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Abstract

The excess of matter in the known part of the universe still poses a puzzle to
physics and cannot be explained by the Standard Model of particle physics. Many
explanation attempts are based on mechanisms that violate CP symmetry. Such
mechanisms exist in the Standard Model but are too weak to explain the ob-
served asymmetry. Therefore, additional theories beyond the Standard Model
are needed, which are mostly based on additional CP violating sources. Per-
manent Electrical Dipole Moments (EDMs) of elementary particles violate CP
symmetry and are therefore a promising starting point for investigations of the
underlying problem. EDMs of charged particles can be studied using storage
rings as particle traps, where the polarization behavior of the beam in electric
fields provides information about the size of the EDM.

The JEDI (Jiilich Electric Dipole moment Investigations) collaboration is spe-
cialized in the search for EDMs of hadrons using storage rings. It is engaged
in design studies for dedicated storage rings for the investigation of protons and
deuterons and uses the magnetic storage ring, the cooler synchrotron, COSY at
Forschungszentrum Jiilich for the first direct deuteron EDM experiment. In this
experiment, an EDM leads to a vertical polarization buildup that is directly pro-
portional to the size of the EDM. However, the vertical polarization component
is also influenced by systematic effects such as magnet misalignments. In order
to investigate systematic effects individually and to support the data analysis, a
realistic simulation model is required. In this thesis the development of such a
model based on the Bmad software library is presented. Furthermore, various
systematic effects and their impact on the spin motion in COSY are investigated
and quantified using tracking simulations. The consideration of measured mag-
net misalignments and their measurement errors results in a minimum resolvable
EDM of d = 1.49 - 107! e - cm. For a more realistic description of the experi-
mental situation, algorithms are implemented which fit the simulation model to
the real conditions by variation of selected machine parameters. The algorithms
are successfully tested by means of simulations and afterwards applied to mea-
surement data. The fit results confirm additional magnetic displacements and
lead overall to a significantly increased agreement between simulation model and
reality.
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Zusammenfassung

Der Materieiiberschuss im bekannten Teil des Universums stellt die Physik im-
mer noch vor ein Rétsel und kann vom Standardmodell der Teilchenphysik nicht
erklart werden. Viele Erkldrungsversuche basieren auf CP verletzenden Mechanis-
men, die zwar im Standardmodell existieren, jedoch zu schwach ausgeprigt sind,
um die beobachtete Asymmetrie auslosen zu konnen. Daher bedarf es zuséatzlicher
Theorien jenseits des Standardmodells, die zum Grofiteil auf zusétzlichen CP
verletzenden Quellen basieren. Permanente elektrische Dipolmomente (EDMs)
von Elementarteilchen verletzen die CP Symmetrie und sind somit ein vielver-
sprechender Ansatzpunkt fiir das zugrunde liegende Problem. EDMs geladener
Teilchen kénnen mit Hilfe von Speicherringen untersucht werden wobei das Po-
larisationsverhalten des Strahls in elektrischen Feldern Aufschluss iiber die Grofke
des EDMs gibt.

Die JEDI (Jiilich Electric Dipole moment Investigations) Kollaboration hat sich
auf die Suche nach EDMs von Hadronen mit Hilfe von Speicherringen spezial-
isiert. Sie beschiftigt sich mit Designstudien fiir dedizierte Speicherringe zur
Untersuchung von Protonen und Deuteronen und nutzt den magnetischen Spe-
icherring, das Kiihlersynchrotron, COSY im Forschungszentrum Jiilich zur er-
stmaligen Untersuchung des Deuteron EDMs. Im Rahmen dieses Experiments
fiihrt ein EDM zu einem vertikalen Polarisationsaufbau, der direkt proportional
zur Grofe des EDMs ist. Die vertikale Polarisationskomponente wird allerdings
auch durch systematische Effekte, wie Magnetverschiebungen, beeinflusst. Um
systematische Effekte isoliert untersuchen zu konnen und die Datenanalyse zu
unterstiitzen bedarf es eines differenzierten Simulationsmodells. In dieser Arbeit
wird die Entwicklung eines solchen Modells auf Basis der Bmad Programmbiblio-
thek vorgestellt. Dariiber hinaus werden verschiedene systematische Effekte und
deren Auswirkung auf die Spinbewegung in COSY mit Hilfe von Trackingsim-
ulationen untersucht und quantifiziert. Durch die Beriicksichtigung gemessener
Magnetfehlstellungen und deren Messfehlern ergibt sich ein minimal auflésbares
EDM von d = 1.49 - 107! e - cm. Fiir eine realistischere Beschreibung der Ex-
perimentsituation werden des Weiteren Algorithmen implementiert, die das Sim-
ulationsmodell durch Variation ausgewahlter Maschinenparameter an die echten
Begebenheiten anpassen. Die Algorithmen werden mit Hilfe von Simulationen
erfolgreich getestet und daraufhin auf Messdaten angewendet. Die resultierenden
Ergebnisse bestétigen zuséitzliche Magnetverschiebungen und fiihren insgesamt zu
einer deutlich erhéhten Ubereinstimmung von Simulationsmodell und Realitiit.
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1. Introduction

The matter over antimatter dominance observed in the universe is one of the
large unsolved questions in particle physics. Although the Standard Model of
particle physics (SM) is very successful in describing elementary particles and
their interactions, it still fails to explain the disappearance of antimatter during
the early universe. Many theories beyond the SM trying to answer this question
are based on the assumption of the violation of fundamental symmetries. An
additional source of CP violation not predicted by the SM could be manifested
by the existence of permanent Electric Dipole Moments (EDMs) of elementary
particles which are highly suppressed in the SM. Some extensions of the SM
predict EDM values that could be sufficiently large to be measured by high-
precision experiments. The search for permanent EDMs has already started more
than 60 years ago and up to now all measurements have been consistent with zero
within the systematical sensitivity. Typical experiments are based on the idea of
trapping particles and using electric fields to manipulate the polarization that is
directly influenced by the EDM. Since charged particles are accelerated inside an
external electric field, a measurement setup is needed that inhibits the particles
from being lost. Storage rings offer the possibility to serve as a trap for charged
particles and are therefore predestined for performing EDM experiments.

The Jiilich Electric Dipole moment Investigations (JEDI) collaboration aims for
measuring the proton and deuteron EDM in a dedicated storage ring with high
statistical and systematical sensitivity. Therefore, design studies are under inves-
tigation including optics and spin calculations. The existing accelerator facility
COoler SYnchrotron (COSY) at Forschungszentrum Jiilich in Germany is used
as a starting point of these studies and a first direct deuteron EDM measurement
is performed. In order to do so, spin manipulating devices as well as a new po-
larimeter are installed into the storage ring. In order to increase the systematical
sensitivity, magnets were realigned to their target position and a beam based
alignment procedure was performed in COSY [1, 2]. A first deuteron EDM mea-
surement run was already performed in November 2018 and the data analysis is
currently in progress. Starting with an initial polarization in the horizontal plane,
a non-vanishing EDM leads to a vertical polarization component that is directly
proportional to the EDM magnitude. Besides the EDM itself, various systematic
effects such as horizontally misaligned quadrupoles, affect the vertical spin com-
ponents. In order to disentangle the actual EDM signal from these additional
effects, spin tracking simulations have to be performed.
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The aim of this thesis is the improvement of the simulation model of COSY in
order to support the data analysis and study systematic effects. Therefore, the
model is extended by a realistic model of the RF Wien filter that is essential
for the EDM experiment at COSY. Furthermore, different systematic effects are
implemented and studied and a fitting procedure based on orbit response matrix
measurements is presented. The thesis is structured as follows.

Chapter 2 gives an overview over the matter antimatter problem in the SM and
motivates the theoretical background of the topic. As part of discussing fun-
damental symmetries, the EDM is introduced and different EDM measurement
procedures are shown. Chapter 3 and Chapter 4 introduce aspects of beam and
spin dynamics. Here, the focus lies on the equations of motion describing particle
trajectories and the time-dependent evolution of spins in electromagnetic fields.
The accelerator facility COSY as well as the simulation model are introduced in
Chapter 5. After comparing the particle and spin behaviour to theoretical pre-
dictions, extensions to the model are explained and tested. The effect of magnet
misalignments as well as the effective lengths of dipoles and quadrupoles are in-
vestigated in Chapter 6. Finally, Chapter 7 introduces algorithms that can be
used to fit the model to the real machine by comparing orbit and orbit response
matrix measurements to simulation results. The algorithms are first benchmarked
and afterwards applied to real measurements. Chapter 8 summarizes the results
and an outlook is given.



2. Scientific Motivation

The present thesis was accomplished within the JEDI collaboration [3|. The over-
all aim of the collaboration is to investigate possible experiments for measuring
the permanent EDM of charged particles in storage rings. In this chapter it is
discussed why EDMs are of high interest for the particle physics community and
an overview of already existing EDM experiments and their results is given.

2.1 Matter-Antimatter Asymmetry

The observed imbalance in baryonic matter and antibaryonic matter in the Uni-
verse postulates one of the unsolved questions in cosmology and particle physics.
According to the most common models the Universe expanded exponentially af-
ter the Big Bang. After this so called inflation stopped, the temperature was
high enough to create and annihilate particle-antiparticle pairs in thermal equi-
librium. At some point the Universe cooled down to a level where the critical
particle energy for pair production was no longer given and matter and antimat-
ter annihilated into photons [4]. As witnessed by the material existence of this
thesis and its reader, the Universe does not merely consist of photons and thus
matter and antimatter behaved differently after the Big Bang. A well-established
quantity to express this matter-antimatter-asymmetry is the so called baryon
asymmetry:

Np — Np
_ __°'B 2.1
nBA = Nw ) ( )

which is the difference of the baryon density Np and the antibaryon density
Nz over the density of cosmic background radiation photons N, just before the
disappearance of the antibaryons [5|. It is part of cosmological models and can be
determined experimentally using astrophysical observations. One observable are
the temperature fluctuations in the Cosmic Microwave Background (CMB), which
were investigated within the Wilkinson Microwave Anisotropy Probe (WMAP)
experiment. A second experiment to measure 7g,4 investigated the abundances of
light elements that were produced during the Big Bang Nucleosynthesis (BNN).
Both results are in good agreement and state a baryon asymmetry of [4]

oA™Y = (6.074+0.33) - 107" (BNN) (2.2)

nSAP = 6.1675132 . 10710 (CMB). (2.3)
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On the other hand estimates based on the SM and the Standard Model of Cos-
mology (SMC) yield ng4 &~ 107! which is eight orders of magnitude below the
measured value [6].

One could think about two possible explanations for the absence of the antimatter:

1. Either the antimatter still exists in areas that are separated from matter
dominated regions. In this case the Milky Way is part of such a matter
dominated region resulting in the observation of the matter excess.

2. Or the antimatter was annihilated in asymmetric processes during the fur-
ther evolution of the Universe, known as baryogenesis.

The first case requires the search for existing antimatter as it is done by the Alpha
Magnetic Spectrometer (AMS) experiment on the International Space Station
(ISS) |7]. For the baryogenesis three conditions have to be fulfilled that were
originally postulated by Andrei Sakharov in 1967 [8|:

1. Baryon number violation: Since the initial baryon number B was zero,
the baryon number violation is necessary to reach a state with an excess of
baryons over antibaryons.

2. Violation of C and CP symmetries: The probabilities of creating a
particle and an antiparticle respectively only differ if the charge conjugation
symmetry C and the combined charge and parity transformation symmetry
CP are violated.

3. Being out of thermal equilibrium: If a system is in thermal equilibrium
each process takes place as often as the reversed process. Thus, it would be
impossible to achieve a baryon asymmetry.

However the CP violation incorporated in the SM is not sufficient in order to
explain the measured matter-antimatter asymmetry. Therefore additional sources
of CP violation from theories beyond the SM are needed. Permanent EDMs of
elementary particles are candidates for such processes as discussed later in this
chapter.

2.2 Discrete Symmetries and their Transforma-
tions

Generally speaking a symmetry is an operation under which a system stays in-
variant. The relation between conservation laws and symmetries, published by
Emmy Noether in 1917, makes symmetries an important tool in elementary par-
ticle physics. Every (local) continuous symmetry of nature is related to a con-
servation law. Or in other words each conservation law reflects an underlying
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symmetry. Energy and momentum conservation are results of the time and space
translation symmetries of the Universe and the conservation of the angular mo-
mentum is coupled to the rotational symmetry of a physical system. Besides
these so called continuous symmetries additional symmetries called discrete sym-
metries were found within the development of quantum mechanics. The three
fundamental discrete transformations are explained in more detail in the following

l9].

Parity Transformation

Applying the parity transformation P is equivalent to the inversion of all three
spatial coordinates while leaving the time coordinates unchanged

(Z,t) — (o, 1) = (2, 1). (2.4)

Thus, being symmetric under the parity transformation implies that a process
and its mirror image process behave in exactly the same way. Polar vectors such
as displacement, momentum and acceleration are affected by the transformation
while axial vectors such as the angular momentum are not. Regarding electro-
magnetic fields in a physical system, electric fields which are represented by polar
vectors will be reversed by the P transformation whereas magnetic fields keep
their directions since they are axial vectors [10]. This will be important when
dealing with EDMs in Section 2.3.

While the electromagnetic and the strong interactions of the SM are symmetrical
under P, the weak interaction is parity violating. Triggered by the observation
of K meson decays into a final state of two and three pions respectively, in
1956 Lee and Yang suggested to study parity violation for weak interactions by
investigating f decays [11]. Shortly afterwards, Wu et. al experimentally analyzed
the beta decay of polarized %°Co [12]:

0Co — Ni+e +7.. (2.5)

It was found that the emitted electrons were more favored to fly in the direc-
tion opposite to the nuclear spin no matter if the polarizing field changed its
sign. Since the polarization direction is not affected by the parity transformation
but the momentum and therefore the flight direction changes under P the mea-
surement shows evidence for parity violation. Additionally, the investigation of
charged pion decays resulted in the observation of the neutrino spin being always
anti-aligned to the momentum vector whereas the spin of the anti-neutrino points
along the direction of flight. Thus, under the assumption of massless neutrinos,
only left-handed neutrinos and right-handed anti-neutrinos couple to the weak
interaction in the SM [13].
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Charge Conjugation Transformation

The charge conjugation transformation C replaces a particle by its antiparticle
in the underlying physical process. Therefore, additive quantum numbers such
as charge, baryon and lepton number or strangeness are inverted whereas other
quantities such as spin, position or momentum are not affected. Inverting the
charge directly implies a change of direction of electric and magnetic fields. Vi-
olations of the C symmetry can be find in the weak section of the SM. Evidence
for such a C violation can be seen by considering the C transformation of a left-
handed neutrino resulting in a left-handed anti-neutrino. As already mentioned
above, left-handed anti-neutrinos do not participate in weak interactions in the
SM [10, 14].

Time Reversal Transformation

The third discrete transformation is the time reversal transformation 7. It inverts
the sign of the time coordinate while leaving the spatial coordinates fixed

(Z,t) — (o, 1) = (&, —t). (2.6)

For a time symmetric process the particular reaction rate should be the same
as for the reverse reaction. Several tests for the strong and the electromagnetic
interactions show no evidence for 7 violation. Experiments in the weak sector
are hard to perform but taking the CPT theorem into account, a valid mea-
surement for 7 violation in weak interactions could be performed. The CPT
theorem states that each combination of all transformations (CP7T) results in a
symmetric process for Lorentz invariant local quantum field theory [9]. Hence, a
T violating process is CP violating at the same time. Measuring the probability
of the transformation K — K and the reversed process K® — K. resulted in
rate asymmetries proofing a direct violation of the 7 symmetry [15]:

—0 —0

K’ 5 K% — RK* —» K
B 2 K) = RIC 2 RN 62180, £ 10,10 (2.7)
REK’ = K% + R(K' - K)

CP Violation in the Standard Model

In order to explain the observed left-right symmetry in nature, the CP symmetry
was defined after the proof of parity violation in the weak sector of the SM.
The CP transformation successively applies a parity transformation followed by
a charge conjugation. Combining these two operations solves the meson decay
issue stated above. The CP transformation converts a left-handed neutrino into
a right-handed anti-neutrino [9, 10]. However, a violation of the CP symmetry
in weak interactions was found within the Fitch-Cronin experiment 1964 which
investigated the decay of K° particles [16]. The decay rates of kaons in the mass
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eigenstate K, into two and three pions were measured [17|. Considering K as a
pure CP eigenstate, the decay into two pions would not be possible. Nevertheless,
some of these decays were observed during the experiment, giving evidence for
CP violation in the weak sector. This observation could be explained by adding
the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix to the SM [18]. It
describes the mixing of the six quarks and its empirical phase ¢ is proportional
to the CP violation. In general, the SM also allows for CP violation in strong
interactions. The so called 0gcp term in the QCD Lagrangian is CP violating
but so far, no such processes were observed within the strong sector, resulting in
the so called strong CP problem [10]. Since the CP violation in the CKM matrix
is not sufficient to explain the matter-antimatter-asymmetry, additional sources
of CP violation are of great interest. The EDM is one possible candidate and will
be discussed in the following chapter.

2.3 Electric Dipole Moments

The EDM is a fundamental property of a particle comparable to its momentum,
charge, spin or mass. The existence of a permanent EDM in a non-degenerated
system could be an additional source of CP violation and could contribute to
the understanding of the matter dominance in the Universe. This chapter briefly
discusses the theoretical background of EDMs gives an overview over EDM mea-
surements and their results.

2.3.1 Definition

In general, the EDM d is defined by the separation of positive and negative
charges in a system and can therefore arise from an asymmetry of its charge
density distribution p(Z):

-

- /V o(7) 7 di. (2.8)

The structure of Equation (2.8) is similar to the one of the magnetic dipole
moment (MDM) defined as:

1 -
i= -/ (f x j(f)) d7, (2.9)
2 Jv
where j(Z) denotes the current density.
The EDM is aligned parallel or anti-parallel to the spin S as this is the only

distinguishable quantization axis. Another independent preferred direction would
result in a degenerated system since other quantum numbers would be needed
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to describe the state [19]. The dependency of the EDM and MDM on the spin
vector are given by

— q —

d= nEDM2_TnCS (2'10)
— q o
H= 9%57 (2.11)

where q is the charge of the particle, m its mass and ¢ the speed of light. In
analogy to the so called g-factor g the dimensionless scaling parameter 7., is
introduced.

As already mentioned earlier, a permanent EDM is CP violating as can be seen
by applying a parity transformation and the charge conjugation transformation
to the Hamiltonian of a particle at rest in an external magnetic B and electric E

field:

H=—jiB—dE (2.12)
P:.H=—jiB+dE (2.13)
T:H=—jiB+dE. (2.14)

Performing the parity transformation leads to an inversion of the electric field
while the magnetic field and the spin stay unchanged. Compared to the initial
Hamiltonian in Equation (2.12) the sign of the EDM term changes. Therefore,
a permanent EDM is P violating while the MDM is symmetric under the parity
transformation.

The time reversal transformation changes the sign of the magnetic field and flips
the direction of the spin vector. The product of both thus remains the same.
Since the electric field is not affected by the transformation and the EDM points
in the direction of the spin, the EDM term of Equation (2.12) changes its sign
showing the 7 violation of an EDM [19, 20|.

The described changes can also be seen in Figure 2.1. According to the CPT
theorem, an EDM is therefore CP violating as it violates P as well as 7.

2.3.2 CP Violation and EDMs

Higher order loop effects can introduce EDMs both in the weak and the strong
section of the SM. A brief overview of the relevant mechanisms and the resulting
SM predictions are given in the following.
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Figure 2.1: Schematic illustration of a particle in an external magnetic B and
electric E field including a permanent EDM. Under a parity transformation (P)
the electric field changes its sign while the magnetic field and the spin stay un-
changed. The time reversal transformation 7 in contrast flips the MDM as well
as the EDM and the magnetic field changes its sign. As a result, a system with a
permanent EDM violates both symmetries and is according to the CP7T theorem
also CP violating (adopted from [21], Figure 2.1).

As already mentioned in Section 2.2 the imaginary phase § of the CKM matrix
contributes to CP violation in the weak sector of the SM. The corresponding
predictions for the EDMs of neutrons and electrons yield:

d, ~ 1073 ecm (2.15)
d, ~ 107 ecm. (2.16)

These values turn out to be so tiny because the leading contribution to proton
and neutron EDMs are at the three-loop level. In case of the electron the EDM
is even generated on the four-loop level |22, 23].

In the strong sector of the SM the 0gcp term of the Lagrangian of the QCD
contributes to C'P violation:
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2

9s vo a a
,Cg = —0Q0D647T26“ BG;W aBs (217)

where G, denotes the gluon field tensor, € describes the four dimensional Levi-
Cevita tensor and g, represents the strong coupling constant. Compared to the
contributions of the weak sector, the 0gcp term can lead to larger EDM values.
The predictions for the neutron and the proton read [24]:

dp ~ Ogcp (—2.94+0.9)107'% ecm (2.18)
d, ~ Ogcp (1.141.1)107'° e cm. (2.19)

In general, 0gcp can be have any value while measurements of the neutron EDM
yield an upper limit of [25]

GQCD < 10710. (220)

The smallness of 6gcp is theoretically unexplained and is often referred to as the
strong CP problem. A possible solution could be the existence of a new particle,
the so called axion which, however, could not be measured yet |26, 27].

2.3.3 Existing EDM Measurements

Since the EDM is a potential source for new CP violation, searches for vari-
ous particles in several experiments have been performed so far. As the EDM
influences the spin motion (see Equation (2.10)), the polarization of a particle
ensemble turns out to be the most promising observable for EDM experiments.
The main principle of these measurements for neutral systems is described in the
following paragraph.

The polarization change of trapped particles is investigated in the presence of
electromagnetic fields. Initially a particle sample with a polarization parallel to
a main magnetic field is needed and the spins start to precess with an initial
Lamor frequency. A radio-frequency (RF) magnetic field is then used to achieve
a polarization that is perpendicular to the main magnetic field. In a third step,
a homogeneous electric field is superimposed and interacts with the EDMs of the
particles. Both, the MDM and the EDM lead to a shift in the spins precession
frequency. In order to extract the pure EDM contribution the polarity of the
electric field is flipped within the experiment. The difference of the resulting
Lamor precession frequencies Aw due to the two polarities is proportional to the
EDM and can expressed as:

4|d|E

Aw=w(B D) -w(E]) =1

(2.21)
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Particle upper EDM limit

neutron d, <3-1072° ecm (90% C.L.)
electron  d, <87-107% ecm (90% C.L.)
proton d, <7.9-107% ecm (95% C.L.)
muon d, <1.9-107" ecm (95% C.L.)

