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Abstract

The second half of the last century was marked by many important insights and discoveries in

the field of particle physics, first and foremost the development of the Standard Model (SM).

However, there are many open questions this model cannot answer; one of them is the baryon

asymmetry, i.e. the dominance of matter over antimatter in the Universe.

According to the most accredited theory, the responsible mechanism, called baryogenesis,

required the fulfilment of certain necessary conditions within the first moments of the Universe

following the Big Bang; the most significant one is the violation of the charge conjugation-

parity (CP) symmetry.

The SM predicted value for the asymmetry parameter, which quantifies the baryon asymmetry,

is 8 orders of magnitude smaller than the measured one: this means that the SM contributions

to CP violation are too weak to explain baryon asymmetry and new sources of CP violation

beyond the SM are needed.

The SM is not the ultimate theory of particle physics and among all those developed by

theoreticians one of the most plausible extensions, at least till now, is the SUperSYmmetry

(SUSY) theory. Concerning the baryon asymmetry problem, its characteristic of interest is

that the many particle-sparticle interactions provide more CP violation mechanisms and a

non-zero Electric Dipole Moment (EDM) which can be experimentally accessed.

The observation of non-zero EDMs would represent a possible answer to the unsolved problem

of baryon asymmetry as well as a clear sign of New Physics beyond the SM.

Very recently a new class of experiments has been proposed to directly measure the EDMs of

charged particles via storage rings. In particular, an experimental staged program is presently

pursued by the JEDI collaboration at the ForschungsZentrum-Jülich in Germany.

The first stage consists in exploiting the COoler SYnchrotron (COSY) to perform feasibility

studies on a stored beam of polarized deuterons, the second one deals with construction of a

Prototype Storage Ring (PSR) to study the critical features and to develop the key technologies

and the last one plans to the construction of the pure electric storage ring to provide the first

ever proton EDM (pEDM) measurement.
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Aim of this thesis is to perform beam dynamics simulations at the hybrid storage ring which is

one the proposed lattices for the last stage of the JEDI experiment.

This work is structured into 4 chapters.

Chapter 1 gives the scientific motivation for the EDM investigation.

Initially the CP violation is introduced as the most significant condition for the occurrence of

the baryon asymmetry and investigated within and beyond the SM until arriving to the EDM.

Then what the EDM is and how it violates the CP symmetry are explained.

Finally, the experimental background in which the idea for the EDM measurement was deve-

loped is presented together with the new proposed method using storage rings.

The beam dynamics in storage rings is discussed in Chapter 2.

The discussion distinguishes between transverse and longitudinal directions and concerns the

equation of motions together with their solutions in the matrix formalism, the fields applied

and the dedicated devices and the main characteristic effects and principles.

In addition to this, some essentials about spin dynamics are mentioned especially related to

the principle of the EDM measurement and the correlated critical aspects.

In Chapter 3 the three staged approach of the JEDI collaboration is introduced: the COSY, the

PST and hybrid storage ring.

The layout of the three facilities is described in detail together with the experimental results

obtained so far at the COSY.

The experimental results coming from the data analysis on the beam dynamics simulations

performed at the hybrid storage ring are presented in Chapter 4.

The simulations performed can be divided into two main categories: the former contains the

simulations used to study the 6D phase space and the 6×6 transfer matrix, while the latter

includes the ones employed in the path lengthening analysis.
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Sommario

La seconda metà del secolo scorso è stata caratterizzata da molte importanti intuizioni e

scoperte nell’ambito della fisica delle particelle, primo tra tutti lo sviluppo del Modello Stan-

dard. Tuttavia, ci sono molte questioni aperte a cui questo modello non riesce a dare una

risposta; una di queste è l’asimmetria barionica, cioè il dominio della materia sull’antimateria

nell’Universo.

Secondo la teoria più accreditata, il meccanismo responsabile, chiamato barogenesi, ha

richiesto il soddisfacimento di alcune condizioni necessarie entro i primi istanti dell’Universo

dopo il Big Bang; la più significativa è la violazione della simmetria coniugazione di carica-

parità.

Il valore previsto dal Modello Standard per il parametro di asimmetria, che quantifica

l’asimmetria barionica, è di 8 ordini di grandezza inferiore a quello misurato: ciò significa

che i contributi del Modello Standard alla violazione di CP sono troppo deboli per spiegare

l’asimmetria barionica e quindi sono necessarie nuove fonti di violazione di CP oltre il Mo-

dello Standard.

Il Modello Standard non è la teoria definitiva della fisica delle particelle e tra tutte quelle

sviluppate dai teorici una delle estensioni più plausibili, almeno fino ad ora, è la teoria della

SuperSimmetria. Per quanto riguarda il problema dell’asimmetria barionica, la caratteristica di

interesse della teoria della SuperSimmetria è che le numerose interazioni particella-sparticella

forniscono più meccanismi di violazione CP e un momento di dipolo elettrico non nullo che

può essere sperimentalmente accessibile.

L’osservazione di momenti di dipolo elettrico non nulli rappresenterebbe una possibile risposta

al problema irrisolto dell’asimmetria barionica, nonché un chiaro segno di nuova fisica oltre il

Modello Standard.

Recentemente è stata proposta una nuova classe di esperimenti per misurare direttamente i

momenti di dipolo elettrico delle particelle cariche utilizzando anelli di accumulazione.

In particolare, un programma sperimentale a più fasi è attualmente portato avanti dalla colla-

borazione JEDI presso il ForschungsZentrum-Jülich in Germania.
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La prima fase consiste nello sfruttamento del COoler SYnchrotron (COSY) per eseguire

studi di fattibilità su un fascio immagazzinato di deuteroni polarizzati, la seconda riguarda

la costruzione di un prototipo (PSR) per studiare le caratteristiche critiche e sviluppare le

principali tecnologie e l’ultima prevede la costruzione dell’anello di accumulazione puramente

elettrico per fornire la prima misura in assoluto del momento di dipolo elettrico del protone.

Scopo di questa tesi è realizzare simulazioni di dinamica di fascio presso l’anello di accumu-

lazione ibrido che rappresenta uno dei reticoli proposti per l’ultima fase dell’esperimento JEDI.

Questo lavoro è strutturato in 4 capitoli.

Il capitolo 1 fornisce la motivazione scientifica dell’indagine sul momento di dipolo elettrico.

Inizialmente viene introdotta la violazione della simmetria combinata coniugazione di carica-

parità come condizione più significativa per il verificarsi dell’asimmetria barionica e viene

indagata all’interno e all’esterno del Modello Standard fino ad arrivare al momento di dipolo

elettrico.

In seguito viene spiegato cos’è il momento di dipolo elettrico e come viola la simmetria

coniugazione di carica-parità.

Infine, viene presentato il contesto sperimentale in cui è stata sviluppata l’idea della misura del

momento di dipolo elettrico e il nuovo metodo proposto che utilizza gli anelli di accumulazione.

La dinamica di fascio negli anelli di accumulazione è discussa nel Capitolo 2.

La trattazione distingue tra le direzioni trasversale e longitudinale e riguarda le equazioni del

moto e le loro soluzioni nel formalismo matriciale, i campi applicati e i dispositivi dedicati e i

principali effetti e principi caratteristici.

Inoltre, vengono menzionati alcuni concetti essenziali sulla dinamica dello spin, in particolare

riguardanti il principio della misura del momento di dipolo elettrico e gli aspetti critici correlati.

Nel Capitolo 3 viene introdotto l’approccio in tre fasi della collaborazione JEDI: il COSY, il

PST e l’anello di accumulazione ibrido.

Il layout delle tre strutture è descritto in modo dettagliato insieme ai risultati sperimentali

ottenuti finora al COSY.

I risultati sperimentali derivanti dell’analisi dati delle simulazioni di dinamica di fascio realiz-

zate presso l’anello di accumulazione ibrido sono presentati nel Capitolo 4.
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Le simulazioni effettuate possono essere suddivise in due categorie principali: la prima

contiene le simulazioni utilizzate per studiare lo spazio delle fase 6D e la matrice di trasferi-

mento 6×6, mentre la seconda comprende quelle impiegate nell’analisi dell’allungamento

del percorso.
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CHAPTER

1 The EDM as a probe of
beyond the SM CP violation

One of the great mysteries of physics is the imbalance between matter and antimatter in the

Universe.

According to the most accredited theory, the responsible mechanism involved the violation of

the charge conjugation-parity symmetry within the first moments after the Big Bang.

The Standard Model provides some sources of this kind of symmetry violation, but their

violation degree is too small to explain the size of the observed asymmetry. New sources

beyond the Standard Model must be considered and the electric dipole moment is a powerful

probe.

The recent proposal to measure the electric dipole moment of charged particles via storage

rings should clarify one of the most puzzling physical problem.

1.1 Scientific motivation

The story of the Universe has begun 13.8 billions of years ago. In the scientist community the

most accredited theory to explain its origin and expansion is the Big Bang theory. According

to it, the Universe has originated and started its expansion from the explosion of an initial state

of infinite density and temperature called singularity.

The chronology of the Universe evolution is divided into many epochs each of which is cha-

racterized by a particular event of interest. The epochs of the Very Early and Early Universe

stages are described in Figure 1.1.

From what is known about the history of the Universe, shortly after the Big Bang both matter

and antimatter were produced: the hot dense QGP resulting from the inflationary epoch was

made by both quarks and antiquarks which bound together into hadrons and antihadrons

during the hadron epoch.
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Figure 1.1
Representation of the logarithmic scale timeline of the epochs of the Very Early and Early Universe

stages (on the left) and table with the peculiar characteristics of the epochs of the Very Early and Early
Universe stages (on the right).

The Big Bang should have produced equal amounts of matter and antimatter, but this was not

the case since the annihilation processes between hadrons and antihadrons led to the complete

disappearance of antimatter and to the surprising survival of a small amount of matter. Based

on some studies on the cosmic background radiation, less than one part in a billion of particles

survived the annihilation with antiparticles; in the following billions of years this small amount

of matter formed everything present in the Universe.

The imbalance between matter and antimatter is known as baryon asymmetry and it is one of

the great mysteries in physics. The responsible physical process is called baryogenesis and

probably dates back to the grand unification epoch.

The baryon asymmetry is quantified by the asymmetry parameter which is defined as:

η =
nb−nb̄

nγ

(1.1)

where nb is the baryon density, nb̄ is the antibaryon density and nγ is the photon density.

Physicists have identified two hypothesis that should explain the baryon asymmetry.
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One theory concerns the fact that life has developed in a part of the Universe which is

dominated by matter, but there should be other parts dominated by antimatter.

According to the other theory which has received a lot of attention in the last years, baryoge-

nesis is an asymmetric process which needs the fulfilment of certain necessary conditions.

These were proposed by Sakharov in 1967:

• baryonic number violation

It allows to produce an excess of baryons over antibaryons.

• C violation

It is needed so that the interactions which produce more baryons than antibaryons are

not counterbalanced by the interactions which produce more antibaryons than baryons.

• CP violation

It is required to produce different numbers of left-handed baryons and right-handed

antibaryons, as well as different numbers of left-handed antibaryons and right-handed

baryons.

• thermal equilibrium violation

It is necessary to forbid the CPT theorem to assure the compensation between processes

increasing and decreasing the baryonic number.

Among these conditions the most significant is the CP violation which implies that a matter

process is able to happen at a different rate to its antimatter counterpart. If CP were an

exact symmetry, the laws of nature would be completely identical for matter and antimatter

and the Universe would contain an equal amount of the two, but it appears to be made of matter.

In the next section the discrete transformations are briefly described.

1.2 Discrete transformations

The Nöther’s theorem states that if the Lagrangian density of a physical system is symmetric

under a certain group of transformations, then there exists a corresponding conservation law

and vice versa.

Transformations are divided into two main categories: continuous and discrete. The discrete

transformations are parity (P), charge conjugation (C) and time reversal (T).

A parity transformation inverts the spatial coordinates, a charge conjugation transformation

turns particles into antiparticles and a time reversal transformation reverses the flow of time.
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If a physical system is described by the wavefunction ψ (⃗r, t), after the individual application

of the three transformations the wavefunction transforms as:

ψ (⃗r, t) P→ ψ(−⃗r, t) (1.2)

ψ (⃗r, t) C→ ψ̄ (⃗r, t) (1.3)

ψ (⃗r, t) T→ ψ (⃗r,−t) (1.4)

The three transformations collectively are linked by the CPT theorem which states that all the

fundamental interactions are symmetric under successive C, P and T transformations taken in

any order. It is an exact symmetry and such that one of the basic principles of the Standard

Model (SM) confirmed by all the available experiments.

For the individual transformations, the situation is quite different. For years it was assumed

that they were exact symmetries as the CPT theorem but starting from the middle of the last

century a series of discoveries caused scientific community to change this assumption, in

particular in relation to weak interactions.

The next section concerns the symmetries that weak interactions violate and the possible

sources of CP violation in the SM.

1.3 CP violation sources in the SM

1.3.1 C and P violations in weak interactions

The possibility of P violation in weak interactions was suggested by Lee and Yang in 1956

which showed that no experimental proofs existed of P conservation in weak interactions but

rather an apparent lack of P conservation existed in the weak decays of K+ meson since it

decays weakly into two final states of opposite parity:

K+→ π
0 +π

+ → P =+1 (1.5)

K+→ π
++π

−+π
+ → P =−1 (1.6)

The experimental proof of P violation arrived in 1957 thanks to the Wu experiment which

demonstrated that electrons are preferably left-handed. Furthermore, the same year, the Gold-

haber experiment demonstrated that neutrinos are always left-handed and similarly it was

shown that antineutrinos are always right-handed.
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These were clear manifestations of P maximal violation in weak interactions.

In addition to this, parity violation also implies C violation:

ĈνL = ν̄L ← not observed (1.7)

Ĉν̄R = νR ← not observed (1.8)

The symmetry is apparently restored when the combined operation of C and P is considered:

ĈP̂νL = ν̄R ← observed (1.9)

ĈP̂ν̄R = νL ← observed (1.10)

Actually, also CP is violated in weak interactions as described in the following.

1.3.2 CP violation in weak interactions

The first signs of CP violation in weak interactions arrived from the neutral meson-antimeson

pairs.

There exist 4 such doublets:

(K0; K̄0) (B0; B̄0) (B0
S; B̄0

S) ;(D0; D̄0) (1.11)

In 1964 the Cronin-Fitch experiment revealed the CP violation in the neutral kaon system.

The K0 and K̄0 mesons are members of the JP = 0− octet.

Experimentally they are distinguishable by their production mode:

π
−+ p → K0 +Λ

0 (1.12)

π
++ p → K̄0 +K++ p (1.13)

The flavour eigenstates differ from both the CP and mass eigenstates.

The flavour eigenstates are denoted as |K0⟩ ans |K̄0⟩.
Since the K0 and K̄0 mesons are antiparticles of each other, they cannot be CP eigenstates:

ĈP̂|K0⟩= |K̄0⟩ (1.14)

ĈP̂|K̄0⟩= |K0⟩ (1.15)
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The CP eigenstates are denoted as |K1⟩ and |K2⟩ and are given by combinations of the flavour

eigenstates:

|K1⟩=
|K0⟩+ |K̄0⟩√

2
→ ĈP̂|K1⟩=+1|K1⟩ (1.16)

|K2⟩=
|K0⟩− |K̄0⟩√

2
→ ĈP̂|K1⟩=−1|K2⟩ (1.17)

The mass eigenstates are denoted as |KS⟩ and |KL⟩ (S and L stand for short and long respectively

and refer to the lifetimes) and if CP is conserved, then they coincide with the CP eigenstates:

|KS⟩= |K1⟩ (1.18)

|KL⟩= |K2⟩ (1.19)

Their masses are very close, while their lifetimes are very different:

∆m = mL−mS = (3.484±0.006)×10−12 MeV (1.20)

τS = (89.54±0.05) ps (1.21)

τL = (51.14±0.21) ns (1.22)

They are distinguishable by their decay modes:

KS→ 2π (1.23)

KL→ 3π (1.24)

The flavour eigenstates can be written as a combination of the mass eigenstates:

|K0⟩= |KS⟩+ |KL⟩√
2

(1.25)

|K̄0⟩= |KS⟩− |KL⟩√
2

(1.26)

This means that the neutral kaons are produced and decay as flavour eigenstates but propagate

as mass eigenstates, i.e. as mixtures of the flavour eigenstates: this phenomenon is called

mixing.

