue arrows indicate the direction of the magnetic field at each step. The red half arrows 

indicate that the electric field is flip-flopped to generate a variation in the EDM signal. [22] 

3. the neutron sample enters a region of superimposed static magnetic and 

electric fields. Both fields are either aligned or anti-aligned to each other as 

the electric field is varied sinusoidally. Together, they introduce a precession 

of the perpendicular polarization whose frequency is given by (the plus or 

minus depends on the current direction of the electric field): 

𝜔 =
2|𝜇𝐵 ± 𝑑𝐸|

ℏ
 { 13 } 

4. A second RF magnetic field induces another 𝜋 2⁄ -pulse to the spins of the 

neutrons. The frequencies of the RF fields in steps 2 and 4 are equal and the 

phases are adjusted to be equal to each other. Only the perpendicular 

polarization component, which is in phase with the RF field, flips slowly to 

the vertical direction, while the other component is essentially unchanged. 

Therefore, the vertical polarization serves as a measure for the EDM. 

5. The vertical polarization is measured by using the spin-dependent 

scattering on a magnetic mirror and counting the reflected neutrons. 

The results of this experiment yielded an upper limit on the neutron EDM of about 

5 × 10−20𝑒 ∙ 𝑐𝑚, and this method became the standard method for neutron EDM 

measurement. Since the original experiment, further advances were made in 

terms of technique as well as precision. The current, most stringent limit on the 

Neutron EDM is [24]: 
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|𝑑𝑛| < 2.9 × 10
−26𝑒 ∙ 𝑐𝑚 { 14 } 

1.3.2 Measurement of nucleon EDM in diamagnetic atoms 

In diamagnetic atoms, the finite size of the nucleus as well as magnetic and 

higher-order interactions between nucleons and electrons give rise to an atomic 

EDM [25]. The so-called Schiff moment is created by 𝒞𝒫 violating nuclear forces. It 

can arise from the nucleon EDMs and 𝒞𝒫 violating nucleon-nucleon interactions 

and contributes to the electrostatic potential. Its interaction with the atomic 

electrons is the major contribution to the atomic EDM. This allows to deduce limits 

to the proton EDM using measurement in diamagnetic systems. Currently, the best 

limit was obtained in a measurement using mercury 𝐻𝑔80
199 : 

|𝑑( 𝐻𝑔80
199 )| < 3.1 × 10−29𝑒 ∙ 𝑐𝑚 { 15 } 

…which upon calculation of the Schiff’s moment [26], leads to the indirect 

estimate of the proton EDM: 

|𝑑𝑝| < 7.9 × 10
−25𝑒 ∙ 𝑐𝑚 { 16 } 

1.4 Summary 

To briefly summarise the outcomes of the efforts to measure the EDM of nucleons, 

Table 1 shows the currently established upper limits of the most commonly 

measured particles. 

 

These measurements set stringent limits to extensions to the SM. For protons and 

electrons, the illustrated limits are deduced from indirect measurements in atoms 

and molecules, whose extraction requires a precise knowledge of the theory 

describing these systems. Direct measurements of these EDMs could exclude 

uncertainties, verify the theoretical calculations, and allow the distinction of 

different 𝒞𝒫 violating sources. For charged particles, direct measurements in 

storage rings are both, an excellent opportunity, as well as a daunting challenge. 

Table 1: The current upper limits on the 

EDM searches in nucleons and leptons, 

mentioned along with confidence 

levels. The measurement of the proton 

and the electron are from indirect 

measurements whereas the neutron, 

the muon and mercury were 

measured directly. [22] 
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To approach this challenge, the JEDI (Jülich Electric Dipole moment Investigations) 

collaboration was created in the end of 2011. The collaboration is currently based 

in the Forschungszentrum, Jülich, Germany, and is presently involved in spin physics 

experiments at the Cooler Synchrotron (COSY), located in the same facility. JEDI 

aims to carry out a long-term project for the measurement of the permanent 

electric dipole moments of charged particles in a storage ring [27], and the work 

of this thesis forms a part of this project. 

The following chapters will introduce the concepts of beam and spin dynamics in 

storage rings, and then proceed to highlight the outcomes of this study as well as 

JEDI with respect to the ongoing efforts to measure the EDM of nucleons
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2. Storage Ring 

Concepts 

The term “ring”, used widely in this work, refers to a particle accelerator that 

typically uses magnetic and/or electric fields to maintain moving particles on a 

fixed closed loop. More specifically, it refers to a synchrotron, which is a particle 

accelerator characterised by its use of Radio-Frequency (RF) cavities for 

acceleration and “bunching” of particles, and the synchronised variation of its 

bending fields in response to the increased momentum of the accelerated 

particles to maintain the radius of curvature, and thus, the fixed path of the 

particles. 

This chapter will introduce the concept of synchrotrons and how they work. 

Subsequently, it will dive deeper into the specific nature of the beam, how it is 

maintained in the ring, the parameters to keep in mind and the perspective with 

which the problem is viewed. Further, the chapter discusses how the spin of the 

particle behaves in the system, the physics behind its variation over time, and 

finally, some ways in which these physical workings can be exploited to measuring 

the EDM of the charged particles in the ring. 

2.1 The Synchrotron 

As mentioned earlier, a synchrotron is 

essentially a confinement system used to 

maintain moving charged particles in a 

fixed closed loop. A simple test case of a 

synchrotron is a particle with velocity �⃗� 

moving under the influence of a uniform 

(dipole) magnetic field �⃗⃗� such that �⃗⃗� ⊥ �⃗�. 

Figure 5 shows one such case where 

particles are made to follow a circular 

path on a horizontal plane with 

magnetic fields pointing vertically 

downward. This is possible due to the nature of the Lorentz force [28] acting on the 

particle: 

 

 

 

 

Figure 5: A depiction of particle motion in a 

synchrotron. A particle with a positive charge 

ends up traversing a circular path under the 

influence of a magnetic field of a specific 

value uniformly maintained along the desired 

path. The direction of the acceleration is 

always along the radial direction. 
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�⃗�(𝑡) = 𝑚
𝑑�⃗�(𝑡)

𝑑𝑡
= 𝑞(�⃗�(𝑡) × �⃗⃗�) { 17 } 

Here, �⃗�(𝑡) is the force acting on the particle, and 𝑚 and 𝑞 are its mass and charge. 

The force which is directed radially inward is modelled by the centripetal force 

associated with the radius of curvature 𝜌 of the path: 

𝐹 = 𝑞|(�⃗�(𝑡) × �⃗⃗�)| = 𝑞𝑣𝐵 =
𝑚𝑣2

𝜌
 { 18 } 

This gives us the relationship between the ring’s radius and the applied magnetic 

field: 

𝐵 =
𝑚𝑣

𝑞𝜌
 { 19 } 

By this, we know that for a constant magnetic field, the radius of curvature of the 

path remains constant, i.e. the particle moves in a circular path. { 19 } also gives 

the exact field to set in order to maintain a particle with a given mass, charge and 

velocity on a circular path of radius 𝑟. Thus, if the particle were to be accelerated, 

the field must increase accordingly to maintain the motion path. 

It is also interesting to see that { 19 } also holds true for relativistic particles as seen 

from the lab frame, if the mass in consideration is corrected to the relativistic mass: 

𝐵 =
𝛾𝑚𝑣

𝑞𝜌
=
𝑝

𝑞𝜌
 { 20 } 

…where 𝛾 is the Lorentz factor. With a setup to maintain particles at a fixed 

momentum in a simple closed orbit, the synchrotron would be much more useful 

with the ability to change the momentum of these particles. Moreover, since 

particle beams in practice aren’t always following the path designed for it to 

follow, contingencies need to be put in place to recover particles that have 

strayed off the designed path both in terms of position and momentum. While 

there are several devices available to achieve these tasks, this work describes the 

ones in use for JEDI’s experiments [8]. 

2.1.1 The RF cavity 

A Radio-Frequency (RF) cavity is a device used to accelerate particles along a 

straight beamline. The name “cavity” is a reference to the structure of the device, 

which is essentially designed as a series of cylindrical “poles” with periodic gaps or 
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“cavities” in between. This specific design is used to 

create strong electric fields precisely in the longitudinal 

direction in a way that doesn’t obstruct the path of the 

particles. The poles act as electrodes held at different 

voltages and the cylindrical symmetry between the 

poles ensure that all transverse field components get 

cancelled out. 

To ensure that moving particles receive a constant 

field, the voltage 𝑉𝑐 applied on the device is a RF 

voltage which varies sinusoidally with time 𝑡 and 

position 𝑥 along the device: 

𝑉𝑐(𝑥, 𝑡) = 𝑉𝑐0 sin(𝑘𝑐𝑥 − 𝜔𝑐𝑡 + 𝜙) { 21 } 

Here, 𝑘𝑐 =
𝜋
2𝑑𝑐⁄  where 𝑑𝑐 is the distance along the 

device between a cavity and a pole. 𝜔𝑐 = 2𝜋𝜈𝑐 where 𝜈𝑐 is the frequency of the 

RF voltage in 𝐻𝑧, and 𝜙 is the phase adjustment. Figure 7 shows the RF voltage (the 

red curve) put in practice for particle acceleration. The accelerator works well if 

the phase velocity 𝑣𝑅𝐹 =
𝜔𝑐
𝑘𝑐
⁄ = 4𝑑𝑐𝜈𝑐 of the voltage is maintained equal to the 

particle velocity. If this is the case, the particle feels the same potential, and thus 

the same accelerating field at all times. 

 

Figure 7: A schematic showing the cavity structure (violet) and the effective charges on the poles 

due to the applied RF voltage. The red curve shows the spatial variation of the voltage. The right 

side shows the same setup as the left, but half a time-period later. If the phase 𝜙 is adjusted so that 

the particle always feels a negative slope, and the frequency 𝜈𝑐 is varied so the phase velocity of 

the voltage is always equal to the particle velocity, the particle can receive a constant field for a 

steady acceleration. 

  

 =  1  =  1 +
 

  

   ,  

   ,  

  

Figure 6: A photograph of a RF 

cavity being tested by TRIUMF 

at the University of Toronto 

[78], with markings showing 

the cylindrically symmetric 

poles and cavities.  
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The troughs, or lower ends of this curve are termed as the RF “buckets”. This is 

because particles that travel at 𝑣 = 𝑣𝑅𝐹 and are exactly at the trough experience 

no acceleration. Moreover, particles that are slightly ahead receive a 

decelerating field whereas particles slightly behind receive an accelerating field. 

The same also applies if the particle velocity is slightly off 𝑣𝑅𝐹. Slightly slower 

particles eventually lag behind and receive an accelerating field, while slightly 

faster particles eventually take a lead to receive a decelerating field. 

This phenomenon effectively makes the voltage troughs into buckets or moving 

potential wells that transport particles (see Figure 18 [29]). In these buckets, 

particles with slight phase-space deviations (in position or momentum) from the 

bucket centers end up stably oscillating around it. 

In such a paradigm, particle acceleration is carried out by gradually increasing 

the RF frequency 𝜔𝑐, and thus, the velocity of the buckets (𝑣𝑅𝐹). However, for the 

purposes of a storage ring, RF cavities are primarily used for their bunching effects 

and maintaining the desired momentum of the particles. Thus, in a storage ring, 

𝑣𝑅𝐹 is kept constant.  

2.1.2 The Quadrupole Magnet 

A quadrupole magnet (or simply, quadrupole) is a device used to keep particles 

as close to the center of the beamline as possible by recovering particles that 

have strayed off the designed path. It is 

a magnet with four poles arranged along 

the diagonals on the plane transverse to 

the beam propagation axis. One such 

configuration is depicted in Figure 8. The 

poles are typically those of 

electromagnets, and each of the coils 

around the cores carry the same current 

so that each of the poles produce the 

same magnetic flux. 

When particles move along the 

longitudinal axis through this system, any 

particle passing through the central axis 

would experience no force due to the 

system’s symmetry along the diagonal 

axes. However, particles which are 

slightly offset along the transverse plane’s 

horizontal axis would experience a 

Lorentz force pushing it towards the 

centre. On the other hand, those which 

              

 
  
 
  

  
  
  
  

  

Figure 8: The arrangement of poles and the 

consequent field configuration of a focussing 

quadrupole. The diagram shows five particles 

at different transverse positions, all moving in 

the direction pointing out of the page, as 

well as the respective forces (black arrows) 

they experience due to the local magnetic 

field (blue arrows) they perceive. 
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are slightly offset along the vertical axis would experience a force pushing it away 

from the centre. This effect renders the horizontal axis to be the “focussing” axis 

and the vertical axis to be the “defocussing” axis.  

Quadrupoles are typically characterised by the effect they have on particles 

travelling on the horizontal plane (the plane of the ring). Thus, the configuration of 

Figure 8 is a focussing quadrupole. If the poles were switched from North to South 

and vice-versa, the horizontal axis would become the defocussing one while the 

vertical axis would become the focussing one. Such a quadrupole would be 

termed a defocussing quadrupole. 

Another interesting feature of a quadrupole is that the further along an axis the 

particle proceeds, the lesser the distance becomes between the opposing poles, 

and thus, the stronger the field perceived. Quadrupoles are generally designed 

so that the increase in the perceived field strength along the axes is linear. This 

way, the transverse magnetic field of a quadrupole is expressed by: 

�⃗⃗� = 𝜅(𝑥�̂� + 𝑦𝑥) = 𝜅 (
𝑦
𝑥
) { 22 } 

Here, 𝜅 is a constant called the quadrupole field strength, measured in 𝑇 𝑚⁄  (Tesla 

per metre). The value of 𝜅 now characterises the quadrupole: positive values imply 

a focussing quadrupole whereas negative values imply a defocussing one. With 

this expression for the field, the Lorentz acceleration experienced by a particle at 

a location 𝑟 = (
𝑥
𝑦) on the transverse plane is given by: 

𝑑2𝑟

𝑑𝑡2
=
𝑞

𝑚
�⃗� × �⃗⃗� = 𝜅

𝑞

𝑚
(
0
0
𝑣
) × (

𝑦
𝑥
0
) = 𝜅

𝑞𝑣

𝑚
(
−𝑥
𝑦 ) { 23 } 

This gives us the independent expressions: 

𝑑2𝑥

𝑑𝑡2
= −𝜅

𝑞𝑣

𝑚
𝑥 { 24 } 

𝑑2𝑦

𝑑𝑡2
= 𝜅

𝑞𝑣

𝑚
𝑦 { 25 } 

The linear dependence of the acceleration with the transverse coordinate means 

that the quadrupole works for charged particles exactly like a thin lens works for 

light. To see how this is true, the situation shown in Figure 9 is considered, where a 

“paraxial” (longitudinally propagating) particle is impinged on the quadrupole 

such that it crosses the transverse plane at a point 𝛿 on the focussing axis. Assuming 
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that the quadrupole field is effective in a very thin region of longitudinal thickness 

∆𝑙, we can infer from { 19 } that: 

∆𝑙 ≈ 𝜌𝜃 ≈ 𝜌 tan𝜃 ≈ 𝜌
𝛿

𝑓
 { 26 } 

�⃗⃗� = 𝜅 (
𝑦
𝑥
) = 𝜅 (

0
𝛿
) = 𝜅𝛿�̂� { 27 } 

𝑓 = 𝛿 cot 𝜃 = 𝛿
𝜌

∆𝑙
= 𝛿

𝑚𝑣

𝑞𝐵∆𝑙
=
𝑚𝑣

𝜅𝑞∆𝑙
 { 28 } 

 Here, 𝜃 is the total turning angle 

as the particle traverses a 

circular arc due to the 

orthogonally acting magnetic 

field. The independence of the 

“focal length” 𝑓 on 𝛿 

demonstrates the similarity in 

behaviour of a quadrupole and 

a convex lens. Regardless of the 

value of the transverse offset, 

paraxially incident particles are 

converged to a single point. 

However, the differing signs of 

the accelerations in the two 

transverse axes in { 24 } and { 25 } poses the practical problem that focussing is 

achieved only on one axis, while the other axis diverges the particles (depending 

on the sign of 𝜅). In other words, the quadrupole acts as a convex lens along the 

focussing axis, and as a concave lens along the defocussing axis. This means that 

particles that lie along the other axis will eventually be lost by hitting the walls of 

the synchrotron. To counteract this problem, a second defocussing quadrupole is 

placed at a short distance from the first focussing one. Just like how two lenses 

(one concave and one convex) of different focal lengths can be placed at a 

certain distance from each other to gain a net focussing effect, a similar 

approach can be adopted to obtain a net focussing effect along both axes. Such 

a pair of quadrupoles is termed a “unit-cell” or a FODO cell.  

Finally, to always keep particles close to the design path, a single FODO cell may 

not be enough since particles tend to diverge after the focal point. Thus, a ring is 

essentially a collection of FODO cells placed at regular intervals to optimize 

particle confinement. 

 

 

                         

 

 

  

 

 

Figure 9: A figure depicting a quadrupole acting as a 

converging lens. A paraxial particle at any transverse 

distance 𝛿 from the principal (beam) axis crosses over at 

the same point marked by the focal length 𝑓 due to the 

linear dependence of the Lorentz acceleration with 

transverse offset. 
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2.1.3 The Sextupole Magnet 

Another type of magnet that can be used to correct for beam defects is a 

Sextupole magnet (or simply, sextupole). While quadrupoles are used to correct 

the divergent effects due to errors in 

particle positions, sextupoles are used to 

correct the chromaticity effects caused by 

the quadrupole magnets. 

Chromaticity in particle accelerators is the 

phenomenon where a longitudinally 

travelling group of particles, each with its 

own small position offset, end up bending 

with a different radius of curvature in 

response to a transverse magnetic field 

due to them having different momentum 

offsets. Chromaticity effects, analogous to 

chromatic aberration in lenses, are seen at 

the ends of quadrupole magnets, which 

due to the combination of spatial 

separation and differing momenta of the 

particles, cannot be reliably corrected 

using quadrupole magnets. 

As the name suggests, a sextupole magnet 

has six magnetic poles arranged in an 

alternating fashion around the beam. A sextupole meant to correct chromaticity 

on the horizontal plane typically has a north pole pointed along the vertical axis 

as shown in Figure 10. The defining design feature of a sextupole is that the 

apparent magnetic field varies with the second order of distance from the beam 

axis. More specifically, the transverse magnetic field felt by a longitudinally 

propagating particle impinging on the sextupole at transverse coordinates 𝑟 = (
𝑥
𝑦) 

is given by: 

�⃗⃗� = 𝜒 (−𝑥𝑦𝑥 −
1

2
(𝑥2 − 𝑦2)�̂�) = 𝜒(

−𝑥𝑦

−
1

2
(𝑥2 − 𝑦2)

) { 29 } 

Here, 𝜒 is the sextupole field strength, measured in 𝑇 𝑚2⁄ . Given this specific field 

function, the Lorentz acceleration is now given by: 

              

  
  

  
  
  

  

Figure 10: Configuration of a sextupole 

magnet for dispersion error corrections along 

the horizontal (𝑥𝑧) plane. The forces 

experienced by particles at different 

locations on the transverse plane (yellow 

circles) due to the apparent fields (blue 

arrows) are denoted by the black arrows. 
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𝑑2𝑟

𝑑𝑡2
=
𝑞

𝑚
�⃗� × �⃗⃗� = 𝜒

𝑞

𝑚
(
0
0
𝑣
) × (

𝑥𝑦
1

2
(𝑥2 − 𝑦2)

0

) = 𝜒
𝑞𝑣

𝑚
(

1

2
(𝑥2 − 𝑦2)

𝑥𝑦
0

) { 30 } 

The acceleration, which is now a function of the square of the transverse distance 

of the particle from the beam, is effectively used to correct the effects of 

chromaticity. The exact mechanism behind this correction is demonstrated in 

section 2.3. 

2.2 Frenet-Serret Coordinate System 

Before moving further towards the beam and spin dynamics of single particles in 

a storage ring, the coordinate system under which the terms are defined must be 

considered. 

Consider that a particle traverses a 

fixed closed path, in a clockwise 

fashion. This path, called the 

“reference path”, is typically circular 

but can essentially be any shape as 

long as it is closed. However, for the 

purposes of this study, the 

consideration is limited to paths lying 

on a single plane, called the “ring 

plane”, and that the path is 

continuous and differentiable. Since 

the path is fixed, any given location on this path is simply specified by a single 

parameter 𝑠, which varies from 0 to 𝐿, which is the total length of the path. The 

“reference particle” is defined to be the particle that travels precisely on the 

reference path, at a fixed velocity, known as the “reference velocity”. 

In this paradigm, the origin is defined to be the location of the reference particle 

at any given moment. In other words, the coordinate system is basically designed 

to be the rest frame of the reference particle (the “Frenet” frame), located at 𝑠. 

With the origin defined, the 𝑧 axis is defined to be along the tangent to the 

reference path at 𝑠, pointing towards its direction of motion. The 𝑦 axis is 

perpendicular to the ring plane and pointing vertically upward. Finally, the 𝑥 axis 

would lie along the ring plane in a direction perpendicular to the path such that 

it agrees with the cartesian convention (𝑥 × �̂� = �̂�). These axes are represented in 

Figure 11. 

 

 

 

 

 

 

0

 

Figure 11: A drawing representing the right-

handed Frenet-Serret coordinate system used to 

define the measurables of beam and spin 

dynamics in this thesis. The values marked in 

yellow are those of the location parameter 𝑠. 
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Based on these axes, the 𝑥𝑦 plane is generally referred to as the “transverse” 

plane, the 𝑦𝑧 plane as the “vertical” plane and the 𝑧𝑥 plane as the “ring” plane.  

Such a coordinate system is referred to as a “curvilinear” or a “Frenet-Serret” 

coordinate system, named after the French mathematicians who devised the 

formulas describing the kinematic properties of particles moving along 

differentiable curves. More specifically, the coordinate system described above is 

a “left-handed” [30] Frenet-Serret system since the origin (particle) moves 

clockwise in accordance with the left-hand thumb rule. The equations of motion 

in this coordinate system are thus given by the Frenet-Serret formulae [31]: 

𝑑𝑥

𝑑𝑠
=

1

𝜌(𝑠)
�̂�;

𝑑�̂�

𝑑𝑠
= 0;

𝑑�̂�

𝑑𝑠
= −

1

𝜌(𝑠)
𝑥 { 31 } 

Here, 𝜌(𝑠) is the instantaneous radius of curvature at 𝑠. This system can be 

condensed to: 

𝑑𝑸

𝑑𝑠
= −

1

𝜌(𝑠)
(𝑅𝑦

⊥)𝑸 { 32 } 

Here, 𝑅𝑦
⊥ is a 90° rotation matrix around the 𝑦-axis, and 𝑸 is the 3×3 matrix whose 

columns are the unit vectors 𝑥, �̂� and �̂�. To demonstrate the nature of each unit 

vector’s variation, further differentiation with respect to 𝑠 can be done to reduce 

the rotation matrix to an identity through the relation (𝑅𝑦
⊥)
2
= −𝐼. This gives us the 

new relations: 

𝑑2𝑥

𝑑𝑠2
= −

1

𝜌2
𝑥;

𝑑2�̂�

𝑑𝑠2
= 0;

𝑑2�̂�

𝑑𝑠2
= −

1

𝜌2
�̂� { 33 } 

These equations represent the general case of a 2D harmonic oscillator on the ring 

plane. By applying the appropriate boundary condition of phase orthogonality to 

the solutions, the specific case of circular motion as described above, is obtained. 

2.3 Transverse Beam Dynamics in storage rings 

2.3.1 Betatron Motion 

In a storage ring with a predefined reference path and velocity, with quadrupoles 

(but no sextupoles for the time being) for beam corrections, let 𝑢 be a transverse 

coordinate (either 𝑥 or 𝑦 in the Frenet frame) of a particle. As the particle traverses 

the storage ring, the value of this coordinate varies depending on its initial value, 

and the specific locations of the quadrupoles (specified by the curvilinear 



 

24 

 

 Optimization of Spin Coherence Time at a Prototype Storage Ring for Electric Dipole Moment Investigations 

coordinate 𝑠), which apply the focussing or defocussing accelerations. In general, 

the variation of 𝑢 can be summarised with this differential equation [30]: 

𝑑2𝑢(𝑠)

𝑑𝑠2
+ 𝑘(𝑠)𝑢(𝑠) = 0 { 34 } 

This equation is known as the Hill’s Differential Equation (HDE). Here, 𝑢 and 𝑘 both 

depend on 𝑠. With this factor implied, the above equation is simply written as: 

𝑢′′ + 𝑘𝑢 = 0 { 35 } 

The apostrophes now represent derivatives with respect to 𝑠. From the formalisms 

derived for the quadrupole magnets in section 2.1.2, 𝑘 for each coordinate 

becomes: 

𝑘𝑥 =
1

𝜌(𝑠)2
+ 𝐾(𝑠)

𝑘𝑦 = −𝐾(𝑠)
 { 36 } 

Here, 𝐾(𝑠) is the “focussing function” that is proportional to the quadrupole field 

strength at the location 𝑠. 𝜌(𝑠) is the radius of curvature, which is constant for a 

perfectly circular ring, but has an 𝑠-dependence for non-circular rings. It is now 

clear that { 35 } cannot simply be solved with the expression for a harmonic 

oscillator due to the 𝑠-dependence of 𝑘. 