Table 2.1: Measured upper limits for the EDM of different particles [25, 29, 30,
31].

where the arrows indicate the different polarities of the electric field and A denotes
the reduced Planck constant. It can be measured by introducing another RF
magnetic field after the interaction with the electric field. The resulting vertical
polarization serves as a measure for the EDM and is necessary to deduce the
frequency difference in Equation (2.21).

The first measurement for the neutron EDM was published in 1957 by Smith,
Ramsey and Purcell, yielding a value of |28|:

dy = (0.1£24)-107% ecm. (2.22)

There are several theories of physics beyond the SM that include EDMs and
can therefore make predictions for the EDMs of different particles. In order to
investigate these theories and to compare the predictions to experimental data,
it is necessary to measure the EDM not only for the neutron but for several
other particles. In this context, it is crucial for the experiments to reach very
high sensitivities since the EDM values are extremely small and can easily be
dominated by systematic uncertainties. Up to now, all measurements only give
upper limits for the EDM since the values are in agreement with zero. Upper
bounds for the EDM of the most studied particles are summarized in Table 2.1.
It’s important to note that the given limits for the proton and the electron are
achieved by indirect measurements of atoms and molecules. Therefore, the deter-
mination of these numbers includes assumptions about how nuclei behave within
these systems [32]. The muon EDM instead was derived from a direct measure-
ment using 4+ and g~ beams at the g-2 experiment at the Brookhaven National
Laboratory (BNL). So far it is the only direct EDM experiment using charged
particles. Further experiments for heavy nuclei, such as deuterons, are planned
for the near future 33, 34].

Trapping particles and investigating them under the influence of electromagnetic
fields gets more complicated as soon as the particles are charged. Charged parti-
cles are accelerated in the presence of electric fields and can’t be trapped as easily
as neutral particles like the neutron. Therefore, new measurement methods have
to be introduced [35]. Storage rings offer the useful property that they can store
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charged particles and circulating them with for very long beam lifetimes. Details
will be discussed in the next section.
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3. Beam Dynamics in Storage Rings

Understanding the behavior of particles moving inside an accelerator is essential
when considering EDM experiments in storage rings. In this chapter the funda-
mental forces induced by magnetic and electric elements as well as the equations
of motion of particles being stored are motivated and discussed. Furthermore, the
effect of field errors and misalignments of magnets are shown. The descriptions
and equations are mainly taken from [36], [37] and [38].

3.1 Lorentz Force

In the presence of electric and magnetic fields, a particle with charge ¢ and mass
m is accelerated or stored and its change in momentum p is described by the
Lorentz force:

—

_dp
a1

where E and B are the electric field and magnetic field respectively and cg denotes
the velocity of the particle. This relation is used to guide and focus the particles
in an accelerator or storage ring. Common storage rings use magnetic fields to
guide the beam since equivalent electric fields need to be larger by a factor of ¢ in
case of relativistic particles. Such high electric fields are technically much harder
to achieve which lead to an almost exclusive use of magnetic bending elements
in the past. Acceleration of particles in the longitudinal direction instead can
only be achieved by using electric fields since transverse magnetic field do not
contribute to the longitudinal momentum change.

Fy, (E + ¢ x B), (3.1)

3.2 Coordinate System

The motion of particles inside a storage ring has to be described relative to a
predefined coordinate system. Usually, the positions of elements in an accelerator
are fixed and have static fields. Instead of using the time parameter t as an
independent variable it is therefore convenient in accelerator physics to express
the position and other beam quantities as a function of the position s along
the reference trajectory rh¢(s). In order to describe the motion of an arbitrary
particle inside the accelerator, a reference particle is defined which moves on the
reference orbit ,.s(s) with the reference momentum of the beam p,.;. Using a
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co-moving coordinate system (€, €,, €s), the motion of an arbitrary particle with
respect to the reference particle can be studied. The origin of this coordinate
system is located at the position of the reference particle. Figure 3.1 illustrates
such a co-moving coordinate system from an initial point s, to a final point sg on
the reference orbit. The basis vector €5 is always aligned with the momentum of
the reference particle p,.;. The transverse plane is described by the basis vectors
€, being perpendicular to €5 and pointing in radial direction, and €, = €5 x &,
in vertical direction.

Figure 3.1: Co-moving Cartesian coordinate system with its origin located at the
position of the reference particle. The s-axis is tangential to the reference orbit,
the z-axis points in radial direction and y denotes the vertical direction. The
coordinates (z,y,s) are called curvilinear coordinates [39].

The transformation of the coordinate system from one point s4 to another sg is
then given by:

€r,B = €,4CO8(0) + € 4 sin(0), (3.2)
€y.8 = €y.4, (3.3)
€s.p = —€z ASIn(0) + €5 4 cos(6), (3.4)

with

B ds
e:/A = (3.5)

where p(s) denotes the bending radius. The change of the unit vectors over time
is given by
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. deydo 1,

€= gy = ;ses, (3.6)
e, =0, (3.7)
. degdd 1

&= —psex. (3.8)

To describe the trajectory of a particle 7(s) in the beam it is thus sufficient to
know its position with respect to the trajectory of the reference particle 7j(s).
Using the transverse deviations from the reference orbit of a single particle z(s)
and y(s), its trajectory can be parametrized as

7(s) = To(s) + 2(s)éx(s) +y(s)éy(s). (3.9)

<

3.3 Transverse Motion

Within this section, the transverse equations of motion are derived and discussed.
Furthermore, field error effects are described and an orbit correction method is
introduced.

3.3.1 Equations of Motion

In this section the equations of motion of a particle passing the magnetic structure
of an accelerator will be derived. Equation (3.9) describes the general trajectory
of a particle relative to the reference orbit.

To formulate the equations of motion, the time derivatives of r(s) are needed.
Using Equations (3.6) to (3.8) yields

7(s) = i€, + §&, + (1 n f) 5e,, (3.10)
p

#(s) = [5&— (1+%)%

At every point in time the position s on the path through the accelerator is
uniquely determined and can therefore be used as the independent variable.
Hence time derivatives can be transformed into derivatives with respect to s
resulting in

. 2., T\ .|
€y + Y€y + | —T5 + (1—1——)5 €s. (3.11)
p

p

7(s) = 258, + y'5€, + (1 + 5)35 (3.12)
p
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52

F(s) = x"éz—i—x'é—(l—i-%)% &, (3.13)

e+ (y”s2+y’§> €,+

2
—x’s2+(1+§)5
p p

The Lorentz force (Equation (3.1)) acts on particles traversing electromagnetic
fields. Assuming a pure magnetic accelerator it reduces to
mr(s) = q(f'(s) X é) (3.14)

Further assuming only vertical magnetic fields! and using Equation (3.14) it fol-
lows that

—(1+ %)SBy
o= | G Dim |- (315)

2'sBy —y'$B,
For relativistic particles the relative change of the longitudinal velocity in mag-

netic fields is small and can be neglected. Comparing the vertical components of
the Equations (3.15) and (3.13) leads to the equations of motion

52

w4 as- (1422 =L (14 2)sp, (3.16)
Pl P m P
for the horizontal direction and
' 4 ys =L (1 + f)s'Bx (3.17)
m P

for the vertical components.

In order to further simplify the equations, the change in velocity in the magnetic
fields is assumed to happen slowly (§ & 0) and the velocity of an arbitrary particle
in the beam can be expressed via

v=3 :s(1+f), (3.18)
as can easily be deduced from Figure 3.2.

Using § ~ 0 and p = mwv, Equations (3.16) and (3.17) turn into the simplified
equations of motion, given by

2
a — (1 + f>1 = —g<1 + f) By, (3.19)
p/lp P p

IThis assumption is true for most particle accelerators.
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Particles orbit

\

/

Reference orbit

Figure 3.2: The velocity of an arbitrary particle in the beam is not equal to the
velocity of the reference particle. It is larger (smaller) for particles that move on
an outer (inner) path relative to the reference particle. Adapted from [36].

=1 (1 n fwa. (3.20)
D P

The momenta of the particles in the beam may generally deviate from the refer-

ence momentum pg. These deviations Ap are usually in the order of less than 1%

in which case one can use a linear approximation for the inverse of the momentum

1 1 1 Ap
:_:_(1_
P po+Ap  po

R> +O(AP), (3.21)

The magnetic fields of an accelerator can be expressed using the field expansion:

q q qdB, lgd*B, , 1¢d°B, , s
I (x)=91B 177 Bl Rl ] Bl e ] 0] 3.2
P y(7) P y0+pdx x+2!p da? . 3lp da? T+ 06T | )
1 1 1
= - + kxr + 5mx2 + 50953 + O(z%), (3.23)
L —_—— Z N
Dipole Quadrupole Sextupole Octupole

1
where — (k, m, o) represents the magnet strength of the dipoles (quadrupoles,

sextupoles, octupoles). By convention a quadrupole is focusing if its strength &
is negative and it has a defocusing effect if k is positive. Assuming the beam is
bend only in the horizontal plane, the magnetic fields in each direction can be
written as
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—B, = - —kx, 3.24
Po Y P ( )
95 _
—B, = —ky. (3.25)
Po

Replacing the respective terms in the equations of motion (3.19) and (3.20) in
horizontal and vertical direction by Equations (3.21), (3.24) and (3.25), one ends
up with

x”—(1+£>1=—(1+§>2<1—kx><1—%>, (3.26)

p/p p/ \p Po

v ==(1+2) (1= 20). (3.27)

Since the transverse deviations from the reference orbit x and y are supposed to
be much smaller than the bending radius p and the relative momentum deviation

A
is much smaller than one (_p << 1) , quadratic terms in z, y and 2P can be

neglected after multiplying (Z))I?t the terms in Equations 3.26 and 3.27. .
Assuming a purely magnetic storage ring consisting only of dipoles and quadrupoles
with only vertical magnetic fields the equations of motion for a particle traversing
the magnetic structure are given by

" Lo s))x(s) = L Ay
y"(s) + k(s)y(s) = 0. (3.29)

A
Ignoring dispersive effects. i.e. 2p 0, the equations of motion (3.28) and (3.29)

become second order homogeneous differential equations of the form

2"(s) + K(s) z(s) =0, (3.30)

y"'(s)+k(s) y(s) =0, (3.31)
with ]

K(s) = 26 k(s). (3.32)

Equations (3.30) and (3.31) are known as Hill’s differential equations.

Since both equations are structurally identical and they can be solved using the
same method, it is sufficient to only consider the solution in horizontal direction.
The vertical solution can then be found analogously. Except for the s dependent
coefficient K (s) which is periodic over one turn with a length of C', i.e. K(s+C) =
K(s), the differential equation resembles the one of a harmonic oscillator. For
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simplicity the s dependence will not be explicitly mentioned in every step in the
following calculations. By analogy with the harmonic oscillator the ansatz

x(s) = A u(s)cos[U(s) + Uy (3.33)

can be made, where A and W, are the constants of integration defining the tra-
jectory of an individual particle. Inserting Equation (3.33) into Equation (3.30)
leads to

(u" — u¥"? + uk)cos(V + ¥g) — (2u'V + u¥”) sin(¥ + ¥y) = 0. (3.34)
N ~~ - N—
i it

Independently of each other, terms I and IT must vanish for Equation (3.34) to
hold. Thus
u’ —u¥"”? + uK =0 (3.35)

and
20"V + ul” = 0. (3.36)

Integrating Equation (3.36) twice yields

U(s) = — (3.37)
and 5 qe
s

W(s) = —_. 3.38

0= [ 5 (3.38)

Inserting Equation (3.37) into Equation (3.35) the differential equation for w(s)

can finally be written as

u"(s) + K(s)u(s) = B0 (3.39)

which has a uniquely defined periodic solution wu(s). Introducing the betatron
function 5(s) with

B(s) = u(s) (3.40)

the general solution of Hill’s differential equation are pseudo-harmonic oscilla-
tions, so called betatron oscillations, about the reference orbit with an s depen-
dent amplitude given by

x(s) = A\/B(s) cos[U(s) + Wy (3.41)

and

' (s) = B'(s) cos[W(s) + Wo| — sin[W(s) + Vg |. (3.42)
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The parameter A denotes the amplitude of the oscillation and W, indicates the
initial phase. The betatron function [(s) depends on the magnetic structure
of the accelerator and can be interpreted as a measure of the transverse beam
profile. The betatron tune, defined as the number of betatron oscillations per
turn, is calculated as

1 s+C 1 s+C dS/
= Uds = — — 3.43
Q=5 / T ). Bl (343)

The particles thus perform oscillations about the reference orbit. The oscillation
amplitude is dependent on the magnetic structure [(s) and on the integration
constant A. It is different for each particle as A is an intrinsic quantity of a
particle as will be discussed in the following section.

Courant-Snyder Invariant and Phase Space Ellipse

Using the general solution for the transverse motion of a particle from Equation
(3.41) one can find a description of the particle motion in the two-dimensional
phase space defined by the coordinates x and z’. Therefore the ¥ dependent,
terms in Equation (3.42) must be eliminated. From Equation (3.41) one finds

cos[¥(s) + W] = Ami (3.44)

Substituting this term into Equation (3.42) leads to

Bls)a'(s) | als)z(s)
A AV/B(s)

From sin?(s) + cos?(s) = 1 and Equation (3.41) it follows that

sin[W(s) + Wo] = (3.45)

22(s) a(s)z(s)
3 *( 56

where € = A2 is the so called Courant-Snyder invariant or emittance |36]. This
invariant is a characteristic property of a single particle and independent of the
magnetic structure of the accelerator. The particle with the largest emittance
defines the envelope E(s) of the beam since the amplitude of the betatron oscil-
lations is given by y/€f5(s). A sketch of the transverse motion of particles inside
the boundaries of the envelope is shown in Figure 3.3.

Defining

B(s)x'(s)) =A% =, (3.46)

14a%(s)

V(s) == OB (3.47)
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Xy Envelope:

E(s) = VeB(s)

Particle trajectories

Figure 3.3: The transverse motion of all particles in the beam is limited by
the particle with the largest emittance. Its trajectory along the ring forms the
envelope for all other particles. Adapted from |[[36], [39]].

Equation (3.46) reads

v(8)x?(s) 4+ 2a(s)x(s)x'(s) + B(s)x"*(s) = e. (3.48)

This equation describes an ellipse with a constant enclosed area of (F' = me =
const.). The form of the ellipse is defined by the optical functions «(s), 5(s) and
v(s) and is therefore a function of s. The area of the phase space ellipse however
stays constant due to Liouwville’s theorem |40] whose underlying conditions are
generally fulfilled in accelerators. A phase space ellipse defined by a particle
with a given Courant-Snyder invariant e describes the phase space behavior of
all particles with a betatron amplitude smaller than /e. Figure 3.4 illustrates a
phase space ellipse at a fixed position s and for a given emittance e.
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Figure 3.4: The phase space of a linear transverse particle motion is described
by an ellipse with constant area, dependent on the Courant-Snyder invariant of
the particle. Along the magnetic structure of the ring, the ellipse rotates in the
coordinate system but its size and form stays unchanged. Adapted from [[37],
[39]]-

3.4 Longitudinal Motion

So far, only the transverse motion of particles inside a storage ring was discussed.
The longitudinal motion is mainly influenced by the accelerating cavity providing
a longitudinally oscillating electric field. For a stable operation with a constant
mean momentum, it is necessary that the circulating particles arrive at a fixed
phase relative to the accelerating voltage. The frequency of the accelerating
field thus is an integer multiple of the particles revolution frequency. In case of a
synchrotron, the field inside the cavity as well as the magnetic fields are increased
synchronously with the particle energy. Since the EDM experiment at COSY
requires a bunched beam [41], the revolution frequency after reaching the final
energy is constant. Therefore, momentum deviations lead to orbit lengthening
effects which will be discussed below.

In general the change in the revolution frequency A f due to the path lengthening
AL or changes in the velocity Av can be written as:
Af AL  Av

= — — — 3.49
fo Ly Vo ’ ( )
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where the reference quantities are indicated by the subscript 0. The orbit length-
ening due to momentum deviations can be expressed using the momentum com-
paction factor which is defined as

1 [ D(3)
Q, = — —
P Lo Jo p(3)

ds. (3.50)

Using the relation [36]

A D
AL = B2 f D) o (3.51)
po J pa(s)
results in
AL Ap
— = q,—. 3.52
Ly ! Po ( )

The relative velocity change can also be expressed in terms of momentum devia-
tions which reads

Av 1 Ap

= ——. 3.53
Vo 7 Po ( )
Combining Equations (3.49), (3.52) and (3.53) results in
Af 1\ Ap Ap
27 _ <% _ _2>_ — =2 (3.54)
Jo Y07 Po Do

where 7 is the so called phase slip factor.

In the following the longitudinal motion of an arbitrary particle with respect
to the synchronous particle will be motivated. For the longitudinal motion the
energy gain per revolution of the synchronous particle can be written as

AE; = qUysin(¢s), (3.55)

where ¢, is the phase where the reference particle is supposed to enter the cavity.
A deviation A¢ = ¢ — ¢, from this reference phase leads to oscillations of a given
arbitrary particle in the longitudinal phase space according to the differential
equation |38].

d? hngw? d?
—A = qU, §)Ap = —A 20 = 0. 3.56
The particle oscillates with the frequency fsn = wsyn/27 and the number of

synchrotron oscillations per turn is given by

Qun = 22, (3.57)

S
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4. Spin Dynamics in Storage Rings

As discussed previously, the EDM experiment in Jiilich is conducted using a
polarized beam. An understanding of the spin motion in electromagnetic fields is
therefore crucial. The following chapter thus discusses the equation of motion of
spins inside storage rings. With regard to the precursor experiment, the discussion
concentrates on purely magnetic machines. Finally, the chapter motivates various
EDM measurement setups with different combinations of electromagnetic fields.
The following information is mainly taken from [42, 43, 44|.

4.1 Polarization

The polarization is defined as the average spin orientation of a particle ensemble.

A single spin of a particle can be described by an operator S such that the
projection of the spin angular momentum along the specified quantization axis is
given by S, = mgsh. The associated spin quantum number m; can take (2s + 1)
values and ranges from —s to s, where s is the spin number of the particle [45]. In
the following a Cartesian coordinate system is assumed and the spin quantization
axis is chosen to be along the z-axis.

4.1.1 Spin—% Particles

A spin-1 particle (s = 3) can only be in the states m, = +1. The state of such

a particle can be expressed by a normalized Pauli spinor:

= (4). (1)

with |ul? + |d|* = 1 and the two possible spin states mg correspond to the two
spinor components. From quantum mechanics it is known that each observable
is linked to an hermitian operator A and that an observable is defined as the
expectation value of the observable is defined as

~

(4) = (XAl = x"Ax. (4.2)
Using the density matrix
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_ _ (|uf ud
:0 - |X><X| - ( *d |d|2 (43)
one can write the observable as

(A) = TrpA. (4.4)

The hermitian operators corresponding to the spin observable are the Pauli ma-
trices o;. Thus the spin operator reads

Ny

a, (4.5)

A B (o T CHLA NP

Together with the unity matrix oy = 1 the Pauli matrices form a complete basis
of the space of the hermitian 2 x 2-matrices. The spin vector S = (5;, 5y, S,) is
defined as the expectation value of the spin operator and can be written as:

| St

where

. p 2 Re(ud®)
Juf? — |d|”

Changing from a single particle to an ensemble of N particles the quantity of
interest is now the expectation value of the spin observables of this ensemble. In
this case the density matrix has to be extended to:

N N
S @R S u®do
i=1 i=1

1 1 _
1 _ - p*), 4.8
P=N | v 2 (UO o (48)
S w3 |02
=1 =1

where the density matrix is expressed in terms of the Pauli spin operators in the
last step. Here, P denotes the polarization vector that is defined as the average
of all expectation values of the spin operators in the ensemble:

|
P= Z S;. (4.9)
=1
Assuming an ensemble with N particles of quantization state m = —1—% and N~
particles in quantization state m = —%, the vector polarization is defined as:
Nt —N—
Py (4.10)

= NN
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The beam is therefore fully polarized if the vector polarization is £1 and fully
unpolarized if Py, = 0.

4.1.2 Spin-1 Particles

A spin-1 particle can have three different states: m = —1, m =0 or m = 1. It is
therefore described by a three-dimensional spinor:

a1
X=|a2|- (4.11)
as

In this case the three spin operators read:

R A 010 R A 0 — 0 K 10 0
S5=—|1 01}, So=—7|2 0 —i|, S3=h[0 0 0
V2 010 V2 0 ¢« O 00 -1

The space of hermitian 3 x 3 matrices requires a basis of nine matrices. Taking the
identity matrix (/) into account, five matrices are missing which can be defined
in the standard Cartesian notations as

A T
S = 5(S,-Sj +8;8) — 208, i,j€1,2,3 (4.13)

In total this results in ten operators where only nine of them are independent
and the dependency relation is given by

Sip + Sog + Sz3 =0 (4.14)

and commonly the basis operators S; are normalized according to

Using the above operators, the density matrix for an ensemble of spin-1 particles
can be expressed as

3 3 3
1 3 1 .
P = g I + 5 izgl PZSZ + g g E Pz'jSij s Wlth Pij = Pji, (4.16)

i=1 j=1

where the parameters P; and F;; denote polarization states of the spin-1 particle.
Considering an ensemble with Nt particles of quantization state m = 41, N°
particles with m = 0 and N~ particles in quantization state m = —1, the vector
polarization P, and tensor polarization Pr along the quantization axis are defined
as
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Nt —N-
- Nt 4+ NO4+ N’

Py (4.17)
Nt 4+ N- —2N°
N+ 4+ NO+ N-—~
Since the polarization of a spin-1 particle beam is always a combination of vector
and tensor polarization, the maximum values that can be achieved are:

Pr = (4.18)

(Py, Pp) = <i §0> or (Py,Pr)= (i %,il). (4.19)

4.2 Spin Motion in Storage Rings

After the general definition of the polarization this chapter will describe the
behavior of the polarization under the influence of electric and magnetic fields.
Therefore, the equation of motion of spins in electromagnetic fields is motivated
and discussed and spin transfer matrices are introduced. Finally, different EDM
experiment methods are described.

