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Abstract
Axions or axion-like particles (ALPs) are intriguing hypothetical entities with the
potential to solve long-standing mysteries in physics, including the strong CP problem
and the nature of dark matter. This work presents a project demonstrating a novel
method to search for axion/(ALPs) using a storage ring by exploiting the notion that
the local ALP-saturated dark matter field couples to the spin of the nucleons, via
either oscillating electric dipole moment, or via the axion-wind effect.

The proof-of-principle experiment was conducted at the Cooler Synchrotron COSY
in Jülich, Germany, using an in-plane polarised deuteron beam with momenta near
970 MeV/c. At resonance between the spin-precession frequency, which is related to
the momentum of the beam, and the ALP frequency related to its mass, the polari-
sation was expected to accumulate in the direction perpendicular to the ring plane.
Since the axion frequency is unknown, the experiment involved scanning the frequency
space for the aforementioned resonance. The scanning process entailed ramping of the
beam momentum and, consequently, the spin precession frequency and searching for
the change in vertical polarisation that is anticipated as the signal for resonance cross-
ing. To account for the unknown phase between the polarisation precession and the
ALP field, four beam bunches with mutually orthogonal polarisation directions were
employed. A frequency scan of 1.5–kHz width centred around the spin precession fre-
quency of 121 kHz was performed, accompanied by a methodology test using a radio
frequency Wien filter.

Although no resonant signals from ALPs were observed within the experimental sen-
sitivity, the first upper limit on the oscillating electric dipole moment of deuterons∣∣dd

AC

∣∣ ă 6.4×10−23 e cm is provided at a 90% confidence level. Additionally, the up-
per limit on the coupling constants of ALPs with deuteron in the mass range of
4.95 neV c−2 - 5.02 neV c−2 are also derived.





Streszczenie
Aksjony lub cząstki aksjonopodobne (ang. axion-like particles, ALPs) są intrygu-
jącymi hipotetycznymi bytami stanowiącymi potencjalne rozwiązanie pewych prob-
lemów w fizyce, m.in. zbyt słabego łamania symetrii CP (ang. strong CP problem)
i natury ciemnej materii. Niniejsza praca przedstawia projekt demonstrujący nowa-
torską metodę poszukiwania aksjonów i ALPs przy użyciu pierścienia akumulacyjnego,
przy założeniu, że lokalne pole ciemnej materii, pochodzące głównie od ALPs, oddzi-
ałuje ze spinem nukleonów poprzez indukowanie oscylującego elektrycznego momentu
dipolowego lub efekt tzw. wiatru aksjonowego.

Pierwszy eksperyment demonstrujący metodę został przeprowadzony przy użyciu
synchrotronu Cooler Synchrotron COSY w Jülich w Niemczech przy wykorzysta-
niu wiązki deuteronów spolaryzowanej w płaszczyźnie pierścienia, o pędach bliskich
970 MeV/c. Oczekiwano, że przy rezonansie między częstotliwością precesji spinowej,
która jest związana z pędem wiązki, a częstotliwością ALPs związaną z ich masą, po-
laryzacja wiązki będzie zyskiwać składową w kierunku prostopadłym do płaszczyzny
pierścienia. Ponieważ częstotliwość aksjonów nie jest znana, eksperyment polegał na
skanowaniu przestrzeni częstotliwości w poszukiwaniu wspomnianego rezonansu. Pro-
ces skanowania wiązał się ze zwiększaniem pędu wiązki, a w konsekwencji częstotli-
wości precesji spinu, i poszukiwaniem zmiany składowej pionowej wektora polaryzacji,
która jest oczekiwana jako sygnał przejścia rezonansowego. Aby uwzględnić nieznaną
fazę między precesją polaryzacji a polem ALPs, zastosowano cztery wiązki o wzajem-
nie ortogonalnych kierunkach polaryzacji. Przeprowadzono skanowanie częstotliwości
w przedziale o szerokości 1,5 kHz wyśrodkowanym wokół częstotliwości precesji spinu
wynoszącej 121 kHz, któremu towarzyszył test metodologiczny z użyciem filtru Wiena
o częstotliwości radiowej.

Chociaż nie zaobserwowano sygnałów rezonansowych z ALPs w zakresie czułości
eksperymentalnej, wyznaczono pierwsze górne ograniczenie na oscylujący elektryczny
moment dipolowy deuteronów

∣∣dd
AC

∣∣ ă 6.4×10−23 e cm na poziomie ufności 90%. Do-
datkowo podano również górne ograniczenie na stałe sprzężenia ALPs z deuteronami
w zakresie mas ALPs 4.95 neV c−2 - 5.02 neV c−2.
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1 Introduction

Axions are fascinating particles that offer solutions to various mysteries in Nature,
ranging from the strong CP–problem in quantum chromodynamics (QCD) to being
potential candidates for dark matter (DM) in astrophysics [1].

Our current understanding of the visible Universe relies mainly on the Standard Model
(SM) of particle physics, which was developed over the last few decades. Although
SM successfully describes the fundamental building blocks of visible matter and the
forces that govern their interactions with reasonable accuracy (which has been proved
through numerous particle physics experiments), it falls short in explaining the exis-
tence of dark matter, which constitutes 85% of the matter in the Universe.

Despite our understanding of how DM affects the Universe on a macroscopic scale,
we are yet to determine what DM is made up of. Here, the axions come into play,
as hypothetical particles proposed to address the strong CP problem. Although CP
symmetry is predicted to be violated in QCD, experimental evidence indicates a sig-
nificantly smaller magnitude of CP-Violation (CPV) compared to the predicted values
[1]. Peccei and Quinn introduced an extension to SM by proposing a global symmetry
that aimed to solve the CP invariance in the strong interaction [2, 3]. Subsequently,
Weinberg [4] and Wilczek [5] deduced the presence of a new particle, named axion,
which acquires a small mass through spontaneous breaking of this symmetry. Ax-
ions or Axion-Like Particles (ALPs) - if sufficiently abundant - could also serve as
candidates for DM, given their properties, see Refs [1, 6] for recent reviews.



2 Introduction

Over the decades, numerous experiments have been proposed and conducted with the
goal of searching axions as DM. This thesis focuses on one of these proposed methods,
presenting the proof-of-principle experiment to find ALPs using a storage ring. The ex-
periment capitalises on the properties of axions, such as the axion-induced oscillating
Electric Dipole Moment (oscillating EDM) and the axion-wind effect, which introduce
oscillations of the spin of particles circulating within the ring, with frequency related
to the axion mass. The experiment was carried out at the Cooler Synchrotron (COSY)
facility in Forschungszentrum Jülich, Germany, and utilised an in-plane (IP) polarised
deuteron beam, whose spin undergoes precession in the presence of the magnetic field
with a frequency related to the beam momentum. The resonance between the axion-
induced oscillation frequency and the spin precession frequency would give manifest
as the rotation of polarisation out of the horizontal plane to vertical direction, indi-
cating the presence of axions. Given that the mass and, consequently, the associated
frequency of axions is unknown, we search for axions by tuning the spin precession
frequency in order to cross the resonance and observe a change in vertical polarisation
as the signal [7].

In this thesis, I provide a comprehensive report on the first search for axions/ALPs
using the storage ring method. The physics case for axions and ALPs, including an
explanation of the strong CP problem and the dark matter problem, is presented in
Chapter 2. Additionally, I discuss the interaction of axions and the various techniques
used in the detection of axions.

In Chapter 3 , I provide the definitions of spin and polarisation, describe their inter-
action with the magnetic field in the ring, and examine the effects of axions on them.
I also focus on the techniques used for polarisation measurement. Building upon the
foundation laid in the previous chapter, I explain the change in polarisation at res-
onance and describe the expected signal in Chapter 4. Furthermore, I address the
experimental challenges and prerequisites for observing the signal.

In Chapter 5, I provide an overview of the COSY research facility and explain the
various devices used in this experiment. With the background, methodology, and re-
quirements established, I detail the experimental procedure for the storage ring axion
search in Chapter 6. This includes the frequency scan method to find the resonance
and the use of radio frequency Wien filter (RF Wien filter) to generate a test signal.
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In Chapter 7, I explain the simulations performed to optimise the experimental setup
and recalculate the observed signals from both axion and WF scans to the axion
couplings. In Chapter 8 I provide the details of the polarisation data analysis, including
the determination of signal strength, and the mitigation of systematic effects using
the Feldman-Cousins method (FC) method. Additionally, I compare the WF data to
the simulations to benchmark the latter.

In Chapter 9, I present the results of this experiment, including the derived upper
limits on the oscillating EDM and various coupling constants of axions. Finally, in
Chapter 10, I conclude the thesis with a summary, discussion, and outlook for future
research in this field.





2 Background and Motivation

In this chapter we briefly discuss the shortcomings of the Standard Model (SM) of
particle physics that and the potential of axions and axion-like particles (ALPs) to
address two of the most compelling theoretical issues in the field: the strong CP
problem and dark matter (DM).

2.1 Physics case for axions and axion-like particles

The SM of particle physics, developed in stages over the latter part of 20th century, has
been successful in explaining most of the experiments in particle physics with high
precision. While it explains three of the four fundamental forces, electromagnetic,
strong and electro-weak interaction, it is inconsistent with general relativity, that
explains the gravitational interactions. Additionally, SM does not provide satisfactory
explanations for some fundamental physical phenomena, including:

• What is the origin of neutrino mass and hence neutrino oscillations?

• Why is there more matter than antimatter in the universe?

• Why is strong interaction CP invariant?

• What is the nature of DM, and what are the viable candidates for DM?

• What is the cause of the universe’s accelerated expansion?



6 Physics case for axions

Axions and their ALP counterparts, if present, offer a potential resolution to two of the
above pressing questions: the strong CP-problem, and under certain set of conditions,
a good candidate for DM. Let us dive into these two items for the physics case for
axion.

2.1.1 Strong CP problem

Before explaining the problem itself, an understanding of CPV is required. Charge con-
jugation C and Parity transformation P symmetries combined with Time reversal T

symmetry make up the CPT symmetry, which is assumed to be invariant under all
physical phenomena. The individual symmetries are explained below,

• C Charge conjugation – symmetry of physical laws when all particles are re-
placed with their antiparticle.

• P Parity transformation – the symmetry of the physical laws when the sign of
the spatial coordinate is flipped.

• T Time reversal – a theoretical symmetry of physical laws when subjected to
time reversal.

CPT symmetry is when a system remains indistinguishable when all three transfor-
mations are applied. For instance, if T symmetry is broken, then the combined CP
transformation should also be broken, in other words, the system should be CP vio-
lating, to hold the CPT invariance. CPV is one of the three necessary conditions for
the universe to yield matter-antimatter asymmetry [8].

SM of particle physics through QCD, which describes strong interaction, allows for a
CP violating term in the Lagrangian [1].

Lθ “ θQ
g2

s
32π2 Ga

µνG̃aµν
“ θQ

g2
s

32π2
~Ea

¨ ~Ba, (2.1.1)

is the CP violating term in the QCD Lagrangian. Here, θQ is a constant parameter,
gs is the QCD coupling constant, G and G̃ are the gluonic field tensor and its dual,
~Ea and ~Ba are the colour electric and colour magnetic fields. Eq. (2.1.1) violates
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both T and P symmetries, and thus CP symmetry. To elucidate, under the respective
transformation:

• ~Ea fields are T even, P odd and C odd. Thus even under CP.

• ~Ba fields are T odd, P even and C odd. Thus, odd under CP.

• Product of ~Ea and ~Ba fields are thus odd under CP. Consequently, the θQ term
is CP violating.

The most sensitive probe of the CPV, that currently exists, is the neutron Electric
Dipole Moment (EDM) dn. The contribution of Eq. (2.1.1) to dn, by relation to θQ,
is given by

dn
„ 10´16 ∣∣θQ

∣∣ e cm. (2.1.2)

The current experimental upper bound on neutron EDM of |dn| ď 1.8×10−26 e cm [9,
10] puts the limit on the theta parameter as

∣∣θQ
∣∣ ď 10´10. There is no theoretical

reason for the small value of θQ term in nature. The requirement of ‘fine-tuning’ our
theory to accommodate the very small value of θQ is known as the strong CP-problem.

As a solution to this problem, Peccei and Quinn [2, 3] proposed to introduce a dynamic
field, and PQ symmetry postulated by them would be spontaneously broken at a high-
energy scale fa . This led to Weinberg [4] and Wilczek [5] independently showing that
such a dynamic field and the subsequent symmetry breaking would give rise to a light
pseudoscalar particle: named the axion. The coupling between axion and gluons is
given by

L “

ˆ

a
fa

´ θQ

˙

g2
s

32π2 Ga
µνG̃aµν, (2.1.3)

where a is the axion field and fa is the axion decay constant, also called the axion
gluon coupling constant. At the minimum of the axion field potential pa “ θQ faq

the θQ term vanishes or, one could say, θQ is absorbed into the axion field and thus
provides a ‘non fine-tuned’ explanation for the small neutron EDM. Because of their
nonzero mass, axions are categorised as Pseudo-Nambu-Goldstone bosons.

In QCD, the axion has a single free parameter, the decay constant fa from which
the mass of the axion ma can be determined using the relation ma91{ fa, see [1].
Henceforth, these will be called QCD axions. Subsequently, a new class of pseudoscalar
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particles called ALPs were proposed. These do not have a predictive relation between
their decay constant and mass; also, they do not solve the strong CP problem.

From here onwards,

• QCD axions refer to particles that solve the strong CP problem and have a
linear relation between fa and ma;

• ALP refer to particles that do not solve strong CP problem and can be present
anywhere in parameter space;

• Axions refer to either or both of the above.

2.1.2 Dark matter candidate

Axions are viable DM candidates. The existence of DM has many independent obser-
vational proofs. One of the earliest convincing evidence comes from the measurement
of the galactic rotation curve [11, 12]; it showed that galaxies rotated at velocities
faster than expected based on visible matter alone. The galactic rotation velocity vgal

is expected to decrease with the radius r according to Kepler’s law vgalprq91{r2, but
the observations hint towards a constant vgal up to the visible circumference of the
galaxy. This implies the presence of invisible matter in the halo of galaxy dark halo to
compensate for the missing mass. For our Galaxy, the local DM density is estimated
to be ρLDM “ 0.55 GeV cm−3 [1]. Further evidence for the existence of DM were also
derived from X-ray emission of clusters of galaxies [13] and the anisotropy of Cosmic
Microwave Background (CMB) [1].

The theory of axions as dark matter is based on the assumption that the Universe
is assumed to be made of ‘cold DM’ [1, 6]. According to this theory, axion DM is
hypothesised to have been produced non-thermally during the formation of galaxy
through the vacuum misalignment mechanism [14–16]. The misalignment mechanism
is the effect that occurs when the initial value of the particle’s field is not close to
its potential minimum. Under the so called pre-inflationary PQ symmetry breaking
scenario [1], the PQ symmetry of the axions is broken pre-inflation or during the
inflation period of the Big Bang and these particles would exist now in sufficient
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concentrations. Axions created through this mechanism can be currently regarded as
a coherently oscillating classical scalar field, whose oscillations were established in the
early universe, with an axion field amplitude a0 is given by [1, 17]

aptq “ a0 cos
ˆ

2π
mac2

h̄
t ` φa

˙

. (2.1.4)

φa is the local phase of the axion field, which is a random and unknown quantity. The
oscillation frequency can be written as

fosc “ mac2
{h (2.1.5)

Axions are super light, with the mass range predicted from 10´7 eV/c2 down to
10´22 eV/c2 [17–19]. By combining this fact with the previously mentioned fact that
they interact weakly with ordinary matter, and are stable on the cosmological time
scales, axions are well-motivated candidates for dark matter.

Any large-scale interaction of axions with other particles or with themselves would
mean that the axion could lose their coherence. But the axion’s interactions are ex-
tremely suppressed due to the very large scale fa [20]. Thus, we can say with some
certainty that any axion detected now will more or less still oscillate coherently. The
formation of clusters from large-scale gravitation effects, such as the formation of
galaxies, is the only known process in the universe that could have affected axions (cf.
chapter 27 “Dark Matter” of Ref. [1]). These large-scale effects can cause the axion
field to virialise and acquire a viral velocity of the galaxy it is in. The virial velocity
of our Galaxy is vgal „ 1×10−3 c. Thus, the coherent length of the axion, which is no
longer infinite, is in the order of the de Broglie wavelength

λcoh „
1

mavgal
„ 200

ˆ

ma

10 µeV

˙´1

. (2.1.6)

The kinetic energy of the axion limits the coherence time to

τcoh „
1

mavgal2
„

10´6

ma
, (2.1.7)

which is roughly 1×10−6 times the period of the axion field.

Emboldened with strong arguments for the existence of axions and with knowledge
of some of its properties, in the next section we discuss the various interactions of the
axion.



10 Interaction of axions

2.2 Interaction of QCD axions and axion-like par-
ticles

Axions may interact with known matter through various mechanisms. In this section,
description of interactions which are most commonly used (with photon), and interac-
tions which are acquiring prominence and also connected to this thesis (with gluons,
EDM operator, nucleon EDM).

2.2.1 Interaction with photons

Axions can be produced in the stellar interiors by the Primakoff conversion of thermal
photons in the electrostatic field of electrons and nuclei [21]. To elucidate this in the
case of axions, it is the conversion of axions into two photons in the presence of a
strong electromagnetic field. Thus is based on axion-photon interaction.

L Q gaγγaFµν F̃µν “ gaγγa~E ¨ ~B (2.2.1)

gives the axion–photon interaction [1]. Fµν is the electromagnetic field strength and
gaγγ is the coupling constant, ~E and ~B are the electric and magnetic field. Experiments
dealing with this interaction and others mentioned here are given in Section 2.3. The
storage ring experiment described in this thesis is not sensitive to this coupling.

2.2.2 Interaction with gluons

The direct coupling of axions to gluons, which arises from the Peccei-Quinn formalism,
given in Eq. (2.1.2), can generate oscillating EDM in nucleons [17]. Following a similar
form as Eq. (2.1.3), the axion-induced oscillating EDM in a nucleon N is given by
[17, 22],

dN
ACptq “ S ¨ κa

eh̄c
2mc2

CG

fa
aptq (2.2.2)

where, aptq is axion field and CG
fa

is the decay constant for the axion in general instead
of just QCD axion, S and m are the spin and mass of the nucleon, and κa is the
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chiral suppression factor of the θQ-term. To account for the difference in the coupling
strength between ALPs and QCD axions, the θQ in Eq. (2.1.2) is replaced by the
axion θa “ aptq{ fa. Storage ring experiment explained in this thesis makes use of this
oscillating EDM to search for ALPs.

2.2.3 Interaction with nucleon EDM

The total EDM of the nucleon dN is composed of a static part dN
DC and an oscillating

part dN
AC. The interaction of the axion with the gluons given by Eq. (2.1.3) induces a

coupling of the axion to the operator responsible for generating EDM of the nucleon.
This is a model independent coupling and the Lagrangian is given by [1]

LaNγ “ ´
i
2

gaNγ a Ψ̄Nσµνγ5ΨN Fµν. (2.2.3)

The coupling constant gaNγ can be then related to axion-induced oscillating EDM as
[1, Eq. 90.38]

dN
ptq “ gaNγ

a

2ρLDM cos p2π fosctq{ma. (2.2.4)

Here, fosc is the axion oscillation frequency and ma is the axion mass. Storage ring
experiments explained in this thesis can determine the size of this coupling.

2.2.4 Interaction with nucleons

The last interaction we discuss is the Weinberg’s [4] gradient interaction of axion with
fermions f ,

La f f “
C f

2 fa
Ψ̄ f γµγ5Ψ f Bµaptq, (2.2.5)

where, ψ̄ f is an arbitrary fermion field and C f is a model dependent coefficient, and f

can stand for the nucleon N. Note the axion field aptq here appears a derivative term.
According to [22, 23], this Lagrangian can be reinterpreted as the interaction of the
spin of the fermion with an oscillating “pseudomagnetic” field. This pseudomagnetic
field is generated by the gradient of the axion field, which is directed along the galactic
rotation velocity vgal [18].

Storage ring experiments are most sensitive to this coupling.
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2.3 Detection of QCD axions and axion-like parti-
cles

The existing experimental searches for axions can be divided into three groups. Ex-
periments in which the production and detection of axions happen in laboratories.
Experiments in which axions constitute the DM. Experiments that detect the axions
emitted by the sun on Earth. The information in this subsection is gathered thanks
to the references [1, 21, 24].

2.3.1 Purely lab experiments

Light shining through wall (LSW)

A simplified version of the experimental setup for the light shining through wall
experiment [25] contains two regions, both with vertical B-field, the production region
on the left and the reconversion region on the right, separated by a wall.

Figure 2.1: Schematics for light shining through the wall experiment
with the production region on the left and the reconversion region to
the right of the wall. Figure from [26]

The light from a
laser is injected into
the production re-
gion from the left
side. In the pres-
ence of B-field, the
photons can be con-
verted into axions
by Primakoff effect.
These axions can
then travel through
the wall, while the light cannot. On the other side of the wall, the axions are converted
back to photons in the reconversion region and detected by a sensor attached at the
right most end.
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References [26, 27] provide an improved detection scheme based on resonant photon
regeneration. Experiments in the recent past have been using this technique. ALPS
[28] at DESY, CROWS [29] and OSQAR [30] at CERN are experiments that have
already provided upper limit on gaγγ using this technique. ALPSII [31], STAXI [32]
are upcoming experiments which are in development. JURA experiment in a concept
at the CERN.

Polarisation experiments

The use of lasers provides another method to detect axions. In the presence of the B-
field, the photon-photon interaction can cause dichroism and birefringence of the laser
beam whose E-field component is parallel to the B-field [33, 34]. The perpendicular
component remains untouched. Dichroism, which is the depletion of polarisation, is
caused by the photon to axion conversion. Birefringence is the delaying of phase,
caused in this case by photon to axion and back to photon conversion. PVLAS [35],
BMV collaboration [36] are conducting experiments using this technique with the
primary goal to measure vacuum magnetic birefringence and dichroism.

Long range macroscopic forces

Experiments looking at new macroscopic forces, in theory, could be sensitive to axion
effects. The ALP field from macroscopic bodies (from fermionic coupling) could be
detected as a from gravity at distances „ 1{ma. These constraints can be obtained
from precision measurements of Newtons 1{r2 law and searches for violation of the
equivalence principle. Torsion balance experiments, Casimir force measurement are
some experiments from which the constraint on gaNγ.

Reference [37] proposes the use of NMR technique to detect the effect of macroscopic
objects on axions and development of experiments based on this method is being done
by the ARIADNE collaboration [38].
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2.3.2 Detection of solar axions

Helioscopes

Solar axions are produced in the hot and dense solar core. It is mainly produced by
the Primakoff conversion of plasma photons in the Coulomb field of charged particles.
The expected solar axion flux at earth is expected to peak « 4.5 keV and decrease
exponentially with an increase in energy.

The mainly used detection technique –Helioscopes– was first presented by P. Sikivie
[39]. The experimental setup has a long powerful magnet with an X-ray detector
attached at the end is aligned towards the sun. The idea was that solar axions can be
converted back into photons in the presence of a strong electromagnetic field. If the
background field is static, reconverted photons are expected to have the same energy
as incoming solar axions. An excess of x-ray flux is expected to be detected over the
background. This conversion can be further optimised by filling the entire detector
volume with a buffer gas, as proposed in [40].

The most recent concluded helioscope experiment is the CERN Axion Solar Telescope
(CAST) [41]. The next-generation helioscope, Internation Axion Observatory (IAXO)
[42], which is in the design stage, will be equipped with a new pathfinder system to
track the Sun along with the bigger and better detectors.

Primakoff-Bragg conversion in crystalline detector

An extension of Primakoff conversion, in this case the axion is converted to photon
in the presence of atomic electromagnetic field inside materials. This conversion can
be enhanced if the momentum of incoming particles matches one of the Bragg angles
[43, 44]. Using this technique, solar axions can be searched in crystalline detectors
[45, 46]. This technique first applied to experiments with small Ge detectors such
as SOLAX [47] and COSME [48]. Many other experiments use this technique as a
by-product.
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Non-Primakoff conversion

Here we look at the solar axion interaction other than axion-photon and via cou-
pling with electron or nucleons. Ionisation detectors can detect solar axions through
axioelectric effect gae. Large liquid xenon detectors like, XMASS [49], XENON [49],
PANDAX-II [50], LUX [51] have performed this search as a by-product of their pri-
mary experiment, detection of Weakly interacting massive particles (WIMPs).