With no additional constraints, solutions to the HDE are possible. However, a 

relatively simple approach is taken by applying the Floquet theorem [30], which 

states that for a periodic function 𝑘𝑢, such that: 

𝑘(𝑠) = 𝑘(𝑠 + 𝑙′) { 37 } 

…for a constant 𝑙′, the HDE can be solved using the solution: 

𝑢 = √𝜖√𝛽(𝑠) cos(𝜓(𝑠) + 𝜙) { 38 } 

…where 𝜙 is an arbitrary phase offset, 𝜖 is a constant known as the emittance, and 

𝛽(𝑠) and 𝜓(𝑠) are known as the betatron amplitude function (or simply, beta 

function) and phase function respectively. 𝑙′ is typically equal to 𝐿, the 

circumference of the synchrotron. However, if the devices are configured on the 

ring so that the ring has a “𝑃-fold” symmetry, then 𝑙′ is given by: 
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𝑙′ =
𝐿

𝑃
 { 39 } 

Here, 𝑃 is a natural number denoting the number of symmetry axes, known as the 

“superperiodicity” of the synchrotron. 

When we substitute the solution { 38 } into { 35 } and enforce its validity at all values 

of 𝑠, we obtain the relations: 

𝜓′ =
1

𝛽
⇒ 𝜓(𝑠) = ∫

1

𝛽(𝑠1)
𝑑𝑠1

𝑠

0

 { 40 } 

2𝛽𝛽′′ − 𝛽′ + 4𝑘𝛽2 − 4 = 0 { 41 } 

For a synchrotron with a known 𝑘 distribution (determined by the positions and field 

strengths of the quadrupoles), the beta and phase functions can now be 

obtained from the above expressions. Since { 41 } must remain true at all values of 

𝑠, it is necessary that the beta function also possesses a matching periodicity to 𝑘, 

i.e.  

𝛽(𝑠) = 𝛽(𝑠 + 𝑙′) { 42 } 

Thus, with the beta function, determined solely from the structure of the 

synchrotron, guiding its amplitude and phase advance, the particle moves about 

the reference position according to { 38 }. This motion is called betatron motion.  

Furthermore, betatron motion is a “pseudo-harmonic” motion in the sense that it 

is not periodic with 𝑠. However, if we define the “betatron tune” (𝑄): 

𝑄 =
1

2𝜋
𝜓(𝐿) =

1

2𝜋
∫

1

𝛽(𝑠)
𝑑𝑠

𝐿

0

 { 43 } 

…which is the total phase advance at the end of one turn, then the motion 

according to the “pseudo-displacement” (𝜂 =
𝑢

√𝛽
) and “pseudo-time” (𝜚 = 2𝜋

𝜓

𝑄
) is 

simple harmonic: 

𝑑2𝜂

𝑑𝜚2
+ 𝑄2𝜂 = 0 { 44 } 

The frequency term in this characteristic harmonic motion, also known as “linear” 

betatron motion, is in fact the betatron tune 𝑄. This quantity is often used to 
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characterise the beam in a storage ring. The pair of betatron tunes (𝑄𝑥 and 𝑄𝑦) in 

each transverse dimension is together called a “working point”.  

Finally, from { 38 } and its derivative: 

𝑢′ =
1

2
𝛽′√

𝜖

𝛽
cos(𝜓(𝑠) + 𝜙) − √

𝜖

𝛽
sin(𝜓(𝑠) + 𝜙) { 45 } 

…the identity sin2 𝜗 + cos2 𝜗 = 1 allows for the elimination of the sine and cosine 

terms to give the expression for the Courant-Snyder Invariant [30]: 

𝜖 = 𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′2 { 46 } 

Where… 

𝛼 = −
𝛽′

2
; 𝛾 =

1 + 𝛼2

𝛽
 { 47 } 

The equation { 46 } represents an ellipse 

in phase-space, whose tilt and 

eccentricity are determined by the 

Courant-Snyder parameters 𝛼, 𝛽 and 𝛾. 

The area of the ellipse is given by 𝜋𝜖, 

where the emittance 𝜖 is also known as 

the Courant-Snyder invariant, which is 

typically used to characterise the cross-

sectional “size” of the beam in each 

transverse direction. A typical phase-

space ellipse is shown in Figure 12. 

2.3.1.1 Transverse phase space: Transfer Matrix Formalism 

While the equations describing the particle motion in terms of single coordinates 

are useful, a more optimized way to deal with different devices on the beamline, 

each modifying particle trajectories in their own way is through a matrix formalism. 

To do this, a “state” vector must be chosen on which the various matrices, each 

representing a device, or even the entire ring, can operate on to “propagate” 

them. 

Considering that the differential equation describing the general particle motion 

is of the second order, we devise a two-component state vector 𝜇, with position 

and velocity along a transverse coordinate (𝑥 or 𝑦) as its components, which is 

assumed to contain all the information about a particle’s state. 

 

  

Figure 12: The Courant-Snyder ellipse drawn by 

a particle with emittance 𝜖. The origin of the 

plot represents the reference particle (𝜖 = 0). 

Also marked are the maximum amplitude (√𝛽𝜖) 

and velocity (√𝛾𝜖) attained during the betatron 

motion. 
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�⃗⃗⃗� = (
𝑢
𝑢′
) { 48 } 

To describe the formalism, it is useful to write the Floquet solutions as: 

𝑢 = √𝜖𝛽 cos𝜙 cos𝜓 − √𝜖𝛽 sin𝜙 sin𝜓 { 49 } 

𝑢′ = −√
𝜖

𝛽
[cos𝜙 (𝛼 cos𝜓 + sin𝜓) + sin𝜙 (−𝛼 sin𝜓 + cos𝜓)] { 50 } 

With this, the state vector can now be formalised as: 

�⃗⃗⃗� = −√
𝜖

𝛽
(
𝛽 0
−𝛼 −1

)(
cos𝜓 − sin𝜓
sin𝜓 cos𝜓

) (
cos𝜙
sin𝜙

) { 51 } 

To get the initial state vector, we set 𝜓 = 0, 𝛽 = 𝛽0 and 𝛼 = 𝛼0: 

�⃗⃗⃗�0 = (
𝑢0
𝑢0
′ ) = −√

𝜖

𝛽0
(
𝛽0 0
−𝛼0 −1

)(
cos𝜙
sin𝜙

) { 52 } 

From this the transfer matrix 𝑼𝑠 0⁄  from �⃗⃗⃗�0 to �⃗⃗⃗� can be obtained: 

�⃗⃗⃗� = 𝑼𝑠 0⁄ �⃗⃗⃗�0 = √
𝛽0
𝛽
(
𝛽 0
−𝛼 −1

)(
cos𝜓 − sin𝜓
sin𝜓 cos𝜓

) (
𝛽0 0
−𝛼0 −1

)
−1

�⃗⃗⃗�0 { 53 } 

Here, 𝑼𝑠 0⁄  can either be 𝑿𝑠 0⁄  or 𝒀𝑠 0⁄  for the horizontal and vertical phase spaces. 

Defining 𝑩(𝑠) =
1

√𝛽
(
𝛽 0
−𝛼 −1

) and 𝑩(0) =
1

√𝛽0
(
𝛽0 0
−𝛼0 −1

) results in the shorthand: 

𝑼𝑠 0⁄ = 𝑩(𝑠)𝑅(𝜓)𝑩(0)−𝟏 { 54 } 

Thus, the transfer matrix in the Floquet basis can be seen as a coordinate rotation 

via 𝑅 after the normalization of the phase space coordinates with 𝑩. This can be 

further visualized in Figure 13. 

Using the convenient rotation matrix framework, a general expression for the 

transfer matrix of a ring segment from 𝑠 = 𝑠1 to 𝑠 = 𝑠2 can also be formulated: 
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𝑼𝑠2 𝑠1⁄ = 𝑩(𝑠2)𝑹(𝜓2 − 𝜓1)𝑩(𝑠1)
−𝟏 { 55 } 

 

Figure 13: A visualization of the transformations to the phase space ellipse during the process of 

transport from 𝑠 = 𝑠1 to 𝑠 = 𝑠2. 

Finally, we can calculate the transfer matrix 

of one superperiod 𝑴𝒔→𝑠+𝑙′. In this case, due 

to the intrinsic periodicity of the Courant-

Snyder parameters, 𝑩(𝑠 + 𝑙′) = 𝑩(𝑠), and the 

matrix can be parametrised as:  

𝑼𝑠+𝑙′ 𝑠⁄ = 𝑰 cos (2𝜋
𝑄

𝑃
) + 𝑱 sin (2𝜋

𝑄

𝑃
) { 56 } 

…where 𝑰 is the identity matrix and 𝑱 = (
𝛼 𝛽
−𝛾 −𝛼

). This is the Courant-Snyder 

parametrization of the one-period matrix. This parametrization makes clear some 

interesting properties of the matrix: 

|𝑼𝑠+𝑙′ 𝑠⁄ | = 1 { 57 } 

𝑱2 = −𝑰 { 58 } 

(𝑼𝑠+𝑙′ 𝑠⁄ )
𝑛
= 𝑰 cos (2𝜋𝑛

𝑄

𝑃
) + 𝑱 sin (2𝜋𝑛

𝑄

𝑃
) { 59 } 

(𝑼𝑠+𝑙′ 𝑠⁄ )
−1
= 𝑰 cos (2𝜋

𝑄

𝑃
) − 𝑱 sin (2𝜋

𝑄

𝑃
) { 60 } 

2.3.1.2 Beam stability 

The stability condition of the beam is a condition that the one-period matrix, or the 

one-turn matrix must satisfy for the beam to be stable. This condition is as follows: 

 

 

Figure 14: An illustration of the variation of 

the phase space ellipse during transport. 
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|𝑡𝑟(𝑼𝑠+𝐿 𝑠⁄ )| ≤ 2 { 61 } 

In other words, the condition enforces that the phase advance 2𝜋
𝑄

𝑃
, and by 

extension, the betatron tune 𝑄 be a real number. An imaginary 𝑄 is possible if the 

ring or symmetric cell has a net defocussing effect instead of a focussing one. This 

would typically result in a beam that (at least along one transverse axis) diverges 

and is eventually lost. 

2.3.1.3 Betatron Resonance 

A resonance in betatron motion is a phenomenon where the beam parameters 

are configured in a way that slight device or field imperfections apply resonant 

kicks to the particle to eventually push it out of the ring. The condition for 

resonance is:  

𝑚𝑄𝑥 + 𝑛𝑄𝑦 = 𝑗 { 62 } 

Here, 𝑚, 𝑛 and 𝑗 are integers. The order of the resonance 

is determined by |𝑚 + 𝑛|. The first order resonance has 

the form 𝑄 = 𝑗, i.e., the betatron tune along a transverse 

direction is an integer. This leads to the situation where 

the one-turn matrix reduces to the identity: 

𝑼𝑠+𝐿 𝑠⁄ = 𝑰 { 63 } 

Therefore, the presence of a small defocussing defect 

(imaginary phase advance) by, for example, a field 

error in a dipole magnet, at any location 𝑠 on the ring 

would change the one-turn matrix to: 

𝑼𝑠+𝐿 𝑠⁄
∗ = 𝑼𝑠+𝐿 𝑠⁄ (

1 + 𝛿𝑑 0
0 1 + 𝛿𝑑

) = (
1 + 𝛿𝑑 0
0 1 + 𝛿𝑑

) { 64 } 

The trace of this system would thus become 2 + 2𝛿𝑑, which is greater than 2. Even 

for a tiny defect 𝛿𝑑, this defocussing effect would magnify exponentially over 

several turns, resulting in the loss of the particle (see Figure 15).  

𝑡𝑟 ((
1 + 𝛿𝑑 0
0 1 + 𝛿𝑑

)
𝑛

) = 2(1 + 𝛿𝑑)
𝑛 { 65 } 

Thus, resonant configurations are to be avoided in closed beamline operations. 

Figure 15: An example of 

error amplification due to 

betatron resonance at 

𝑄𝑥 = 5. [81] 
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2.3.2 Off-Momentum Particles and Dispersion 

So far in calculations of betatron motion, particles with position offsets from the 

reference particle have been considered, while essentially maintaining that they 

travel at exactly the design momentum. This is, however, not always the case, as 

was explored in section 2.1.3. 

Considering a focussing quadrupole that obeys the HDE, the value of 𝑘 at the 

location of the quadrupole can be determined from a comparison of { 35 } and { 

24 } (recall that 𝑑𝑠 = 𝑣𝑑𝑡): 

𝑘 = 𝜅
𝑞

𝑚𝑣
= 𝜅

𝑞

𝑝
 { 66 } 

If the particle has a small momentum offset given by 𝛿 =
Δ𝑝

𝑝
, the value of 𝑘 would 

change to 𝑘1 (approximated by considering only the first order term): 

𝑘1 = 𝜅
𝑞

𝑝 + 𝛿𝑝
= 𝜅

𝑞

𝑝
(1 − 𝛿 + 𝛿2 −⋯) ≈ 𝑘(1 − 𝛿) { 67 } 

This results in the inhomogeneous form of the HDE: 

𝑢′′ + 𝑘𝑢 = 𝑘𝛿𝑢 { 68 } 

The solution to such an equation would take the form: 

𝑢 = √𝜖√𝛽(𝑠) cos(𝜓(𝑠) + 𝜙) − 𝛿𝐷(𝑠) { 69 } 

Here, 𝐷(𝑠) is called the dispersion function, which is an indicator of the magnitude 

of dispersion effects as a function of 𝑠. The dispersion function can be calculated 

using the Green’s function method [29]: 

𝐷(𝑠) = 𝛿∫ 𝑘(�̃�)𝐺(𝑠, �̃�)
𝑠

0

𝑑�̃� { 70 } 

The function 𝐺(𝑠, �̃�) is known as Green’s function which is essentially defined as the 

solution to the marginally perturbed homogeneous equation: 

𝐺′′ + 𝑘(𝑠)𝐺 = 𝔡(𝑠 − �̃�) { 71 } 

…with 𝔡(𝑠 − �̃�) being the Dirac-delta function with its spike at �̃�. The Courant-Snyder 

parameters together with the dispersion functions at each transverse axis are 

together called the “Twiss” parameters. The Twiss parameters collectively hold all 
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the necessary information to exactly determine the time development of a 

particle’s motion around the ring. 

2.3.3 Chromaticity 

Chromaticity is the term given to the change in the effective betatron tune on a 

particle with a slight offset in momentum. It is denoted (in each transverse 

direction) by: 

𝜉 =
Δ𝑄

𝛿
 { 72 } 

To measure the chromaticity effect of a quadrupole [32], an infinitesimally thin 

quadrupole is assumed to be placed on a synchrotron ring at a location 𝑠. A 

particle with a momentum offset 𝛿, after exiting the quadrupole slice would have 

an additional term in its velocity. 

𝑑𝑢′ = 𝑢′′𝑑𝑠 = −𝑘𝑢𝑑𝑠 + 𝑘𝑢𝛿𝑑𝑠 { 73 } 

(
𝑢2
𝑢2′
) ⟶ (

𝑢2
𝑢2
′ + 𝑘𝑢𝛿𝑑𝑠) { 74 } 

The transfer matrix 𝑼𝑠+𝐿 𝑠⁄
∗ of the ring (one-turn matrix, measured from 𝑠) would 

now differ from the one without the added slice 𝑼𝑠+𝐿 𝑠⁄  by a phase error of 𝑑𝜓 in its 

coordinate rotation. But this would now be equivalent to: 

𝑼𝑠+𝐿 𝑠⁄
∗ = (

1 0
𝑘𝛿𝑑𝑠 1

)𝑼𝑠+𝐿 𝑠⁄  { 75 } 

Equating the traces of the resultant matrices on both sides gives us the expression: 

cos (2𝜋
𝑄

𝑃
+ 𝑑𝜓) = cos (2𝜋

𝑄

𝑃
) +

1

2
𝛽𝑘𝛿 sin (2𝜋

𝑄

𝑃
)𝑑𝑠 { 76 } 

Upon evaluation of 𝑑𝜓 in terms of 𝑑𝑄 using { 43 } and further simplification, the 

expression for Δ𝑄 and thus, 𝜉 is obtained: 

Δ𝑄 = −
𝑃𝛿

4𝜋
∫ 𝛽𝑘
𝑠2

𝑠1

𝑑𝑠 { 77 } 
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𝜉0 = −
1

4𝜋
∫ 𝛽𝑘
𝐿

0

𝑑𝑠 { 78 } 

The above equation talks about the chromaticity contributed by the quadrupoles 

in the ring and is termed the “natural” chromaticity of the ring. It also shows that 

lattices with a strong focussing tend to have negative natural chromaticities due 

to higher momentum particles being bent less by the quadrupole, thus ending up 

oscillating with a lower tune. 

2.3.4 Chromaticity correction by sextupoles 

Dispersion and chromaticity effects, which arise due to off-momentum particles 

are described by the dispersion function 𝐷(𝑠) at the local level, and by the 

chromaticity 𝜉 at the global level. Here, the method of chromaticity correction 

using sextupoles is explored. 

Like in the previous example, a periodic FODO cell is considered, within which an 

infinitesimal sextupole segment of length 𝑑𝑠 exposed to a non-zero dispersion 

function. From the expression { 30 } of the Lorentz acceleration due to the 

sextupole, we get the equation of motion along the horizontal axis: 

𝑥′′ −
�̃�

2
(𝑥2 − 𝑦2) = 0 { 79 } 

…where �̃� = 𝜒
𝑞

𝑝
 is the normalized sextupole field strength. From { 69 }, it can be 

seen that due to the dispersion function, the particle displacement now changes:  

𝑥∗ = 𝑥 − 𝐷𝛿 { 80 } 

Combining this with { 79 } results in the expression for the change in velocity due to 

the sextupole slice, and an additional term in the final state vector: 

𝑑𝑥′ = 𝑥′′𝑑𝑠 = −�̃�𝑥𝐷𝛿 +
�̃�

2
(𝐷𝛿)2 +

�̃�

2
(𝑥2 − 𝑦2) ≈ −�̃�𝑥𝐷𝛿 +

�̃�

2
(𝑥2 − 𝑦2) { 81 } 

(
𝑥2
𝑥2′
) ⟶ (

𝑥2
𝑥2
′ − �̃�𝑥𝐷𝛿𝑑𝑠) { 82 } 

Thus, from the similarity with the example in 2.3.3, it can be seen that the effect of 

the sextupole slice s equivalent to a kick from a quadrupole of gradient −�̃�𝐷𝛿. This, 

analogous to { 77 }, gives a tune shift and a chromaticity correction [32]: 
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Δ𝑄 =
𝑃𝛿

4𝜋
∫ �̃�𝛽𝐷
𝑠2

𝑠1

𝑑𝑠 { 83 } 

𝜉𝜒 =
1

4𝜋
∫ �̃�𝛽𝐷
𝐿

0

𝑑𝑠 { 84 } 

This chromaticity contribution is termed as a correction due to its positive sign as 

compared to the one due to the quadrupole. The effective chromaticity 𝜉 of the 

ring would now be given by: 

𝜉 = 𝜉𝜒 − 𝜉0 { 85 } 

Since the correcting effect of sextupoles scale with the dispersion function, 

sextupoles are generally placed at locations with high dispersion. Quadrupoles 

and sextupoles may also be placed adjacent to each other to function 

effectively. 

2.4 Longitudinal Beam Dynamics in Storage rings 

So far, the mechanisms that govern transverse offsets in the presence of focussing 

devices such as quadrupoles and sextupoles have been discussed. In the 

longitudinal domain, the mechanisms are quite different and often decoupled 

from transverse beam dynamics.  

A storage ring only requires a small number of bunches and does not require 

acceleration. Thus, in the following subsections, the mechanisms governing 

longitudinal beam dynamics will be discussed in the presence of a single RF cavity. 

2.4.1 Path Lengthening 

and momentum 

compaction 

Path lengthening is the effect 

of change in the length of the 

path when a particle has a 

momentum offset. This effect is 

primarily due to faster particles 

being bent at a larger radius. 

To see how this occurs, the 

situation in Figure 16 is 

considered, in a storage ring in 

the absence of RF bunching.  

  
 

  
  

 

  

Figure 16: A diagram depicting the motion of an off-

momentum particle in the absence of focussing. The 

motion of the offset particle (black curve) through an 

element 𝑑𝜃 of the “ring angle”, can be represented as a 

function of that of the reference particle (yellow curve).  
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An otherwise reference particle with a momentum offset 𝛿 =
Δ𝑝

𝑝⁄  is assumed to 

travel a path which is offset by 𝑥∗(𝑠) in the radial direction at each location 𝑠 on 

the reference path. The total path length 𝐿∗ traversed by this particle is given by: 

𝐿∗ = ∫ 𝑑𝑧
𝐿∗

0

= ∫ (1 −
𝑥∗

𝜌
)

𝐿

0

𝑑𝑠 { 86 } 

Since a reference particle is considered, from { 80 }, we have 𝑥∗ = −𝐷𝛿. The 

change in path length can now be calculated: 

Δ𝐿

𝐿
=
𝐿∗ − 𝐿

𝐿
=
𝛿

𝐿
∫
𝐷

𝜌

𝐿

0

𝑑𝑠 { 87 } 

The momentum compaction factor 𝛼𝑐 is now defined as: 

𝛼𝑐 =
Δ𝐿

𝐿⁄

𝛿
=
1

𝐿
∫
𝐷

𝜌

𝐿

0

𝑑𝑠 { 88 } 

This quantity gives information about the rate of change of path length with 

momentum of a particle. Along with the path length, the travel time 𝑡 of the 

particle around the ring also changes with momentum offset. The travel time is 

given by: 

𝑡 =
𝐿

𝑣
 { 89 } 

Using logarithmic differentiation, the time offset is obtained: 

Δ𝑡

𝑡
=
Δ𝐿

𝐿
−
Δ𝑣

𝑣
 { 90 } 

Using the relations 𝑝 = 𝛾𝑚𝑣 and { 88 }, the path and velocity offsets can be related 

to the momentum offset as: 

Δ𝑡

𝑡
= −(

1

𝛾2
− 𝛼𝑐) 𝛿 = −𝜂𝑐𝛿 { 91 } 

Here, 𝜂𝑐 is called the phase slip factor, which gives information about the rate of 

change of the travel time of a particle with momentum. 

It is interesting to note that for a classical (slow moving) particle, the travel time 

remains constant with change in momentum, given the nature of the radius of 
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curvature { 19 }. This makes 𝜂𝑐 = 0 and 𝛼𝑐 = 1. The phenomenon of phase slip can 

thus be seen as exclusive of relativistic particles. 

Furthermore, under relativistic conditions, it is possible for a particle to have an 

energy such that the phase slip vanishes. This energy is called the transition energy 

𝐸𝑇, and the Lorentz factor at this point is called the transition-𝛾 or 𝛾𝑇 where: 

1

𝛾2
= 𝛼𝑐 ⇒ 𝐸𝑇 =

𝑚𝑐2

√𝛼𝑐
= 𝛾𝑇𝑚𝑐

2 { 92 } 

Beyond the transition energy, travel times tend to increase with momentum, due 

to a larger component of the energy increase going to the particle’s mass rather 

than its velocity. 

2.4.1.1 Higher order momentum compaction 

At larger momentum offsets, the change in path length as a function of 

momentum offset may not be strictly linear. This is because for a larger 𝛿, 

additional terms in the expression of the focussing function must be considered 

(see { 67 }) Therefore, the dispersion function that solves the HDE under these 

circumstances would now have additional dependencies on each order of 𝛿. 

These can be calculated from the Taylor expansion of the HDE solution 𝑢∗: 

𝑢∗ = 𝑢 +
𝑑𝑢

𝑑𝛿
𝛿 +

1

2!

𝑑2𝑢

𝑑𝛿2
𝛿2 +

1

3!

𝑑3𝑢

𝑑𝛿3
𝛿3 +⋯ = 𝑢 + 𝐷0𝛿 + 𝐷1𝛿

2 +𝐷2𝛿
3 +⋯ { 93 } 

𝐷∗ = 𝐷0 + 𝐷1𝛿 + 𝐷2𝛿
2 + 𝐷3𝛿

3 +⋯ { 94 } 

Here, 𝐷∗ is the modified dispersion function for large offsets and 𝐷𝑛 is the 𝑛𝑡ℎ-order 

dispersion function. Since the change in path length depends on the dispersion 

function, it can now be expanded as follows: 

Δ𝐿

𝐿

∗

= 𝛼0𝛿 + 𝛼1𝛿
2 + 𝛼2𝛿

3 +⋯ { 95 } 

⇒ 𝛼𝑐
∗ = 𝛼0 + 𝛼1𝛿 + 𝛼2𝛿

2 +⋯ { 96 } 

This expansion allows the capture of more realistic behaviour of path lengthening 

in the synchrotron. Here, 𝛼0 is called the first-order momentum compaction factor, 

𝛼1 is called the second-order momentum compaction factor, and so on. 

Specifically, the 𝑛𝑡ℎ-order momentum compaction factor is given by: 
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𝛼𝑛 =
1

𝐿
∫
𝐷𝑛
𝜌

𝐿

0

𝑑𝑠 { 97 } 

2.4.2 Synchrotron frequency 

The RF cavity demonstrated in section 2.1.1 is in fact, a device with multiple 

cavities. Such a device is useful for accelerating multiple bunches at a time, since 

every alternate cavity can accelerate its own bunch and the cavity spacing 

determines the bunch frequency of the beam. However, for the storage ring 

application, since particles are not to be used up for the experiment (such as fixed 

target or colliding beam experiments), additional bunches would only be required 

for control purposes [8]. Thus, in this thesis, a “pillbox” cavity is considered as shown 

in Figure 17. 