4.2.1 Spin Motion in the Particle Rest Frame

The interaction of the spin with electromagnetic fields in the rest frame of a
given particle was already given by the Hamiltonian in Equation (2.12). The
corresponding non-relativistic equation of motion for the spin S in the presence
of electric and magnetic fields is given by:

dg — — — — —

E:QXS:/?XB—HZXE, (4.20)
where the expressions for the MDM /i and EDM d are given in Equations (2.11)
and (2.10). Equation (4.20) describes a spin precession in the plane perpendicular
to Q with an angular frequency of |2|. The MDM values for hadronic systems
are usually expressed in terms of the nuclear magneton

fin = 3.1524512550(15) - 10" %eV//T. (4.21)

A given particle with velocity ¢ will precess in a magnetic field with angular
frequency 2.,.. The relative frequency difference between particle and spin pre-
cession is the gyromagnetic anomaly

G=9-2_ a0 (4.22)
2 Qcyc
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Particle Gyromagnetic anomaly G

proton 1.792847351 £ 0.000000009
deuteron —0.1429872724 4+ 0.0000000015

Table 4.1: Measured values of the gyromagnetic anomaly of the proton and the
deuteron.

At lowest order in perturbation theory, Dirac particles have a g factor of exactly 2
and a vanishing gyromagnetic anomaly. However, higher order corrections lead to
a non-vanishing values of G and can be measured within the g—2 experiment [46].
The measured values for the gyromagnetic anomaly for protons and deuterons are
given in Table 4.1.

4.2.2 The Thomas-BMT Equation

For common accelerator setups, the electromagnetic fields in the laboratory sys-
tem are known. However, the fields in Equation (4.20) are given in the rest frame
of the particle. Using a Lorentz transformation, the spin equation of motion can
be expressed by magnetic and electric fields in the laboratory system, whereas
the spin is still defined in the particles rest frame. The resulting equation is
the so called Thomas-Bargmann-Michel-Telegdi (T-BMT) equation which can be
extended in order to include the EDM effect and ultimately reads [47, 48, 49]:

—

9% — G § = (Suona + Fopng) x § where (4.23)
0 —_1lgp - 1/ .B) — — 4.24
won =~ NGB = TRAFB) - (G- gg) 7] 429)
— q nEDM — ")/ - = — - —

o = — |~ B B) 4o x B (4.25)

One can also express the rotation due to the MDM in terms of perpendicular and
parallel field components with respect to the momentum vector:

Ouom = O, + Op, + Op, (4.26)

—

) } . B
(1+Gy)BL+(1+G)B — <G7 + ﬁ)ﬁ x ?] . (4.27)

q

ym

The momentum itself precesses under the influence of electromagnetic fields with
the angular frequency €., and the corresponding equation of motion reads:
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_g vz

dt — 2&cyce X D, (428)
with
- q /= BxE
QCC:——(B _ ) 4.29
Y ym + B2%c ( )

A spin that is always aligned to the momentum vector is called frozen and can
be used as the basis for an EDM experiment (see Section 4.4.2). The point where
the cyclotron frequency and the spin precession frequency due to the MDM are
equal can easily be calculated using:

AQ)cyc,S = Q)MDM - Qcyc (430)

—

I P 5 (ay— -2 \Gx E
=GB+ 1+ 6B (G'y >5><c]. (4.31)

72 =1

Assuming now an ideal accelerator consisting only of vertical magnetic bending
fields and neglecting the EDM, the spin moves according to

4s q = -

—=—(1+Gvy)B, xS. 4.32

=+ G, (432
Contrary to all other spin orientations, an initial spin parallel or anti-parallel to
the vertical axis will not precess in this case and stays stable over time. The axis
along which the spin orientation is preserved is called the invariant spin axis or
spin closed orbit 7i.. In analogy to the betatron oscillations the spin tune vg is
defined as the number of spin oscillations per revolution. For the considered case
of a basic pure magnetic ring the spin tune is given by

—L(1+G
Vs = M —1=1G. (4.33)

q

ym
Here, the rotation of the co-moving coordinate system was taken into account by
the subtraction of one revolution.

4.3 Spin Transfer Matrix

In order to perform spin tracking simulations it can be useful to describe the
spin motion in terms of the phase space coordinates of a particle. Therefore, the
equation of motion (4.23) can be expressed with respect to the ring angle 6:

s dS  dtdS  ,dS - - -

= =g =S = [ Gppn| x 5. 4.34

@~ Pqs Pasar P TPt [Pmm T e (4.34)
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Considering again only the MDM part of the equation and assuming a vanishing
EDM, Equation (4.34) reduces to:

ds - .o =
@ = pt/QMDM xS=5x F, (435)
where F includes all perturbing fields. The evolution of the three spin components
is then described in a rotating frame by

%(Sl, Sz, 53) = g X F_;—i— (Sg, —51,0). (436)

For small transverse and longitudinal perturbation fields, the vector components
can be written as

Fi = p(1+G)7 By = py'"(1+ G), (4.37)
_ / q / (AN

Fy=p(1+G)(By —y'By) s =~(L+ Gy +p(1+ G (7). (439)

Fs=p(1+ Gy)%Bg =—(14+Gv)+ (1 + Gy)pz". (4.39)

In case of having only magnetic guiding fields and a particle moving on the
reference orbit, F' reduces to

F=—(1+4Gy)é; (4.40)

and the system of linear equations with initial spin components S, given in Equa-
tion (4.36) is solved by the vector

S cos(Gy0) —sin(Gv0) 0\ (S,
Sy | = | sin(GH0) cos(Gyl) O] | Sai | - (4.41)
S3 0 0 1 53,2'

In the discussed ideal case, the eigenvalues of the spin transfer matrix read

)\1’2 == e:I:iGW@, )\3 =1. (442)

As already mentioned previously, this illustrates again that the spin component
along the €3 axis is stable whereas the other components precess.
Assuming that there are no other vertical magnetic fields, one can exchange the
F3 component simply by vG. Equation (4.35) can then be written as

ds

w5 = S with 7 =~Gé; — Fié; — Foés. (4.43)

The two-component spinor formalism from Section 4.1 can be used to rewrite
Equation (4.43) in the following way:
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dy i T, v (G €
A gy = S— 4.44
L I (S I (4.44)
where H denotes the spin precessing kernel and the perturbating fields are incor-
porated in the complex expression

£(0) = Fy — iFy. (4.45)

It can directly be seen that in the presence of additional perturbating fields (£ #
0) the spinor components are no longer conserved. The solution of the spinor
equation is given by

\(65) = Texp( /0 h —%H(@)d@) (0 = t(07,0:) - x(65), (4.46)

where 7 denotes the quantum mechanical time evolution operator and the sub-
script ¢ and f indicate the initial and final state respectively. The spin transfer
matrix for each element in the accelerator can be calculated using the T-BMT
equation. Hence, the product of all single matrices ¢(6y, 6;) between the starting
and end point has to be multiplied by the initial spinor state to obtain the final
spinor wave function. The spin transfer matrix for a full revolution is called the
one turn map and is defined as:

t(0; + 27, 0;) = e~ 2vsic2m, (4.47)

In this general form, the spin tune vg and the spin closed orbit 7i are also
defined in a general case where perturbating fields could be involved. The phase
space coordinates of an arbitrary particle that performs betatron and synchrotron
oscillations vary each turn. Therefore, the spin is influenced by different fields
at different positions each revolution. As a consequence, the spin precession
frequency and its phase advance also vary from turn to turn. Accounting for this
effect, the definition of the invariant spin axis is extended to the invariant spin
field 7i(2) and the following expression holds:

(%)) = A(Z)A(Z). (4.48)

Here, 2 denotes the phase space motion and A describes the spin transfer map
that is now dependent on the phase space.

4.4 EDM Experiments in Storage Rings

At present, any EDM experiment uses the interaction of the EDM with electric
fields. Non-zero EDMs lead to a distortion of the regular spin precession. Storage
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rings can be used to investigate charged particles since they work as a trap and
the particles will not get lost in the presence of electric fields.

4.4.1 Basic Concept

The main principle of an EDM measurement using a storage ring is based on an
initial polarization in the horizontal plane. Magnetic or electric fields are then
used to trap the particle beam inside the accelerator. These fields can be Lorentz
transformed to the rest frame of the particle resulting in electric E* and magnetic
B* fields in the rest frame. The electric fields in the rest frame interact with the

EDM according to [50]:

2 —dx E* 4.49
7 X (4.49)

Assuming that the magnetic and electric fields are perpendicular to the momen-
tum and taking the MDM into account, the spin motion can be expressed by
simplifying Equation (4.25) to [49, 51]:

—

is . . 4 )
E =Sx0N=95x (QMDM + QEDM) (4.50)
where
Gyion = — L Gé—(G— ! >5XE (4.51)
MDM - 2-1) ¢ | :
3 _ 49 Nepwm [ 7 7. R

For a vanishing EDM the spin precession in an ideal storage ring thus takes place
in the horizontal plane and the spin closed orbit 7o is aligned to the vertical
direction. Since Qppy L QMDM, a non-zero EDM (QEDM # 0) tilts the spin
closed orbit in the radial direction as shown in Figure 4.1 . The result is a
vertical oscillation of the polarization with frequency Orpu. For a pure magnetic
machine, the tilt angle {égpy can be described by the ratio of the EDM and MDM
contributions (see Equations (4.23) and (4.31)):

tan(€apa) = %. (4.53)

An EDM measurement is possible if the experimental setup results in a macro-
scopic buildup of the vertical polarization. The method described above was used
for the EDM measurement of muons [31]. The anomalous magnetic moment G
of protons and deuterons are two and three orders of magnitude larger. There-
fore, the resulting tilt angle &gpy would be significantly smaller in case of similar
beam energy and EDM value. To overcome this challenge and to realize EDM
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Figure 4.1: Sketch of the tilt {gpy of the spin closed orbit due to the interaction
of the EDM with the magnetic bending fields in a storage ring. The MDM and
EDM contributions are perpendicular to each other. As a result, the vertical spin
component oscillates.

experiments for protons and deuterons, different methods were proposed and will
be discussed in the following sections |34, 52|.

4.4.2 Frozen Spin Method

The sensitivity of the EDM measurement is directly coupled to the tilt angle £gpy-
This angle can be increased by minimizing the spin precession due to the MDM.
To ensure a spin parallel to the momentum vector, the spin precession frequency
has to be the same as the momentum precession. Using Equation (4.31) the so
called Frozen Spin condition is achieved:

—

G§:<G—721_15X§>- (4.54)

Depending on the particle and its anomalous magnetic moment G different com-
binations of electric and magnetic fields have to be used in order to fulfill this
condition.

e Pure electric ring: For particles with G > 0 the spin can be frozen using
only electric fields. Therefore, the particles must have a specific momentum,
often called magic momentum:

Pmagic = YBme = /7% —1 mc =

Vel (4.55)
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The magic momentum of the proton possessing an anomalous magnetic
moment of G = 1.79 is p ~ 0.701Gev/c.

e Combined magnetic and electric ring: Particles with a negative anoma-
lous magnetic moment (G < 0) can only be frozen when a combination of
electric and magnetic fields is used. The ratio between the field strength
of the vertical magnetic and radial electric field can easily be deduced from
Equation (4.54) and yields:

]l

Lattice design studies for both types of storage rings are currently carried out
within the JEDI collaboration [53, 54]. If the frozen spin condition is fulfilled,
the MDM does not at all contribute to the spin motion. The interaction of the
EDM and the present electromagnetic fields lead to a slow buildup of the verti-
cal polarization and the EDM can directly be determined by measuring the spin
rotation frequency Qgpy. In case of a pure electric ring using electric fields of
10MVm~ and assuming an EDM of |d| ~ 1072* ecm, the spin precession fre-
quency would be of the order of 0.1 mHz. Since the polarization lifetime at a
usual storage ring is up to 1000 s only the beginning of this small frequency is ob-
served by the polarimeter, leading to a linear increase in the vertical polarization
P, which is directly proportional to the EDM:

1>5

_ (1 “ G (4.56)

o

Py(t) = Po . SiH(QEDMt) ~ P() . QEDMt (457)

In addition to the EDM signal, systematic contributions could also lead to a
vertical polarization buildup. Besides other magnet misalignments and field im-
perfections, especially radial magnetic fields from misaligned quadrupoles could
have a significant impact on the measured signal [21, 55]. The contribution of
these imperfections could be resolved by using clockwise and counter-clockwise
rotating beams within in same storage ring [56, 57|.

As already mentioned, proposals for frozen spin storage rings have been made
but not such storage ring has reached the operation stage yet. Common storage
rings only use magnetic fields and cannot fulfill the frozen spin condition. There-
fore, a different method of measuring the EDM in a storage ring like the Cooler
Synchrotron (COSY) is proposed and will be discussed in the following section.

4.4.3 RF Wien Filter Method

As described in Section 4.4.1, a non-vanishing EDM leads to an oscillation of the
vertical polarization. In principle, this oscillation is measurable but gets very
small for protons and deuterons. In addition, the spin precession due to the
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MDM in a magnetic storage ring is always present and the resulting spin tune
yields vg = G7y. Therefore, the signal averages out over time since the vertical
polarization oscillates at a frequency of fs = vf.e,. The idea of using an RF
Wien filter is to introduce an artificial spin resonance that prevents the signal
from vanishing completely |33, 58|. The device is installed such that the electric
field points in radial direction and the perpendicular magnetic field is aligned to
the vertical axis. The fields are set up in a way that the Lorentz force inside the
device vanishes relative to the reference momentum. Therefore, no force acts on
the reference particle and its trajectory through the machine stays unperturbed.
In order to increase the EDM signal, the electromagnetic fields of the RF Wien
filter oscillate at a harmonic of the spin precession frequency:

fWF = (]_ + k?)fs = (1 -+ k’)’}/Gfrev with &k € Z. (458)

Running the Wien filter with the above settings does not change the oscillation
frequency fg of the vertical polarization. In addition, the induced spin resonance
by the Wien filter results in a small vertical polarization buildup over time that
is directly proportional to the EDM. The main principle of an RF Wien filter in
an EDM experiment is also shown in Figure 4.2. In a purely magnetic storage
ring without a Wien filter and an initial polarization in the horizontal plane, the
longitudinal component of the spin points as often in the direction of the mo-
mentum as it does in the opposite direction. Therefore, the vertical polarization
due to an EDM oscillates around zero and the average over time vanishes. The
Wien filter introduces an additional rotation of the spin around the vertical axis
such that the longitudinal component of the spin is no longer as often parallel
as it is anti-parallel to the momentum direction. Thus, a fraction of the vertical
polarization survives and a polarization buildup can be observed over time. Such
an RF Wien filter was already installed in COSY in order to perform the first
direct deuteron EDM measurement within the precursor experiment [59].

Besides the EDM itself, systematic effects such as magnet misalignments lead to a
vertical spin buildup. The measured signal is therefore a sum of all these system-
atic effects and the real EDM contribution. In order to study several systematic
effects, a realistic model of the machine and precise spin tracking simulations are
required. Especially the simulation of the spin closed orbit under the influence
of all known systematic effects is of great interest. Its radial component cannot
be determined within the experiment and is needed for the data analysis [60].
Therefore, a reliable model is the necessary basis for all further simulations. The
implementation and optimization of such a model as well as the investigation of
the spin closed orbit under several systematic effects are the topic of this thesis.
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Figure 4.2: Schematic drawing of the RF Wien filter method. The RF Wien
filter is represented by the blue box in the right sketch. Without an RF Wien
filter (left), the spin points as often in direction of motion as it points in opposite
direction. Therefore, the EDM signal fully averages to zero over time. The
Wien filter (right) leads to an additional rotation of the spin around the vertical
axis. As a result, the vertical polarization still oscillates but the signal does not
completely vanish and a vertical polarization builds up over time [50].
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5. Simulation Model

In order to systematically investigate the particle and spin motion for the pre-
cursor experiment at COSY, it is essential to develop a simulation model that
describes the real machine and experiment setup as precise as possible. In this
chapter, the model that was used within this thesis is described and benchmarked.
Furthermore, different systematic effects that influence the measurement, are im-
plemented into the model and their impact on the behavior of the particles is
discussed.

5.1 The Cooler Synchrotron COSY

The accelerator facility COSY (COoler SYnchrotron) is located at Forschungszen-
trum Jilich in Germany and consists of three main parts: an ion source, the cy-
clotron JULIC and finally the Cooler Synchrotron COSY [61]. Figure 5.1 shows
a schematic overview over the setup of COSY and the cyclotron.

Electron cooler- =

Stochastic cooling
........... (pickup 1)

; Stochastic cooling
Polarization measuring device ...~ (kicker 1)

[ e Electron cooler
Stochastic cooling

........... . 7 p2
Sag 1 (& ) g /_--"\I.’

oo

Figure 5.1: Sketch of the synchrotron COSY and the pre-accelerator JULIC in-
cluding the main magnets, cooling sections, the RF Wien filter device and the
polarimeter. Adapted from [62].
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The ion source can provide negatively charged hydrogen H~ or deuterium ions
D~ either polarized or unpolarized [63]. The H~ and D~ ions can be pre-
accelerated in the cyclotron JULIC up to kinetic energies of 45MeV and 75 MeV
respectively |64]. Finally, the beam is injected into COSY via stacked stripping
injection, where two electrons are removed from the ions using a carbon foil.
Therefore, the final beam consists of protons or deuterons.

In COSY, the beam can be accelerated up to momenta of 3.7GeV/c and the
acceleration takes place in an RF cavity located in the middle of one of the straight
sections. The ring has a total circumference of roughly 183.4m and consists of
two arcs and two straight sections, each with a length of 40m [61]. The bending
of the beam is achieved by using 24 normal-conducting dipoles with magnetic
fields of up to 1.67T. In order to focus the beam, 56 magnetic quadrupoles are
installed and grouped into families of four. Within one family, the magnets have
the same dimensions and are connected to the same power supply. In order to
use each straight section as a telescope with 1:1 imaging and to enable a betatron
phase advance of 7 or 27 per straight section, eight of the quadrupole families
are located in the straight sections, four triplets in each one [65]. In addition
to dipoles and quadrupoles, 17 sextupoles, seven in the straight sections and 10
positioned in the arcs, can be used for changing the chromaticity. Here, the
sextupoles in the arcs are divided into three families. Orbit measurements and
corrections can be done by using 30 (29) beam position monitors (BPMs) and 22
(19) corrector magnets in the horizontal (vertical) direction along the ring.

COSY partly owes its name to the phase space controlling which is achieved by
beam cooling. On the one hand, the beam can be cooled by electron cooling,
which is used up to momenta of 0.6 GeV/c. Additionally a second electron cooler
was installed at COSY in 2013 which enables cooling in the whole energy range
of COSY [66, 67]. On the other hand stochastic cooling is provided for particle
momenta above 1.5 GeV/c |68, 69]. The combination of cooling and beam motion
manipulation results in a perfect setup to investigate methods and tools for a
dedicated EDM storage ring.

Several devices for spin manipulation, like an RF Solenoid, an RF Wien filter
and a Siberian Snake, are installed into the ring. They can among others be used
to cross depolarizing resonances or to transfer the polarization from the vertical
into the horizontal plane |70, 71, 72].

In the straight sections of COSY, experiments can be installed. The Wide Angle
Shower Apparatus (WASA) detector is installed in one of them [73]. A target can
be moved into the beam pipe such that elastic scattering reactions are produced.
Starting a measurement, the beam is broadened by an external excitation. A
feedback loop between the detector rate and the excitation ensures a slow and
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constant depletion of the beam. A second polarimeter, that was installed recently,
is the so called JEDI Polarimeter (JEPO) [74, 75]. Tt is composed of inorganic
scintillators and supposed to measure vertical polarization changes with an in-
creased precision compared to previous methods.

Besides internal experiments, COSY also provides the option to extract the beam
using a magnetic septum and guiding it via the extraction beamline to one out
of three possible external experiment places.

5.2 The Lattice

The simulations within this thesis are done using the software library Bmad that
has been developed at Cornell University’s Laboratory for Elementary Particle
Physics [76]. The library provides subroutines in order to simulate the beam and
spin dynamics of relativistic charged particles within linear or closed accelerator
structures. It offers the possibility to do single particle as well as multi-particle
tracking using different tracking algorithms. For the following simulations, the
tracking was done using a 4th order Runge-Kutta integration algorithm with
adaptive step size control. Regarding spin tracking, Bmad allows to take a non-
vanishing EDM into account.

The COSY model includes all relevant magnets: dipoles, quadrupoles and sex-
tupoles. The effective lengths l.¢ of the magnets are summarized in Table 5.1.

An RF cavity ensures phase focusing and a model of the RF Wien filter is designed
(see Section 5.4). Furthermore, the corrector magnets, used for orbit bumps
and the orbit correction, are implemented. To compare measured and simulated
orbits, all beam position monitors are included. The default lattice consists of
ideal magnets without fringe fields and vanishing misalignments. Those effects
can separately be turned on in order to study their effects on the orbit and the spin

Magnet type lor in M
Dipole 1.832596
Quadrupole (arc) 0.372
Quadrupole(straight) 0.620
Sextupole ("G") 0.328
Sextupole ("L") 0.243
Sextupole ("S") 0.140

Table 5.1: Effective lengths of magnets in the COSY model. There are two types
of quadrupoles: the ones in the arcs are shorter than the ones used in the straight
sections. Three types of sextupoles are used, each with a different length.
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motion. Initially, the sextupoles and corrector magnets are turned off. The dipole
fields are always set such that the reference particle is perfectly guided around the
ring. The default quadrupole strengths are given in Appendix A.2. The actual
magnet settings of a specific beam time are stored via the Experimental Physics
and Industrial Control System (EPICS) [77] and a routine was implemented to
directly download and transform them into Bmad syntax.

The optical functions of the described model are displayed in Figure 5.2. The
horizontal axis of the plot indicates the position s along the ring and the starting
point is chosen to be the injection point which is located close to the end of the first
arc. The location of the arcs and straight sections in terms of the parameter s are
displayed within Figure 5.2. Due to the location of the injection point within one
arc, this arc is split into two sections in terms of s. The given magnet settings
lead to the effect that in the straight sections, the dispersion is close to zero.
Therefore, dispersive effects have their origin primarily in the arc sections. The
betatron tunes for the default lattice turn out to be (), = 3.62512 in horizontal
direction and @), = 3.63061 in vertical direction.
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Figure 5.2: Optical functions 3;, 8, and D, of the default lattice. The resulting
dispersion in the straight sections is close to zero. Therefore, dispersive effects
mainly appear in the arcs. The betatron tunes for the default lattice are ), =
3.62512 in horizontal direction and @, = 3.63061 in vertical direction.