2.3.3 Detection of dark matter axions

Most DM axion searches in the laboratory depend on the fact that dark matter, at
least the ones we measure on earth coming from the galactic halo, is comprised fully
of axions. The absence of a signal provides us an upper limit of the axion coupling
under this assumption; the upper limit is a product of ga

?
ρ̄a, where ga is any axion

coupling and ρ̄a is the fraction of axion mass density ρa that makes up the local DM
density ρLDM ρ̄a “ ρ{ρLDM. If ρa ď ρLDM then we are less sensitive. For purposes of
all the experiments mentioned in the thesis, the local axion density is assumed to be
the same as local DM density ρ̄a “ 1.

As discussed in section Dark matter candidate (2.1.2), DM axions can be considered
as a spatially constant field oscillating with an angular frequency ωa “ mac2{h̄ related
to axion mass ma in Eq. (2.1.4). Many experiments exploit this frequency to search
for DM axions.

Haloscopes

Haloscopes, similar to the previously mentioned helioscopes, are the most common
way to search for DM axion. This method, also first proposed by P. Sikivie [39],
makes use of the inverse Primakoff conversion of axion into photons in a magnetic
field gaγγ in a resonant microwave cavity with a high Q factor. Within the cavities,
this conversion can be enhanced when the frequency of the cavity matches with the
unknown axion mass related frequency. The schematic is shown in Fig. 2.2.
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Movable rods are introduced inside the cavities, allowing to tune the frequency in
search for the resonance. In each scan step or frequency point, the power is extracted
from the cavity to a radio-frequency (RF) detector. The expected signal is a narrow
peak in the power graph at a frequency corresponding to the mass of axion ma.

Figure 2.2: Schematic explaining the basic setup for haloscopes.
Figure from [24]

ADMX [52] has been
leading the experimen-
tal effort in Haloscopes.
The collaboration has
pioneered not only in
the relevant technology
but also the sensitiv-
ity of the experiment
reaches some theoreti-
cal models for axions,
such as the KSVZ [53,
54] and DFSZ [55, 56]

The HAYSTAC collaboration [57] has reported that by using squeezed photon state
allowed to push the system noise level below the ”standard quantum limits” [58].
The ORGAN [59] experiment was designed to search for relatively high mass axions.
Another experiment probing high masses is the QUAX experiment [60]. Both the
projects have published the initial results. At CAPP under the project name CUL-
TASK various efforts are done towards search of axions DM, including the reuse of
CAST magnets as cavities CASP-CAPP. Similarly, CAST-RADES also uses one of
the CAST magnets to search for DM axions.

Other concepts

One drawback of the conventional haloscope is the requirement of the large volume
of the cavity as the frequency increases. The concept hinges on large volume large-V
and large Q factor large-Q. This gets increasingly challenging to achieve. Innovative
ideas have been proposed to circumvent this hurdle.
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Dish antennas completely avoid the resonant enhancement technique and compensate
with huge amounts of volume, i.e., a huge-V and no-Q experiment. The concept is
that photons are emitted by a reflective (or refractive) surface which are immersed
in a magnetic field due to the background DM field [61]. This leads to a broadband
measurement that is a large range of frequency with a single measurement.

Dielectric haloscopes evolved from the dish antenna concept and have several dielec-
tric slabs stacked inside a magnetic field to reasonably enhance the photon signal in
addition to the reflective surface. While not a resonator like a conventional halco-
scope, the power emitted will be boosted by a factor proportional to the square of
the number of disks. This concept is proposed to be implemented at the MADMAX
experiment [62].

Low frequency resonators with LC circuits [63] technique uses a pick-up coil inside
a large magnet to detect tiny oscillating electric current induced by DM axions at
lower axion masses ma ă µeV . An externally attached cooled LC circuit acts as
a resonance amplifier and precision magnetometry is required to detect these small
oscillations. Some experiment using this technique are ABRACADABRA [64], SHAFT
[65], ADMX-SLIC [66] and BASE [67].

ALPHA collaboration plans to use plasma resonators where resonant conversion are
achieved by matching axion mass to a plasma frequency [68]. Plasma frequencies are
unrelated to the physical size of the device, unlike traditional haloscopes, giving a
huge advantage in terms of the size of the device.

Another alternate to the microwave cavity technique is demonstrated in the OR-
PHEUS detector [69] using a Fabry-Perot resonator and individually adjustable cur-
rent carrying wire panes.

Spin precession experiment

All the techniques for DM search mentioned until now are primarily based on axion-
photon coupling and these constitute the majority of the experimental landscape.
Recently, more searches are proposed based on the DM axion-induced oscillating EDM
and the axion-wind effect. Both these effects induce oscillations to the spin of the
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particle at a frequency fosc related to ma. The particles in the presence of a magnetic
field obtain a spin precession frequency fspin. When fosc « fspin the torque induced
by the axion would cause the spin to move away from the initial direction given by
the external magnetic field.

The CASPEr experiment [19] aims at searching QCD axion and ALPs using the
nuclear magnetic resonance (NMR) technique. The CASPEr-Electric experiment with
help of the torque produced by oscillating EDM and the Casper-Wind experiment with
the help of the torque produced by the axion-wind would be able to detect axions.

Storage rings experiments of the ilk described in this thesis also implement the spin
precessions to search for axion like particles.

2.3.4 Storage ring experiment

Storage rings are closed accelerators in which particle beams are stored or circulated,
at a set momentum, for the duration required by the experiment. It also allows for
small variation of the momentum without destroying the beam.

COSY is one such storage ring used in this experiment to search ALPs using hori-
zontally polarised beams. Due to the ring’s vertical magnetic field, such beams will
precess at the frequency given by fspin “ Gγ frev, where G is the magnetic anomaly
and frev is the revolution frequency of the particle beam in the ring. The torque
produced by axion-wind will cause the spin of the particles to rotate about the axis
parallel to the beam direction and torque due to oscillating EDM will cause the spin
to rotate about the axis perpendicular to beam direction away from the ring plane
with an oscillation frequency of fosc in both cases.

At similar condition to the other spin precession experiments mentioned above, when
fosc « fspin, the beam polarisation will rise out of the horizontal plane and gain a
vertical component. This helps us observe axions.

The use of storage rings offers a new platform to search for axions by observing the
beam polarisation and looking for effects of axions on the spin of a particle.



3 Spin and polarisation

The spin of a particle plays a crucial role in storage ring searches for axions. This chap-
ter will delve into the concept of spin of a particle and polarisation of a particle beam,
and their behaviour in the presence of ALP and various instruments in the storage
ring. Additionally, we will look into the theory behind polarisation measurement.

3.1 Spin and polarisation

The spin of a particle, denoted by ~S, represents its intrinsic angular momentum. The
spin quantum number s characterises the magnitude of spin

∣∣∣~S∣∣∣ “ h̄
a

sps ` 1q. s can
take on values of 0, 1

2 , 1, 3
2 and so on. Particles with half integer spin, such as protons,

neutrons s “ 1
2 are called fermions, while particles with integer spin, such as deuterons,

s “ 1 are called bosons.

The spin of a particle can have 2s ` 1 different projections or magnetic states rela-
tive to an arbitrary quantisation axis. These states are determined by the quantum
number m, which can have the values in the range m P r´s, s ´ 1, . . . , s ` 1, ss. For a
spin-1

2 particle, the possible configurations are m “ 1
2 , ´1

2 . For a spin-1 particle, the
configurations are m “ 1, 0, ´1. Figure 3.1 offers a visual representation of these spin
configurations.
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m “ 1
2

m “ ´1
2

(a) Spin-1/2

m “ 1

m “ ´1

m “ 0

(b) Spin-1

Figure 3.1: Spin configuration for s “ 1
2 and s “ 1 particle.

3.1.1 Polarisation

In a particle ensemble, such as a particle beam, the average spin of the individual
particles is referred to as the polarisation of the ensemble. When all possible spin
states are present in equal weightage, the ensemble is described as an unpolarised
state, i.e., the polarisation value is zero. In a polarised ensemble, one of the spin
states is more populated than the others, resulting in the polarisation of the beam.

For a beam of spin-1
2 particles, there are two possible spin states, as mentioned earlier.

The fractional population of particles in m “ `1
2 state is denoted as N` and N´ is

the fractional population of particles in m “ ´1
2 state, such that the total population

is N` ` N´ “ 1. The vector polarisation PV is defined as the difference in populations
in the two states and expressed as:

PV “ N`
´ N´ (3.1.1)

and can range from -1 to +1. A value of PV “ 1 or ´ 1 indicates complete vector
polarisation, where all particles are in the same spin state or aligned along the same
quantisation axis. It is essential to specify both the magnitude and direction of po-
larisation when describing a vector polarisation. The direction is determined by the
choice of quantisation axis. For example, if we chose z axis as the polarisation axis
and polarisation along this direction Pz “ 1, then the polarisation along other axes
will be zero Px, Py “ 0. For a partially polarised beam, the sum in quadrature of the
polarisation along the two different axes cannot exceed unity.
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Deuteron polarisation

Let us examine the polarisation of deuteron, which is a spin-1 particle. It has three
spin states denoted by m “ 1, 0, ´1 as shown in Fig. 3.1b, and these states have
a fractional population of N`, N0, N´, respectively, where N` ` N0 ` N´ “ 1. An
equal distribution of particle spins among these magnetic states is referred to as the
unpolarised state, where the spins are not preferentially aligned along a particular
direction, as given by,

N`
“ N0

“ N´
“

1
3

. (3.1.2)

The vector polarisation PV for a deuteron, defined as the difference between the pop-
ulation of m “ `1 and ´ 1 states, is given by:

PV “ N`
´ N´. (3.1.3)

Let us consider particles in the m “ 0 spin state. Although their projection onto the
quantisation axis is zero, indicating zero vector polarisation, they are still aligned in
the direction perpendicular to the quantisation axis. This alignment is referred to as
tensor polarisation and is expressed as,

PT “ N`
` N´

´ 2N0
“ 1 ´ 3N0. (3.1.4)

Here, PT can have values ranging from -2 to 1.

In experiments aimed at searching for axions in a storage ring, the primary focus is on
vector polarisation because the effects of axions are observed on vector polarisation
rather than tensor polarisation. For example, the effect of oscillating EDM manifests
through the cross product of vectors pc~β ˆ ~Bq, which is a vector (to be discussed
later in the chapter), and do not impact the tensor polarisation. Therefore, tensor
polarisation is not considered crucial in this experiment. Additionally, the presence of
tensor polarisation can introduce systematics in the measurement, which may result
from geometrical imperfections in detector construction or misalignment of the beam.
While it is theoretically possible to differentiate these effects, it can be challenging to
identify in practice. Therefore, to minimise potential systematic errors, all data in the
experiment were obtained using a pure vector-polarised beam. To achieve a purely
vector-polarised state with no tensor component (PT “ 0), the fractional population
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N0 must have a value of 1/3, see Eq. (3.1.4). Considering the sum of the fractional
population is one, the maximum achievable vector polarisation is ˘66.66% of the
maximum, resulting in

´
2
3

ď PV ď
2
3

. (3.1.5)

3.2 Theory behind measurement of polarisation

A polarimeter is a device to measure the beam polarisation. It relies on the spin-
spin interaction or spin-orbital interaction between the polarised beam particles and
either polarised target nuclei in the case of the former interaction or unpolarised target
nuclei in the case of the latter. One commonly employed approach for determining the
beam polarisation is through the measurement of scattering rates from a target. By
observing the rates of reactions induced by deuterons on a target and their subsequent
scattering to a detector, we can ascertain the polarisation of the deuteron beam,
provided that the reaction’s analysing powers (or sensitivities to polarisation) are
sufficiently large.

We follow the Madison Convention [70] when describing the coordinate system at the
target. In this convention, the incoming particle’s momentum ~pinc is along the z axis,
the y axis is defined by the cross-product of ~pinc ˆ~pout, and x axis completes the right-
handed coordinate system. Here, ~pout is the outgoing momenta. Figure 3.2 provides
a visual representation of the polarisation direction in this coordinate system. The
orientation of the polarisation is determined by the polar angle β, which is the angle
between the polarisation direction and the beam direction, and the azimuthal angle
φ, which is the angle between y axis and the projection of PV onto the xy plane. The
scattering angle of the outgoing particle is given by θ. The angles denoted here are
different from the standard spherical coordinates to keep with the convention.

The direction of scattering is influenced by the spin-orbit interaction (similar to L-S
coupling in atoms), which is given by pp~r ˆ~pq ¨~Sq between the nucleons of the incoming
particle and the target. The information presented here is derived from [71]. Figure 3.3
shows two incoming nucleons with spin up incident on a target at a distance ~r. For
the incident nucleon 1, the cross product p~r ˆ~pq points downward or into the paper.
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x

y

z ‖ ~pinc

PVφ

β
~pout

θ

Figure 3.2: Schematic showing the beam coordinates at the target. z axis is chosen along the
beam direction, y axis is vertical, and x axis completes the right-handed coordinate system.
The red arrow depicts the vector polarisation, the direction of which is given by the angles
φ and β. The cyan arrow in the xz-plane shows the scattering to the left by an angle θ

towards a detector shown in the blue box.

Since the spin is pointing up, the resulting scalar product is negative, leading to a
repulsive force between the target and incident nucleon 1, which is scattered to the
left. In the case of incident nucleon 2, the cross product points up, and with the spin
also pointing up, the scalar product is positive, leading to an attractive interaction
and the incident nucleon 2 is pulled towards the target nucleon and thus also scattered
to the left. By the similar reasoning, it can be deduced that the spin-down nucleons
will scatter to the right.

The angle φ in Fig. 3.2 is chosen such that a spin-up particle scatters to the left or in
the `x direction when φ “ 0°. This follows that the right, up, and down scattering
correspond to φ “ 180°, 270°, and 90°, respectively.

The cross-section of interaction of a pure vector-polarised deuteron beam (PT “ 0)
and an unpolarised target, such as carbon, as taken from ref. [72], can be expressed
as follows,

σpol “ σunpol

ˆ

1 `
3
2

AyPy

˙

. (3.2.1)

Here, σunpol is the cross-section for an unpolarised beam, Ay is the analysing power
of reaction and Py is the vertical component (along y axis) of the vector polari-
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Figure 3.3: Figure adopted from [71] showing the top-down view of incoming nucleons with
spins pointing up (or out of the paper) scattering from a target nucleon.

sation of the deuteron beam PV . The relationship between them is given by Py “

PV sinpβq cospφq. Terms denoting tensor polarisation are not included in Eq. (3.2.1)
as the tensor components are not considered.

The cross-section for a vertically polarised beam (Py) is maximised when the product
sinpβq cospφq is 1 or -1. Let us assume that PV is positive. Then the rate at the left
detector is highest, when compared to unpolarised beam, when sinpβq cospφq « 1.
Simultaneously, the rates at the right detector on the opposite side p´xq will be at a
minimum. If L and R are the rates at the left and right detectors, respectively, the
asymmetry in these two rates (assuming that the detector geometry and efficiencies
are identical) can be written as,

ALR “
L ´ R
L ` R

“
3
2

AyPy. (3.2.2)

Thus, this asymmetry provides a measure of the vertical polarisation. The analysing
power, which is the property of the reaction, is derived from experiments and can be
obtained from literature.
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Similarly, the asymmetry corresponding to the horizontal polarisation can be written
as,

ADU “
D ´ U
D ` U

“
3
2

AyPx. (3.2.3)

Here, D and U are the rates at the down and up detectors, and Px is the polarisation
in the horizontal plane. Next, we will look at the behaviour of particle spin in a storage
ring.

3.3 Spin dynamics in a storage ring

Storage rings utilise magnetic or electric field, or a combination of both, to manipulate
trajectories of the particles. These fields have a significant influence on the spin of
the particles, making it crucial to understand the evolution of particle spin in an
accelerator.

Spin precession for particle at rest

First let us start with a particle at rest with magnetic moment ~µ. In an external
magnetic field ~B the spin ~S will experience a torque causing it to precess around the
magnetic field as follows,

d~S
dt

“ ~µ ˆ ~B. (3.3.1)

The magnetic moment is related to spin,

~µ “ g
q

2m
~S, (3.3.2)

where q and m are the charge and mass of the particle, respectively. The gyromagnetic
ratio g relates to the magnetic anomaly G “ pg ´ 2q{2, and the value for deuteron is
G = −0.142 987 542 4. By inserting the value of ~µ in Eq. (3.3.1) we get the equation
of spin motion as,

d~S
dt

“ ~S ˆ ~Ω. (3.3.3)

Here, the angular velocity is given by,

~Ω “
gq
2m

~B, (3.3.4)

and aligns with the magnetic field.
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3.3.1 Spin precession of relativistic particles

In a storage ring, the particles are moving at relativistic speeds in electric and magnetic
fields which guide, focus and accelerate the particles through the ring. Let us consider
a particle, with Magnetic Dipole Moment (MDM) and a non-zero Electric Dipole
Moment, in this external electric ~E and magnetic field ~B. The spin motion in the
particle’s rest frame can be written as,

d~S
dt

“ ~µ ˆ ~B˚ ` ~d ˆ ~E˚, (3.3.5)

where, ~d is the Electric Dipole Moment of the particle as mentioned in Chapter 2 and
can be related to the dimensionless quantity electric dipole factor η in the similar as
~µ is related to g

~d “ η
qh̄

2mc
~S, (3.3.6)

with ~d always aligning with the spin direction. The superscript ˚ on ~B˚ and ~E˚ denotes
fields in particle reference frame. By expressing the ˚ fields in terms of laboratory frame
fields with the help of Lorentz transformation, we can derive the time evolution of spin
in a storage ring, known as Thomas-Bargmann–Michel–Telegdi (T-BMT) equation
[73, 74].

d~S
dt

“ p~ΩMDM ` ~ΩEDMq ˆ ~S, (3.3.7)

The angular velocity terms ~ΩMDM and ~ΩEDM arise from the rotations due to MDM
and EDM, respectively, and are defined as follows:

~ΩMDM “ ´
q
m

«

ˆ

G `
1
γ

˙

~B ´
γG

γ ` 1
~β

´

~β ¨ ~B
¯

´

ˆ

G `
1

γ ` 1

˙~β ˆ ~E
c

ff

, (3.3.7a)

~ΩEDM “ ´
ηq

2mc

„

~E ´
γ

γ ` 1
~β

´

~β ¨ ~E
¯

` c~β ˆ ~B


. (3.3.7b)

In these equations, ~β is the beam velocity vector in units of c, γ is the Lorentz factor
of a particle with mass m and charge q, and ~B and ~E are the external magnetic and
electric fields, respectively. Since the COSY ring is purely magnetic with ~B aligned
along the vertical direction, we can simplify the T-BMT equation by setting ~E “ 0,
~β ¨ ~B “ 0.
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Furthermore, by choosing a comoving frame of reference that moves with the momen-
tum, it is convenient to express the spin orientation relative to the particle momentum
[75]. To achieve this, let us first consider the motion of a charged particle in a purely
magnetic field ~B K~p described by the Lorentz force,

d~p
dt

“ ~F “ q
´

c~β ˆ ~B
¯

“ ~Ωrev ˆ~p, (3.3.8)

where, ~Ωrev is the angular velocity of the particle moving under the influence of the
magnetic field, and can be expressed as,

~Ωrev “ ´
q

γm
~B. (3.3.9)

The spin precession relative to the momentum precession can be obtained by the
term ~ΩMDM ´ ~Ωrev. Additionally, as discussed in Chapter 2, another term that can
introduce spin rotation is the axion-wind, which can be described by the angular
velocity ~Ωwind as given in [23, 76]. Incorporating these effects into Eq. (3.3.7), we
obtain the subtracted, axion-wind extended T-BMT equation for a purely magnetic
ring as follows:

d~S
dt

“ p~ΩMDM ´ ~Ωrev ` ~ΩEDM ` ~Ωwindq ˆ ~S. (3.3.10)

This equation describes the spin motion relative to momentum in a purely magnetic
ring, where,

~ΩMDM ´ ~Ωrev “ ´
q
m

G~B, (3.3.10a)

~ΩEDM “ ´
1

Sh̄
dptqc~β ˆ ~B, (3.3.10b)

~Ωwind “ ´
1

Sh̄
CN

2 fa
ph̄δ0aptqq~β, (3.3.10c)

where dptq “ dstat ` doscptq is the EDM of the particle, including the static term
dstat and the oscillating term dosc, aptq is the ALP field, and CN is the coupling
constant. The oscillating ALP field generates the oscillating term in dptq, and the
time derivative term δ0aptq contains the oscillating contribution within ~Ωwind. Both
of these ALP induced effects result in a vertical build-up of beam polarisation out of
the ring plane under resonance conditions. Figure 3.4 provides a visual representation
of the rotation vectors in the particle rest frame.
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Figure 3.4: The particle in its rest-frame coordinates (co-moving coordinates) as referenced
in black, with the magnetic field directed in the ´y direction, and the beam momentum
in the `z direction. The coloured arrows depict the various angular velocities the particle
would experience in a storage ring in the presence of ALPs as given in Eq. (3.3.10).



4 How to search for axion like particles?

The search for ALPs in a storage ring relies on the resonance between the spin preces-
sion frequency of the particle beam fspin and the frequency of ALP induced oscillations
fosc. This approach is similar to other spin-precession-based experiments to search for
axions. The axion-induced frequency fosc is directly linked to the axion mass as, men-
tioned in Chapter 2, through the equation fosc “ mac2{h, where ma represents the
axion mass. Expanding upon the spin dynamics discussed in the previous section for a
horizontally polarised beam with non-zero EDM, we examine the changes in polarisa-
tion that occur at resonance between fspin (related to ~ΩMDM given in Eq. (3.3.10a)),
and fosc (related to both ~ΩEDM and ~Ωwind defined in Eqs. (3.3.10b) and (3.3.10c),
respectively).

4.1 Resonance and polarisation build-up

In a storage ring, when a horizontally polarised beam is subjected to a vertical mag-
netic field, it undergoes precession due to the magnetic anomaly G. This precession
results in a spin precession frequency given by fspin “ |Gγ| frev. Here, frev is the
revolution frequency of the beam around the ring and γ is the Lorentz factor.

Consider a particle within this beam whose spin is aligned with its momentum, and
the direction of the beam is aligned with the z axis. The applied magnetic field ~B in
the laboratory frame undergoes Lorentz transformation into the particle rest-frame,
resulting in a magnetic field ~B˚ and electric field ~E˚, the latter pointing towards the
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centre of the ring. The superscript ˚ indicates that the fields are in the reference frame
of the particles. Figure 4.1a provides a visual depiction of these vectors, along with
spin and EDM.

Assuming that this particle possesses a non-zero oscillating EDM, the EDM vector
aligns with the spin and experiences a torque from the electric field ~E˚. When the spin
and the momentum are parallel, the torque causes the spin to rotate upward Fig. 4.1b,
whereas for an antiparallel orientation, the spin rotates downward Fig. 4.1c. As the
spin precesses about the vertical axis, EDM also rotates along with it. This precession
leads to spin and momentum being parallel for half of the precession and antiparallel
for the other half.

In the presence of axion-induced oscillations, the EDM undergoes oscillation with a
frequency fosc, causing the reversal in its direction to become opposite to the spin.
Consequently, for half of the time period (0.5 ˆ 1{ fosc), EDM aligns parallel to the
spin, while during the other half it aligns antiparallel, as shown in. When the spin
precession frequency fspin and the ALP induced oscillations fosc are in resonance,
the spin, momentum, and EDM are all parallel to each other for half an oscillation
Fig. 4.1b. However, during the other half, the spin becomes antiparallel to the momen-
tum, and EDM. In this case, due to the change in direction of EDM, the direction of
the torque due to ~E˚ also changes, causing the spin to rotate upward Fig. 4.1d. Con-
sequently, over time, the spin will move out of the horizontal plane into the vertical
direction.

To observe the build-up of vertical polarisation, it is necessary to set the machine
at the resonance frequency. However, since the oscillation frequency is related to the
unknown ALP mass ma, we need to probe the frequency space to find the resonance
between fspin and fosc. This is achieved by slowly varying fspin in search of resonance,
although still fast enough to ensure that the entire scanning process does not exceed
the coherence time of the axions Chapter 2. The expected signal when crossing the
resonance is a change in vertical polarisation to a non-zero value. Further details of
the experiment are provided in Chapter 6.
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(a) ~S äæ p and ~S äæ ~d (b) fspin“ 2πGγ frev

(c) ~S äæ p and ~S äæ ~d (d) ~S äæ p and ~S äç ~d

Figure 4.1: (4.1a) Illustration of a particle in a storage ring with momentum p, in a vertical
applied magnetic field ~B, experiencing a particle reference frame electric field ~E˚. (4.1b)
When the spin and momentum are parallel, the torque on the EDM kicks the spin to out of
horizontal plane. Simultaneously, as the particle traverses the ring, the spin precesses about
the vertical axis, resulting in the spin becoming antiparallel to the momentum. (4.1c) When
the spin and momentum are antiparallel, the torque causes the spin to rotate downward.
This represents a scenario when there is no resonance. (4.1d) The ALP induced fosc leads to
oscillations in the EDM. At resonance between fspin and fosc, the EDM and momentum align,
being antiparallel to spin. As a result, the torque changes its direction and further pushes
the spin upward. As the particle completes multiple revolutions in the ring at resonance,
the vertical polarisation will gradually accumulate, resulting in a build up.