The direct consequence of the mixing phenomenon is the flavour oscillation phenomenon for

which a pure K0 beam develops a K̄0 component and, as a result, the neutral kaon system

oscillates between the two flavour eigenstates as shown by Figure 1.2.
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The value of the oscillation period is 13 times the lifetime of KS: this means that after few ps

the KS component has decayed away, leaving essentially a pure KL beam.

Figure 1.2
Plot of the beam intensity as a function of time normalized to the KS meson lifetime which shows the

flavour oscillation phenomenon.

The experimental set up of the Cronin-Fitch experiment is shown in Figure 1.3.

Figure 1.3
Representation of the experimental set up of the Cronin-Fitch experiment.

A pure K0 beam was injected into a vacuum tube at the end of which, thanks to the flavour

oscillation phenomenon, a pure KL beam was obtained. The KL were collimated and sent

into a helium bag where they were left decaying. The decay products were detected by a

tracking structure which consisted of a magnet sandwiched between two sparks chambers, a

scintillation detector and a Cherenkov detector.
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The KL should have decayed into 3π only, but a few decays into π+π− were also observed

with a branching ratio of 2×10−3. This was the proof that the mass eigenstates do not coincide

with the CP eigenstates but can be related to them by a small complex parameter ε which

represents the degree of CP violation:

|KS⟩=
|K1⟩+ ε|K2⟩√

1+ |ε|2
(1.27)

|KL⟩=
|K2⟩+ ε|K1⟩√

1+ |ε|2
(1.28)

This was the first experimental evidence of CP violation in weak interactions.

Some years after, similar CP violation effects was observed in the other meson-antimeson

doublets:

• B0 system→ BaBar (SLAC) and Belle (KEK) experiments in 2001;

• B0
s system→ LHCb experiment (CERN) in 2013;

• D0 system→ LHCb experiment (CERN) in 2019.

Once established that there were some sources of CP violation in the SM, it was necessary to

understand where the CP violation is accounted.

To do this, the discussion about the universality of the weak coupling constant was considered.

Differently from leptons, some experiments showed the non-universality of the weak coupling

constant for quarks. The solution to this problem was proposed by Cabibbo in 1963 with

the quark mixing phenomenon: the interaction eigenstates do not coincide with the mass

eigenstates but are combinations of them. In particular, the down-type interaction eigenstates

are related to the corresponding mass eigenstates by the Cabibbo matrix::(
|d ′⟩

|u′⟩

)
=VC

(
|d⟩
|u⟩

)
=

(
cosθC sinθC

−sinθC cosθC

)(
|d⟩
|u⟩

)
(1.29)

where θC ∼ 13° is the Cabibbo angle.

In 1963 only three quark flavours were known: u, d and s.

After the discovery of the other flavours, in 1973 the Cabibbo matrix was extended to the

CKM matrix: |d
′⟩

|u′⟩

|b′⟩

=VCKM

|d⟩|u⟩
|b⟩

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


|d⟩|u⟩
|b⟩

 (1.30)
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Its standard parametrization depends on three real parameters (θ12,θ23,θ13) and one complex

phase (δ ):

VCKM =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13e−iδ c12c23− s12s23s13e−iδ s23c13

s12s23− c12c23s13e−iδ −c12s23− s12c23s13e−iδ c23c13

 (1.31)

where si j = sinθi j, ci j = cosθi j, θ12 = θC ∼ 13°, θ23 ∼ 2.3° and θ13 ∼ 0.2°.

CP violation is accounted in the SM through the complex phase.

An alternative parametrization is the Wolfenstein one in which the matrix is written as a

function of the parameters λ , A, ρ and η :

VCKM =

 1− 1
2λ 2 λ Aλ 3(ρ− iη)

−λ 1− 1
2λ 2 Aλ 2

Aλ 3(1−ρ− iη) −Aλ 2 1

 (1.32)

where s12 = λ = 0.22, s23 = Aλ 2 and s13e−iδ = Aλ 3(ρ− iη).

CP violation requires η ̸= 0 and currently η = 0.353±0.014.

1.3.3 Other sources of CP violation

According to the current mathematical formulation of the Quantum Chromodynamics (QCD),

there are no reasons for CP to be conserved in strong interactions. However, no evidences of

CP violation have ever been seen in any experiment involving the strong force. This problem

is known as the strong CP problem.

The most well-known solution is the Peccei–Quinn theory. The QCD has a complicated

vacuum structure which gives rise to a CP violating θ̄ -term in the Lagrangian density. The

Peccei-Quinn idea is to introduce a new global anomalous symmetry to the SM along with

a new scalar field which spontaneously breaks the symmetry at low energies giving rise to

a pseudoscalar Goldstone boson called axion whose ground state dynamically forces the

Lagrangian density to be CP-symmetric by setting θ̄ = 0.

Very recently in April 2020 the T2K experiment provided the first evidence of the CP violation

in the leptonic sector. The source of CP violation are neutrinos.

Similarly to what happens in the quark sector, the neutrino interaction eigenstates do not

coincide with neutrino mass eigenstates but are combinations of them.
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The interaction eigenstates and the mass eigenstates are related by the PMNS matrix:

VCKM =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13e−iδ c12c23− s12s23s13e−iδ s23c13

s12s23− c12c23s13e−iδ −c12s23− s12c23s13e−iδ c23c13

 (1.33)

where si j = sinθi j, ci j = cosθi j, θ12 ∼ 35°, θ23 ∼ 45° and θ13 ∼ 10°.

Again, if the complex phase is different from zero, then CP is violated.

On the analysis of 9 years of data, the experimental results showed that the probability of

(ν̄µ → ν̄e) was greater than the probability of (νµ → νe) with a significance of 3σ .

This was the first sign of CP violation in the leptonic sector. Other measurements are needed

to confirm this result.

In conclusion, all present results are consistent with the CKM matrix being the only source

of CP violation in the SM. However, the SM predicted value for the asymmetry parameter is

of the order of 10−18, but the measured one is of the order of 10−10: this means that the SM

contributions to CP violation are too small to explain baryon asymmetry and new sources of

CP violation beyond the SM are needed.

1.4 CP violation in the SUSY theory

The SM is the modern quantum field theory of elementary particles and their fundamental

interactions. It has received very strong experimental confirmations and is able to describe

with high precision almost all known phenomena in particle physics.

However, it cannot be considered the ultimate theory of particle physics since it leaves several

fundamental questions unsolved; one of them is the above-mentioned baryon asymmetry in

the Universe.

Since decades theoreticians have been working hard to develop new and more comprehensive

and fundamental theories that include the SM as a low energy limit. One of these is the

SUperSYmmetry (SUSY) theory. At least till now, it is the most plausible extensions of the

SM and works at relatively low energy scale (∼ TeV ).

In the SUSY theory each SM particle has a super-partner called sparticle which is more

massive and differs by half a unit of spin: the super-partner of each spin-1/2 fermion is a spin-0

boson called sfermion, while the super-partner of each spin-1 boson is a spin-1/2 fermion

called gaugino. As a result, there exists a sort of symmetry between bosons and fermions: a

bosonic state is transformed into a fermionic state and a fermionic state into a bosonic state.
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However it is not possible to relate the SM fermions and bosons; the new family of sparticles

is needed even if none of these has been observed so far.

Figure 1.4
Representation of the SM particles and their supersymmetric partners.

The characteristic of interest of the SUSY theory is that the many particle-sparticle interactions

provide more CP violation mechanisms and a non-zero Electric Dipole Moment (EDM) which

can be experimentally accessed and thus considered a powerful probe of beyond the SM CP

violation as explained in the next section.

Both the SM and the SUSY theory provide a non-zero EDM; the difference between the two

is the order of magnitude of the predicted value.

As an example, the SM and SUSY theory predicted values for the neutron EDM are reported:

dSM(n)∼ 10−32 e · cm (1.34)

dSUSY (n)∼ 10−26 e · cm (1.35)

The SUSY predicted value is 6 orders of magnitude greater than the one of the SM and

compatible with the experimental limits of the experiments performed in the last decades

which makes it “measurable”.

It is important to highlight that in both cases the values are extremely small and this means

that such an investigation requires very high-precision experiments. Many of them have been

developed and have set important constraints on the upper limits even if no EDM has been

measured yet.
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1.5 EDM CP violation

The EDM is a permanent asymmetry in the distribution of positive and negative electric

charges within a particle. Together with the Magnetic Dipole Moment (MDM), it is an

intrinsic property of a particle and is defined as:

d⃗ =
η

2
q
m

S⃗ (1.36)

where η is the gyro-electric factor which depends on the particle, q is the particle electric

charge, m is the particle mass and S⃗ is the particle spin.

It can be aligned either parallel or antiparallel to the spin.

In order to understand why the existence of a non-zero EDM would violate CP, a particle with

the EDM parallel to the spin (d⃗ ∥ S⃗) is considered, as shown in Figure 1.5.

Figure 1.5
Representation of the effect of parity (P) and time reversal (T) transformations on a particle with the

EDM (d⃗) parallel to the spin (⃗S).

A parity transformation would change the EDM sign leaving the spin unchanged, while in the

case of a time reversal transformation the situation would be exactly the opposite: the spin

would change sign and the EDM would remain unaltered. As a result, a non-vanishing EDM

would violate both P and T and, by assuming the validity of the CPT theorem, the T violation

would imply CP violation.
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1.6 Past, present and future experiments

The idea to use the EDMs of particles as a high precision probe of CP violation is due to

Purcell and Ramsey in 1951. Remarkably, it precedes not only the discovery of CP violation

in the neutral kaon system (1964) but also the discovery of P violation in weak interactions

(1957).

The Purcell-Ramsey method was applied only on neutral particles, especially neutrons, and

consisted in five main steps shown in Figure 1.6:

Figure 1.6
Representation of the steps of the Purcell-Ramsey experiment: the green arrows indicate the direction
of the polarization of the neutron beam, the black arrows the direction of the solenoidal magnetic field,

the blue arrows the direction of the static magnetic field and the red arrows the direction of the
sinusoidal electric field.

1. the neutrons were sent onto a magnetic mirror to create a vertically polarized neutron

beam.

2. the neutron beam entered the main apparatus where an RF magnetic field created by a

coil moved the polarization to the plane perpendicular to the magnetic field completing

the so-called π/2-pulse.

3. the neutron beam entered a region with a static magnetic field and a sinusoidal electric

field which could be aligned or anti-aligned to the magnetic field and its orientation

could be modified by switching the polarity of the plates that generated it.
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The magnetic field and the electric field interact with the MDM and the EDM of the

neutrons respectively and generated a precession of the polarization whose frequency ν

is given by:

ν =
2(µB±dE)

h
(1.37)

where µ is the MDM, B is the magnetic field, d is the EDM, E is the electric field, h is

Plank constant and the sign depends on the fact that the electric field was parallel (+) or

antiparallel (-) to the magnetic field.

4. a second RF solenoidal magnetic field induced another π/2-pulse to the spins of the

neutron. Only the perpendicular polarization component, being in phase with the

magnetic field, flipped slowly to the vertical direction, while the other component was

essentially unchanged. As a result, the vertical polarization served as a measure for the

neutron EDM.

5. by considering the two different cases, i.e. E⃗ ∥ B⃗ and E⃗ ∦ B⃗, it was possible to obtain an

expression to calculate the neutron EDM:

d =
h∆ν

4E
(1.38)

where ∆ν = ν+− ν− is the difference between the precession frequency in the two

cases.

The results allowed to set an upper bound on the neutron EDM:

d(n)∼ 5×10−20 e · cm (1.39)

Soon after other methods were developed and allowed the measurement of the EDMs of heavy

atoms which also led to the indirect estimate of the EDMs of fundamental particles such as

the electron and the muon and of charged particles such as the proton.

Despite a constant increase in sensitivity during the last 60 years, these experiments only set

upper bounds:

• d(n)≤ 2.9×10−26 e · cm (90% C.L.)→ derived from ultra-cold neutrons;

• d(e)≤ 8.7×10−29 e · cm (90% C.L.)→ derived from thorium monoxide molecules;

• d(µ)≤ 1.8×10−19 e · cm (90% C.L.);

• d(p)≤ 7.9×10−25 e · cm (95% C.L.)→ derived from mercury atoms.
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The SM predictions (e.g., dSM(n) ∼ 10−32 e · cm) are completely out of the reach of the

technology of these experiments; nevertheless, they have provided useful constraints on the

beyond the SM theories, in particular on the SUSY theory being compatible to its predictions

(e.g., dSUSY (n)∼ 10−26 e · cm). This fact can be appreciated in Figure 1.7.

Figure 1.7
Plot of the present experimental limits (orange), the SM predictions (grey) and the SUSY predictions
(blue) for the EDM as functions of different particles: electron, muon, tau particle, neutron, proton and

lambda particle.

More recently a new class of experiments has been proposed to directly measure the EDMs of

charged particles: the basic idea described for neutral particles would not work since charged

particle would be lost in an electric field.

The EDM of charged particles can be investigated via storage rings. The basic idea is described

as follows: beginning with a longitudinally polarized particle beam, the existence of a non-

vanishing EDM can be detected as a rotation of the polarization vector from the longitudinal

plane to the vertical axis due to its interaction with a radial electric field.

The use of storage rings can improve the sensitivity up to 10−29 e · cm.
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CHAPTER

2 Storage ring concepts

As mentioned in the previous chapter, the proposed method to measure the EDMs of charged

particles requires the use of a storage ring.

A storage ring is a particle accelerator. In particular, it is a confinement system used to

accelerate and keep circulating particle beams in a fixed circular closed path.

The most obvious components are the systems that provide beam acceleration and beam

guidance and focusing through specific electric and magnetic fields.

A schematic representation of a storage ring is shown in Figure 2.1.

Figure 2.1
Schematic representation of a storage ring with the main components.

Ideally, a particle beam is expected by design to follow closely the prescribed circular closed

trajectory called reference orbit. Actually, the majority of the particles are subjected to de-

viations from it. However, a particle is considered to follow exactly the reference orbit; it is

called reference or synchronous particle.

The evolution of particle trajectories is called beam dynamics or beam optics. It can be

distinguished into transverse and longitudinal depending on the direction of the fields applied.
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The following sections will describe the main features of beam dynamics in a storage ring.

In particular, the part designated for the transverse beam dynamics will give details about

the transverse equations of motion together with their solutions in the matrix formalism, the

transverse fields and the dedicated devices (dipole, quadrupole and sextupole magnets), the

transverse phase space and the dispersion and chromaticity effects. On the other hand, the

part designated for the longitudinal beam dynamics will give a description of the longitudinal

equations of motion together with their solutions in the matrix formalism, the longitudinal

fields and the dedicated devices (radio-frequency cavities) and the phase stability principle.

In addition to beam dynamics, some information are given about spin dynamics concerning

the principle of the EDM measurement, the Thomas-BMT equation, the frozen spin condition

and the critical aspects.