5.3 Benchmarking of Particle and Spin Motion

Before adding additional effects, it is necessary to benchmark the default model.
Therefore, the particle and spin motion is compared to theoretical predictions.
Doing so, the numerical limit of the model can be quantified and it is guaranteed
that the basis of all following simulations behaves correctly. The following simula-
tions use deuterons with a momentum of 970 MeV /c and the closed orbit in both
transverse directions is calculated. As expected, it is perfectly zero in vertical
direction. Small deviations from zero of the horizontal closed orbit in the order
of 107! can be observed. They are a consequence of small numerical deviations
from the reference momentum. Nevertheless, these deviations are many orders of
magnitude smaller than the effects that will be discussed later in this thesis. The

closed orbit RMS! values are RMS, = 7.625 - 1072 and RMS,, = 0.0.

I'Root Mean Square
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In order to ensure the correct behaviour of the simulation model, the three-
dimensional phase space was investigated for particles with different initial phase
space coordinates. First, a particle having an initial horizontal offset with respect
to the closed orbit, such that the horizontal emittance yields €, is 1 mm mrad,
was analyzed and the corresponding phase space plots are shown in Appendix
A.1. The horizontal offset leads to a well defined phase space ellipse in the hori-
zontal phase space. Since the particle dynamics in COSY are almost completely
decoupled, the vertical particle motion is not affected by the horizontal offset.
Due to the horizontal offset, the particle moves no longer on the reference orbit
but on a longer trajectory due to betatron oscillations and the non-zero disper-
sion in the arcs. This path lengthening leads to a mismatch of the arrival phase
of the particle at the cavity and the design phase. Therefore, the center of the
longitudinal ellipse is shifted to a new equilibrium momentum. Due to dispersion
effects different ellipses varying in their horizontal center position can be seen in
the longitudinal phase space. With an initial vertical offset, a well defined phase
space ellipse can be seen in the vertical and the longitudinal phase space, as it is
shown in Figure 5.3. The small distortions in the horizontal phase space result
from non-vanishing dispersive areas in the arcs. The phase space of a particle
with an initial longitudinal momentum offset of Ap" = 107* is displayed in Ap-
pendix A.2. Again, the vertical phase space is no’r affected by this distortion.
However, the horizontal motion is now a superposition of betatron oscillations
and dispersion trajectories.
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Figure 5.3: Three-dimensional phase space of a particle with an initial vertical
offset at injection. The offset is chosen such that the vertical emittance ¢, turns
out to be I mmmrad. A well defined phase space ellipse can be seen in the vertical
and the longitudinal phase space. Small distortions in the horizontal phase space
are the result of dispersive areas in the arcs.
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Figure 5.4: In-plane spin precession due to the MDM. The initial spin orientation
is along the momentum vector and the spin precesses in the guiding fields of the
dipoles. A sinusoidal fit was performed to determine the spin tune. The resulting
value agrees with the theoretical prediction of |vg| = —0.160977.

Besides the particle motion, the spin motion, too, has to be benchmarked against
theoretical predictions. Starting with an initial spin pointing along the longitudi-
nal axis (S, = 1) and assuming a vanishing EDM, the spin is supposed to precess
in the horizontal plane and the vertical spin component should be zero all the
time. Using Equation (4.33), the spin tune is expected to be |vg| = 0.160977.
Figure 5.4 shows the tracking results of the in-plane spin components. One can
see the oscillation in the horizontal plane. A sinusoidal fit was performed in order
to determine the precession frequency. The resulting value is in agreement with
the theoretical prediction. Due to numerical restrictions of the tracking simula-
tion, the vertical spin component shows small fluctuations of the order of 10713
as can be seen in Figure 5.5. Introducing now a non-vanishing EDM, a vertical
oscillating spin buildup is expected. Figure 5.6 shows the vertical spin component
in the case of an EDM of 10-10""®¥ecm (n,,,, = 1.902052 - 10~*). According to
Equation (4.53), the invariant spin axis is now tilted and the vertical spin com-

ponent starts oscillating. The amplitude of this oscillation can be approximated
by

A~

nEDMﬁ —4
———| =3.05532 - 10 5.1
2G ‘ ’ (5.1)

which is in good agreement with the fitted sine function in Figure 5.6. The bottom
plot shows the behavior of the vertical spin component over a larger number of



46 Chapter 5. Simulation Model

| | L ! x10°

80 100
number of turns

0 20 40 60

Figure 5.5: Vertical spin component of the reference particle with an initial spin
pointing along the momentum vector and assuming a vanishing EDM. The ver-
tical spin component is expected to stay zero. Due to the numerical limitations
of the simulation, fluctuations of the order of 1072 can be observed.

turns and the red line indicates the average vertical contribution. As expected,

the EDM signal averages out over time without the implementation of an RF
Wien filter.
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Figure 5.6: Tracking results for an initial spin along the momentum axes and an
EDM of 10- 107 ¥ ecm (n,,,, = 1.902052 - 10~*). The invariant spin axis is tilted
according to Equation (4.53) and the vertical spin component therefore performs

fast oscillations. Over time, the EDM signal vanishes and the net spin buildup is
zero.
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5.4 Model of the RF Wien Filter

The essential device in the EDM precursor experiment at COSY is the RF Wien
filter that was already briefly discussed in Section 4.4.3. In order to provide a
complete simulation model of COSY, the RF Wien filter has to be described as
realistically as possible within the Bmad model. Field calculations of the stripline
design are considered [62] as the basis of the modeling. They are provided as a
three-dimensional grid, covering the whole length of the device (1100 mm) and a
range of 25 mm in each transverse direction. Each direction is subdivided into
100 points, such that the distance between the points in the transverse directions
equals 0.101 01 mm and a spacing of 11.111 mm is reached along the longitudinal
axis. The maximum vertical magnetic and radial electric field values are displayed
in Figure 5.7 for a vanishing vertical coordinate (y = 0). The advantage of
sophisticated field calculations compared to a simple rectangular field approach
are the included fringe fields of the magnetic and electric field that lead to a more
realistic description of the device.
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(a) Vertical magnetic field. (b) Radial electric field.

Figure 5.7: Grid field calculations of vertical magnetic and radial electric field
at maximum amplitude for a vanishing vertical field component (y = 0). The
grid consists of one million grid points, i.e. 100 points in each direction. The
transverse plane (x and y) covers a range of +5mm. The longitudinal range
covers the complete length of the RF Wien filter device (lyp = 1100 mm).

Bmad offers the option to implement customized elements including field maps.
The field value grid can be read in and a linear interpolation is done in order to
evaluate the field in between the single grid points. The amplitude of the field can
be adjusted using a field amplification factor f,mp, within the model and the time
dependent amplitude changes are synchronized with the revolution frequency fc,
of the simulated particle:

E. = fampEo - coS(2T frev|k + vs| + @), (5.2)
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where k denotes the harmonic number, which is typically chosen to be —1 (fwr =
871kHz) for simulations within this thesis. The influence of the phase ¢ on the
spin motion is further discussed in Section 5.4.2. The field is assumed to be zero
outside the given grid dimensions. Therefore, tracking simulations only lead to
reliable results if the transverse particle offsets at the position of the RF Wien
filter are smaller than =5 mm. A larger range could be covered using a larger grid
map. Since the number of grid points critically influences the simulation time,
a trade off between grid spacing and the performance of the simulations has to
made based on the use case. Within this thesis, the given grid is large enough
since the particle offsets do not exceed the given limits in simulations where a
turned on Wien filter is used.

5.4.1 Lorentz Force Cancellation

The EDM experiment using an RF Wien filter only works properly, if the beam
motion is not perturbed inside the device. Therefore, the electric and magnetic
field have to be set up in a way that the Lorentz force vanishes. Assuming an
ideal rectangular field distribution, the Lorentz condition can easily be calculated
and reads:

E=—pc-B. (5.3)

In case of fringe fields, the local Lorentz force compensation is no longer guar-
anteed. Figure 5.8 displays the normalized electric and magnetic field along the
longitudinal axis, assuming no transverse offset of the particle (x = 0 and y = 0).
The fall off behavior of the fields in the fringe field areas is differently for electric
and magnetic fields. Therefore, the Lorentz force is locally different from zero. In
order to ensure a minimal beam perturbation inside the Wien filter, the magnetic
field can be slightly adjusted in the simulation model. Following the procedure
in [21], the main idea is to determine a scaling factor of the magnetic field such
that the emittance is minimized when tracking the reference particle through the
device. Therefore, a particle starting on the closed orbit is tracked over several
turns. In case of a perfect local Lorentz force compensation or if the Wien filter
was turned off, the particle would never leave the closed orbit. However, due to
the different fringe field shape of the fields inside the Wien filter, the particle
experiences a kick and starts to perform betatron oscillations. The particle mo-
tion is most sensitive, if the Wien filter fields oscillate with a frequency close to a
betatron sideband frequency. The kicks inside the Wien filter add up and amplify
the amplitude of the betatron motion. Therefore, the horizontal betatron tune is
set to (Q, = 4 + vs =~ 3.839 by varying the quadrupoles in the arcs. The vertical
betatron tune has a value of ), = 3.622. As an example, Figure 5.9 depicts the
horizontal particle offset as well as the horizontal emittance of the particle for a
magnetic field scaling of —1%. The horizontal offset and the emittance increase
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up to a maximum value. Due to an amplitude dependent betatron tune a mis-
match of the resulting excitation frequency and the betatron sideband frequency
can occur. As a consequence, the particle slightly drifts away from the resonance
with the Wien filter excitation and the amplitude of the betatron oscillations
starts to decrease again.

The magnetic field of the RF Wien filter is subsequently changed while the elec-
tric field stays unchanged and a deuteron with a momentum of 970 MeV /c and
initially positioned on the closed orbit is tracked for several turns. For each
setting, the maximum value of the emittance is determined and summarized in
Figure 5.10. In order to find the scaling factor of the magnetic field resulting in
the minimum emittance value, a parabolic fit is performed to the data. In the
case of simple rectangular fields without fringe field areas, the expected scaling
factor would be exactly zero. For the more realistic case, the minimum is reached
for an enhancement of the magnetic field by about 0.045 % and this scaling factor
will be used in all following Wien filter related simulations.
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Figure 5.8: Normalized field distribution of the radial electric and vertical mag-
netic field along the longitudinal axis (x = 0 and y = 0) inside the RF Wien filter
device. The fringe field behavior of both fields differ. Therefore, the Lorentz force
is locally different from zero and the particle motion is perturbed.

5.4.2 Benchmarking

As a next step, the implemented RF Wien filter model has to be tested against
theoretical predictions. The interaction of the spin with the additional electro-
magnetic fields can directly be seen when performing the same simulation as it
was done for Figure 5.6. Again, the reference particle is tracked and an EDM
of 10-107*¥ ecm is assumed. The tracking result is shown in Figure 5.11 and a
linear fit was performed to indicate the average vertical spin component. Com-
pared to Figure 5.6, the fast oscillations with an amplitude according to Equation
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(a) Horizontal particle offset. (b) Horizontal emittance.

Figure 5.9: Tracking results of a deuteron with a momentum of 970 MeV /c and
initial phase space coordinates on the closed orbit. The magnetic field of the Wien
filter is reduced by 1% compared to the default grid calculations. The horizontal
betatron tune is changed to @), = 4 + vg =~ 3.839 such that the Wien filter fields
oscillate with a betatron sideband frequency. Therefore, the amplitude of the
betatron oscillations adds up over time until the particle slips out of resonance.
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Figure 5.10: The maximum value of the horizontal emittance is shown as a func-
tion of the enhancement of the magnetic field inside the RF Wien filter. The
electric field stays unchanged. A parabolic fit is performed in order to find the

minimum emittance value and the corresponding scaling factor for the magnetic
field. The minimum is reached for an increase of 0.045 %.

(4.53) are still present. In addition, a slow buildup of the average vertical spin
component can be seen as it is expected due to the RF fields of the Wien filter.
Assuming only small tilts of the invariant spin axis with respect to the vertical
axis and having an initial spin in the plane perpendicular to 7., the slow vertical
spin buildup can be estimated by [21]

5,(0) ~ 0T o) 0, (5.4)

where 6 denotes the position along the beamline and ¢ is the initial phase of the
Wien filter field oscillation. The parameter «q describes the maximum rotation
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angle per turn, that depends on the maximum field strength inside the Wien
filter. The initial phase ¢ directly influences the average vertical spin buildup
per turn. This was investigated by several spin tracking simulations using the
reference particle and an EDM of 10-107*¥ecm. Figure 5.12 summarizes the
results over the full range of ¢. The single points show the simulation results and
the dashed line represents the theoretical predictions. As expected from Equation
(5.4), the average spin buildup takes its largest value for ¢ = 0° and there is no
buildup at all for a phase of ¢ = 90°.
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Figure 5.11: Tracking results for an initial spin along the momentum axes and an
EDM of 10-10""®¥ecm (n,,,, = 1.902052-10~*). The invariant spin axis is tilted
according to Equation (4.53) and the vertical spin component therefore performs
fast oscillations. Due to the electromagnetic fields of the RF Wien filter, a slow
buildup of the average vertical spin component can be observed.
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Figure 5.12: Average vertical spin buildup per turn as a function of the initial RF
Wien filter phase ¢. The dashed line represents the theoretical predictions based
on Equation (5.4). For a phase of ¢ = 0° the vertical spin buildup per turn is
maximum and there is no buildup at all for an initial phase of ¢ = 90°.

The difference in fast oscillation amplitudes and the slope of the slow buildup of
the vertical spin component for different EDM values can be seen in Figure 5.13.
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For these tracking simulations, the field amplification factor for the Wien filter
fields was set to 1000 to decrease the simulation time and to enhance the buildup.
One can clearly see, that the amplitudes as well as the average buildup over time
increase for larger EDMs which is in agreement with the theoretical prediction.
A full slow oscillation was also simulated by using a field amplification factor
of 10000 and an EDM value of 10-10"'®ecm. The result is shown in Figure
5.14 where the blue points show the tracking results and the solid red line is a
sinusoidal fit to the data. A full slow oscillation can not be detected during the
precursor experiment due to its long oscillation period. The measurement takes
place in the very beginning of the vertical spin buildup where the behavior of the
spin buildup is linear in first order.
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Figure 5.13: Vertical spin component for different EDM values. For the tracking
calculation, a field amplification factor of 1000 was used to decrease the computing
time and to enhance the spin behavior. The amplitude as well as the slope of the
slow spin buildup clearly increase with larger EDM values which is in agreement
with the theoretical prediction.
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Figure 5.14: Tracking results using a field amplification factor of 10000 and an
EDM value of 10 - 107'° ecm. The blue points correspond to the simulation results
and the red line represents a sinusoidal fit to the data. A full slow oscillation is
usually not detected within the experiment since the oscillation period is too
long. The EDM measurement takes place in the very beginning of the vertical
spin buildup where the behavior is almost linear.
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5.5 Algorithm for Spin Tune and Invariant Spin
Axis

The spin tune describes the spin precession per turn in the plane perpendicular to
the invariant spin axis. Considering the default lattice, only the vertical magnetic
guiding fields of the dipole contribute to the spin precession. Assuming a vanish-
ing EDM, the spin precesses over one turn in the horizontal plane according to
Equation (4.31) |78|:

A 1 ¢q
N=——— Bdl-é¢ 5.5
Cﬂ m e?/? ( )

where the transformation dl = ¢fdt was applied and it was assumed that S = Se,
holds. The spin motion is then described by:

s 1 - =
S o (5.6)
From the equilibrium of the Lorentz force and centripetal force one can easily get
the expression:

2
/Bdl:Bp-Zw:M, (5.7)
q
such that the spin precession finally can be written as:
= 1 q 2mmycef .
0= —aaG/ — €, = —2m17G - €. (5.8)

As expected, the spin tune in this case is given by vs = |Q|/(27) = 4G and the
invariant spin axis points along the vertical axis €. If the EDM now takes a non-
vanishing value and assuming that 3 | €, the invariant spin axis tilts according
to Equation (4.53). Equation (5.8) is extended to:

> . 1 N B
Q= -2mG-ée,— @%TZEDMg / Bdl- (€, x €,) (5.9)
= —27T’)/G . gy + 7T’777EDM5 . é}c (510)

and the spin tune now reads:

2
vs =Gy |1+ <”E;gﬁ> . (5.11)
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To determine the spin tune and the invariant spin axis for a given simulation
setting, short spin tracking calculations are used. The reference particle is tracked
for n turns and the spin orientation is recorded at the longitudinal position of
interest after each turn. Since the particle moves exactly on the closed orbit, a
well defined spin wheel is the result of the tracking simulation as can be seen in
Figure 5.15 [79).

Figure 5.15: Spin tracking simulations using the reference particle moving on the
closed orbit result in a well defined spin wheel. The invariant spin axis is the
vector perpendicular to the plane that is defined by the spin wheel. The tilt of
the invariant spin axis depends on the EDM value and other systematic effects
such as magnet misalignments. For each turn, the normal vector 7; is calculated.
The average normal vector (i) is then considered as the invariant spin axis.

For the spin tune calculation, the following vectors are defined:

Sz

U1 = | Sy |, (5.12)
Sz,i
5:1:,7L+1

Up = Sy, it1 with ¢ € {1, = 1}, (513)

Szi+1
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spin tune
d [e cm] theory simulation
0.0 —0.160977180445162 —0.160977180441461
10718 —0.160977187958749 —0.160977187955047
10719 —0.160977180520298 —0.160977180516598
10720 —0.160977180445913 —0.160977180442212

Table 5.2: Comparison of spin tune values of the simulation code with theoretical
predictions.

where ¢ denotes the turn number. The spin tune is then calculated as the average
spin tune of all consecutive single spin tunes:

| A
Vs; = —— COS — |, 5.14
o (muvzr) .
1 n—1
Vg = U5 = n—1;'/5’i' (5.15)

In order to test the algorithm, the default lattice is used for tracking deuterons
at 970 MeV /c and a vanishing EDM is assumed. The spin tune according to
theoretical predictions is then given by vg = —0.160977180445162. Tracking the
spin over 30 turns (n = 30) and calculating the spin tune according to Equation
(5.15) yields:

vg = —0.16097718044146114 £ 3.5 - 101, (5.16)

The error on the spin tune value is the standard deviation of the ensemble of single
spin tunes. The simulation agrees with the theoretical prediction to the 11th digit.
This precision is sufficient since the spin tune at COSY can only be measured
with an accuracy of 1072 [[80], [81]]. Further tests can now be done assuming
non-vanishing EDMs. Table 5.2 shows simulation results for three different EDM
values and compares them to the theoretical predictions. One can be seen that
the accuracy stays within eleven digits. Figure 5.16 shows simulation results in
red and the corresponding theoretical predictions in blue for EDM values between
10107 ecm and 10 - 107 ¥ e cm.

For the determination of the invariant spin axis, the same tracking results as for
the spin tune can be used. In addition to the vectors o; and vg, the initial spin
vector is denoted by #y. For each turn i, the two vectors dl and d2 are defined as
the difference between the spin vector after the ¢—th turn and the initial one:
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Figure 5.16: Spin tune determination using spin tracking calculations. The red
dots represent the simulation results, the blue line indicates the theoretical pre-
dictions according to Equation (5.10).

N = Sxi — Sz.0

- U — U 1 wroTn

dy = |Ul _170| = |2—}» —17| Sy = Sy0 | » (517)
1 0 1 ol \s,; — 5.0
- - Sgi+l — Sz.0

= Vo — Vo 1 T+ ’ . i

dy = ———F = ——— Sy.it1 — Sy.0 withie {1,...n— 1} 5.18
‘UQ—U(]’ ‘02_1}0‘ Y,i+ Y {a > } ( )

Szi+1 — S2,0

The invariant spin axis is then calculated as the average normal vector to the
plane that is spanned by the vectors d1 i and d2 i

iy = i X dzi (5.19)
|d1,z‘ X dz,¢|
1 n—1
(ﬁ) = ;. (5.20)
n—1 —

The procedure is sketched in Figure 5.15. To benchmark the algorithm, the
default lattice is again taken and the reference particle is tracked over 30 turns
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assuming a vanishing EDM. The invariant spin axis is supposed to be perfectly
aligned with the vertical axis. The algorithm results in an invariant spin axis of:

—1.7-10"4 5.6- 10714
Tig sim = 1.0 + (19102, (5.21)
1510714 1.0- 1074

The result is in good agreement with the theoretical prediction. The simulation
can now be repeated under the assumption of non-vanishing EDM values. Figure
5.17 shows the resulting tilt angles of the invariant spin axes and the correspond-
ing theoretical predictions according to Equation (4.53). The simulation results
match the theoretical values up to the numerical accuracy of Bmad.
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Figure 5.17: Determination of the invariant spin axis using spin tracking calcu-
lations. The plot shows the tilt angle £ for different EDM values. The red dots
represent the simulation results, the blue line indicates the theoretical predictions
according to Equation (4.53).
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6. Magnet Studies

So far, all elements of the simulation model are assumed to be ideally positioned
and the impact of closely positioned elements with field overlaps were neglected.
This chapter discusses the influence of magnet misalignments and the effective
length of quadrupoles as well as field shortening effects on the beam and spin mo-
tion. Especially the prediction accuracy of the invariant spin axis is investigated.

6.1 Magnet Misalignments

Up to now, the COSY model assumes, that all magnets are perfectly mounted at
their reference position. In reality, the elements in the machine have position off-
sets in all three dimensions and are rotated around all axes. These misalignments
are a main source for systematic effects in the EDM experiment. A vertical spin
buildup could for instance be the consequence of an additional radial magnetic
field of a shifted quadrupole. In order to investigate all contributions of mag-
net misalignments to the spin motion, it is essential to measure the alignment
of each single magnet in COSY and to readjust their positions to the reference
position as precisely as possible. All dipoles and quadrupoles are equipped with
reference marks on top of the magnet that can be used to measure the position
and rotation offset using a laser based measurement setup. Figure 6.1 shows the
geometric layout of these reference marks.