4.2 Method

The search for ALPs in a storage ring involves several key steps, beginning with the
production of a polarised beam. The beam is injected into the storage ring where
it undergoes initial preparation, after which the beam is accelerated to the desired
momentum p (the start momentum). Once the momentum is known, it is possible
to determine the spin precession frequency of the horizontally polarised beam. A
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polarimeter placed at the internal target position is used for continuous monitoring
of the beam polarisation, which allows us to look for a change in polarisation.

The next step involves searching for a resonance between the spin precession frequency
fspin and the axion-induced oscillation frequency fosc. This is done by gradually in-
creasing the spin precession frequency in small steps while maintaining a constant
orbit length. In practice, the ramping of spin precession frequency is done by chang-
ing the beam momentum, as frev9γ. As the resonance is crossed, we expect to observe
a change in vertical polarisation, also called a ”jump” in polarisation. The magnitude
of this change in polarisation will be proportional to the coupling constants of the
various axion interactions mentioned in Chapter 2. However, it is important to note
that the observed jump cannot be considered as an absolute value, as the jump size
can be modulated by the phase of the axion field mentioned in Eq. (2.1.4).

An illustration of the model calculation showing the variation in jump size due to dif-
ferent phases is shown in Fig. 4.2, details on the simulation are provided in Chapter 7.
The blue and red curves depict the vertical polarisation component, obtained from
the model calculation for two ALP phases, zero and π{2. In this particular scenario, a
substantial jump in polarisation is seen for the former case, whereas a smaller, nega-
tive jump is observed for the latter. Since this phase is random for each measurement,
and cannot be determined prior to the experiment, this dependence can hinder the
sensitivity of the experiment.

In addition to the challenges posed by the modulation of the jump size due to ax-
ion phase, another factor that can affect the sensitivity of the experiment is beam
depolarisation. Consequently, it is crucial to address both of these challenges prior
to conducting the experiment. The following section provides an explanation of the
approaches to overcome these challenges.

4.3 Prerequisites

When conducting experiments aimed at measuring minute quantities, any factors that
modify the signal pose a huge problem. Since the measurement of the expected signal
depends on the polarisation of the beam, it is essential to preserve the beam polarisa-
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Figure 4.2: Graph depicting the model calculation of vertical polarisation during a scan for
the possible resonance between spin precession and the ALP frequency. The changing spin
precession frequency is represented by the green line, while the blue and red curves show
the vertical polarisation for two different ALP phases over time. Following the resonance
crossing at 13 s, the polarisation curves acquire new vertical polarisation values depending
on the initial conditions.

tion for the duration of the measurement process. Additionally, we must address the
phase dependence of the signal. Let us examine these aspects individually.

4.3.1 Long spin coherence time

We expect to observe a change in polarisation from the horizontal plane to the vertical
direction as an indication of a resonance, and thus the presence of axions. To maximise
the potential polarisation jump, it is crucial to possess a large beam polarisation in
the horizontal plane. This polarisation, referred to as the in-plane polarisation (IPP),
is the measure of alignment of the spin of all particles in a single direction in the
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horizontal plane. As the beam undergoes depolarisation, the experimental sensitivity
to detect axions diminishes correspondingly. The duration for which the beam remains
polarised is called spin coherence time, and we want to ensure the spin coherence time
(SCT) is at least as long as the measurement duration. SCT is usually calculated as
the time required for the polarisation to decrease to half its initial value. The process
of obtaining long SCT, as explained in this section, is based on [77].

The depolarisation of an IP polarised beam is primarily caused by the momentum
spread ∆p. We know that, in a magnetic field, the IP polarised beam undergoes
precession in the plane with a spin precession frequency fspin. The number of spin
precessions per revolution of the particle in the storage ring is called spin tune ν, and
can be used to explain how a change in momentum affects the IPP. By using the
angular velocity vectors from Eqs. (3.3.9) and (3.3.10a) we obtain,

ν “
p´q{mqG
´q{pγmq

“ Gγ. (4.3.1)

The relationship between a change in spin tune and momentum can be expressed as,

∆ν

ν
“

∆γ

γ
9

∆p
p

9
∆lcirc

lcirc
, (4.3.2)

where lcirc is the orbit circumference. It is evident from Eq. (4.3.2) that any deviation
in momentum away from the central value p causes a change in spin tune. Overtime,
this would lead to a spread in spin tune in a particle beam.

If we consider a case of no variation in spin tune, i.e., ∆ν « 0, the spins of the particles
will precess at the same rate, resulting in all particles having the same spin orientation
within the xz plane, thereby preventing depolarisation. Conversely, if there is a non-
zero spread in spin tune ∆ν ‰ 0, the particle spins will precess at different rates,
causing loss of polarisation after multiple revolutions in the ring, as visually depicted
in Fig. 4.3.

Bunching with RF cavity

The primary contribution to the spin tune spread comes from the large spread of
momentum distribution ∆p

p in a coasting beam, i.e., a beam of particles that are not
bunched together. This first-order effect can be mitigated by using a radio frequency
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(a) ∆ν « 0
(b) ∆ν ‰ 0

Figure 4.3: Top-down view of a ring with the magnetic field pointing into the figure and beam
moving in the clockwise direction. The particles starting at the top of the ring have their
spin and momentum vectors parallel. As the particle revolves around the ring, we observe
that the spin lags behind the momentum, resulting in a rotation angle of Gγ rad after one
revolution. If ∆ν « 0 then all spins rotate at the same frequency and the in plane polarisation
is preserved. However, when ∆ν ‰ 0, the individual spins rotate at different frequencies,
leading to different spin orientations over multiple turns and resulting in depolarisation.
Figure adopted from [78].

cavity (RF cavity) which applies an oscillating field, causing the particles to bunch
together [79]. Particles that arrive with the expected momentum or on time will see
zero potential. Particles arriving early or later experience fields which decelerate or
accelerate them, respectively.

Sextupole field correction

Betatron oscillations present another factor that changes the spin tune of particles.
These are transverse oscillations about the orbit resulting in an increase in path length.
To compensate for the increased length, a particles within a bunch must travel faster
to still remain bunched, thus changing the spin tune. These second-order contributions
are corrected for with the aid of sextupole fields [80], which adjust the length of the



36 Prerequisites

betatron oscillation orbit, ensuring that all particles have the same orbit length and
thus minimising the spin tune spread [81, 82].

Phase space reduction with electron cooling

In addition to the RF cavity and the sextupole fields, the SCT can be increased
by incorporating an electron cooler [83]. Electron cooling, which was first described
in [84], is a process aimed at reducing the size, divergence, and energy spread of a
charged-particle beam while preserving its intensity. The process involves injecting a
dense electron beam along the charged particle beam with the same average velocity.
In the rest frame of the electrons, the deuterons passing through the electron beam at
different angles and velocities resembles the motion of particles in a hot gas. Through
Coulomb interaction, the deuterons exchange energy with the electrons, eventually
reaching thermal equilibrium. As a result, the motion of deuterons in the electron rest-
frame is damped, leading to a narrower distribution of deuteron velocity components.
Consequently, the “cooled” deuteron beam has a reduced transverse motion. This
process can increase SCT as we have shown in [85].

Figure 4.4 presents a replicated version of the plot from [85, Figure 4, 5], where the
data points correspond to the normalised horizontal polarisation measured at four
different time points during a single beam store. A curve was fit to the measurements
to facilitate the determination of the SCT. The left plot Fig. 4.4a represents measure-
ments conducted with a pre-cooled beam, while the right plot Fig. 4.4b represents
measurements conducted with continuous cooling. The study concluded, as illustrated
in Fig. 4.4, that continuous cooling resulted in an improvement in the SCT. However,
despite this finding, the storage ring axion search experiment was conducted with a
pre-cooled beam due to the systematic effect of electron cooling on spin precession.

4.3.2 The ALP phase problem

As discussed in Section 2.1.2, axions, as candidates of dark matter, can be treated as
a scalar field. The axion field is expressed in Eq. (2.1.4), which can be modified as
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(a) Pre-electron cooling. (b) Full electron cooling.

Figure 4.4: The two plots, taken from [85], depict the normalised horizontal polarisation as
a function of time along for two different cases. The data in the left plot corresponds to
measurements conducted with electron pre-cooling, while the data in the right corresponds
to measurements conducted with continuous electron cooling for the duration of the mea-
surement. The fitted curve was used to estimate the SCT.

follows:

aptq “ a0 cos
ˆ

fosc

h
pt ´ t0q ` φapt0q

˙

. (4.3.3)

Here, t0 is introduced to denote the starting time of a measurement and correlate
time-wise the properties of the axion field with the state of momenta and spins of
the beam particles. The axion phase φapt0q now corresponds to the phase between
rotating IPP and oscillating EDM. The values of φapt0q varies from one measurement
to another, resulting in modulation of the signal by a random value each measurement,
which would follow a sinusoidal curve. Consequently, depending on the axion phase,
the signal can be attenuated or completely absent (Fig. 4.2), neither of which are
desirable.

To address the axion phase problem, one possible solution is to observe the signal using
two beams having perpendicular in-plane polarisation. These two beams will have a
relative phase of π{2. This configuration enables the experiment to be sensitive to all
phases at any given time, ensuring that no ALP signal is missed.
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As long as the polarisation directions are perpendicular in the laboratory frame, it
is sufficient to have two simultaneous beams to perform axion searches. However, in
the actual measurements, we used four simultaneous beams, which were practically
achieved by dividing the beam into four separate groups of particles called “bunches”
during the bunching process. This choice, while enabling for perpendicular polarisation
directions, also provides with opposite polarisations, which is helpful in suppressing
systematics. Model calculations performed to study this are provided in Chapter 7.
Additionally, selecting four bunches results in tighter grouping of particles within each
bunch, potentially aiding in minimising depolarisation effects.



5 Beam preparation and polarimetry

5.1 Cooler Synchrotron COSY

The JEDI collaboration [86] has been conducting research and development of tech-
nology towards building a dedicated ring for the search of static EDM of charged
particles at the Cooler Synchrotron facility [87] located at Forschungszentrum Jülich,
Germany.

COSY is capable of accelerating and storing both polarised and unpolarised proton
and deuteron beams in a momentum range 0.3 GeV{c - 3.7 GeV{c. In this experiment to
search for ALPs, we utilised a polarised deuteron beam with a nominal momentum p of
0.97 GeV{c, corresponding to an energy of 236 MeV. The COSY facility, seen in Fig. 5.1,
comprises an ion source (not shown in Fig. 5.1), the pre-accelerator Jülich Isochronous
Cyclotron (JULIC) which accelerates the beam to injection energy, the Low Energy
Polarimeter (LEP) to measure beam polarisation pre-injection, the injection beam-
line, and the COSY storage ring.

Within COSY, several apparatuses are present, including three families of sextupole
magnets, an electron cooler, a radio frequency solenoid, a radio frequency Wien filter,
and the forward detector from the WASA facility serving as a polarimeter. Let us
trace the path of the deuteron beams from the source, through the beam pipes, to
the detector.
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Figure 5.1: Schematic representation of COSY. Starting with the JULIC cyclotron on
the left, the injection beam-line connecting it to the COSY ring, extraction beam-line.
COSY ring houses the bending dipole magnets, the focusing quadrupole magnets, sextupole
magnets, electron-cooler, Wide Angle Shower Apparatus (WASA) operated as a polarimeter,
RF Wien filter, radio frequency solenoid (RF solenoid).

5.1.1 Beam production and injection to COSY

The polarised ion source [88] in COSY can produce negatively charged hydrogen H´

and deuterons D´. In this thesis, we will focus on D´ beam which possesses vector
polarisation as explained in Section 3.1. The vertically polarised D´ ion beam from
the source is injected into the JULIC cyclotron, where the beam is accelerated to
injection energy of 75.6 MeV. Subsequently, the beam is directed into the injection
beam line where the LEP is located. The LEP [89] monitors the polarisation of the
beam generated at the source. Following the injection beam line, the D´ is strip-
injected into COSY. Strip injection involves hitting the D´ beam into a stripping foil
which removes the electrons, thereby resulting in the filling of COSY with deuteron
ion beams.
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5.1.2 Beam development and spin manipulation

The COSY ring has a race-track shape, with a circumference of 183.6 m. The ring
comprises two arc sections, each having a radius of 16.5 m and consisting of bending
magnets—the dipoles, and three families of sextupole magnets. The RF solenoid is
also installed in one of the arcs. The two straight sections connecting the arcs have a
length of 40 m and contain quadrupoles responsible for beam focusing and de-focusing.
Other important installations in the straight sections are an electron cooler (e-cooler),
the WASA detector, and the RF Wien filter.

RF cavity

The RF cavity located in the centre of a straight section, generates a longitudinal
oscillating voltage which accelerates the deuteron beam. The initial momentum p of
970 MeV{c corresponds to the revolution frequency frev of 750 602.6 Hz. By utilising
the ability of the RF cavity to operate at various harmonics, the frequency of the
cavity was set to the fourth harmonic of the revolution frequency. Consequently, the
deuteron beam, instead of being grouped together as a single bunch, is split into
four bunches. These bunches, containing approximately equal numbers of particles,
and evenly spaced within the ring, will result in mutually perpendicular in-plane
polarisation directions. This arrangement will effectively address the phase problem,
which will be explained through simulations in Chapter 7.

RF solenoid

The RF solenoid is one of the spin manipulation devices available at COSY. An image
of RF solenoid installed in one of the arcs is shown in Fig. 5.2. It is 57.5 cm-long and
consists of a 25-turn air-core copper coil with an average diameter of 21 cm [90].

The RF solenoid generates a sinusoidal magnetic field aligned with the beam direction.
The vertical polarisation of the deuteron beam undergoes rotation about the solenoidal
magnetic field. Furthermore, when the polarisation possesses a horizontal component,
it undergoes precession about the vertical magnetic field. The combination of these
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two rotations results in oscillation of the polarisation, and the oscillation amplitude
will depend on the rotations frequencies [91].
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Figure 5.2: RF solenoid installed in the ring.

When the RF solenoid frequency is in
resonance with the spin precession fre-
quency fsol “ pk ˘ Gγq frev, k P Z, the
polarisation of the beam undergoes os-
cillations with the maximum amplitude.
This phenomenon is employed in the ex-
periment to flip the polarisation to a hor-
izontal plane. Model calculations demon-
strating this effect are explained in Chapter 7.

RF Wien filter

RF Wien filter is another spin manipulation device, installed in the straights of the
ring [92]. The device was specifically developed to facilitate the measurement of the
static EDM of deuterons at COSY. The design model of RF Wien filter is shown in
Fig. 5.3. The orthogonal electric and magnetic fields are homogeneous throughout the
length of the WF and fall sharply at the ends. Along with various support structures,
it also contains a Beam Position Monitor (BPM) and a belt drive which allows rotating
the RF Wien filter up to 90°. It produces sinusoidal electric and magnetic fields that
are perpendicular to each other and to the beam momentum. The precision of the
RF Wien filter is such that under proper working conditions the fields affect only
the spin of the particles, and not their orbit or momentum. The RF Wien filter can
be operated in two modes: MDM mode and EDM mode. In the MDM mode, the
magnetic field is in the vertical direction and its effects on spin are similar to that of
Magnetic Dipole Moment. The MDM-mode is rotated 90° from the EDM-mode. In
the EDM-mode, the magnetic field of the RF Wien filter is in the horizontal plane,
its effect on the spin is close to that of oscillating EDM. There is a major difference
between the effects of oscillating EDM and RF Wien filter; the latter acts at only one
point in the ring, while the effect of oscillating EDM is present everywhere in the ring.
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Figure 5.3: Design model of RF Wien filter taken from [92]. The parallel copper plates lie
along the beam axis.

Nevertheless, the RF Wien filter could be used to create a test signal and confirm our
model calculation.

5.2 WASA polarimeter

The COSY ring is equipped with the forward angle Wide Angle Shower Apparatus
detector. Figure 5.4 shows the various elements in the detector. The particles scat-
ter from the carbon target in the forward direction and exit the vacuum through a
stainless-steel window. Then they pass through two plastic scintillator window coun-
ters, straw tubes, trigger hodoscope, and five layers of plastic scintillator calorimeter
detectors or range hodoscope. Except the straw tubes, all layers are divided into
pie-shaped segments and are read out using photomultiplier tubes.

The carbon target with the thickness of 2 cm is inserted such that the edge of the
target is aligned with the centre of the detector. In order to accommodate this, a local
adjustment was made to lower the beam path by approximately 3 mm as it passed the
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Figure 5.4: Cross-sectional diagram showing the layout of the WASA Forward Detector,
taken from [93]. The red arrow gives the beam direction.

carbon target. During the data acquisition, an RF noise generator (called Schneider
box) is used to apply heating to the beam. The frequency of the noise generator is set
to one of the harmonics of vertical tune. This heating in the vertical direction, causes
the particles in the outer part of the beam to rise and hit the front face of the target
as illustrated in Fig. 5.5. These particles undergo scattered and are detected in the
WASA forward detector. The analysing powers of elastic scattering are given in [93].
The observed detector rates are dominated by elastic scattered deuterons.

Although there are several layers in the WASA detector, for the purposes of polarime-
ter measurement, only the plastic scintillators are used. This simplifies the analysis
scheme and enables the online analysis during the experiment, while being fully suf-
ficient for later analysis purposes as well. The detector segments can be divided into
four quadrants in its azimuthal angle, named Left, Up, Right, and Down. The left-
right and down-up asymmetry calculated from the rates of these quadrants are used
to measure the vertical and horizontal polarisation, respectively (explained in Sec-
tion 3.2).
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Figure 5.5: Illustration depicting the excitation process of the beam. The beam is represented
by a thick blue arrow, and the light blue cylinder represents the excited beam region. The
trajectories of two particles within the beam are shown by purple arrows that strike the
front face of the target (black cube) and then scatter to the detectors (blue boxes). Please
note that the diagram is not drawn to scale.





6 Experiment

Building upon the information presented in the previous chapters, this chapter ex-
plains the experimental procedure applied to search for ALPs at the COSY syn-
chrotron. This poof-of-principle experiment took place in the spring of 2019 [94, 95]
using a polarised deuteron beam and consisted of a two-step process: an initial one-
time setup at the beginning of the beam time to establish the operation point of the
experiment, followed by the actual experiment to search for Axion-Like Particles.

To facilitate understanding, the following terms are explained within the context of
the experiment.

Cycle

A cycle refers to one complete storage of the particles in the ring, encompassing a
particular set of machine instructions dictated by the timing page. A cycle starts from
the injection of particles into the ring, while at the end, any remaining particles are
dumped, and preparations for the next cycle start. During each cycle, the particles
can be in either a polarised state or an unpolarised state. Cycles are numbered from
1 to N and Fig. 6.1 is an example of detector rates as a function of time in a cycle.

Run

A run is a collection of cycles—characterised by the same beam parameters—that
is executed without any break between cycles. The number of cycles in a run varies
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depending on the specific purpose, ranging from 5 to 10 cycles, the reason for it will
be explained later in the chapter. In certain cases, specific cycles within a run may be
discarded later if for some reason certain things, such as the Data Acquisition (DAQ),
did not operate as intended. A run, usually consisting of multiple polarised cycles,
also includes an unpolarised cycle as a measure of the polarisation baseline.
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Figure 6.1: The figure shows the ’Up’ detector rates for a single cycle in the experiment.

6.1 The one-time setup

The following steps were executed at the start of the beam time to obtain the neces-
sary machine operating conditions. These steps were not repeated unless there were
significant changes to the machine settings, which occurred infrequently. The machine
settings were optimised for good beam intensity, to obtain high efficiency of injection
into the beam pipe, and to determine the optimal beam path or orbit through the
ring. This reference orbit served as a benchmark to calculate orbit deviations during
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the experiment. Data from BPMs distributed around the ring were monitored with
the goal of minimising the root mean square (RMS) of these deviations.

Our aim was to have approximately 109 deuterons in the ring at the start of each
cycle. However, this value varied throughout the experiment by up to a factor of two
as a result of fluctuations in the source and the machine operation. An insufficient
number of particles would pose challenges to measurements, such as an increase in
both the statistical uncertainty in the polarisation measurement and the uncertainties
in BPMs readings. The latter would result in inaccurate orbit measurements, while
the former would reduce the sensitivity of the experiment.

6.1.1 RF solenoid resonance frequency and spin flip

As mentioned in previous chapters, the polarised deuteron beam from the source is
vertically polarised. To rotate this polarisation to the horizontal plane, we utilised
the RF solenoid at resonance. While the resonance frequency can be calculated using
the formula fsol “ p1 ` Gγq frev, where G is the magnetic anomaly, frev is the nomi-
nal revolution frequency, and γ is the Lorentz factor, it is prudent to experimentally
determine the resonance frequency due to potential deviations in the experimental
conditions from our assumed values of frev and γ. To obtain the precise resonance
frequency of the RF solenoid, a variable-frequency Froissart-Stora scan [96] was per-
formed, followed by a series of fixed-frequency scans. The Froissart-Stora scan involved
changing the solenoid frequency fsol across the expected resonance and looking for
the flip in polarisation direction of the vertically polarised beam. The Froissart-Stora
formula

Pf “ Pi

»

—

—

—

–

2e
´

πε2
sol

2|α| ´ 1

fi

ffi

ffi

ffi

fl

, (6.1.1)

describes this change in polarisation when the solenoid frequency crosses the reso-
nance. Here, Pi and Pf are the polarisation before and after the resonance crossing,
respectively. The resonance strength is denoted by εsol, and α is the rate at which
the resonance is crossed. By identifying the frequency associated with the change in
polarisation sign, we obtain the initial estimate of the resonance.
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Subsequently, at a fixed fsol, the frequency and amplitude of the polarisation os-
cillations produced by the solenoid were calculated. This process was repeated at
different fsol with 0.1 Hz change between each measurement. The frequency corre-
sponding to the highest amplitude was chosen as the solenoid operating frequency
fsol “ 629 755.3 Hz.

Once the resonance frequency was determined, the duration for which the RF solenoid
was turned on was varied to achieve a half flip of the polarisation, resulting in zero
vertical polarisation. This was confirmed by comparing the LR-asymmetry ALR value
with that of the previously measured unpolarised cycle as a reference.

6.1.2 Long spin coherence time using sextupole scans

Long spin coherence time is an essential aspect of this experiment, and a crucial step
towards achieving this is to cancel the effects of betatron oscillations by adjusting the
sextupole fields, as explained in Chapter 4. The ring has three families of sextupole
magnets that are strategically located in the arcs. These sextupole magnets, namely
MXS, MXL and MXG, are located at positions in the ring with large Courant-Snyder
parameters βx and betay, and large horizontal dispersion, respectively [82]. Here,
βx and βy are the horizontal and vertical beta functions, which are related to the
transverse size of the beam.

The process involved optimising the sextupole field values to find the optimal sex-
tupole field setting that yields long SCT. Since the horizontal and vertical tunes are
not strongly coupled to each other [82], the settings of MXL can be varied indepen-
dently of MXS and MXG. Initially, with a constant value of MXL field, the values
of MXS and MXG fields were linearly varied, and the SCT was calculated for each
setting from the online data. This analysis was later performed offline and the method
to calculate SCT from the asymmetry data will be explained in Chapter 8. Once the
maximum SCT was found from the scans of MXS and MXG fields, with these fields
fixed, the scan of MXL fields was done to determine the conditions for achieving long
SCT. For each setting, a run consisted of four cycles, and the SCT was determined
by taking the average of all the cycles. Once the values of the three sextupole mag-
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nets were known and set, the machine was prepared for the frequency scans aimed at
searching axions.

6.2 Frequency scans

The frequency scans were designed to search for the resonance that indicates the
presence of axion. During these scans, each cycle involved scanning a specific range of
frequencies. The timing of specific operations within a cycle, for different run types,
is given in the Table 6.1. Axion scans will be explained in this section, while the
RF Wien filter scans and calibration will be explained in Section 6.3. A cycle with
specific operations and frequency range was repeated multiple times, constituting
a run. Typically, a run contained between 7 and 10 cycles, 8 being the prominent
number. Each cycle consisted of a preparatory phase, the frequency ramp phase, and
two flat tops.