However, before doing this, an appropriate coordinate system has to be defined.

2.1 Frenet-Serret coordinate system

Since the dimensions of the particle beam and the deviations of the particles from the reference

orbit are very small in comparison to the dimensions of the storage ring, the coordinate

system is usually defined in relation to the reference particle which represents its origin. In

other words, the coordinate system is the rest frame of the reference particle. The choice

falls on a curvilinear system called Frenet-Serret coordinate system and shown in Figure 2.2.

In particular, the one considered is a left-handed coordinate system since the origin moves

clockwise.

Figure 2.2
Representation of the left-handed Frenet-Serret coordinate system.
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The bending radius of the reference orbit is denoted with ρ0. With the origin defined, x̂, ŷ

and ẑ are the unit vectors respectively in the horizontal, vertical and longitudinal directions.

According to these axes, the xy plane is referred to as the transverse plane, the yz plane as the

vertical plane and the xz plane as the ring plane.

Any location on the circular closed path is specified by the parameter s which varies from zero

to the total path length and can be considered as an independent variable.

2.2 Transverse beam dynamics

The transverse beam dynamics describes the evolution of particle trajectories under the

influence of transverse fields.

The transverse deviations are called betatron oscillations. If r⃗0(s) is the position vector of the

reference particle, then the position vector r⃗(s) of a generic particle of the beam subjected to

betatron oscillations can be expressed as:

r⃗(s) = r⃗0(s)+ xx̂(s)+ yŷ(s) (2.1)

where x and y are the coordinates defining the position of a generic particle of the beam in the

horizontal and vertical directions are respectively.

A representation in the Frenet-Serret coordinate system is shown in Figure 2.3.

Figure 2.3
Representation of the betatron oscillations in the Frenet-Serret coordinate system.

The peculiar characteristic of transverse fields is that they allow to bend and focus the particle

beam providing beam guidance and focusing. In general, most beam guidance and focusing

elements are based on magnetic fields and provided by different types of magnets.
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The collection of bending and focusing magnets is called the magnet lattice, while the complete

system also including the bending and focusing parameters is referred to be the beam transport

system.

In the case of a storage ring, the magnet lattice consists in the succession of magnets and

magnet free sections that draw the circular closed path.

2.2.1 Hill’s differential equations

The force required to provide beam guidance and focusing is the Lorentz force F⃗L:

F⃗L = q(E⃗ + v⃗× B⃗) (2.2)

where q is the particle electric charge, E⃗ is the electric field, v⃗ is the particle velocity and B⃗ is

the magnetic field.

For relativistic particles, the force from a magnetic field of 1 T is equivalent to that from an

electric field of 300 MV/m. Since it is technically straightforward to generate magnetic fields

of the order of 1 T , but rather difficult to establish the equivalent electric fields of 300 MV/m,

most beam guidance and focusing elements are based on magnetic fields and the expression of

the Lorentz force reduces to:

F⃗L ∼ q⃗v× B⃗ (2.3)

The equation of motion must be derived for both the horizontal and vertical direction.

The first step is to consider the Lorentz force in the form of an equation of motion:

d p⃗
dt

= q⃗v× B⃗ (2.4)

where p⃗ is the particle momentum.

Since the velocity of a generic particle is directed along the longitudinal direction (⃗v = vzẑ)

and the transverse magnetic field can have both a horizontal and a vertical component (B⃗ =

Bxx̂+Byŷ), the cross product on the right-hand side of equation (2.4) can be rewritten as:

v⃗× B⃗ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

0 0 vz

Bx By 0

∣∣∣∣∣∣∣=−vzByx̂+ vzBxŷ (2.5)
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Ignoring the radiation emitted by the particle, the left-hand side of equation (2.4) can be

rewritten as:
d p⃗
dt

=
d
dt
(mγ ˙⃗r) = mγ ¨⃗r (2.6)

where m is the particle mass and γ is the Lorentz factor.

Finally, equation (2.4) becomes:

mγ ¨⃗r = q(vzBxŷ− vzByx̂) (2.7)

By rearranging equation (2.7), it is possible to derive an expression for ¨⃗r

¨⃗r =
q(vzBxŷ− vzByx̂)

mγ
(2.8)

The next step is to evaluate ¨⃗r in the Frenet-Serret coordinate system.

The expression of r⃗, neglecting the s dependence, is given by equation (2.1):

r⃗ = r⃗0 + xx̂+ yŷ = ρ0x̂+ xx̂+ yŷ = rx̂+ yŷ (2.9)

where the relations r⃗0 = ρ0x̂ and r = ρ0 + x have been used.

By differentiating equation (2.9), it is possible to derive an expression for ˙⃗r:

˙⃗r = ṙx̂+ r ˙̂x+ ẏŷ (2.10)

From Figure 2.4 it is possible to write ˙̂x in terms of ẑ:

˙̂x = θ̇ ẑ (2.11)

where θ̇ = vz/r.

Figure 2.4
Scheme to evaluate the time rate of change of the horizontal unity vector.
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Therefore, equation (2.10) becomes:

˙⃗r = ṙx̂+ rθ̇ ẑ+ ẏŷ (2.12)

By differentiating equation (2.10), it is possible to derive an expression for ¨⃗r:

¨⃗r = r̈x̂+(rθ̈ +2ṙθ̇)ẑ+ rθ̇ ˙̂z+ ÿŷ = r̈x̂+(rθ̈ +2ṙθ̇)ẑ− rθ̇
2x̂+ ÿŷ (2.13)

where the relation ˙̂z =−θ̇ x̂ has been used. It has been obtained by the same argument as used

for equation (2.11).

Finally, equation (2.8) becomes:

r̈x̂+(rθ̈ +2ṙθ̇)ẑ− rθ̇
2x̂+ ÿŷ =

q(vzBxŷ− vzByx̂)
mγ

(2.14)

The equations of motion in the horizontal and vertical directions are respectively:

r̈− rθ̇
2 = −

qv2
z By

p
(2.15)

ÿ =
qv2

z Bx

p
(2.16)

By substituting the time derivatives with the derivatives with respect to the independent

variable s, equations (2.15) and (2.16) become:

d2x
ds2 −

ρ0 + x
ρ2

0
= −q

p
By

(
1+

x
ρ0

)2

(2.17)

d2y
ds2 =

q
p

Bx

(
1+

x
ρ0

)2

(2.18)

Since the betatron oscillations are small compared to the bending radius of the reference orbit,

the magnetic field can be expanded resulting in:

B⃗ = Bxx̂+Byŷ∼
[

Bx(0,0)+
∂Bx

∂y
y+

∂Bx

∂x
x
]

x̂+
[

By(0,0)+
∂By

∂x
x+

∂By

∂y
y
]

ŷ (2.19)

With this approach, the effects of the magnetic field are analysed as the superposition of

different components.

Usually the assumptions of a planar storage ring, i.e. Bx(0,0) = 0, and decoupled transverse

motions, i.e. (∂Bx)/∂x = (∂By)/∂y = 0, are considered to simplify the problem.



23 Storage ring concepts

As a result, the betatron equations of motion are given by the Hill’s differential equations

whose expressions in the horizontal and vertical directions are respectively:

d2x
ds2 +

[
1

ρ2
0
+

q
p

∂By(s)
∂x

]
x = 0 (2.20)

d2y
ds2 −

q
p

∂By(s)
∂x

y = 0 (2.21)

It is important to be aware of the fact that they are not the most general equations of motion:

since the expansion of the magnetic field given by equation (2.19) ends at the 1st order, only

the dipole and quadrupole components have been considered. However, these components are

sufficient to define the basic formulation of transverse beam dynamics because they guarantee

the beam guidance and focusing through dipole and quadrupole magnets respectively.

The derivatives of the magnetic field in the Hill’s differential equations can be related to the

magnet strength parameter defined as:

sn =
q
p

∂ n−1By

∂xn−1

∣∣∣∣
x=y=0

(2.22)

For dipole magnets n = 1 and s1 = κ , while for quadrupole magnets n = 2 and s2 = k.

Introducing the magnet strength parameter, the Hill’s differential equations become:

x′′(s)+ [κ2 + k(s)]x = 0 (2.23)

y′′(s)− k(s)y = 0 (2.24)

It can be noticed that the equation in the horizontal direction contains both the dipole and the

quadrupole components because the horizontal motion need to be both bent and focused. On

the other hand, the equation in the vertical direction contains only the quadrupole component

because the vertical motion need only to be focused due to the planar storage ring assumption.

The transverse beam dynamics based on only the two lowest order magnet types is defined as

linear because relies only on linear fields which are independent of or linearly dependent on

the distance of a generic particle of the beam from the reference orbit. With this approach it is

correct to consider the motions in the two transverse directions as independent.

Considering higher order components in the magnetic field expansion, the equations of motion

would acquire a lot of other terms and other types of magnets would be added to the magnet

lattice providing specific corrective effects.
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The building of magnets with almost ideal field properties is of great importance to treat

the higher order terms as small perturbations and mathematical perturbation methods can be

employed to describe their effects.

From now on, the linear transverse beam dynamics approximation is considered.

2.2.2 Solutions to the Hill’s differential equations

After the derivation of the Hill’s differential equations, the discussion moves to the research

for their solutions.

They are both of the form:

u′′(s)+K(s)u(s) = 0 (2.25)

where u is a transverse coordinate which stands for both x and y and K is the magnet strength

parameter whose expression can be either Kx = κ2 + k(s) or Ky = −k(s) depending on the

coordinate considered.

In the attempt to solve it, the first step consists in considering the magnet strength parameter

as constant:

u′′(s)+Ku(s) = 0 (2.26)

The principal solutions are defined for K > 0 and K < 0:

K > 0 :

{
C(s) = cos(

√
Ks)

S(s) = 1√
K

sin(
√

Ks)
K < 0 :

 C(s) = cosh(
√
|K|s)

S(s) = 1√
|K|

sinh(
√

Ks)
(2.27)

These linearly independent solutions satisfy the following initial conditions:

K > 0 :


C(0) = 1

S(0) = 0

C′(0) = dC
ds

∣∣
0 = 0

S′(0) = dS
ds

∣∣
0 = 1

(2.28)

Any arbitrary solution can be expressed as a linear combination of the principal solutions

(2.27): {
u(s) =C(s)u0 +S(s)u′0
u′(s) =C′(s)u0 +S′(s)u′0

(2.29)

where u0 and u′0 are two arbitrary initial parameters of the trajectory.
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However, in a real beam transport system, the magnet strength parameter is not constant and

the equation (2.25) must be considered.

By inserting solutions (2.29) in equation (2.25), the following equation is obtained:

[S′′(s)+K(s)S(s)]u0 +[C′′(s)+K(s)C(s)]u′0 = 0 (2.30)

This equation must be true for any pair of initial parameters (u0,u′0) and therefore the coeffi-

cients must vanish separately: {
S′′(s)+K(s)S(s) = 0

C′′(s)+K(s)C(s) = 0
(2.31)

The general solution of the equation of motion (2.25) can be expressed as a linear combination

of a pair of solutions satisfying the differential equations (2.31) and the initial conditions (2.28).

However, it is impossible to solve equation (2.25) analytically in a general way that would

be correct for any arbitrary beam transport system. To do this, it is necessary to introduce a

mathematical tool: the matrix formalism.

2.2.3 Matrix formalism

The matrix formalism allows to describe analytically the particle trajectories in any arbitrary

beam transport system composed of dipole and quadrupole magnets.

The idea behind this method is the following: by cutting the beam transport system into smaller

uniform pieces each of which is characterized by a constant magnet strength parameter, it

is possible to follow the particle trajectories step by step through the whole beam transport

system. This is feasible because the linear beam dynamics uses the hard-edge model for which

the magnetic field is zero in magnet free sections and assumes a constant value within the

magnets resulting in a step function distribution; therefore, the path is composed of a series of

segments with constant curvatures and magnet strength parameters.

It is an approximation, although for practical purposes a rather good one. In a real beam

transport line the field strength does not change suddenly from zero to full value but rather

follows a smooth transition from zero to the maximum field. It is important to keep in mind

that in some cases a correction is needed to consider the effects of a smooth field transition at

the magnet edges.

Using this approach, equation (2.25) is reduced to (2.26) and the arbitrary solution given by

equation (2.29) can be expressed in matrix form as:
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(
u(s)

u′(s)

)
=

(
Cz(s) Sz(s)

C′z(s) S′z(s)

)(
u0(s)

u′0(s)

)
= M

(
u0(s)

u′0(s)

)
(2.32)

where M is the transformation matrix.

Such a transformation matrix is obtained for each individual element of the beam transport

system and thanks to matrix formalism it is possible to follow particle trajectories along

a complicated beam transport system by repeated matrix multiplications from element to

element. With this method, the need to solve the differential equation (2.25) is completely

eliminated.

The transformations matrices are derived for both dipole and quadrupole magnets.

A generic particle of the beam has initial coordinates (u,u′)initial . After having passed through

either a dipole magnet or a quadrupole magnet of length L it will have coordinates (u,u′) f inal .

The most general solution in matrix form is:(
u(s)

u′(s)

)
f inal

= M

(
u(s)

u′(s)

)
initial

(2.33)

In the case of a dipole magnet, the magnet strength parameter is zero and the transformation

matrix is:

M =

(
1 L

0 1

)
(2.34)

In the case of a quadrupole magnet, the magnet strength parameter can be either positive or

negative indicating either a focusing or a defocusing effect respectively.

The transformation matrix for the focusing effect is:

MQF =

(
cos(
√

KL) 1√
K

sin(
√

KL)

−
√

Ksin(
√

KL) cos(
√

KL)

)
(2.35)

Similarly, the transformation matrix for the defocusing effect is:

MQD =

 cosh(
√
|K|L) 1√

|K|
sinh(

√
|K|L)

−
√
|K|sinh(

√
|K|L) cosh(

√
|K|L)

 (2.36)

Any arbitrary sequence of dipole and quadrupole magnets can be represented by a series

of transformation matrices Mi. The transformation matrix for the whole composite beam

transport line is just equal to the product of the individual matrices.
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2.2.4 Dipole and quadrupole magnets

As mentioned before, the peculiar characteristic of transverse fields is that they provide beam

guidance and focusing through dipole and quadrupole magnets respectively.

To study more in details the magnetic field generated by dipole and quadrupole magnets,

the starting point is the magnetic field expansion given by equation (2.19) together with the

assumption of a planar storage ring.

The magnetic field in the horizontal and vertical directions are respectively:

Bx =
∂Bx

∂y
y (2.37)

By = By(0,0)+
∂By

∂x
x (2.38)

The dipole component is given by the 0th order term, while the quadrupole component by the

1st order term: this means that a dipole magnet generates a constant uniform magnetic field

directed along the vertical axis, while a quadrupole magnet creates a magnetic field directed

along both the horizontal and vertical axes whose magnitude grows linearly with the radial

distance from the longitudinal axis. The dipole and quadrupole magnetic fields are shown in

Figure 2.5.

Figure 2.5
Representation of the dipole and quadrupole magnetic fields.

Due to the dipole magnetic field, the particle motion occurs in the ring plane, is collinear to

the direction of particle velocity and free in the direction perpendicular to it. Thus, a particle

injected into a storage ring travels a circular trajectory.
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Normally the quadrupole magnetic field is arranged in such a way that the reference orbit

passes through its centre: this means that a particle on the reference orbit feels a null magnetic

field and the more the particle is distant from the reference orbit, the greater the effect of the

magnetic field on it.

The reference orbit is defined geometrically by straight sections and dipole magnets only that

are placed wherever the path needs to be deflected. Quadrupole magnets do not influence this

path but provide the focusing necessary to keep all particles close to the reference orbit.

They are both necessary to guarantee a basic stable transverse motion.