The survey is conducted on a regular basis by the company Stollenwerk |1] and the
latest measurements were taken in Summer 2019 and communicated in January
2020. Figure 6.2 and Figure A.3 show the position misalignments Az, Ay and
As of all dipoles in each direction. The corresponding values for quadrupoles and
the rotation errors a,, o, and ay are displayed in Appendix A.3. In addition to
the misalignment values, the plots show the measurement uncertainties that were
determined by Stollenwerk. These errors are hardly visible due to their smallness
compared to the misalignments themselves. The misalignments of sextupoles and
steerers couldn’t be measured, since they have no reference mark. The offsets of
the beam position monitors along the ring were determined by a beam based
alignment procedure in October 2019 such that a reliable orbit measurement can
be performed |[2].

The measurement results are implemented into the COSY model which leads
to a distortion of the nominal closed orbit, i.e. the reference particle no longer
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Figure 6.1: Geometric layout of the reference marks on top of the COSY dipoles
and quadrupoles. The red line is the beam’s reference orbit. A laser based system
can be used in order to determine the positions and rotations of each dipole and
quadrupole [39].

passes each magnet at its geometric center. As can be seen in Figure 6.3, the
new closed orbits, indicated by the red and blue curve, show deviations in the
millimeter range in both transverse directions. The corresponding betatron tunes
(Q = 3.62496 and @, = 3.63016) only show small changes compared to ideally
positioned magnets.

The spin motion is also influenced by the magnet misalignments. Using the
algorithms from Section 5.5, the invariant spin axis turns out to be:

—1.8508367770 - 1074 2-1071
e sim = 0.99999995714698 + | 0.0008 - 107 | . (6.1)
—2.2682606262 - 10~* 3-1071

In comparison to the ideal lattice, where the invariant spin axis was perfectly
aligned with the vertical axis, the invariant spin axis is now tilted in horizon-
tal and longitudinal direction. Due to the misalignments and rotations of the
magnets, the spin sees additional radial and longitudinal fields, that lead to non-
commutative rotations of the invariant spin axis.

In order to study the stability of the simulated closed orbit, the misalignments of
dipoles and quadrupoles are randomly changed according to a Gaussian distribu-
tion centered around zero:

AZ = Az 4+ N(0,04,). (6.2)

Equation (6.2) shows the random value generation for the horizontal offsets, where
oa. denotes the measurement error provided by Stollenwerk. The calculation



6.1. Magnet Misalignments 61

for the remaining five misalignments is done in the same way. 10000 different
random samples are generated and the closed orbit for each of them is calculated.
The measurement uncertainties of the magnet positions directly translate into
uncertainties on the simulated closed orbit. Figure 6.3 shows the 2¢ bands in
each direction, i.e. 95.45% of all values lie within this interval. The spread of
the closed orbit curves reach values up to the order of millimeters. This can
have a large impact on the spin behavior if the orbit uncertainty is large at
locations of quadrupoles. In order to test the stability of the invariant spin
axis under closed orbit deviations due to the measurement uncertainties of the
magnet misalignments, spin tracking calculations are performed for the same
10000 random seeds that were used for the closed orbit simulations. Figure 6.4
and Figure 6.5 display the tilt angles of the invariant spin axes in the y-x-plane
(¢) and y-s-plane (¢). A Gaussian fit was performed to each data set and the
standard deviation of the fit is considered to quantify the fluctuation of the angles.
The fluctuation of the horizontal component yields +o,, = +1.51504 - 1075.
Transferring this interval into the tilt angle of the invariant spin axis in the y-x-
plane gives a range of

—0.000200093 rad < ¢ < —0.000169793 rad. (6.3)

The corresponding EDM values that would lead to such a tilt lie within the
interval

5.56166 - 107 e - cm < d < 6.55351 - 107" e - cm (6.4)

with an average EDM value of

d=6.05734-10"" e - cm. (6.5)

A non-vanishing EDM shifts the distribution further to the left, since the EDM
applies an additional tilt in the y-x-plane. Figure 6.6 shows the distribution when
an EDM of 10 - 10~ *® e cm is assumed. The distribution with a vanishing EDM is
shown as well. As expected, the width of both fits is equal, only the mean value
is different. The difference of A¢ = —0.0003055 radian fits well to the theoretical
prediction of Equation (4.53).

The uncertainty of the invariant spin axis due to the limited measurement ac-
curacy of the magnet misalignments can therefore be directly translated into a
systematic limit of the EDM value that could be resolved in the precursor ex-
periment. In order to estimate this limit, assume that on the one hand the only
systematic error source is given by the magnet misalignments and that on the
other hand the tilt angle £ is only influenced by these misalignments and the
contribution of a non-vanishing EDM. Then, a non-vanishing EDM produces an
expected tilt angle according to:
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fEDM = fmeasured — Mémagnets (66)

where &easured represents the measurement value of all accumulated tilts and
Pémagners denotes the expected value of the above depicted distribution for §magnets-
The minimal required value of £gpy for the measured value & easureq t0 be signif-
icant at the r - o level is then simply given by

§epm = —T - 0, (6.7)

where o is the width of the &pagnets distribution. The negative sign is introduced
since the EDM tilts the invariant spin axis counterclockwise around the longitu-
dinal axis within the coordinate system described in Section 3.2. For instance,
the threshold angle for the 30 level turns out to be

Eepm = —0.0000454215 rad = —0.0026 deg. (6.8)

Using Equation (4.53), this angle can be transformed into a minimal resolvable
EDM value of
d=149-10"" e-cm (6.9)

or
MEDM = 2.82766 - 107°. (6.10)
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Figure 6.2: Measured misalignments of all dipoles including the measurement
uncertainties. The individual 24 dipole magnets of COSY are denoted with B1,
..., B24. The measurements were performed in January 2020.
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Figure 6.3: Closed orbits in horizontal and vertical direction including dipole and
quadrupole misalignments. Both orbits (red and blue) show distortions of sev-
eral millimeters compared to the default model with ideally positioned magnets.
Additionally, a 20 range is shown based on 10000 random settings according to

Equation (6.2).
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Figure 6.4: Distribution of tilt angles of the invariant spin axis in the y-x-plane
for 10000 random Gaussian magnet misalignments. A Gaussian fit was performed
to the data set. The mean value is equal to the tilt angle of the invariant spin
axis when no random changes are applied and only the measured misalignments
are taken into account. Note that the simulations are assuming a vanishing EDM

(éepm = 0).
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Figure 6.5: Distribution of tilt angles of the invariant spin axis in the y-s-plane
for 10000 random Gaussian magnet misalignments. A Gaussian fit was performed

to the data set.
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Figure 6.6: Distribution of tilt angles of the invariant spin axis in the y-x-plane
for 10000 random Gaussian magnet misalignments. For the tracking calculations
on the left, an EDM of 107'® ecm was assumed. The distribution has the same
shape and width as the one with a vanishing EDM (right). Only the mean value
is shifted by the additional tilt angle described by Equation (4.53).
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6.2 Field Studies

All previous simulation models as well as the default lattice within this thesis
assume that the effective lengths of all magnets equal the values in Table 5.1. In
this section, the effective lengths of the quadrupoles based on crosscheck mea-
surements are discussed. Furthermore, the shortening of the effective lengths
of dipoles and quadrupoles due to other magnets close by is investigated. The
simulation results are compared to measurements that were taken in October
2019.

6.2.1 Effective Length of Quadrupoles

The effective lengths of the COSY quadrupoles in Table 5.1 are based on a
moving-coil measurement that was performed for all magnets. The principle
of this measuring method is based on the Faraday law of magnetic induction. In
the dipole, a plane coil with n turns, a width b and a length [ is axially aligned
and rotated around the magnetic axis of the magnet under investigation [[82],
[83], [84], [85]]. The electrical voltage

do
U=n— 6.11
N (6.11)
resulting from the magnetic flux change ‘é—f in the coil ends is measured with

an integrating voltmeter. As long as the coil moves in the homogeneous field,
the value of the component of the magnetic induction perpendicular to the coil
surface can be measured. With a long coil, which also covers the entire stray
field, the integral

/ B,ds (6.12)

is obtained directly, giving the quantity which, in the case of the dipole and a
given momentum, produces the desired deflection of the ion beam. In case of
a quadrupole, the plane coil is positioned azimuthally at a distance a from the
magnetic axis and then the whole arrangement is rotated around the magnetic
axis. Different coil lengths are also used here. The long coil, extended over
the whole stray field, directly measures the focusing strength of the quadrupole.
With the short coil, staying in the homogeneous area of the quadrupole field, one
obtains the maximum field value at distance a, and thus the gradient

Gaqp . (6.13)

inside the quadrupole.
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The magnets are then characterized by their magnetic lengths

leff7dipole = Bl /B(s)ds (6.14)
max

The accuracy and reproducibility of moving coil measurements is generally very
high. A precise measurement can be evaluated with regard to the multipole com-
ponents. The weak point is the possible systematic error caused by the accuracy
with which the area is determined. It is obvious that this is especially impor-
tant for short coils, which can cause errors in the accuracy of I, especially for
quadrupole measurements [[84], [85]].

Therefore, the effective lengths of one arc and one straight section quadrupole
were determined directly in 1998/1999 using a 3D Hall probe. The Hall probe
was moved at a distance d parallel to the magnetic axis across the entire stray
field and the measured values were recorded at specific discrete intervals.

The accuracy of this measurement is much higher as long as the Hall probe be-
haves linearly in the measurement regime and is positioned accurately within the
measurement setup. The effective lengths using the Hall probe differ significantly
from the ones in Table 5.1:

lefﬁQU = 0.380 m (615)
legr.qr = 0.650 m. (6.16)

It is reasonable to take the reliable measurement of the focusing strength with
the long coil as a basis to convert the old gradient values to the new ones which
are based on the Hall probe measurements. It is also useful to operate with
the current-specific gradients g = Gqp/I of the field because a direct relation
between quadrupole strengths values k and the currents I for the quadrupoles is
easily obtained.

Therefore, the new gradient values can be calculated using:

leﬁ,new * Onew = leff,old * GJold- (617)

Using the old gradient values gqu olqa = 0.0173% and gqT0ld = 0.0176% the new
values turn out to be:

T
=0.01694 — 6.18
gqQu 0.0169 mA ( )
T
gar = 0.01679 —. (6.19)

mA



68

Chapter 6. Magnet Studies

Quadrupole family

current in A

: 1
kold mn e

: 1
knew mn e

QT1 -104.087 -0.5661846983 -0.5401273343
QT2 96.115 0.5228207391  0.4987591029
QT3 136.938 0.7448788054  0.7105974512
QT4 -126.581 -0.6885415594 -0.656852999
QT5 -116.234 -0.6322587088 -0.6031604387
QT6 107.893 0.5868875619  0.5598773957
QT7 -117.322 -0.6381769210 -0.6088062786
QT8 106.080 0.5770256881  0.5504693922
QU1 -95.459 -0.2965289544  -0.2903584097
QU2 71.026 0.3797628070  0.3718602284
QU3 -95.459 -0.2965289544  -0.2903584097
QU4 85.779 0.4586443531  0.4491003088
QU5 -95.459 -0.2965289544  -0.2903584097
QU6 71.026 0.3797628070  0.3718602284

Table 6.1: Quadrupole strength settings of the COSY model for old and new
effective lengths of the quadrupoles. The quadrupole strengths are calculated ac-
cording to the current settings of the beam time in October 2019 and the measured
field gradients. Fach quadrupole family comprises four single quadrupoles. The
arc quadrupoles are indicated by the letter "U", the ones in the straight sections
are labeled with "T". A positive quadrupole strength represents a quadrupole
that is horizontally focusing and vertically defocusing.

With the new gradient values, the corresponding quadrupole strengths can be
calculated using the current settings at the quadrupole power supplies. Table
6.1 summarizes the current values for each quadrupole as well as the resulting
strengths values for the new and the old effective lengths. The currents in Table
6.1 correspond to the ones that were used during the measurement in October
2019.

The new effective lengths are implemented into the Bmad model by on the one
hand adding half of the difference to each side of the magnet and on the other
hand reducing the drift sections on each side of the magnet such that the total
length of the ring is conserved. Figure 6.7 shows the old and the new simulated
optical functions. Since the lens strength is the same for both lengths, the changes
of the optical functions are small. However, the betatron functions look more
symmetric using the new quadrupole lengths. Especially, in the arc sections, the
vertical betatron function shows a slightly better tuned pattern as before since
the two peaks in the arcs have the same height now. The new tunes are slightly
smaller than before, since the new quadrupoles are thicker and thus the focal
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lengths are longer.
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Figure 6.7: Optical functions f3,, 5, and D, for the quadrupole strengths given
in Table 6.1. The optical functions for the old effective quadrupole lengths is
given by the solid lines, the optics according to the new effective lengths is shown
by the dashed lines. The betatron tunes for the old lattice are @), = 3.68915 in
horizontal direction and (), = 3.72521 in vertical direction., the ones for the new
lattice are ), = 3.66564 and @, = 3.70662.

The effect on the invariant spin axis for the reference particle within an ideal
lattice is at the order of 107'° and therefore negligible. Introducing again the
misalignments from Section 6.1, the tilt of the invariant spin axis in the x-y plane
and the s-y plane differs by:

A¢ =18.2 mrad = 1.04 - 107 deg, (6.20)
A( = —4.4 mrad = —2.5- 10" deg. (6.21)

It is therefore not negligibly small but is not sufficient to explain the large differ-
ence between simulation model and measurement (see Chapter 7).
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6.2.2 Effective Length of Dipoles

The effective length measurement described above determines the effective length
of a single detached magnet. Being installed into COSY, the situation for some
magnets turns out to be different. Due to the close positioning of the magnets,
their effective lengths can be influenced by the fields of the surrounding magnets.
The following simulations are based on the studies in [86] and contain first, rough
approximations to study the effect on the guiding dipoles in COSY.

The iron of close-by steerer magnets interacts with the fringe fields of the dipoles
and the effective length of the COSY dipoles is shortened. Thus, the guiding of
the beam no longer equals the designed bending of 15degree per dipole. Field
simulations show, that an H-type steerer at a distance of 216 mm reduces the
effective length of a dipole by 0.34 %. Another calculation shows the effect of
a C-type steerer at a distance of 222mm to the dipole resulting in a reduction
of the effective length of 0.26 % [86]. The effect on the beam can be described
by a kick inside each dipole where the kick intensity depends on the individual
environment of the dipoles. Estimations for the kicks were deduced by H.J. Stein
[87] by considering the distance between the affected dipoles and the magnets in
the proximity. The kick values were then calculated using the simulation results
in [86]. They are summarized together with the corresponding dipole names in
Table 6.2. More sophisticated field calculations are in process and will be used in
the future to further study the effect in more detail. The kicks are implemented
by using steerers with zero length in the center of each dipole magnet. In Bmad,
this can be done by simply overlaying the two elements and giving the steerer a
length of zero.

Applying these kicks, the horizontal closed orbit is highly distorted as can be
seen in Figure 6.8 which shows the closed orbits for ideal magnets on the top
and for simulations including the misalignments from Section 6.1 on the bottom.
The horizontal closed orbit is dominated by the large impact of the additional
kicks due to shorter effective dipole lengths. As expected, the vertical closed
orbit is not affected. Without the quadrupoles, there would be no stable solu-
tion. The quadrupoles in the arcs steer the beam back such that a total bending
of 360 degrees is ensured. The effect of effectively shortened dipoles is usually
covered during machine running since the orbit correction acts contrary to all
orbit distortions. During the measurements in October 2019, the orbit correction
was turned off in order measure the pure uncorrected orbit. The result can be
seen in Figure 6.9, where the simulation results including the magnet misalign-
ments and the shortening of the dipole lengths are compared to the measurement
results. The large orbit distortion in horizontal direction is clearly visible in
the measurement and the shape of the simulated and the measured orbit show
large similarities. The vertical orbits both show distortions in the same order of
magnitude. However, their overall shapes differ more than the one in horizontal
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dipole name kick in mrad

BE3 0.7
BE4 0.5
BEb5 0.7
BE6 0.5
BE9 0.5
BE10 0.6
BE11 0.6
BE14 0.7
BE16 0.5
BE19 0.5
BE21 0.5
BE22 1.2
BE24 0.7

Table 6.2: COSY dipoles that are influenced due to the magnetic fields of close by
sextupoles and steerer magnets. The effect on the effective length of the dipoles
can be translated into a kick affecting the beam motion. The kick values are first
estimations based on the studies of [86].

direction. Although the simulation is performed on a very first, rough estimate
of the effect, the results clearly show, that shorter effective lengths of the dipoles
have a large influence on the orbit. It is therefore crucial to further study the
effect in more detail using sophisticated measurements and simulations. The ef-
fectively shortened dipole lengths also affect the spin motion. For an ideal lattice,
the simulated invariant spin axis still points along the vertical axis, but the spin
tune is reduced since the total integrated vertical magnetic field is now smaller:

vs = 0.1589195769463 + 1 - 10~ % (6.22)

In combination with the magnet misalignments, the invariant spin axis changes
especially in the horizontal component and gets an additional tilt of A¢ =
—0.28 mrad (compare to Equation (6.1)):

—4.65009155301 - 104 5.953 - 10712
e sim = 0.999999858995368 | + | 0.004-10"1% | . (6.23)
—2.56467794858 - 1074 11.189 - 1012

6.2.3 Fringe Fields

So far, all magnets within the simulation model were considered to have no fringe
fields, meaning no fields that extend the actual geometrical limits of the defined
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Figure 6.8: Horizontal (red) and vertical (blue) closed orbit resulting from short-
ened effective dipole length with an underlying ideal lattice (top) and including
magnet misalignments (bottom). The horizontal closed orbit is clearly dominated
by the shorter effective lengths of the dipoles which leads to orbit distortions up
to 32 mm.

elements. However, fringe fields contribute to the spin precessions and it is there-
fore necessary to study them systematically. Bmad offers an already sophisticated
description of fringe fields that are based on the analytical approaches in [88, 89,
90]. Starting again with the default lattice and turning on these fringe fields for
the dipoles and quadrupoles leads first of all to a vertical tune shift:

Qy.defauts = 3.63061 — @y fringe = 3.60172. (6.24)

To study the effect on the invariant spin axis, the magnet misalignments from
Section 6.1 are again considered in addition. The effect of the fringe fields on
the invariant spin axis turns out to be small compared to the simulation result
without fringe fields (Equation (6.1)):

—0.1261637 - 104
Aflpgim = —5.48-107? . (6.25)
—0.1313489 - 10~*
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Figure 6.9: Simulated and measured orbit in horizontal and vertical direction.
The simulation includes the additional kicks due to the shortening of the effective
lengths of the dipoles and the magnet misalignments from Section 6.1. For the
measurement, the orbit correction was turned off in order to see the uncorrected
orbit that is present when only the dipoles and quadrupoles are turned on.






75

7. Model Fitting Methods

In this chapter, the major differences between the simulation model and measure-
ments are discussed. Furthermore, the chapter describes sophisticated algorithms
to fit various model parameters in order to achieve a better description of the real
machine.

So far, various systematic effects were added to the default simulation model and
their impact on the beam and spin motion was investigated. In order to see how
well the model describes the measured beam and spin quantities, all effects, i.e.
the magnet misalignments, the effective length studies of dipoles and quadrupoles
as well as the fringe fields are now combined. The dipole, quadrupole, sextupole
and steerer strengths are set to the values of the October 2019 measurement.
Figure 7.1 shows the resulting simulated closed orbits as well as the measured
ones.

X inmm

E L L L L L L L L L
0 20 40 60 80 100 120 140 160 180
sinm

—— Measurement
— Simulation

yinmm

0 2‘0 46 Gb Bb 100 1 éO 1“10 1 éO Sll?;om
Figure 7.1: Simulated and measured orbit in horizontal and vertical direction.
The simulation includes the changed effective length of dipoles and quadrupoles
and the magnet misalignments from Section 6.1. The magnet settings (dipoles,
quadrupoles, sextupoles and steerers) from the measurements in October 2019
were used for the simulation.
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The simulated betatron tunes turn out to be:

Qz,sim - 36753337 (71)
Qysim = 3.669646. (7.2)

On the other hand, the measured tunes with the same underlying magnet settings
are:

Qac,meas - 35704587 (73)
Qy,meas = 3.585893. (7.4)

Neither the simulated orbits nor the corresponding betatron tunes match the
measured values. However, by switching off the steerers again and comparing the
simulation result and the measured orbits (see Figure 6.9) the simulation model
shows a much better overlap with the measurement. It is therefore obvious that
the implementation of the archived steerer values leads to the large mismatch of
simulation results and measurements. The values are stored in terms of percent-
age values relative to the maximum possible current of each steerer. In order to
translate those values into steerer kicks, calibration factors are needed. Unfortu-
nately, the list of calibration values is incomplete! and the values were measured
at a different energy than the actual precursor experiment. Therefore, the chance
of miscalculating the steerer kicks is one of the major uncertainties when running
the simulation model. New measurements of the calibration factors for all steer-
ers are planned in the future. Until then, the simulation model can be used to
estimate the steerer kicks so that they fit the measurement well.

7.1 Orbit Response Matrix and Orbit Correction

Due to the magnetic structure of the accelerator the closed orbit deviates from the
trajectory through all magnet centers. Considering field imperfections, magnet
misalignments and other external effects on the beam, the closed orbit changes
and its deviations get larger. To ensure an orbit that resembles the desired target
orbit as closely as possible, a correction system is needed. In many cases the
target orbit is equal to the trajectory through the magnet centers but one can
also imagine desired orbits with z # 0 and y # 0. To manipulate the orbit,
additional dipoles are used to steer the beam in vertical and horizontal direction.
In order to find the best field strength configurations of these corrector magnets it
is essential to know the influence of every single corrector on the orbit. The orbit
response due to perturbations at one of the corrector magnets can be measured

!Many steerers have been dismounted or replaced over many years of COSY operation.
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using the beam position monitors. Note, that these measurements only take place
at discrete positions and that the largest parts of the true orbit stay unobserved.
An unfavorable distribution of BPMs could lead to a situation, where large, local
orbit distortions are not recognized by the measurements and to which the orbit
correction therefore cannot react. Minimizing the BPM orbit readings therefore
only represents the optimal correction method if the electronic or mechanical
offsets of the BPMs with respect to the adjacent quadrupoles are removed [91].

Assuming m BPMs and n corrector dipoles the m-dimensional vector Z represents
the measured orbit with respect to the path through the magnet centers. The
orbit response due to perturbations at the corrector magnets can be written as

AT = RAF, (7.5)

with A§ summarizing all corrector strengths. The m X n dimensional matrix R
is the so called orbit response matrix (ORM) that describes all BPM responses i
(1 =1,...,m) to a perturbation at corrector j (j = 1,...,n). The matrix elements
are given by

AQS’Z'
AbG;
The orbit response matrix can also be calculated knowing the optical functions.