6.2.1 Beam preparation

Once the vertically polarised deuteron beam, was injected into the COSY ring, it was
accelerated to the starting momentum of 970 MeV, corresponding to a revolution fre-
quency of frev “ 750 602.6 Hz. To facilitate the scanning process without encountering
phase-related issues, the beam was divided into four distinct equidistant bunches la-
belled B0, B1, B2, and B3. Subsequently, the electron cooler was turned on for 71 s
and the beam was cooled to reduce the phase space, as discussed in Chapter 4. This
cooling process leads to a decrease in the spread of transverse momentum. Figure 6.2
represents the experimental data showing the beam intensity as a function of time
and the position along the COSY ring. The presence of four bunches is clearly visible.
The position along the ring is represented in terms of the particle revolution phase.
This is calculated based on the time delay of the detected event from the start time
of the current turn n, φCOSY ” ptev ´ tnq frev pmod 2πq .

After the e-cooler was turned off, a series of subsequent steps were carried out in
quick succession. This involved moving the carbon target such that the edge was at
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Table 6.1: Timing for various COSY operations during the beam cycle for various run types

Operation in the cycle
Axion scans WF scans WF calibration

Time (s)

Injection 0.0 0.0 0.0
Acceleration on 0.153 0.153 0.153
Acceleration off 0.674 0.674 0.674
E-cooling on 4 ´ 75 4 ´ 75 4 ´ 75

Carbon target moved in 75 75 75
White noise extraction on 77 77 77
WASA flag (DAQ on) 78 78 78
RF solenoid on (rotate py) 83 ´ 86 83 ´ 86 –
RF Wien filter on – 88 88
Quick ramp to start of scan 90.0 ´ 90.1 90.0 ´ 90.1 –
Constant frequency hold 90.1 ´ 120.1 90.1 ´ 120.1 –
Ramp to search for ALP 120.1 ´ 255.1 120.1 ´ 255.1 –
Constant frequency hold 255.1 ´ 285.1 255.1 ´ 285.1 –
RF Wien filter off – 285 285
COSY RF stop 287 287 287
End of data taking 288 288 288

the centre of the detector, enabling the white noise to extract the beam onto the target,
and activating the WASA DAQ. In Fig. 6.1, the count rates are plotted after 78 s,
indicating that the DAQ was not switched on prior to that time. The last step in this
stage involved using the RF solenoid for 3 s with the frequency of fsol “ 629 755.3 Hz
to flip the vertical polarisation to the horizontal plane.

Once the polarisation of each bunch was individually rotated to the horizontal plane,
the bunches acquire a spin precession frequency, which can be calculated as the dif-
ference of frev and fsol, fspin “ 120 847.3 Hz. In Fig. 6.3, the phases of each bunch’s
polarisation are shown as calculated at the detector. The analysis to obtain these
individual bunch phases will be explained in Chapter 8 . Since the bunches arrive at
the detector (located at a fixed point in the ring) one after the other, by the time
bunch B3 arrives at the detector, the polarisation of previous bunches (B2, B1, and
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Figure 6.2: A two-dimensional plot showing the deuteron beam intensity along the COSY
ring from 0 ´ 2π rad in the y axis and time in cycle in x axis. The density of points in the
plot corresponds to the beam intensity, where darker regions indicate higher intensity. The
separation of the beam into four bunches is clearly visible.

B0) would have recessed into the horizontal plane with the frequency fspin. Hence,
the values presented in Fig. 6.3 are not π{2 apart, as mentioned in Chapter 4. Model
calculations (shown in Section 7.2) demonstrate that the phases marked in red, with
values 1.32 rad, 1.32 rad, 1.32 rad and 2.32 rad, are equivalent to a phase difference of
π{2 between the particles’ polarisation at any given moment.

After the completion of the beam preparation stage, we are left with four bunches with
reduced phase space and possessing long SCT, with individual polarisations rotated
to the horizontal plane such that polarisations are perpendicular to each other in the
particle rest frame. From the precise knowledge of the frev and fsol, whose frequency
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Figure 6.3: : The plot displays the phase calculated for each bunch based on the experimental
data. The relative phase between the bunches is provided in red. These values match the
values obtained from the model calculations of four bunches with polarisations π{2 apart at
any given time, arriving at the detector (which is in a fixed space) at different times. Hence,
confirming the actual polarisation distribution.

generators are stable up to several mHz, we can derive the kinematic parameters
before the frequency ramps. The beam parameters are given in Table 6.2.

6.2.2 Frequency ramps for ALP scans

The next stage in the cycle was the frequency ramp, which is the key part of the exper-
iment. The frequency scans were structured as given in Fig. 6.4, with each black line
denoting a scan. After the polarisation was rotated to the horizontal plane (indicated
by the red block in the figure), a quick initial ramp of 0.1 s duration was performed
to reach the start frequency of the scan. This step had to be preceded by the rotation
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Table 6.2: Beam parameters

Parameter Symbol Value

Revolution frequency frev 750 602.6 Hz
Spin resonance frequency for solenoid fsol 629 755.3 Hz
Spin tune frequency fspin 120 847.3 Hz
Lorentz factor γ 1.126
Beam velocity β 0.460 c

Momentum p 970 MeV{c

Orbit circumference lcirc 183.57 m
Number of deuterons per cycle (at start) Nd « 109

to the horizontal plane in order to avoid the time-consuming procedure of finding the
RF solenoid resonance frequency fsol for every set of scans anew. Finding the precise
fsol would take up more time than the scanning of a set of frequencies.

In each cycle, the frequency was linearly ramped for 135 s between the initial fre-
quency frev,0 and the final frequency frev, f . Any expected jump in polarisation as
a result of resonance crossing was expected to appear during the scan. To increase
the statistics of a polarisation measurement before and after the scan, the ramp was
sandwiched between two constant frequency blocks of 30 ´ s duration. The frequency
of the preceding block was maintained at frev,0, and the succeeding one at frev, f .

Precautions were taken to prevent changes in the beam orbit during the momentum
ramps. This was critical as even small changes to the orbit could significantly impact
the SCT. Alongside the standard practise of minimising the RMS deviation of the
orbit from the reference, the total deviation of all the BPM measurements from the
reference orbit was also monitored, and the total deviation was maintained within
1 mm.

In the COSY ring, the ramps were performed by providing the value of momentum
for each step of the scan, as the ramp control software only accepted momentum as
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Figure 6.4: Figure representing the structure of scans (not to scale). The red block depicting
the RF solenoid marks the completion of the beam preparation in a cycle. The black lines
denote the revolution frequency of the beam through the cycle. The initial ramp, with high
slope, shifts the frequency to the start of the scan. Each frequency scan, depicted by the low
sloped parallel lines, was sandwiched between two flat regions with constant frequencies.
The signal due to resonance was expected to appear during the frequency scan

input values. The initial and final momentum for each scan was calculated using,

p0 “ 970p1 ` 1.173 ˆ 10´4nq MeV{c, (6.2.1)

p f “ p0 ` ∆p (6.2.2)

Here n is the scan number and can be either positive or negative integer. The deuterons’
momentum was moved away from 970 MeV{c —required p for RF solenoid operation—
as given by Eq. (6.2.1). ∆p is the total change in momentum over the 135 s of the
duration of the scan. The ∆p value was entered into the COSY control system. The
experiment was performed at two different ramp rates given in Table 6.3. The corre-
sponding rates for fspin and frev are also given.
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Table 6.3: Change in beam parameters during the ramp

∆p [MeV{c] ∆ frev [Hz] ∆ 9frev [Hz/s] ∆ fspin [Hz] ∆ 9fspin [Hz/s]

0.138 81.0 0.600 16.8 0.124
0.112 66.15 0.490 13.5 0.100

If the resonance is present at the beginning or end of the scan, it is possible that only
part of the total resonance width is present within the scan range. As a result, the
resonance width will only be partially covered, effectively diminishing the signal. To
address this issue, it was initially planned to incorporate an overlap in the frequency
ranges covered by the subsequent scans. For the faster ramps (top row Table 6.3),
there was an overlap of 2.6 Hz in spin precession frequency. Unfortunately, for the
slower scans (bottom row), an oversight during the experiment resulted in the start
momentum being calculated with the same parameters as for the fast ramps. This
resulted in the absence of desired overlap in slower scans.

The experiment consisted of 85 faster ramp scans with n varying from ´42 to 42, and
18 slow ramp scans, with n ranging from ´60 to ´ 43. The list of runs, and their corre-
sponding frequency ranges are given in Appendix A. Typically, each run consisted of 10
cycles, with every fifth cycle being unpolarised, to monitor the complete rotation of the
polarisation into the horizontal plane. The outcome of the analysis from those remain-
ing cycles were combined, and the process is explained in the analysis chapter. In total,
there were 103 runs which covered a frequency range of 119.997 kHz - 121.457 kHz,
corresponding to the axion mass range of 4.95 neV c−2 - 5.02 neV c−2.

6.3 RF Wien filter tests

The RF Wien filter present in COSY provided us the opportunity to test the method
that was used to search for axions. Despite the major differences in the effect of RF
Wien filter and axions on deuteron spin, as mentioned previously (in Section 5.1.2),
we could examine the ability of our machine to detect resonance crossing by observing
vertical polarisation jumps caused by RF Wien filter. For this purpose, the RF Wien
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filter was operated in the EDM-mode, wherein the magnetic field was in the horizontal
plane, resulting in the rotation of polarisation about the x axis.

Initial setup and calibration

The RF Wien filter was operated at the resonance frequency of p1 ´ Gγq frev. To ac-
count for slight variations that could occur in the experimental conditions, as in the
case of RF solenoid, we must experimentally determine the resonance frequency. For
this purpose, the RF Wien filter frequency was varied in small steps, similar to the
procedure to find the resonance frequency of the RF solenoid. The procedure was done
with the RF solenoid turned off and utilising the vertically polarised beam to induce
oscillations in the polarisation. At each step, the amplitude and the frequency of the
polarisation oscillation were calculated, and the of RF Wien filter the frequency cor-
responding to the maximum amplitude was selected as the resonance frequency. The
resonance frequency of the RF Wien filter was found to be fWF “ 871 450.039(2) Hz.

The calibration of the magnetic field strength of the RF Wien filter was done by
observing the driven oscillations of the vertically polarised beam at different power
settings of WF. These cycles followed the same initial steps as outlined in Table 6.1
up to the activation of the WASA DAQ at 78 s. In this case, however, instead of the
RF solenoid the RF Wien filter was turned on at 88 s. The vertical polarisation, at
resonance, experienced continuous driven oscillations until the RF Wien filter was
turned off at 285 s.

We used four different power levels for the calibration of RF Wien filter: −18, −12,
−6 and 0 dB of the maximum power. An in increase in power by 6 dB will increase the
actual power by a factor of four. This in turn leads the amplitude of the magnetic field
to increase by a factor two, since the power is proportional to the square of amplitude.
Since the rotation of polarisation is proportional to the magnetic field strength (from
T-BMT equation), we expect the frequency of the driven oscillations increase by a
factor of two as the power setting is increased by 6 dB.

The corresponding left–right asymmetry ALR data between 81 s - 287 s are shown
in Fig. 6.5. ALR, which is proportional to the vertical polarisation, is separated into
1-second time bins and is averaged for the four bunches. These driven oscillations can



RF Wien filter tests 59

be reproduced using the function

ALRptq “ Ae
´

pt ´ t0q

τ cos p2π fdrvpt ´ t0q ` φq ` k, (6.3.1)

where ALRptq describes the shape of the data, A is the amplitude, τ is the decay
constant, fdrv is the driven oscillation frequency, φ is the phase, and k is the zero offset
of the asymmetry data. The damping of the oscillations is due to the depolarisation
of the beam over time. In an ideal case of infinite SCT, the decay constant would
be τ “ 0. The driven oscillation frequency values obtained from fitting Eq. (6.3.1)
to data from measurements at different RF Wien filter power settings are given in
Table 6.4. The last column shows the ratio between the frequencies of the current
row with the previous row and matches the expected value of two within a small
percentage of deviation. The slight variation can be attributed to the properties of
the control system of the RF Wien filter. The driven oscillation frequency fdrv of the
WF serves as a measure of its strength and was utilised as an input parameter to
simulations, as explained in the next chapter.

Table 6.4: Driven oscillation frequencies. The third column contains the ratio of the current
row frequency to the one of the preceding row.

Power (dB) Frequency (Hz) Ratio

-18 0.013084(19)
-12 0.026326(21) 2.0122(33)
-6 0.052816(25) 2.0062(19)
0 0.110848(345) 2.0988(66)

The RF Wien filter tests

After calibrating the strength of RF Wien filter, the experiment proceeded with the
power level of RF Wien filter set to 0 dB. The structure of an RF Wien filter scan cycle
was similar to that of an axion scan cycle given in Table 6.1, with the additional steps
of switching the RF Wien filter on and off at 88 s and 285 s, respectively. We performed
these scans with two different ramp rates, corresponding to the total momentum



60 RF Wien filter tests

100 120 140 160 180 200 220 240 260 280 

0.2−

0

0.2

 

time [s]

power = -18 dB
100 120 140 160 180 200 220 240 260 280 

0.2−

0

0.2

 

power = -12 dB
100 120 140 160 180 200 220 240 260 280 

0.2−

0

0.2

 

power = -6 dB
100 120 140 160 180 200 220 240 260 280 

0.2−

0

0.2
 

power = 0 dB
L

R
A

Figure 6.5: The plots show the measurements of the oscillating left-right asymmetry which
is proportional to the vertical polarisation, generated by the continuous operation of the RF
Wien filter at various power levels (noted in figure). The horizontal axis is the time in cycle.
The RF Wien filter was on continuously from 88 s to 285 s. Data from all four bunches were
combined to obtain a single asymmetry measurement.

change of 0.056 MeV{c and 0.112 MeV{c, in both positive and negative directions. In
total, there were 12 runs, three for each combination of settings. The list of runs is
given in Table A.2 of Appendix A.



RF Wien filter tests 61

The arbitrary phase between the in-plane polarisation and the RF Wien filter oscilla-
tions for each cycle results in random magnitude and the sign of the polarisation jump
would. Additionally, these phases are also unknown and random from one measure-
ment to the other. Thus, to extract the maximum possible jump, we rely on the fact
that the measured jumps in fact sample a sinusoidal curve. The maximum possible
jump relates to the strength of the WF. Further details will be given while explaining
the simulations and data analysis.





7 Simulations

This chapter provides an overview of the simulations used to verify our assumptions,
explain our experimental choices, and calibrate the experimental data, particularly the
polarisation jump, with respect to physical phenomena such as the oscillating EDM
and ALP. We employed the ”no-lattice” model, a simple spin tracking simulation, to
confirm our assumptions about the IPP direction of the four bunches and calibrate
the experiment’s sensitivity to signals from axions and RF Wien filter.

7.1 No-lattice model

Among the various spin tracking simulations available of varying degrees of complex-
ity, the ”no-lattice” model1 is one of the simpler spin tracking models, the basics of
which are explained in [91, 97]. The no-lattice is a reference to the lack of explicit
inclusion of any individual magnetic field element in the calculations. Instead, the spin
tracking is achieved by effective rotation matrices. For example, in case of COSY there
are 24 dipole magnets (12 in each of two arcs) in the ring, which bend the particle
into a closed orbit. As the beam makes a single turn in the ring at constant frequency,
the cumulative effect of these bending magnets on its polarisation can be summarised
by a single rotation matrix about the y axis, perpendicular to the horizontal plane. In
this model, the rotation due to bending magnets is considered to happen continuously
around the whole ring. On the other hand, devices such as the RF solenoid and the

1The no-lattice model was first developed by E. J. Stephenson and has been modified by S.K. for
the purposes of this thesis.
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RF Wien filter, which operate at a single spot in the ring, are considered point-like
or zero-width. The rotation due to these devices is applied sequentially to the dipole
rotation for each turn. In the case of ramping frequency, each turn was divided into
smaller slices and the dipole rotations were calculated multiple times to accommodate
the changing frequency.

The no-lattice model follows the same co-moving reference frame as discussed in Chap-
ter 3 for spin dynamics. The beam direction is along z axis, y axis is vertically upwards,
and x axis is outwards on the ring plane. Now, consider a basic case with only MDM,
and without EDM or scanning. The spin precession per turn about the y axis inside
the dipole magnets is given by the rotation vector ~θ “ ´2πGγêyp“ θêyq. Here, G

= −0.142 987 542 4 is the deuteron magnetic anomaly, and the relativistic factor γ

= 1.125 975 is calculated using the experimental frequency values fsol{ frev ´ 1 “ Gγ

for the nominal beam momentum of 970 MeV{c. The rotation of the deuteron IPP
as it moves through the bending magnet can be described using the rotation of the
polarisation vector ~P by,

~P1 “

»

—

—

–

cos θ 0 sin θ

0 1 0

´ sin θ 0 cos θ

fi

ffi

ffi

fl

~P. (7.1.1)

The polarisation direction after the rotation is given by ~P1. Considering that in the
case of ramping, the rotation angle θ depends on γ , the θ term was calculated
incrementally within each turn. Rotation matrices can be written for all the different
rotations the deuteron polarisation undergoes in the ring as given by the angular
velocity equations in Section 3.3, to perform simulations.

7.2 Orientation of in-plane polarisation directions

In preceding chapters (4 to 6), it has been emphasised that using four bunches (labelled
as Bi where i “ 1, 2, 3, 4) in the storage ring enables us to be sensitive to all axion
phases. To address the axion phase problem, simultaneous measurements with at
least two mutually perpendicular polarisation beams are required. We chose to use
four bunches to introduce redundancy and increase the sensitivity of the experiment.
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This section explains how the use of four bunches and the RF solenoid leads to the
desired orientation of the IPP directions using model calculations.

Let us consider four vertically polarised bunches in the ring, revolving at frev =
750 602.5 Hz. As each bunch passes through the RF solenoid, its polarisation gets
a small kick and rotates by an angle ψsol every turn, in addition to the rotation
in the horizontal plane given by Eq. (7.1.1). If the frequency of the RF solenoid
is in resonance with the spin precession frequency, the cumulative effect of these
rotations over multiple turns leads to driven oscillations of the polarisation about the
z axis. In the experiment, we have chosen a 1 ` Gγ harmonic, corresponding to fsol

= 629 755.3 Hz.

The frequency of the vertical polarisation oscillation fdrv due to the solenoid serves as
a measure of the strength of the solenoid 4πεsol, where εsol “ fdrv{ frev. The rotation
angle of the polarisation caused by this effect given by,

ψsol “ 4πεsol cos r2π fsolt ` φs. (7.2.1)

Here, fsol is the frequency of the solenoid, and the phase φ will be explained later.
Additionally, ψsol can also be expressed in terms of turn number n. The accumulated
rotation due to solenoid after n turns is expressed as,

ψsol “ 4πεsol cos r2πp1 ` Gγqn ` φs. (7.2.2)

The initial polarisation of the vertically polarised beam is given by ~P “

” 0
1
0

ı

. After
each turn in the ring, the polarisation undergoes the following rotation,

~P1 “

»

—

—

–

cos ψsol ´ sin ψsol 0

sin ψsol cos ψsol 0

0 0 1

fi

ffi

ffi

fl

»

—

—

–

cos θ 0 sin θ

0 1 0

´ sin θ 0 cos θ

fi

ffi

ffi

fl

~P, (7.2.3)

where ~P1 is the polarisation after one turn in the ring. The rotation consists of two
components: θ rotation about the y axis due to the MDM, and ψsol rotation about
the z axis due to the RF solenoid. These rotations are treated separately, since the
length of the RF solenoid is significantly shorter compared to the circumference of
the ring. For each turn, the rotations given in Eq. (7.2.3) are performed based on the
polarisation value from the previous turn. The θ rotation angle remains the same for
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every turn, whereas the rotation due to the RF solenoid accumulates every turn by
4πεsolpcos r2πnp1 ` Gγqsq.

To simulate the individual IPP direction, these calculations were repeated for every
bunch. Each bunch arrives at the RF solenoid one after the other, with a time delay
of Tturn{4 where Tturn “ 1{ frev is the time for one turn in the ring. This time delay is
denoted by the addition of the initial phase φsol to the solenoid rotation angle ψsol.
This phase delay can be generalised as φsol “ kπ{2p1 ` Gγq where k “ 1, 2, 3, 4) is
the bunch number.

The simulation involved numerical calculations to sum up all the rotations. In this
model, the solenoid strength was set to 4πεsol “ 1.5708×10−6, and the calculations
were stopped when the vertical polarisation was almost zero, which occurred after
2×106 turns in the simulations.

The orientation of the IPP can be expressed with the help of x and z polarisation
components and is presented in Table 7.1. The second and third column give the
polarisation component Px and Pz for each bunch Bi after 2×106 turns. The fourth
column is the angle the polarisation makes with the z axis in the horizontal plane.
It is calculated using the two-argument variant of the arctangent function applied to
the values in the previous two columns.

Table 7.1: Model calculation of bunch polarisation directions as measured at a fixed point
in the ring, e.g., at the polarimeter.

Bunch Px Pz Angle [rad] Angle B(i-1)-B(i)

B0 -0.639562 0.768740 -0.693928
B1 -0.904313 -0.426870 -2.011825 1.317897
B2 0.187022 -0.982356 -3.328722 1.317897
B3 0.997903 -0.064724 -4.647619 1.317897

B0 (again) 2.329493

The last column is the angle between the two adjacent bunches as measured when
they arrive at a certain position, e.g., at the polarimeter. It is worth noting that this
phase is different between B3 and B0, allowing us to identify the first bunch. We
can compare this phase pattern with the experimental data obtained from the WASA
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polarimeter, as shown in Fig. 6.3. The experimental phase differences in Fig. 6.3 are
shown in red colour, and the numbers match closely with the final column in Table 7.1.
This demonstrates that the process of using the RF solenoid to rotate the polarisation
into the horizontal plane matches with our model predictions.

Now let us consider a specific time, e.g., when bunch B3 is rotated into the horizontal
plane. At this point, the bunches B2, B1, and B0 would have already been in the
horizontal plane for Tturn{4, Tturn{2, and 3Tturn{4 s, respectively. These bunches would
have experienced the rotation due to the MDM about the vertical axis, causing their
polarisation to rotate by π{4, π{2, and 3π{4. By applying these rotations to Px and
Pz from Table 7.1 we obtain the values in Table 7.2.

Table 7.2: Model calculation of bunch spin directions as measured at a fixed point in time,
i.e., when the bunch B3 is completely rotated into the horizontal plane.

Bunch Px Pz

B0 0.064724 0.997903
B1 -0.997903 0.064724
B2 -0.064724 -0.997903

B3 (no change) 0.997903 -0.064724

By utilising the Px and Pz values from Table 7.2, we can evaluate the polarisation
directions of each bunch, which are found to point in the z, ´x, ´z, and x directions
for the bunches B0-B3, respectively. In the rest frame of the bunches, each bunch
exhibits a polarisation direction that is perpendicular to its neighbouring bunches.
This configuration ensures that the particle rest frame electric field ~E˚ and the polar-
isation of the adjacent bunches are oriented parallel or perpendicular to each other.
Additionally, the electric field and polarisation of opposite bunches are pointing 180°
apart. Figure 7.1 illustrates the orientation of the polarisation with respect to the
particle rest frame electric field from a top-down perspective. Because the EDM is
always aligned with the particle’s spin, the former inherits the latter’s relative di-
rection with respect to the electric field. The torque exerted by the ~E˚ on the EDM
is maximum when the ~E˚ and EDM are perpendicular to each other. As a result,
this arrangement of polarisation ensures that the experiment can detect changes in
vertical polarisation for all phases of axions. This prevents the possibility of missing
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any axions due to phase mismatch, effectively removing the dependence of the axion
phase on the measurement.

Another advantage of this polarisation orientation pattern of the four bunches is its
ability to mitigate systematic errors arising from the polarimeter. The presence of
opposite signs of polarisation between the opposite bunches effectively eliminates any
inherent offset in the polarisation measurement within the polarimeter.

The calculations presented here assume a circular ring and the beam moving in the
clockwise direction while looking from above. However, the COSY ring has a racetrack
shape comprising two arcs and two straight sections of equal length. Consequently,
at any given time, two bunches will be located in the opposite arcs with rotating
polarisation, while the polarisation of the other two bunches in the straight sections
will remain stationary. As a result, rather than a smooth rotation in the horizontal
plane, the polarisation follows a rotate, no-rotate, rotate, no-rotate pattern akin to a
zigzag. As the bunches traverse their respective quarters in their rest frame, the polar-
isation of the bunches in the arc will rotate by half the spin precession rotation angle,
θ{2 « 28.8°. This leads to an oscillation of the angle between the subsequent bunches’
polarisation, ranging between 90° and 61.2°, instead of a constant 90°. Hence, while
calculating the sensitivity, we calculate the average of the cosine function between the
extreme of the deviations from 90, i.e., between 0° and 28.8°. This causes the signal
to be reduced by κ = 4.2%. The results of this experiment are corrected to account
for this effect.