The condition which ensures beam guidance comes from setting the Lorentz force equal to the

centrifugal force:

qvB =
mγv2

ρ
(2.39)

where ρ is the bending radius of the trajectory of a generic particle of the beam.

From equation (2.39) it is possible to obtain the condition that describes how the dipole field

influences the bending effect:
1
ρ
=

q
p

B (2.40)

Since the dipole field is constant, it is clear that if the particle velocity is constant, then the

bending radius is constant too and turn by turn the particle moves on a specific circular closed

path. However, if the particle velocity changes, then turn by turn the particle travels a different

path whose bending radius varies according to the velocity and to maintain the particle on

a specific path the magnetic field must change accordingly. For this reason the sole dipole

magnets cannot provide a stable transverse motion and beam guidance is always associated

with beam focusing provides by quadrupole magnets whose field changes with distance.

Furthermore, equation (2.40) gives the dipole field to set in order to maintain a particle

on a circular closed path characterized by a certain bending radius and allows to define an

expression for the beam rigidity:

Bρ =
p
q

(2.41)

It refers to the fact that a higher momentum particle has a higher resistance to deflection by

the dipole field.

The simplest example of a dipole magnet is a bar magnet. In a storage ring two bar magnets

are arranged in such a way that the north pole of one faces the south pole of the other.
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An example is shown in Figure 2.6.

Figure 2.6
Image of a dipole magnet.

The simplest quadrupole magnet consists of two identical bar magnets parallel to each other

such that the north pole of one is next to the south of the other and vice versa. In a storage ring

the four poles are arranged along the diagonals on the plane transverse to the particle beam

propagation axis, as shown in Figure 2.7.

Figure 2.7
Image of a quadrupole magnet.

Each quadrupole magnet has both a focusing and a defocusing effect. Typically a focusing

quadrupole (QF) magnet is horizontally focusing but vertically defocusing, while a defocusing

quadrupole (QD) magnet acts in the opposite way. Quadrupole magnets focus particles

exploiting the strong focusing method based on alternating gradient field focusing.

An example is shown in Figure 2.8.
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Figure 2.8
An example of a QD magnet, i.e. focusing in the vertical direction and defocusing in the horizontal

direction for a positively charged particle going into the figure plane. If the poles were switched from
north to south and vice-versa, then the horizontal axis would become the defocusing one and the

vertical axis would become the focusing one obtaining a QF magnet.

A quadrupole magnet works for a particle exactly like a thin lens works for light.

Figure 2.9
Scheme of how a ray initially parallel to the optical axis is bent by a convex lens.

The focal length of a quadrupole magnet can be obtained easily by considering a particle

which is moving through the device at a distance x from the horizontal axis of symmetry, as

shown in Figure 2.10.

The quadrupole field is directed along the vertical axis and its magnitude is:

By =
∂By

∂x
x (2.42)

If the length of the quadrupole magnet l is short enough that the displacement x is unaltered as

the particle passes through the device, then the magnetic field experienced by the particle is

constant along the particle trajectory. In this approximation, the angle θ is equal to the slope

of the particle trajectory x′.



31 Storage ring concepts

Figure 2.10
Scheme of how a particle is deflected by a quadrupole magnet.

As depicted in Figure 2.10, the slope of the particle trajectory is altered by an amount:

∆x′ =− l
ρ
=−l

q
p

By =−l
q
p

∂By

∂x
x (2.43)

where equations (2.40) and (2.42) have been used.

According to Figure 2.9, the change in slope is:

∆x′ =− l
f

(2.44)

So, by equating equations (2.43) and (2.44):

1
f
= l

q
p

∂By

∂x
(2.45)

Equation (2.43) can be written in a matrix form as:(
x

x′

)
f inal

=

(
1 0

− 1
f 0

)(
x

x′

)
initial

(2.46)

A QF magnet behaves like a convex lens. On the other hand, in the case of a concave lens the

focal length is of opposite sign and this well describes the behaviour of a QD magnet.

Just like how two lenses, one convex and one concave, can be placed at a certain distance from

each other to have a net focusing effect, a similar approach can be adopted with quadrupole

magnets.

If a QF magnet and a QD magnet are placed immediately next to each other, then their fields

completely cancel out; but if there is a space between them whose length has been correctly

chosen, then combining two quadrupole magnets with different focusing power in a proper

way it is possible to obtain a total focusing effect in both horizontal and vertical directions.
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Such a pair of quadrupole magnet forms the so-called FODO cell shown in Figure 2.11.

Typically, the space between the two quadrupole magnets is occupied by a dipole magnet.

Figure 2.11
Schematic representation of a FODO cell: it consists of a QF magnet (F), a drift (O), a QD magnet (D)
and a drift (O). The dotted lines represent the envelope, while the dashed line the particle trajectory.

2.2.5 Courant-Snyder phase space ellipse

The Hill’s differential equations are summarized in equation (2.25).

A storage ring is characterized by the fact that the magnet strength parameter K(s) is periodic

and the periodicity is given by:

K(s+L) = K(s) (2.47)

where L is the storage ring circumference.

As a result, it is possible to write a general solution for equation (2.25):

u =
√

ε
√

βu(s)cos[ψu(s)+φ ] (2.48)

where ε is the single-particle emittance, β (s) is the betatron function, ψ(s) is the phase

function and φ is an arbitrary phase offset.

It describes how a particle moves about the reference orbit, i.e. its betatron oscillations. This

motion is called betatron motion.

The β function modulates the amplitude of betatron oscillations. It is positive and periodic

with the same periodicity of the magnet strength parameter. It is solely determined from the

structure of the magnetic lattice and describes the focusing power of quadrupole magnets: its

maxima and minima correspond to focusing and defocusing quadrupole magnets respectively

as shown in Figure 2.12.
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Figure 2.12
Representation of the behaviour of the β function within a FODO cell.

The ψ function is related to the β function through the following equation:

ψu(s) =
∫ 1

βu(s)
ds (2.49)

The number of betatron oscillations per turn is called betatron tune and is defined as:

Qu =
1

2π
ψu(L) =

1
2π

∫ 1
βu(s)

ds (2.50)

It is one of the most important parameter. It can be modified by changing the strength of the

quadrupole magnets.

It is useful to define other two new variables that together with the β function compose the

Courant-Snyder or Twiss parameters:

α = −1
2

dβ

ds
(2.51)

γ =
1+α2

β2
(2.52)

By using these parameters, it is possible to rewrite equation (2.25) as:

γu2 +2αuu′+βu′2 = ε (2.53)

This equation describes the so-called Courant-Snyder ellipse in the phase space. Its eccentricity

and the tilt form and orientation depend on the Courant-Snyder parameters, while its area is

constant and given by:

A = πε (2.54)

The emittance ε is also known as the Courant-Snyder invariant and it is used to characterize

the cross-sectional size of the particle beam in the transverse and vertical planes.
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For each position s along the circular closed path there is an ellipse in the phase space (u,u′)

that describes the motion of the particles of the beam.

A typical Courant-Snyder ellipse in the phase space is shown in Figure 2.13.

Figure 2.13
Representation of a typical Courant-Snyder ellipse in the phase space.

2.2.6 Off-momentum particles: dispersion e chromaticity effects

Up to now, particles with the same momentum p0 as the reference particle have been consi-

dered; actually, each particle is characterized by its own momentum p and, as a result, subjected

to betatron oscillations.

An off-momentum particle is characterized by a momentum offset defined as:

δ =
p− p0

p0
=

∆p
p0

(2.55)

The momentum spread results in a non-homogeneous Hill’s differential equation:

u′′(s)+K(s)u(s) = K(s)δu (2.56)
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whose solution is:

u =
√

ε
√

βu(s)cos[ψu(s)+φ ]+Du(p,s)δ (2.57)

where D(p,s) is the dispersion function.

In addition, the quadrupole magnets have the property that their focusing strength depends on

the particle momentum (Bρ ∝ p). As well as in optics rays with different wavelengths find

a different refraction index in a lens and experience a different focal length, similarly in a

storage ring particles with different momenta feel a different focusing strength in a quadrupole

magnet and have a different betatron oscillation frequency.

The tendency for off-momentum particles to have different values for the betatron tunes is

described by chromaticity. In other words, the dependence of focusing on momentum causes

the dependence of the betatron tune on momentum too and chromaticity quantifies their

relation:

∆Qu = ξuδ (2.58)

where ∆Q is the change in the betatron tune and ξ is the chromaticity.

In order to correct the chromaticity effects, a distribution of sextupole magnets is normally

used.

2.2.7 Sextupole magnets

A sextupole magnet consists of six magnetic poles set out in an alternating fashion around the

particle beam, as shown in Figure 2.14.

Figure 2.14
Image of a sextupole magnet.

The chromaticity effects are seen at the ends of quadrupole magnets and cannot be corrected

by the quadrupole magnets themselves. Typically they are controlled with the addition of

sextupole magnets.
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In the analysis of the effects of the magnetic field as the superposition of different components,

to include the sextupole component the 2nd order terms in the magnetic field expansion given

by equation (2.19) must be considered. The magnetic field in the horizontal and vertical

directions become respectively:

Bx =
∂Bx

∂y
y+

1
2

∂ 2Bx

∂y2 y2 +
∂ 2Bx

∂x∂y
xy (2.59)

By = By(0,0)+
∂By

∂x
x+

1
2

∂ 2By

∂x2 x2 +
∂ 2By

∂x∂y
xy (2.60)

From these equations, it is clear that the sextupole field is non-linear and the motion in the

horizontal and vertical directions are coupled. By assuming the horizontal and vertical motions

as decoupled, the sextupole fields varies with the second order of the radial distance from the

longitudinal axis, as shown in Figure 2.15.

By assuming the horizontal and vertical motions as decoupled, the sextupole fields varies with

the second order of the radial distance from the longitudinal axis, as shown in Figure 2.15.

Figure 2.15
Representation of the sextupole magnetic fields.

However, the quadrature dependence can lead to particles with a high position offset being

kicked far from the beam axis and lost. As a result, the addition of sextupole magnets can

limit acceptance of the accelerator.
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2.3 Longitudinal beam dynamics

As studied in the previous sections, the peculiar characteristic of the transverse fields is

that they allow to guide and focus the particle beam providing beam guidance and focusing.

However, they do not contribute to the energy of the particles through acceleration.

For particle acceleration, fields with a non-vanishing component in the direction of the

acceleration, i.e. the longitudinal direction, are needed; such fields are called longitudinal

fields or accelerating fields.

The longitudinal beam dynamics describes the evolution of particle trajectories under the

influence of longitudinal fields. The longitudinal deviations are called synchrotron oscillations.

While magnetic fields are used to guide and focus the particles, the application of electric fields

is to accelerate particles. The most common and efficient way to provide particle acceleration

to high energies is to use high frequency oscillating electric fields.

2.3.1 Radiofrequency cavities

The accelerating structure involves in the acceleration of particles is the resonant cavity. The

name cavity deals with the structure of the device: it consists of a series of cylindrical poles

which act as electrodes held at a high voltage with cavities in between, as shown in Figure

2.16. This specific design allows to create a strong electric field in the longitudinal direction.

Figure 2.16
Image of a RF cavity.

It is also called radiofrequency (RF) cavity because the voltage applied is a RF oscillating

voltage:

VRF =V0sin(ωRFt) (2.61)

where V0 is the voltage amplitude and ωRF is the voltage angular frequency.

As a result, an RF oscillating electric field is generated:

E⃗RF = E0sin(ωRFt)ẑ (2.62)

where E0 is the electric field amplitude.
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In the case of a storage ring, typically a single RF cavity is used, but the energy increases

linearly with the number of passages through it.

2.3.2 Phase stability principle

The fact that each particle is characterized by its own momentum p induces effects not only in

the horizontal and vertical directions, but also in the longitudinal one where off-momentum

particles are subjected to synchrotron oscillations.

The reference particle, characterized by velocity v0 and momentum p0, has exactly the right

time of passage through the RF cavity and, so, does not gain or lose energy. However, a

generic particle of the beam does and the energy gained/lost per passage through the RF cavity

is given by:

ε = qV sinφn (2.63)

where q is the particle electric charge, V is the effective potential felt by the particle and φn is

the phase angle.

The principle which ensures the stability of the longitudinal motion is the phase stability.

The revolution period of a generic particle is:

τ =
L
v

(2.64)

where L is the storage ring circumference and v is the particle velocity.

The fractional change in the revolution period associated with the fractional changes in the

path length and in the velocity is:
∆τ

τ
=

∆L
L
− ∆v

v0
(2.65)

The terms on the right-hand side of equation (2.65) can be expressed in terms of the momentum

offset:
∆L
L

= αcδ (2.66)

∆v
v0

=
1
γ2 δ (2.67)

where in the first equation αc is the momentum compaction factor which gives information

about the rate of change of the path length with momentum offset and whose value depends

on the storage ring design and in the second one γ is the relativistic factor.
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Finally, the fractional change in the revolution period can be expressed as:

∆τ

τ
=

(
αc−

1
γ2

)
δ = ηδ (2.68)

where η is the slip factor which gives information about the rate of change of the travel time

with momentum.

The slip factor changes sign at a particular energy called transition energy and defined as:

εt = γtmc2 (2.69)

where γt = (αc)
−1/2 is the transition factor.

Typically, the operation mode is the normal regime, i.e. below the transition energy (η < 0).

Equivalently, the equation (2.69) can be written as:

∆ f
f0

= ηδ (2.70)

where f0 is the reference particle revolution frequency and ∆ f/ f0 the fractional change in the

revolution frequency.

Equation (2.70) is the key to understanding the concept of phase stability.

Figure 2.17
Visual representation of the phase stability principle.

In the normal regime, a higher energy/faster particle (the green particle in Figure 2.17) is

characterized by δ > 0 and, as a result, has a higher revolution frequency and arrives at the RF

cavity before the reference particle (the red particle in Figure 2.17) losing energy and slowing

down; this the reason why in Figure 2.17 it is drawn behind the reference particle.
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On the other hand, a lower energy/slower particle (the blue particle in Figure 2.17) is charac-

terized by δ < 0, has a lower revolution frequency, arrives at the RF cavity after the reference

particle and gains energy undergoing an acceleration and overtaking the reference particle.

This process provides the stability of the longitudinal motion.

Above the transition energy (η > 0), the situation is inverted.

2.3.3 Synchrotron equations of motion

From the phase stability principle, the synchrotron equations of motion can be derived.

The motion of a generic particle of the beam with arbitrary energy ε and phase angle φ with

respect to the motion of the reference particle is described by two equations: the former for

the energy, while the latter for the phase angle. By considering the situation in Figure 2.18,

the synchrotron equations of motion are:

∆εn+1 = ∆εn +qV (sinφn− sinφr) (2.71)

φn+1 = φn +
ωRFτη

β 2εr
∆εn+1 (2.72)

where the subscripts n and n+1 refer to the two consecutive passages of the particle through

the RF cavity, the subscript r refers to the reference particle, ∆ε = ε− εr and β is the particle

velocity.

Figure 2.18
Schematic representation of two consecutive passages of a particle through the RF cavity.

Figure 2.19 shows three passages through the RF cavity in the ∆ε−φ phase space both in the

case of zero (left plot) and non-zero acceleration (right plot).

In the left plot, the red particle is the reference particle. The closest particles to the reference

particle, the yellow ones, are subjected to oscillations, but remain close to the reference particle

turn by turn, revealing a stable oscillation pattern. Differently, the farthest particles, the purple

ones, are departing the neighbourhood of the reference particle. The result is the existence

of two regions: one is characterized by a stable motion and the other by an unstable motion.

