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In particle physics the electric dipole moment (EDM) plays an important role, be-
cause it violates parity (P) conservation and time reversal (T) invariance. Under the
assumption that the CPT symmetry is preserved by all physical phenomena, violation
of the time reversal invariance implies CP violation.
The universe as we know it is dominated by baryons, which is unfolded by the domi-
nance of matter observed by several experiments like COBE or WMAP [1]. The latter
experiment observed a baryon asymmetry parameter of

η = nB − nB̄
nγ

= (6.01± 0.3) · 10−10. (0.1)

In 1967 Andrei Sakharov formulated three necessary conditions of a baryon-generating
interaction to produce more matter than antimatter:[2]

• Baryon number B violation

• C-symmetry and CP-symmetry violation

• Interactions out of thermal equilibrium

The standard model (SM) predictions for the EDM of nucleons are between
10−33 and 10−31e · cm [3] and therefore much too small to be detected with experi-
ments which are planned in the nearer future. However, the CP violation in the SM is
many orders of magnitude too small to explain the matter and anti-matter asymmetry
in the universe, thus measuring an EDM not compatible with the SM could result into
a better understanding of the matter dominated universe.

Over the years a lot of experiments searching for a non-vanishing EDM in systems
without any electromagnetic charge, such as neutrons or atoms, were performed. One
of the most ambitious attempts is the nEDM experiment at the Paul Scherrer Insitut,
where ultra cold neutrons are used to measure an EDM of the magnitude 10−28 e · cm
[4]. Another attempt detecting SM violating EDMs can be realized by measuring spin
shifts of charged particles stored in a storage ring. For this purpose, a new collab-
oration JEDI was founded to design possible precursor experiments at the COoler
SYnchrotron COSY at Juelich and to study systematics of a future EDM experiment
[5].

One important requirement to measure the small spin shifts in the horizontal plane
due to an EDM effect is a long coherence time of the spin vectors of the particles in
the beam. The subject of this thesis is to study and to discuss the spin coherence
time (SCT) for different settings of COSY.
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1 Introduction

The standard model of particle physics is very successful in describing the known
elementary particles and their interactions. However, this framework is not able to
explain important questions concerning the physical nature of observed processes like
the violation of CP symmetry. Up till now, CP violation is the only known mechanism
which could explain the matter-antimatter asymmetry observed in the universe. To
resolve this problem speculative models were developed, which often included partic-
ularly symmetry breaking. A permanent electric dipole moment EDM of fundamental
or non degenerated particles represents an excellent probe of physics beyond the stan-
dard model, e.g. super-symmetric extensions of the standard model (SUSY) [6].

1.1 EDM

Figure 1.1: Illustration of the time re-
versal symmetry and parity
breaking of a permanent par-
ticle EDM

The violation of parity P and time re-
versal T symmetry is illustrated in a fig-
urative way in fig. 1.1. The symme-
try breaking is understandable by align-
ing the magnetic dipole moment (MDM)
µ to the hypothetical permanent electric
dipole moment (EDM) d. Under parity
transformation the EDM changes its di-
rection but not the MDM, whereas un-
der time reversal the behavior of the two
quantities is the opposite way around.
Since the resulting system is not symmet-
ric to the initial system under P and T
transformation, the two symmetries are
violated due to the implementation of
an EDM. Assuming also CPT symmetry,
which is approved by all physical experi-
ments till this day, breaking time reversal
implies a violation of the combined sym-
metry CP.

In the standard model CP violation is in-
cluded by the CP-violating complex phase
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in the CKM matrix and has been observed in several weak interaction experiments
with neutral kaons [7] and B mesons [8] (in 2011 a first indication of CP violation
in decays of neutral D mesons was published by LHCb). However, the amount of
CP-violation is too small to be a candidate of explaining the baryogenesis in the early
universe. The SM predictions of a proton or neutron EDM due to this CP-violation is
in the order of |dp,n| ≈ 10−32e · cm, which is too small to be detected by experiments
in the foreseen future. However, SUSY models generally lead to a large CP-violation,
which would reveal an EDM in the range of 10−25e · cm and 10−28e · cm.

Figure 1.2: Upper limits of the neutron
EDM with the predictions
from SUSY and SM

Many experiments searching for a neutron
EDM were performed in the last decades.
In figure 1.2 the historical progression
of the upper limit of the neutron EDM
is shown with the predictions stemming
from SUSY and the SM. The current up-
per limit value 10−26e · cm was published
in 2006 by the Insitut Laue-Langevin in
Grenoble, France [9]. As a result some
parameters from SUSY models could be
excluded or constrained and over the next
10 years experiments aiming at improving
the upper limit down to a sensitivity of
10−28e · cm.