An example of a single pillbox cavity centred at 𝑠 = 0 on a storage ring is 

considered. The cavity runs an RF electric field according to [30]: 

ℰ𝑅𝐹 = ℰ0 sin(𝜔𝑐𝑡) { 98 } 

Considering that a storage ring does not need a net acceleration of particles, it is 

now assumed that the reference particle is synchronised with the trough of the RF 

potential. In other words, the reference particle is at 𝑠 = 0 at 𝑡 = 0, and revolves 

around the ring at its constant design momentum 𝑝0 and angular frequency 𝜔0 as 

it receives no additional energy per turn. The frequencies of the RF cavity and the 

particle are related by the harmonic number ℎ: 

 

𝜔𝑐 = ℎ𝜔0 { 99 } 

This number essentially describes the maximum number of simultaneous bunches 

that the storage ring can hold. 

Figure 17: A cylindrical 

pillbox cavity. The left 

image shows a lateral cut-

section, where the 

direction and distribution of 

the electric field, as well as 

wall current losses can be 

seen. The right image 

shows an axial view, where 

the induced magnetic field 

due to the varying electric 

field is depicted. [81] 
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Now, an offset particle is considered to be moving in the storage ring alongside 

the reference particle with a momentum 𝑝, a revolution frequency 𝜔, and a 

resulting (time-varying) phase difference 𝜙 with respect to the RF field. Assuming 

for now that this phase difference is small, the energy gained by this particle in turn 

𝑖 as it passes through the RF cavity is given by: 

𝐸𝑖 = 𝑞∫ ℰ𝑅𝐹

𝑑
2⁄

−𝑑
2⁄

𝑑𝑠 = 𝑞𝑣∫ sin(𝜔𝑐𝑡 + 𝜙)

𝑑
2𝑣⁄

−𝑑
2𝑣⁄

𝑑𝑡 = 𝑞𝑉 sin𝜙 { 100 } 

Here, 𝑑 is the width of the RF cavity, 𝑣 is the velocity of the particle, and 𝑉 =

ℰ0𝐿
sin(𝜋ℎ𝑑 𝐿⁄ )

𝜋ℎ
 is the effective potential as seen by the particle. The effective 

potential is scaled by the width 𝑑 of the cavity. For a thin cavity, the field seen 

would nearly be uniform during the particle’s travel time through it, and 𝑉 = ℰ0𝑑. 

But narrow cavities have a low breakdown voltage, limiting the electric field 

strength. Now,  

𝑑𝐸

𝑑𝑡
=
𝜔0
2𝜋
𝐸𝑖 =

𝜔0
2𝜋
𝑞𝑉 sin𝜙 ≈

𝜔0
2𝜋
𝑞𝑉 sin𝜙 { 101 } 

𝑑𝜙

𝑑𝑡
= ℎ(𝜔 − 𝜔0) = 2𝜋ℎ (

1

𝑡
−
1

𝑡0
) = −

2𝜋ℎ

𝑡
(
Δ𝑡

𝑡0
) = ℎ𝜔𝜂𝑐𝛿 = ℎ𝜔0𝜂𝑐𝛿 { 102 } 

𝑑𝛿

𝑑𝑡
=
𝑑

𝑑𝑡
(
𝑐2

𝑣0
2

Δ𝐸

𝐸0
) =

𝑑

𝑑𝑡
(
𝑐2𝐸

𝑣0
2𝐸0

−
𝑐2

𝑣0
2) =

𝑐2

𝑣0
2𝐸0

𝑑𝐸

𝑑𝑡
 { 103 } 

Using the relations above, the equation for the synchrotron oscillations is obtained: 

𝑑2𝜙

𝑑𝑡2
= ℎ𝜔0𝜂0

𝑐2

𝑣0
2𝐸0

𝜔0
2𝜋
𝑞𝑉 sin𝜙 ≈

𝑞ℎ𝜔0
2𝑐2𝜂𝑐𝑉

2𝜋𝑣0
2𝐸0

𝜙 = −ω𝑠
2𝜙 { 104 } 

Thus, giving the expression for synchrotron frequency in a storage ring: 

ω𝑠 = 𝜔0√−
𝑞ℎ𝑐2𝑉𝜂𝑐
2𝜋𝑣0

2𝐸0
 { 105 } 

Synchrotron oscillations when the reference particles are not accelerating are 

known as stationary synchrotron oscillations. These oscillations give rise to ellipses 

in phase space. However, without the approximation for small angles in { 104 }, the 

solutions begin to draw out the phase space of a pendulum undergoing large 

oscillations. Thus, similar to a pendulum, a “separatrix” can be traced in phase 

space, beyond which particles follow open paths, analogous to an energetic 
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pendulum performing rotations. The full phase space can be visualized in Figure 

18. 

 

Figure 18: The phase space representation of "stationary" synchrotron oscillations. The contours in 

the graphs represent paths followed by particles at a certain energy. The left image shows the 

limits of the stable oscillations, known as separatrices. Particles with phase space parameters within 

the limits of the separatrices follow closed paths representing stable oscillations. Particles with 

phase space parameters beyond the separatrix limits follow open paths, and essentially get 

debunched. The right image shows the same phase space with an additional dimension of particle 

energy, where the RF “buckets” can be visualized. The energy of the bucket centers is the energy 

𝐸0 of the reference particle. [29] 

In the case where the particles are being accelerated by the RF cavity, the 

reference particle would now also be at a phase difference 𝜙𝑠 from the potential 

troughs. However, in this setup, for the beam to be sustainable, the magnetic field 

must be adjusted in accordance with the increasing energy of the particles. So, 

the above quantities would then describe changes with respect to the 

synchronised reference particle, and the synchrotron frequency receives just one 

additional term: 

ω𝑠
∗ = 𝜔0√−

𝑞ℎ𝑐2𝑉𝜂𝑐 cos𝜙𝑠
2𝜋𝑣0

2𝐸0
 { 106 } 

In acceleration mode, the reference particle receives energy at each turn, and 

the RF cavity and magnetic fields are synchronously adjusted so that the 

reference path remains fixed, and the reference particle enters the cavity at the 

same phase 𝜙𝑠 every turn. This is why 𝜙𝑠 is known as the “synchronous phase”. The 

oscillations around this synchronized accelerating particle are called “moving” 

synchrotron oscillations. The phase space representation of moving synchrotron 

oscillations are shown in Figure 19. 

 

 

 

  = 0   
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Finally, since the longitudinal displacement 𝑧 in the Frenet frame is more useful in 

describing longitudinal phase space, the phase 𝜙 now translates to: 

𝑧 =
𝑣0
𝜔𝑐
𝜙 =

𝑣0
ℎ𝜔0

𝜙 { 107 } 

2.4.2.1 Longitudinal phase space 

With a description of longitudinal behaviour of particles, the transfer matrix 

formalism for the longitudinal phase space can be developed. 

Considering that the equation of motion along the longitudinal axis is also of the 

second order, the state vector and its initial values can be defined as: 

�⃗⃗� = (
𝑧
𝑧′
) �⃗⃗�0 = (

𝑧0
𝑧0
′) { 108 } 

The equation { 104 } for a storage ring in stationary bunching mode can be solved 

using the solution to a harmonic oscillator with the approach similar to the one 

used in section 2.3.1.1: 

�⃗⃗� = (
1 0
0 ω𝑠

) (
cos𝜓 sin𝜓
−sin𝜓 cos𝜓

) �⃗⃗�0 = 𝒁𝑡 0⁄ �⃗⃗�0 { 109 } 

Here, 𝒁𝑡 0⁄  is the longitudinal transfer matrix from time 𝑡 = 0 to 𝑡 = 𝑡, ω𝑠 is the 

synchrotron frequency, and 𝜓 = ω𝑠𝑡. 

 

 

 

 

Figure 19: A phase space 

representation of "moving" 

synchrotron oscillations 

where 𝜙𝑠 > 0. The top image 

shows the “spreading out” of 

the separatrices as the 

particle phase reduces. The 

bottom image shows the 

same with the energy 

coordinate, where it can be 

seen that each bunch is at a 

higher energy than the next 

as the bucket centres 

accelerate. It can also be 

noticed that as the 

synchronous phase 

increases, the phase space 

gets steeper, but the buckets 

get shallower. [29] 
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2.4.2.2 Longitudinal beam stability 

The stability criterion for longitudinal beam dynamics is satisfied when the 

synchrotron frequency is a real number. This can only occur in the following 

condition: 

𝜂𝑐 cos𝜙𝑠 < 0 { 110 } 

The requirement of the synchronous phase 𝜙𝑠 is that it be set within the limits of the 

separatrix. With a change in sign of the phase slip factor, effectively the entire 

phase space shifts forward by an angle of 𝜋. 

In the case of no acceleration, such as in a fixed-energy storage ring, cos𝜙𝑠 = 0 

and the stability condition is simply that the phase slip factor 𝜂𝑐 is a negative 

number, which is true in general for all relativistic particles. 

2.4.2.3 Gamma transition 

With the appearance of the phase slip factor 𝜂𝑐 in the expression for the 

synchrotron frequency, another important factor to observe is gamma transition. 

When the particle energy reaches a point where the 𝜂𝑐 = 0, synchrotron 

oscillations cease as travel times becomes independent of momentum offset of 

particles. At regions close to this point, the RF cavity fails to produce or sustain a 

bunching effect, and the beam essentially becomes continuous. In addition, due 

to the absence of longitudinal focussing, particles may gain or lose too much 

energy which could cause very high momentum offsets, a steep rise in emittance 

and subsequent beam loss. 

In accelerators, where the transition through this energy is unavoidable, schemes 

are designed to facilitate a “jump” through methods such as a well-timed 

temporary modification of the momentum compaction factor via additional fast 

quadrupoles [33].  

2.5 6D Phase Space and Transfer Matrices 

With a description of the phase space at each dimension described in the 

previous sections, it is now possible to define a 6-dimensional state vector which 

can be transported via 6×6 transfer matrices. Such a formalism not only would be 

a unified approach, but also would be exhaustive, since the state vector would 

now contain all the information there is to know about a particle, and the transfer 

matrix (or a set of them) can completely and accurately describe the effect of a 

field. 

The state vector can be defined as follows: 
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�⃗⃗⃗� =

(

 
 

𝑥
𝑥′
𝑦

𝑦′

𝑧
𝛿 )

 
 

 { 111 } 

The transfer matrix would now be: 

𝑴 =

(

  
 

𝑟11 𝑟12
𝑟21 𝑟22

𝑟13 𝑟14
𝑟23 𝑟24

𝑟15 𝑟16
𝑟25 𝑟26

𝑟31 𝑟32
𝑟41 𝑟42

𝑟33 𝑟34
𝑟43 𝑟44

𝑟35 𝑟36
𝑟45 𝑟46

𝑟51 𝑟52
𝑟61 𝑟62

𝑟53 𝑟54
𝑟63 𝑟64

𝑟55 𝑟56
𝑟65 𝑟66)

  
 
=

(

 
 
 

𝑿
0 0
0 0

0 −𝐷𝑥
0 −𝐷𝑥

′

0 0
0 0

𝒀
0 0
0 0

𝐷𝑥
′ 𝐷𝑥
0 0

0 0
0 0

𝒁 )

 
 
 

 { 112 } 

Here, the coloured blocks are respectively the 2×2 transfer matrices for the radial, 

vertical and longitudinal phase spaces as described in previous sections. The 

numbers other than these represent coupling strengths between the different 

phase spaces. 

It is interesting to note that the dispersion functions, described in section 2.3.2,  

which could not be included in the exclusive transverse phase space, now appear 

in this matrix as the coupling terms between the transverse coordinates and the 

longitudinal momentum offset. 

The final block is the radial-longitudinal coupling. This is the converse effect of 

dispersion affecting transverse motion and is attributed to the curved nature of 

the ring’s bending sections. In other words, it accounts for the fact that a particle 

with a positive 𝑥 coordinate effectively covers an additional distance in the 𝑧 

direction due to the reduced circumference of the axially parallel path, and that 

a particle with a positive 𝑥′ coordinate ends up travelling an additional distance 

in the 𝑧 direction as it curves towards the beam axis. 

2.5.1 Symplectic Condition 

The symplectic condition in the realm of beam dynamics is the condition which is 

satisfied if the transfer matrices of the ring are mathematically symplectic. A 

symplectic matrix 𝑆 is defined as a 𝑛 × 𝑛 square matrix with an even number of 

rows/columns that satisfies: 

𝑆 = 𝑆𝑇𝐽𝑆 { 113 } 

Where 𝐽 is a fixed, non-singular skew-symmetric matrix. A typical choice for 𝐽 is: 
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𝐽 = (
𝟎 𝐼
−𝐼 𝟎

) { 114 } 

…where 𝐼 is a 𝑛 2⁄ × 𝑛 2⁄  identity matrix and 𝟎 is a corresponding zero matrix. If the 

transfer map (the 6D one-turn matrix) of a ring is symplectic, then a six-dimensional 

volume element on the phase space would obey Liouville’s theorem [34]. This also 

means that particle emittances are invariant over time. 

Such a situation is however unlikely in practice, as there may be several effects 

that render the matrices non-symplectic, such as the effect of space charge in 

highly populated bunches [30] which tend to increase emittances. Beam 

emittances can be reduced using techniques such as electron or stochastic 

cooling [35] . 

Another effect which leads to a violation of this condition is hadron interactions 

and Coulomb scattering of the particles with the residual gases in the ring. These 

effects lead to emittance growth-rates as well as beam losses [36] [37].  

Apart from these there are many other phenomena that deviate real-world 

systems from having a symplectic transport. Due to this, emittances at various 

locations in synchrotrons are regularly measured and tracked [38]. 

2.6 Spin Dynamics in Storage rings 

In this section the behaviour of the spin of particles when confined using storage 

rings is discussed. 

2.6.1 Spin Precession 

Most hadrons and the fundamental particles that make them have an Electric 

Dipole Moment (𝑑), a Magnetic Dipole Moment (𝜇) and a spin (or Spin Angular 

Momentum) (�⃗⃗�)1 simultaneously present. 

Moreover, the two moments are aligned with the spin, so can be represented as 

multiples of the spin vector [39]: 

 

1 A particle’s spin 𝒔 will be shown in bold font to not be confused with the 

ring coordinate 𝑠 
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𝜇 = 𝑔
𝑞

2𝑚
�⃗⃗�

𝑑 = 𝜂
𝑞

2𝑚𝑐
�⃗⃗�
 { 115 } 

Here, 𝑞 and 𝑚 are the charge and mass of the particle. 𝑔 is termed the Gyro-

magnetic Ratio, and 𝜂 is termed the Gyro-electric Ratio. These are characteristic 

values for a particle.  

To measure the EDM of such a particle with a storage ring, one needs to consider 

that the interactions of each of the dipole moments with their respective fields 

introduces a precession of the particle’s spin, and that they are also influenced by 

the relativistic motion and acceleration around the ring. 

One can start with the simplest case of a particle at rest under the influence of an 

external magnetic field. The particle undergoes Larmor Precession, which is the 

precession of its magnetic moment around the field. Essentially, the field applies a 

torque (
𝑑�⃗⃗�

𝑑𝑡
) on the particle, which characterises the precession. 

[
𝑑�⃗⃗�

𝑑𝑡
]
𝑀𝐷𝑀

= 𝜇 × �⃗⃗� { 116 } 

Since the MDM is aligned with the spin, and the spin axis follows the direction of 

the torque, the axis of the precession is in fact, the direction of the magnetic field, 

i.e., the particle spin axis rotates around the field axis. 

Similarly, the EDM of a particle interacts with an external electric field in the same 

way: 

[
𝑑�⃗⃗�

𝑑𝑡
]
𝐸𝐷𝑀

= 𝑑 × �⃗⃗� { 117 } 

So, the combined effects of the fields on the dipole moments results in a combined 

precession, given by the vector sum of the individual torques. 

𝑑�⃗⃗�

𝑑𝑡
= [
𝑑�⃗⃗�

𝑑𝑡
]
𝑀𝐷𝑀

+ [
𝑑�⃗⃗�

𝑑𝑡
]
𝐸𝐷𝑀

= (𝜇 × �⃗⃗�) + (𝑑 × �⃗⃗�) { 118 } 

Classically, the precession of a spinning object under the influence of a force (like 

gravity) is modelled according to the precession equation [40]: 
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𝑑�⃗⃗�

𝑑𝑡
= Ω⃗⃗⃗ × �⃗⃗� { 119 } 

Where �⃗⃗� is the angular momentum of the object’s spinning motion. Modelling the 

precession of the particle in this manner, by representing it as a cross product with 

the spin angular momentum 𝑠, has the advantage that the precession frequency 

and axis are directly accessible via the magnitude and direction of Ω⃗⃗⃗. Using the 

relations { 115 }, the total torque can be written as: 

𝑑�⃗⃗�

𝑑𝑡
= Ω⃗⃗⃗ × �⃗⃗� = −

𝑞

2𝑚
(𝑔�⃗⃗� +

𝜂

𝑐
�⃗⃗�) × �⃗⃗� { 120 } 

Which gives us the axis of spin precession (also known as the “invariant spin axis”): 

Ω⃗⃗⃗ = −
𝑞

2𝑚
(𝑔�⃗⃗� +

𝜂

𝑐
�⃗⃗�) { 121 } 

While this expression is useful for a particle at rest, this is not the case for particles 

in a storage ring. In fact, the motion of the particles at relativistic velocities, and its 

impact on the spin motion must also be accounted for. The way this is done is to 

represent the torque in its Lorentz Invariant form, which would hold true in all 

relativistic reference frames [41]. Applying the Lab-frame parameters in such an 

expression would give us the expression for the spin precession of the particles in 

the storage ring. This was calculated precisely in [41] and [42] for a storage ring 

with a vertical magnetic field and a radial electric field, both perpendicular to the 

direction of motion, thereby giving the expression: 

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑚
[(𝐺 +

1

𝛾
) �⃗⃗� −

𝐺𝛾

𝛾 + 1
(
�⃗� ∙ �⃗⃗�

𝑐2
) �⃗� −

1

𝑐
(𝐺 +

1

𝛾 + 1
) �⃗� × �⃗⃗�

+
𝜂

2
(�⃗⃗� −

𝛾

𝛾 + 1
(
�⃗� ∙ �⃗⃗�

𝑐2
) �⃗� + �⃗� × �⃗⃗�)] × �⃗⃗� 

{ 122 } 

This is known as the Thomas-Bargmann-Michel-Telegdi (or Thomas-BMT) Equation. 

Here, �⃗� is the particle velocity, 𝛾 = (1 −
𝑣2

𝑐2
)
−1 2⁄

 is the Lorentz Factor, and 𝐺 =
𝑔

2
− 1 

is the gyromagnetic “anomaly”; all of which typically remain constant. 

For the purposes of our storage ring, both the confinement fields and the velocity 

are usually maintained mutually perpendicular to each other. Thus making �⃗� ∙ �⃗⃗� =

0 and �⃗� ∙ �⃗⃗� = 0. This reduces the above expression to: 



  

45 

 

 Storage Ring Concepts 

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑚
[(𝐺 +

1

𝛾
) �⃗⃗� − (𝐺 +

1

𝛾 + 1
) �⃗� × �⃗⃗� +

𝜂

2
(�⃗⃗� + �⃗� × �⃗⃗�)] × �⃗⃗� { 123 } 

From this expression, the precession components due to the electric and 

magnetic dipole moments are immediately discernible: 

Ω⃗⃗⃗𝑀𝐷𝑀 = −
𝑞

𝑚
((𝐺 +

1

𝛾
) �⃗⃗� − (𝐺 +

1

𝛾 + 1
) �⃗� × �⃗⃗�) { 124 } 

Ω⃗⃗⃗𝐸𝐷𝑀 = −
𝑞𝜂

2𝑚
(�⃗⃗� + �⃗� × �⃗⃗�) { 125 } 

These frequencies are now with respect to the lab frame. However, it is often 

useful, especially in the experiments discussed in this thesis, to calculate the 

precession frequency with respect to the particle’s momentum vector. The 

frequency of rotation of the momentum vector is given by [42]: 

Ω⃗⃗⃗𝑝 = −
𝑞

𝛾𝑚
(�⃗⃗� −

1

𝑣2
(�⃗� × �⃗⃗�)) { 126 } 

With this, the frequency of precession on the ring-plane relative to the particle’s 

velocity vector can be defined: 

[Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙 = Ω⃗⃗⃗𝑀𝐷𝑀 − Ω⃗⃗⃗𝑝 = −
𝑞

𝑚
(𝐺�⃗⃗� − (𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗�) { 127 } 

Finally, from this, the net precession of the particle spin with respect to the 

momentum can be described by the vector sum: 

Ω⃗⃗⃗ = [Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙 + Ω⃗⃗⃗𝐸𝐷𝑀 { 128 } 

…and the Thomas BMT equation from this perspective becomes: 

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑚
[𝐺�⃗⃗� − (𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗� +

𝜂

2
(�⃗⃗� + �⃗� × �⃗⃗�)] × �⃗⃗� { 129 } 

2.6.2 Spin transfer matrix 

To obtain the matrix formalism for spin transfer, the Thomas BMT equation must be 

transformed into the Frenet frame: 
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𝑑�⃗⃗�

𝑑𝑠
=
1

𝑣

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑝
[𝛾𝐺�⃗⃗� − 𝛾 (𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗� +

𝜂𝛾

2
(�⃗⃗� + �⃗� × �⃗⃗�)] × �⃗⃗� { 130 } 

The case of a pure magnetic ring is considered first. Using { 19 }, the above 

equation reduces to (ignoring the EDM effect for now): 

𝑑�⃗⃗�

𝑑𝑠
= −

1

𝜌
𝛾𝐺(�̂�) × �⃗⃗� = −

𝛾

𝜌
𝐺 (

0 0 1
0 0 0
−1 0 0

) �⃗⃗� = −
𝛾

𝜌
𝐺𝐴�⃗⃗� { 131 } 

The above differential equation for the spin is a first order equation, thus a first order 

state vector, like �⃗⃗�, would exhaustively hold all the information relevant for 

transport through the system. So, the solution below is used to solve the differential 

equation: 

�⃗⃗� = (𝑒
−
𝛾
𝜌
𝐺𝐴𝑠
) �⃗⃗�0 { 132 } 

The exponential above can be simplified using these relations: 

𝐴2 = (
−1 0 0
0 0 0
0 0 −1

) { 133 } 

𝐴𝑛+2 = −𝐴𝑛 𝐴𝑛+4 = 𝐴𝑛 ∀ 𝑛 = 1, 2, 3,… { 134 } 

𝑒𝜗 =∑
𝜗𝑖

𝑖!

∞

𝑖=0

cos 𝜗 =∑(−1)𝑖
𝜗2𝑖

(2𝑖)!

∞

𝑖=0

sin 𝜗 =∑(−1)𝑖+1
𝜗2𝑖+1

(2𝑖 + 1)!

∞

𝑖=0

 { 135 } 

The expression { 132 } can now be written as: 

�⃗⃗� = (
cosΘ 0 sinΘ
0 1 0

− sinΘ 0 cosΘ
) �⃗⃗�0 = 𝑺𝑠 0⁄ �⃗⃗�0 { 136 } 

Here, Θ = 𝜈𝑠𝜃 = 𝛾𝐺𝜃 is the spin phase advance, 𝜈𝑠 is called the spin tune, 𝜃 =
𝑠

𝜌
 is 

the ring angle as depicted in Figure 16, and 𝑺𝑠 0⁄  is the spin transfer matrix. It can 

be seen that in the Frenet frame, the spin precesses at a frequency of 𝜈𝑠 = 𝛾𝐺. For 

a pure magnetic ring, this would be the largest contribution to the particle’s spin 

precession. 
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In the case of a storage ring with both electric and magnetic fields being used for 

confinement (ignoring the EDM effect), the expression for the rate of change of 

the spin becomes: 

𝑑�⃗⃗�

𝑑𝑠
= −

1

𝜌
(

1

𝐸
𝑣⁄ + 𝐵

) [𝛾𝐺𝐵 + 𝛾 (𝐺 −
1

𝛾2 − 1
)𝑣𝐸] (�̂�) × �⃗⃗� { 137 } 

…where the radius of curvature 𝜌 would now be determined by the combination 

of both fields: 

𝜌 =
𝑝

𝑞(𝐸 𝑣⁄ + 𝐵)
 { 138 } 

Recalculating using the above process gives the updated value of the spin tune 

in a combined-field storage ring: 

𝜈𝑠 = 𝛾𝐺 −
𝑟(𝐺 + 1)

𝛾(𝛽 + 𝑟)
 { 139 } 

Where 𝑟 = 𝐸 𝑐𝐵⁄  is the normalized field ratio, and 𝛽 = 𝑣 𝑐⁄  . 