The boundary between the stable and unstable regions is called separatrix. The area within the

separatrix is called bucket and the collection of particle sharing a bucket is called bunch.
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In the case of no acceleration, the buckets are said to be stationary. On the other hand, the

right plot shows three accelerating buckets.

Figure 2.19
Representation of three passages through the RF cavity in the ∆ε−φ phase space both in the case of

zero (on the left) and non-zero acceleration (on the right).

The two synchrotron equations of motion can be turned into one differential equation of the

second order provided that turn number n is an independent variable and ∆φ = φ −φr is small:

d2∆φ

dn2 +(2πνs)
2
∆φ (2.73)

where νs is the synchrotron tune.

It is defined as the number of synchrotron oscillations per turn and is given by:

νs =

√
−ωRFτqV ηcosφr

4π2β 2εr
(2.74)

Typically, the frequency of synchrotron oscillations is much smaller than that of betatron

oscillations.

The stability of the longitudinal motion is guaranteed when the synchrotron frequency is a real

number and this can only occur if:

ηcosφr < 0 (2.75)

This is the stability condition.

In the case of no acceleration, cosφr = 0 and the stability condition is satisfied when the slip

factor is negative.

On the other hand, if the transition energy is crossed during the acceleration cycle, then the

slip factor changes sign and the entire phase space must shift forward by an angle of π to

maintain phase stability.
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2.3.4 Matrix formalism

After the explanation of how the motion of the particles occurs in the longitudinal direction,

also the solutions to the synchrotron equations of motion can be expressed using the matrix

formalism: (
z(s)

z′(s)

)
= M

(
z0(s)

z′0(s)

)
=

(
cos(ωst) 1

ωs
sin(ωst)

−ωscos(ωst) cos(ωst)

)(
z0(s)

z′0(s)

)
(2.76)

where ωs is the synchrotron frequency.

Its unit of measure is [s−1]. It is possible to express the synchrotron frequency in the more

familiar unit of measure ([s−1]), dividing it by the factor k = νLη0, where ν ([s−1]) is the

revolution frequency, L ([m]) is the storage ring circumference and η0 is the 1st order slip

factor (dimensionless).

2.4 Spin dynamics

After having explained the particle motion, the spin motion must also be understood because

they are closely linked.

2.4.1 Principle of the EDM measurement

As mentioned in the previous sections, the motion of the particle beam is regulated by both

magnetic and electric fields which provide beam guidance and focusing and beam acceleration

respectively.

These fields also determine the evolution of the spins of the particles because they introduce a

spin precession through their interactions with the MDM and EDM respectively.

Just as a reminder, the expressions of the MDM and EDM are respectively:

µ⃗ =
g
2

q
m

S⃗ (2.77)

d⃗ =
η

2
q
m

S⃗ (2.78)

where q is the particle electric charge, m is the particle mass, S⃗ is the particle spin, g is the

gyro-magnetic or Lande factor and η is the gyro-electric factor.
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The MDM of a particle at rest under the influence of an external magnetic field B⃗ precedes

around the field; in other words, the field applies a torque on the particle given by:

dS⃗
dt

= µ⃗× B⃗ (2.79)

Since the MDM is aligned to the spin, as a result the spin rotates around the field axis.

Similarly the EDM of a particle interacts with an external electric field E⃗:

dS⃗
dt

= d⃗× E⃗ (2.80)

By considering both the effects:

dS⃗
dt

= µ⃗× B⃗+ d⃗× E⃗ =
q

2m
(gB⃗+ηE⃗)× S⃗ = (Ω⃗MDM + Ω⃗EDM)× S⃗ = Ω⃗× S⃗ (2.81)

where equations (2.77) and (2.78) have been used, Ω⃗MDM is the precession frequency which

describes the contribution of the MDM and Ω⃗EDM is the precession frequency which describes

the contribution of the EDM.

As a result, the MDM contribution to the spin precession is to rotate the particle spin in the

ring plane, while the EDM contribution to the spin precession is to rotate the particle spin in

the vertical plane. The axis about which the spin rotates due to effects of both the magnetic

and electric fields is called invariant spin axis.

Through the horizontal rotation of the spin due to the MDM contribution, the magnetic and

electric fields cause the spin to rotate upwards in one revolution and downwards in another

and vice versa. Thus, on average, no signal is obtained from the vertical rotation of the spin

due to EDM contribution.

A direct signal due to EDM contribution can be detected only if the rotation in the ring plane

vanishes, i.e. if the precession frequency due to the MDM contribution vanishes:

Ω⃗MDM = 0 → dS⃗
dt

= Ω⃗EDM× S⃗ = d⃗× E⃗ (2.82)

This condition is called frozen spin condition. To impose the frozen spin condition means to

align the particle spin with its momentum freezing the spin precession in the ring plane.

The frozen spin condition can be achieved in different ways depending on the “nature” of the

storage ring. This issue will be clarified in the next sections.
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Up to now one single particle has been considered to simplify the considerations about the

spin evolution. Actually a particle beam must be considered.

The measurable quantity connected to the spin orientation of a particle beam is the polarization.

The polarization vector is defined as:

P⃗ =
1
N

N

∑
n=1

S⃗i (2.83)

where N is the beam total number of particles and Si is the spin of ith particle of the beam.

Starting from a longitudinally polarized particle beam, the EDM signal can be detected as the

rotation of the polarization vector under the frozen spin condition from the ring plane to the

vertical axis due to its interaction with an external radial electric field according to:

dS⃗
dt

= d⃗× E⃗ (2.84)

This is the signature of the EDM signal and can be revealed with the help of a polarimeter, as

shown in Figure 2.20.

Figure 2.20
Representation of the principle of the EDM measurement in a storage ring.

2.4.2 Thomas-BMT equation

Equation (2.81) describes the evolution of the spin in the centre of mass (CM) system but

cannot be used in the case of a storage ring.

To derive the equation which describes the spin evolution in the laboratory frame a realistic

case is considered: a particle with the velocity directed along the longitudinal axis is injected

into a storage ring where the magnetic and electric fields are respectively vertically and hori-

zontally orientated; in relation to Figure 2.2, B⃗ = Bŷ, E⃗ = Ex̂ and v⃗ = vẑ.
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By using natural units (c = 1), the appropriate transformations of the fields lead to the Thomas-

Bergmann-Michel-Telegdi (BMT) equation:

dS⃗
dt

=− q
m

[(
G+

1
γ

)
B⃗− Gγ

γ +1

(
v⃗ · B⃗
c2

)
v⃗−
(

G+
1

γ +1

)
v⃗× E⃗+

+
η

2

(
E⃗− γ

γ +1

(
v⃗ · E⃗
c2

)
v⃗+ v⃗× B⃗

)
× S⃗

(2.85)

Since the magnetic and electric fields are perpendicular to the particle (⃗v · B⃗ = v⃗ · E⃗ = 0),

equation (2.84) reduces to:

dS⃗
dt

=− q
m

[(
G+

1
γ

)
B⃗−

(
G+

1
γ +1

)
v⃗× E⃗ +

η

2

(
E⃗ + v⃗× B⃗

)]
× S⃗ (2.86)

From this equation, the precession frequencies due to the MDM and EDM contributions can

be immediately derived:

Ω⃗MDM = − q
m

[(
G+

1
γ

)
B⃗−

(
G+

1
γ +1

)
v⃗× E⃗

]
(2.87)

Ω⃗EDM = − q
m

η

2

(
E⃗ + v⃗× B⃗

)
(2.88)

where G is the gyro-magnetic anomaly.

It is defined as:

G =
g−2

2
(2.89)

It is useful to express the precession frequency with respect to the particle momentum.

The frequency of rotation of the particle momentum is:

Ω⃗p =−
q

γm

[
B⃗− v⃗× E⃗

v2

]
(2.90)

This equation modifies the precession frequency due to the MDM contribution:

[⃗ΩMDM]rel = Ω⃗MDM− Ω⃗p =−
q
m

[
GB⃗−

(
G− 1

γ2−1

)
v⃗× E⃗

]
(2.91)
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As a result:

dS⃗
dt

= ([⃗ΩMDM]rel + Ω⃗EDM)× S⃗ =

=− q
m

[
GB⃗−

(
G− 1

γ2−1

)
v⃗× E⃗ +

η

2
(E⃗ + v⃗× B⃗)

]
× S⃗

(2.92)

2.4.3 Frozen spin condition

As mentioned in the previous section, the criterion to fulfil for a direct measurement of the

EDM is the frozen spin condition which is given by:

[⃗ΩMDM]rel =−
q
m

[
GB⃗−

(
G− 1

γ2−1

)
v⃗× E⃗

]
= 0 (2.93)

Depending on the configuration of the storage ring fields, this condition can be differently

achieved.

■ PURE MAGNETIC STORAGE RING

A pure magnetic storage ring uses only magnetic fields to confine the particles.

In the absence of electric fields, the Thomas-BMT equation given by equation (2.92)

reduces to:
dS⃗
dt

=− q
m

[
GB⃗+

η

2
v⃗× B⃗

]
× S⃗ (2.94)

It is not possible to satisfy the frozen spin condition in the presence of a pure magnetic

confinement system because the frozen spin condition would reduce to:

[⃗ΩMDM]rel =−
q
m

GB⃗ = 0 (2.95)

and would be satisfied only for a null magnetic field, but a magnetic field is always

needed to keep particles inside the storage ring.

■ COMBINED-FIELD STORAGE RING

A combined-field storage ring uses both magnetic fields for particle confinement.

In this case, the Thomas-BMT equation does not suffered any changes and it is exactly

given by equation (2.92).

Differently from a pure magnetic storage ring, the presence of the electric fields allows

the frozen spin condition to be satisfied: it can be achieved by combining appropriately

the magnetic and electric fields such that equation (2.93) is fulfilled.
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For frozen spin particles the Thomas-BMT equation becomes:

dS⃗
dt

= Ω⃗EDM× S⃗ (2.96)

■ PURE ELECTRIC STORAGE RING

A pure electric storage ring uses only electric fields to confine the particles.

In the absence of magnetic fields, the Thomas-BMT equation reduces to:

dS⃗
dt

=− q
m

[(
G− 1

γ2−1

)
v⃗× E⃗ +

η

2
E⃗
]
× S⃗ (2.97)

Differently from a pure magnetic storage ring where the only presence of magnetic

fields limits the possibility to fulfil the frozen spin condition, the sole electric fields

allows it for particle with positive gyro-magnetic anomalies (e.g., the proton) by setting

the particle momentum at a specific value called magic momentum such that:

G =
1

γ2−1
(2.98)

With this condition, equation (2.93) is fulfilled.

For frozen spin particles the Thomas-BMT equation becomes:

dS⃗
dt

= d⃗× E⃗ (2.99)

2.4.4 Critical aspects

The change in the spin tune and the spin coherence time (SCT) are the critical and strictly

connected parameters to consider when performing EDM experiments in storage rings.

The longitudinally polarized particle beam injected into the storage ring precedes in the ring

plane with a frequency which depends on the experimental setup.

The spin tune is the number of spin precessions around the vertical axis during one turn around

the storage ring for a single particle and is defined as:

νs = Gγ (2.100)

where γ is the relativistic factor.
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It is proportional to the particle velocity through the relativistic factor.

However, particles have different velocities and after some time the spins go out of phase

and spread out; this is described by the change in the spin tune which is defined for a single

particle as:

∆νs = G∆γ (2.101)

As a result, the initial longitudinal polarization is lost. The situation is shown in Figure 2.21.

Figure 2.21
Representation of the change in the spin tune: initially all the spins are aligned along the same

direction so and the beam is polarized (on the left); then the spins spread out due to different velocities
and the polarization is lost.

The polarization lifetime, i.e. the time during which the spins precede coherently maintaining

some fraction of their initial polarization, is the SCT. It must be as long as possible since it

represents the time available to measure the EDM signal. Since it depends on the change in

the spin tune, to obtain a long SCT it is necessary to minimize the change in the spin tune.
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3 The JEDI collaboration and
experiment at FZ-Jülich

3.1 Project overview

The Jülich Electric Dipole moment Investigations (JEDI) collaboration was created in the end

of 2011. The aim of this partnership is to carry out a long-term project for the measurement of

the proton EDM (pEDM) in a pure electric storage ring.

To reach this goal, a three stages strategy has been proposed as shown in Figure 3.1.

Figure 3.1
Table with some specifics of the staged approach pursued by the JEDI collaboration for the pEDM

measurement.

The 1st stage consists in exploiting an already existing facility to demonstrate the feasibility of

a pure electric storage ring. The chosen one was the COoler SYnchrotron (COSY).

For the 2nd stage a new facility must be designed, built and activated to study the critical

features and to develop the key technologies required for the future measurements. This

facility is called Prototype Storage Ring (PSR).
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The 3rd and final stage is the construction and operation of a pure electric storage ring. It will

be a larger version of the PSR ring. This ring will need all the technologies developed in the

previous stages to allow the measurement of the pEDM.

The next sections will provide a short description of the three facilities.

3.2 Staged approach

3.2.1 Precursor stage: COSY

The COSY represented the ideal existing storage ring for the feasibility studies of the pure

electric storage ring.

The COSY complex is located at the ForschungsZentrum-Jülich (FZ-Jülich) in Germany and

consists into three main parts as shown in Figure 3.2: the ion source, the JULIC cyclotron and

the COSY.

Figure 3.2
Schematic representation of the COSY complex.

The ion source (not shown in Figure 3.2) provides negatively charged hydrogen (H−) and

deuterium (D−) ions which can be either polarized or not.

The selected beam is guided to the JULIC cyclotron where it is accelerated to its injection

kinetic energy which is 45 MeV for the H− ions and 75 MeV for the D− ions.
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Once in the cyclotron, a first measurement of the beam polarization is provided by the Low

Energy Polarimeter (LEP).

Then the beam is injected into the COSY via a charge-exchange injection system which strips

two electrons from each ion resulting in a final beam of positively charged particles which can

be either protons or deuterons.

Finally, the beam is accelerated in a momentum range from 300 MeV/c to 3.7 GeV/c using a

single RF cavity located in the middle of one of the straight sections.

The COSY has a circumference of about 183.4 m and consists of 2 arcs and 8 straight sections

each with a length of 40 m.

Figure 3.3
Image of the COSY.

It is a pure magnetic storage ring with dipole and quadrupole magnets to bend and focus the

particle beam respectively.

It has 24 dipole magnets characterized by a length of 40 cm and a maximum value of the

magnetic field of 1.67 T and 56 quadrupole magnets which are grouped into families of 4. The

quadrupole magnets within a family have the same dimensions and a common power supply.

8 of these families are located in the straight sections and the other 6 in the arcs. In addition,

there are 17 sextupole magnets, of which 7 are in the straight sections and 10 in the arcs. For

orbit measurements and corrections there are 59 beam position monitors and 41 ”steering”

dipole magnets.
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The COSY partly owns its name to the phase space controlling which is achieved by the beam

cooling. Electron and stochastic cooling are available to prepare a monochromatic beam and

ensure the lowest possible emittance. There are two electron coolers for phase space cooling

at particle momenta up to 0.6 GeV and two stochastic cooling mechanisms for those with

momenta above 1.5 GeV . Furthermore, the installation of vertical and horizontal dampers

provides the possibility to stack electron-cooled beams and thus increase the beam intensity

up to about 1010 stored particles.

Several devices for spin manipulation (e.g. RF Wien filter) are installed into the ring together

with polarimeters (e.g. EDDA polarimeter) which were used to measure the vertical and the

horizontal beam polarization components as a function of time and to recover an EDM signal.

The primary goal of this series of proof of capability tests was the determination of the

deuteron EDM.

The choice of the deuteron instead of the proton was owed to the fact that it has a lower

gyro-magnetic anomaly than the proton which can improve precision in the SCT as well as in

the invariant spin axis measurement.