7.3 Sensitivity calibration for axion scans

The ALP signal manifests as a vertical polarisation change when the spin preces-
sion frequency crosses its resonance with either the axion-induced EDM oscillation
frequency or due to axion wind. A calibration is required to convert the asymmetry
values registered by the polarimeter into the EDM strength and further into other
axion coupling constants. Equation (7.1.1) provides the rotation of the horizontal
polarisation due to the deuteron magnetic anomaly, where θ represents the rotation
angle. In order to calculate the effect of EDM, an additional continuous rotation,
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Figure 7.1: Top-
down illustration
showing four
bunches in the
ring at a fixed
time, direction of
individual particle
rest frame electric
field, and individual
spin directions. The
spin directions are
drawn as calculated
in Table 7.2.

denoted by,

~ψ “ 2π
~ΩEDM

| ~Ωrev |
“ ψêx,

was introduced in the no-lattice model. Since both these rotations are continuous, we
have to combine these rotations instead of individual rotation matrices, as was the
case with the RF solenoid (shown in Section 7.2) or the RF Wien filter (Section 7.4).
The resultant rotation will be about the axis represented by the rotation vector,

~χ “~θ `~ψ. (7.3.1)

Figure 7.2, with the help of co-moving coordinate system, provides a visual repre-
sentation of these rotation vectors. The effect of EDM had to be exaggerated to be
visible. The angle between the resultant vector ~χ and ~θ is given by

ξ “ arctan
ˆ

ψ

θ

˙

. (7.3.2)
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To perform a combined MDM and EDM rotation, the reference frame must first be
tilted by an angle ξ about the z axis. A single turn around the ring can be represented
using the following rotation.

~P1 “

»

—

—

–

cos ξ ´ sin ξ 0

sin ξ cos ξ 0

0 0 1

fi

ffi

ffi

fl

»

—

—

–

cos χ 0 sin χ

0 1 0

´ sin χ 0 cos χ

fi

ffi

ffi

fl

»

—

—

–

cos ξ sin ξ 0

´ sin ξ cos ξ 0

0 0 1

fi

ffi

ffi

fl

~P. (7.3.3)

Here, ~P represents the initial polarisation and ~P1 the polarisation after one complete
rotation. The first and third square matrices account for the coordinate system trans-
formation, while the middle matrix represents the primary rotation.

Figure 7.2: The co-moving
particle reference frame with
the various rotation vectors
indicated. The rotation due
to the MDM is denoted by
~θ and is by and large the
biggest rotation. ~χ is the total
rotation due to MDM and
EDM (denoted by ~ψ). The
angle ξ between ~θ and ~χ is
the angle through which the
frame of reference is rotated
to accommodate continuous
rotations due to EDM and
MDM (see text). The size of
~ψ is exaggerated to make it
visible in the diagram.

In order to detect resonance in the presence of an axion, in the experiment the spin
precession frequency ( fspin) was ramped up. As mentioned before, to account for the
resulting variation in γ over a single turn, the rotation in Eq. (7.3.3) was split into
J “ 15 steps (slices), with the rotation angle θ reduced by the factor J for each slice.
The number of slices was chosen such that calculations converged with a precision
of 0.01%. The simulations were centred at the nominal revolution frequency of the
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deuteron, frev=750 602.6 Hz, and the applied ramp rate was 9frev = 1 Hz/s over a total
scanning range of 100 Hz.

Throughout the scan, the circumference of the orbit remained constant. For each of
the J rotations, the revolution frequency and the Lorentz factor γ were calculated. If
j “ 1, ..., J is the repetition number, then for the jth iteration in the nth turn, the time
and the revolution frequency is calculated as follows,

t “
n ` j{J
frev,j´1

,

frev,j “ frev,j´1 ` t ˆ 9frev ,

where, frev,j´1 is the revolution frequency at the end of the previous iteration. The
Lorentz factor for the jth iteration can be calculated as,

γj “

«

1 ´

ˆ

frev,j lcirc

c

˙2
ff´ 1

2

.

Here, lcirc represents the orbit circumference and c is the velocity of light. Finally, the
rotation angle θ for the jth iteration is calculated as

θ j “ ´
2πGγj

J
. (7.3.4)

The total rotation angle due to EDM, ψ is given by,

ψ “ ψAC cos r2π foscpt ´ t0q ` φapt0qs, (7.3.5)

where, ψAC is the amplitude of the oscillating EDM rotation, fosc is the axion-
induced oscillation frequency, and t0 is the start time of the calculation. The θ j and ψ

from Eqs. (7.3.4) and (7.3.5) are used to calculate the resultant rotation vector χ in
Eq. (7.3.1) and then fed in to the rotation matrix Eq. (7.3.3). The vertical polarisa-
tion change as the resonance is crossed can vary between positive and negative limits
depending on the initial phase. The maximum jump can be calculated by adding in
quadrature the polarisation jumps from the simulations at two orthogonal phases,
namely φapt0q = 0 and π{2.

The simulation was repeated with different EDM strengths, using a frev scan rate
of 1 Hz/s, and the resulting polarisation jumps are shown in Fig. 7.3a, with oscillat-
ing EDM strength on the x axis. We observe a linear dependence that is valid for
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∆Py ăă 1, where one is the maximum possible polarisation jump, However, as the
curve approaches the peak, it deviates from linearity, and for larger values of ψAC,
the curve rolls over. Since all of our experimental values are close to zero, we fo-
cus on the linear region for calibration. Figure 7.3b shows the plot zoomed into this
region, where the ∆Py are closer to zero, and the polarisation jumps show a linear
behaviour. This range of polarisation values corresponds to the expected amplitudes
in the experiment.

Furthermore, some data points were repeated at different scan rates, revealing that in
the linear region, the polarisation jump scales with the reciprocal of the square root
of the scan rate. This relationship will assist in using the calibration curve in Fig. 7.3b
to calibrate the polarisation jumps obtained from experiments conducted at different
ramp rates 9frev = 0.6 Hz/s and 0.49 Hz/s (fast and slow scans), given in Table 6.3.

0 0.5 1 1.5 2 2.5 3 3.5 4
 rad/turn]-6 10× [

AC
ψ

0.2

0.4

0.6

0.8

1

y
 P∆

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
 rad/turn]-8 10× [

AC
ψ

0.005

0.01

0.015

0.02

0.025

0.03

0.035

y
 P∆

(b)

Figure 7.3: (7.3a) Simulated polarisation jump amplitude as a function of the EDM strength
ψAC. These simulations are suitable for calibration, primarily in the lower left region of the
graph. (7.3b) A zoomed-in view of the linear part of the simulated calibration. Please note
the different ranges of the axes. The blue points in the plot represent the simulated data,
while the red line represents the linear fit. This is utilised to calibrate the polarisation jumps
observed in the experiment.

An example with typical values used in the calculation can help illustrate the process.
For this purpose, we chose an oscillating EDM strength of ψAC “ 8×10−9 rad/turn
and a scan rate of 9frev “ 1 Hz/s.
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Using simulations from two orthogonal phases, the maximum jump was calculated as
∆Py “ 0.0066 (see, Fig. 7.3b, normalized to a beam polarisation of one. To scale the
ratio of EDM strength to polarisation to the experimental ramp rates, we introduce a
scaling factor k “

b

9frev|exp{ 9frev|calib. “ 0.775 for the faster scan rate and k “ 0.700 for
the slower scan rate. Using these factors, the relationship between ψAC and ∆Py for the
fast and slow scans is calculated to be 9.40×10−7 rad/turn and 8.48×10−7 rad/turn,
respectively.

A jump in vertical polarisation is the expected signal for the resonant search of axions
in the storage ring. The calibration described in this section aims to connect this
observable to the physical quantity. In Chapter 3, the rotation of the spin due to
oscillating EDM and axion-wind was given by the equation Eq. (3.3.10). For now,
let us ignore the axion-wind term (will be explained at the end of the section), and
assume that the effect of axion is solely the induction of oscillations in the EDM which
leads to the rotation of spin. The oscillating EDM can be expressed as,

doscptq “ dAC cosr2π foscpt ´ t0q ` φapt0qs, (7.3.6)

where, dAC is the strength of the oscillating EDM. From Eq. (3.3.10b), the rotation
due to dosc can be written as,

~ΩAC “ ´
1

Sh̄
dAC

a0
aptqc~β ˆ ~B (7.3.7)

In this expression, S —which equals one for a deuteron—represents the spin and a “

a0 cosrωapt ´ t0q ` φapt0qs is the axion field with an amplitude of a0. Using the relation
between angular revolution velocity and magnetic field Eq. (3.3.9) ~B “ p´maγ{qq~Ωrev,
Eq. (7.3.7) can be modified as,

~ΩAC “ dAC
cγm
qh̄

cos rωapt ´ t0q ` φapt0qs~β ˆ ~Ωrev. (7.3.8)

In terms of amplitude of oscillating EDM rotation amplitude ψAC “ 2π~ΩAC{

∣∣∣~Ωrev

∣∣∣,
we can calculate the amplitude of the oscillating EDM as,

|dAC| “
1

2π

h̄q
βγmac

k
1 ´ κ

ψAC. (7.3.9)

Here, k “

b

9frev|exp{ 9frev|calib. is the scaling factor between different ramp rates and 1 ´

κ “ 0.958 is the correction factor which accounts for the assumption of a circular ring
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instead of a ring with alternating straight and curved sections, as present in COSY.
To simplify the connection with the COSY parameters, the factor q{pβγmacq “ q{p

can be replaced with the magnetic rigidity of the ring Bρ. The amplitude of oscillating
EDM, in the usual EDM units of e cm, and in terms of the previously mentioned ratio
of ψ and ∆Py, can be expressed as,

|dAC| “
1

2π

h̄
Bρ

k
1 ´ κ

∣∣∣∣ψAC

∆Py

∣∣∣∣
calib.

A . (7.3.10)

Here, A is the true value of the maximum jump size obtained from the experiment,
the details on how it was obtained will be explained in the next chapter. The second
fraction evaluates to h̄{Bρ = 3.26×10−35 Js/Tm = 2.03×10−14 e cm, and the rest of
the expression is dimensionless. Except for A, all the coefficients on the right-hand
side can be combined into a single parameter λ, whose value is 316 for fast scans and
286 for slow scans. This provides a straightforward way to connect the experimental
data to oscillating EDM. For the typically observed experimental values of A, the
value of dAC falls below 10´22 e cm.

The calculations conducted thus far have primarily focused on the polarisation ro-
tation around the longitudinal axis resulting from the resonance between fspin and
oscillating EDM. It is also assumed that the vertical polarisation signal can be entirely
attributed to the oscillating EDM. However, it is worth noting that the resonance-
induced polarisation rotation can also be caused by the axion-wind effect, which causes
a rotation of polarisation along the radial axis. Experimentally, it is not possible to
distinguish between these two rotations, occurring around perpendicular axes, as both
result in a shift in vertical polarisation when the resonance condition is met. These
rotations have a phase difference of π{2, allowing for their amplitudes to be coherently
combined.

Assuming solely the axion-wind effect, the only change to the calculation is to re-
place the matrix for rotation about the z axis with the matrix for rotation about the
x axis. The same calculations have been repeated for radial rotations, yielding results
comparable to those discussed here.
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7.4 Calibration of polarisation jumps for RF Wien
filter

In this section, we describe simulations of the RF Wien filter that are built upon
the previous sections in this chapter. The simulations aim to establish confidence in
simulations of the axion scan sensitivity by comparing the results obtained from RF
Wien filter experiments with those obtained from the simulations.

Contrary to ALPS, the RF Wien filter does not have a continuous effect on the
beam particles, the length of which considerably smaller than the ring. Thus, we can
consider the rotations due to RF Wien filter (ψWF) and MDM (θ) separately. Since the
simulations for WF calibration involve frequency ramps, the rotations were calculated
for each 1{Jth slice of the full turn, as explained in Section 7.3.

The RF Wien filter generates rotation of the polarisation about the radial axis and
creates driven oscillations when the fWF is in resonance with fspin. An example of the
driven oscillations from the experiment was shown in Fig. 6.5. From Table 6.4, we can
determine the driven oscillation frequency and calculate the strength of the RF Wien
filter 4πεWF, where εWF “ fdrv|WF{ frev. For a power of 0 dB, inserting the value of
driven oscillation frequency taken from Table 6.4, we obtain

εWF “
fdrv|WF

frev
“

0.110848
750602.6

“ 1.4768×10−7 . (7.4.1)

The total rotation of the polarisation due to WF is given by

ψWF “ 4πεWF cos r2π fWFpt ´ t0q ` φWFs , (7.4.2)

where φWF is the RF Wien filter phase with polarisation rotation, and fWF is the WF
frequency, which is set at p1 ´ Gγq harmonic.

To enable proper comparison with experiments, the simulations were conducted at two
different ramp speeds, 9frev = 0.49 Hz/s and 0.24 Hz/s, which match the experimental
rates. Each set of simulations was repeated 100 times, with different phases between 0
and 2π. Since the experimental phases are random and unknown, covering the whole
phase space helps to compare with experimental results. The ramps are structured
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similarly to the previous section but centred at the fWF = 871 450.039 Hz. The rotation
matrix is given by

~P1 “

»

—

—

–

1 0 0

0 cos ψWF ´ sin ψWF

0 sin ψWF cos ψWF

fi

ffi

ffi

fl

»

—

—

–

cos θ j 0 sin θ j

0 1 0

´ sin θ j 0 cos θ j

fi

ffi

ffi

fl

~P , (7.4.3)

where, θ j is the polarisation rotation for jth slice of the turn. The jump values obtained
from the simulation are presented as a function of phase φWF in Fig. 7.4. The sinusoidal
fit yields maximum jump values of 0.75 and 0.93 for the two ramp rates 0.49 Hz/s and
0.24 Hz/s, respectively, under the assumption that polarisation is normalised to one.
It should be noted that these values do not match the scaling factor for ramp rates
mentioned in the previous section. since the WF jumps are large and thus beyond the
region where the linear calibration (scaling) was valid.
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(a) Simulation for 9frev = 0.49 Hz/s. The corresponding amplitude is 0.75.
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(b) Simulation for 9frev = 0.24 Hz/s. The corresponding amplitude is 0.93.

Figure 7.4: Simulation results for different values of the phase φWF and the corresponding
polarisation jumps at two different ramp rates mentioned in the respective captions. The
red line represents a sinusoidal fit to the data, which gives a maximum jump value.





8 Data analysis

The primary objective of this work was to analyse the polarisation data from the
described experiment, and search for a polarisation jump, which can be related to
the oscillating EDM or axion-wind, and consequently to various axion couplings. The
first step in achieving this was to convert the raw detector data into a tree structure
provided by the ROOT software framework developed at CERN. ROOT is a freely
available software framework under the LGPL/GPL licence, and documentation is
available at [98].

Subsequently, the tree structure was analysed to generate various histogram plots
which can be further analysed. This semi-raw experimental data is available in the
Jülich DATA repository [99]. A software programme was developed by the author,
building upon the previous versions available in the collaboration. This programme is
capable of calculating the in-plane polarisation asymmetry AIP while considering the
scanning of frequency and computing polarisation jumps from the vertical asymmetry
ALR data.

The second part of the analysis aimed to eliminate the systematics from the jump
values by building on the foundation of the Feldman-Cousins method [100].

8.1 Calculation of In-plane polarisation

This section will focus on the method to extract IP asymmetry information from the
WASA detector data, as described in Refs. [85, 101, 102].
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The deuteron beam polarisation in the horizontal plane has a precession frequency of
about 121 kHz, and at a typical detector rate of « 4000 s−1 (see Fig. 6.1), only one
event per 30 spin oscillations was registered. Therefore, we must unfold the down-up
asymmetry ADU, as described below, and map the events in a time bin into a single
spin precession period. An example of this mapping is shown in Fig. 8.1. The data was
sorted into 2 s time bins and each of such data subsets was analysed independently.
After choosing a central value of spin tune ν = |Gγ|, the advance in the polarisation
angle α at each time bin was calculated using the equation,

α “ ωt “ 2πν frevpt ´ t0q , (8.1.1)

where t was the time measured from the start of the time bin t0, and the spin tune ν

and the revolution frequency frev were assumed to be constant.

Next, the events in each time bin were distributed into 12 angular bins, ranging from
0 rad to 2π rad, based on α modulo 2π. For each angular bin, the down-up asymmetry
ADU was calculated. A sinusoidal curve was fit to ADU and the amplitude of this
curve provided the value of the in-plane polarisation asymmetry AIP. Examples of
these angular distributions and their sine fits are shown in Fig. 8.1. The phase of the
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Figure 8.1: Plot of Down-Up asymmetry data as a function of the horizontal directional
bins for a single time bin. The red curve is the sinusoidal fit whose amplitude gives the
magnitude of IPP.

sine curve φν indicated how well the spin tune value we assumed matches the actual
value. If φν remains relatively constant as a function of time, it was a considered good
estimate of spin-tune value. Large phase variations indicate that the spin-tune value
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needs to be adjusted. This was done based on the slope of the phase curve until the
phase variations disappeared. An illustration of phase histories corresponding to a
correct and incorrect spin tune ansatz are shown in the Fig. 8.2.
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Figure 8.2: Example plots of φν as a function of time. This phase was calculated from the
sinusoidal fit to the ADU of each time bin. A good estimate of spin tune results in a phase
history with small variation (left). Sloped phase histories (right) indicate that the assumed
spin tune does not match the real value and needs to be adjusted.

In-plane polarisation in case of a scan

During a scan, the momentum was linearly increased between two time points t1 and
t2. This led to an increase of both the spin tune and revolution frequency. The angular
velocity in this case can be calculated as,

ωptq “

$

’

’

’

&

’

’

’

%

2πν0 frev,0 for t0 ă t ă t1,

2πrν0 ` 9νpt ´ t1qsr frev,0 ` 9frevpt ´ t1qs for t1 ă t ă t2,

2πν f frev, f for t ą t2,

(8.1.2)

and the polarisation angle can be obtained by integrating ωptq over time,

αptq “

ż t

t0

ωpt1
q dt1 . (8.1.3)

Here, the subscripts 0 and f correspond to the initial and final values, respectively, and
the dotted symbols denote time derivatives. Once αptq was determined, the calculation
of the in-plane polarisation asymmetry AIP follows the same steps as in the constant
frequency case.
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The AIP was utilised in the analysis in two cases. Firstly, to calculate the SCT of the
beam. Secondly, to normalise the jumps obtained from the analysis of the ALR data.
This renormalisation step aided in the comparison of the experimental results with
the simulations.

8.1.1 Spin coherence time

An example of the IP asymmetry AIP derived from the analysis described earlier is
shown in Fig. 8.3. The spin coherence time of the beam, which represents the time
required for the polarisation to decrease to half its initial value, can be calculated
from the AIP plot. As highlighted in Chapter 4 while discussing the experimental
prerequisites, it was essential to calculate SCT for understanding the polarisation
characteristics of the beam, and it also served as a check of the measurement quality.
To obtain SCT of the beam, the AIP data was fit with a straight line, the fit result
is shown with the red line in Fig. 8.3. The SCT from the fit function was calculated
using the slope Λ and the intercept AIP0,

τsct “ ´
AIP0

2Λ
, (8.1.4)

where, AIP0 is the initial IP asymmetry soon after the spin flip using solenoid. The
slope of the fit Λ is always negative, denoting the decrease in polarisation with time
and the SCT calculated as the time for the initial asymmetry to fall to half of the
initial value; in this example τsct “ 630(190) s.

8.2 In search of vertical polarisation jump

In the experiment, polarisation data were registered, and the expected signal of axion,
which is a change in vertical polarisation away from zero, would be observed in the left-
right asymmetry ALR data. During the analysis, these asymmetries were calculated in
2 s time bins, and at this level of binning, any jump related to the resonance would be
seen as instantaneous. The left-right asymmetry ALRptq for a time bin t is described
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Figure 8.3: In-plane asymme-
try AIP from the start of
solenoid operation to the end
of the cycle. The rotation of
beam polarisation from verti-
cal to horizontal can be seen
in the first few bins. The red
line depicts the linear fit used
to calculate the SCT.

by the step function:

ALRptq “

$

&

%

ALR,0 if t ă tstep,

ALR,0 ` ∆ALR if t ě tstep.
(8.2.1)

Here, ALR,0 is the left-right asymmetry before the jump, including the first flat region
before the scan and ∆ALR is the size of the jump in the asymmetry. , which occurs at
the time bin tstep. The value of tstep is a fixed parameter for the individual fit process.

In the example RF Wien filter data shown in Fig. 8.4, the occurrence of resonance
crossing (when the IPP rotation frequency matches the WF frequency) can be easily
identified by the significant jump in ALR. The initial asymmetry before the jump
is represented by ALR, and the jump in asymmetry is denoted by ∆ALR. By fixing
the time of resonance crossing tstep at 187 s, the experimental data was accurately
described by the step function Eq. (8.2.1), as indicated by the black curve.

On the other hand, for axion scans, the jump sizes were not significant, and it would
not be apparent when resonance crossing occurred, if at all. Therefore, in these cases,
the step function fits Eq. (8.2.1) were repeated for each time bin between 120 s - 256 s
as the fixed tstep value, and the jump size was recorded for each fit along with the
χ2 value of the fit. In the example shown in Fig. 8.4, two fits are calculated away
from the resonance, and are given in red and green. For these two fits, the observed
∆ALR values are smaller, and the resultant reduced χ2 was of larger values, as shown
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Figure 8.4: Examples of step
function fits to the Wien filter
scan data for a single bunch
from one cycle. The black line
represents the fit with the
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choices of the jump time away
from resonance.
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Figure 8.5: The plot shows the
reduced chi-squared from fit-
ting the step function to a
Wien filter scan data from a
single cycle, with the time as-
sumed for the jump in the
x axis, the same data set as
in Fig. 8.4. The minimum cor-
responds to the time when the
resonance occurs.

in Fig. 8.5. These features were searched for in each bunch and cycle from the ALP
scans, and are explained in detail later in the section.

8.2.1 RF Wien filter scan analysis

The RF Wien filter scans, as explained in Section 6.3, encompassed 48 cycles with
two different ramp rates, 9fspin“ 0.05 Hz/s and 0.1 Hz/s. Due to the random nature
of the phase between RF Wien filter and the polarisation direction at the start of
each cycle, the jump value varied from cycle to cycle. However, within a cycle, all
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the bunches had the same jump size, with subsequent bunches displaying alternate
signs of the jump. The statistical uncertainties of these jumps were estimated to be
approximately 2%, based on the asymmetries used for jump calculation.

Figure Fig. 8.6 displays the distribution of the RF Wien filter jump sizes, calculated
as above, for both the faster and slower scans. Each ∆ALR calculated was normalised
using AIPptq of the respective time bin. This normalisation enables the comparison
between different cycles. Each plot includes a total of 192 jumps for the 4 bunches of
the 48 cycles. The obtained jump values traced a sinusoidal pattern with an amplitude
equivalent to the maximum possible jump for the case, as the random phase affected
the measurements. The distributions of the jumps resembled the y-projection of a
sinusoid. However, probing a sine function with a finite number of points resulted in
a downward bias in the estimation of the maximum jump value, while the smearing
of points had the opposite effect on the calculation of the maximum.
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Figure 8.6: The distribution of jump sizes for the fast WF scan is shown in the left plot,
while the slow scan is shown in the right plot. Each plot contains 192 jumps, corresponding
to 4 bunches in 48 cycles. Note that the jump values have been renormalised using the
AIPptq.

To obtain a more accurate estimate of the jump value for a given ramp setting, a
histogram of jump values from every cycle was created. The jump value for each cycle
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was calculated as the average of the absolute values of the jumps from the bunches.
The maximum jump was determined as the half-way distance between the bin with the
maximum content in the upper 20% of the distribution and the rightmost bin with
non-zero content. This procedure was validated through Monte-Carlo simulations,
wherein the process was repeated 200 times and found to be robust. This allowed for
the downward bias resulting from probing the sine function with a limited number of
points to be mitigated by the possible upward bias arising from the statistical uncer-
tainty of the jump distribution. A standard deviation of 2% was calculated for the
maximum jump obtained from the Monte-Carlo simulations, which is comparable to
the experimental uncertainties. This procedure allows for the accurate determination
of the maximum polarisation jump for the Wien filter scans.

The experimental values resulting from the aforementioned calculation are presented
in Table 8.1, along with the simulation values obtained from the previous chapter.
Although the numbers do not fall within the uncertainties, when considered collec-
tively, the simulations provide proper modelling of sensitivity. Consequently, these
results serve as a benchmark for our simulations and instil confidence in the calibra-
tion curve for the axion scans.

Table 8.1: Comparison of the maximum polarisation jump ∆Py from simulation and exper-
iment for the Wien filter test.