A general formalism for the spin transfer matrix can be obtained using a similar 

approach from the expression: 

𝑑�⃗⃗�

𝑑𝑠
=
Ω⃗⃗⃗

𝑣
× �⃗⃗� =

1

𝑣
(

0 −Ω𝑧 Ω𝑦
Ω𝑧 0 −Ω𝑥
−Ω𝑦 Ω𝑥 0

) �⃗⃗� = (
Ω𝑥
𝑣
𝐿𝑥 +

Ω𝑦

𝑣
𝐿𝑦 +

Ω𝑧
𝑣
𝐿𝑧)𝐴�⃗⃗� { 140 } 

Here, Ω𝑥, Ω𝑦 and Ω𝑧 are the components of the spin precession frequency Ω⃗⃗⃗ of the 

particle. 𝐿𝑥 = (
0 0 0
0 0 −1
0 1 0

), 𝐿𝑦 = (
0 0 1
0 0 0
−1 0 0

) and 𝐿𝑧 = (
0 −1 0
1 0 0
0 0 0

) are the basis 

vectors of the 𝔰𝔬(3) Lie Algebra associated with the group of 3D rotation matrices 

[43]. These can be exponentiated to get the rotation matrices around the 𝑥, 𝑦 and 

𝑧 axes in a fashion similar to that done in the earlier example. The generalized spin 

transfer matrix now becomes: 

𝑺𝑠2 𝑠1⁄ = 𝑅𝑥 (
Ω𝑥2𝑠2 − Ω𝑥1𝑠1

𝑣
)𝑅𝑦 (

Ω𝑦2𝑠2 − Ω𝑦1𝑠1

𝑣
)𝑅𝑧 (

Ω𝑧2𝑠2 − Ω𝑧1𝑠1

𝑣
) { 141 } 

Here, 𝑺𝑠2 𝑠1⁄  is a spin transfer matrix from 𝑠 = 𝑠1 to 𝑠 = 𝑠2. 𝑅𝑢(𝜗) is a 3D rotation matrix 

around the 𝑢-axis. The lower indices on the precession frequency components 
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accommodate for the possibility that two locations on the ring may have different 

turning angles on the spin. 

2.6.3 Polarisation vector for fermions 

In storage rings, it is often not practical to store a single particle and obtain 

measurables. For this reason, rings store and measure bunches or ensembles of 

upwards of a billion particles. These are referred to as “beams” and the process of 

tracking and performing measurements on beams is called beam tracking. Thus, 

in practice, a more convenient approach to tracking each particle’s individual 

spin would be to track a single vector quantity associated with a bunch. 

To do this, the definition of the individual spin vector is first formalised. The quantum 

state of a fermion (spin-1 2⁄  particle) can be represented as a two-component 

“spinor” [44]: 

𝝍 = (
𝓊
𝒹
) { 142 } 

Here, 𝓊 and 𝒹 are the complex amplitudes associated with the two spin states of 

the particle, which follow the normalization condition 𝝍∗𝝍 = 1. The spin 

component along each axis is associated with a Hermitian operator. Under the 

choice of 𝑧 as the quantization axis, these can be defined using the Pauli spin 

operator: 

�̂� =
ℏ

2
�⃗� { 143 } 

Where �⃗� = (

𝜎1
𝜎2
𝜎3
) is a vector of the Pauli matrices 𝜎1 = (

0 1
1 0

), 𝜎2 = (
0 −𝑖
𝑖 0

) and 𝜎3 =

(
1 0
0 −1

). 

The spin vector �⃗⃗� can now be obtained as the expectation value of the spin 

operator on the spinor: 

�⃗⃗� = ⟨𝝍|𝑆
̂
|𝝍⟩ = (

2𝑅𝑒(𝓊𝒹∗)

2𝐼𝑚(𝓊𝒹∗)

|𝓊|2 − |𝒹|2
) { 144 } 

This three-component real vector is the expectation value of the particle’s spin. 

However, an actual measurement of the particle spin using a polarimeter would 

yield either +1 2⁄  or −1 2⁄ , whose probability of occurrence depends on the 
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measurement axis. So, what this vector actually conveys is the specific axis along 

which the probability of measuring a spin of +1 2⁄  is maximized.  

With this definition of the individual particle spin, the polarisation vector �⃗⃗� can be 

defined for a bunch of 𝑁 particles: 

�⃗⃗�(𝑡) =
1

𝑁
∑

�⃗⃗�𝑖(𝑡)

|�⃗⃗�𝑖(𝑡)|

𝑁

𝑖=1

 { 145 } 

When a bunch of billions of particles is considered, each of which has the same 

expectation value, and is measured for its spin orientation along a given axis �⃗�, 

the interpretation of probability now turns into share of outcomes, and the 

magnitude of the polarisation vector in such a measurement would approach:  

|�⃗⃗�(𝑡)| ≈ �⃗⃗�. �⃗� { 146 } 

2.6.4 Spin resonances 

A spin resonance, analogous to the betatron resonance, is a condition where 

aberrations due to device imperfections are resonantly amplified due to the state 

being the same at each turn. In spin resonances, the defects usually manifest as 

localised loss of uniformity in the spins of particles at a region of the bunch. This, 

combined with a resonance, results in a loss of polarization due to rapid 

decoherence of particles. This can be explored in an example of an idealized 

pure-magnetic ring. The spin transfer map (one-turn matrix) of the ring can be 

written as follows: 

𝑺𝑠+𝐿 𝑠⁄ = (
cos 2𝜋𝜈𝑠 0 sin2𝜋𝜈𝑠
0 1 0

− sin2𝜋𝜈𝑠 0 cos 2𝜋𝜈𝑠

) { 147 } 

Just like in beam transport systems (see section 2.3.1.3), it can be observed that 

resonance is achieved when the transfer map becomes the identity matrix. This 

allows the interpretation of the resonance conditions [45]: 

𝜈𝑠 = 𝑗 { 148 } 

𝜈𝑠 = 𝑗𝑃 +𝑚𝑄𝑦 { 149 } 

𝜈𝑠 = 𝑗 +𝑚𝑄𝑥 + 𝑛𝑄𝑦 + 𝑖𝑄𝑧 { 150 } 

Here, 𝑖, 𝑗, 𝑚 and 𝑛 are integers. Condition { 148 } is known as an imperfection 

resonance, usually attributed to field and positioning errors of magnets. Condition 
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{ 149 } is known as an intrinsic resonance, which can be caused by vertical 

focussing defects. Finally, { 150 } describe a class of resonances called higher order 

resonances. These can be triggered by sextupole errors or synchrotron motion. In 

each case, similar to the betatron case, higher indices have a milder impact on 

decoherence. 

2.6.5 Spin coherence time and spin tune spread 

As discussed earlier, practical storage ring measurements take place on beams of 

particles rather than individual particles. This has the benefit of an amplification of 

measurables, but also the downside that for measurables in particle bunches to 

have a higher statistical certainty, it is important for them to behave as uniformly 

as possible. In the case of particle spins, it is better for the measurement of 

quantities like EDM for the spins of all the particles in the beam to have nearly the 

same spin at any given time. In the pure magnetic case, the precession frequency 

is given by 𝜈𝑠 = 𝛾𝐺. Assuming that the particles are initially perfectly polarised so 

that |�⃗⃗�(0)| = 1, this polarization will be maintained as long as each particle in the 

beam is travelling at the same speed as the reference particle. However, this may 

not always be the case. 

The largest effect from the particle phase space that directly influences the spin 

tune would be the momentum deviation 𝛿, as this would create a distribution of 𝛾 

values in the beam. However, this is a first order effect and can be cancelled out 

in the long run by bunching using an RF cavity [46]. First order effects in the 

transverse direction are also cancelled out by betatron oscillations. This is because 

the particle spends an equal amount of time with a lower 𝛾 as with a higher 𝛾, 

which evens out the error in spin phase advance on average. 

Second order effects on the other hand, may cause a divergence in spin tune. 

This can be caused by transverse as well as longitudinal motion. 

2.6.5.1 Path shortening effect of transverse motion 

Considering exclusively linear betatron motion, a particle travelling in a storage 

ring does not experience a change in path length due to the betatron motion. 

However, second-order betatron motion induces a change in path length. This 

was calculated extensively in [47], and shown to be: 

(
Δ𝐿

𝐿
)
𝛽
= −

𝜋

𝐿
(𝜖𝑥𝜉𝑥 + 𝜖𝑦𝜉𝑦) { 151 } 

2.6.5.2 Path lengthening effect of longitudinal motion 

Second-order effects in the synchrotron motion can lead to a quadratic 

dependence of the path length on the momentum offset. This kind of 
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dependence is sign-preserving and is not cancelled out by the RF bunching. This 

effect is quantified by the second order momentum compaction factor 𝛼1, 

defined in { 95 }. 

2.6.5.3 Spin Coherence Time (SCT) 

Considering the change in path length due to betatron motion and an expansion 

up to the second order, the effective change in path length would be given by 

[22]: 

Δ𝐿

𝐿
= −

𝜋

𝐿
(𝜖𝑥𝜉𝑥 + 𝜖𝑦𝜉𝑦) + 𝛼0𝛿 + 𝛼1𝛿

2 { 152 } 

Since first-order path lengthening is cancelled out by RF bunching, this reduces to: 

Δ𝐿

𝐿
= 𝛼1𝛿

2 −
𝜋

𝐿
𝜖𝑥𝜉𝑥 −

𝜋

𝐿
𝜖𝑦𝜉𝑦 { 153 } 

This path lengthening effect in combination with the bunching due to the RF cavity 

implies that the particle deviates from its synchronous phase and receives energy 

from the cavity over each turn until its changed momentum compensates for the 

longer path it must travel. This also implies that this particle now precesses with a 

different tune, thus contributing to decoherence. 

This simple model indicates the parameters that have maximum influence on the 

decoherence effect. However, this applies to a pure magnetic ring, which is not 

the case with a combined-field ring. Moreover, there may be other systematic 

effects that also affect decoherence. Thus, a direct measurement of this 

phenomenon would likely be an important diagnostic tool. 

To measure and quantify the decoherence phenomenon, the spin coherence 

time (𝜏) is defined, as the time at which the magnitude of the polarisation vector 

reduces to 1 𝑒⁄  of its initial value: 

|�⃗⃗�(𝜏)| =
1

𝑒
|�⃗⃗�(0)| { 154 } 

The spin coherence time directly tracks the magnitude of the polarisation vector 

to measure the rate of decoherence. However, decoherence, depending on the 

distribution of the precession error, may also change the direction of the 

polarisation vector with respect to the reference particle. This is, in a sense, an 

asymmetric decoherence effect, since a bunch is usually centred at the reference 

particle, which by definition, has no precession error. Thus, a disagreement 

between the spin axes of the reference particle and the polarisation vector 
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indicates an asymmetry in the decoherence, which could be a phenomenon of 

interest. 

2.6.5.4 Spin Tune Spread (STS) 

The spin tune spread Δ𝜃𝑥 measures the change in the direction of the polarisation 

vector from the reference particle in the plane of precession (here, assumed to 

be the ring plane): 

Δ𝜃𝑥(𝑡) = cos
−1 (

�⃗⃗�(𝑡) ∙ ⟦�⃗⃗�(𝑡)⟧

|�⃗⃗�(𝑡)||⟦�⃗⃗�(𝑡)⟧|
) ≈ 𝑡𝑎𝑛−1 (

𝑃𝑥(𝑡)

⟦𝒔𝑧(𝑡)⟧
) { 155 } 

Here, 𝑃𝑥 is the radial component of the polarization vector, and the hollow square 

brackets ⟦ ⟧ indicate properties of the reference particle. Also interesting is the 

spin tune error Δ𝜈𝑥(𝑡), which is the rate of change of spin tune spread. 

Δ𝜈𝑥(𝑡) =
𝑑

𝑑𝑡
(Δ𝜃𝑥(𝑡)) { 156 } 

The spin tune error can be seen as an error on the spin tune 𝜈𝑠 contributed by the 

depolarizing effects in the storage ring.
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3. EDM Measurement 

using Spin Precession in 

Storage Rings 

In an experiment to measure the EDM of a particle carried out in a storage ring, 

the focus would be the measurement of 𝑑, or by extension, the gyro-electric ratio 

𝜂. If the so-called “spin tune” and the invariant spin axis (given respectively by the 

magnitude and direction of Ω⃗⃗⃗) were measured precisely, the EDM component 

Ω⃗⃗⃗𝐸𝐷𝑀 can be resolved, and thus 𝜂 can be determined from { 129 }. 

In the case where longitudinally polarised particles are injected into the storage 

ring, the precession frequency can be measured precisely using polarimeters, 

since the precession would occur on the horizontal plane and there would be a 

wide enough disparity between the signal generated by the left and right 

polarised particles. For rings like COSY, which demonstrate spin tunes of around 

120 𝑘𝐻𝑧 [48], it can be measured using a polarimeter with only a 5 𝑘𝐻𝑧 detection 

rate up to a precision level of 10−11 using a novel technique developed by JEDI in 

[49]. 

The measurement technique to determine the invariant spin axis, however, would 

depend on the configuration of the storage ring fields. 

3.1.1 Strategy at pure magnetic storage rings 

A pure magnetic ring is a storage ring which uses only magnetic fields to confine 

the particles. In the absence of electric fields, the Thomas-BMT equation { 129 } 

reduces to: 

𝑑𝑠

𝑑𝑡
= −

𝑞

𝑚
[𝐺�⃗⃗� +

𝜂

2
(�⃗� × �⃗⃗�)] × 𝑠 { 157 } 

This gives the precession components due to the MDM around the vertical axis 

([Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙) and the EDM around the radial axis (Ω⃗⃗⃗𝐸𝐷𝑀): 
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[Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙 = −
𝑞𝐺

𝑚
�⃗⃗� { 158 } 

Ω⃗⃗⃗𝐸𝐷𝑀 = −
𝑞𝜂

2𝑚
�⃗� × �⃗⃗� { 159 } 

The invariant spin axis Ω̂, therefore lies somewhere along the transverse plane. 

Since  

|Ω⃗⃗⃗𝐸𝐷𝑀| ≪ |[Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙|, the magnitude |Ω⃗⃗⃗| can be measured with high precision using 

polarimeters as discussed earlier. However, to measure the direction Ω̂ with 

sufficient precision, an additional effect must be introduced, which must fulfil the 

following three conditions:  

1. The motion of the 

particles must not be 

affected 

2. The intensity depends 

on the direction of 

the invariant spin axis. 

3. Its precision can be 

controlled. 

One such method is to use a 

Radio-Frequency Wien filter. 

A Wien filter is a device 

which exposes a beam travelling in a longitudinal direction to simultaneous 

transverse electric and magnetic fields, both perpendicular to each other. 

The original idea behind its design was to be able to select charged particles with 

a certain velocity such that the net Lorentz force acting on the particle was zero. 

�⃗� = 𝑞(�⃗⃗�𝑊 + �⃗� × �⃗⃗�𝑊) = 0 { 160 } 

Here, �⃗⃗�𝑊 and �⃗⃗�𝑊 are the electric and magnetic fields applied by the Wien filter. 

Since the fields and the particle velocity are mutually perpendicular, this gives rise 

to the Lorentz force cancellation condition for the velocity: 

𝑣 =
𝐸𝑊
𝐵𝑊

 { 161 } 

This would be the “selected” velocity which would move through the Wien filter 

without being deviated from its straight path. 

 

 

  

 

       

    

Figure 20: A diagram showing the orientation of the invariant 

spin axis on the transverse plane in a pure magnetic ring. The 

axis is tilted outward due to the EDM component of the 

precession. 
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In the storage ring, the Wien filter is installed in a straight section, where bending 

fields are absent, and the particle simply drifts in a linear path. Since the storage 

ring is a synchrotron, the particle velocity is fixed by design. So, the Wien filter is set 

up such that this fixed velocity satisfies the cancellation condition. This way, the 

particle motion is unaffected. 

However, the particle spin is affected by a torque according to { 129 }, which when 

combined with the situation in { 160 }, introduces a precession of the spin strictly 

around the Wien filter’s magnetic field axis. 

Ω⃗⃗⃗𝑊 =
𝑞

𝑚
(

1

𝛾2 − 1
) �⃗� × �⃗⃗�𝑊 { 162 } 

Here, the precession frequency due 

to the Wien filter Ω⃗⃗⃗𝑊 may have a 

different direction than the default 

precession Ω⃗⃗⃗ due to the 

synchrotron. 

Finally, the fields of this “Radio-

Frequency” Wien filter are varied 

sinusoidally at a frequency exactly 

equal to Ω, such that the 

cancellation condition { 161 } is 

always obeyed. 

𝐸𝑊 = 𝐸𝑊0 cosΩ𝑡

𝐵𝑊 = 𝐵𝑊0 cosΩ𝑡
 { 163 } 

Assuming that at 𝑡 = 0, the particles are longitudinally polarised, and that the 

invariant spin axis Ω̂ is offset from the Wien filter’s precession axis Ω̂𝑊 by an angle 

𝜃, the situation implies that the particle now begins to gradually spiral up towards 

becoming vertically polarised. This occurs because (assuming the Wien filter is 

configured according to Figure 21) the Wien filter effectively kicks the spin vector 

in the anticlockwise direction when it faces forward, and in the clockwise direction 

when it faces backward. When this happens for a non-zero 𝜃, each kick closes the 

angle between 𝑠 and Ω⃗⃗⃗, thus steadily raising the “latitude” of the precession at a 

rate proportional to 𝜃. 

In such a setup, to locate the invariant spin axis, the special case can be exploited 

where Ω⃗⃗⃗𝑊 is aligned with Ω⃗⃗⃗ and there occurs no upshift of the spin. This is because, 

in this case, the kicks to the spin keep it on the same plane of precession. Since 

this happens only at the specific orientation of the Wien filter where �⃗⃗�𝑊 is aligned 

with Ω⃗⃗⃗, the invariant spin axis can be found by rotating the Wien filter around the 

Figure 21: A diagram showing a Wien filter field 

configuration with the electric and magnetic fields 

along the radial and vertical axes. The axis of 

precession (kicks) due to the Wien filter would be 

exactly along �⃗⃗�𝑊. 
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beam axis by an angle 𝜑𝑊 with respect to the vertical axis, until the rate of 

observable upshift of the spin is zero. Thus, the angle 𝜑𝑊 would be its estimated 

orientation.  

3.1.2 Strategy at combined-field storage rings 

A combined-field storage ring is a ring which can use magnetic and electric fields 

simultaneously for confining particles. Such a storage ring offers an opportunity to 

avoid many sources of systematic errors such as Wien filters and its highly specific 

configuration. 

In the combined ring, where the spin precession is governed by { 129 }, it is possible 

to set the value of �⃗⃗� and �⃗⃗� such that: 

𝐺�⃗⃗� + (𝐺 −
1

𝛾2 − 1
) �⃗� × �⃗⃗� = 0 { 164 } 

At this field setting, it is clear that [Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙, which is the precession in the horizontal 

plane relative to the particle’s velocity vector now vanishes. This implies that if not 

for the EDM effects, the orientation of the spin on the horizontal plane is always 

fixed with respect to the velocity. Thus, particles injected with longitudinal 

polarisation will stay that way. This condition is termed “frozen spin” and is only 

possible if electric fields are involved in confinement. 

For frozen spin particles in the combined ring, the Thomas-BMT equation is reduced 

to: 

𝑑𝑠

𝑑𝑡
= Ω⃗⃗⃗𝐸𝐷𝑀 × 𝑠 { 165 } 

Here, Ω⃗⃗⃗𝐸𝐷𝑀 is given by { 125 }, meaning that the invariant spin axis now lies on the 

horizontal plane along the radial axis. Measurement of EDM in this case is quite 

straightforward with progressive measurements of vertical polarisation using 

polarimeters. 

3.1.3 Strategy at pure electrostatic storage rings 

A pure electric storage ring uses only electric fields for particle confinement. In this 

kind of a storage ring, the Thomas-BMT equation becomes: 

𝑑𝑠

𝑑𝑡
= −

𝑞

𝑚
[(𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗� +

𝜂

2
�⃗⃗�] × 𝑠 { 166 } 

Where: 
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[Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙 = −
𝑞

𝑚
(𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗� { 167 } 

Ω⃗⃗⃗𝐸𝐷𝑀 = −
𝑞𝜂

2𝑚
�⃗⃗� { 168 } 

For particles with positive gyromagnetic anomalies (such as the proton), it is 

possible to achieve a frozen spin in such a ring by setting the particle momentum 

at a specific value such that: 

1

𝛾2 − 1
= 𝐺 { 169 } 

In this case, the horizontal precession [Ω⃗⃗⃗𝑀𝐷𝑀]𝑟𝑒𝑙 vanishes. The precession in the 

vertical plane is directly measured with polarimeters, and the EDM, from { 168 }, 

which has only one field term. This would leave minimum sources of systematic 

errors to optimize and thus allows for maximum precision in EDM measurement. 

3.2 Stages of the EDM experiment 

From the three strategies described in the previous section, the progression in 

sensitivity is clear and can be attributed to the reduction in systematic sources of 

error. To this end, JEDI plans to approach the task of EDM measurement in a staged 

approach [8], following this progression. Details about each of the stages of the 

approach is shown in Figure 22. 

 

Figure 22: Some specifications of the staged approach currently pursued by the JEDI collaboration 

for proton EDM measurement. [8] 

With each stage, important benchmarks are set, which reduce uncertainties in 

projected results as well as precision capabilities of future projects. The following 
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subsections will proceed to give a brief overview of each of the projects, 

highlighting the features that provide key insights to the proton EDM search. 

3.2.1 Precursor stage: COSY 

 

Figure 23: A picture describing the layout of COSY, showing the JULIC ion source and cyclotron, the 

stacked stripping injection path, and the “racetrack” style synchrotron. Also labelled are the 

various components. [50] 

The COoler SYnchrotron or COSY accelerator facility is located at the 

Forschungszentrum, Jülich, Germany and consists of three main parts: an ion 

source the injection cyclotron (known as JULIC) and finally the main synchrotron 

ring. The ring was designed to function as a synchrotron to provide proton beams 

for fixed target experiments, and also as a storage ring for precision measurements 

on polarized protons [7]. 

In practice, the COSY synchrotron can also be used to store deuterons, as the ion 

source is actually capable of producing either polarized or unpolarized 𝐻− or 𝐷− 

[51]. The initial cyclotron is capable of pre accelerating the 𝐻− or 𝐷− ions up to 

kinetic energies of 45 or 75 𝑀𝑒𝑉 respectively [52]. The pre accelerated beam is 

then injected into the main synchrotron ring via a stacked stripping injector where 

the two electrons are stripped from each of the ions using a carbon foil before 

they enter the ring, resulting in a final beam of protons or deuterons. 

The COSY synchrotron can accelerate particles up to a maximum of 3.7 GeV. This 

acceleration is carried out using an RF cavity located in the middle of one of the 

straight sections. The ring has 24 bending magnets each of which can reach a 

maximum magnetic field of 1.67 T for maintaining the closed loop. For focusing 

the beam COSY has 56 quadrupole magnets which are grouped into families of 

four. Quadrupoles within a family have the same dimensions and a common 
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power supply. Eight of these families 

are located in the straight sections, 

and 6 of them in the arcs. In 

addition, COSY also has 17 

sextupoles, of which 7 are in the 

straight sections and 10 are 

positioned in the arcs. Finally for 

orbit measurements and 

corrections COSY makes use of 59 

beam position monitors and 41 

"steering" magnets (small dipoles for 

minor transverse path corrections).  

More importantly, COSY is called 

the cooler synchrotron because of 

its phase space cooling devices. 

There are two electron coolers for 

phase space cooling at particle 

momenta up to 0.6 GeV [53] [54], as 

well as stochastic cooling 

mechanisms for those with momenta above 1.5 GeV [55]. A combination of all 

these devices is used to ensure the lowest possible emittances on the beam. 

Apart from being able to maintain a highly precise beam, the COSY synchrotron 

has 2 polarimeters called WASA (Wide Angle Shower Apparatus) and JEPO (JEdi 

POlarimeter) for measurement of beam polarization, an RF Wien filter to help with 

the EDM measurement and solenoids for spin axis adjustments. Besides all this 

COSY also has three exit beam lines with magnetic septa for extraction of the 

beam towards external experiments [50]. 

3.2.2 Proof-of-concept stage: The Prototype EDM Storage ring 

The prototype EDM ring is the storage ring which plays the role of the intermediate 

step in order to obtain the crucial data about the systematics, which would be 

needed to construct the final ring with the necessary precision in proton EDM 

measurement. Since the ring is designated to be a proof of principle experiment, 

it is designed to be as inexpensive as possible while consistent with being capable 

of achieving its goals. 

The ring will be smaller than most synchrotrons with a circumference of around 

100m. The ring will feature the presence of simultaneous electric and magnetic 

fields for bending, which would allow for higher energy particles to be confined 

within a smaller ring.  

Figure 24: A photograph of the COoler SYnchrotron 

(COSY) accelerator and storage ring at the 

Forschungszentrum, Jülich, Germany. [82] 
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In addition to this the ring will be optimized to run in two modes: a combined mode 

where particles of 239 or 294 𝑀𝑒𝑉 are stored in frozen spin mode, and an all-

electric mode where horizontally precessing particles of 239 𝑀𝑒𝑉 are stored. The 

all-electric mode will have the capability of storing counter-rotating beams 

simultaneously. The specific beam parameters with respect to these 

configurations are listed in Table 2. The figure below shows the basic layout of the 

prototype EDM ring. 

 

3.2.2.1 Ring design and tuning 

The prototype ring is in the shape of 

a squared ring with a fourfold 

symmetry. It features two families of 

quadrupoles labelled QF and QD, 

as well as an additional optional 

family named QSS at the centre of 

the long straight sections. This gives 

the storage ring access to a range 

of betatron tunes from 1 to 2 for 𝑄𝑥 

and from 0.1 to 1.6 for 𝑄𝑦. With 

optical flexibility being one of the 

key design features of this ring, the 

lattice can be adjusted for ultra-

weak to moderate focussing. 

This way the ring can either be 

adjusted to have a long beam 

lifetime with strong focussing, or the 

lowest possible radial magnetic 

fields with ultra-weak vertical 

focusing. 