Assuming vanishing coupling of the horizontal and vertical beam dynamics the
matrix entries can be found using [92]:

Ry = (7.6)

. V/ By.iBy.j
vertical : R;; = m cos(W,; — VU, —mQy,), (7.7)
\V FziMx,g DZD
horizontal R;; = & cos(U,; — U, — Q) — —— 1, (7.8)
2sin(rQ),) ’ ’ <ap _ L)C
,YQ

where ./, denotes the betatron tune, 3,,,;/; are the betatron functions at the
respective position of the BPM i and the corrector j and (V; — ;) describes the
phase advance between BPM and corrector magnet. For the horizontal orbit an
additional term is added in order to account for dispersive effects when the cavity
is switched on. Here, D;/; is the dispersion function at the BPM and the corrector
magnet respectively, o, is the momentum compaction factor and ~ denotes the
Lorentz factor.

An efficient orbit correction uses the orbit response matrix to determine the set
of corrector strengths that lead to the desired orbit. With a given target orbit
Ziar the condition under which the problem has to be solved reads
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AT = Ty — 7. (7.9)

Since the dimensions of the orbit response matrix depend on the number of BPMs
and correctors, R is not always invertible. For a set of less correctors than BPMs
there is in general no analytical solution. Besides solving for A6 = R™'Z one
minimizes the residual error § = ||[RAG — AZ|| with respect to Af:

§ = \/(RAG — AZ)? — min!. (7.10)

Squaring Equation (7.10) and taking the derivative with respect to AG yields

852 T ~ — !
_ — 9RT(RA( — AZ) =0 (7.11)
NG
= Af=(R"R)'RTAZ (7.12)

7.2 Orbit Matching Procedure

Starting with the idea of fitting the steerer strength in a way that the overall
simulation result matches the measured orbits, an approach is chosen that uses
the procedure of an orbit correction. Instead of setting the target orbit to zero,
it is now set to be the measured orbit. Therefore, Equation (7.9) is now written
as:

AZ = Lmeas — Lsimulation - (713)

The orbit response matrix of the model Ry, is determined by using Equation
(7.7) and Equation (7.8). Since the number of BPMs at COSY (m = 63) is larger
than the number of steerer magnets (n = 41), there is no analytical solution for
the matrix inversion (RTR)™! in Equation (7.12). A common way of calculating
the pseudo-inverse of this term uses the Singular Value Decomposition (SVD)
[93].

7.2.1 Singular Value Decomposition

[Rm)(n

The decomposition of a matrix Z € in its singular values is expressed by

Z=UxVT (7.14)

where the singular values o; are collected in the diagonal matrix 3 € R™*":
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01

Z=\|._____ 9, __-_ __ |, withoy>0y>..>0,>0. (7.15)

Since matrices U € R™*™ and V € R" " are unitary, they fulfill the following
condition:

Uuu’ =viv =1. (7.16)
Assuming the inverse of Z exists, it can be written as:
Z'=vxu’. (7.17)

Using the SVD of the orbit response matrix R = UXV7, the solution of the
minimization problem given in Equation ((7.11)) reads:

A= (R'R)'RTAZ (7.18)
= (uxvhHuzvh)HuzvhHlaz (7.19)

= (vu'uxvh)Y(vuh) Az (7.20)
= (vEAVhH(vEUD AT (7.21)
=V 'utaz (7.22)

For the implementation of the orbit matching algorithm, the Linear Algebra
PACKage (LAPACK) was used [94].

7.2.2 Simulation Results

After implementing the orbit matching algorithm, it is benchmarked to test its
efficiency. The maximum allowed steerer kick change of the simulation is set to
2mrad in order to exclude unrealistic solutions. Therefore the matching result
can improve if several iterations of the algorithm are performed in order to correct
non-linear effects. A distorted orbit is simulated by randomly applying kick values
to the steerer magnets in the default simulation model. The kicks are distributed
according to a Gaussian distribution around zero with a width of 0.5 mrad:

A6; = N(0,0.0005) with i € {0, ...,n}, (7.23)
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where n is the total number of steerers. After distorting the steerer settings of
the simulation model, the algorithm is applied and the resulting closed orbit as
well as the steerer settings are stored after each iteration. Figure 7.2 depicts the
closed orbit RMS values in the horizontal and vertical direction for each iteration.
Already after three iterations, the closed orbit RMS is reduced by seven orders of
magnitude. The progress of the algorithm for each iteration can also be seen in
Figure 7.3 showing the steerer kick values after each iteration. The grey bars show
the initial kick values according to the random generator. After four iterations,
all steerer kicks are below 0.001 mrad which lead to a closed orbit that is almost
perfectly set to zero at each position along the ring.
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Figure 7.2: Closed orbit RMS values of the simulated orbits after each iteration
of the orbit matching algorithm. The default simulation was initially distorted
using randomly distributed steerer kicks. Afterwards, the algorithm step by step
adjusts the steerer kicks so that the closed orbit becomes less and less distorted.

As a next step, the simulation model including all discussed systematic effects (see
Chapter 6) including the magnet settings during the October 2019 measurements
is taken as the basis for matching algorithm. The measured orbits now equal
the target orbits in both transverse planes and three iterations of the matching
procedure are performed. The decrease in the closed orbit RMS is shown in
Figure 7.4. The dashed lines indicate the RMS values of the measured orbit, that
have the following values:

RMS; measured = 0.79583 mm (7.24)
RMSy measured = 0.78059 mm. (7.25)

The vertical closed orbit RMS lies below the measured value already after the
first iterations. The horizontal reaches this level after the next iteration. The
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Figure 7.3: Steerer kick values in radian after each iteration of the orbit matching
algorithm. The initial kicks are distributed according to a Gaussian distribution
with a width of 0.5 mrad.

third iteration then has no further visible impact on the result. The final RMS
values of the simulation after three iterations are:

RMS, suigeration = 0.61415 mm (7.26)
RMS,. gigeration = 0-65048 mm. (7.27)

The final orbits after the third iteration can be seen in Figure 7.5. Compared
to the initial situation displayed in Figure 7.1, the simulated orbits describe the
measured one much better and show great agreements. A perfect match is in
general not feasible since the number of corrector magnets is smaller than the
number of BPMs and the resulting linear system of equation is therefore over-
determined. In addition, the tilts of the orbits by main magnets (dipoles and
quadrupoles) cannot be locally compensated, since the steerers are located be-
tween main magnets.

The preliminary measurement results of the invariant spin axis based on the
data of the measurements in November 2018 gives the following tilt angles of the
invariant spin axis in the x-y plane and y-s plane [95, 54]:

Emeas ~ —3 mrad, (7.28)
Cmeas A~ O mrad (7.29)

The invariant axis that is calculated on the results of the matching algorithm
yields:



82 Chapter 7. Model Fitting Methods

16—

E It — horizontal
c 14+ — vertical
» 120
= r
o 10-
8,
6
4-
[ ]
2- °
O: N A S A IR A
0 0.5 1 1.5 2 2.5 .3,
iteration

Figure 7.4: Closed orbit RMS values of the simulated orbits after each iteration of
the orbit matching algorithm. Initially, all steerer kicks are set to zero. The target
orbits are the measured orbits from the October 2019 beam time. The dashed
lines (red: horizontal, blue: vertical) indicate the RMS values of the measured
orbits.

—2.155972934414 - 103 6.90 - 10713
Fosm = | 0.999997303263848 | + | 2-10715 (7.30)
8.63276165080 - 10~ 1.160 - 1012

and the corresponding tilt angles read:

Eam = —2.155975 mrad + 6.904165 - 10" mrad, (7.31)
Gsim = 0.863278 mrad £ 1.160218 - 10~ mrad. (7.32)

The order of magnitude and the sign of the two £ values turn out to be the same
and the simulated value for ( approached the measured value as well.

Although the simulated closed orbits show a great overlap to the measurement
and the difference in the invariant spin axis decreased as well by matching the
orbits, the simulation model still cannot reproduce the measured betatron tunes
(see Equations (7.24) and (7.25)). A possible reason could be gradient errors of
the quadrupoles and the effect of other magnets in the vicinity of the quadrupoles
so that the effective length is affected as discussed for the dipoles in Section
6.2. Since no reliable data exists for these systematic effects, another matching
algorithm will be used that allows for several fit parameters simultaneously. The
algorithm as well as the simulation results are discussed in the following Section.
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Figure 7.5: Simulated and measured orbits in horizontal and vertical direction.
The simulation used the orbit matching algorithms over three iterations.

7.3 LOCO Algorithm

So far, the optimized simulation model is able do reproduce the measured orbits
by fitting the steerer kicks. As a consequence, the orbit matching works well
but other simulated quantities, like the betatron tunes and the spin tune differ
from the measured values. One of the major parameters that affect the optics
of a storage ring are the focusing and defocusing quadrupoles. Especially their
positions and effective field strengths strongly influence the beam and spin mo-
tion. Although the quadrupole misalignments were measured, the beam based
alignment studies have shown that some quadrupoles might have larger offsets
that cannot be resolved by the laser based position measurements due to geo-
metrical constraints [96]. In addition, magnets close to quadrupoles can affect
the effective length of the quadrupole, similar to the dipole studies in Section
6.2. Furthermore, each quadrupole can have an individual gradient error due to
manufacturing imperfections.

To further improve the model while varying all parameter of interest simultane-
ously, the so called Linear Optics from Closed Orbit (LOCO) technique is used.
It was originally used as a calibration and correction tool for light sources [97,
98|. The method is based on a measured ORM that is compared to the ORM of
the simulation model. The measured ORM contains thousands of points holding
information about the machine optics and the focusing structure. It is therefore
an appropriate instrument to determine the level of agreement between model
and machine and moreover to improve the simulation model by fitting the ORM.
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7.3.1 Basic Idea

So far, the orbit response to each steerer magnet was collected in a matrix. Below,
this matrix is written as an orbit response vector R containing all entries of the
ORM 192, 99]:

Ry
R= _ (7.33)
Ronn.

—

The ORM analysis is based on the assumption that the orbit response vector R
is a function of the machine parameters V;:

R=f(V), (7.34)

where V is the vector of all selected machine parameters. Typical parameters are
quadrupole gradients, quadrupole positions or BPM positions and rolls |[100, 101,
102]. In general, the list of parameters can be arbitrarily large. The machine
parameters contain unknown errors relative to their design values and the ORM
analysis algorithm is supposed to find them. Assuming small impacts of higher
order effects, the Taylor series of the orbit response vector in linear order reads
[92, 103]:

R(V) ~ R(Vo) + R/ (Vo) (V = Va). (7.35)

Here, 170 denotes the initial guess of the N machine parameters, usually given by
the simulation model settings and ]%(V) describes the measured orbit response
vector. Thus, E(VO) is the model orbit response vector based on the initial guess
of the machine parameters. The linear map R/(V}) is the Jacobian, also denoted
as J. It holds the information how the entries of the orbit response matrix vary
with respect to the machine parameters in linear order. The difference of the
simulated orbit response vector and the measured one can thus be described by
the Jacobian matrix and the difference in the machine parameter vectors:

AR = R(V)™e — R(Vy)™ede = J(V — 1), (7.36)
where the Jacobian reads:
O0AR11 0AR11 L O0AR11
Vo,1 Vo,2 Vo.n
dAR1> dAR1> L dAR>
Vo.1 Vo,2 Vo,n
J= : : : : (7.37)
ODRmn_1) ODRmn_1) DRy y
Vo,1 Vo,2 Vo, N
IARmn OARmn . 9ARma

Vo1 Vo,2 Voon -
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The interesting information in the process of improving the simulation model are
the real machine parameter V. It is therefore necessary to extract the difference
vector AV =V — V. Multiplying Equation (7.35) with J~!, the difference of
model parameters and real machine parameters can by written as:

— —

AV =V — Vo = I R(V)™* — R(Vo)™) = J'AR. (7.38)

The goal of the LOCO algorithm is decreasing the difference of the orbit response
vectors AR. Therefore, a y>-minimization is performed where the x? function is
defined as the squared sum of the difference of the ORM entries [104]:

Y v . (7.39)

B |Rmeas o R;I;odel|2

The BPMs and steerer magnets are indicated by the indices ¢ and j and oy
denotes the measurement uncertainties of the ORM. In order to implement the
ORM analysis into the established Bmad library, the Jacobian is determined by
varying the chosen machine parameters and performing linear fits for the response
of each ORM entry. The calculation of the ORM itself was already implemented
for the orbit matching algorithm and is now set corresponding to Equations (7.7)
and (7.8). The inverse of the Jacobian matrix J~! can again be obtained using
the SVD method.

The implemented algorithm works as follows [92]:

1. Set the first guess for the real machine parameters % and apply them to
the simulation model.

2. Determine the ORM of the simulation model R™°9 and reformat it into
an orbit response vector R™°del,

3. Measure the ORM at the real machine by varying the steerer strengths and
observing the changes of the BPM readings. This has to be done only once.

4. Compute the difference of the orbit response vectors AR.

5. Compute the Jacobian matrix J: Vary the machine parameters in two di-
rections and observe the changes in AR. Perform a linear fit for each entry
of AR and each machine parameter.

6. Determine the pseudo-inverse of the Jacobian matrix by using the SVD
method.

7. Calculate a new set of machine parameter guesses using the results from
Equation (7.38): V@V = Veold + AV,
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8. Start the next iteration at step 1.

For a better understanding, the procedure is sketched in Figure 7.6. Several iter-
ations of the algorithm can further improve the fitting results since the Jacobian
matrix entries are based on linear fits. Non-linear effects therefore cannot be re-
solved within one iteration. After each iteration, the value of y? is computed and
the algorithm stops when a chosen threshold value is reached. The advantage of
the ORM analysis is the fact that even in the case of more than one iteration, the
ORM of the real machine has to be measured only once. All other quantities are
based on the simulation model and do not need any measurement data as input.

Figure 7.6: Working principle of the ORM analysis algorithm based on the LOCO
method. All parts that are purely related to the simulation are marked with
Bmad. The ORM has to be measured only once independently of the number of
fitting iterations that are performed. After one cycle, the result of the current
iteration is used to set the new machine parameter guess for the next iteration.
Performing several iterations can lead to a better fit result since a single iteration
cannot account for non-linear effects (adapted from [105]).

Bmad

So far, the ORM analysis algorithm is discussed without any external constraints
that might be applied to ensure stable beam conditions in between the iterations
or to prevent unrealistic solutions. If the initial guess of the starting parameter
settings is too far away from the real setup, the LOCO fitting might converge
in an unrealistic way with very large changes of very few machine parameters.
For instance, a very sensitive quadrupole could get an unrealistically large field
whereas other magnets are not used at all for the fitting process. If the field
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gets too large, the resulting Bmad model is unable to compute a closed orbit
and the following iterations fail. Another inefficiency can appear due to the
correlation between the fitting parameters, which usually exists between nearby
quadrupoles. These quadrupoles act against one another and the reduction in y?
is small although the single quadrupole fields might be set to very high values
[106, 107].

A very restrictive approach to avoid unrealistic fit solutions is the removal of
singular values that are below a specific threshold value. Since removing a singular
value is always coupled to a loss of information and could therefore affect the
fitting accuracy, a less drastic approach is used below. The idea is based on
penalty weights for each individual machine parameter such that the excursion
solutions become less favorable. Therefore, the x? function is modified by directly
adding penalty terms to the use of machine parameters [106]:

N,
| R;npas o R;nodell2 1 q

=3 ~ J + = > wiAV. (7.40)
ij ij 0 %

The machine parameters are indicated by the index k and N, represents the
total number of machine parameters used in the fitting process. The individual
weighting factors are denoted by w; and a global normalization constant oy is
introduced. The modified merit function goes along with N, additional linear
equations in the minimization problem:

AV, =0, ke {1,..,N,}, (7.41)

2
each weighted with % These equations can easily be implemented into the
0

existing algorithm by modifying the difference vector AR and the Jacobian matrix
J. The original Jacobian J, is extended by N, rows with non-zero elements:

Tomse = k. (7.42)
go
The final matrix then reads:
Jo
J= ZU_; O 0 --- 0 (7.43)
0 % 0 0
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The initial difference vector Afio is extended by N, zeros and the new vector is
given by:

AR = . (7.44)

0

The global minimum of the minimization problem is not changed by the additional
constraints since the penalty costs are only applied to changes of the machine
parameter in each iteration. Thus, the solution of the underlying problem stays
the same, only the convergence path changes in a way that excursion solutions
are avoided.

The individual weights wy should be adjusted according to the performance of the
algorithm. Setting an infinite penalty on a machine parameter is equivalent to
the removal of a singular value. The weights have to be chosen properly: if they
turn out to be too high, the simulation model converges too slowly and too many
iterations are needed to reach the global minimum. If they are chosen to be too
low, the algorithm will still run into unrealistic solutions and there is no benefit of
using the penalty weights. In order to find a suitable set of weights, a calibration
run is performed before the actual iterative fitting algorithm starts. The sensitive
parameters can be identified by their individual x? contribution. It is defined as
the increase in x? when the parameter is set to its initial value and meanwhile
keeping all other parameters unchanged [106]. Very sensitive parameters with
a high contribution will obtain a higher penalty weight, parameters with low
sensitivity will get a lower weight respectively. The weights are calculated by
globally scaling the y? contributions to values where a stable solution is found by
the simulation model. This is done in an iterative process starting with relatively
high weights and successively decreasing them until the boundary to unstable
motion is reached. The danger of oversized weights and inefficient convergence is
therefore decreased.

7.3.2 Benchmarking

In order to test the algorithm and to ensure accuracy of the simulation, two dif-
ferent scenarios are investigated. In the first case, the quadrupole family settings
are randomly distorted using a Gaussian distribution around zero with a width
of 1%. The distorted lattice takes the role of the measured lattice and the undis-
turbed model is the starting point of the algorithm. The threshold y? value is
set to:
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X‘?hreshold = 0.005. (745)

In this case, the algorithm needs three iterations to end up with a x? value below
the threshold. The 2 values after each iteration are:

Start : x* = 801.6845 (7.46)
1" iteration : x? = 64.5243 (7.47)
22 iteration : x* = 0.5510 (7.48)
3 iteration : x* = 0.0009. (7.49)

Figure 7.7 depicts the difference ORM as well as the deviation of quadrupole
family settings. The situation at the starting point is shown as well as the results
after the first and third iteration, where the differences are almost perfectly zero.
In the second scenario, the individual quadrupole gradients are randomly dis-
torted, leading to an initial y? value of x? = 1132.73. Again, the algorithm for
this case needs three iterations to reach the y? threshold value and the values
after each step read:

Start : x* = 1132.7272
15" iteration : y* = 47.0522
27 jteration : x* = 3.2837
3" iteration : y2 = 0.0007.

The initial situation as well as the results after the second and third iteration are
shown in Figure 7.8. In both scenarios, the algorithm was able to fit the model
with high accuracy to the target lattice within only three iterations. The final
magnet settings match the target ones and no excursion path to the minimum
solution was taken. Combining both scenarios and randomly mismatching the
quadrupole family settings as well as the individual quadrupole gradients can
also be resolved by the algorithm. Here, the algorithm reaches the threshold y?
value after four iterations. The difference ORMs can be seen in Figure 7.9.

In general, arbitrarily many machine parameters can be included and fitted si-
multaneously with the LOCO algorithm. However, the ORM is not sensitive to
every machine parameter group. While already small quadrupole gradients and
positions marginally change the ORM entries, steerer kick changes do not lead to
considerable changes in the ORM. Since the ORM entries are calculated on the
basis of steerer changes, the initial steerer settings do not matter as long as they
do not take extreme values where the orbit is dominated by non-linear effects.
It is therefore questionable, if the involvement of steerer kicks into the vector of
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machine parameters helps finding a realistic fit result. Nevertheless, the steerer
kicks are one of the major unknown parameters when comparing the COSY model
to the real machine. A reasonable approach is a step-wise fitting of quadrupole
gradients, positions and steerer kicks. First, the quadrupole parameters are fitted
using the LOCO algorithm. After reaching a minimum, the steerer kicks are then
fitted in a next step using the orbit matching algorithm form Section 7.2.
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Figure 7.7: Evolution of the difference ORM and the difference of quadrupole
family settings over three iterations. The initial offset is achieved by randomly
disturbing the quadrupole family settings of the initial model lattice.
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lattice.
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7.4 Analysis of Measurements

For a first application of the LOCO algorithm within the Bmad framework, the
orbit response matrix was measured in October 2019. Therefore, the settings of
the steerers were changed one after another and the corresponding orbit was mea-
sured. The set values of the quadrupole and sextupole currents were translated
into quadrupole and sextupole strength values and applied to the Bmad model.
The measured and the model orbit response matrix are displayed in Figure 7.10.
The difference of the two matrices is also shown and serves as the starting point
for the LOCO algorithm.

'mrad

R; in mm/

(c) Initial difference orbit response ma-
trix.

Figure 7.10: Measured and model orbit response matrix as well as the difference
matrix. The magnet settings during the measurement were applied to the Bmad
model and the initial difference matrix serves as the starting point for the LOCO
algorithm.
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The LOCO algorithm was set up to change the quadrupole gradients as well as
the positions in each direction. The influence of the initial weights for the single
parameters can be seen in Figure 7.11. For each run, the weights were randomly
set, within a range that allows for stable operation. After setting the weights, the
algorithm was stopped after 30 iterations. The y?/ndf value after each iteration
is calculated and displayed in Figure 7.11. Independent of the initial weights, the
global minimum is approached and the first iterations contribute the most to the
overall y? decrease. Nevertheless, there are sets of initial weights that are slightly
more efficient and reach smaller y? values within the same number of iterations.

x2/ndf
~

—_

0 numbe2r50f iteratiggs
Figure 7.11: Different paths towards the global minimum of the minimization
problem. Each path is the result of a different set of penalty weights.

For the most efficient set of weights, the final quadrupole gradient and position
changes are given in Figure 7.12. The position changes in all three directions
are mostly within the 20 range of the communicated positioning accuracy of
0.2mm [108]. However, one can identify larger changes in the horizontal direction.
The corresponding quadrupole names are indicated in Figure 7.12. During the
beam based alignment procedure in October 2019, exactly these quadrupoles
were identified to have larger horizontal offsets than originally measured [96].
Due to an imperfect positioning of the reference marks on top of the magnets,
the measurement of the horizontal positions turned out to be inaccurate. With a
second measurement using a different method the horizontal misalignments of the
named quadrupoles were investigated. The values found by the LOCO algorithm
are very close to the ones that were measured. It is therefore a remarkable result
that the LOCO algorithm was able to detect the same quadrupoles that were
already identified by experimental investigations.