∆p [MeV{c] Simulation Experiment

0.112 0.75 0.796(15)
0.056 0.93 0.892(18)

8.2.2 ALP scan analysis

For the data from the axion scan runs, the calculation of the vertical polarisation
jump follows the same steps as for the RF Wien filter data, using the step function
fit for each and every bunch from all cycles. An example of such a fit with axion data
is shown in Fig. 8.7, where we see that the jump is consistent with zero. Similarly,
the accompanying reduced chi-squared plot Fig. 8.8 shows no evidence of a minimum,
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ruling out the possibility of resonance. The standard deviation of the individual χ2

value from the fit, shown as uncertainties in Fig. 8.8, was calculated using the formula
a

2{ndf, where ndf is the number of degrees of freedom in the fit. For our analysis, ndf

was calculated as the sum of flat region points and scan region points subtracted by
the number of fit variables, i.e., 2 ˆ 15 ` 68 ´ 3 “ 95, resulting in a standard deviation
of 0.145. Figures of step function fits for axion scan data (referring to Figs. 8.7 and 8.8)
are analogous to the step function fits for Wien filter data shown in Figs. 8.4 and 8.5,
besides the fact that they do not reveal the obvious step feature.
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Figure 8.7: A sample step
function fit for an axion scan
of a single bunch from one
cycle, where we see no jump
in asymmetry. For the inves-
tigated time bin ∆ALR “

−0.001(2) being consistent
with zero.
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Figure 8.8: Reduced chi-
squared values from the step
function fits to the axion
scan data from a single cycle
Fig. 8.7. Vertical bars repre-
sent the standard deviation of
the chi-squared values based
on the number of degrees
of freedom. The absence
of a minimum suggests no
resonance.
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To incorporate data from all four bunches in the analysis, the ∆ALR jumps from the
step function fit to each time bin was normalised with the IPP asymmetry for the
respective time bin. The normalised asymmetries ∆ALR{AIPptstepq of all four bunches
in each time bin of a cycle were combined to form a single sinusoidal curve and the
amplitude of this curve can be calculated as:

f pφmq “ C1 sin φm ` C2 cos φm, (8.2.2)

Â “

b

C2
1 ` C2

2 , (8.2.3)

Here, Â is estimated polarisation amplitude, and φm is the angle between the polari-
sation of bunch m and their rest frame electric field ~E˚, as explained in Section 7.2. An
example of this sinusoidal fits to the normalised ∆ALR is shown in Fig. 8.9. and the
spacing of the angle φm in x axis is π{2 as shown in Fig. 7.1. However, as mentioned
in Section 7.2, the spacing is not always the same, but oscillates as the bunches go
through the straight and arced sections of the ring, which requires a correction to be
applied at the end of the analysis. The data on the y axis in Fig. 8.9 are normalised
to the in-plane asymmetry AIP, and the amplitude calculated using Eq. (8.2.3) is the
estimated jump amplitude Â from the experiment. Â is calculated for each time bin
during the ramps, and an example of estimated amplitude for a single cycle using all
four bunches is given in Fig. 8.10.
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Figure 8.9: Normalised left-
right asymmetry jump for all
four bunches, for a single time
bin in a cycle of axion data,
plotted as a function of the
angle φm between the bunch
polarisation and ~E˚. The red
curve represents the sinusoidal
fit used to calculate the jump
amplitude Â.

For each run consisting of multiple cycles covering the same frequency range, given
the absence of any visible resonance, we could calculate the weighted average of the



Confidence Interval 89

amplitudes from individual cycles. This mean amplitude, along with its uncertainties,
is used to calculate the confidence intervals for our data in the next section.
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Figure 8.10: Estimated left-
right asymmetry jump ampli-
tude Â, obtained from a sinu-
soidal fit as shown in Fig. 8.9,
for each .time bin during the
ramps for a single cycle of ax-
ion data.

8.3 Feldman-Cousins algorithm to obtain the con-
fidence interval

We employ Eqs. (8.2.2) and (8.2.3) to calculate the estimated amplitude Â from the
four bunches, regardless of the phase of the axion. This method introduces a positive
bias when the values are close to zero, which vanishes when the estimated values are
significantly larger than their uncertainties. However, since the estimated amplitudes
in our case are often close to zero, we must account for this bias when calculating con-
fidence intervals. To address this issue, we make use of the Feldman-Cousins method,
which was first described in [100], to calculate the confidence intervals. This method
allows us to calculate the true value of the amplitude A from the experimentally esti-
mated amplitude value Â. The application of the FC to calculate confidence intervals
can also be found in [103, 104].

Assuming that the C1 and C2 in Eq. (8.2.2) are uncorrelated and have a normal
distribution, the Probability Distribution Function (PDF) for Â “

b

C2
1 ` C2

2, as
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given in [103], can be written as follows

f
`

Â|A, σexp.
˘

dÂ “
1

σ2
exp.

e

´

¨

˚

˚

˝

Â2 ` A2

2σ2
exp.

˛

‹

‹

‚

Â I0

˜

ÂA
σ2

exp.

¸

dÂ, (8.3.1)

where σexp. is the uncertainty in the estimation of Â, and I0 is the modified Bessel
function of the first order. The distribution is called a Rice distribution [105]. Since
the calculations have to be repeated for every single time bin in the ramping stage
of the cycle, across all the runs, the amplitudes are normalised to their uncertainties,
which simplifies the calculations. This results in the normalised estimated amplitude
P̂ p“ Â{σexp.q and normalised true amplitude P. The corresponding PDF can be
rewritten as

f
`

P̂|P
˘

dP̂ “ e

´

¨

˚

˚

˝

P̂2 ` P2

2

˛

‹

‹

‚

P̂ I0pP̂Pq dP̂. (8.3.2)

Figure 8.11 shows the Rice distribution from Eq. (8.3.2) at four different values of
P. We see that as P becomes larger, the Rice distribution converges to a Gaussian
distribution. This is evident from the curve corresponding to P “ 5, which denotes
a physical effect that is five standard deviation away. The blue data points are the
distribution of the experimental data that was analysed, and we see an agreement
with the Rice distribution for P “ 0 (red curve).

A 2-dimentional representation of the Rice distribution is shown in Fig. 8.12 for
0 ď P ď 6. If we consider the y projection of the plot, it would resemble a Gaussian,
centred at P = P̂, when these projections are calculated farther from zero. The shape
of the projection starts to distort from the Gaussian shape as P approaches zero.
This becomes evident at P « 2.5. The red line on the Rice plot denotes the quantity
Pbest, which is the value of P for which the f

`

P̂|P
˘

has the maximum, and is in the
physically allowed region of P. In other words, Pbest represents the most probable true
value of the amplitude given a certain estimated value. From this curve, we can see
that for an estimation of P̂ up to « 1.4 the most probable P is zero. This implies
that even when there is no physical effect, we might still observe signals that are one
standard deviation significant.
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Figure 8.11: A histogram
of experimental P̂ data
(blue bars). The coloured
lines represent the f

`

P̂|P
˘

distribution for different
values of P. The red curve
for P “ 0 matches the ex-
perimental data.

Figure 8.12: A Rice plot de-
picting two-dimensional data
for a single cycle. The red
line represents the value of P

at which the probability den-
sity function (PDF) given by
Eq. (8.3.2) is maximized, for a
given value of P̂.

8.3.1 Feldman-Cousins algorithm

To compute the confidence intervals using the Feldman-Cousins method, we use the
maximum likelihood ratio R as defined in [100] using the formula,

RpP̂|Pq “
f pP̂|Pq

f pP̂|Pbestq
. (8.3.3)
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The likelihood ratio for two different values of P is shown in the top row of Figure 8.13.
The bottom row shows the corresponding Probability Distribution Function. The
shaded grey region represents the 90% confidence interval for respective P values.
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Figure 8.13: Examples of calculating 90% confidence limits using the likelihood ratio R

drawn in the top row, and the Probability Distribution Function drawn in the bottom row
for two values of P, P “ 1.0 (left) and P “ 2.8 (right). The grey horizontal dashed line in the
likelihood ratio curves represents the R value for which the corresponding P̂ values (grey
vertical dashed lines) form the 90% integral in the PDF curves. The grey shaded region
denotes the 90% integral region.
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To construct the confidence interval at any given value of P, the FC algorithm finds
an interval rP̂1, P̂2s such that (see ref. [106])

RpP̂1q “ RpP̂2q. (8.3.4)

This interval is calculated by integrating f pP̂|Pq between P̂1 to P̂2 until the desired
confidence limit is reached (90%). This can be expressed as,

ż P̂2

P̂1

f pP̂|Pq dp “ 0.9. (8.3.5)

Thus, the confidence interval rP̂1, P̂2s can be found as a solution of the set of two equa-
tions Eqs. (8.3.4) and (8.3.5). Eq. (8.3.5) is solved numerically by choosing P̂1 and P̂2

in decreasing order of likelihood ratio R. In the upper row of ??, the grey vertical lines
represent the intervals rP̂1, P̂2s as the solution of the two sets of equations.

This procedure is repeated for all values of P, and the resulting bounds are recorded
in the plot shown in Fig. 8.14 as confidence intervals. The grey region in the plot
corresponds to a 90% confidence limit, while the blue region corresponds to a 68%
confidence limit. To calculate the limits on the true value for a given estimated value
P̂, we trace a line vertically from P̂ (represented by the black vertical line) until it
crosses the boundary of the confidence intervals. In the example depicted in the plot,
only an upper limit exists (represented by the two horizontal black lines for 90% and
68% CL), and the lower limit is zero (a physical boundary on the value).

8.3.2 Confidence intervals for multiple cycle analysis

In order to account for the fact that most scans in the experiment consist of multiple
cycles (usually 8, but sometimes 7, 9, or 16), it is necessary to construct the confidence
interval accordingly. Since, it was observed during the experiment that the beam
current was consistently reproduced from cycle to cycle for a particular scan, we can
assume that the values of σexp. (the uncertainty in estimation of Â) remain the same,
and thus allowing us to average over these cycles by using the Central Limit Theorem
(CLT).
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Figure 8.14: Plot depicting a
68% (blue) and 90% (grey)
confidence interval for one cy-
cle analysis. The horizontal
axis represents the estimated
value P̂ and the vertical the
true value P.

Central Limit Theorem

The CLT states that for a large number of independent samples, the distribution of
sample means will approach a normal distribution, regardless of the shape of the sam-
ple distribution. Since we know the probability distribution function for a single cycle
(Rice distribution), we can leverage the CLT to combine n cycles and create the con-
fidence interval. First, let us consider the mean and variance of the Rice distribution:

µRice “ σexp.

c

π

2
L1{2

˜

´
A2

2σ2
exp.

¸

, (8.3.6)

σ2
Rice “ 2σ2

exp. ` A2
´

πσ2
exp.

2
L2

1{2

˜

´
A

2σ2
exp.

¸

, (8.3.7)

where L denotes the generalised Laguerre function, and A is the true amplitude and
σexp.the experimental uncertainty for, both a single cycle

From CLT, the mean of the Rice distribution would remain the same when considering
n cycles, but the uncertainty would be σexp.{

?
n. Therefore, the normalised amplitude
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for n cycles can be expressed as:

P “
A

¨

˝

σexp.
?

n

˛

‚

, (8.3.8)

Thus, the corresponding mean and variance of n cycle Rice distribution, for normalised
amplitude are:

µ̃Rice “
?

n
c

π

2
L1{2

ˆ

´
1
2

P2

n

˙

, (8.3.9)

σ̃2
Rice “ 2 `

P2

n
´

π

2
L2

1{2

ˆ

´
1
2

P2

n

˙

. (8.3.10)

Thus, according to CLT, the Probability Distribution Function for n cycles is given
as the Gaussian distribution:

f pP̂|Pq “
1

b

2πσ̃2
Rice

e

´

¨

˚

˚

˝

`

P̂ ´ µ̃Rice
˘2

2σ̃2
Rice

˛

‹

‹

‚

. (8.3.11)

A 2-dimensional PDF for n “ 8 is shown in Fig. 8.15, with the red line denoting
the Pbest values. The process of constructing confidence intervals follows the same
approach as the 1-cycle case. The resulting confidence interval for n “ 8 cycles is
depicted in Fig. 8.16. The boundaries of the blue and grey bands in the plot represent
the 68% and 90% confidence levels, respectively. Similar to the 1-cycle case, the two
horizontal black lines show the upper limits at 68% and 90% for an estimated P̂ “ 3.3.

When calculating the limits using Fig. 8.16, we must be cautious for P̂ values that
are less than the expected value µ̃Rice. While, on average, the expected value of the
estimated amplitude is P̂ “ µ̃Rice for a true amplitude of zero P “ 0, it is possible to
measure smaller amplitudes P̂ ă µ̃Rice due to statistical fluctuations. This can result
in a smaller confidence interval, as for P̂ “ 1.5 in Fig. 8.16. This is similar to the
case when measuring a cross-section signal psq against background events b “ 4 and
obtaining an observed value of ps ` bqobs “ 3 does not imply a negative cross-section
s “ ´1, but should rather be attributed to statistical fluctuations. As explained in
Ref. [100], in such cases, the confidence interval is calculated for the expected value.
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Figure 8.15: A Rice plot
depicting 2-dimensional
data for 8 cycles. The
red line represents the
value of P at which
the PDF given by
Eq. (8.3.11) is max-
imised, for a specific
value of P̂.

Therefore, for any observed values smaller than the expected value P̂ ă µ̃Rice, the
confidence intervals for P are calculated at µ̃Rice.

For each estimated value of the amplitude P̂, the confidence interval boundaries of
P are determined, and then multiplied by the experimental uncertainty (as shown in
Eq. (8.3.8)) to obtain the true amplitude A. Notably, no signal was observed that
could not be explained by a statistical fluctuation in the frequency (or axion mass)
range covered by the experiment. As per the 90% confidence interval, it is expected
that approximately 10% of the cases will have a lower limit greater than zero. This
expectation is evident in our observation in Fig. 8.17, where the PDF for P “ 0 is
overlaid on the estimated P̂ for n “ 8 cycles from the experiment. We observe that
9.63% of the data points are to the right of the red dashed line P̂ ą 4.38. P̂ “ 4.38

is the value above which the lower limit of the 90% confidence interval in Fig. 8.16 is
greater than zero. Based on this observation, we can infer that, at the level of precision
achieved, there is no systematic effect that would result in a false signal.

The equation for converting the limits of the amplitude A into the limits of the
oscillating EDM of deuteron, as provided in Eq. (7.3.10) in Chapter 8, can be simplified
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Figure 8.16: A confidence interval of 68% (blue) and 90% (gray) calculated for the multi-
cycle analysis with a sample size of n “ 8. The horizontal axis represents the estimated
experimental value P̂, while the vertical the true value P. When the experimental value is
P̂ “ 3.3, the true value P is estimated to fall within the range of 0 to 3.15 with a confidence
level of 90%.

as follows:
| dAC |“ λA ˆ 1×10−23 e cm, (8.3.12)

where the coefficient λ is 316 for fast ramps and 286 for slow ramps, as derived in
Section 7.3. The results, which depict the limits on oscillating EDM, and several axion
couplings, will be presented and discussed in the next chapter.
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Figure 8.17: A histogram of the experimental P̂ data for n “ 8 cycles. The red curve
represents the Probability Distribution Function calculated for P “ 0 from Eq. (8.3.11),
and it shows good agreement with the histogram.



9 Results and discussion

The findings and results discussed in this chapter have previously been published in
ref. [83], and only the parts of the research that the author analysed are presented
here1.

We have discussed the procedure for obtaining the jump amplitude limits from the
measured polarisation data in the experimentally scanned frequency (ALP mass) re-
gion. This procedure accounts for the systemic bias and shows that no significant ef-
fects have been observed compared to statistical fluctuations. The polarisation jump
amplitudes are attributed to the rotation of the polarisation, in the extended-T-BMT
equations Eqs. (3.3.7) and (3.3.10) explained Chapter 3. The angular velocities of the
spin of particles moving in a storage ring, with mass m, charge q, spin S, Lorentz
factor γ, and velocity ~v “ c~β is given by Eqs. (3.3.10a) to (3.3.10c). According to [23,
76], the oscillating terms of the angular velocity are given by:

~Ωaptq “ ´
1

Sh̄
dAC

a0
aptq c~β ˆ ~B ´

1
Sh̄

CN

2 fa
h̄B0aptq~β

“ dAC
cγm
qh̄S

cos rωapt ´ t0q ` φapt0qs ~β ˆ ~Ωrev

`
CN

2 faS
ωaa0 sin rωapt ´ t0q ` φapt0qs ~β.

(9.0.1)

Here, the laboratory frame magnetic field was expressed in terms of the angular rev-
olution velocity ~B “ p´maγ{qq~Ωrev as shown in Eq. (3.3.9). These oscillations occur

1The author would like to extend her gratitude to Andreas Wirzba for his invaluable help in
interpreting the results.
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when a classical ALP field a given by Eq. (2.1.4) couples to the particles in the beam,
as described by the Lagrangians Eqs. (2.2.3) and (2.2.5). Furthermore,

The rotation due to ALPs, described by Eq. (9.0.1), occurs about two axes: the ~β ˆ

~Ωrev axis in the first, and the ~β axis in the second term. The first rotation is generated
by the AC part of the Electric Dipole Moment of the particles induced by the ALP
field Eq. (2.1.4), and is about the axis vertical to the ring plane. The second rotation,
with respect to the longitudinal axis ~β (see Refs. [23, 76]), follows the pseudomagnetic
axion-wind effect [18, 107] of strength CN{ fa, which is expressed in terms of the axion
decay constant fa [1]. As these two rotations take place around the orthogonal axes,
the change in vertical polarisation that occur on resonance are π{2 out of phase
with each other. Consequently, the rotation amplitudes of the two oscillating terms
in Eq. (9.0.1) add up coherently, making it impossible to distinguish between the two
rotations. Therefore, we provide an upper limit on either dAC or CN{ fa, assuming
that the other term vanishes and that the bound is saturated by one term only.

9.1 Limits on the oscillating Electric Dipole Mo-
ment

We start by assuming that only the oscillating EDM-term is present, meaning
CN{ fa “ 0. Figure 9.1 shows the sensitivity at a 90% confidence level for exclud-
ing the ALPs-induced oscillating EDM of the deuteron dAC, in frequency range of
120.0 kHz - 121.4 kHz ( fosc in the lower axis), corresponding to the axion mass range
of 0.495 neV c−2 - 0.502 neV c−2 as represented on the upper axis. The darker lines
represent the upper limit of the oscillating EDM, while the lighter filler region indi-
cated the exclusion region. The colours green and blue differentiate between the two
different ramp rates used in the experiment, as mentioned in Chapter 6. The green
colour corresponds to a momentum change of ∆ p “ 0.112 MeV{c and the blue colour
corresponds to a momentum change of ∆ p “ 0.138 MeV{c per cycle.

The fluctuations in the exclusion plot are primarily due to two beam properties;
namely intensity and polarisation. Good beam properties mean better sensitivity.
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Figure 9.1: The sensitivity at a 90% confidence level to exclude the presence of ALP induced
oscillating EDM in units of e cm in the frequency range 120.0 kHz - 121.4 kHz with the
corresponding mass range of ma “ 0.495 neV c−2 ´ 0.502 neV c−2. Further details in the
accompanying text.

The dependency of intensity is evident on a larger scale over multiple scans. If a
larger number of scans were performed for a specific frequency range, the calculated
sensitivity is better, as seen in Fig. 9.1 around frequency 120.8 kHz, for example. The
decline in sensitivity within a cycle is mainly due to beam depolarization.

A minor contribution to these fluctuations arises from the approach to the calculation
of ∆ALR in Eq. (8.2.1). As a consequence, the sensitivity becomes worse as one moves
further from the middle of the scan because the imbalance in the number of points
on both sides of the anticipated jump in the calculation of ∆ALR leads to a larger
uncertainty in the determined jump. An example of how this sensitivity appears for
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a single scan region comprising 8 cycles is shown in Fig. 9.2. However, the greatest
influence is still beam intensity and the polarisation, and their combined effect leads
to the larger oscillating EDM bounds p|dd

AC| ą 8×10−23 e cmq.
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Figure 9.2: Il-
lustration of the
sensitivity of
a single scan,
which decreases as
one moves away
from the central
frequency. This
example contained
8 cycles from the
slower scans.

The experiment conducted to search for ALPs in the storage ring yields a 90% confi-
dence level upper bound of ∣∣∣dd

AC

∣∣∣ ă 6.4×10−23 e cm. (9.1.1)

This bound is obtained by averaging the individual limit points in Fig. 9.1, and it is
used to calculate the various ALP coupling constants in the next section.

9.2 Limits of various ALP couplings

In Section 2.2 we discussed various ALP couplings. Here, we focus on coupling of
ALPs with the deuteron either through oscillating EDM (dd

AC) or through the axion-
wind effect, which is proportional to Cd{ fa. These calculations assume that all the
local dark-matter density, ρLDM “ 0.55(17) GeV cm−3, consists solely of ALPs ( see
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Chapter 27 ”Dark Matter” of Ref. [1]). The figures presented in this section were
originally from Ref. [108] and have been modified to incorporate our findings.

ALP coupling to deuteron EDM

First, we will consider the direct coupling of axions to the deuteron EDM operator
gadγ, which is analogous to the axion coupling to the nucleon EDM operator gaNγ

explained in Section 2.2.3 and Eq. (2.2.3). Expressing Eq. (2.2.4) (with N :“ d for
deuterons) in terms of the electromagnetic fine-structure constant α “ e2{4π, we get∣∣gadγ

∣∣ “

∣∣dd
AC

∣∣?4πα{e

h̄c
b

2ρLDMph̄cq
3
{mac2

“

∣∣dd
AC

∣∣
a0

?
4πα

eh̄c
. (9.2.1a)

By inserting a0 “

b

2ρLDMph̄cq
3
{mac2 “ 5.8 MeV and the bound on

∣∣dd
AC

∣∣, we obtain
the bound on the ALP coupling to deuteron EDM operator as∣∣gadγ

∣∣ ă 1.7×10−7 GeV−2. (9.2.1)

Because a0 is inversely proportional to ma, the bounds obtained from the oscillat-
ing EDM measurements will linearly increase with the ALP mass ma at comparable
experimental sensitivity.

The upper limit on
∣∣gadγ

∣∣ obtained from our experiment in depicted in Fig. 9.3 in
cyan (labelled as ’JEDI’). Also in the figure are the

∣∣gaNγ

∣∣ bounds from nEDM[109],
CASPERr-electric[110], and Beam EDM[111] experiments (the direct measurements),
as well as the reformulated limits of electron-EDM HfF` experiment from [112, Fig. 3],
as given in [108]. Additionally, the bound on

∣∣gaNγ

∣∣ derived in Ref. [18] by assuming
supernova SN1987A cooling N ` γ Ñ N ` a is shown as a horizontal band (indepen-
dent of ma). It is worth noting that an alternative collapse mechanism for supernovae
SN1987A is suggested in Ref. [113], which does not impose any limits on ALPs, that
this exclusion region should be treated as model-dependent. Another exclusion region
shown is from Ref. [114], based on the coupling of thermally-produced ALPs from
combined data of CMB and baryon acoustic oscillations (BAO), which were derived
for the mass range 1×10−4 eV{c2 À ma À 100 eV{c2, i.e., far away from the mass region
probed in our experiment (ma « 0.5 neV/c2 for JEDI. However, the band is included
following Ref. [108].
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The directly measured upper bound from our experiment, 9.2.1 at ma “ 0.5 neV/c2,
falls within the model-dependent bounds obtained from SN1987A. However, it sur-
passes the limit obtained from CASPEr-electric experiment at ma « 100 neV/c2.
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Figure 9.3: Plot depicting the 90% upper limit on
∣∣gadγ

∣∣ obtained from the current experi-
ment (in cyan), along with the limits on |ganγ| from other experiments such as nEDM[109],
CASPERr-electric[110], Beam EDM[111], and HfF`[112] (as reported in Ref. [108]), in dif-
ferent shades of red. The green band shows the constraint from the SN1987A supernova
cooling (derived in [18]), which could be model-dependent [113]. The blue band shows the
limits obtained from the combination of Planck 2018 and BAO data [114] (as reported in
Ref. [108]). Figure adapted from [108].

ALP coupling to gluons

The second coupling we considered is the ALP-gluon coupling CG{ fa, explained in
Section 2.2.2, which can be related to the ALP induced oscillating EDM of a nucleon
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as (see Eq. (2.2.4))

dN
ACptq “ S ¨ κa

eh̄c
2mc2

CG

fa
a0 cospωapt ´ t0q ` φapt0qq

« 2.4×10−16 e cm CG

fa
a0 cospωapt ´ t0q ` φapt0qq. (9.2.2)

Here, S and m are the spin and mass of the nucleon, and κa is the chiral suppression
factor of the θQ-term. It should be noted that the numerical factor is identical for the
proton (neutron) and the deuteron because the ratio of spin to mass is approximately
the same, given S{m “ p1{2q{mp « 1{md. However, when comparing the coupling
constant of the deuteron to the direct determination of the CG{ fa for a nucleon,
corrections of order one are expected [83]. Therefore, the ALP-gluon coupling in the
deuteron scenario is denoted with an additional superscript d as Cd

G. This is to indicate
the expected difference of the coefficient Cd

G to the coupling CG in the nucleon scenario.