Table 2: A table listing the 

Basic beam parameters for 

the prototype ring. [8] 

Figure 25: Basic layout of the prototype ring, 

consisting of eight dual superimposed electric and 

magnetic bends and two families of quadrupoles (F, 

focusing; D, defocusing), with an optional skew 

quadrupole family at the midpoints. [8] 
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3.2.2.2 Beam injection 

Beam injection into the prototype EDM storage ring can take place through two 

injection channels either one at a time or simultaneously. Injector will provide an 

already bunched and polarized beam, either polarized longitudinally for the 

measurement, or vertically for running diagnostics. This injected beam will be 

protons already in the target energy range in a cooled phase space of 1 𝜋 𝑚𝑚 ∙

𝑚𝑟𝑎𝑑, in a beam that is bunched into 2, 4, 6 or 8 bunches. These bunches would 

be distributed into the clockwise and counterclockwise injection channels using 

switching magnets. 

3.2.2.3 Electric bends 

 

Figure 26: Left: Cross-section of the capacitor (in red) inside the beam tube (outer circle). Right: 

One-quarter of the combined electric and magnetic prototype ring. Two 𝑐𝑜𝑠 𝜃 iron-free dipoles 

surround the beam tube, in which the capacitor plates are accommodated. [8] 

The electrostatic deflectors used to provide the radial electric field in the 

prototype storage string consist of two parallel metal plates held at equal and 

opposite electric potentials. The reference path of the particle would therefore lie 

on the contour of 0 potential. To be able to confine particles in the desired 

momenta and modes, the electrostatic deflectors need to provide electric field 

ranging from 5 to 10 MV/m. This means that even if the gap between the 

deflectors is about 60 mm, which is much less than the electrostatic deflectors 

currently used in accelerators, they would have to be connected to High voltage 

power supplies upwards of 300 kV. Since this would be a relatively new 

application, studies on the areas of field breakdown, dark current, electrode 

surface and conditioning on flat electrostatic plates are currently ongoing. 
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3.2.2.4 Magnetic bends 

The prototype storage ring is designed to facilitate the suppression of systematic 

errors through symmetry. Thus, the magnetic coils used to produce the field are 

iron free to allow for quick and efficient field reversals. 

3.2.3 Final experiment stage: pure-electric storage ring 

The all-electric ring would be the final stage of the JEDI collaboration's EDM 

experiment, which would be designed to reach the target precision of 10−29𝑒 ∙ 𝑐𝑚. 

It is a storage ring that will use only electric fields for particle confinement and 

measure the EDM using the strategy described in section 3.1.3. It will also be the 

first storage ring to have simultaneously counter-rotating proton beams in frozen 

spin state. Similar to the prototype ring, a series of bunches entering the ring in the 

same direction of travel will also be alternately polarised (one bunch facing 

forwards while the next faces backwards), which would be important for the 

cancellation of the geometric errors at the polarimeter [8]. 

 

Figure 27: Left: Electric storage ring with simultaneously clockwise and counterclockwise circulating 

beams (dark and light blue arrows), each with two helicity states (green and red arrows for each 

beam). The grey circles represent electric field plates. 

Right: One quadrant of a full-scale, all-electric, frozen-spin EDM storage ring. The straight sections 

are marked in green whereas the bending sections are marked in grey. The ticks on the beamline 

mark the electric quadrupoles whose field strengths are mentioned. The blue ticks are focussing 

quadrupoles while the red ones are defocussing. [8] 

The design was first proposed by the SREDM collaboration at Brookhaven national 

lab [5], then later analysed for or possible sources of systematic errors by [56]. The 

current consensus on the design is of a ring with a total circumference of 500 𝑚 

capable of holding up to 100 bunches of protons at a momentum of around 700 

𝑀𝑒𝑉. The electrostatic deflectors used for particle confinement will have a field of 
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8.016 𝑀𝑉 𝑚⁄ , within a deflector gap of 3 𝑐𝑚. A general scheme of the storage ring 

is shown in Figure 27 (left). 

In addition to an all-electric bend, the Ring will also feature electrostatic 

quadrupoles, to minimize the possibility of a stray magnetic field in the ring. The 

specific arrangement of these quadrupoles is shown in Figure 27 (right). 

The all-electric ring in many ways is a scaled-up version of the prototype storage 

ring, which means they have many systematic features in common. Therefore, the 

key areas where more investigation is required, such as simultaneous rotating 

beam operation, the beam current limit, the sparking cost for electric bends, and 

regenerative breakdown; can be addressed by conducting experiments at the 

prototype storage ring. 

3.2.3.1 Statistical sensitivity and sources of systematic errors 

A system designed to definitively measure an EDM with a sensitivity of the order of 

10−29 𝑒 ∙ 𝑐𝑚 would also be extremely sensitive to systematic errors which can 

drastically impact the overall precision of measurement. Therefore, suppressing 

these errors down to this level is probably the most challenging aspect of the 

design of the experiment [56]. 

The statistical error incurred over one single machine cycle was estimated to be: 

𝜎𝑠𝑡𝑎𝑡 ≈
2ℏ

√𝑁𝑓𝜏𝑃𝐴𝐸
 { 170 } 

Table 3 lists the quantities represented, and the values for the relevant parameters 

in statistical error reduction for the Proton EDM experiment that are optimized for 

maximum feasibility, and the achievement of the target sensitivity for EDM 

precision in a one-year operation: 

 

𝜎𝑠𝑡𝑎𝑡(1 𝑦𝑒𝑎𝑟) ≈ 4.6 × 10
−29𝑒 ∙ 𝑐𝑚 { 171 } 

 

Table 3: The list of parameters 

mentioned in { 170 } which are 

relevant for the statistical error in 

the proton experiment. [8] 
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While Table 3 serves as an effective guide as to what needs to be achieved given 

idealistic conditions, there are several sources of systematic errors that need to be 

considered [56], which have also been examined in the feasibility study [8]. These 

are discussed here. 

3.2.3.1.1 False EDM signals due to stray fields 

Sensitivity of the area measurement can be easily compromised by any 

phenomenon other than an EDM which generates a vertical component of the 

spin at the polarimeter. For instance, such an effect may be caused by unwanted 

electric fields due to bending or focussing device imperfections, or by stray 

magnetic fields inside the beam line or RF cavity. 

3.2.3.1.2 Gravity 

The influence of gravity on the beam dynamics is quite negligible, so much so that 

the effect of the beam “falling” is accounted for in the initial calibration of the 

electrostatic deflectors. However, the small vertical component of the electric 

field that must be keeping the beam from falling is perceived as a radial magnetic 

field in the rest frame of the particle. The eventual interaction of the magnetic 

dipole moment with this effective radial field creates a false EDM signal. 

3.2.3.1.3 Radial magnetic fields 

A largely dominating systematic effect is an average static radial magnetic field 

existing in the whole ring. This is a concern because even if such a field is as small 

as 10−17𝑇, it can generate the same vertical spin precession as would an EDM of 

10−29𝑒 ∙ 𝑐𝑚. 

Systematic errors such as stray electric fields, gravitational fields, and many others 

can be eliminated by running simultaneous clockwise and counterclockwise 

beams, which is one of the capabilities of a pure electric storage ring. A counter-

rotating beam within the same beamline would essentially emulate a time 

reversed version of the same beam. This would mean that in principle, any time-

even effects (effects that are invariant under a time inversion) are cancelled out. 

To mitigate a radial magnetic field effect (which would be time-odd), the ring can 

be installed in an advanced magnetic shield that reduces residual effects at the 

nanotesla level [57]. 

Another way to mitigate systematic errors is by improving the spin coherence time, 

which effectively increases the time available for the signal to become statistically 

significant. It is due to this reason that long spin coherence is an important 

prerequisite for precision, which forms the basis for the motivation for this study. 
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4. The Precursor 

Experiments at COSY 

The precursor experiments are a series of experiments performed at the cooler 

synchrotron COSY to lay the groundwork for future experiments at more precise 

storage rings which are dedicated for the task of measuring proton EDM. 

As described in previous chapters as well as extensively in the feasibility study [8], 

these experiments function as a series of proof of capability tests, centring around 

the primary goal of measuring the EDM of deuterons using COSY. 

In a pure magnetic ring like COSY, it is possible to achieve a much higher precision 

in the measurement of the deuteron EDM as compared to the proton. This is owed 

to the fact that the deuteron has a lower gyromagnetic anomaly than the proton, 

which can improve precision in the invariant spin axis measurement as well as the 

spin coherence time. 

The following sections will briefly run through the specifics of the precursor 

experiment, some preliminary results and a summary of the insights gained for the 

next stage of the experiment. 

4.1 Spin Coherence Time Study 

As discussed in the earlier section, every technique of measuring the EDM of 

charge particles using spin precession requires the beam to have a long spin 

coherence time. This is also the case for the experiment to measure the EDM of 

deuterons using COSY, where the strategy described in this section is used. 

The requirement of the spin coherence time to be above 1000 𝑠 is imposed by the 

limits on the statistical error as calculator in section 3.2.3.1. With this as a goal a 

study was conducted at COSY with a deuteron beam [58]. 

4.1.1 Experimental setup 

Deuterons at an energy of about 970 𝑀𝑒𝑉 were injected into the synchrotron in 

the form of polarized bunches with the initial polarization along the vertical axis. 
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These polarization axes were then rotated onto the horizontal plane by means of 

an RF solenoid. Once the horizontal polarization component vanishes, the 

particles would then begin to precess on the horizontal plane, at a frequency that 

was known and optimized in a previous analysis. An event time marking system 

recently implemented at COSY made it possible to continuously track the in-plane 

precession. The polarization was measured using a polarimeter which used a 

17𝑚𝑚 thick carbon block located 3 mm above the beam centre line. A small 

sample of the beam was extracted using electric field white noise onto the carbon 

block, which scatters the sample. The scattered particles were then detected by 

the EDDA scintillation detectors [59] [60], which measures the spatial asymmetry 

which indicates the initial polarization upon impact with the target. The 

polarimeter events were tagged with a clock time, which allowed the tracking of 

the precession history. 

4.1.2 Experimental Results 

The in-plane precession tracking 

technique described above was 

used to track the magnitude of the 

“normalized polarisation”, which was 

measured from the amplitude of the 

sine-curve-fit of the polarimeter data 

[46]. The resulting trends are plotted in 

Figure 28 for two different settings of 

the sextupoles. 

The study also set out to 

experimentally verify the pre-existing 

argument that the sextupole field 

setting of highest polarisation lifetime 

(spin coherence time) must coincide 

with zero effective chromaticity [61]. 

In other words, the spin coherence 

time is expected to be highest when 

the sextupoles exactly cancel out the 

natural chromaticity. 

For the experiment, three families of 

sextupoles labelled MXS, MXL and 

MXG were used for second order 

beam corrections. The result of the 

study [58], as well as an extensive analysis [46] on the same have concluded that 

the arguments made by [61] hold true in the case of deuterons at COSY. This is 

also demonstrated in Figure 29. 

Figure 28: Measurements of the in-plane 

polarisation of the precessing bunch as a function 

of time. The scale is set so that the normalized 

polarization is unity at 𝑡 = 0 s. The two panels 

represent two different sextupole field settings, 

resulting in polarization lifetimes, defined in [58] as 

the time for the normalized polarisation to reach 

0.606, are 64.7 ± 5.4 s and 18.6 ± 2.6 s in (a) and (b), 

respectively. [58] 
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4.2 Deuteron EDM Measurement 

The deuteron EDM experiment was essentially one that aimed at measuring the 

invariant spin axis of a deuteron as it precesses around the ring. This would be done 

by adopting the strategy discussed in section 3.1.1. 

While in principle, such an experiment can directly provide a measurement of the 

EDM itself, the practical situation is somewhat more complex. This is because in a 

lattice like COSY with so many devices and a precisely focussed beam, the 

chances of magnetic field misalignments, among other systematic effects, are 

high, which can affect the orientation of the invariant spin axis. Due to this, the 

invariant spin axis may receive an offset in both the transverse and longitudinal 

directions. Thus, an accurate estimation of EDM from the measured invariant spin 

axis will require a careful investigation of the systematic effects through beam and 

spin tracking simulations [62]. That being said, the measurement of the invariant 

spin axis on its own, is an important proof of capability from the overall perspective 

of the EDM search. 

4.2.1 Experimental Setup 

The relevant beam parameters during the experiment are listed in Figure 30. 

A vertically polarised deuteron beam is injected into the ring and accelerated to 

a momentum of 970 𝑀𝑒𝑉, and cooled. The beam spins are then rotated onto the 

horizontal axis using a solenoidal field. This begins the horizontal precession around 

the invariant spin axis which was measured using a polarimeter. From the 

precession frequency the spin tune was calculated to be −0.16. the negative sign 

Figure 29: Two lines with error 

bands show the places where the 

x and y chromaticities were 

consistent with zero. The locations 

of the points of largest polarisation 

lifetime (spin coherence time) are 

shown by the circles and plusses. 

Circles indicate the results with a 

beam with high horizontal 

emittance, while the plus signs 

indicate those by a beam with a 

large longitudinal width. [46] 
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indicates that the direction of precession of the spin is opposite to the direction of 

the revolution of the particle. 

 

4.2.2 Methodology 

Were it not for the existence of an EDM, the invariance spin axis would be exactly 

parallel to the axis of the vertical magnetic field. The angle of tilt 𝜁𝐸𝐷𝑀 caused by 

the EDM in the radial direction is given by: 

𝜁𝐸𝐷𝑀 = tan
−1 (

𝜂𝑣

2𝑐𝐺
) { 172 } 

However as mentioned earlier, the presence of field misalignments could also 

offset the invariant spin axis both in the radial as well as the longitudinal direction. 

Therefore apart from the RF Wien filter, a solenoid (known as the “Siberian Snake”) 

was also used to provide kicks along the procession but about a longitudinal axis. 

Therefore with a combination of kicks provided by both devices, the net result will 

be a polarisation buildup unless the vector sum of their angular impulses are 

perfectly aligned with the invariant spin axis. 

Δ�⃗⃗� ∙ Ω⃗⃗⃗ = (Δ�⃗⃗�𝑅𝐹 + Δ�⃗⃗�𝑠𝑜𝑙) ∙ Ω⃗⃗⃗ = 0 { 173 } 

The figure shows the effect of turning on the RF Wien filter and the Siberian snake. 

Apart from the Wien filter rotation angle 𝜙𝑊𝐹 and the angular displacement 𝜉𝑠𝑜𝑙 

on the spin due to the solenoid, the rate of polarisation buildup would also depend 

on the relative phase 𝜙𝑟𝑒𝑙 of the Wien filter field oscillations (assumed to be 0 in { 

163 }): 

𝐸𝑊 = 𝐸𝑊0 cos(Ω𝑡 + 𝜙𝑟𝑒𝑙)

𝐵𝑊 = 𝐵𝑊0 cos(Ω𝑡 + 𝜙𝑟𝑒𝑙)
 { 174 } 

The variation of the normalised build-up rate with this relative phase is shown in 

Figure 32.  

Figure 30: Relevant 

parameters for the deuteron 

EDM experiment at COSY. [9] 
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Operating at the relative phase where the the polarisation build-up is maximum 

would make the situation exactly the same as the one described in section 3.1.1. 

The rate of build up at this point is known as the resonance strength 𝜖. 

 

4.2.3 Experimental results 

The resonant strengths at various values of  and  are plotted in the Figure 33 [9]. 

These points were fitted using the theoretical description of the resonance strength 

described in [63]: 

ϵ(𝜙𝑊𝐹, 𝜉𝑠𝑜𝑙) = (𝐴𝑊𝐹
2(𝜙𝑊𝐹 − 𝜙0

𝑊𝐹)2 +
𝐴𝑠𝑜𝑙

2

4 sin2(𝜋𝜈𝑠)
(𝜉𝑠𝑜𝑙 − 𝜉0

𝑠𝑜𝑙)
2
)

1
2⁄

 { 175 } 

 

Here, 𝐴𝑊𝐹 and 𝐴𝑠𝑜𝑙 are free scaling factors and 𝜙0
𝑊𝐹 and 𝜉0

𝑠𝑜𝑙 are the minima 

location to be determined from the fit. With this description and several 

measurement points, the minima of the distribution was found, which gives the 

estimation of the invariant spin axis: 

Figure 31: The angle 𝛼 of the polarisation 

vector with the horizontal (ring) plane, as 

a function of time. At 𝑡 = 100 𝑠, the 

vertically polarised beam is rotated onto 

the horizontal plane. At 𝑡 = 155 𝑠, the RF 

Wien filter and the Siberian Snake are 

turned on and the vertical polarisation 

begins to linearly build up. In this 

measurement, the settings were 𝜙𝑊𝐹 =

0.945 𝑚𝑟𝑎𝑑, 𝜉𝑠𝑜𝑙 = 0 𝑟𝑎𝑑, 𝜙𝑟𝑒𝑙 = 0.79 𝑟𝑎𝑑. [9] 

Figure 32: A plot showing the dependence 

of the rate of the vertical polarisation build-

up calculated from the linear fit of Figure 31 

with the relative phase 𝜙𝑟𝑒𝑙 of the RF Wien 

filter. The points were fitted with a sinusoidal 

model 
1

2𝜋

𝑑𝛼

𝑑𝑛
= 𝐴 𝑠𝑖𝑛𝜙𝑟𝑒𝑙 + 𝐵 𝑐𝑜𝑠 𝜙𝑟𝑒𝑙. The 

amplitude of the function 𝜖 = √𝐴2 +𝐵2 is the 

resonance strength. [9] 
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𝜙0
𝑊𝐹 = −2.91(8) 𝑚𝑟𝑎𝑑

𝜉0
𝑠𝑜𝑙 = −5.22(7) 𝑚𝑟𝑎𝑑

 { 176 } 

 

While the fact remains that without a rigorous model of the field misalignments 

from simulations, the estimation of EDM from these numbers would be highly 

inaccurate; the study does comment on the measurement sensitivity that a tilt of 

1 𝑚𝑟𝑎𝑑 in the radial direction is equivalent to an EDM of 10−17𝑒 ∙ 𝑐𝑚. 

Figure 33: Resonance 

strength 𝜖 , plotted 

against the Wien filter 

rotation angle 𝜙𝑊𝐹 
and the angular 

displacement of the 

spin due to the 

Siberian snake 𝜉𝑠𝑜𝑙. The 

points are fitted with 

the function { 175 }, 

and the minima of the 

surface gives the 

orientation of the 

invariant spin axis. [9]  
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5. Simulations of the 

Prototype Storage Ring 

With the results of the precursor experiment being able to provide many insights 

on the systematics required for EDM searches, the next stage of the experiment 

can be initiated. The prototype storage ring is the experiment which forms the 

primary focus of this thesis. Since this ring is still in the developmental stages at the 

moment [8], simulations were performed on an idealized lattice based on the most 

up-to-date design as of the beginning of this work. This design has been reviewed 

by the JEDI collaboration in detail in their latest feasibility study. 

In this chapter, the specifics on the simulations of spin decoherence and the 

optimization methods employed to maximize it shall be presented. The first section 

mentions details about the software used for the simulation, the reasons for 

choosing it and some of the studies and ongoing experiments used to benchmark 

it. The next section talks about the lattice structure, how the field settings are 

adjusted, and the choice of operation modes explored for the decoherence 

study. Once the orbit is closed, the subsequent sections discuss how the remaining 

lattice parameters that affect spin coherence time are organized and 

systematically searched for initial collection of data on decoherence patterns. 

These include also the specific quantities recorded among the beam and spin 

parameters as well as models used to derive key measurements from them. The 

next sections after that deal with the interpretation of the initial data and their 

modelling to make predictions. The final section then discusses how the optimizer 

is used to obtain the field settings which maximize spin coherence time. 

5.1 BMAD 

To perform simulations of beam and spin tracking around a specific arrangement 

of devices (a “lattice”), a software library named BMAD was chosen to devise 

accurate transfer parameters and handle the calculations. 
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BMAD [64] is a subroutine library (or a library of scripts and functions) for relativistic 

charged–particle and X-Ray simulations in accelerators and storage rings. BMAD 

has been developed at Cornell University’s Laboratory for Elementary Particle 

Physics and has been in use since 1996. 

BMAD has routines for calculating transfer matrices, emittances, Twiss parameters, 

dispersion, coupling, etc. The elements that BMAD knows about include 

quadrupoles, RF cavities (both storage ring and LINAC accelerating types), 

solenoids, dipole bends, Bragg crystals etc. Elements can also be defined to 

control the attributes of other elements, allowing for the creation of composite 

devices. In addition, BMAD has various tracking algorithms including Runge-Kutta 

and symplectic (Lie algebraic) integration. 

The BMAD subroutine library uses an object-oriented approach and is (currently) 

written in Fortran 2008. 

5.2 The Prototype Lattice “V3” 

 

The prototype lattice V3 is the BMAD description and representation of the 

prototype storage ring design as conceptualised by [65] and also described in the 

feasibility study [8]. Once described, the BMAD user program "Tao" [66] can be 

Figure 34: A floor plan of 

the V3 prototype lattice, 

generated by Tao [66]. 

The devices marked 𝐸𝑀 

are the electromagnetic 

bends, 𝑄𝐹, 𝑄𝐷, and 𝑄𝑆𝑆 

are the quadrupoles of 

the three different families, 

and 𝑅𝐹 is the RF cavity. 

The red arrow points to the 

spot on the beamline that 

is considered the origin of 

the laboratory coordinate 

system used in the plot 

(𝑋 = 0, 𝑍 = 0). This point 

corresponds to 𝑠 = 0 in the 

Frenet frame. 
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used to visualise and diagnose the lattice. The figure shows a floor plan as 

generated by Tao. 

5.2.1 Dipole magnet settings 

As can be seen from Figure 34, the prototype lattice has eight electromagnetic 

bends, each of which carry out a 45-degree turn of the particles at a given radius 

of curvature. A "lattice" in BMAD is characterised by the particle path being 

closed. In other words, the fields must be adjusted in accordance with the 

particles energy such that it always stays on the beam path. Given this constraint 

the dipole settings of the lattice are simply characterised by two parameters: the 

particle momentum and the length of the electromagnetic bends. Figure 35 shows 

a part of the lattice file where the dipole fields are described. 

 

Since both electric and magnetic fields are present in the bends, one additional 

parameter that needs to be set is the ratio of E to B. However, since this study 

focuses on simulations in the frozen spin condition, this parameter, together with 

the particle momentum, are also constrained to fulfil this requirement. 

The frozen-spin condition is defined by the situation where the reference particle 

in the storage ring has a spin tune of zero. When this is applied to the expression in 

{ 139 }, one can deduce the value of the normalized field ratio 𝑟 = 𝐸 𝑐𝐵⁄  for the 

proton: 

Figure 35: A snippet from the 

BMAD file description of the V3 

lattice. The length of the EM 

bends and the particle 

momentum are set in lines 9 and 

26 respectively. Line 35 sets the 

“default” magnetic field 

required to close the path. The 

actual magnetic field is set in 

line 37, and the electric field 

required for satisfying the frozen 

spin condition (see { 164 }) is 

calculated in line 36. The 

quadrupole field strengths are 

set in lines 18, 19 and 20, while 

the sextupole field strengths are 

set in lines 21, 22 and 23. 



 

74 

 

 Optimization of Spin Coherence Time at a Prototype Storage Ring for Electric Dipole Moment Investigations 

𝜈𝑠 = 𝛾𝐺 −
𝑟(𝐺 + 1)

𝛾(𝛽 + 𝑟)
= 0 ⇒ 𝑟 =

𝛽𝛾2𝐺

1 − 𝛽2𝛾2𝐺
= 0.7147 { 177 } 

The end result is a single degree of freedom as described in the bending radius 

contour in Figure 36. The study [65] prescribes two points or "modes" for 

investigation as also shown in Table 2. In this thesis, simulations were conducted on 

the 295 MeV mode. 

5.2.2 Quadrupole and sextupole magnet settings 

As can be seen in the Figure 34, the 

lattice has three families of quadrupoles 

labelled QF, QD and QSS just like the 

prototype design. In addition, there are 

also three corresponding families of 

sextupoles named SXF, SXD and SXSS. 

However, this being an idealised lattice 

meant to develop a preliminary 

understanding of frozen spin dynamics, 

the sextupole fields used in this lattice 

are superimposed on the quadrupole 

fields for simplicity and ease of 

simulation. The field strengths 𝜅𝐹, 𝜅𝐷 and 

𝜅𝑆𝑆 of the quadrupoles and 𝜒𝐹, 𝜒𝐷 and 

𝜒𝑆𝑆 of the sextupoles are the parameters 

that remain to be set according to the 

desired qualities of the particle beam 

and spin during storage. In this thesis, 

these are the settings that are 

eventually optimised for maximising spin 

coherence time. 

5.3 Measurement of Twiss Parameters 

The Twiss parameters of the lattice can be measured directly via a dedicated 

routine in BMAD. These include the Courant-Snyder parameters 𝛼, 𝛽 and 𝛾 (see 

section 2.3.1), as well as the dispersion function (see section 2.3.2). 

The values and variation of these parameters depend on the quadrupole settings. 

However, at reasonably low field strengths, sextupole fields do not affect the Twiss 

parameters. Figure 37 shows the distributions of the Twiss parameters across the 

lattice at a quadrupole setting that satisfies the stability conditions. 

Figure 36: Bending radius (green curves) and 

particle momentum (blue lines) contours 

plotted as a function of electric and magnetic 

fields. The red star plots the configuration of the 

prototype ring (currently investigated in this 

thesis) and the red circle plots that of the all-

electric ring (described in section 3.2.3) [83] 
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The point 𝑠 = 0 in Figure 37 is a point shortly before the RF cavity (see the red arrow 

in Figure 34). It can be seen that the focussing quadrupole effect restricts the beta 

function’s evolution along each transverse axis. The higher the beta function, the 

stronger the focusing effect. Also observable, is the fact that the quadrupoles that 

focus (bend towards the 𝑠-axis) along one transverse direction simultaneously 

defocus (bend away from the 𝑠-axis) along the other. 