In addition to the LOCO fitting, the simulated orbits are fitted using the method
from Section 7.2. Five iterations were performed and the final orbits are displayed
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Figure 7.12: Changes of quadrupole gradients and positions after the final LOCO
iteration.

in Figure 7.13 together with the measured orbits. The corresponding steerer kicks
are given in Figure 7.14. The difference orbit response matrix after using the
LOCO algorithm and fitting the orbits is finally given in Figure 7.15. Compared
to the initial difference given in Figure 7.10 (c), a large improvement can be seen
and the final x?/ndf value reads

x?/ndf = 1.13. (7.54)

Besides the horizontal and vertical orbits, also betatron function measurements
at designated quadrupoles were performed in order to validate the model fitting
results. Therefore, the quadrupole strength of one magnet k; was changed and
the resulting tune change was measured. The betatron function can then be
determined through

R
where L; is the length of the quadrupole. Both, the simulated and measured be-
tatron function values are shown in Figure 7.16 for the investigated quadrupoles.
The error bars for the measured values are relatively large since each quadrupole
strength was only changed once upwards and once downwards. A more precise

(7.55)
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Figure 7.13: Closed orbits in horizontal and vertical direction after fitting the
simulated orbits by changing the steerer kicks using the orbit matching method
presented in Section 7.2 over five iterations.

value could be reached by performing more and smaller steps during a longer
beam time. Nevertheless, the comparison of simulation and measurement shows
a large overlap and thus validates the LOCO result. The simulated and measured
betatron tunes similarly agree within a 20 range and read

Qusim = 3.58210 (7.56)
Qmeas = 3.57119 £ 0.00603 (7.57)
Qy,sim = 3.59430 (7.58)
Qyomeas = 3.58641 + 0.00396. (7.59)

As the final step, the invariant spin axis of the fitted model is investigated and
reads

—3.1220590943607 - 1073 4.87-1071
e sim = 0.9999946293450525 + 210716 . (7.60)
9.970095598617 - 10~ 1.020- 1071

In order to investigate the stability of these values, the steerer values are randomly
varied by using a Gaussian distribution and assuming an error of 1% for each
steerer kick
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Figure 7.14: Final steerer settings after fitting the simulated closed orbits to the
measured orbits using the method presented in Section 7.2.

where the steerer number is denoted by the index 2. The distribution of the
horizontal and longitudinal component of the invariant spin axis are shown in
Figure 7.17. The widths of the Gaussian fits being performed to the data are
used as an uncertainty measure for the values in Equation (7.60). In this sense,
the horizontal and longitudinal component thus read

n, = —3.122-107° £ 8.5148 - 1077, (7.62)
n, =9.97-10"* 4 1.30637 - 10°. (7.63)

Since a change in the steerer kicks not only changes the invariant spin axis but
simultaneously changes the orbit, the closed orbits for each random seed were
simulated as well. The result can be seen in Figure 7.18. For the assumed steerer
kick errors of 1%, the closed orbit deviations are still small enough to be in good
agreement with the measured orbits and the previously performed orbit matching
is therefore still valid.

The tilt angles in horizontal and longitudinal direction that correspond to the
invariant spin axis in Equation (7.60) are given by

&im = —3.122066 mrad + 4.870750 - 10~ mrad (7.64)
Csim = 0.997015 mrad + 1.019360 - 10~'% mrad. (7.65)

The preliminary measurements based on measurements in November 2018 are
given in Equations (7.28) and (7.29). The simulated tilt angle in horizontal direc-
tion is in agreement with the measurement, whereas the tilt angle in longitudinal
direction is smaller than the measured one by a factor of five. The invariant spin
axis is further tilted in the longitudinal direction if an additional longitudinal
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Figure 7.15: Final difference ORM after fitting the model using the LOCO algo-
rithm as well as the orbit matching method.

magnetic field was present. Most likely this additional field component is the
sum of many smaller field contributions such as fringe fields, especially in areas
where the distances between magnets are small. Field map investigations have
already been started to further investigate this effect [109]. An additional hint
for potential improvement is provided by the simulated spin tune, which has a
value of

Vg gim = 0.1 549107, 66
sim = 0.16143665 + 9 - 10~ (7.66)

Compared to typical measured values, it deviates upwards by about 0.0004. One
reason for this can be an overestimation of steerer kicks during the orbit matching
procedure that tries to minimize any remaining deviation by adjusting the steer-
ers. The model can be further optimized by adding additional systematic effects
like the fringe field overlaps mentioned above to the model. In total, one has to
be careful when comparing the measured invariant spin axis and spin tune with
the presented simulation results since the model optimization was performed on
the basis of data taken in October 2019 where no polarized beam was available.
The spin related data was taken prior to the beam based alignment procedure in
an earlier beam time where different magnet settings were applied and the orbit
response matrix was not measured. In the future, it is planned to do both orbit
and optics as well as polarization measurements with a fixed machine setting in
order to achieve a complete set of information that is needed to compare the
simulation model to the real machine.
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(b) Simulated and measured vertical betatron function values.

Figure 7.16: Comparison of simulated and measured betatron functions. The
betatron functions are measured at the position of quadrupoles by varying the
quadrupole strength and observing the corresponding betatron tune change.
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Figure 7.17: Distribution of the horizontal and longitudinal component of the
invariant spin axis after randomly changing the steerer kicks. For each steerer,
an uncertainty of 1% was assumed. The widths of the Gaussian fits are taken as

a measure of the uncertainties to the invariant spin axis components.



102 Chapter 7. Model Fitting Methods

1S 3 E —— mean orbit
E 2K 26 band
ek /
> 1
0F
=35 20 40 50 80 100 120 140 160 180
sinm
g 4 E — mean orbit
1S 3= [77] 26 band
£ 2
- 1
0F
- ? A
-2k
-3 ;7
45

20 40 80 80 100 120 140 160 B0
Figure 7.18: Closed orbits in horizontal (red) and vertical (blue) direction after
fitting the model using the LOCO algorithm and matching the orbits by adjusting
the steerer kicks. A 20 range is shown based on randomly changed steerer kicks
assuming an error of 1% for each steerer setting.
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8. Conclusion and Outlook

The existence of permanent EDMs of fundamental particles could explain the
matter antimatter asymmetry in the Universe. EDMs of charged particles can be
studied using storage rings as particle traps and observing the evolution of the
beam polarization. In the context of this thesis, a simulation model of COSY
was discussed in order to investigate systematic effects for the EDM experiment
at COSY, especially their impact on the invariant spin axis. Therefore, the
COSY lattice was implemented using the software library Bmad. The model was
extended by a realistic description of the RF Wien filter using grid field maps
followed by successful benchmarks against theoretical predictions. In addition,
the Bmad library was expanded by routines that calculate the spin tune and
invariant spin axis with high accuracy using spin tracking results.

In a second step, magnet misalignments and effective lengths of dipoles and
quadrupoles were studied. The misalignments of all dipoles and quadrupoles
that were measured after the realignment were implemented into the simulation
model. The resulting closed orbit is distorted with RMS values at the order of
1 mm. The misalignments tilt the invariant spin axis by 0.19mrad in horizontal
and 0.23 mrad in longitudinal direction. Since both values are one order of mag-
nitude smaller than the measured angles, the magnet misalignments can not fully
explain the spin motion in COSY. However, the measurement accuracies of the
misalignments were used to determine a lower limit of the EDM measurement at
COSY. Randomly changing the positions and rotations within these accuracies
leads to closed orbit changes. From the corresponding tilt angles distributions
of the the invariant spin axis, the minimal resolvable EDM value turned out
to be 1.49- 107 ecm. Due to closely mounted magnets, the effective length of
dipoles and quadrupoles can be affected. Using first estimates for the shortening
of the dipoles due to nearby steerer magnets, the effect on the closed orbit was
investigated and compared to measurements. The comparison of simulated and
measured orbits show large agreements when the steerer magnets are turned off.
Here, further investigations are needed, since the effective length of the dipoles
have to be calculated more carefully using field map simulations or even measure-
ments. On the other hand additional orbit measurements, especially with turned
off steerer magnets, are needed for a detailed comparison to simulation results.
Additionally, the quadrupole fields are likely to be affected by other magnets and
have to be studied in the future.
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In order to improve the model quality and fit it to measurements of the real
machine, two fit methods were implemented into Bmad, have been successfully
benchmarked and applied to measurements. The first method uses the well known
orbit correction algorithm to fit the simulated orbit to the measured values by
changing the steerer magnets. The second method minimizes the difference of
simulated and measured orbit response matrices and allows for a simultaneous
fit of several different machine parameters. Combining and applying both algo-
rithms results in a simulation model that shows large similarities to the machine
quantities. The final orbits, betatron tunes as well as the betatron functions are
in good agreement. The final invariant spin axis is tilted by 3.122mrad in hori-
zontal and 0.997 mrad in longitudinal direction. Since the measurements for the
fit algorithm could only be done with an unpolarized beam, there are no direct
benchmark values for the invariant spin axis. However, a comparison to former
preliminary measurement results of the November 2018 beam time shows that
the tilt in horizontal direction is close to the measured one. The tilt angle in lon-
gitudinal direction is around five times smaller than the measured value. To fully
compare the fit algorithm results to the machine, a complete set of measurements,
including optics, orbit and polarization measurements is needed.

All in all; the simulation model of COSY was successfully extended towards a
more realistic description of the machine by adding several systematic effects and
implementing a sophisticated fitting algorithm based on orbit response matrix
measurements. The fit procedure can be used to achieve a deeper understanding
of beam time measurements and can easily be extended to fit further machine
parameters.
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A.1 Phase Space Simulations
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Figure A.1: Three-dimensional phase space of a particle with an initial horizontal
offset at injection. Due to non-vanishing dispersion, different ellipses varying in
their horizontal center position can be seen in the longitudinal phase space.
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Figure A.2: Three-dimensional phase space of a particle with an initial longitudi-
nal momentum offset of % = 10~* at injection. While the vertical phase space
is not affected, the horizontal motion is a superposition of betatron oscillations
and dispersive effects.



ii Appendix A. Appendix

A.2 Default Quadrupole Settings

Quadrupole family strength in 5

QT1 ~0.5639776707
QT2 0.5242107005
QT3 0.7447403327
QT4 -0.6868960770
QT5 -0.6418238093
QT6 0.5903630483
QT7 -0.6341148281
QT8 0.5903479168
QU1 -0.27125

QU2 0.333592

QU3 0.27125

QU4 0.44548

QU5 -0.27125

QU6 0.333592

Table A.1: Default quadrupole strength settings of the COSY model. Each
quadrupole family comprises four single quadrupoles. The arc quadrupoles are
indicated by the letter "U", the ones in the straight sections are labeled with
"T". A positive quadrupole strength represents a quadrupole that is horizontally
focusing and vertically defocusing.
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Figure A.3: Measured misalignments of all quadrupoles including the measure-
ment uncertainties. QT1, ..., QT16 are the quadrupoles in the straight sections
and QUI, ..., QU12 the quadrupoles in the arc sections of COSY. The measure-
ments were performed in January 2020.
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Figure A.4: Measured rotations of all dipoles including the measurement uncer-
tainties. The individual 24 dipole magnets of COSY are denoted with B1, ...,
B24. The measurements were performed in January 2020.



A.3. Magnet Misalignments

Qu22
Qu21
Qu20
Quig
Quis
Qui7
Qu16
Quis
Qui4
Qui3
QT32
QT31
QT30
QT29
Q28
Qr27
QT26|
Q25
Qr24]
Q123
QT22
QT21
QT20]
QT19
Q18
Qr17
Qui2
Quil
Quio
Qu9
Qus
Qu7
QUS|
Qus
QU4
Qus
Qu2
Qul
QT16|
QT15
QT14
QT13
QT12
QT11
QT10]
QT9
QT8
QT7
QTé|
Q15
QT4
QT3
QT2
QT1
Qu24
Qu23

Quadrupole

n [ ] -
I - [ ]
] |
| ] -
] - 1
] ] |
| ] L]
] - .
| ] I
| [ ] |
| 1 [ ]
| -
[} 1 |
] n |
| i |
| | | | |
- | |
] | | |
| 1 ]
- [ ] I
| 1 |
[} 1 ]
| 13 1
] 1 ]
I ] -
] n -
.| -
| - |
I ] -
| 1 ]
I I |
| 1 |
| I
- 1 |
| .
| 1 . |
| | T
| 1 |
| 1 ]
u 1 1
| ]
] ] 1
| 13 ]
] - ]
] n
| 1 |
| | -
| n |
1 1 |
u 1 -
| [ ] |
] | [ ]
I i ]
n | ] |
] | ] |
- 1 ]
-56 -28 00 28 56 -33 -1.6 00 16 33 -20 -10 00 10 20
as in deg x10 a, in deg x10 ay in deg x10

Figure A.5: Measured rotations of all quadrupoles including the measurement
uncertainties. QT1, ..., QT16 are the quadrupoles in the straight sections and
QUT, ..., QU12 the quadrupoles in the arc sections of COSY. The measurements
were performed in January 2020.






List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3

5.4
)
5.6

5.7
5.8

5.9
5.10

5.11

5.12

5.13
5.14
5.15
5.16
5.17

Schematic illustration of a particle in an external magnetic and
electric field including a permanent EDM. . . . .. ... ... ..

Co-moving Cartesian coordinate system. . . . . . ... ... ...
Path dependent velocity of a particle in a storage ring. . . . . . .
Transverse motion of particles with envelope. . . . . . . . . .. ..
Sketch of a phase space ellipse. . . . . . ... ... ... .....

Sketch of the tilt égpy of the spin closed orbit. . . . . . . . . . ..
Schematic drawing of the RF Wien filter method. . . . . . . . ..

Sketch of the synchrotron COSY. . . ... ... ... ... ....
Optical functions of the default lattice. . . . . . . . ... .. ...
Three-dimensional phase space of a particle with an initial vertical
offset. . . . ..
In-plane spin precession due to the MDM. . . .. ... ... ...
Vertical spin component of the reference particle. . . . ... ...
Tracking results for an initial spin along the momentum axes in-
cluding a non-vanishing EDM. . . . . .. .. ... ... ......
RF Wien filter fields. . . . . . . .. ... .. ... .. ... . ...
RF Wien filter: Normalized field distribution of the radial electric
and vertical magnetic field along the longitudinal axis. . . . . . .

Example for minimizing the Lorentz force inside the RF Wien filter.

The maximum value of the horizontal emittance as function of
magnetic field changes. . . . . .. ... 0oL
Spin components after tracking a initially longitudinal spin assum-
ing a non-vanishing EDM. . . . . .. ... ... ... 000
Average vertical spin buildup per turn as a function of the initial
RF Wien filter phase. . . . . . . .. . ... ... .. ... ...,
Vertical spin component for different EDM values. . . . . . . . ..
A complete slow spin oscillation due to an EDM. . . .. ... ..
Spin tracking results for the reference particle. . . . . . . . .. ..
Spin tune determination using spin tracking calculations. . . . . .
Determination of the invariant spin axis using spin tracking calcu-
lations. . . . . . . .

vii

14
17
21
22

34
37

39
43

45
46
46

47
48

20
ol

ol

92

33
93
o4
56
a7



viii List of Figures

6.1 Geometric layout of the reference marks (P1, ... , P5) on top of
the COSY dipoles and quadrupoles. . . . . . . ... . ... ... .. 62

6.2 Measured misalignments of all dipoles including the measurement
uncertainties. . . . ... oL Lo L 65
6.3 Simulated closed orbits including magnet misalignments. . . . . . 66

6.4 Distribution of tilt angles of the invariant spin axis in the y-x-plane
for Gaussian distributed magnet misalignments. . . . . . . .. .. 66

6.5 Distribution of tilt angles of the invariant spin axis in the y-s-plane
for Gaussian distributed magnet misalignments. . . . . . . . . .. 67

6.6 Distribution of tilt angles of the invariant spin axis for Gaussian
distributed misalignments including an EDM. . . .. .. ... .. 67
6.7 Optical functions after effectively shortening the dipoles. . . . . . 71
6.8 Closed orbits resulting from shortened effective dipole lengths. . . 74
6.9 Simulated and measured orbits with turned off steerer magnets. . 75
7.1 Closed orbits including combining all discussed effects. . . . . . . 7

7.2 Benchmark: Closed orbit RMS values of the simulated orbits after
each iteration of the orbit matching algorithm. . . . . . . . . . .. 82

7.3 Steerer kick values in radian after each iteration of the orbit match-
ing algorithm. . . . . . . ..o oL 83

7.4 Measurement: Closed orbit RMS values of the simulated orbits
after each iteration of the orbit matching algorithm. . . . . . . . . 84

7.5 Simulated and measured orbits in horizontal and vertical direction
after fitting the orbits. . . . . . . ... ..o 85

7.6  Working principle of the ORM analysis algorithm based on the
LOCO method. . . . . . .. .. 89

7.7  Benchmarking of the LOCO algorithm using randomly disturbed
quadrupole family settings. . . . . . . ... ..o 93

7.8 Benchmarking of the LOCO algorithm using randomly distributed
quadrupole gradient errors. . . . . . . .. ..o 94

7.9 Benchmarking of the LOCO algorithm using randomly disturbed

quadrupole family settings and randomly distributed quadrupole
gradient errors. . . . . ... Lo Lo 95
7.10 Initial orbit response matrices (measurement and simulation). . . 96
7.11 x? development for different penalty weights. . . . . . . . ... .. 97

7.12 Changes of quadrupole gradients and positions after the final LOCO
iteration. . . . . . . ... 98
7.13 Closed orbits after fitting the steerer kicks. . . . . . . . .. .. .. 99
7.14 Steerer kicks after fitting the closed orbits. . . . . . . . .. .. .. 100
7.15 Final difference ORM after fitting the model. . . . . . . . . . . .. 101

7.16 Simulated and measured horizontal and vertical betatron function
values. . . . L 102

7.17 Distribution of the horizontal and longitudinal component of the

invariant spin axis after randomly changing the steerer kicks. . . . 103



List of Figures ix
7.18 Simulated closed orbits after randomly changing the steerer kicks. 104
A.1 Three-dimensional phase space of a particle with an initial hori-

zontal offset. . . . . . . ... i
A.2 Three-dimensional phase space of a particle with an initial longi-

tudinal momentum offset. . . . .. ... ... . 000 i
A.3 Measured misalignments of all quadrupoles including the measure-

ment uncertainties. . . . . . .. .. L. Lo iii
A.4 Measured rotations of all dipoles including the measurement un-

certainties. . . . . . . . . ... e iv
A.5 Measured rotations of all quadrupoles including the measurement

uncertainties. . . . .. ..o Lo L v






List of Tables

2.1 Measured upper limits for the EDM of different particles. . . . . .

4.1 Measured values of the gyromagnetic anomaly of the proton and
the deuteron. . . . . .. ..o

5.1 Effective lengths of magnets in the COSY model. . . . . . . . ..
5.2 Comparison of spin tune values of the simulation code with theo-
retical predictions. . . . . . . ...

6.1 Quadrupole strength settings of the COSY model for old and new
effective lengths of the quadrupoles. . . . . . .. . ... ... ...
6.2 COSY dipoles that are influenced due to the magnetic fields of
close by sextupoles and steerer magnets. . . . . .. .. ... ...

A.1 Default quadrupole strength settings of the COSY model. . . . . .

xi






xiil

Bibliography

[
2]

13l
4]

[5]

6]

|7l

18]

191

[10]

[11]

Vermessungsbiiro Dipl.-Ing. H.J.Stollenwerk. Bahnstrafse 8, 50126 Berg-
heim.

T. Wagner and J. Pretz. Beam-based Alignment at the Cooler Syncrotron
(COSY). In: Proceedings, 10th International Particle Accelerator Con-
ference (IPAC’19). 2019, pp. 3632-3634. DOI: doi : 10 . 18429/ JACoW -
IPAC2019 - THPGW024. URL: http:// jacow . org/ ipac2019 / papers /
thpgw024.pdf.

JEDI collaboration. Homepage. http://collaborations.fz- juelich.
de/ikp/jedi/. Accessed: 2019-01-27.

L. Canetti, M. Drewes, and M. Shaposhnikov. Matter and Antimatter in
the Universe. New Journal of Physics, 14 (Apr. 2012). por: 10.1088/
1367-2630/14/9/095012.

A. Riotto and M. Trodden. Recent Progress In Baryogenesis. Annual Re-
view of Nuclear and Particle Science, 49 (Jan. 1999). DOI: 10 . 1146/
annurev.nucl.49.1.35.

W. Bernreuther. CP violation and baryogenesis. Lect. Notes Phys., 591
(2002), pp. 237-293.

E. Komatsu et al. Seven-Year Wilinson Microwave Anisotropy Probe-
(WMAP) Observations: Cosmological Interpretation. The Astrophysical
Journal Supplement Series, 192.2 (2011). DOI: 10.1088/0067-0049/192/
2/18.

A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon
asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz., 5 (1967), pp. 32—
35. DOI: 10.1070/PU1991v034n05ABEH002497 .

D. J. Griffiths. Introduction to elementary particles. Wiley-VCH, Wein-
heim, 2008.

M. S. Sozzi. Discrete symmetries and CP wviolation: from erperiment to
theory. Oxford Graduate Texts. Oxford Univ. Press, 2008. DOI: 10.1093/
acprof:0s0/9780199296668.001.0001.

T. D. Lee and C. Yang. Question of Parity Conservation in Weak Interac-
tions. Phys. Rev., 104 (1956), pp. 254 258. DOI: 10.1103/PhysRev.104.
254.



Xiv

BIBLIOGRAPHY

[12]
[13]
[14]

[15]

|16]

[17]

18]

[19]

20]

[21]

[22]

23]

[24]

[25]

C. S. Wu et al. Experimental Test of Parity Conservation in Beta Decay.
Phys. Rev., 105 (1957), pp. 1413-1414. por1: 10.1103/PhysRev.105.1413.

M. Goldhaber, L. Grodzins, and A. W. Sunyar. Helicity of Neutrinos. Phys.
Rev., 109 (1958), pp. 1015-1017. DOI: 10.1103/PhysRev.109.1015.