For this purpose, a vertically polarized deuteron beam was used. It was injected into the COSY

and accelerated up to 970 MeV .

An RF solenoid located in one of the arcs was used to rotate the polarization from the vertical

axis to the ring plane.

Since the COSY is a pure magnetic storage ring, the frozen spin condition cannot be achieved;

as a result, the spins of the particles precess about the invariant spin axis with a frequency of

about 120 kHz and after a while they spread out due to the different velocities resulting in a

null spin coherence.

The impossibility to satisfy the frozen spin condition heavily affects the possibility to perform

an EDM measurement.

As explained before, the EDM signal could be detected as the rotation of the polarization

vector from the ring plane to the vertical axis due to its interaction with a radial electric

field. The one considered was the radial electric field induced by the vertical magnetic field.

However, even in the absence of the spin tune spread, the spin precession causes the spins of

the particle to be both parallel and antiparallel to the velocities resulting in a vanishing vertical

polarization.

A quasi-frozen spin condition was realized using an RF Wien filter which eliminated the spin

precession, while a configuration of sextupole magnets was used to eliminate the spin tune

spread obtaining a SCT of about 1000 s.
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Even if in principle such an experiment can directly provide a measurement of the magnitude

of the EDM, the concept at the base of these precursor experiments was the determination of

the invariant spin axis from which the upper bound for the deuteron EDM can be derived.

Among all the possible systematic effects, the chances of magnetic field misalignments were

very high and required a careful investigation through simulations since they could affect the

orientation of the invariant spin axis.

The experimental results showed a tilt of 1 mrad in the radial direction which is equivalent to

an EDM of 10−17 e · cm.

This result represents the first-ever direct EDM measurement in a storage ring.

Since the pure magnetic storage rings have a lot of limitations, the next step is the planning of a

new kind storage ring with a different kind confinement system which will allow to overcome

many problems linked to the frozen spin condition and the undesired magnetic fields and

tested some technologies which could improve the precision in the EDM measurements.

This is the case of the PSR ring.

3.2.2 Proof-of-concept stage: PSR ring

The PSR ring is the storage ring which will play the role of the intermediate step in order to

study the critical features and to develop the key technologies for the pure electric storage

ring.

It will be held to account for the following challenges and open issues:

• storage of high intensity beams for a sufficiently long time;

• phase-space beam cooling via electron and stochastic cooling techniques before the

injection;

• simultaneous circulation of clockwise (CW) and counter-clockwise (CCW) beams with

multiple polarization states;

• polarization measurements for both CW and CCW beams using the same target;

• magnetic shielding to reduce the ambient radial magnetic field.

Since it is only an intermediate step, it is designed to be as inexpensive as possible while

consistent with being capable of achieving its goals; this is the reason why it will be much

smaller than most accelerators.
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The basic layout of the PSR ring is shown in Figure 3.4.

Figure 3.4
Schematic representation of the PSR basic layout.

It is a 4-fold symmetric ”squared” ring with a circumference of about 100 m and a bending

radius of 8.861 m.

It consists of 4 arcs characterized by a length at 45° of 15.718 m and 4 straight sections

characterized by a length of 8 m.

In each arc there is a unit cell bending 90°. Each unit cell has the following structure:

QF−BS−QD−BS−QF

where QF is a focusing quadrupole magnet, BS is a bending section and QD is a defocusing

quadrupole magnet.

Summing up, there are 16 quadrupole magnets and 8 bending sections.

Actually, the quadrupole magnets can be structured into three families:

• QD → it contains 4 quadrupole magnets which are placed in between the bending

sections of each unit cell;

• QF→ it contains 8 quadrupole magnets which are placed around the bending sections

of each unit cell;

• QSS→ it contains 4 quadrupole magnets which are placed in the straight sections in

between the unit cells.
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Each quadrupole magnet is characterized by a length of 40 cm.

A sextupole magnet is placed on top of each quadrupole to correct chromaticity effects right

at the place of origin. Also the sextupole magnets form three families which correspond to

the quadrupole magnets families and are named similar to the associated quadrupole magnets

families they belong to: SXD, SXF and SXSS. They are not shown in Figure 3.4.

Each straight section has the following structure:

QF−QSS−QF

where QSS is a quadrupole which provides further flexibility to adjust the beam optics. The

flexibility is one of the goal for the design.

The straight sections house two injection regions for the CW and CCW beams. The injection

is done by using switching magnets.

The beams are protons with kinetic energy in the 30−45 MeV range, bunched into 2, 4, 6 or 8

bunches with vertical polarization, either up or down, in a cooled phase space of 1 π mm ·mrad.

Each bending section consists of both electric and magnetic elements and this fact allows the

PSR ring can operate in two modes: the first one works with electric bending elements only

and provides the required rigidity for 30 MeV protons, while the second one uses magnetic

bends in addition and expands the protons energy up to 45 MeV . The electric bending section

consists of two electrodes characterized by a length of 6.959 m and a spacing of 60 mm.

The two operation mode makes it a combined-field storage ring.

Figure 3.5 summarizes the geometry of the storage ring and the magic parameters of the beam.

At the moment the collaboration is performing simulations about the open issues.

3.2.3 Final stage: pure electric ring

The pure electric storage ring will be the final stage of the project of the JEDI collaboration

with the aim to reach the target precision of 10−29 e · cm.

The main advantages in using a pure electric storage ring are the possibility to improve the

statistics increasing the luminosity of the experiment, the simultaneous circulation of two

counter-rotating particle beams to properly address and control different sources of systematic

errors and the absence of magnetic fields which allows to maximize the precision of the

measurement inhibiting one of the main sources of systematic errors.

One of the proposals for the final stage is the hybrid storage ring.
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Figure 3.5
Table with the geometry and beam parameters of the PSR.

Hybrid means that the storage ring features electric bending elements and magnetic focusing

elements. Its layout is described in detail in the next section.

3.3 Hybrid storage ring

The basic layout of the hybrid storage ring is shown in Figure 3.6.

It is a 24-fold symmetric storage ring with a circumference of about 800 m.

It consists of 24 periods. Each period has the following structure:

SS−BS−SS−BS

where SS is a straight section and BS is a bending section.



57 The JEDI collaboration and experiment at FZ-Jülich

Figure 3.6
Schematic representation of the hybrid storage ring basic layout.

Summing up, there are 48 straight sections characterized by a length of 4.16 m and 48 bending

sections characterized by a length of 12.5 m. The bending sections together have a circumfe-

rence of 600 m with a bending radius of 95.49 m.

A detailed representation of a single period is shown in Figure 3.7.

Figure 3.7
Schematic representation of the hybrid storage ring single period: SS stands for straight section, BS for
bending section, D for drift, QF for focusing quadrupole magnet, ED for electric deflector and QD for

defocusing quadrupole magnet.

In each straight section there is a quadrupole magnet for a total number of 48 quadrupole

magnets characterized by a length of 40 cm and a strength of ±0.21 T/m, where + stands for

focusing and – stands for defocusing. The quadrupole magnets are alternated in sign.

On the top of each quadrupole magnet there is a sextupole magnet for a total number of 48

sextupole magnets of which 24 are characterized by a strength k1 and 24 are characterized by

a strength k2. Also the sextupole magnets are alternate in sign. They are not shown in Figure

3.6.
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Each bending section consists of two electrodes characterized by a height of 20 cm and a

spacing of 4 cm with a field strength of 4.4 MV/m.

The straight sections house two injection regions for the CW and CCW beams. The beams are

protons with a kinetic energy of 233 MeV with 1.17×108 particles per bunch.

Figure 3.8 summarizes the geometry of the storage ring and the magic parameters of the beam.

Figure 3.8
Table with the geometry and beam parameters of the hybrid storage ring.
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4 Hybrid storage ring
beam dynamics simulations

The focus of this thesis is the hybrid storage ring. In particular, specific beam dynamics simu-

lations have been performed on an idealized lattice whose design reflects the one described in

the previous chapter.

In the first section the software used to build the lattice, perform the simulations and analyse

the data coming from the simulations are described.

The second section illustrates the code used to build the lattice together with the plot of the

Twiss parameters as functions of the distance along the storage ring.

The third section justifies the beam dynamics simulations performed, while the fourth and

fifth sections contain the results: the first set of simulations concerns the 6D phase space and

the 6×6 transfer matrix, while the second one deals with the path lengthening.

4.1 Bmad and ROOT software

The software used to build the lattice and to perform the simulations is Bmad.

It has been developed at Cornell University’s Laboratory for Elementary Particle Physics and

has been in use since the middle of the 90s. It is a subroutine library for charged particle

tracking in accelerators and storage rings which uses an object-oriented approach and is

written in Fortran 2008. It includes dipole and quadrupole magnets and RF cavities which is

everything needed to simulate the basic version of a storage ring lattice. In addition, elements

can be defined to control the attributes of other elements and allowing for the creation of

composite devices. It provides a wide range of routines to do many things and has various

tracking algorithms including Runge-Kutta. It can be used to study the dynamics of both

single particles and particle beams.
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The software used to analyse the data coming from the simulations is ROOT.

Its development was initiated by René Brun and Fons Rademakers at CERN in 1994. It is an

object-oriented library written in the C++ programming language. It was originally designed

for particle physics data analysis but nowadays it is also used in other applications. It provides

a lot of packages.

4.2 Lattice

The code used to build the hybrid storage ring lattice is shown in Figures 4.1, 4.2 and 4.3. This

is the 1st version of the code; it has been implemented into the 2nd version to allow the study

of the path lengthening.

Figure 4.1
Illustration of the 1st block of the code used to build the lattice.

According to Figure 4.1, the 1st block of the code defines the geometry of the storage ring.

Among all the parameters listed in Figure 3.8, the number of bending sections (N.BS) and their

length (L.BS) are sufficient to fix the geometry since they define the bending angle (angle)

and radius (radius).

The 2nd block of the code defines the parameters of the beam under the frozen spin condition

in relation to the ones listed in Figure 3.8. Since the confinement system is pure electric, the

sole electric field (E f ield) is used for the particle confinement. The magnetic field (B f ield)

ensures to have a closed orbit, while the quadrupole magnet strength (k.Q) expresses the

magnetic field necessary to the particle focusing and defines the working point which is

(Qx,Qy) = (2.699,2.245).
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The 3rd block specifies that the orbit is closed, the circulating particles are protons, the time

tracking is relative and the initial momentum coincide with the magic one.

Figure 4.2
Illustration of the 2nd block of the code used to build the lattice.

In Figure 4.2 the electric deflectors, the quadrupole magnets and the RF cavity are defined

with all their attributes. They are the necessary devices to define the basic layout of a storage

ring.

Figure 4.3
Illustration of the 3rd block of the code used to build the lattice.

In the 1st block of Figure 4.3 the lattice is built according to the layout shown in Figure 3.6,

while the 2nd block defines the tracking method.
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Once built the lattice, Tao is used for its visualization. It is a general purpose simulation

program built using Bmad libraries. The lattice is shown in Figure 4.4.

Figure 4.4
Illustration of the lattice through Tao program.

The Twiss parameters can be measured directly via a dedicated routine in Bmad which

produces a file including the Twiss parameters as well as the dispersion function.

Figure 4.5 shows the horizontal and vertical β function and the horizontal dispersion function

as functions of the distance along the storage ring.

This plot gives an idea of how the motion of a particle occurs within the storage ring.

4.3 Motivation

Objective of the beam dynamics simulations performed is the need to verify whether the

current theoretical knowledge about storage rings, which is known to be valid in the case of

pure magnetic ones, can also be applied in the case of other types of storage rings, in particular

the hybrid storage ring which is characterized by an electric confinement system.

For all the simulations performed the single particle tracking has been considered.

Two aspects have been taken into account: the couplings strengths between different phase

spaces through the study of the 6×6 transfer matrix and the path lengthening phenomenon.
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Figure 4.5
Plot of the horizontal (red) and vertical (blue) β function and the horizontal dispersion function (green)

as functions of the distance along the storage ring.

4.4 6D phase space and 6×6 transfer matrix

Inside a storage ring a generic particle of the beam is described by a 6-dimensional state vector

given by: 

x

x′

y

y′

z

z′


(4.1)

where, according to Figure 2.2, x, y and z are the positions in the horizontal, vertical and

longitudinal directions respectively and x′, y′ and z′ are the corresponding velocities.

As mentioned in chapter 2, the majority of the particles are subjected to betatron and syn-

chrotron oscillations and as a result the 6-dimensional state vector transforms as:
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(4.2)

where M6×6 is the transfer matrix.
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By considering the ideal case of a pure magnetic planar storage ring, the transfer matrix

reduces to:

M6×6 =



m11 m12 0 0 0 m16

m21 m22 0 0 0 m26

0 0 m33 m34 0 0

0 0 m43 m44 0 0

m51 m52 0 0 m55 m56

0 0 0 0 m65 m66


(4.3)

The coloured blocks on the main diagonal are the 2×2 transfer matrices for the horizontal,

vertical and longitudinal phase spaces respectively. The other two coloured blocks represent

the coupling among the different phase spaces.

Explicitly: 

x f = m11xi +m12x′i +m16z′i

x′f = m21xi +m22x′i +m26z′i

y f = m33yi +m34y′i

y′f = m43yi +m44y′i

z f = m51xi +m52x′i +m55zi +m56z′i

z′f = m65zi +m66z′i

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

The information which can be kept out form this system of equations is the following:

• since the storage ring considered is planar, the horizontal and vertical motions are

decoupled and they cannot influence each other; this is the reason why in equations

(4.4) and (4.5) there are no vertical terms and in equations (4.6) and (4.7) there are no

horizontal terms;

• the xz coupling is stronger than the yz coupling.

A set of beam dynamics simulations has been performed to test if the transfer matrix reduces

to the form given by equation (4.3) also in the case of the hybrid storage ring.

In order to understand which elements of the transfer matrix can be neglected, it is necessary to

compare the order of magnitude of the coefficients mi j with i ̸= j which represent the coupling

strengths among the different phase spaces with the coefficients mii whose order of magnitude

is obviously 1: only the coefficients whose order of magnitude is comparable to or greater

than 1 are non-vanishing.

For all the simulations performed the RF cavity is ON, the number of turns is 10000 and the

chromaticity values are zero.



65 Hybrid storage ring beam dynamics simulations

A single particle subjected to both position and momentum deviations in all the directions

has been considered. For each deviation introduced, the plots of the position and momentum

components as a function of the number of turns are shown.

The comparison among the coefficients is preceded by a brief description of the plots.

Before proceeding, it is necessary to make a point. As mentioned in the previous section, the

lattice has been built only considering the basic devices: the electric deflectors, the quadrupole

magnets and the RF cavity. The designated devices for the correction of the betatron and

synchrotron oscillations are the quadrupole magnets and the RF cavity respectively. It is

important to remember that the RF cavity changes the velocity of a particle in the direction of

its motion, i.e. it can act on the longitudinal momentum, while what the quadrupole magnets

do is to change the transverse direction of a particle, i.e. they can act on the horizontal and

vertical coordinates.

Keeping in mind this information, for each panel corresponding to a different deviation the

description will be focused on the plots of the horizontal and vertical coordinates and of the

longitudinal momentum.

■ Longitudinal position offset

A particle with an initial longitudinal position offset of 0.0001 m has been considered:

this means that, according to Figure 2.2, the particle is ahead of the reference particle.

Figure 4.6
Plots of the position and momentum components as a function

of the number of turns in the case of dz = 0.0001 m.
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Referring to Figure 4.6, the plot of the longitudinal momentum shows the synchrotron

oscillations due to the action of the RF cavity: since initially the particle is ahead of

the reference particle, the RF cavity brings it back to the reference orbit decreasing its

velocity, and, as a result, the particle oscillates back and forth.