The dispersion function is high in the long straight section due to the effects of the 

bends. The bend after a straight section tends to recombine the beam and the 

bend before tends to disperse it. 

 

Figure 37: Twiss parameters measured at quadrupole settings given by 𝜅𝐹 = 0.077 and 𝜅𝐷 = −0.242. 
The straight-section quadrupole is currently turned off. The red, green, and blue curves represent 

the horizontal beta function, vertical beta function and the horizontal dispersion function 

respectively as functions of the distance 𝑠 along the ring. The points marked by stars are the 

locations of quadrupoles (also the superimposed sextupoles). All units are in metres. 

5.4 Parameter Space 

With the momentum of the particles fixed and the reference path being closed, it 

is now possible to assess the optical parameters of the lattice. 

5.4.1 First-order optical parameters 

5.4.1.1 Transverse motion 

As demonstrated in the previous section, in BMAD, it is possible to characterise any 

given lattice on the basis of the Courant-Snyder parameterization. This means that 

the optical functions can be directly acquired from BMAD closed orbit 

calculations, provided that there exists a real solution to the Hill's differential 

equation at that setting. Imaginary or complex solutions as discussed in section 

2.3.1.2, occurs when a combination of quadrupole fields lead to a net defocusing 

effect along a transverse axis. 
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So, a scan was done across all quadrupole configurations of the lattice to find 

those which have real solutions to the HDE, and thus real betatron tunes, in both 

transverse directions. A configuration with a pair of real betatron tunes is known as 

a working point. The results of the scan are depicted in Figure 38. 

The results of the scan are consistent with previous simulations of this lattice. In 

[65],1D scans of the betatron tunes were performed while keeping two sextupoles 

fixed and varying a third (𝜅𝐹 or 𝜅𝐷), which show the same behaviour. A finer 2D 

scan was done in [67] which also is reflected in these results. 

 

Figure 38: A scan of all possible working points. The area covered by the colours are the regions 

with real values of betatron tunes. The colour-bar on the left plot shows the horizontal betatron 

tune, and the one on the right shows the vertical betatron tune. 

It was also seen in [65] that when 𝜅𝑆𝑆 was varied while keeping 𝜅𝐹 and 𝜅𝐷 fixed, 

very little change in the tunes 

were observed per unit change in 

the field strength. This is likely 

because of the placement of the 

quadrupole in a straight section 

and in close proximity (very little 

phase advance) between two 

others of the same family (see 

Figure 34). Therefore, in the 

simulations performed in this 

thesis, in order to avoid non-linear 

behaviour as much as possible, all 

tunes were accessed with the 

straight section quadrupole kept 

off. 

  

  

 0

Figure 39: A scan of the phase slip factor over all 

working points on the lattice. The red curve represents 

the gamma-transition line where 𝜂0 = 0. Points to its 

right fulfil the stability condition of 𝜂0 < 0. 
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5.4.1.2 Longitudinal motion 

First-order longitudinal motion can be characterised by the first-order phase slip 

factor 𝜂0, which is defined in { 91 }. This quantity also determines the synchrotron 

frequency 𝜔𝑠 expressed in { 105 }. A scan of the phase slip factor over all working 

points in the lattice is shown in Figure 39. 

Since the storage ring currently functions in a non-acceleration mode with 

stationary RF buckets, the RF phase is set to zero. This means that the longitudinal 

phase stability is achieved only for points where the phase slip factor is negative 

(see { 110 } and section 2.4.2.2). These are the points to the right of the red curve 

in Figure 39. 

5.4.2 Second-order optical parameters 

The chromaticities 𝜉𝑥 and 𝜉𝑦 can be obtained from the closed orbit calculations 

of BMAD. However, in consideration of the result in section 2.6.5.3, an important 

quantity to track would be the second order momentum compaction factor 𝛼1, 

as it directly influences the spin coherence time.  

Due to a dedicated routine for calculation of second-order momentum 

compaction not being available in BMAD, a customized measurement process 

was used to estimate it through the tracking of the 𝑧 coordinate of a single 

(otherwise) reference particle with a longitudinal momentum offset 𝛿, and the RF 

cavity turned off. With a simulation of several turns, ∆𝑧 is obtained, which is the gain 

in the particle’s 𝑧 per turn. In BMAD, 𝑧(𝑛, 𝑠) during the 𝑛𝑡ℎ turn at the location 𝑠 is 

calculated by [64]: 

𝑧(𝑠) = −𝑣∗(𝑠)(𝑡∗(𝑠) − 𝑡(𝑠)) { 178 } 

Here, 𝑣∗(𝑠) is the velocity of the offset particle, 𝑡∗(𝑠) is the time at which the particle 

was at 𝑠, and 𝑡(𝑠) is the time at which the reference particle was at 𝑠. With a fixed 

momentum offset and no bunching, 𝑣∗ is constant and 𝑧 builds up linearly. A fit 

allows the measurement of ∆𝑧(𝑠): 

∆𝑧 = 𝑧(𝑠) − 𝑧(𝑠 − 𝐿) = −𝑣(𝑡∗(𝑠) − 𝑡(𝑠) − 𝑡∗(𝑠 − 𝐿) + 𝑡(𝑠 − 𝐿)) = −𝑣∆𝑡 { 179 } 

Here, ∆𝑡 represents the difference in the times taken by the offset and the 

reference particles to travel one turn. This would hold the same meaning as the ∆𝑡 

in { 91 }. 

The change in path length, without performing the first order approximation, is 

given by: 
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∆𝐿

𝐿
=
∆𝑣

𝑣
+ (1 +

∆𝑣

𝑣
)
∆𝑡

𝑡
=
∆𝑣

𝑣
+ (

1

𝑣 + ∆𝑣
)(
𝑣 + ∆𝑣

𝑣
)
∆𝑧

𝑡
=
∆𝑣

𝑣
−
∆𝑧

𝐿
 { 180 } 

Considering up to the second order in 𝛿, the velocity offset can be written as: 

∆𝑣

𝑣
=
δ

𝛾2
−
3𝑣2δ2

2𝛾2𝑐2
+⋯ { 181 } 

Thus, the change in path length can be measured by: 

∆𝐿

𝐿
=
δ

𝛾2
−
3𝑣2δ2

2𝛾2𝑐2
−
∆𝑧

𝐿
= 𝛼0𝛿 + 𝛼1𝛿

2 +⋯ { 182 } 

The change in path length can be plotted as a function of momentum offset to 

obtain a distribution which can be fitted by a polynomial of second order to 

estimate the momentum compaction factors. 

The chromaticities and the second-order momentum compaction factor together 

make up the second-order optical parameters. While these parameters are 

affected by the quadrupole settings 𝜅𝐹 and 𝜅𝐷, changes to the sextupole field 

strengths 𝜒𝐹, 𝜒𝐷 and 𝜒𝑆𝑆 would affect only the second-order parameters while 

leaving the first order ones intact. For a given working point, each of these 

parameters was found to vary linearly with the sextupole settings, which is 

representative of the result of { 84 }, and the direct contribution of sextupole fields 

to the second-order dispersion [68]. A linear variation of chromaticities with 

sextupole fields was also observed in COSY [46]. 

In fact, simulations on the current lattice show that the second order parameters 

can each be modelled as a fixed potential in 𝜒-space with a constant gradient: 

∇⃗⃗⃗𝜒𝜉𝑥 = �⃗�𝐹 ∇⃗⃗⃗𝜒𝜉𝑦 = �⃗�𝐷 ∇⃗⃗⃗𝜒𝜉𝑥 = �⃗�𝑆𝑆 { 183 } 

Here, �⃗�𝐹, �⃗�𝐷 and �⃗�𝑆𝑆 are constant vectors in the 𝜒-space with a basis formed by 

the unit-vectors �̂�𝐹, �̂�𝐷 and �̂�𝑆𝑆. The gradient operator is given by: 

∇⃗⃗⃗𝜒=
𝜕

𝜕𝜒𝐹
�̂�𝐹 +

𝜕

𝜕𝜒𝐷
�̂�𝐷 +

𝜕

𝜕𝜒𝑆𝑆
�̂�𝑆𝑆 { 184 } 
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Figure 40: Vector-field plots of the gradients of the second-order parameters in the sextupole field 

space at a working point with 𝜅𝐹 = 0.062 and 𝜅𝐷 = −0.165. The length and direction of each arrow 

in the three plots represents the magnitude and direction of the gradient of the quantities 𝜉𝑥 (left), 

𝜉𝑦 (centre) and 𝛼1 (right). The arrows within a plot having a common magnitude and direction is 

indicative of a constant gradient across space. 

Figure 40 demonstrates the invariance of the gradients of the second-order 

parameters measured at a given working point. The second-order parameters at 

a given sextupole field configuration can thus be expressed as: 

𝜉(𝜒) = 𝜉(0⃗⃗) + 𝑪𝜒 { 185 } 

5.4.3 Structure and organization of parameters 

 

Figure 41: The organization of the parameter space explored in this study. The space formed by the 

betatron tunes 𝑄𝑥, 𝑄𝑦 and the phase slip factor 𝜂0 is the first-order (1°) space, and the one formed 

by the chromaticities 𝜉𝑥, 𝜉𝑦 and the second-order momentum compaction factor 𝛼1 is the second-

order (2°) space. A point in the first-order space is termed a working point, and one in the second-

order space is termed a data point. 

Here, 𝜉 = (
𝜉𝑥
𝜉𝑦
𝛼1

) represents the second-order optical parameters, 𝜉0⃗⃗ ⃗⃗ = (

𝜉𝑥0
𝜉𝑦0
𝛼10

) 

represents their “natural” values (i.e., the values when the sextupoles are turned 

off), and 𝜒 = (

𝜒𝐹
𝜒𝐷
𝜒𝑆𝑆
) represents the sextupole field strengths. The matrix 𝑪 (known as 
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the C-matrix) represents the linear transformation from the field-strength space to 

the second-order optics space. The rows of the matrix are in order, the gradients 

∇⃗⃗⃗𝜒𝜉𝑥, ∇⃗⃗⃗𝜒𝜉𝑦 and ∇⃗⃗⃗𝜒𝛼1. 𝑪 is therefore constant and characteristic of a given working 

point. 

The quadrupole field strengths 𝜅𝐹 and 𝜅𝐷 determine the first-order optical 

parameters: the betatron tunes 𝑄𝑥, 𝑄𝑦 and the first order phase slip factor 𝜂0. 

However, the mapping from the quadrupole fields to the first-order parameters is 

neither linear nor surjective (i.e., one set of optical properties may have more than 

one field setting that gives rise to it). Moreover, the mapping cannot be 

represented as a function since not every field setting is a “working point” that has 

a set of optics associated with it (e.g., it doesn’t fulfil the stability criteria). Finally, 

there are working points which have well-defined tunes but are unstable due to 

resonance effects. 

It is for these reasons that the lattice is explored through the optical parameters 

rather than the field settings themselves. This way, the relevant systematics are 

readily apparent. This also applies to the case of the second-order parameters 

despite having a linear and bijective mapping, since as discussed in section 2.6.5, 

the second-order optics have a direct influence on the spin coherence time. 

Thus, the parameter space explored in the optimization of spin coherence time of 

this thesis is depicted in Figure 41. 

5.4.4 Choice of first working point 

The study [58] on spin coherence times at COSY concludes that highest spin 

coherence times should coincide with working points with lowest natural 

chromaticities. To test this hypothesis, the first working point examined in this study 

is the one with chromaticities as close to zero as possible. To find the field settings 

of this point, the natural chromaticities of all available working points were 

measured (shown in Figure 42) and the working point with both chromaticities as 

close to zero as possible was estimated from the contours (shown in Figure 43). The 

defining parameters and optical properties of this point is shown in Table 4. 

 

𝜅𝐹 𝜅𝐷 𝑄𝑥  𝑄𝑦  𝜉𝑥0
 𝜉𝑦0

 𝛼10 

0.0769 -0.2417 1.855 1.095 0.00 0.00 -0.2578 

 

Table 4: Field settings and 

optical properties of the zero-

chromaticity working point. 
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Figure 42: Natural chromaticities measured over all available working points where chromaticity 

measurement was possible. 

5.4.5 C-matrix 

The C-matrix, defined in section 5.4.2, was calculated by measuring the 

chromaticities and 2° momentum compaction factors at a grid of sextupole 

settings, and fitting the data to the model described in { 84 }. 

The C-matrix and its inverse were found to be: 

𝑪 = (
55.64 3.657 26.72
−35.76 −41.15 −15.67
−28.42 −2.867 −14.05

) { 186 } 

𝑪−1

= (
0.5403 −0.0255 1.056
−0.0585 −0.0236 −0.085
−1.08 0.0564 −2.1876

) 
{ 187 } 

𝑪−1 can be used to calculate the 

sextupole field settings that give rise to a 

desired set of 2° optics. This way a custom 

range or “slice” of optics can be scanned 

to measure spin coherence time. 

5.5 Investigations of Spin 

Decoherence 

As discussed in previous chapters, spin coherence time can be measured by 

tracking the magnitude of the polarisation vector. In particle tracking mode, 

    

    

    

  

  

  
  

Figure 43: Contour curves for 𝜉𝑥 = 0 (red) and 

𝜉𝑦 = 0 (blue) based on interpolations from 

the graphs in Figure 42. The intersection point 

gives the field settings of the working point 

with zero natural chromaticity. 
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BMAD’s spin tracking module tracks each individual particle’s spin vector �⃗⃗�. In 

beam tracking mode, the program returns the polarisation vector calculated 

according to { 145 }. While measurements of relevant beam parameters such as 

tunes, chromaticities and momentum compaction factors are done in particle 

tracking mode, simulations of spin physics during this study are always conducted 

in beam tracking mode. 

5.5.1 Decoherence in frozen spin 

The frozen spin condition requires the reference particle to have a net spin tune of 

zero. However, this is not necessarily the case with offset particles. From the BMT 

equation, it is clear that apart from extra fields (such as quadrupole or sextupole 

fields), the spin tune is affected by a velocity change. Here we consider the 

change in the spin tune up to the second order, with change in momentum. 

Expressing the relevant parameters as functions of the momentum, the following 

expressions are obtained: 

𝛽′ =
𝑑𝛽

𝑑𝑝
=

1

𝑚𝛾3
, 𝛾′ =

𝑑𝛾

𝑑𝑝
=
𝛽

𝑚
, 𝛥𝜈𝑠 = 𝜈𝑠

′𝛿𝑝 +
1

2
𝜈𝑠
′′(𝛿𝑝)2 { 188 } 

This, when calculated under the condition 𝜈𝑠 = 0, gives… 

𝛥𝜈𝑠 =
𝛽𝑥(𝐺 + 1)

𝛾
(1 +

1 − 𝑥2

(𝛽 + 𝑥)2
)𝛿

−
𝛽3𝑥(𝐺 + 1)

2𝛾
(1 +

1 − 𝑥2

(𝛽 + 𝑥)2
+

2(1 − 𝑥2)

𝛽𝛾2(𝛽 + 𝑥)3
)𝛿2 

{ 189 } 

…which upon evaluation for the kinematic parameters of the prototype ring 

gives… 

𝛥𝜈𝑠 = 𝜁0𝛿 + 𝜁1𝛿
2 { 190 } 

…with 𝜁0 ≈ 0.8408 and 𝜁1 ≈ −0.1104. The direct verification of these numbers 

through simulations can be challenging considering that it would require 

simulations with all focussing magnets turned off. However, it would stand to 

reason that the expression holds true for modified values of the coefficients when 

corrected for the effects of the quadrupole and sextupole fields on the spin tune. 

From single-particle simulations of the prototype lattice, it was observed that 𝜁0 

takes on a different value at each working point and 𝜁1 takes on different values 

at each data point.  
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5.5.2 Beam Distribution 

 For this study, a beam 

distribution was generated using 

the in-built algorithms in BMAD, 

with each of the six phase space 

parameters assigned a random 

value picked from a zero-

centred Gaussian distribution 

function. The Gaussian functions 

of the transverse phase space 

coordinates were assigned 

standard deviations based on 

the desired emittance of the 

half-maxima particles. The 

longitudinal phase space 

parameters were assigned 

directly from user input. A 

description of the beam is 

shown in Figure 44. 

From the result of { 153 }, it was seen that the parameters of the beam phase 

space: the emittances (𝜖𝑥, 𝜖𝑦), and the momentum offset (𝛿) play a crucial role in 

determining the path length and thus, spin physics. So, the relevant standard 

deviations of these parameters (set in lines 8-11 in the beam distribution file shown 

in Figure 44) were not changed during the investigations in this thesis. In fact, in the 

interest of comparability among results and overall reproducibility of findings, it  

was also decided that a single beam distribution, consisting of the initial phase 

space parameters of 1024 particles, be initially generated and only this be reused 

in each simulation. Thus, only the system settings of the storage ring (like fields and 

optics) are varied between simulations, while the beam distribution is kept 

constant. 

5.5.3 Parallelization Scheme 

One of the primary challenges to simulations of spin dynamics in BMAD is the long 

computation times. This is due to a variety of factors, such as the small step size in 

the quantization of the lattice to ensure accuracy of transport, to the large 

number of matrices to process in the closed-orbit calculations [64]. 

Figure 44: A snippet from the beam distribution user input 

file. The type of distribution is defined for each of the 

spatial directions in lines 5, 6 and 7. The 𝑥 and 𝑦 

emittances are set in lines 8 and 9, and the standard 

deviations of the longitudinal position and momentum 

offsets are set in lines 10 and 11. 
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Figure 45: Parallelization scheme for simulation of 1024 particles in a computing cluster with 256 

cores. 

In beam tracking mode, the transportation is performed on each individual 

particle, one-by-one. The time required to do this, as expected, rises linearly with 

the number of particles simulated, unless the job is parallelized. However, BMAD 

does not provide a default scheme for multithreading, due to which, 

parallelization must be implemented by hand. 

Since this study neglects the effect of intra-beam interactions on beam and spin 

transport, a method was devised to distribute the job among the 256 cores 

available in the IKP, Jülich computing cluster. 

The number of particles to simulate was decided on the idea of optimizing 

between statistical accuracy and computing time. Following the example of [67], 

the number of particles was decided to be at least 1000. 

Thus, to each core in the cluster, the simulation of 4 particles were assigned in 

standalone programs, whose data was then merged by averaging. The scheme 

is shown in Figure 45. 

This scheme managed to cut the processing time by more than 99% as compared 

to earlier single-program simulations, while keeping the results invariant.  

5.5.4 Time development of polarisation vector magnitude 

Shown in Figure 46 is a plot showing the variation over time of the spin polarisation 

vector of the 1000-particle bunch.  

Task:
Simulate ~1000

particles for 
~105 turns

4 particles;
105 turns

4 particles;
105 turns

4 particles;
105 turns

…

4 particles;
105 turns

Average the 
spin-vector 

components of 
all processes at 

the end of 
each turn

Calculate 
observables 

from averaged 
components

Result:
1024 particles 
simulated over 

105 turns
(one data 

point)
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Figure 46: A plot showing the development of the magnitude of the polarisation vector of 1000 

particles in a Gaussian bunch as a function of number of turns simulated. The decoherence 

phenomenon is observed as the steady decline in value after several turns. 

The plot shows a clear demonstration of two phenomena that affect the 

polarisation vector. In the short term the observed oscillations (or “fluctuations”) of 

the magnitude is indicative of the effect of the synchrotron oscillations on the 

momentum offset. Essentially any variations on the momentum offset also induce 

a change in the particle's Lorentz factor, which in turn causes a change in the 

particle's spin tune. This is why the fluctuations on the polarisation vector 

magnitude is on the same time scale as the synchrotron oscillations. 

However, when measured specifically, the fluctuations appear to be exactly 

twice as frequent as the synchrotron oscillations. A possible explanation for this 

could be that the frequency with which a particle's spin returns to its mean position 

depends on its initial position on the longitudinal phase space.  From { 109 }, the 

momentum offset of a particle at a given time is: 

𝛿(𝑡) = 𝛿0 cos𝜓 − 𝑧0 sin𝜓 { 191 } 

Since the harmonic number of the prototype lattice is 1 (i.e., only one bunch is 

simulated with a single RF cavity), the spatial period (distance between the 

separatrices) of the longitudinal phase space spans the entire ring circumference. 

Considering that the initial longitudinal beam width is several orders of magnitude 

lower than this, one can essentially consider 𝑧0 ≈ 0. This fact is further visualized in 

Figure 48. From this, the contribution of a particle to the spin decoherence can be 

calculated as: 
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∆𝜃(𝑡) = −
𝑣

𝜌
∫ ∆𝜈𝑠

𝑡

0

𝑑𝑡 = −
𝑣

𝜌
∫ (𝜁0𝛿 + 𝜁1𝛿

2)
𝑡

0

𝑑𝜓

= −
𝜁0𝛿0
𝜔𝑠

sin(𝜔𝑠𝑡) −
𝜁1𝛿0

2

2
𝑡 −

𝜁1𝛿0
2

4𝜔𝑠
sin(2𝜔𝑠𝑡) 

{ 192 } 

From the above expression, it can be 

noticed that the spins of particles 

with an initial momentum offset but 

no position offset tend to return to 

their mean position twice in one 

synchrotron oscillation. The 

mechanism of this is graphically 

described in Figure 47.  

The time development of the 

direction of the polarisation vector 

on the horizontal plane is tracked by 

the spin tune spread 〈∆𝜃(𝑡)〉, which 

represents the value of the expression 

in { 192 } averaged over all the 

particles. Shown in Figure 49 is a plot 

of the spin tune spread of the same 

polarisation vector as measured in 

Figure 46. 

In this plot as well, fluctuations 

induced by the synchrotron motion 

can be observed, this time perfectly 

in phase with the synchrotron motion. 

This resembles the effect of the first 

term in the expression of the spin tune spread: 

 

 

 

Figure 48: A depiction of the phase space ellipses followed by particles in a typically spatially 

precise Gaussian distribution. Here the horizontal direction represents position offset, and the 

vertical represents momentum offset. Since the phase space ellipse is highly eccentric in 

comparison to the bunch, most particles end up being initially located close to the minor axis of 

their respective phase space ellipses. 

 

 

Figure 47: A comparison of the motion paths of 

particles with different initial phase space 

coordinates lying on the same Gaussian 𝜎-contour. 

The projections of the function are drawn in green 

on the outset. Initially off-momentum particles (red) 

fluctuate symmetrically on their respective phase 

space ellipse, returning to their mean position every 

half turn. Initially off-position particles on the other 

hand (blue staring from +𝑧 and light-blue starting 

from −𝑧), return to their mean position only once 

every turn. However, since they follow a much 

smaller phase-space ellipse, they contribute less to 

the fluctuations. 
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〈∆𝜃(𝑡)〉 = −(
𝜁0
𝜔𝑠
sin(𝜔𝑠𝑡)) 〈𝛿0〉 − (

𝜁1
2
𝑡 +

𝜁1
4𝜔𝑠

sin(2𝜔𝑠𝑡)) 〈𝛿0
2〉 { 193 } 

The gradual linear shift in the polarisation vector's direction is a direct reflection of 

the second term in this equation. Normally, one should not see any fluctuations 

since one would expect the mean momentum offset 〈𝛿0〉 = 0 in the first term, 

because that is the initial setting. The presence of fluctuations on the time 

development suggests an additional effect that introduces a shift in the mean of 

the momentum spread. In this and other simulations, the amplitude of these 

fluctuations was found be positive or even negative (initial kick being clockwise 

instead of anticlockwise). Examples of each of these cases occurring at the same 

working point (fixed synchrotron frequency) is shown in Figure 50. 

 

Figure 49: A plot showing the spin tune spread of the polarisation vector measured simultaneously 

with the experiment in Figure 46. 

This “distribution bias” which mostly leans towards positive fluctuation amplitude 

may be interpreted as the effect of a majority of particles having a shortening in 

path length per turn, causing them to be initially pushed lower on the 𝛿-axis in the 

longitudinal phase space (see Figure 47). In other words, the mean of the Gaussian 

distribution gets shifted down, resulting in a higher contribution from negatively off-

momentum particles. If the particles systematically remain evenly distributed 

along the 𝛿-axis at the start of every synchrotron oscillation, it stands to reason that 

the spin tune spread would not fluctuate (like in the centre plot in Figure 50), as 

particles with opposite momentum offsets would be kicked in opposite directions 

after a quarter cycle, cancelling each other’s contributions to the spin tune 

spread and making the first term in { 193 } zero. The most likely reason behind this 

is the effect of path lengthening as described in { 153 }. Path lengthening manifests 

as a fixed shift in 𝛿 of all particles with a transverse emittance, which is essentially 

independent of position on the longitudinal phase space. 

The steady directional fluctuation of the polarisation vector is quantified by the 

fluctuation amplitude 𝑚𝜈 = −
𝜁0
𝜔𝑠⁄ 〈𝛿0〉. It can be surmised that in regions with 
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positive 𝑚𝜈, the mean momentum offset of the beam is decremented due to the 

path lengthening while in regions with negative 𝑚𝜈, the mean momentum offset is 

incremented. 

From the above observations on the depolarization and the change in the 

polarisation vector's direction, the 9 distinct decoherence modes can be 

qualitatively defined. These are shown in Figure 53. 