Hence, the bound on the ALP gluon coupling constant in the case of deuteron can be
written as ∣∣∣∣∣Cd

G
fa

∣∣∣∣∣ “

∣∣∣∣∣ dd
AC

2.4×10−16 e cm
ˆ a0

∣∣∣∣∣ ă 0.46×10−4 GeV−1. (9.2.3)

The upper limit of
∣∣Cd

G{ fa
∣∣ is presented in Fig. 9.4. This figure compares this limit

with the values of
∣∣Cd

G{ fa
∣∣ obtained from various experiments such as the nEDM

experiment [109], the Beam EDM [111], and HfF` electron EDM [112]. In addition,
the figure also displays the limits obtained from astrophysical calculations such as Big
Bang nucleosynthesis, solar core, and supernova SN1987A, where the latter is based
on the supernova N ` γ Ñ N ` a cooling mechanism. More information can be found
in [1, 108]. The result from JEDI falls within the limits from supernova emissions.

Axion-wind effect

Finally, we will focus on the axion-wind scenario, i.e., the second term in Eq. (9.0.1).
We assume a vanishing EDM-term and obtain an upper limit on the ALP pseudo-
magnetic coupling to the deuteron spin |Cd{ fa|. This limit can be simplified in terms
of the limit on the oscillating EDM using Eq. (9.0.1) on resonance and is given as∣∣∣∣Cd

fa

∣∣∣∣ “

∣∣∣∣ 2γmdc
eh̄ωaa0

∣∣∣∣ ¨

∣∣∣~Ωrev

∣∣∣ ¨

∣∣∣dd
AC

∣∣∣. (9.2.4a)
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Figure 9.4: The plot depicts the 90% upper limit on the
∣∣Cd

G{ fa
∣∣ obtained from this exper-

iment in cyan colour. This is compared with the bounds on |CG{ fa| (in various shades of
red) from the nEDM [109], the Beam EDM [111], and HfF` electron EDM [112]. The limits
obtained from astrophysical calculations such as supernova SN1987A [18], solar core [115,
116], and Big Bang nucleosynthesis [117] are also displayed in green, lighter blue, and darker
blue, respectively. Figure adapted from [108].

After applying the ALP resonance condition ωa “ γ
∣∣∣G~Ωrev

∣∣∣ the equation above
simplifies to ∣∣∣∣Cd

fa

∣∣∣∣ “

∣∣∣∣ 2mdc
eh̄Ga0

∣∣∣∣ ¨

∣∣∣dd
AC

∣∣∣, (9.2.4b)

where G is the magnetic anomaly of the deuteron. We get the bound as∣∣∣∣Cd
fa

∣∣∣∣ ă 1.5×10−5 GeV−1. (9.2.4)

The resulting bound is linear dependence on the mass of the ALP ma, indicating that
the axion/ALP here is considered as dark matter candidates.
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Figure 9.5 depicts the upper limit on the ALP-deuteron coupling |Cd{ fa|, along with
the limits on the ALP-neutron coupling |CN{ fa| from other experiments and astro-
physical calculations. The constraints on |CN{ fa| from supernova SN1987A, shown in
green, are obtained with the assumption of bremsstrahlung as the underlying cooling
mechanism, i.e., NN Ñ NNa. This was first calculated in [118], and modified in
[119]. Our results fall within this limit, however, [113] mentions an alternate collapse
mechanism which would not place limits on the emission of ALPs.

The axion wind effect is much more pronounced in storage ring experiments compared
to other laboratory measurements because it is determined by the speed of the axions
in relation to the particle being studied. For storage rings, the particles are relativistic
v « c, but for particles at rest in the laboratory system (e.g., [109, 110]), the relative
velocity is determined by the velocity of the Earth relative to the centre of our Galaxy,
i.e., v « 250 km/s „ 10´3 c. In relativistic storage rings, this contribution can be
safely neglected. As a result, the pseudomagnetic field of the axion wind always points
tangentially to the beam trajectory, and the direction of ~v is uniquely determined. On
the other hand, in laboratory experiments, this determination is complicated.

It is worth noting that reference [109] used a value of ρLDM “ 0.4 GeV/cm2, while
the calculations in this thesis uses ρLDM “ 0.55 GeV/cm2. Therefore, the coupling
constants mentioned here are approximately 0.85 times smaller compared to the ones
in [109].
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Figure 9.5: The figure shows the 90% upper limit on the ALP-deuteron coupling, |Cd{ fa|,
obtained from the JEDI experiment in cyan. Also shown are the ALP-neutron coupling
constant |CN{ fa| from several experiments: CASPEr-comag. [120], νn{νHg [109], CASPEr-
Zulf [121], Old comagnetometers [122], NASDUCK [123], Torsion balance [124], K3He co-
magnetometer [125], SNO [126], Neutron star cooling [127], and SN1987A [119] (see also
[34]). Figure adapted from [108].
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The aim of this project was to demonstrate a novel method to detect ALPs using
storage rings by utilising the IP polarised deuteron beam. ALPs can influence the
spin of deuterons through inducing oscillating EDM, causing the spin to rotate about
the radial axis, and through the axion-wind or pseudomagnetic effect, causing the
spin rotation about the longitudinal axis. The method in this experiment, utilising
relativistic particles, is particularly sensitive to the latter effect, which depends on the
velocity of the particles with respect to the axion field.

The experiment took place in the Spring of 2019, with four days of effective data col-
lection. A frequency range of 1.5 kHz, spanning from 119.997 kHz to 121.457 kHz, was
scanned to find the resonance between the spin precession frequency of the deuteron
fspin and the axion-induced oscillation fosc. Before the experiment, simulations were
conducted to understand the experimental conditions, and post-experiment calibra-
tion was performed to obtain reliable results. The test for the resonance detection
method was carried out using the RF Wien filter, which also served as a calibration
tool for axion scans.

Although no ALP signals were detected within the experimental sensitivity, the sig-
nificant achievement of this project was establishing the first-ever upper limit of the
oscillating EDM of deuterons. By assuming only EDM coupling, the oscillating EDM
value of the deuteron at the 90% confidence level above approximately 10´22 e cm was
excluded. Additionally, constraints on different ALP couplings were derived in the
mass range ma “ 4.95 neV c−2 ´ 5.02 neV c−2. Comparisons of ALP coupling to the
EDM operator of the deuteron gadγ, ALP to the gluons of the deuteron Cd

G{ fa, and
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ALP to deuteron spin (pseudo-magnetic) Cd{ fa with the existing experimental results
are also provided.

One of the notable advantages of this method is the mitigation of systematic effects
due to the cancellation of first-order systematics through the use of four beam bunches.
To enhance the sensitivity in future experiments, it is recommended to focus on ex-
tended beam times, higher beam intensities, and higher beam polarisation. Moreover,
this experimental method allows the use of various hadrons (protons, deuterons, and
heavier nuclei), enabling the exploration of the effect of spin and isospin on differ-
ent couplings. Furthermore, conducting experiments at different values of magnetic
anamoly G would expand the frequency range and further improve the search capa-
bilities.

Storage ring searches for axions can be pursued at facilities with accessible polarised
hadrons beams like RHIC, NICA or GSI/FAIR. Future storage rings, like the hybrid
ring proposed for the search of permanent EDM of charged hadrons, featuring radial
electric and vertical magnetic field [128], offers further avenues. Especially, the com-
bination of the fields would enable the search for axions to be performed in the entire
mass range depicted in Figs. 9.3 to 9.5 [129].

In summary, this project, which is the focus of my thesis, successfully demonstrated
the feasibility of ALP searches using storage rings. The experiment provided con-
straints on various ALP couplings and established the first limit on oscillating EDM
of deuterons. These results contribute to the ongoing efforts in the search for QCD
axion and ALP, and towards expanding our understanding of physics beyond the SM.
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The run numbers for axion scans along with the frequency range of the scan for the
axion scans are given in Table A.1. Runs shaded in gray have a momentum scan rate
of 0.112 MeV{c and the rest were scanned at a rate of 0.138 MeV{c.

Table A.1: List of runs from axion scan in increasing order of frequency

frequency range [Hz] run number

119997.06 - 120010.67 51078
120011.14 - 120024.72 51077
120025.49 - 120038.91 51076
120039.54 - 120053.09 51075
120053.61 - 120067.17 51074
120067.78 - 120081.40 51073
120082.06 - 120095.66 51072
120096.30 - 120109.96 51071
120110.41 - 120124.02 51070
120124.65 - 120138.24 51069
120138.87 - 120152.49 51068
120152.95 - 120166.56 51067
120167.18 - 120180.75 51066
120181.20 - 120194.81 51065
120195.44 - 120208.96 51064

Continued on the next page
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Table A.1 – Continued from the previous page

frequency range [Hz] run number

120209.58 - 120223.15 51063
120223.77 - 120237.36 51062
120237.85 - 120251.52 51061
120251.99 - 120268.84 51050
120266.14 - 120282.96 51129
120280.22 - 120297.08 51128
120294.45 - 120311.10 51127
120308.64 - 120325.36 51126

120322.08 - 120338.98
51125
51133

120336.23 - 120353.04
51124
51132

120350.31 - 120367.17
51123
51131

120365.27 - 120382.15 51122
120379.40 - 120396.24 51121
120393.49 - 120410.37 51120
120407.89 - 120424.62 51119
120421.94 - 120438.79 51091
120436.01 - 120452.84 51090
120450.34 - 120467.19 51049
120464.59 - 120481.33 51048
120478.70 - 120495.41 51042
120492.83 - 120509.60 51041
120507.07 - 120523.81 51040
120521.17 - 120538.00 51039
120535.25 - 120552.18 51034
120549.66 - 120566.41 51033

Continued on the next page
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Table A.1 – Continued from the previous page

frequency range [Hz] run number

120563.80 - 120580.48 51032
120577.84 - 120594.59 51029
120592.13 - 120609.00 51028
120606.23 - 120623.09 51026
120620.28 - 120637.03 51024
120634.38 - 120651.32 51022
120648.68 - 120665.55 51021
120662.97 - 120679.74 51020
120677.07 - 120693.85 51019
120691.36 - 120708.05 51018
120705.40 - 120722.15 51017
120719.49 - 120736.40 51016
120733.74 - 120750.69 51015
120747.94 - 120764.70 51014
120762.04 - 120779.00 51013

120776.01 - 120792.77
51138
51012

120790.12 - 120807.07
51137
51011

120804.42 - 120821.21
51136
51009

120818.61 - 120835.31
51135
51008

120832.99 - 120849.67
51134
51007

120847.18 - 120863.89 50953
120861.34 - 120878.18 50955

Continued on the next page
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Table A.1 – Continued from the previous page

frequency range [Hz] run number

120875.78 - 120892.44 50957
120889.85 - 120906.76 50959
120904.16 - 120920.82 50960
120918.36 - 120935.14 50961
120932.60 - 120949.27 50962
120946.67 - 120963.51 50965
120960.91 - 120977.49 50966
120975.04 - 120991.73 50967
120989.09 - 121005.91 50968
121003.14 - 121019.84 50973
121017.34 - 121034.02 50974
121031.54 - 121048.26 50975
121045.67 - 121062.35 50976
121059.84 - 121076.73 50977
121074.06 - 121090.75 50978
121088.09 - 121104.78 50979
121102.31 - 121118.92 50980
121116.59 - 121133.29 50981
121130.49 - 121147.20 50982
121144.72 - 121161.57 50983
121158.89 - 121175.72 50984
121173.04 - 121189.96 50985
121187.30 - 121204.00 50986
121201.50 - 121218.24 50987
121215.54 - 121232.46 50988
121229.77 - 121246.39 50991
121243.91 - 121260.54 50992
121258.04 - 121274.88 50993
121272.24 - 121289.12 50994

Continued on the next page
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Table A.1 – Continued from the previous page

frequency range [Hz] run number

121286.27 - 121303.19 50995
121300.64 - 121317.41 50996
121314.79 - 121331.56 50997
121328.91 - 121345.62 50998
121343.26 - 121359.98 50999
121357.28 - 121374.02 51000
121371.36 - 121388.16 51001
121385.53 - 121402.17 51002
121399.78 - 121416.53 51003
121413.82 - 121430.74 51004
121428.03 - 121444.78 51005
121442.23 - 121459.10 51006

The RF Wien filter have 12 runs in total given in Table ??. Scans were done with the
scan rates ˘ 0.112 MeV{c and ˘ 0.056 MeV{c.
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Table A.2: Details of RF Wien filter scans.

frequency range [Hz] scan rate [MeV{c] run number

120840.27 - 120853.91
0.112

51101
120840.28 - 120853.91 51102
120840.28 - 120853.90 51103

120843.73 - 120850.44
0.056

51104
120843.76 - 120850.45 51105
120843.83 - 120849.96 51106

120853.87 - 120840.21
-0.112

51107
120853.89 - 120840.24 51108
120853.88 - 120840.22 51109

120850.62 - 120843.63
-0.056

51110
120850.67 - 120843.90 51111
120850.69 - 120843.31 51112



Bibliography

[1] R. L. Workman et al., ‘Review of particle physics’, Progress of Theoretical and Experimental
Physics 2022, 10.1093/ptep/ptac097 (2022) (cit. on pp. 1, 6–12, 100, 103, 105).

[2] R. D. Peccei and H. R. Quinn, ‘CP Conservation in the presence of pseudoparticles’, Physical
Review Letters 38, 1440–1443 (1977) (cit. on pp. 1, 7).

[3] R. D. Peccei and H. R. Quinn, ‘Constraints imposed by cp conservation in the presence of
pseudoparticles’, Physical Review D 16, 1791–1797 (1977) (cit. on pp. 1, 7).

[4] S. Weinberg, ‘A new light boson?’, Phys. Rev. Lett. 40, 223–226 (1978) (cit. on pp. 1, 7, 11).

[5] F. Wilczek, ‘Problem of strong P and T invariance in the presence of instantons’, Physical
Review Letters 40, 279–282 (1978) (cit. on pp. 1, 7).

[6] P. Sikivie, ‘Invisible axion search methods’, Reviews of Modern Physics 93, 015004 (2021)
(cit. on pp. 1, 8).

[7] S. P. Chang et al., ‘Axionlike dark matter search using the storage ring EDM method’, Phys.
Rev. D 99, 083002 (2019) (cit. on p. 2).

[8] A. D. Sakharov, ‘Violation of CP in variance, c asymmetry, and baryon asymmetry of the
universe’, Soviet Physics Uspekhi 34, 392–393 (1991) (cit. on p. 6).

[9] C. A. Baker et al., ‘Improved experimental limit on the electric dipole moment of the neutron’,
Physical Review Letters 97, 131801 (2006) (cit. on p. 7).

[10] C. Abel et al., ‘Measurement of the permanent electric dipole moment of the neutron’, Phys.
Rev. Lett. 124, 081803 (2020) (cit. on p. 7).

[11] A. Bosma, ‘The distribution and kinematics of neutral hydrogen in spiral galaxies of various
morphological types’, PhD thesis (Groningen University, 1978) (cit. on p. 8).

[12] E. Corbelli and P. Salucci, ‘The extended rotation curve and the dark matter halo of m33’,
Monthly Notices of the Royal Astronomical Society 311, 441–447 (2000) (cit. on p. 8).

[13] V. Trimble, ‘Existence and nature of dark matter in the universe’, Annual Review of Astron-
omy and Astrophysics 25, 425–472 (1987) (cit. on p. 8).

https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/physrevlett.38.1440
https://doi.org/10.1103/physrevlett.38.1440
https://doi.org/10.1103/physrevd.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/physrevlett.40.279
https://doi.org/10.1103/physrevlett.40.279
https://doi.org/10.1103/revmodphys.93.015004
https://doi.org/10.1103/PhysRevD.99.083002
https://doi.org/10.1103/PhysRevD.99.083002
https://doi.org/10.1070/pu1991v034n05abeh002497
https://doi.org/10.1103/physrevlett.97.131801
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1046/j.1365-8711.2000.03075.x
https://doi.org/10.1146/annurev.aa.25.090187.002233
https://doi.org/10.1146/annurev.aa.25.090187.002233


118 BIBLIOGRAPHY

[14] L. Abbott and P. Sikivie, ‘A cosmological bound on the invisible axion’, Physics Letters B
120, 133–136 (1983) (cit. on p. 8).

[15] J. Preskill, M. B. Wise, and F. Wilczek, ‘Cosmology of the invisible axion’, Physics Letters
B 120, 127–132 (1983) (cit. on p. 8).

[16] M. Dine and W. Fischler, ‘The not-so-harmless axion’, Physics Letters B 120, 137–141 (1983)
(cit. on p. 8).

[17] P. W. Graham and S. Rajendran, ‘Axion dark matter detection with cold molecules’, Phys.
Rev. D 84, 055013 (2011) (cit. on pp. 9–10).

[18] P. W. Graham and S. Rajendran, ‘New observables for direct detection of axion dark matter’,
Phys. Rev. D 88, 035023 (2013) (cit. on pp. 9, 11, 100, 103–104, 106).

[19] D. Budker et al., ‘Proposal for a cosmic axion spin precession experiment (casper)’, Phys.
Rev. X 4, 021030 (2014) (cit. on pp. 9, 18).

[20] R. D. Peccei, ‘The Strong CP problem and axions’, Lect. Notes Phys. 741, edited by M.
Kuster, G. Raffelt, and B. Beltran, 3–17 (2008) (cit. on p. 9).

[21] I. G. Irastorza, ‘An introduction to axions and their detection’, SciPost Phys. Lect. Notes, 45
(2022) (cit. on pp. 10, 12).

[22] M. Pospelov and A. Ritz, ‘Theta induced electric dipole moment of the neutron via QCD sum
rules’, Phys. Rev. Lett. 83, 2526–2529 (1999) (cit. on pp. 10–11).

[23] N. N. Nikolaev, ‘Spin of protons in NICA and PTR storage rings as an axion antenna’, Pisma
Zh. Eksp. Teor. Fiz. 115, 683–684 (2022) (cit. on pp. 11, 27, 99–100).

[24] I. G. Irastorza and J. Redondo, ‘New experimental approaches in the search for axion-like
particles’, Progress in Particle and Nuclear Physics 102, 89–159 (2018) (cit. on pp. 12, 16).

[25] Y. Fukuda et al., ‘Production and detection of axions by using optical resonators’, Progress
in Crystal Growth and Characterization of Materials 33, 363–366 (1996) (cit. on p. 12).

[26] G. Mueller et al., ‘Detailed design of a resonantly enhanced axion-photon regeneration exper-
iment’, Physical Review D 80, 072004 (2009) (cit. on pp. 12–13).

[27] F. Hoogeveen and T. Ziegenhagen, ‘Production and detection of light bosons using optical
resonators’, Nuclear Physics B 358, 3–26 (1991) (cit. on p. 13).

[28] K. Ehret et al., ‘New ALPS results on hidden-sector lightweights’, Physics Letters B 689,
149–155 (2010) (cit. on p. 13).

[29] M. Betz et al., ‘First results of the CERN resonant weakly interacting sub-eV particle search
(CROWS)’, Physical Review D 88, 075014 (2013) (cit. on p. 13).

[30] R. Ballou et al., ‘New exclusion limits on scalar and pseudoscalar axionlike particles from
light shining through a wall’, Physical Review D 92, 092002 (2015) (cit. on p. 13).

https://doi.org/10.1016/0370-2693(83)90638-x
https://doi.org/10.1016/0370-2693(83)90638-x
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevD.84.055013
https://doi.org/10.1103/PhysRevD.84.055013
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1007/978-3-540-73518-2_1
https://doi.org/10.1007/978-3-540-73518-2_1
https://doi.org/10.21468/SciPostPhysLectNotes.45
https://doi.org/10.21468/SciPostPhysLectNotes.45
https://doi.org/10.1103/PhysRevLett.83.2526
https://doi.org/10.1134/S0021364022600653
https://doi.org/10.1134/S0021364022600653
https://doi.org/10.1016/j.ppnp.2018.05.003
https://doi.org/10.1016/0960-8974(96)83672-2
https://doi.org/10.1016/0960-8974(96)83672-2
https://doi.org/10.1103/physrevd.80.072004
https://doi.org/10.1016/0550-3213(91)90528-6
https://doi.org/10.1016/j.physletb.2010.04.066
https://doi.org/10.1016/j.physletb.2010.04.066
https://doi.org/10.1103/physrevd.88.075014
https://doi.org/10.1103/physrevd.92.092002


BIBLIOGRAPHY 119

[31] R. Bähre et al., ‘Any light particle search II — technical design report’, Journal of Instru-
mentation 8, T09001–T09001 (2013) (cit. on p. 13).

[32] L. Capparelli et al., ‘Axion-like particle searches with sub-THz photons’, Physics of the Dark
Universe 12, 37–44 (2016) (cit. on p. 13).

[33] L. Maiani, R. Petronzio, and E. Zavattini, ‘Effects of nearly massless, spin-zero particles on
light propagation in a magnetic field’, Physics Letters B 175, 359–363 (1986) (cit. on p. 13).

[34] G. Raffelt and L. Stodolsky, ‘Mixing of the photon with low-mass particles’, Phys. Rev. D 37,
1237–1249 (1988) (cit. on pp. 13, 108).

[35] F. D. Valle et al., ‘The PVLAS experiment: measuring vacuum magnetic birefringence and
dichroism with a birefringent fabry–perot cavity’, The European Physical Journal C 76, 10.
1140/epjc/s10052-015-3869-8 (2016) (cit. on p. 13).

[36] M. T. Hartman et al., ‘Noise characterization for resonantly enhanced polarimetric vacuum
magnetic-birefringence experiments’, Review of Scientific Instruments 88, 123114 (2017) (cit.
on p. 13).

[37] A. Arvanitaki and A. A. Geraci, ‘Resonantly detecting axion-mediated forces with nuclear
magnetic resonance’, Physical Review Letters 113, 161801 (2014) (cit. on p. 13).

[38] H. Fosbinder-Elkins et al., A method for controlling the magnetic field near a superconducting
boundary in the ariadne axion experiment, 2017 (cit. on p. 13).

[39] P. Sikivie, ‘Experimental Tests of the Invisible Axion’, Phys. Rev. Lett. 51, edited by M. A.
Srednicki, [Erratum: Phys.Rev.Lett. 52, 695 (1984)], 1415–1417 (1983) (cit. on pp. 14–15).

[40] K. van Bibber et al., ‘Design for a practical laboratory detector for solar axions’, Physical
Review D 39, 2089–2099 (1989) (cit. on p. 14).

[41] K. Zioutas et al., ‘First results from the CERN axion solar telescope’, Physical Review Letters
94, 121301 (2005) (cit. on p. 14).

[42] E. Armengaud et al., ‘Conceptual design of the international axion observatory (IAXO)’,
Journal of Instrumentation 9, T05002–T05002 (2014) (cit. on p. 14).

[43] W. Liao, ‘Generation and search of axion-like light particle using intense crystalline field’,
Physics Letters B 702, 55–58 (2011) (cit. on p. 14).

[44] T. Yamaji et al., ‘Theoretical calculation of coherent laue-case conversion between x-rays and
ALPs for an x-ray light-shining-through-a-wall experiment’, Physical Review D 96, 115001
(2017) (cit. on p. 14).

[45] E. Paschos and K. Zioutas, ‘A proposal for solar axion detection via bragg scattering’, Physics
Letters B 323, 367–372 (1994) (cit. on p. 14).

[46] R. Creswick et al., ‘Theory for the direct detection of solar axions by coherent primakoff
conversion in germanium detectors’, Physics Letters B 427, 235–240 (1998) (cit. on p. 14).

https://doi.org/10.1088/1748-0221/8/09/t09001
https://doi.org/10.1088/1748-0221/8/09/t09001
https://doi.org/10.1016/j.dark.2016.01.003
https://doi.org/10.1016/j.dark.2016.01.003
https://doi.org/10.1016/0370-2693(86)90869-5
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1063/1.4986871
https://doi.org/10.1103/physrevlett.113.161801
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/physrevd.39.2089
https://doi.org/10.1103/physrevd.39.2089
https://doi.org/10.1103/physrevlett.94.121301
https://doi.org/10.1103/physrevlett.94.121301
https://doi.org/10.1088/1748-0221/9/05/t05002
https://doi.org/10.1016/j.physletb.2011.06.064
https://doi.org/10.1103/physrevd.96.115001
https://doi.org/10.1103/physrevd.96.115001
https://doi.org/10.1016/0370-2693(94)91233-5
https://doi.org/10.1016/0370-2693(94)91233-5
https://doi.org/10.1016/s0370-2693(98)00183-x


120 BIBLIOGRAPHY

[47] F. T. Avignone et al., ‘Experimental search for solar axions via coherent primakoff conversion
in a germanium spectrometer’, Physical Review Letters 81, 5068–5071 (1998) (cit. on p. 14).