The oscillations manifesting in the plot of the horizontal coordinate are due to a geo-

metric effect which apparently couples the x and z motions: since initially the particle

velocity decreases, the bending radius decreases too (ρ ∝ v) and the particle position

also oscillates in the horizontal direction. The plot of the horizontal coordinate is in

phase with the one of the longitudinal momentum.

There are no oscillations in the vertical direction.

■ Horizontal position offset

A particle with an initial horizontal position offset of 0.0001 m has been considered: this

means that, according to Figure 2.2, the particle is on the left of the reference particle.

Figure 4.7
Plots of the position and momentum components as a function

of the number of turns in the case of dx = 0.0001 m.

Referring to Figure 4.7, the plot of the horizontal coordinate shows the betatron oscil-

lations due to the action of the quadrupole magnets: since initial the particle is on the

left of the reference particle, the quadrupole magnets bring it back to the reference orbit

decreasing its bending radius and, as a result, the particle oscillates to the right and to

the left of the reference orbit.
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Figure 4.8 shows in detail the corrective effect of the quadrupole magnets: they are at

the corners and between one quadrupole magnet and another the particle travels straight.

Figure 4.8
Plot of the horizontal coordinate within one turn in the case of dx = 0.0001 m.

Due to the transverse decoupling, there are no oscillations manifesting in the vertical

direction, but there are in the longitudinal one and the reason is again the geometric xz

coupling effect: since the bending radius decreases, the velocity decreases too (ρ ∝ v)

as shown in the plot of the longitudinal momentum.

■ Vertical position offset

A particle with an initial vertical position offset of 0.0001 m has been considered: this

means that, according to Figure 2.2, the particle is above the reference particle.

Figure 4.9
Plots of the position and momentum components as a function

of the number of turns in the case of dy = 0.0001 m.



Hybrid storage ring beam dynamics simulations 68

Figure 4.10
Plot of the vertical coordinate within one turn in the case of dy = 0.0001 m.

Referring to Figure 4.9, the nature of betatron oscillations shown in the plot of the

vertical coordinate is the same described for the previous case, as well as the existence

of the geometric yz coupling effect with the difference that it seems to be very tiny

compared to the geometric xz coupling effect of the previous case.

The presence of an asymmetry in the plot of the longitudinal momentum is due to the

fact that the average longitudinal momentum must compensate the change in the path

length. This phenomenon will be explained in detail in the next section.

The oscillations manifesting in the horizontal coordinate are due to the geometric xz

coupling effect and reflect the ones of the longitudinal momentum.

■ Longitudinal momentum offset

A particle with an initial longitudinal momentum offset of 0.0001 has been considered.

Figure 4.11
Plots of the position and momentum components as a function

of the number of turns in the case of d pz = 0.0001.
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Referring to Figure 4.11, also in this case there is the geometric xz coupling effect:

initially the particle is faster than the reference particle and, as a result, it is on the left

of the reference particle (ρ ∝ v); then, due to the action of the RF cavity, the velocity

decreases as shown in the plot of the longitudinal momentum and the radius decreases

too as shown in the plot of the horizontal coordinate.

There are no oscillations in the vertical coordinate.

■ Horizontal momentum offset

A particle with an initial horizontal momentum offset of 0.0001 has been considered.

Figure 4.12
Plots of the position and momentum components as a function

of the number of turns in the case of d px = 0.0001.

Referring to Figure 4.12, once again a deviation in the horizontal direction affects the

motion in the longitudinal direction due to the geometric xz coupling effect, while the

vertical direction remains untouched because of the transverse decoupling.

■ Vertical momentum offset

A particle with an initial vertical momentum offset of 0.0001 has been considered.

Referring to Figure 4.13, this plots display the same information shown in Figure 4.9:

the existence of the geometric yz coupling effect, the presence of an asymmetry in the

plot of the longitudinal momentum due to the path lengthening phenomenon and the

appearance of the xz coupling.
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Figure 4.13
Plots of the position and momentum components as a function

of the number of turns in the case of d py = 0.0001.

According to Figures 4.6, 4.7, 4.9, 4.11, 4.12 and 4.13, the orders of magnitude of the elements

of the transfer matrix are reported in Figure 4.14.

Figure 4.14
Table with the transfer matrix coefficients.

Among the non-vanishing coefficients, there are two “anomalous” ones: m56 and m65; they are

defined as “anomalous” because they are much smaller and much greater than 1 respectively.

They appear in equations (4.8) and (4.9): the first one expresses how the longitudinal momen-

tum affects the longitudinal coordinate, while the second one expresses how the longitudinal

coordinate affects the longitudinal momentum.

In order to understand why they are not rejected even if their strange values, the explicit form

of equation (2.76) must be considered:{
z(s) = cos(ωst)z0(s)+ 1

ωs
sin(ωst)z′0(s)

z′(s) =−ωssin(ωst)z0(s)+ cos(ωst)z′0(s)
(4.10)
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The two interesting terms are the one highlighted in blue. In particular:

m56 =
1

ωs
sin(ωst) (4.11)

m65 = −ωssin(ωst) (4.12)

This means the values of m56 and m65 reported in Figure 4.14 must be divided and multiplied

respectively by the synchrotron frequency whose value is typically ωs ∼ 10−4. As a result:

m56 ∼ 1 (4.13)

m65 ∼ 10−1 (4.14)

In conclusion, the transfer matrix given by equation (4.3) appears to be also valid in the case

of the hybrid storage ring.

4.5 Path lengthening

With path lengthening one means the change in the path length. It is due to both betatron and

synchrotron oscillations.

The reason why the study of the path lengthening is very important is that it directly influences

the change in the spin tune: since the spin tune depends on particle velocities as described

by equation (2.100), each mechanism that changes particle velocities contributes to it; one of

them is the path lengthening which manifests as the apparent change in particle velocities.

In general, the path lengthening can be written as the sum of two components:

∆L
L

=

(
∆L
L

)
l
+

(
∆L
L

)
t

(4.15)

where the subscripts l and t stand for longitudinal and transverse respectively.

The first component is due to longitudinal motion and contributes when a particle has a longi-

tudinal momentum offset, while the second one is due to transverse motion and contributes

when a particle has a transverse position offset.

The specific expressions of the two components have been studied separately.

According to equation (2.66), the longitudinal motion contributes as:(
∆L
L

)
l
= αcδ (4.16)
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where αc is the momentum compaction factor which gives information about the rate of the

path lengthening with the longitudinal momentum offset δ .

At larger longitudinal momentum offsets the relation is not strictly linear:(
∆L
L

)
l
= α0δ +α1δ

2 (4.17)

where α0 is the 1st order momentum compaction factor, α1 is the 2nd order momentum

compaction factor and so on.

Based on what is known about pure magnetic storage rings, the contribution due to the

transverse motion is: (
∆L
L

)
t
=−π

L
(εxξx + εyξy) (4.18)

where L is the storage ring circumference, ε is the emittance and ξ is chromaticity.

Finally, equation (4.15) becomes:

∆L
L

= α0δ +α1δ
2− π

L
(εxξx + εyξy) (4.19)

It can be referred as the laboratory formula for the path lengthening per turn.

The goal of this thesis is to verify equation (4.19) which is known to be valid for pure magnetic

storage rings. The verification distinguishes between RF cavity OFF and ON.

In the case of RF cavity OFF, equation (4.19) has been tested by comparing its path lengthening

values with the ones obtained from a formula derived from Bmad and for this reason referred

as the simulator formula for the path lengthening.

In the case of RF cavity ON, equation (4.19) has been tested through the derivation of a

formula for the longitudinal momentum amplitude.

Initially the case with the RF cavity OFF is considered.

Bmad does not provide a routine to directly measure the path lengthening; however, it

provides an expression for the longitudinal coordinate of a particle subjected to a longitudinal

momentum offset as a function of the location around the storage ring which is given by:

z(s) =−v∗(s)[t∗(s)− t(s)] (4.20)

where v∗ and t∗ are the velocity and the travel time of the offset particle respectively and t is

the travel time of the reference particle.

A customized expression for the path lengthening has been derived from equation (4.20).
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If the longitudinal momentum offset is fixed, then the velocity of the offset particle is constant,

the longitudinal coordinate builds up linearly generating a longitudinal position offset per turn

which is given by:

∆z(s) = z(s)− z(s−L) =−v∗[t∗(s)− t(s)− t∗(s−L)+ t(s−L)] =−v∗∆t (4.21)

where ∆t is the difference between the times taken by the offset particle and reference one to

travel one turn.

Basically, ∆z represents how much the offset particle moves away with respect to the reference

particle in the same travel time.

In general, the path length for the offset particle is given by:

L∗ = v∗t∗ → L+∆L = (v+∆v)(t +∆t) (4.22)

where the relations L∗ = L+∆L, v∗ = v+∆v and t∗ = t +∆t have been used.

Dividing by L equation (4.22):

1+
∆L
L

=
(v+∆v)(t +∆t)

L
=

(
1+

∆v
v

)(
1+

∆t
t

)
= 1+

∆v
v
+

(
1+

∆v
v

)
∆t
t
→

→ ∆L
L

=
∆v
v
+

(
1+

∆v
v

)
∆t
t

(4.23)

where the relation L = vt has been used.

Using equation (4.21):

∆L
L

=
∆v
v
+

(
1+

∆v
v

)(
− ∆z

v∗t

)
=

∆v
v
− ∆z

t

[
v+∆v

v(v+∆v)

]
=

∆v
v
− ∆z

vt
=

∆v
v
− ∆z

L
(4.24)

where the relations v∗ = v+∆v and L = vt have been used.

According to equation (2.67) and considering up to the 2nd order of δ , the fractional change in

the velocity can be written as:

∆v
v

=
δ

γ2 −
3β 2δ 2

2γ2 + ... (4.25)

where β is the particle velocity and γ is the relativistic factor.

Finally, equation (4.24) becomes:

∆L
L

=
δ

γ2 −
3β 2δ 2

2γ2 −
∆z
L

(4.26)
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To verify equation (4.19) in the case of RF cavity OFF it is necessary to check if the calculated

values of the path lengthening through equation (4.19) are equal to the measured ones obtained

through equation (4.26).

The next step is to verify equation (4.19) also in the case of RF cavity ON.

The starting point is the general expression for the path length of an offset particle:

L∗ = v∗t∗ → L+∆L = (v+∆v)(t +∆t) (4.27)

where the relations L∗ = L+∆L, v∗ = v+∆v and t∗ = t +∆t have been used.

Dividing by L equation (4.27):

1+
∆L
L

=
(v+∆v)(t +∆t)

L
=

(
1+

∆v
v

)(
1+

∆t
t

)
(4.28)

where the relation L = vt has been used.

Rearranging equation (4.28) and performing a Taylor expansion up to the 2nd order of the

term at the denominator:

1+
∆t
t
=

1+ ∆L
L

1+ ∆v
v

∼ 1+
∆L
L
− ∆v

v
− ∆v

v
∆L
L

+

(
∆v
v

)2

→

→ ∆t
t
=

∆L
L
− ∆v

v
− ∆v

v
∆L
L

+

(
∆v
v

)2
(4.29)

Using equations (4.19) and (4.25):

∆t
t
= α0δ +α1δ

2− π

L
(εxξx + εyξy)−

δ

γ2 +
3β 2δ 2

2γ2 −

−
(

δ

γ2 −
3β 2δ 2

2γ2

)[
α0δ +α1δ

2− π

L
(εxξx + εyξy)

]
+

(
δ

γ2 −
3β 2δ 2

2γ2

)2 (4.30)

Performing all the calculations and considering the terms up to the 2nd order of δ :

∆t
t
=−π

L
(εxξx + εyξy)+

[
α0−

1
γ2 +

1
γ2

π

L
(εxξx + εyξy)

]
δ+

+

[
α1 +

3β 2

2γ2 −
α0

γ2 −
3β 2

2γ2
π

L
(εxξx + εyξy)+

1
γ4

]
δ

2 =

=−π

L
(εxξx + εyξy)+ t0δ + t1δ

2

(4.31)
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where:

t0 = α0−
1
γ2 +

1
γ2

π

L
(εxξx + εyξy) (4.32)

t1 = α1 +
3β 2

2γ2 −
α0

γ2 −
3β 2

2γ2
π

L
(εxξx + εyξy)+

1
γ4 (4.33)

The function used to model the longitudinal momentum offset is:

δ = δm +δacos(ωn) (4.34)

where the subscripts m and a stand for mean and amplitude respectively and n is the turn

number.

Substituting equation (4.34) in equation (4.31):

∆t
t
=−π

L
(εxξx+εyξy)+t0δm+t0δacos(ωn)+t1δ

2
m+t1δ

2
a cos2(ωn)+t1δmδacos(ωn) (4.35)

Using the trigonometric formula for the cos2(ωr) term:

∆t
t
=−π

L
(εxξx + εyξy)+ t0δm + t0δacos(ωn)+ t1δ

2
m +

t1δ 2
a

2
+

t1cos(2ωn)
2

+ t1δmδacos(ωn)

(4.36)

Since the RF cavity is ON, the average revolution time must be considered:〈
∆t
t

〉
=

1
N

∫ N

0

∆t
t

dn (4.37)

where N is the total number of turns considered.

Calculating the average of the single terms in equation (4.36) and assuming that N≫ 1/ω:〈
∆t
t

〉
=−π

L
(εxξx + εyξy)+ t0δm + t1

(
δ

2
m +

t1δ 2
a

2

)
=−π

L
(εxξx + εyξy)+ t0 ⟨δ ⟩+ t1

〈
δ

2〉
(4.38)

where:

⟨δ ⟩ = δm (4.39)〈
δ

2〉 = ⟨δ ⟩2 + δ 2
a
2

(4.40)

At this point an assumption is introduced.
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Since the RF cavity is ON, by definition the particle beam is bunched resulting in a null

average revolution time:〈
∆t
t

〉
= 0 → π

L
(εxξx + εyξy)+ t0 ⟨δ ⟩+ t1 ⟨δ ⟩2 = 0 (4.41)

Finally, an equation which expresses the dependence of the longitudinal momentum amplitude

on the average longitudinal momentum offset is obtained:

δ
2
a =

2
t1

[
π

L
(εxξx + εyξy)− t0 ⟨δ ⟩− t1 ⟨δ ⟩2

]
(4.42)

To verify equation (4.19) in the case of RF cavity ON it is necessary to check equation (4.42)

since its derivation is exactly based on equation (4.19).

4.5.1 Lattice

To allow the path lengthening studies, the initial code has been improved with the introduction

of the sextupole magnets. Only the part concerning the devices has been modified as shown in

Figure 4.15.

It is necessary to include the sextupole magnets because they control the chromaticity effects

and the path lengthening must be studied as a function of different chromaticity values.
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Figure 4.15
Illustration of the 2nd block of the code used to build the lattice with the introduction of the sextupole

magnets.

4.6 Simulations and data analysis results: RF cavity OFF

To test equation (4.19), it is necessary to check if the calculated values of the path lengthening

through equation (4.19) are equal to the measured ones obtained through equation (4.26).

Before doing this, the longitudinal and transverse components must be tested separately.

Prior to proceeding, it is necessary to make a statement concerning the data analysis and the

error propagation.

The quantities coming from Bmad do not have an attached error; they are L, δ , εx, εy, ξx and

ξy. On the other hand, all the quantities estimated from the raw data have errors which have

been appropriately propagated. However, the errors are pretty small and the error bars cannot

be appreciated in the majority of the plots.