The classification of the optimized settings for high spin coherence time into these 

modes could give insights into the mechanisms governing decoherence. 

 

Figure 50: Examples of positive (left), zero (centre) and negative (right) fluctuation amplitudes 

occurring at different 2° optical settings of the same working point. 

From { 192 }, the polarisation vector magnitude can be calculated as follows: 

|�⃗⃗�(𝑡)|
2
= 〈cos(∆𝜃(𝑡))〉2 + 〈sin(∆𝜃(𝑡))〉2

= (∑(−1)𝑖
⟨(∆𝜃(𝑡))

2𝑖
⟩

(2𝑖)!

∞

𝑖=0

)

2

+ (∑(−1)𝑖
⟨(∆𝜃(𝑡))

2𝑖+1
⟩

(2𝑖 + 1)!

∞

𝑖=0

)

2

 
{ 194 } 

This expression when computed, models the loss of magnitude as well as the 

fluctuations in the form of an expression with both polynomial and harmonic terms. 

More precisely, if only the linear term in { 193 } is retained the expression becomes 

a pure polynomial in time 𝑡: 

|�⃗⃗�(𝑡)|
2
= (∑(−1)𝑖

(−𝜁1
𝑡
2⁄ )
2𝑖

(2𝑖)!

∞

𝑖=0

⟨𝛿4𝑖⟩)

2

+(∑(−1)𝑖
(−𝜁1

𝑡
2⁄ )
2𝑖+1

(2𝑖 + 1)!

∞

𝑖=0

⟨𝛿4𝑖+2⟩)

2

 { 195 } 

When evaluated up to the required number of terms, this model traces out the loss 

of magnitude as observed in the simulations, but independently of the 
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fluctuations. A comparison of the model behaviour with an example simulation 

result is shown in Figure 51. 

 

Figure 51: A comparison of the pure polynomial in { 195 } evaluated up to its first 20 terms for a 

random gaussian sample distribution of 𝛿 (left), and the result of a simulation tracking the 

magnitude of the polarisation vector of 1000 particles at a setting with particularly fast 

decoherence (right, black curve). The model is observed to represent the nature of the 

decoherence quite accurately. The red curve on the simulation result represents a 20-term even-

powered polynomial being used to fit the data. 

Interestingly, it was observed that the amplitude of the directional fluctuations 

being zero does not necessarily imply minimum decoherence or the 

disappearance of the magnitude fluctuations. In fact, it was observed that the 

polarisation vector magnitude continues to fluctuate and the rate of 

decoherence in such settings were relatively high. The inference drawn from this 

observation is that the bunch by default has an ensemble spin tune which makes 

the polarisation vector turn and lose its magnitude in the process. The path 

lengthening effect which induces a longitudinal shift may be needed to 

counteract the default turn of the polarisation vector to stabilize it so it maintains 

its direction with the reference particle spin. Finding this balance could be key to 

maximizing spin coherence time. 

5.5.5 Variation of spin tune error with second-order optics 

Based on the result of { 153 }, as well as the findings of the simulations done by [67], 

the spin tune error is expected to vary linearly with chromaticity. This was observed 

to be the case when either chromaticity or both were varied. This is shown in Figure 

52.  
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Figure 52: Plots showing the variation of spin tune error with chromaticity. The left plot shows 1D 

scans varying 𝜉𝑦 at different fixed values of 𝜉𝑥. The right plot shows a 2D scan of a mesh of points 

that were accurately fit with a plane, whose equation is expressed on top. 

 

5.5.6 Measuring spin coherence time 

The Figure 46 shows a simulation of polarisation vector over 20000 turns in the 

storage ring. The simulation was performed using the computing cluster at IKP, 

Forschungszentrum, Jülich, and took about 12 minutes to complete. On an 

average, this computing cluster with 256 cores manages to complete the 

simulation of 1000 particles for 100000 turns in 1 hour. However, when measured in 

time this accounts for only 0.2 seconds of beam time. While it is possible to simulate 

and measure spin coherence times of the order of hundreds of seconds directly 

from the data, this is definitely not practical as a single simulation would take too 

long. Therefore, a method is required to accurately estimate the spin coherence 

   > 0    = 0    < 0

 < 0

 = 0

 > 0

Figure 53: A figurative 

depiction of the nine distinct 

modes of decoherence of 

the polarisation vector 

observed on the prototype 

storage ring operating on 

frozen spin. The yellow 

arrows represent the initial 

position of the polarisation 

vector, the blue ones 

represent the final positions. 

The grey curves trace out 

the trajectory of the top of 

the vectors as they move 

from the initial to the final 

position. 
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time from a short beam time simulation. This would also require an accurate 

modelling of spin depolarization. While { 195 } does present an accurate estimate, 

it requires the sampling of data for 𝛿 for each particle, which may give rise to 

uncertainties in the estimations at later 𝑡 values without computational challenges. 

Dennis Eversmann in [69] proposes a simpler model that describes spin 

depolarization in a pure magnetic ring: 

𝑝𝑛(𝑛) =
1

∆𝑛
[1 + 𝜖0̅ ([1 − √𝜋𝛾𝑠(𝑛)𝑒

−𝛾𝑠
2(𝑛) erfi(𝛾𝑠(𝑛))]

2
+ 𝜋𝛾𝑠

2(𝑛)𝑒−2𝛾𝑠
2(𝑛))

1
2

× sin [Ω𝑠(𝑛) +
𝜋

2
− tan−1 (

𝑒𝛾𝑠
2(𝑛)

√𝜋𝛾𝑠(𝑛)
− erfi(𝛾𝑠(𝑛)))]] 

{ 196 } 

The model tracks the probability of a particle at turn number 𝑛 to have a 

polarisation along the longitudinal axis, which in a pure magnetic ring, oscillates 

with a frequency Ω𝑠  due to a non-zero horizontal precession. It was theorized that 

this model could be applied to the frozen spin condition, if only the depolarization 

amplitude were used directly: 

 

Figure 54: Graphs plotting the Eversmann model shown in { 197 }. The plot on the left shows the 

development of the model at different values of the damping parameter. The plot in the centre is 

an example of the model used as a fitting function for the decoherence of the polarisation vector. 

The plot on the right shows the agreement of the model up to and beyond the |�⃗⃗�(𝑡)| = 1 𝑒⁄  line. 

𝜖̅ = 𝜖0̅ ([1 − √𝜋𝛾𝑠(𝑛)𝑒
−𝛾𝑠

2(𝑛) erfi(𝛾𝑠(𝑛))]
2
+ 𝜋𝛾𝑠

2(𝑛)𝑒−2𝛾𝑠
2(𝑛))

1
2

 { 197 } 

Here, 𝛾𝑠(𝑛) = √2𝜋𝜎𝑛 is termed the “damping parameter” where 𝜎 can be obtained 

from the fit. This model has the advantage of having exactly one free parameter 

to be determined from fits. Using this as a fitting function, as shown in Figure 54, 

allows for accurate determination of the spin coherence time from short-term 

simulations. 
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5.5.7 Variation of spin coherence time with second-order optics 

Studies such as [58] and [46] suggest a linear relationship between chromaticities 

and the reciprocal of spin coherence time. The applicability of this idea on the 

prototype ring was tested initially using linear scans. These are shown in Figure 55. 

 

Figure 55: Linear scans measuring the reciprocal of spin coherence time with chromaticity with 

𝜒𝑆𝑆 = 0. The left plot fixes 𝜉𝑦 and varies 𝜉𝑥. The right plot varies both simultaneously to scan a line on 

the 𝜉𝑥-𝜉𝑦 plane. 

At first glance, the linear relationship seems apparent. However, at finer scans, 

such as the one shown on the right in Figure 55, the slight curvature close to the 

axis suggests the possibility of a different relationship that resembles linearity at 

sizable values. To find this relationship, a planar scan was carried out as shown in 

Figure 56. Contour lines generated via interpolation take the shape of a family of 

ellipses, which led to the idea of a quadratic polynomial in two variables 

explaining the variation. 

Eventually, it was found that a “paraboloid” expression of the form: 

1

𝜏2
=
1

𝜏0
2
+ 𝐿(𝜉𝑥 − 𝜉𝑥

𝑜)2 +𝑀(𝜉𝑦 − 𝜉𝑦
𝑜)
2
+ 𝑁(𝜉𝑥 − 𝜉𝑥

𝑜)(𝜉𝑦 − 𝜉𝑦
𝑜) { 198 } 

…would represent a family of ellipses, as well as resemble linear behaviour at large 

distances from the vertex. Here, 𝜉𝑥
𝑜, 𝜉𝑦

𝑜 are the coordinates of the vertex (these 

would be the chromaticities optimized for spin coherence time), 𝜏0 is the maximum 

spin coherence time (at the optimized point), and 𝐿,𝑀,𝑁 are the geometrical 

parameters of the paraboloid. These six parameters are the free parameters to be 

obtained from the fit.  
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The model was observed to fit the data 

precisely at every simulated setting 

with the errors between the model and 

simulation data points having a 

standard deviation in the range of 

10−12 to 10−6 from zero. 

5.6 Grid tests 

Using the chosen first working point, 

parameter space and measurement 

methods discussed above, it is now 

possible to perform scans of the 

quantities of interest over a uniform grid 

of points in space, which can reveal 

valuable insights on the “landscape” of the 2° parameter space. Described here, 

are the outcomes of the first grid tests. 

5.6.1 Grid test 1 

A scan was done on a grid of points in the 𝜉-space. Each of the coordinates:  𝜉𝑥, 

𝜉𝑦 and 𝛼1, were varied in steps of 2 from −6 to 4, resulting in a grid of 216 data 

points. These were simulated each for 10000 turns or an equivalent beam time of 

about 0.014 𝑠. In each of these points, the spin coherence time 𝜏, spin tune spread 

Δ𝜃𝑥, the spin tune error Δ𝜈𝑠, and the amplitude fluctuation coefficient 𝑚𝜈 

(qualitatively) were measured. 

Based on earlier simulations as well as the results from [67], the spin tune error was 

expected to vary linearly in all directions. However, the results of this scan show 

non-linear behaviour in certain regions. This is shown in Figure 57. 

 

Figure 57: Variation of the spin tune errors with chromaticity at three different values of 𝛼1. The 

nonlinearities are observed when the values (white dots) are more and more misaligned with the 

plane fit of the data as 𝛼1 increases. 

  
  

  
  

  
  

         

Figure 56: A scan of reciprocals of spin 

coherence times at a mesh of data points on the 

𝜉𝑥-𝜉𝑦 plane. The coloured curves are interpolated 

contour lines whose colours represent the value 

of 1 𝜏⁄  on those contours. 
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It was thought possible that due to the placement of the sextupoles SXF and SXSS 

adjacent to each other in the straight sections, not every optical setting is 

accessible without setting extremely large sextupole fields. For example, the point 

𝜉 = (
4
−6
4
), when calculated using { 187 }, requires a field setting of 𝜒 = (

8.0
−0.55
−16.5

). 

Strong sextupole fields such as these can cause unprecedented changes in the 

particle motion, which in this case would lead to unavoidable errors in 

optimization. To avoid this, the field strength of the straight-section sextupole (𝜒𝑆𝑆) 

was henceforth, directly used as a parameter in conjunction with the 

chromaticities. 

5.6.2 Grid test 2 

Since the 𝜉-space is obtained via a fixed linear transformation from the sextupole 

field space, a space made from a combination of coordinates is also linearly 

transformable. To get the sextupole settings for the desired chromaticities in this 

case, the matrix 𝑫 is defined as follows: 

𝑫 = (

1 0
𝜉𝑥0 𝐶11

0 0
𝐶12 𝐶13

𝜉𝑦0 𝐶21

0 0

𝐶22 𝐶23
0 1

) { 199 } 

Here, 𝐶𝑖𝑗 is the C-matrix element at row 𝑖 and column 𝑗. Using this, the required 

sextupole settings are obtained via: 

(

1
𝜒𝐹
𝜒𝐷
𝜒𝑆𝑆

) = 𝑫−1(

1
𝜉𝑥
𝜉𝑦
𝜒𝑆𝑆

) { 200 } 

This new vector space can be referred to as the 𝜆-space where a vector 𝜆 = (
𝜉𝑥
𝜉𝑦
𝜒𝑆𝑆

) 

has components along the basis vectors 𝜉𝑥, 𝜉𝑦 and �̂�𝑆𝑆 . In this new paradigm, a 

new grid was defined for simulations:  

𝜉𝑥 ∈ {−5,−3,−1, 1, 3}

𝜉𝑥 ∈ {−5,−3,−1, 1, 3}

𝜒𝑆𝑆 ∈ {−5,−2.5, 0, 2.5, 5}
 { 201 } 

…leading to a total of 125 points. These were simulated each for 20000 turns or an 

equivalent beam time of about 0.028 𝑠. 
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5.6.2.1 Grid test 2 Results: Variation of spin tune spread and spin tune error 

As expected, the spin tune spread 

measured at all 125 points showed 

linear behaviour and were fitted 

with linear polynomials to extract 

the spin tune errors. The variation of 

spin tune error in each direction was 

also very linear now that the 

straight-section sextupole fields are 

controlled manually. Shown in 

Figure 58 is a vector field plot of the 

gradient of the spin tune error. The 

constant gradient implies that the 

spin tune error can be modelled 

according to a linear polynomial in 

three variables: 

∆𝜈𝑠(𝜆) = ∇⃗⃗⃗𝜆(∆𝜈𝑠) ∙ 𝜆 + ∆𝜈𝑠0 = 𝑎𝜉𝑥 + 𝑏𝜉𝑦 + 𝑐𝜒𝑆𝑆 + ∆𝜈𝑠0 { 202 } 

Here, 𝑎, 𝑏 and 𝑐 are the components of ∇⃗⃗⃗𝜆(∆𝜈𝑠), where ∇⃗⃗⃗𝜆 is the gradient operator 

in 𝜆-space, and ∆𝜈𝑠0 is the spin tune error at the origin. 

Finally, the specific decoherence mode according to Figure 53 was recognised 

for each point, transformed into the full optical space, and plotted accordingly to 

discern a possible spatial pattern. This is shown in Figure 59.  

 

Figure 59: 3D plots of the grid points used in the scan. The left plot colours the points according to 

the fluctuation amplitude coefficient 𝑚𝜈. The right plot colours the points according to the spin 

tune error 𝛥𝜈𝑠. 
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Figure 58: A vector field plot of the gradient of the 

spin tune error, which demonstrates the linearity of 

the spin tune error in all directions. 
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From the plots, it can be seen that positive spin tune errors predominantly occur 

at regions where 𝜉𝑥 , 𝜉𝑦 < 0 and 𝛼1 > 0. This is consistent with the implication of  

{ 153 }, that in these cases, the change in path length would be strictly positive 

(i.e., the path length increases per turn), giving the particle a higher momentum 

offset and inducing a positive tune shift. 

A similar effect is seen when the fluctuation amplitude is examined. Negative 

amplitudes predominantly occur when 𝜉𝑥 , 𝜉𝑦 > 0 and 𝛼1 < 0, which is consistent 

with a strictly negative change in path length and a shifting of the bunch mean 

down on the 𝛿-axis, which increases participation by −𝛿 particles in the amplitude 

fluctuations. 

However, an interesting phenomenon to observe from this is the disjoint between 

the boundaries (zero planes) of 𝛥𝜈𝑠 and 𝑚𝜈. This means there are many points with 

𝑚𝜈 > 0 and 𝛥𝜈𝑠 < 0. In other words, there are several points where the amplitude 

fluctuations see a positive change in path length and yet the spin tune receives a 

negative contribution. This could be a consequence of the first order effect of a 

momentum offset, which doesn’t contribute to the spin tune error, participating in 

creating the fluctuations. In other words, the effective change in path length is 

according to { 152 } for the fluctuations, but according to { 153 } for the spin tune 

error. Additionally, it also implies that some of the modes illustrated in Figure 53 

may never be observed, such as (𝑚𝜈 < 0,𝛥𝜈𝑠 > 0), or (𝑚𝜈 ≈ 0, 𝛥𝜈𝑠 ≈ 0). 

5.6.2.2 Grid test 2 Results: Variation of spin coherence time 

The spin coherence time was observed to vary across the grid according to  

{ 198 }. This was verified in each slice of the grid. Shown in Figure 60 are two of the 

slices where 𝜏 and 1
𝜏2⁄

 were measured. The model was fit to 1
𝜏2⁄

 with a standard 

deviation of less than 10−6, and the parameters were used to directly calculate 

the fit of 𝜏. 

With an accuracy depending on the precision of the fit, the model is also able to 

estimate the vertex of the paraboloid, which translates to the most optimized 

setting in that slice. Details about the vertices at each point are given in Table 5. 

The estimates of spin coherence time at these points are obtained from 

evaluations of the model but have large errors since the paraboloid vertices are 

very close to the floor. 
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Figure 60: Measurements of spin coherence time (bottom) and its inverse square (top) at the 

chosen working point with 𝜒𝑆𝑆 = −5 (left) and 𝜒𝑆𝑆 = 5 (right). The data on the top graphs were fit 

using the expression in { 198 } and that of the bottom ones were fit with its inverse square root. 

The errors on the optimized point locations are also not very insignificant. However, 

they can be reduced further by increasing the number of turns simulated at each 

data point. Since this has the downside of increasing computation time, 

subsequent simulations used a grid with a resolution of 4 (total 64 points) instead 

of 5 and increased the number of turns simulated to 50000. 

The initial expectation from grid test 2 was that the maximum spin coherence time 

would be where the sextupoles exactly counteract the natural chromaticity and 

momentum compaction effects, rendering the net effect in the ring to be zero. In 

other words, the maximum, based on conclusions drawn from pure magnetic rings 

[46] [58] [61], should be at the origin of the 𝜉-space. This is however not the case 

in the prototype ring, where the spin coherence time measured at the origin of 

this working point was about 3.2 𝑠, which is much lower than not only the estimates 

     
   

           
           

           

 5  1.376  5.137 0.163 0.351 71.2

 2.5  1.349  4.980 0.170 0.365 18.7

0  1.183  4.764 0.163 0.371 16.5

2.5  1.052  4.602 0.149 0.374 18.3

5  1.068  4.517 0.140 0.337 56.6

Table 5: Locations of the 

optimum points as 

estimated by the fitting 

function, along with (not 

very precise) estimates of 

the spin coherence time 

at these points. 
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of the five vertices but also than several other sample points considered in the 

scan. 

In fact, just like the minimum spin tune error, the maximum spin coherence time 

also seems to occur in regions with negative chromaticities. Moreover, it was also 

observed that 𝑚𝜈 > 0 in all of the optimized points, which further demonstrates the 

effect of the first-order momentum offset term in the fluctuations.  

5.7 Maximum Spin Coherence Time and Analysis of Grid 

test Results 

From the results of the grid scan in the previous section, it is possible to find the 

point of maximum spin coherence time in the entire 𝜉-space associated with the 

working point. However, it is important to do this as precisely as possible while not 

spending too much time on the simulation of additional points. 

Fortunately, based on previous studies [69] [61] [22] which have broadly 

investigated the relations between spin coherence times and spin tune spread, it 

can be reasonably assumed that in the prototype ring as well, maximum spin 

coherence time would likely coincide with minimum (zero) spin tune spread. This 

would also stand to reason from a common-sense perspective since a spread in 

the spin tune in a frozen spin situation basically implies decoherence by definition 

because the reference particle does not turn. 

Therefore, the optimization can be narrowed to the places where the spin tune 

error is zero. Using the parameters obtained from the gradient of the spin tune 

error, the equation of a plane representing all points with zero spin tune error is 

given by: 

𝑎𝜉𝑥 + 𝑏𝜉𝑦 + 𝑐𝜒𝑆𝑆 + ∆𝜈𝑠0 = 0 { 203 } 

This effectively narrows down the optimization problem to a plane of points. 

However, obtaining this plane itself required simulations of an entire grid. So, to 

save the time of doing a second planar search, a method was devised to 

combine the information gained from the grid analysis and the zero-plane to 

arrive at an estimate of the optimized point. 

It was found that when the individual vertices from the paraboloid fits at each slice 

are plotted on the 𝜉𝑥-𝜉𝑦 plane, they always tend to lie on a straight line. This is 

shown to be true for the above grid scan as well, which can be seen in Figure 61.  
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The collinearity of the local vertices was also thought to be the case based on the 

hypothesis that the overall function governing the variation of spin coherence 

time across the 𝜉-spcae is a 3D paraboloid with an equation of the form: 

1

𝜏2
=
1

𝜏0
2
+ 𝐿(𝜉𝑥 − 𝜉𝑥

𝑜)2 +𝑀(𝜉𝑦 − 𝜉𝑦
𝑜)
2
+𝑁(𝛼1 − 𝛼1

𝑜)2 + 𝑂(𝜉𝑥 − 𝜉𝑥
𝑜)(𝜉𝑦 − 𝜉𝑦

𝑜)

+ 𝑃(𝜉𝑦 − 𝜉𝑦
𝑜)(𝛼1 − 𝛼1

𝑜) + 𝑄(𝛼1 − 𝛼1
𝑜)(𝜉𝑥 − 𝜉𝑥

𝑜) 
{ 204 } 

With 𝐿, 𝑀, 𝑁, 𝑂, 𝑃, 𝑄 as geometric 

parameters, 𝜉𝑥
𝑜, 𝜉𝑦

𝑜, 𝛼1
𝑜 as the 

optimized point and 𝜏0 being the 

maximum spin coherence time. 

The existence of this relation can be 

loosely justified based the idea that 

there exists a certain condition (𝜁1 =

0), where the polarization vector as 

modelled according to { 195 }, 

maintains its magnitude for a long 

time. Perhaps this implies that a 

minimum of three sextupole families 

are required to achieve this 

condition, and there seems to exist 

only one combination of sextupole fields where this is achieved. 

While further investigation is required to fully understand the origins of this 

behaviour, the collinearity of the vertices of the 2D fits, from a purely geometric 

perspective, strongly suggests that this is in fact how the spin coherence time 

varies in the parameter space.  

While the model  { 204 } can be directly used on the grid as a fitting function, a 

more robust approach was employed, making use of the idea of the zero-plane 

from { 203 }. The three-dimensional line that best fits the vertex points was found 

using Principal Component Analysis [70]. Such a line can be represented by the 

vector equation: 

𝑟 = 𝑟0 +𝑚𝑑 { 205 } 

…where 𝑑 represents the “first principal component” of the dataset, or the vector 

along the direction of the line of best fit, 𝑟0 is the position vector of a point on the 

line, and 𝑚 is an arbitrary parameter. So, if the idea that the optimized point must 

lie on the zero plane is true, and all possible vertices obtained from scans of 

constant-𝜒𝑆𝑆 slices lie on the 3D line given by { 205 }, the optimized point must be 

Figure 61: A plot of the vertex points (listed in Table 

5) obtained from the paraboloid fits at each slice 

on the grid scan, plotted on the 𝜉𝑥-𝜉𝑦 plane with 

error bars. The straight line represents a linear fit of 

the data. 
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the intersection point of the line and the plane. To find the intersection point, the 

value of 𝑚 at that point can be solved for via: 

∇⃗⃗⃗𝜆(∆𝜈𝑠) ∙ (𝑟0 +𝑚𝑑) + ∆𝜈𝑠0 = 0 { 206 } 

…which can be substituted into { 205 } to get its position vector. Figure 62 shows a 

depiction of the method along with a two-million-turn simulation result from that 

point. 

 

Figure 62: A depiction (left) of the optimization strategy of finding the optimum point via the 

intersection of the 3D line that best fits the vertices obtained from slice fits, and the plane of zero 

spin tune error. The graph (right) shows a simulation of two million turns (equivalent to about 2.8 𝑠 of 

beam time) at the optimized point which shows virtually no decoherence. The fitting curve (red) 

measures a spin coherence time of 1472 𝑠. 

This method was also successfully applied to other working points with remarkable 

success. Many of these points are shown to exhibit 2° settings that lead to spin 

coherence times of more than 1000 seconds. Shown in Table 6 is a list of working 

points optimized using this method, along with the estimated lower limits of the 

maximum spin coherence times at those points. 

5.8 Optimization of working point 

As discussed earlier, the first working point was chosen on the basis of having 

natural chromaticity as low as possible. However, this being a very idealized lattice 

allows the freedom to choose among many working points, which may not be 

practically workable in a real setting. Thus, it was deemed wise that subsequent 

explorations have criteria for working point selection which maximizes potential 

applicability based on current knowledge of applied beam and spin dynamics. 

Here, three criteria were used: Longitudinal stability, resonances, and beam 

lifetime, which are described in this section. 
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5.8.1 Longitudinal stability 

As previously discussed in section 2.4.2.2, the condition for longitudinal stability of 

the beam is that the synchrotron frequency 𝜔𝑠, which in this case is given by  

{ 105 }, be a real number. For this to be the case, the phase slip factor 𝜂0 must be 

a negative number. Since the phase slip is related to the change in path length, 

which is determined by the dispersion function, it can vary with the quadrupole 

settings. This means that only those working points whose quadrupole settings give 

rise to a negative phase slip can be chosen. These are any of the points to the 

right of the red line in Figure 39. 

While the possibility of accessing the other working points by changing the RF 

phase by 𝜋 radians was considered, it wasn’t fully certain if this would keep all 

other systematic factors invariant. Moreover, since quadrupoles can be finely 

tuned, what is accessible is still a large number of working points with distinct 

properties, which would already require a lot of time to simulate and analyse. 

Therefore, it was decided to keep the RF phase at 0, and proceed with the 

investigation of only the accessible working points. 