W. Greiner and J. Reinhardt. Field Quantization. Springer-Verlag Berlin
Heidelberg, 1996.

A. Angelopoulos et al. First direct observation of time-reversal non-inva-
riance in the neutral-kaon system. Physics Letters B, 444 (Dec. 1998). DOL:
10.1016/S0370-2693(98)01356-2.

J. H. Christenson et al. Evidence for the 27 Decay of the KY Meson. Phys.
Rev. Lett., 13 (1964), pp. 138 140. pDOI: 10.1103/PhysRevLett.13.138.

Murray Gell-Mann and A. Pais. Behavior of neutral particles under charge
conjugation. Phys. Rev., 97 (1955), pp. 1387 1389. DOI: 10.1103/PhysRev.
97.1387.

M. Kobayashi and T. Maskawa. CP Violation in the Renormalizable The-
ory of Weak Interaction. Prog. Theor. Phys., 49 (1973), pp. 652-657. DOI:
10.1143/PTP.49.652.

B. I. Khriplovich and S. Lamoreaux. CP Violation Without Strangeness:
Electric Dipole Moments of Particles, Atoms, and Molecules. Springer-
Verlag Berlin Heidelberg, 1997.

N. F. Ramsey and A. Weis. Suche nach permanenten elektrischen Dipol-
momenten: ein Test der Zeitumkehrinvarianz. Physik Journal, 52.9 (1996),
pp. 859-863. DOI: 10.1002/phbl.19960520906.

M. Rosenthal. Ezperimental Benchmarking of Spin Tracking Algorithms
for Electric Dipole Moment Searches at the Cooler Synchrotron COSY .
PhD thesis, RWTH Aachen University. 2016.

A. Czarnecki and B. Krause. Neutron electric dipole moment in the stan-
dard model: Valence quark contributions. Phys. Rev. Lett., 78 (1997),
pp. 4339-4342. pOI: 10.1103/PhysRevLett.78.4339.

M. Pospelov and A. Ritz. Electric dipole moments as probes of new physics.
Annals Phys., 318 (2005), pp. 119 169. DO1: 10.1016/j.aop.2005.04.
002.

F. Guo and U. Meifsner. Baryon electric dipole moments from strong CP
violation. Journal of High Energy Physics, 2012.12 (2012). DOI: 10.1007/
JHEP12(2012)097.

J. M. Pendlebury et al. Revised experimental upper limit on the electric
dipole moment of the neutron. Phys. Rev., D92.9 (2015). DOI: 10.1103/
PhysRevD.92.092003.



BIBLIOGRAPHY XV

[26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

[35]

[36]

137]
138

[39]

Steven Weinberg. A New Light Boson? Phys. Rev. Lett., 40 (1978), pp. 223
226. DOI: 10.1103/PhysRevLlett.40.223.

R.D. Peccei and H. Quinn. CP Conservation in the Presence of Pseu-
doparticles. Physical Review Letters - PHYS REV LETT, 38 (June 1977),
pp. 1440-1443. DOI: 10.1103/PhysRevLett.38.1440.

J. H. Smith, E. M. Purcell, and N. F. Ramsey. Experimental Limit to the
Electric Dipole Moment of the Neutron. Phys. Rev., 108 (1 1957), pp. 120—
122.

J. Baron et al. Order of Magnitude Smaller Limit on the Electric Dipole
Moment of the Electron. Science, 343 (2014), pp. 269 272. por: 10.1126/
science.1248213.

W. C. Griffith et al. Improved Limit on the Permanent Electric Dipole Mo-
ment of Hg-199. Phys. Rev. Lett., 102 (2009). DOI: 10.1103/PhysRevLett.
102.101601.

G. W. Bennett et al. An Improved Limit on the Muon Electric Dipole
Moment. Phys. Rev., D80 (2009). DOI: 10.1103/PhysRevD.80.052008.

V. F. Dmitriev and R. A. Sen’kov. Schiff moment of the mercury nucleus
and the proton dipole moment. Phys. Rev. Lett., 91 (2003). DOI: 10.1103/
PhysRevLett.91.212303.

F. Rathmann and N. Nikolaev. Precursor experiments to search for per-
manent electric dipole moments of protons and deuterons at COSY. In:
Proceedings, 8th International Conference on Nuclear Physics at Storage
Rings. Mar. 2012, p. 029. DOI: 10.22323/1.150.0029.

D. Anastassopoulos, V. Anastassopoulos, D. Babusci, et al. AGS Proposal:
Search for a permanent electric dipole moment of the deuteron nucleus at
the 10727 ecm level. 2004.

F. J. M. Farley et al. New Method of Measuring Electric Dipole Mo-
ments in Storage Rings. Physical Review Letters, 93.5 (2004). por: 10.
1103/physrevlett.93.052001. URL: http://dx.doi.org/10.1103/
PhysRevLett.93.052001.

K. Wille. Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquel-
len: Eine Einfiihrung. Vieweg+Teubner Verlag, 2013.

H. Wiedemann. Particle accelerator physics. 3rd ed. Berlin: Springer, 2007.

F. Hinterberger. Physik der Teilchenbeschleuniger und Ionenoptik. 2nd ed.
Springer-Verlag, 2008. URL: https : //www . bibsonomy . org /bibtex /
2f1a71df0£fd198c3f66e7630457e469c7/pkilian.

V. Schmidt. “Analysis of Closed-Orbit Deviations for a first direct Deuteron
Electric Dipole Moment Measurement at the Cooler Synchrotron COSY”.
MA thesis. RWTH Aachen University, 2016.



XVi

BIBLIOGRAPHY

[40]
[41]

[42]
[43]

|44]

|45]

|46]

47]

48]

|49]

[50]

[51]

[52]

[53]

[54]

J. Buon. Beam Phase Space and Emittance. Tech. rep. CERN, 1992.

H. Stréher. EDM Experiments at Storage Rings. EPJ Web of Conferences,
181 (Jan. 2018). poOI: 10.1051/epjconf/201818101031.

S. Y. Lee. Spin Dynamics and Snakes in Synchrotrons. 1st ed. World Sci-
entific, 1997. 1SBN: 9789810228057.

D. Fick. Einfiihrung in die Kernphysik mit polarisierten Teilchen. Mann-
heim, Bibliographisches Institut, 1971.

G. G. Ohlsen. Polarization transfer and spin correlation experiments in
nuclear physics. Rept. Prog. Phys., 35 (1972), pp. 717-801. DOI: 10.1088/
0034-4885/35/2/305.

W. Pauli. Zur Quantenmechanik des magnetischen Elektrons. Vieweg Ver-
lag, 1988.

B. Povh et al. Particles and Nuclei: An Introduction to the Physical Con-
cepts. Springer Berlin Heidelberg, 2002.

LL.H. Thomas. The Kinematics of an electron with an axis. Phil. Mag. Ser.
7,3 (1927), pp. 1 21. DOI: 10.1080/14786440108564170.

V. Bargmann, Louis Michel, and V.L. Telegdi. Precession of the polar-
ization of particles moving in a homogeneous electromagnetic field. Phys.
Rev. Lett., 2 (1959). Ed. by Thibault Damour, Ivan Todorov, and Boris
Zhilinskii, pp. 435-436. DOI: 10.1103/PhysRevLett.2.435.

T. Fukuyama and A. J. Silenko. Derivation of Generalized Thomas-Barg-
mann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment.
Int. J. Mod. Phys., A28 (2013). DOI: 10.1142/S0217751X13501479.

J. Pretz. Measurement of Permanent Electric Dipole Moments of Charged
Hadrons in Storage Rings. Hyperfine Interactions, 214 (Jan. 2013). DOT:
10.1007/810751-013-0799-4.

A. J. Silenko. Quantum-mechanical description of the electromagnetic in-
teraction of relativistic particles with electric and magnetic dipole mo-
ments. Russ. Phys. J., 48 (2005). |Izv. Vuz. Fiz.48,9(2005)|, pp. 788-792.
DOI: 10.1007/s11182-005-0203-1.

BNL Storage Ring EDM Collaboration. A Proposal to measure thr Proton
Electric Dipole Moment with 10~ ecm Sensitivity. 2011.

S. Martin, A. Lehrach, and R. M. Talman. Design of a Prototype EDM
Storage Ring. In: Proceedings, SPIN 2018. Sept. 10, 2018, p. 144. URL:
https://juser.fz-juelich.de/record/862005.

F. Abusaif et al. Feasibility Study for an EDM Storage Ring (Dec. 2018).
Ed. by C. Carli et al. arXiv: 1812.08535 [physics.acc-ph].



BIBLIOGRAPHY Xvii

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

|63]

[64]

[65]

|66]

|67]

V. Schmidt and A. Lehrach. Analysis of closed orbit deviations for a first
direct deuteron electric dipole moment measurement at the cooler syn-
chrotron COSY. J. Phys. Conf. Ser., 874.1 (2017). DOIL: 10.1088/1742-
6596/874/1/012051.

A. Skawran and A. Lehrach. Spin tracking for a deuteron EDM storage
ring. J. Phys. Conf. Ser., 874 (2017). DOI: 10.1088/1742-6596/874/1/
012050.

M. Rosenthal. RF Wien Filter Based EDM Measurements using Clock-
wise/ Counterclockwise Beams. JEDI: Internal Note, (2016).

W. Morse, Y. Orlov, and Y. Semertzidis. Rf Wien filter in an electric dipole
moment storage ring: The "partially frozen spin" effect. Physical Review
Special Topics Accelerators and Beams, 16 (Nov. 2013). DoI: 10.1103/
PhysRevSTAB.16.114001.

J. Slim et al. Electromagnetic Simulation and Design of a Novel Waveguide
RF Wien Filter for Electric Dipole Moment, Measurements of Protons
and Deuterons. Nucl. Instrum. Meth., A828 (2016), pp. 116-124. por:
10.1016/j.nima.2016.05.012.

V. Hejny and J. Pretz. Possible ways to extract the EDM from Wien filter
data. JEDI: Internal Note, (2018).

R. Maier et al. Cooler synchrotron COSY. Nuclear Physics A, 626 (1997),
pp. 395-403.

J. Slim. A Novel Waveguide RF Wien Filter for Electric Dipole Moment
Measurements of Deuterons and Protons at the CQoler SYnchrotron -

(COSY)/Jiilich. PhD thesis, RWTH Aachen University. 2018.

R. Weidmann et al. The polarized ion source for COSY. Rewview of Sci-
entific Instruments, 67 (Apr. 1996), pp. 1357 —~1358. DOI: 10.1063/1.
1146665.

W. Brautigam et al. Status and perspectives of the cyclotron JULIC as
COSY injector. Nukleonika, 48, suppl.2 (2003), pp. 123 126.

A. Lehrach. Erarbeitung und Umsetzung eines Konzepts zur Beschleu-
nigung polarisierter Protonen im Kuhlersynchrotron COSY. PhD thesis,
Universitit Bonn. 1998.

V. Bocharov et al. Budker INP proposals for HESR and COSY electron
cooler systems. In: AIP Conference Proceedings. Vol. 821. Mar. 2006. DOTI:
10.1063/1.2190126.

N. Alinovskiy et al. 2 MEV Electron Cooler for COSY and HESR - First
Results. In: Proceedings, 5th International Particle Accelerator Confer-
ence. 2014, pp. 765 767. URL: http://juser.fz-juelich.de/record/
187936.



XViil

BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

|76]

7]
78]

[79]

[80]

D. Mohl et al. Physics and Technique of Stochastic Cooling. Phys. Rept.,
58 (1980), pp. 73-119. por: 10.1016/0370-1573(80)90140-4.

D. Prasuhn et al. Electron and stochastic cooling at COSY. Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 441 (Feb. 2000), pp. 167
174. DOI1: 10.1016/S0168-9002(99)01128-6.

V.S. Morozov et al. Spin manipulation of 1.94-GeV /c polarized protons
stored in the COSY cooler synchrotron. Phys. Rev. ST Accel. Beams, 7
(2004), p. 024002. DOT: 10.1103/PhysRevSTAB.7.024002.

Ya.S. Derbenev and A.M. Kondratenko. Polarization kinematics of parti-
cles in storage rings. Sov. Phys. JETP, 37 (1973), pp. 968-973.

P. Benati et al. Synchrotron oscillation effects on an rf-solenoid spin reso-
nance. Physical Review Special Topics - Accelerators and Beams, 15 (Dec.
2012). DOI: https://doi.org/10.1103/PhysRevSTAB.15.124202.

B. Hoistad et al. Proposal for the Wide Angle Shower Apparatus (WASA)
at COSY-Jilich - "WASA at COSY". arXiv preprint nucl-ex/0411038.
2004.

O. Javakhishvili, I. Keshelashvili, and D. Mchedlishvili. A storage ring
EDM polarimeter. In: Proceedings, Journal of Physics: Conference Se-
ries. Detection Systems, Techniques in Nuclear, and Particle Physics. Sept.
2019.

G. Guidoboni et al. How to Reach a Thousand-Second in-Plane Polariza-
tion Lifetime with 0.97-GeV /¢ Deuterons in a Storage Ring. Phys. Rewv.
Lett., 117.5 (2016), p. 054801. DOI: 10.1103/PhysRevLlett.117.054801.

D. Sagan. Bmad: A relativistic charged particle simulation library. Nucl.
Instrum. Meth., A558.1 (2006), pp. 356-359. 1SSN: 0168-9002. DOT: https:
//doi.org/10.1016/j.nima.2005.11.001.

M. Clausen and L. Dalesio. EPICS: Experimental physics and industrial
control system. ICFA Beam Dynamics Newsletter, 47 (Jan. 2008).

V. Hejny and J. Pretz. Wien-filter induced spin rotations derived from the
Thomas-BMT equation. Internal Note. 2018.

V. Poncza and A. Lehrach. Search for Electric Dipole Moments at Cosy
in Jiilich - Spin-Tracking Simulations Using Bmad. In: Proceedings, 10th
International Particle Accelerator Conference. 2019, MOPTS028. DOI: 10.
18429/JACoW-IPAC2019-MOPTS028.

D. Eversmann et al. New Method for a Continuous Determination of the
Spin Tune in Storage Rings and Implications for Precision Experiments.
Physical Review Letters, 115 (9 2015). DOI: https://doi.org/10.1103/
PhysRevLett.115.094801.



BIBLIOGRAPHY Xix

[81]

82
83
[84]

85]

[36]

187]
183

[89]

[90]

[91]

192]

193]

[94]

[95]

D. Eversmann. High Precision Spin Tune Determination at the Cooler
Synchrotron in Jilich. PhD thesis in preparation, RWTH Aachen Univer-
sity. 2019.

W. Jellinghaus. Magnetische Messungen an ferromagnetischen Stoffen. De
Gruyter, 1952.

W. S. Wesskin and A. Kufmann. Die Ferromagnetischen Legierungen und
Ihre Gewerbliche Verwendung. Springer-Verlag, 1932.

C. Lippert. Aufbau und Inbetriebnahme einer Multipolmessmaschine. Jiil-
Spez-517, Aug. 1989.

O. Ziem. Aufristung eines Magnetfeldmefisplatzes durch Einbindung einer
VME-Mefsmaschine. Tech. rep. Juel-3372. 1997. URL: https://juser.fz-
juelich.de/record/861487.

L.H.A. Leunissen. Non-linear transverse dynamics at the Cooler Synchrotron
COSY. PhD thesis, Technische Universitit Eindhoven. 1997. DOI: https:
//doi.org/10.6100/IR502906.

H.J. Stein. Forschungszentrum Jiilich. Private communication. Apr. 2020.

E. Forest. Beam Dynamics: A New Attitude and Framework. Vol. 8. The
Physics and Technology of Particle and Photon Beams. Amsterdam, The
Netherlands: Hardwood Academic / CRC Press, 1998.

Strategic Accelerator Design (SAD). http://acc-physics.kek.jp/SAD/.
Accessed: 2020-05-25.

K. Hwang and S. Y. Lee. Dipole fringe field thin map for compact syn-
chrotrons. Phys. Rev. ST Accel. Beams, 18.12 (2015). por: 10 . 1103/
PhysRevSTAB.18.122401.

F. Zimmermann. Measurement and Correction of Accelerator Optics. In:
Proceedings, Joint US-CERN-Japan-Russian School on Beam Measure-
ment. May 1998, pp. 21-107. DOI: 10.1142/9789812818003_0002.

O. Kovalenko et al. Orbit Response Matrix Analysis for FAIR Storage
Rings. In: Proceedings, 7th International Particle Accelerator Conference
(IPAC 2016). 2016. DOI: 10.18429/ JACoW-TPAC2016-THPMB0O3.

H. Yanai, K. Takeuchi, and Y. Takane. Projection Matrices, Generalized
Inverse Matrices, and Singular Value Decomposition. Statistics for Social
and Behavioral Sciences. Springer, 2011.

Linear Algebra Package (LAPACK). https://www.cs .utexas .edu/
users/plapack/. Accessed: 2020-05-20.

A. Nass. “The Search for Proton and Deuteron Electric Dipole Moments
using Storage Rings”. Conference on Flavour Physics and CP Violation
(FPCP) (Proceeding in preparation). June 2020.



XX BIBLIOGRAPHY

[96] T.Wagner. “Beam-Based Alignment - Determining BPM offsets and quad-
rupole alignment”. DPG-Friihjahrstagungen. 2020.

[97] J. Safranek. Experimental determination of storage ring optics using orbit
response measurements. Nucl. Instrum. Meth. A, 388 (1997), pp. 27-36.
DOI: 10.1016/50168-9002(97)00309-4.

[98] L.S. Nadolski. Use of LOCO at Synchrotron SOLEIL. Conf. Proc. C,
0806233 (2008), THPC064.

[99] T. Satogata and J. Niedziela. Simulations of RHIC Orbit Response Anal-
ysis using LOCO. 2007.

[100] C. Weidemann et al. Model Driven Machine Improvement of COSY Based
on ORM Data. In: Proceedings, 7th International Particle Accelerator Con-
ference. 2016, THPMBO009. DOT1: 10.18429/JACoW-IPAC2016-THPMB009.

[101] D. Ji et al. First Experience of Applying Loco for Optics at Cosy. In:
Proceedings, 7th International Particle Accelerator Conference. 2016. DOTI:
10.18429/JACoW-IPAC2016-TUPMRO26.

[102] K. Ott. Quadrupole misalignment determination at BESSY. Conf. Proc.
C, 960610 (1996), pp. 890-892.

[103] Z. Marti et al. Analytical derivatives of the orbit response matriz and dis-
persion for LOCO fit. 2017.

[104] S.Y. Lee. Accelerator Physics. World Scientific, 2004.

[105] O. Kovalenko. Correcting the beam optics: Orbit Response Matriz analysis
for the FAIR storage rings. http://collaborations.fz- juelich.de/
ikp/jedi/. Accessed: 2020-05-23. 2016.

[106] X. Huang, J. Safranek, and G. Portmann. LOCO with constraints and
improved fitting technique. ICFA Beam Dyn. Newslett., 44 (2007), pp. 60
69.

[107] X. Huang et al. Fitting the Fully Coupled ORM for the Fermilab Booster.
In: Proceedings, Particle Accelerator Conference. June 2005, pp. 3322 —
3324. DOI: 10.1109/PAC.2005.1591455.

[108] Vermessungsbiiro Dipl.-Ing. H.J.Stollenwerk. Private communication. Aug.

109

2018.

J. Boker and F. Rathmann. Private communication. Mar. 2020.



Xx1

Acknowledgments

I would like to conclude my work by thanking everyone who has contributed
to this work over the past years and without whom this would not have been
possible.

First and foremost, I would like to thank Prof. Dr. Andreas Lehrach, who
has supported me with advice all these years. Through him, I was able to gain
many valuable experiences even beyond my actual work and, among other things,
discovered my enthusiasm for teaching.

A further thank goes to Prof. Dr. Andrzej Magiera, who without hesitation
agreed to take over the secondary supervision of my work and also gave me the
opportunity to work in his group on site.

Many thanks also to Dr. Ralf Gebel, without whom this work would not have been
possible in this form. It is not a matter of course to be allowed to participate in
conferences all over the world as a young scientist and to gain so much experience.
I appreciate this support very much.

A big thank you goes to the members of the JEDI collaboration and the staff of
the IKP. Thanks for all the nice and constructive conversations and the help from
all sides. It was always a great pleasure for me to work in such an international,
friendly and professional environment. I wish all of them from the bottom of my
heart, continued success and joy in their work. Special thanks go to Dr. Hans-
Joachim Stein, who gave me many exciting suggestions, especially last year, and
to Tim Wagner, who actively supported me in my measurements at COSY. |
also had the good fortune to spend my daily life in the circle of other aspiring
young scientists and would like to thank them for the numerous technical and
non-technical discussions.

Last but not least, my thanks go to my parents, Dr. Uta Rahn-Schmidt and
Dr. Klaus Peter Schmidt, who have encouraged me over all the years and whose
example I have always followed. Thanks to my husband Frederic Poncza for his
patience and unconditional support. I also thank the rest of my family for all
their open ears, encouraging words and expressions of interest.

The past years have shaped me in many ways and the experiences I have gained
will always stay with me. Thanks again to all those involved and may the force
be always with you.






Eidesstattliche Erklarung

Ich, Vera Poncza,

erklare hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen sind
und selbststandig, als Ergebnis der eigenen originaren Forschung, generiert wurden.

Hiermit erklare ich an Eides statt

1. Diese Arbeit wurde vollstandig oder grof3tenteils in der Phase als Doktorand
dieser Fakultdt und Universitat angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor fur einen akademischen
Abschluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veroffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Verdffentlichungen Dritter zitiert wurde,
wurde stets die Quelle hierflir angegeben. Diese Dissertation ist vollstandig
meine eigene Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstitzung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor verdffentlicht und zwar in:

e V. Schmidt and A. Lehrach. Analysis of closed orbit deviations for a first direct
deuteron electric dipole moment measurement at the cooler synchrotron COSY.
Journal of Physics: Conference Series (2017).

e V. Poncza and A. Lehrach. Search for Electric Dipole Moments at Cosy in Julich -

Spin-Tracking Simulations Using Bmad. In: Proceedings, 10th International Particle
Accelerator Conference (2019).

11.05.2021

Vera Poncza



	Titelblatt
	PhD_thesis_VPoncza_ohne_Titelblatt_und_Erklärung
	Eidesstattliche Erklärung