4.6.1 Transverse motion contribution

The transverse motion contribution to the path lengthening is given by:

∆L
L

=−π

L
(εxξx + εyξy) (4.43)

Since equation (4.43) is known to be valid only for pure magnetic storage rings, to test the

transverse component in the case of the hybrid storage ring it is necessary to study the depen-

dence of the path lengthening on the product between transverse emittance and chromaticity.

The simulations are characterized by the sole introduction of a transverse position offset.

The two transverse directions have been studied separately.

Several sets of simulations have been performed which share the same chromaticity intervals

and differ in the transverse position offset. The specifics are reported in Figure 4.16.
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Figure 4.16
Table with the specifics of the sets of simulations performed.

The adopted procedure is described as follows:

1. measurement of the path lengthening through equation (4.26);

Equation (4.26) reduces to:
∆L
L

=−∆z
L

(4.44)

because there is no longitudinal momentum offset.

∆z has been evaluated as the slope of the straight line which better fits the points of the

plot of the longitudinal coordinate as a function of the number of turns.

A model plot from the set of simulations denoted with A is shown in Figure 4.17.

The error on the path lengthening has been evaluated through the general formula of

error propagation:

err
(

∆L
L

)
=

err(∆z)
L

(4.45)
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Figure 4.17
Model plot of longitudinal coordinate VS number of turns from the set of simulations denoted with A.

This step has been repeated for each pair of chromaticity values corresponding to a

specific transverse position offset and for each transverse position offset.

2. study of the dependence of the path lengthening on chromaticity;

Figure 4.18 and 4.19 show the plots of the path lengthening as a function of horizontal

and vertical chromaticity respectively for the set of simulations denoted with A.

It is clear that since the position offset is in the horizontal direction, the variation of

the vertical chromaticity affects the path lengthening in a negligible way (10−15) with

respect to what the variation of the horizontal chromaticity does (10−12).

Figure 4.18
Plot of path lengthening VS horizontal chromaticity for the set of simulations denoted with A.
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Figure 4.19
Plot of path lengthening VS vertical chromaticity for the set of simulations denoted with A.

The equivalent situation occurs when considering a vertical position offset as shown in

Figures 4.20 and 4.21 which refer to the set of simulations denoted with J.

Summarizing, the horizontal chromaticity affects the path lengthening when a horizontal

position offset is introduced, while the vertical chromaticity affects the path lengthening

when a vertical position offset is introduced.

Figure 4.20
Plot of path lengthening VS horizontal chromaticity for the set of simulations denoted with J.

Figures 4.18 and 4.20 show that there is a linear dependence between the path lengthe-

ning and chromaticity: (
∆L
L

)
x
= k1ξx (4.46)(

∆L
L

)
y
= k2ξy (4.47)

where k1 and k2 are the proportionality constants.
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Figure 4.21
Plot of path lengthening VS vertical chromaticity for the set of simulations denoted with J.

This step has been repeated for each transverse position offset.

3. calculation of the transverse emittance;

According to Figure 2.13, the transverse emittance has been evaluated as: u0 =
√

εu
γu

pu,max =
√

εuγu

→ εu = u0 · pu,max (4.48)

This step has been repeated for each transverse position offset.

4. study of the dependence of k1 and k2 on the transverse emittance;

Figures 4.22 shows the plot of k1 (one value for each horizontal position offset) as a

function of the horizontal emittance.

Figure 4.22
Plot of k1 VS horizontal emittance.
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Considering a horizontal position offset, there is a linear dependence between k1 and

the horizontal emittance.

The slope of the straight line which better fits the points corresponds to the propor-

tionality constant k between the path lengthening and the product between horizontal

emittance and horizontal chromaticity:(
∆L
L

)
x
= kεxξx → k = m =−0.00391983∼ π

L
→

(
∆L
L

)
x
=−π

L
εxξx (4.49)

The value of k is exactly given by the ratio between the π constant and the storage ring

circumference.

The same result is obtained when considering a vertical position offset:(
∆L
L

)
y
= kεyξy → k = m =−0.00391914∼ π

L
→

(
∆L
L

)
y
=−π

L
εyξy (4.50)

Figure 4.23
Plot of k2 VS vertical emittance.

Considering the two transverse directions together:{ (
∆L
L

)
x =−

π

L εxξx(
∆L
L

)
y =−

π

L εyξy
→ ∆L

L
=−π

L
(εxξx + εyξy) (4.51)

In conclusion, equation (4.43) appears to also apply in the case of the hybrid storage ring.

The plots for the other non-mentioned sets of simulations are reported in the Appendix A1 for

the horizontal position offset and in the Appendix A2 for the vertical position offset.
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4.6.2 Longitudinal motion contribution

The longitudinal motion contribution to the path lengthening is given by:

∆L
L

= α0δ0 +α1δ
2
0 (4.52)

where the subscripts 0 indicates the fact that in the case of the RF cavity OFF the longitudinal

momentum offset is initially set and remains constant turn by turn.

To test the longitudinal component in the case of the hybrid storage ring, it is necessary to

study the dependence of the path lengthening on the momentum offset.

The simulations are characterized by the sole introduction of a longitudinal momentum offset.

Several sets of simulations have been performed which share the same longitudinal momentum

offset interval and differ in the chromaticity values. The specifics are reported in Figure 4.24.

Figure 4.24
Table with the specifics of the sets of simulations performed.

The path lengthening has been measured through equation (4.26) and plotted as a function of

the momentum offset.
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Figure 4.25 shows the plot for the set of simulations denoted with A.

Figure 4.25
Plot of path lengthening VS momentum offset for the set of simulations denoted with A.

The plot of the path lengthening as a function of the momentum offset is a distribution which

is well fitted by a polynomial of the second order. The values of the compaction factors can be

extracted from the fit function as shown in the legend of Figure 4.25.

However, these are not the correct values of the compaction factors because they do not take

into account also the transverse contribution.

As described previously in relation to Figure 4.6, a non-vanishing longitudinal momentum

offset generates an xz coupling, while the yz coupling is negligible. Taking into account the

horizontal contribution, equation (4.52) becomes:

∆L
L

= (α0−
π

L
x0ξx)δ0 +(α1−

π

L
x1ξx)δ

2
0 = a0δ0 +a1δ

2
0 (4.53)

where:

a0 = α0−
π

L
x0ξx (4.54)

a1 = α1−
π

L
x1ξx (4.55)

According to the legend of Figure 4.25, the values of the factors a0 and a1 have been derived.

To get the correct values of the compaction factors, it is necessary to derive the factors x0

and x1. They can be evaluated from the plot of the horizontal emittance as a function of the

momentum offset.
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According to Figure 2.13, the horizontal emittance, which is non-zero due to the xz coupling,

has been evaluated as: {
xmax =

√
εxβx

px,max =
√

εxγx
→ εx =

xmax · px,max√
βxγx

(4.56)

Figure 4.26 shows the plot of the horizontal emittance as a function of the momentum offset

for the set of simulations denoted with A.

Figure 4.26
Plot of horizontal emittance VS momentum offset for the set of simulations denoted with A.

The points are well fitted by a polynomial of the second order and the values of the factors x0

and x1 can be extracted from the fit function as shown in the legend of Figure 4.26.

Finally, using equations (4.54) and (4.55), it is possible to derive the correct values of the

compaction factors which are reported in Figure 4.27.

The errors on the compaction factors have been evaluated through the general formula of error

propagation:

err(α#) =

√(
∂α#

∂a#
err(a#)

)2

+

(
∂α#

∂x#
err(x#)

)2

(4.57)

where # = 0,1 according to the compaction factor considered.

Figure 4.27
Table with the compaction factors values and errors.

The plots for the other non-mentioned sets of simulations are reported in the Appendix B1 for

ξx =−4 and in the Appendix B2 for ξx =+4.
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4.6.3 Full formula

To test the full formula given by equation (4.19), the calculated values of the path lengthening

obtained through equation (4.19) must be compared with the measured ones obtained through

equation (4.26).

The simulations are characterized by the introduction of a longitudinal momentum offset and

horizontal and vertical position offsets.

Several sets of simulations have been performed which share the same longitudinal momentum

offset interval and the same transverse position offsets and differ in the chromaticity values.

The specifics are reported in Figure 4.28.
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Figure 4.28
Table with the specifics of the sets of simulations performed.

The values of the compaction factors used in equation (4.19) are the ones derived from the

study of the longitudinal motion contribution.

The errors on the calculated values of the path lengthening have been evaluated through the

general formula of error propagation:

err
(

∆L
L

)
=

√√√√[∂
(

∆L
L

)
∂α0

err(α0)

]2

+

[
∂
(

∆L
L

)
∂α1

err(α1)

]2

(4.58)

Figure 4.29 shows the plot of both the measured and calculated values of the path lengthening

as a function of the momentum offset for the set of simulations denoted with A.

Figure 4.29
Plot of measured and calculated path lengthening VS momentum offset for the set of simulations

denoted with A.

The measured and calculated values are comparable suggesting the validity of equation (4.19)

for the hybrid storage ring in the case of RF cavity OFF.
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The plots for the other non-mentioned sets of simulations are reported in the Appendix C1 for

ξx =−4 and in the Appendix C2 for ξx =+4.

4.7 Simulations and data analysis results: RF cavity ON

To test equation (4.19), the calculated values of the longitudinal momentum amplitude ob-

tained through equation (4.42) must be compared with the measured ones which can be easily

derived from the raw data.

The simulations are characterized by the introduction of a longitudinal momentum offset and

horizontal and vertical position offsets.

Several sets of simulations have been performed which share the same longitudinal momentum

offset interval and the same transverse position offsets and differ in the chromaticity values.

The specifics are reported in Figure 4.30.

Figure 4.30
Table with the specifics of the sets of simulations performed.

The values of the measured momentum amplitude have been evaluated from the plot of the

longitudinal momentum as a function of the number of turns through this formula:

δa =
δa,max−δa,min

2
(4.59)

A model plot from the set of simulations denoted with A is shown in Figure 4.31.

The values of the calculated momentum amplitude squared have been derived from equa-

tion (4.19) where the values of t0 and t1 have been evaluated from equations (4.32) and

(4.33), while the average momentum offset has been evaluated from the plot of the longi-

tudinal momentum as a function of the number of turns as the measured momentum amplitude.
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Figure 4.31
Model plot of momentum offset VS number of turns from the set of simulations denoted with A.

The compaction factors used in equations (4.32) and (4.33) are the ones derived from the study

of the longitudinal motion contribution in the case of the RF cavity OFF.

The errors on the calculated values of the momentum amplitude squared have been evaluated

through the general formula of error propagation:

err(δ 2
a ) =

√(
∂ (δ 2

a )

∂ t0
err(t0)

)2

+

(
∂ (δ 2

a )

∂ t1
err(t1)

)2

(4.60)

where:

err(t0) = err(α0) (4.61)

err(t1) =

√(
∂ (t1)
∂α0

err(α0)

)2

+

(
∂ (t1)
∂α1

err(α1)

)2

(4.62)

Figure 4.32 shows the plot of both the measured and calculated values of the momentum

amplitude squared as a function of the momentum offset for the set of simulations denoted

with A.

The match between the measured and calculated values is not so accurate as in the case of

the RF cavity OFF because there are higher order effects which have been neglected and

which probably play an important role in the derivation of the calculated momentum amplitude

squared formula and, as a consequence, also in the error propagation.

However, Figure 4.32 suggests the validity of equation (4.19) for the hybrid storage ring in the

case of the RF cavity ON.
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Figure 4.32
Plot of measured and calculated momentum amplitude squared VS momentum offset for the set of

simulations denoted with A.

The plots for the other non-mentioned sets of simulations are reported in the Appendix D.



Conclusions

The second half of the last century was marked by many important insights and discoveries in

the field of particle physics, first and foremost the development of the Standard Model (SM).

However, there are many open questions this model cannot answer; one of them is the baryon

asymmetry, i.e. the dominance of matter over antimatter in the Universe.

According to the most accredited theory, the responsible mechanism, called baryogenesis,

required the fulfilment of certain necessary conditions within the first moments of the Universe

following the Big Bang; the most significant one is the violation of the charge conjugation-

parity (CP) symmetry.

The SM predicted value for the asymmetry parameter, which quantifies the baryon asymmetry,

is 8 orders of magnitude smaller than the measured one: this means that the SM contributions

to CP violation are too weak to explain baryon asymmetry and new sources of CP violation

beyond the SM are needed.

The SM is not the ultimate theory of particle physics and among all those developed by

theoreticians one of the most plausible extensions, at least till now, is the SUperSYmmetry

(SUSY) theory. Concerning the baryon asymmetry problem, its characteristic of interest is

that the many particle-sparticle interactions provide more CP violation mechanisms and a

non-zero Electric Dipole Moment (EDM) which can be experimentally accessed.

The observation of non-zero EDMs would represent a possible answer to the unsolved problem

of baryon asymmetry as well as a clear sign of New Physics beyond the SM.

Very recently a new class of experiments has been proposed to directly measure the EDMs of

charged particles via storage rings. In particular, an experimental staged program is presently

pursued by the JEDI collaboration at the ForschungsZentrum-Jülich in Germany.

The first stage consists in exploiting the COoler SYnchrotron (COSY) to perform feasibility

studies on a stored beam of polarized deuterons, the second one deals with construction of a

Prototype Storage Ring (PSR) to study the critical features and to develop the key technologies

and the last one plans to the construction of the pure electric storage ring to provide the first

ever proton EDM (pEDM) measurement.
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The main advantages in using a pure electric storage ring are the possibility to improve the

statistics increasing the luminosity of the experiment, the simultaneous circulation of two

counter-rotating particle beams to properly address and control different sources of systematic

errors and the absence of magnetic fields which allows to maximize the precision of the

measurement inhibiting one of the main sources of systematic errors.

Aim of this thesis was to perform beam dynamics simulations at the hybrid storage ring which

is one the proposed lattices for the last stage of the JEDI experiment.

Objected of the beam dynamics simulations performed was the need to verify whether the

current theoretical knowledge about storage rings, which is known to be valid in the case

of pure magnetic ones, could also be applied in the case of other types of storage rings, in

particular the hybrid storage ring which is characterized by an electric confinement system.

For all the simulations performed the single particle tracking has been considered.

Two aspects have been studied: the 6×6 transfer matrix and the path lengthening.

The study of the 6D phase space through the 6× 6 transfer matrix is important because it

allows to study the couplings strengths between different phase spaces.

The reason why the study of the path lengthening is very important is that it directly influences

the spin tune spread through the change in particle velocities and in turn the spin tune spread

directly influences the spin coherence time (SCT) which is related to the beam polarization

lifetime of the particle beam and represents the time available to measure the EDM signal.

The experimental results coming from the data analysis on the sets of simulations performed

have confirmed that the couplings strengths between different phase spaces in the case of the

hybrid storage ring are the same as the ones for pure magnetic storage rings, as well as the

formula for the path lengthening which is known to be valid for pure magnetic storage rings

appears to be valid also in the case of the hybrid storage ring both in the case of the RF cavity

OFF and ON with some regards in the second case.

This thesis work paves the way for additional deepening on the following aspects:

• the introduction of higher order effects to better study the path lengthening in the case

of the RF ON;

• the realization of new sets of beam dynamics simulations to test other aspects which

for the moment are known to be valid only for pure magnetic storage rings and thus

increasing the knowledge about the behaviour of the hybrid storage ring;
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• the realization of spin dynamics simulations to study the strictly connected quantities

to the EDM measurement (e.g., change in the spin tune, spin resonances, and spin

decoherence);

• the realization of beam tracking to study the behaviour of the entire particle beam;

• the study of the most significant systematic error sources.

The hybrid storage ring aims to be the foundational basis for the pEDM experiment.
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