5.8.2 Betatron and spin resonances 

Resonances as discussed previously are phenomena which lead to severe or 

possibly fatal instabilities in the beam or in spin polarisation, but usually isolated to 

a small vicinity of a very specific setting. For example, if a betatron tune or the spin 

tune is an integer, it leads to even the smallest imperfection in the lattice being 

resonantly applied and its effects magnifying exponentially. Depending on 

whether it is a betatron or a spin resonance, it would lead to eventual particle loss 

or rapid spin depolarisation. 

 

Figure 63: A scan of betatron tunes at all quadrupole settings that fulfil the stability criteria. This is 

similar to the scan shown in Figure 38, but done by [67] with a higher resolution. The sparse white 

“curves” are gaps in the data due to beam instability at betatron resonance conditions. 
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Since this study considers an idealized lattice with very few imperfections, 

resonances affect stability only when the system is set very precisely on the 

resonance setting. In other words, resonances in the simulation are very sharp, 

which is why in the betatron tune scan whose results are shown in Figure 38 wasn’t 

affected by resonances. The field values simulated didn’t result in the exact tunes 

that fall on a resonance. However, a finer scan done in [67] (shown in Figure 63) 

show gaps of missing data in the interpolated surfaces due to hitting resonance 

tunes. 

Working points at or close to resonances 

are best avoided in real-life storage rings. 

Thus, the working points recommended 

to be implemented in a real storage ring 

are chosen with this criterion. Shown in 

Figure 64 is a tune diagram where points 

lying on any line represents a resonance 

setting. The working points simulated and 

optimized for spin coherence time in this 

study are also marked on the tune 

diagram. 

It can be seen that some of the points on 

Figure 64 lie close to a resonance 

configuration. While these are points 

which were simulated and optimized in 

the lattice-wide survey, these would be 

points not recommended for potential 

beam tests in the real prototype ring. 

5.8.3 Beam Lifetime 

Apart from stability and resonance conditions, it is also important to consider the 

configurations which make it easier for the beam to remain confined and 

continue to exhibit the properties it had on injection for as long as possible. 

While the lattice used in this study doesn’t consider this, the beam stored in the 

ring is subject to many processes that tend to erode the beam of particles over 

time as it continues to traverse the ring. Some of the most significant of these: 

Hadron interactions and Coulomb scattering with residual gas particles and intra-

beam scattering due to space charge are studied extensively in [71]. 

5.8.3.1 Hadron interactions and Coulomb scattering 

This type of beam loss mechanism involves residual gas atoms and molecules 

being present in the beamline due to imperfect vacuum conditions. The beam 

  

  
Figure 64: A tune diagram generated for the 

prototype ring in frozen spin mode, showing the 

various resonance configurations across the 

betatron tune spectrum. The black lines 

represent betatron resonances up to second 

order and the coloured lines represent spin 

resonances up to third order. The highlighted 

lines are settings where both resonances 

coincide. 
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loss rate due to beam particles undergoing these interactions can be calculated 

from the interaction cross section: 

1

𝜏𝐻𝐶
= 𝑛𝑡𝜎𝐻𝐶𝑓0 { 207 } 

Here, 𝜏𝐻𝐶 is the “beam lifetime”, defined in a similar fashion to spin coherence time, 

as the time taken for the beam’s viable population to reduce by 1 𝑒⁄ . 𝑛𝑡 is the areal 

particle density of the target (residual gas) particles, and 𝑓0 =
𝜔0

2𝜋⁄  is the 

revolution frequency of the beam. The interaction cross section 𝜎𝐻𝐶 = 𝜎𝐻 + 𝜎𝐶 is the 

sum of those of Hadronic interactions, which can be modelled according to 

Regge theory [72], and Coulomb scattering, which can be modelled according 

to the Rutherford scattering model [73]. 

5.8.3.2 Intra-beam scattering 

In this mechanism, the particles in the beam Coulomb-scatter amongst 

themselves to cause longitudinal heating of the beam, leading to a loss due to 

particles crossing the separatrix (see section 2.4.2). These can be modelled 

according to the Touschek effect [74], giving the beam loss rate: 

1

𝜏𝐼
≈

𝑟𝑝𝑐
4

4𝛾3𝑣3〈√𝛽〉𝛿𝑎
2
√
𝜋𝑁

𝐿𝜖3
 { 208 } 

Here, 𝑟𝑝 is the classical proton radius, 𝛾 is the Lorentz factor, 〈√𝛽〉 is the average 

value of the square root of the beta function across the ring, 𝑁 is the total number 

of particles, 𝜖 is the emittance, and 𝛿𝑎 is the momentum offset acceptance of the 

beam. 

5.8.3.3 Total beam loss rate 

The total beam loss rate is given by the sum of the individual ones: 

1

𝜏𝑙𝑜𝑠𝑠
=
1

𝜏𝐼
+
1

𝜏𝐻𝐶
 { 209 } 

…where 𝜏𝑙𝑜𝑠𝑠 is the effective beam lifetime. 

5.8.3.4 Working point criteria 

The study [36] calculates these effects specifically on the lattice being studied in 

this thesis, but at the all-electric mode with particle momenta at 247 𝑀𝑒𝑉 𝑐⁄ . These 

are still useful as a reasonable upper limit of beam loss rates as most beam losses 

scale inversely with beam momentum due to increased rigidity of the beam [75]. 
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The study compares simulations in the same lattice with different focussing 

strengths through different quadrupole settings and finds that in general, lattices 

with maximum values of beta function: 𝛽𝑚𝑎𝑥 < 100 𝑚 in either direction are a 

reasonable choice for longer beam lifetimes, typically with 𝜏𝑙𝑜𝑠𝑠 > 1000 𝑠. This 

criterion is fulfilled by all working points chosen in the lattice-wide survey for spin 

coherence time optimization. 

5.9 Lattice-wide Optimization Survey 

The lattice-wide survey forms the main experimental venture of this thesis, where 

the criteria, techniques, strategies, and adjustments optimized based on the 

insights gained from the preliminary scans and grid tests are applied and repeated 

systematically to survey as many working points as possible. 

Besides the working point (𝑄𝑥 = 1.855,𝑄𝑦 = 1.095) already optimized in the grid 

tests, the set of points surveyed were a 2D grid consisting of two lines of values on 

𝑄𝑥: 

𝑄𝑥 ∈ {1.823, 1.855}

𝑄𝑦 ∈ {0.723, 0.823, 0.923, 1.023, 1.123, 1.223}
 { 210 } 

This survey took about 500 hours of simulation time at the IKP computing cluster at 

FZ-Jülich, not counting the simulations rendered unusable due to coding or human 

error. The results of this survey, as well as insights gained from the overall analysis of 

the data collected are discussed in the following chapter. 
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6. Results and Discussion 

In this chapter, the results of the lattice-wide survey, which is the main dataset 

acquired during the course of this work, is presented, and discussed along with 

overall insights gained from the analysis of simulations of the V3 lattice. 

With the setup of the prototype ring and the V3 lattice being relatively new and 

not many roadmaps available from previous studies, the investigation of this lattice 

has been more of an exploration than a rigid procedure, as the strategies and 

techniques employed have evolved as new information was acquired. Shown in 

Figure 65 is a rough retrospective map of the investigation conducted. 

 

Figure 65: A temporal "map" describing the sequence of actions that form the investigation of the 

lattice 

6.1 Achievements of this study 

A previous study, [67], has simulated the exact same V3 lattice that is currently 

investigated in this thesis, with the objective of finding the optimized second-order 

settings which maximize spin coherence time at a single working point 

(𝑄𝑥 = 1.823, 𝑄𝑦 = 1.123) characterised by relatively low natural chromaticities. 

However, with V3 having been developed recently at the time of this study, and 

simulation times being long, only nine data points were simulated in the course of 

the work. The maximum spin coherence time measured in this study was about 5 

seconds. 

One of the key achievements of this work is the achievement of spin coherence 

times of more than 1000 𝑠 at multiple working points through an empirical 
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modelling of the lattice parameters, combined with an optimization based on the 

understood theory of magnetic storage rings. 

This was also achieved with the help of an optimization of the simulation scheme 

to support parallel programming, which drastically reduced computing time. This 

is described in section 5.5.3. 

To obtain the relevant and necessary parameter of second-order momentum 

compaction factor, which could not be calculated by BMAD at the unique setup 

of the prototype storage ring, a method was devised to measure this straight from 

the data, which is described in further detail in section 5.4.2. This method provided 

a parameter that varied linearly with the sextupole field strengths, which is exactly 

as expected of the second-order momentum compaction factor based on the 

currently accepted models [76] [61]. 

The current research also presents a method of optimization which has 

demonstrated robustness in optimizing second-order parameters in a way that is 

universally applicable at any given working point. This can be particularly useful 

when further research on the circumstances of the prototype ring renders one or 

more of the currently studied points unviable for practical application. 

Furthermore, insights gained as well as data collected on the factors that influence 

the error on the spin tune and its distribution across the phase space of the beam 

seem to suggest the existence of contributions external to the current models that 

describe it. These are most likely the consequence of the electric bending, which 

is a relatively unexplored area in spin physics [8]. 

A model describing the variation of spin coherence time with the second-order 

optical parameters is also presented in this thesis. This model has shown consistent 

success (normalized Chi squared errors of less than 10−6 at slices with above 50000 

turns per data point) in fitting the data points at over 1000 simulations in over 20 

working points in the lattice, offering confidence that the description is indeed a 

reflection of phenomena. At larger distances from the optimized point, the model 

reduces to the linear behaviour very similar to the one observed in experiments at 

COSY [58] [46], where the limited number of data points makes it difficult to 

assertively distinguish between linear behaviour and this more nuanced model. 

A dataset of 12 optimized working points has been presented which exhibit spin 

coherence times well above 1000 𝑠. These are tabulated in Table 6. However, due 

to the high uncertainty on the estimations from the model, the table also quotes 

the lower limits of the spin coherence time calculated using a limiting function. The 

table also mentions the chromaticity tolerances, i.e., the maximum error in 

chromaticity within which the spin coherence time is still above 1000 𝑠. The 

tolerances also give information about the width of the maximum spin coherence 
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time peak, which help in assessment of the required sensitivity of the sextupoles in 

achieving such spin coherence times. 

Finally, from the overall analysis of the results, conclusions are drawn about the 

advantages and the disadvantages of this lattice when it comes to achieving high 

spin coherence times. Also discussed are the possible improvements to the lattice 

that may not only increase the spin coherence time but also the means to achieve 

it in practice. 

In the following sections, some of these results are discussed in further detail. 

6.2 Optimization method 

The strategy for optimization of second-order parameters was developed over the 

course of simulations of the first and second grid scans, as detailed in section 5.6. 

Apart from the first working point, the method has shown success with 12 other 

working points leading to the detection of settings with more than the targeted 

spin coherence time. The method is described as follows:  

1. Perform a grid scan of the 3D space formed by the coordinates 𝜉𝑥, 𝜉𝑦, and 

𝜒𝑆𝑆, typically on a cubic grid with 4 or more points along each edge and 

simulating each point for 50000 or more turns around the storage ring 

lattice. The grid size and the number of turns must be large enough to have 

accurate fits by the paraboloid model in { 198 }, on whose estimations the 

optimizer heavily relies on. At each simulated point, measure spin 

coherence time 𝜏 and spin tune error Δ𝜈𝑠. 

2. Fit the spatial distribution of the 

spin tune error with a linear 

polynomial in three variables like { 

202 }, and estimate the plane of 

zero tune error. 

3. Perform fits of the spin coherence 

time on each slice of constant 𝜒𝑆𝑆 

with the paraboloid model and 

use the fit parameters to estimate 

the local maximum on the slice. 

4. Fit a three-dimensional line to the 

points in space that represent the 

slice maxima and locate the point 

where the line intersects the zero-

plane estimated in step 2. The 

coordinates of this point should be 

Figure 66: A plot of the local maxima 

(paraboloid vertices) detected in the slices of 

constant 𝜒𝑆𝑆 at the working point 𝑄𝑥 = 1.855, 

𝑄𝑦 = 0.823. The plot highlights the reduced 

uncertainty and the stricter collinearity of the 

vertices as compared to Figure 61, as a result 

of increasing the number of turns simulated per 

point. 



 

108 

 

 Optimization of Spin Coherence Time at a Prototype Storage Ring for Electric Dipole Moment Investigations 

the optimized settings with the highest spin coherence time at that working 

point. 

The accuracy of steps 3 and 4 since the grid scan described in section 5.6, has 

significantly improved after increasing number of turns simulated from 20000 to 

50000, despite reducing the number of simulated points from 125 to 64. Shown in 

Figure 66 is a plot of the local maxima detected at the working point Qx = 1.855, 

Qy = 0.823. With this, the maximum absolute uncertainty on the optimized point 

from step 4 also reduced from 2.6 in the first grid scan to 0.21 at a this one. 

6.3 Optimized working points 

The complete set of working points which have been successfully optimized to 

reach the highest possible spin coherence time are shown in Table 6, together with 

their optimized optical and field parameters, lower limits on spin coherence times 

and the maximum tolerances in chromaticity for 𝜏 > 1000 𝑠. 

Table 6: A tabulation of all working points which were optimized using the method developed in 

chapter 5. Shown here are the optimized 2° optics. The model-predicted spin coherence times, their 

estimated lower limits, and the maximum chromaticity tolerances for 𝜏 ≥ 1000 𝑠 (measured based 

on the lower limits). The thick border separates the points from the two series on 𝑄𝑥. The shaded row 

shows data on the first working point eventually optimized over the course of the grid tests (see 

section 5.6) 

 

The Table 6 shows significantly high spin coherence times at all points, with eleven 

out of the thirteen points showing lower limits above 1000 𝑠. However, a 

concerning observation is the low tolerance on chromaticity errors, meaning that 

the sextupoles may need to be very precise and fine-tuned bring about this long 

spin coherence time.   
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6.3.1 Measurements of lower limits 

While the model described in { 197 } is extremely useful for the optimization process, 

its uncertainty rises when needed to extrapolate for spin coherence times of the 

order of ~103 𝑠, with depolarisation data of ~3 𝑠 in equivalent beam time. This is 

particularly the case at the optimized point. To get a useful measurement from this 

point, a method was devised to obtain lower limits at these points, through the use 

of the model: 

|�⃗⃗�(𝑡)| = 1 − 𝐶𝑡2 { 211 } 

 

…where 𝐶 is a parameter to be obtained from a fit. It was observed that in every 

case of longer (> 10 𝑠) spin coherence time, this function accurately fits the trend, 

but always crosses |�⃗⃗�(𝑡)| = 1 𝑒⁄  at a lower time than the decoherence model. A 

graph of the two models is shown in Figure 67. 

6.3.2 Measurement of chromaticity tolerance 

The term maximum tolerance ∆1000
𝜉

 is used to refer to the maximum uncertainty 

permissible in the setting of the chromaticity (in both directions) within which the 

spin coherence time would still be above 1000 𝑠. This quantity was estimated due 

to the observation that despite achieving high spin coherence times, the peak is 

often quite sharp, which puts into question the possibility to achieve such precision 

in the chromaticity setting with real sextupoles on a real storage ring. This quantity 

helps put this concern into perspective. 

The ∆1000
𝜉

 was measured by calculating the minor radius of the elliptical contour of 

𝜏 = 1000 𝑠 of the function { 198 }. 

 

Figure 67: A graph plotting 

the model in { 197 } (red) 

and the parabolic model 

in { 211 } (green). The 

single free parameter of 

the parabola was tuned 

to fit the curve up to the 

blue tick. The progression 

shows that the estimated 

spin coherence time from 

the parabola could be 

regarded as a reasonable 

lower limit, as it possesses 

no new inflection points.  
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6.4 Discussion on lattice performance 

The lattice considered in this study has a diameter of around 30 𝑚, which is quite 

small, considering the field strength required to store particles at momenta of 

nearly 300 𝑀𝑒𝑉 𝑐⁄ . Fortunately, this is achieved with the combination of electric 

and magnetic bending fields. That being said, the most remarkable advantage 

of this lattice is the freezing of the proton spin: a key requirement in the EDM 

search. Focusing requirements are also important since storage rings of such small 

sizes are subject to higher dispersion effects, and the lattice shows reasonable 

optical flexibility due to the presence of three families of quadrupoles and 

sextupoles, allowing for a wide range of working points to be accessible. 

However, the lattice also seems to have certain shortcomings. One for instance is 

the placement and distribution of sextupoles. The initial grid scan performed on 

the 𝜉-space (coordinates: 𝜉𝑥, 𝜉𝑦, and 

𝛼1) failed to produce viable results due 

to the extremely high sextupole field 

strengths reached at many points, 

which led to non-linearities in 

measurements (shown in Figure 57). This 

occurred primarily because of the QSS 

family of sextupoles being placed on 

the straight sections in close proximity 

to the QF family. In such situations, it 

often happens that the sextupole 

effects on particles passing through 

them begin to cancel out due to their 

strengths having opposite signs. But the 

aberrations caused to the particle 

motion due to the fields being so high 

may not exactly cancel out. For 

instance, the quadratic terms in { 81 }, 

which were previously ignored since 𝑥 and 𝑦 at the sextupole would likely be small, 

now begin to act significantly, deviating the sextupole from its ideal behaviour of 

simple chromaticity correction. 

This effect can also be observed in the configuration of the 𝑪−1 matrix expressed 

in { 187 }. From the middle column, it can be deduced that 𝜉𝑦 contributes relatively 

less to the field strengths, while the large values on the first and third columns 

reflect their major contributions to the fields. This can be interpreted as the 𝜉𝑥-𝛼1 

plane being restricted to a narrow channel of viable points, as shown in Figure 68. 

When slices of constant 𝛼1 are scanned, the fringes of the slice might lie in the 

 1

  

Figure 68: The restriction of data points as a result 

of the sextupoles SXF and SXSS being placed in 

close proximity at the straight sections. Points 

along the grey line of constant 𝛼1, like the slices 

used in the first grid scan, have points within the 

high sextupole field zones (marked in red). When 

the fields were manually adjusted, point-sets such 

as the black line, began to be considered.  
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restricted (high field) zone, where non-linear behaviour is expected. This was the 

observation in Figure 57. 

The final shortcoming of the lattice is the superimposed magnets. A quadrupole 

and a sextupole field being applied in the same position is not a practically 

implementable setup. Moreover, the bending magnets are implemented 

according to the hard-edge model, where fringe field effects, which occur in real 

systems, are not taken into consideration. That being said, in preliminary 

investigations onto unexplored paradigms such as frozen-spin dynamics, one can 

greatly benefit from design simplicity such as superimposed fields, not only in 

modelling and predictability, but also in terms of computing time requirements. 

While lattice improvements are needed, the preliminary knowledge and findings 

from simplistic adaptations serve as a valuable guide to finding the areas that 

need them most.
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7. Outlook: Areas yet to 

be Explored 

The results obtained during the course of this study shows that the prototype 

storage ring is a promising venture in terms of taking us closer to the goal of 

measuring the EDM of the proton. That being said, work doesn’t end here either. 

The performance of this lattice, as discussed in the previous chapter reveals 

shortcomings which may hinder the accessibility of the second-order optical 

settings required to be fine-tuned to maintain spin coherence. Fortunately, with a 

long-term perspective in mind, this may be an addressable issue. 

In this brief chapter, two possible alternatives are 

suggested to tackle these issues faced with the 

current prototype lattice. 

7.1 A Racetrack Lattice 

The term “racetrack” here is used to describe a 

lattice design with four straight sections, but with one 

pair of opposite straight sections longer than the 

other. By definition, this kind of lattice would not 

have a four-fold symmetry. 

This is in fact the scheme on which COSY is based on 

(see section 3.2.1). Through the reduction of the 

superperiodicity of the lattice from 𝑃 = 4 to 𝑃 = 2, the 

three families of sextupoles can now be 

accommodated in between the bending sections 

where the dispersion function would have relatively 

large values. A scheme of this design option is shown 

in Figure 69. 

Each semi-circular arc has one member of each of 

the three sextupole families, thus providing the 

Figure 69: A scheme of the 

racetrack lattice for the 

prototype ring. The blue bands 

are the EM bends, the red ticks 

represent quadrupoles, and the 

yellow ticks represent sextupoles. 
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required second-order optical flexibility for the optimization of spin coherence 

time. 

The option was proposed in 2022 [77] and was also simulated for its optical 

properties. Shown in Figure 70 is the result of this simulation. 

 

The significant phase advance combined with the changes to the betatron and 

dispersion functions between the sextupoles allows for more efficient manipulation 

of the second-order optics via the sextupole fields as compared to the current 

lattice. 

Furthermore, preliminary findings of simulations have also revealed that the lattice 

is capable of achieving spin coherence times of up to 1000 𝑠, which in principle 

meet the demands of potential EDM measurement. 

More specifics on the performance of the ring in meeting the original requirements 

of the prototype ring, as well as circumstances of this result are still under research 

by members of the JEDI collaboration. 

7.2 An improved Four-fold Symmetry Lattice 

A second option that can be considered is a modification of the existing lattice 

with a four-fold symmetry to accommodate three families of magnets within a 

superperiod such that there is a sizeable phase advance between them. A 

scheme of this idea is shown in Figure 71. 

In this lattice, each bend is now 30° instead of 45°, giving rise to two gaps instead 

of three, thus providing the room for a third family of sextupoles. Apart from the 

Figure 70: Simulation results of 

the racetrack lattice showing 

the variations of the transverse 

beta functions (left vertical 

axis) and the horizontal 

dispersion function (right 

vertical axis) over one 

superperiod of the lattice, as 

performed by [77]. A linearized 

scheme of the superperiod is 

expressed at the top of the 

graph for reference. The 

dotted vertical lines represent 

the positions of the three 

sextupole families. 
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efficiency in second-order optics 

manipulation, it also offers flexibility in the first 

order by enabling the efficient use of the third 

quadrupole. The main advantage of this 

option is that the key features of the original 

design, such as weak vertical focussing to 

minimize EDM signal detection noise and the 

possibility of direct scaling from the prototype 

ring to the final all-electric ring, are retained 

while still enhancing second-order optical 

flexibility. 

However, since this plan has not yet been 

implemented as a lattice in BMAD or any of 

the other accelerator physics simulation 

platforms, the viability of this option as an improvement to the prototype ring 

design is yet to be assessed via simulations.

Figure 71: A scheme of one 

superperiod of an improved 

four-fold symmetry lattice, with 

the blue bands representing the 

EM bends, the red ticks 

representing quadrupoles while 

the yellow ticks represent 

sextupoles. 
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8. Summary and 

Conclusion 

The search for answers to the yet unsolved mystery of the matter-antimatter 

asymmetry has been the inspiration for much physics research in recent years, 

including that of the JEDI collaboration, which aims to address this question by 

designing and building a dedicated storage ring to measure the EDM of protons 

with never before achieved sensitivity. To gain the much-needed insights on the 

systematics of the rather unexplored experimental setups such as frozen spin, 

electrostatic particle confinement, and simultaneous counter-rotating beams, a 

smaller prototype storage ring was proposed as an intermediary proof-of-principle 

experiment. The present study performs an extensive analysis on an idealised 

software adaptation of this prototype storage ring, known as the prototype lattice 

V3, to better understand the circumstances of frozen spin. 

The foremost accomplishment of this study can be considered the optimisation of 

spin coherence times of above 1000 seconds at several working points. This finding 

hits the target set by the feasibility study of EDM measurement of charged particles 

using storage rings, based on its required sensitivity. 

This work also establishes a robust method of optimisation which has demonstrated 

universality of working point, and which has optimised spin coherence times of 

above 1000 seconds at more than 90% of working points examined. Although 

many of the working points sampled in this study meet the basic criteria of one 

which is sustainable in a real storage ring, the optimisation method established in 

this thesis could be useful if the need arises to find the sextupoles settings with 

highest spin coherence time over a new point or range of points. 

In addition, a deeper look into the apparent mechanisms of decoherence 

undergone by particles in the simulator seem to indicate that spin tunes vary 

differently in storage rings with an electrostatic bending field as compared to 

those without. The way this difference manifests in the time evolution of the spin 

tune spread, and in the distributions of the spin tune error and the decoherence 

modes over the second order optical space has also been discussed in detail. 
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Furthermore, based on the initial diagnostics and the analysis of the data from the 

simulations, the advantages as well as the shortcomings of this lattice have been 

highlighted. The most crippling problem which severely restricts the second-order 

optical flexibility of the lattice was found to be in the placement of the sextupoles, 

which extends to the general configuration of the lattice. An ongoing effort by 

JEDI to address this issue, as well as a potential new solution in the form of 

modifications to the structure and configuration of the storage ring have also 

been proposed as the Outlook of this research. 

Finally, it must be pointed out that while the implications of these results have been 

quite exciting, they still have “a ways to go” before being perfect. The low 

chromaticity tolerances of the optimized point in order to meet the sensitivity 

criterion are still quite narrow, which sets a high bar on sextupole precision. While 

it is foreseen that the lattice improvements explored earlier may relax these 

tolerances, it is at present unclear if this will in fact be the case. That being said, 

with the optimization method having shown preliminary success, more data is 

constantly being acquired, which can be used to further understand the 

intricacies of the prototype storage ring and its combined electric and magnetic 

bending.  

In the outset of the journey through this thesis, the potential for scientific 

achievement of the idea of the prototype storage ring is well noticeable. As an 

important and inspiring bridge to a precision measurement that could change our 

perspective of reality, the success of this project could bring physics closer to 

understanding the subtle yet pervasive workings of the universe. 
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