[48] A. Morales, ‘Particle dark matter and solar axion searches with a small germanium detector
at the canfranc underground laboratory’, Astroparticle Physics 16, 325–332 (2002) (cit. on
p. 14).

[49] K. Abe et al., ‘Search for solar axions in XMASS, a large liquid-xenon detector’, Physics
Letters B 724, [Erratum: Phys. Rev.D95,no.2,029904(2017)]., 46–50 (2013) (cit. on p. 15).

[50] C. Fu et al., ‘Limits on axion couplings from the first 80 days of data of the PandaX-II
experiment’, Physical Review Letters 119, 181806 (2017) (cit. on p. 15).

[51] D. Akerib et al., ‘First searches for axions and axionlike particles with the LUX experiment’,
Physical Review Letters 118, 261301 (2017) (cit. on p. 15).

[52] S. J. Asztalos et al., ‘Improved rf cavity search for halo axions’, Physical Review D 69, 011101
(2004) (cit. on p. 16).

[53] J. E. Kim, ‘Weak-interaction singlet and strong CP invariance’, Phys. Rev. Lett. 43, 103–107
(1979) (cit. on p. 16).

[54] M. Shifman, A. Vainshtein, and V. Zakharov, ‘Can confinement ensure natural CP invariance
of strong interactions?’, Nuclear Physics B 166, 493–506 (1980) (cit. on p. 16).

[55] M. Dine, W. Fischler, and M. Srednicki, ‘A simple solution to the strong CP problem with a
harmless axion’, Physics Letters B 104, 199–202 (1981) (cit. on p. 16).

[56] A. P. Zhitnitskii, ‘Possible suppression of axion-hadron interactions’, Sov. J. Nucl. Phys.
(Engl. Transl.); (United States) (1980) (cit. on p. 16).

[57] B. M. Brubaker et al., ‘First results from a microwave cavity axion search at 24 µeV’, Phys.
Rev. Lett. 118, 061302 (2017) (cit. on p. 16).

[58] K. M. Backes et al., ‘A quantum enhanced search for dark matter axions’, Nature 590, 238–
242 (2021) (cit. on p. 16).

[59] B. T. McAllister et al., ‘The ORGAN experiment: an axion haloscope above 15 GHz’, Physics
of the Dark Universe 18, 67–72 (2017) (cit. on p. 16).

[60] D. Alesini et al., ‘Search for invisible axion dark matter of mass ma “ 43 µeV with the
quax–aγ experiment’, Phys. Rev. D 103, 102004 (2021) (cit. on p. 16).

[61] D. Horns et al., ‘Searching for WISPy cold dark matter with a dish antenna’, Journal of
Cosmology and Astroparticle Physics 2013, 016–016 (2013) (cit. on p. 17).

[62] A. Caldwell et al. (MADMAX Working Group), ‘Dielectric haloscopes: a new way to detect
axion dark matter’, Phys. Rev. Lett. 118, 091801 (2017) (cit. on p. 17).

[63] P. Sikivie, N. Sullivan, and D. B. Tanner, ‘Proposal for axion dark matter detection using an
LC circuit’, Phys. Rev. Lett. 112, 131301 (2014) (cit. on p. 17).

https://doi.org/10.1103/physrevlett.81.5068
https://doi.org/10.1016/s0927-6505(01)00117-7
https://doi.org/10.1016/j.physletb.2013.05.060
https://doi.org/10.1016/j.physletb.2013.05.060
https://doi.org/10.1103/physrevlett.119.181806
https://doi.org/10.1103/physrevlett.118.261301
https://doi.org/10.1103/physrevd.69.011101
https://doi.org/10.1103/physrevd.69.011101
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://www.osti.gov/biblio/7063072
https://www.osti.gov/biblio/7063072
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1103/PhysRevD.103.102004
https://doi.org/10.1088/1475-7516/2013/04/016
https://doi.org/10.1088/1475-7516/2013/04/016
https://doi.org/10.1103/PhysRevLett.118.091801
https://doi.org/10.1103/PhysRevLett.112.131301


BIBLIOGRAPHY 121

[64] J. L. Ouellet et al., ‘First results from abracadabra-10 cm: a search for sub-µeV axion dark
matter’, Phys. Rev. Lett. 122, 121802 (2019) (cit. on p. 17).

[65] A. V. Gramolin et al., ‘Search for axion-like dark matter with ferromagnets’, Nature Physics
17, 79–84 (2020) (cit. on p. 17).

[66] N. Crisosto et al., ‘ADMX SLIC: results from a superconducting LC circuit investigating cold
axions’, Physical Review Letters 124, 241101 (2020) (cit. on p. 17).

[67] J. A. Devlin et al., ‘Constraints on the coupling between axionlike dark matter and photons
using an antiproton superconducting tuned detection circuit in a cryogenic penning trap’,
Physical Review Letters 126, 041301 (2021) (cit. on p. 17).

[68] M. Lawson et al., ‘Tunable axion plasma haloscopes’, Phys. Rev. Lett. 123, 141802 (2019)
(cit. on p. 17).

[69] G. Rybka et al., ‘Search for dark matter axions with the orpheus experiment’, Physical Review
D 91, 011701 (2015) (cit. on p. 17).

[70] H. H. Barschall and W. Haeberli, eds., The madison convention, polarization phenomena in
nuclear reactions, https ://www.osti .gov/biblio/4726823 (University of Wisconsin Press,
Madison, WI, 1971) (cit. on p. 22).

[71] K. S. Krane, ‘The force between nucleons’, in Introductory nuclear physics (Wiley, 1987)
Chap. 2, p. 845 (cit. on pp. 22, 24).

[72] G. G. Ohlsen and P. Keaton, ‘Techniques for measurement of and spin-1 polarization analyzing
tensors’, Nuclear Instruments and Methods 109, 41–59 (1973) (cit. on p. 23).

[73] V. Bargmann, L. Michel, and V. L. Telegdi, ‘Precession of the polarization of particles moving
in a homogeneous electromagnetic field’, Phys. Rev. Lett. 2, 435–436 (1959) (cit. on p. 26).

[74] T. Fukuyama and A. J. Silenko, ‘Derivation of Generalized Thomas-Bargmann-Michel-Telegdi
Equation for a Particle with Electric Dipole Moment’, Int. J. Mod. Phys. A28, 1350147 (2013)
(cit. on p. 26).

[75] B. W. Montague, ‘Polarized beams in high energy storage rings’, Physics Reports 113, 1–96
(1984) (cit. on p. 27).

[76] A. J. Silenko, Relativistic spin dynamics conditioned by dark matter axions, 2022 (cit. on
pp. 27, 99–100).

[77] G. Guidoboni, ‘Spin Coherence Time studies for the storage ring EDM search’, PhD thesis
(Ferrara U., 2013) (cit. on p. 34).

[78] J. Pretz and on behalf of the JEDI collaboration, ‘Measurement of permanent electric dipole
moments of charged hadrons in storage rings’, Hyperfine Interactions 214, 111–117 (2013)
(cit. on p. 35).

https://doi.org/10.1103/PhysRevLett.122.121802
https://doi.org/10.1038/s41567-020-1006-6
https://doi.org/10.1038/s41567-020-1006-6
https://doi.org/10.1103/physrevlett.124.241101
https://doi.org/10.1103/physrevlett.126.041301
https://doi.org/10.1103/PhysRevLett.123.141802
https://doi.org/10.1103/physrevd.91.011701
https://doi.org/10.1103/physrevd.91.011701
https://www.osti.gov/biblio/4726823
https://doi.org/10.1016/0029-554x(73)90450-3
https://doi.org/10.1103/PhysRevLett.2.435
https://doi.org/10.1142/S0217751X13501479
https://doi.org/10.1016/0370-1573(84)90031-0
https://doi.org/10.1016/0370-1573(84)90031-0
https://doi.org/10.1007/s10751-013-0799-4


122 BIBLIOGRAPHY

[79] D. A. Edwards and M. J. Syphers, ‘Acceleration and phase stability’, in An introduction
to the physics of high energy accelerators (John Wiley Sons, Ltd, 1993) Chap. 2, pp. 18–56
(cit. on p. 35).

[80] K. Wille, The physics of particle accelerators, An introduction (Oxford University Press, USA,
2001), p. 328 (cit. on p. 35).

[81] G. Guidoboni et al. (JEDI Collaboration), ‘How to reach a thousand-second in-plane polar-
ization lifetime with 0.97´GeV{c deuterons in a storage ring’, Phys. Rev. Lett. 117, 054801
(2016) (cit. on p. 36).

[82] G. Guidoboni et al. (JEDI Collaboration), ‘Connection between zero chromaticity and long
in-plane polarization lifetime in a magnetic storage ring’, Phys. Rev. Accel. Beams 21, 024201
(2018) (cit. on pp. 36, 50).

[83] S. Karanth et al., ‘First search for axion-like particles in a storage ring using a polarized
deuteron beam’, inpress (2022) (cit. on pp. 36, 99, 105).

[84] G. I. Budker, ‘An effective method of damping particle oscillations in proton and antiproton
storage rings’, Soviet Atomic Energy 22, 438–440 (1967) (cit. on p. 36).

[85] S. Karanth et al., ‘Influence of electron cooling on the polarization lifetime of a horizontally
polarized storage ring beam’, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 987, 164797 (2021) (cit.
on pp. 36–37, 79).

[86] Jedi collaboration, https ://collaborations . fz - juelich.de/ikp/jedi/ internal/ internal . shtml
(cit. on p. 39).

[87] R. Maier, ‘Cooler synchrotron COSY: Performance and perspectives’, Nucl. Instrum. Meth.
A 390, 1–8 (1997) (cit. on p. 39).

[88] R. Weidmann et al., ‘The polarized ion source for COSY’, Review of Scientific Instruments
67, 1357–1358 (1996) (cit. on p. 40).

[89] D. Chiladze et al., ‘Determination of deuteron beam polarizations at cosy’, Phys. Rev. ST
Accel. Beams 9, 050101 (2006) (cit. on p. 40).

[90] V. S. Morozov et al., ‘Experimental verification of predicted beam-polarization oscillations
near a spin resonance’, Physical Review Letters 100, 054801 (2008) (cit. on p. 41).

[91] P. Benati et al., ‘Synchrotron oscillation effects on an rf-solenoid spin resonance’, Phys. Rev.
ST Accel. Beams 15, 124202 (2012) (cit. on pp. 42, 63).

[92] J. Slim et al., ‘Electromagnetic simulation and design of a novel waveguide rf wien filter for
electric dipole moment measurements of protons and deuterons’, Nucl. Instrum. Meth. A 828,
116–124 (2016) (cit. on pp. 42–43).

https://doi.org/https://doi.org/10.1002/9783527617272.ch2
https://doi.org/https://doi.org/10.1002/9783527617272.ch2
https://doi.org/10.1103/PhysRevLett.117.054801
https://doi.org/10.1103/PhysRevLett.117.054801
https://doi.org/10.1103/PhysRevAccelBeams.21.024201
https://doi.org/10.1103/PhysRevAccelBeams.21.024201
https://doi.org/10.1007/bf01175204
https://doi.org/10.1016/j.nima.2020.164797
https://doi.org/10.1016/j.nima.2020.164797
https://collaborations.fz-juelich.de/ikp/jedi/internal/internal.shtml
https://doi.org/10.1016/S0168-9002(97)00324-0
https://doi.org/10.1016/S0168-9002(97)00324-0
https://doi.org/10.1063/1.1146665
https://doi.org/10.1063/1.1146665
https://doi.org/10.1103/PhysRevSTAB.9.050101
https://doi.org/10.1103/PhysRevSTAB.9.050101
https://doi.org/10.1103/physrevlett.100.054801
https://doi.org/10.1103/PhysRevSTAB.15.124202
https://doi.org/10.1103/PhysRevSTAB.15.124202
https://doi.org/10.1016/j.nima.2016.05.012
https://doi.org/10.1016/j.nima.2016.05.012


BIBLIOGRAPHY 123

[93] F. Müller et al., ‘Measurement of deuteron carbon vector analyzing powers in the kinetic
energy range 170–380 mev’, Eur. Phys. J. A 56, 1–8 (2020) (cit. on p. 44).

[94] S. Karanth et al., ‘Influence of electron cooling on the polarization lifetime of a horizontally
polarized storage ring beam’, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 987, 164797 (2021) (cit.
on p. 47).

[95] E. Stephenson (JEDI), ‘A Search for Axion-like Particles with a Horizontally Polarized Beam
In a Storage Ring’, PoS PSTP2019, edited by J. Pierce et al., 018 (2020) (cit. on p. 47).

[96] M. Froissart and R. Stora, ‘Depolarisation d’un faisceau de protons polarises dans un syn-
chrotron’, Nuclear Instruments and Methods 7, 297–305 (1960) (cit. on p. 49).

[97] P. Benati et al., ‘Erratum: Synchrotron oscillation effects on an rf-solenoid spin resonance
[Phys. Rev. ST Accel. Beams 15, 124202 (2012)]’, Phys. Rev. ST Accel. Beams 16, 049901
(2013) (cit. on p. 63).

[98] R. Brun and F. Rademakers, ROOT — an object oriented data analysis framework, Apr.
1997 (cit. on p. 79).

[99] JEDI Collaboration, Dataset from the ALP search by JEDI Collaboration, experiment April
2019, version v1.0, (DOI not yet publically accessible, private url: https://data.fz-juelich.
de/privateurl.xhtml?token=b84e3bd8-2bdc-4b68-9a3a-ceed6c03fe04 - do not publish.), June
2022 (cit. on p. 79).

[100] G. J. Feldman and R. D. Cousins, ‘Unified approach to the classical statistical analysis of
small signals’, Phys. Rev. D 57, 3873–3889 (1998) (cit. on pp. 79, 89, 91, 95).

[101] Z. Bagdasarian et al., ‘Measuring the polarization of a rapidly precessing deuteron beam’,
Phys. Rev. ST Accel. Beams 17, 052803 (2014) (cit. on p. 79).

[102] D. Eversmann et al. (JEDI collaboration), ‘New method for a continuous determination of
the spin tune in storage rings and implications for precision experiments’, Phys. Rev. Lett.
115, 094801 (2015) (cit. on p. 79).

[103] D. Eversmann, J. Pretz, and M. Rosenthal, ‘Amplitude estimation of a sine function based
on confidence intervals and bayes’ theorem’, Journal of Instrumentation 11, P05003–P05003
(2016) (cit. on pp. 89–90).

[104] S. Plaszczynski et al., ‘A novel estimator of the polarization amplitude from normally dis-
tributed Stokes parameters’, Monthly Notices of the Royal Astronomical Society 439, 4048–
4056 (2014) (cit. on p. 89).

[105] S. Rice, ‘Mathematical analysis of random noise’, Bell System Technical Journal 24, 46–156
(1945) (cit. on p. 90).

[106] T. M. Karbach, ‘Feldman-cousins confidence levels - toy mc method’, (2011) (cit. on p. 93).

https://doi.org/10.1140/EPJA/S10050-020-00215-8
https://doi.org/10.1016/j.nima.2020.164797
https://doi.org/10.1016/j.nima.2020.164797
https://doi.org/10.22323/1.379.0018
https://doi.org/10.1016/0029-554x(60)90033-1
https://doi.org/10.1103/PhysRevSTAB.16.049901
https://doi.org/10.1103/PhysRevSTAB.16.049901
https://data.fz-juelich.de/privateurl.xhtml?token=b84e3bd8-2bdc-4b68-9a3a-ceed6c03fe04
https://data.fz-juelich.de/privateurl.xhtml?token=b84e3bd8-2bdc-4b68-9a3a-ceed6c03fe04
https://doi.org/10.1103/PhysRevD.57.3873
https://doi.org/10.1103/PhysRevSTAB.17.052803
https://doi.org/10.1103/PhysRevLett.115.094801
https://doi.org/10.1103/PhysRevLett.115.094801
https://doi.org/10.1088/1748-0221/11/05/p05003
https://doi.org/10.1088/1748-0221/11/05/p05003
https://doi.org/10.1093/mnras/stu270
https://doi.org/10.1093/mnras/stu270
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x
https://doi.org/10.1002/j.1538-7305.1945.tb00453.x


124 BIBLIOGRAPHY

[107] P. V. Vorob’ev, I. V. Kolokolov, and V. F. Fogel, ‘Ferromagnetic detector of (pseudo)Goldstone
bosons’, JETP Lett. 50, 65–67 (1989) (cit. on p. 100).

[108] C. O’Hare, Cajohare/axionlimits: axionlimits, https : / / cajohare . github . io / AxionLimits/,
version v1.0, July 2020 (cit. on pp. 103–106, 108).

[109] C. Abel et al., ‘Search for axionlike dark matter through nuclear spin precession in electric
and magnetic fields’, Physical Review X 7, 041034 (2017) (cit. on pp. 103–108).

[110] D. Aybas et al., ‘Search for axionlike dark matter using solid-state nuclear magnetic reso-
nance’, Phys. Rev. Lett. 126, 141802 (2021) (cit. on pp. 103–104, 107).

[111] I. Schulthess et al., ‘New limit on axionlike dark matter using cold neutrons’, Physical Review
Letters 129, 191801 (2022) (cit. on pp. 103–106).

[112] T. S. Roussy et al., ‘Experimental constraint on axionlike particles over seven orders of mag-
nitude in mass’, Physical Review Letters 126, 171301 (2021) (cit. on pp. 103–106).

[113] N. Bar, K. Blum, and G. D’Amico, ‘Is there a supernova bound on axions?’, Physical Review
D 101, 123025 (2020) (cit. on pp. 103–104, 107).

[114] L. Caloni et al., ‘Novel cosmological bounds on thermally-produced axion-like particles’, Jour-
nal of Cosmology and Astroparticle Physics 2022, 021 (2022) (cit. on pp. 103–104).

[115] A. Hook and J. Huang, ‘Probing axions with neutron star inspirals and other stellar processes’,
Journal of High Energy Physics 2018, 10.1007/jhep06(2018)036 (2018) (cit. on p. 106).

[116] L. D. Luzio et al., ‘An even lighter QCD axion’, Journal of High Energy Physics 2021, 10.
1007/jhep05(2021)184 (2021) (cit. on p. 106).

[117] K. Blum et al., ‘Constraining axion dark matter with big bang nucleosynthesis’, Physics
Letters B 737, 30–33 (2014) (cit. on p. 106).

[118] G. G. Raffelt, ‘Astrophysical axion bounds’, in Lecture notes in physics (Springer Berlin
Heidelberg, 2008), pp. 51–71 (cit. on p. 107).

[119] P. Carenza et al., ‘Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung’,
Journal of Cosmology and Astroparticle Physics 2019, 016–016 (2019) (cit. on pp. 107–108).

[120] D. F. J. Kimball et al., ‘Overview of the cosmic axion spin precession experiment (CASPEr)’,
in Microwave cavities and detectors for axion research (Springer International Publishing,
2020), pp. 105–121 (cit. on p. 108).

[121] A. Garcon et al., ‘Constraints on bosonic dark matter from ultralow-field nuclear magnetic
resonance’, Science Advances 5, 10.1126/sciadv.aax4539 (2019) (cit. on p. 108).

[122] I. M. Bloch et al., ‘Axion-like relics: new constraints from old comagnetometer data’, Journal
of High Energy Physics 2020, 10.1007/jhep01(2020)167 (2020) (cit. on p. 108).

[123] I. M. Bloch et al., ‘New constraints on axion-like dark matter using a floquet quantum detec-
tor’, Science Advances 8, 10.1126/sciadv.abl8919 (2022) (cit. on p. 108).

%7Bhttp://jetpletters.ru/ps/1125/article_17041.shtml%7D
https://cajohare.github.io/AxionLimits/
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1103/PhysRevLett.126.141802
https://doi.org/10.1103/physrevlett.129.191801
https://doi.org/10.1103/physrevlett.129.191801
https://doi.org/10.1103/physrevlett.126.171301
https://doi.org/10.1103/physrevd.101.123025
https://doi.org/10.1103/physrevd.101.123025
https://doi.org/10.1088/1475-7516/2022/09/021
https://doi.org/10.1088/1475-7516/2022/09/021
https://doi.org/10.1007/jhep06(2018)036
https://doi.org/10.1007/jhep06(2018)036
https://doi.org/10.1007/jhep05(2021)184
https://doi.org/10.1007/jhep05(2021)184
https://doi.org/10.1007/jhep05(2021)184
https://doi.org/10.1007/jhep05(2021)184
https://doi.org/10.1016/j.physletb.2014.07.059
https://doi.org/10.1016/j.physletb.2014.07.059
https://doi.org/10.1007/978-3-540-73518-2_3
https://doi.org/10.1088/1475-7516/2019/10/016
https://doi.org/10.1007/978-3-030-43761-9_13
https://doi.org/10.1126/sciadv.aax4539
https://doi.org/10.1126/sciadv.aax4539
https://doi.org/10.1007/jhep01(2020)167
https://doi.org/10.1007/jhep01(2020)167
https://doi.org/10.1007/jhep01(2020)167
https://doi.org/10.1126/sciadv.abl8919
https://doi.org/10.1126/sciadv.abl8919


BIBLIOGRAPHY 125

[124] E. G. Adelberger et al., ‘Particle-physics implications of a recent test of the gravitational
inverse-square law’, Physical Review Letters 98, 131104 (2007) (cit. on p. 108).

[125] G. Vasilakis et al., ‘Limits on new long range nuclear spin-dependent forces set with a k-he3
comagnetometer’, Physical Review Letters 103, 261801 (2009) (cit. on p. 108).

[126] A. Bhusal, N. Houston, and T. Li, ‘Searching for solar axions using data from the sudbury
neutrino observatory’, Physical Review Letters 126, 091601 (2021) (cit. on p. 108).

[127] M. Buschmann et al., ‘Upper limit on the QCD axion mass from isolated neutron star cooling’,
Physical Review Letters 128, 091102 (2022) (cit. on p. 108).

[128] F. Abusaif et al., Storage ring to search for electric dipole moments of charged particles :
feasibility study, CERN Yellow Reports. Monographs (CERN, Geneva, 2021), IX, [2], 246
(cit. on p. 110).

[129] J. Pretz et al., ‘Statistical sensitivity estimates for oscillating electric dipole moment measure-
ments in storage rings’, The European Physical Journal C 80, 10.1140/epjc/s10052-020-7664-9
(2020) (cit. on p. 110).

https://doi.org/10.1103/physrevlett.98.131104
https://doi.org/10.1103/physrevlett.103.261801
https://doi.org/10.1103/physrevlett.126.091601
https://doi.org/10.1103/physrevlett.128.091102
https://doi.org/10.1140/epjc/s10052-020-7664-9
https://doi.org/10.1140/epjc/s10052-020-7664-9
https://doi.org/10.1140/epjc/s10052-020-7664-9

	Abstract
	Introduction
	Background and Motivation
	Physics case for axions
	Strong CP problem
	Dark matter candidate

	Interaction of axions
	Interaction with photons
	Interaction with gluons
	Interaction with nucleon EDM
	Interaction with nucleons

	Axion detection techniques
	Purely lab experiments
	Detection of solar axions
	Detection of dark matter axions
	Storage ring experiment


	Spin and polarisation
	Spin
	Polarisation

	Polarisation measurement
	Spin dynamics
	Spin precession of relativistic particles


	How to search for axion like particles?
	Resonance and polarisation build-up
	Method
	Prerequisites
	Long spin coherence time
	The ALP phase problem


	Beam preparation and polarimetry
	Cooler Synchrotron COSY
	Beam production and injection to COSY
	Beam development and spin manipulation

	WASA polarimeter

	Experiment
	The one-time setup
	RF solenoid resonance frequency and spin flip
	Long spin coherence time using sextupole scans

	Frequency scans
	Beam preparation
	Frequency ramps for ALP scans

	RF Wien filter tests

	Simulations
	No-lattice model
	Bunch IPP phase
	Sensitivity calibration—axions
	WF calibration

	Data analysis
	Calculation of In-plane polarisation
	Spin coherence time

	In search of vertical polarisation jump
	RF Wien filter scan analysis
	ALP scan analysis

	Confidence Interval
	FC algorithm
	Confidence intervals for multiple cycle analysis


	Results and discussion
	Oscillating EDM limits
	Limits of various ALP couplings

	Summary and outlook
	Appendix A