Since the current upper limits of the pro-
ton EDM dp < 10−24 coming from experi-
ments with 199Hg-atoms [10], a direct measurement could improve the limit. Therefore
two possible experiments were proposed. One at BNL to measure the EDM of a proton
in a pure electric storage ring [11] and one at Forschungszentrum Juelich providing a
electric and magnetic ring to investigate the EDM of protons, deuterons and helion
[12]. Both potential experiments are designed to reach a sensitivity of d ≈ 10−29e · cm.
To push the upper limit to this level will not only trigger new constraints to SUSY, but
also could improve our understanding of the QCD CP-violating Θ-parameter, which
gives a value of the CP-violation in strong interactions. As there is no known reason
of conserving CP in QCD, this is one important question in physics.

To perform an experiment with such a high sensitivity a lot of effort has to be done
by studying systematics. The best place to do such investigations is the cooler syn-
chrotron COSY at Forschungszentrum Juelich, which is introduced in the next chapter.
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1.2 Cooler Synchrotron COSY

The COoler SYnchrotron COSY at Forschungszentrum Juelich is a middle energy
storage ring with a beam momentum range from 0.3 to 3.7 GeV and a circumference
of 183.4m. An overview of the storage ring is given in figure 1.3, where all external
and internal components are shown.

Originally COSY was designed to study proton-proton interactions but nowadays it
is also possible to store deuterons in the ring making it possible to carry out studies
about systematics of the potential polarimetry which will be used for the final EDM
ring. The important structures of COSY for studying such effects are the following:

• EDDA is the polarimeter to measure the polarization of the beam. It will be
discussed in more detail in the following sections.

• Beam-cooling: COSY provides to methods to cool the beam (electron cooling
and stochastic cooling), i.e. to reduce the emittance of the beam.

• Heating: The beam can be expanded in the horizontal plane by an electric dipole
field providing stochastically particle momentum kicks.

• The polarized ion source provides polarized deuterons with a very good efficiency.

• Sextupole magnets are used to reduce the chromaticity of the beam and to
increase the spin coherence time.

• The RF solenoid manipulates the spin of the particles in the beam.
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Figure 1.3: Schematic view of the COSY storage ring at Forschungszentrum Juelich.

4



2 Spindynamics in Storage Rings

2.1 Spindynamics

The spindynamic of a particle in a storage ring is determined by the external magnetic
and electric field provided by the accelerator. In a planar ring the spin precesses about
the vertical axis, while the vertical polarization of the particles is a conserved quantity.
Due to the periodic influence of the electromagnetic forces on the particles one find
energy depended spin resonances which can cause a depolarization of the polarized
beam during the raising of the beam energy.

2.1.1 Magnetic and Electric Dipole Moment

In presence of a magnetic ~B and an electric ~E field the motion of the spin ~S of a
charged particle at rest is given by [13]:

d~S

dt
= ~µ× ~B + ~d× ~E (2.1)

The magnetic moment ~µ and the EDM vector ~d are proportional to and aligned along
the direction of the particle spin.

~µ = g
q

2m
~S (2.2)

~d = η
q

2m
~S (2.3)

The proportional factor for the magnetic moment consists of the mass of the particle
m, the electric charge q and the Landé g-factor. The quantity η in the EDM expression
is analogous to the g value for the magnetic dipole moment. Furthermore the EDM
vector ~d is proportional to the charge of the particle q and inversely proportional to
the mass m.

For a point-like particle with spin s = 1
2 the Dirac equation provides g = 2. Due

to contributions of quantum mechanical corrections, expressed by Feynman diagrams
with loops, additional contribution to the magnetic moments occur for elementary
particles. The difference is called the anomalous magnetic moment, denoted as G and
defined as:

G = g − 2
2 (2.4)

5



For an electron G is very small (G = 0.00115967) [14], whereas composite particles like
hadrons often have a huge anomalous magnetic moment originating from the gluon-
quark interactions. The following table shows the G-values for protons, deuterons and
helion:

G g
proton 1.7928 5.5856
deuteron -0.1429 1.7142
helion -4.1839 -6.3678

2.1.2 Thomas Bargmann-Michel-Telegdi (T-BMT) Equation

The spin motion in a magnetic field is determined by

d~S

dt
= g

q

2m
~S × ~B. (2.5)

applied in the Center-of-Mass System CMS of the particle. For spin calculations in
storage rings this formula is not suitable, because the magnetic fields are known in
the laboratory system. The transformation of the magnetic field into the laboratory
frame yields to the Thomas-BMT equation [15]:

d~S

dt
= ~S × ~ΩT−BMT with (2.6)

~ΩT−BMT = q

m

[(
G+ 1

γ

)
~B⊥ + 1 +G

γ
~B‖ −

(
G+ 1

γ + 1

)
~β × ~E

]
(2.7)

where γ = 1√
1−β2

describes the Lorentz energy factor, ~B⊥ and ~B‖ are the magnetic

field components perpendicular and parallel to the momentum of the particle. ~Ω
represents the angular velocity of the spin precession. If one only takes into account
transverse magnetic fields in the ring (~β · ~B = 0) the angular precession simplifies to:

~ΩT−BMT = q

m

[(
G+ 1

γ

)
~B −

(
G+ 1

γ + 1

)
~β × ~E

]
(2.8)

2.1.3 Spin Precession extended by EDM

The equation of the spin motion with allowance for the EDM can be obtained by
modifying the T-BMT equation.

~Ω = ~ΩT−BMT + ~ΩEDM (2.9)

~ΩEDM = η
q

2m

(
~E − γ

γ + 1
~β(~β · ~E) + ~β × ~B

)
(2.10)
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If rf cavities are not used (~β · ~E = 0), the parallel electric field component is neglectable
thus the term for the spin precession induced by an EDM simplifies to:

~ΩEDM = η
q

2m
(
~E + ~β × ~B

)
(2.11)

Finally the angular velocity of the spin precession for vanishing parallel electric and
magnetic fields yields to:

~Ω = q

m

[(
G+ 1

γ

)
~B −

(
G+ 1

γ + 1

)
~β × ~E + η

2
(
~E + ~β × ~B

)]
(2.12)

Based on this formula several experimental methods for measuring the EDM can
be derived, but one has to take into account that the effect of the EDM in ordinary
electromagnetic storage rings is small compared to the influence of the magnetic dipole
moment.

2.1.4 Invariant Spin Field

The invariant spin field ~n(~z, θ) depends on the position ~z = (x, y, z, px, py, pz) of the
particle in the six-dimensional phase-space and the azimuthal position θ in the ring.
The invariant spin field is a special solution to the Thomas-BMT equation 2.8 with
the property that

~n(~z, θ + 2π) = ~n(~z, θ). (2.13)

A particle with the initial spin ~Si at the phase-space position ~zi has the final spin ~Sf
after it has been transported to the phase-space point ~zf during one turn in a circular
storage ring. If Tt=1 is the spin transfer matrix for one turn, it exists a spin field
vector ~n(~zi, θ) for every phase-space point ~zi such that

~n(~zf , θ) = Tt=1(~zi, θ)~n(~zi, θ). (2.14)

For a reference particle with ~zi = ~zf = 0 the corresponding invariant spin field vector
is usually called invariant spin axis or the spin closed-orbit ~n0(θ).

2.2 Techniques for EDM Searches in Storage Rings

2.2.1 Siberian Snake as a Spin Rotator

A Siberian snake provides a stable longitudinal spin-closed orbit in a target sec-
tion opposite the snake [13]. In figure 2.1 the concept of a proton EDM mea-
surement using a Siberian snake is shown. The spin-closed orbit is aligned along
the direction of motion of the beam in the straight section opposite the snake
(top panel). In the middle and lower panel one sees additional electric radio fre-
quency RF E-field systems in front and behind the snake. Due to the torque
~d × ~E a certain degree of depolarization arises which is proportional to the EDM.
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Figure 2.1: Concept of Siberian snake

For odd turns in the machine, an
electric RF E-field perpendicu-
lar to the ring plane rotates the
stable spin axis by a small angle
α away from the longitudinal di-
rection (middle panel). For even
turns the RF E-field is reversed
and the spin-closed orbit is then
rotated by an angle of 2α. Since
the angle is very small α ≈ 10−7,
the number of turns has to be
very large (n ≈ 1010). With this
settings one could reach an up-
per limit for the proton EDM of
dp ≈ 10−17e · cm, which is rather
limited but offers the opportu-
nity for a first direct measurement
of an proton EDM in a storage
ring.

2.2.2 Orlov-Morse-Semertzidis Resonance Method

This method is based on using forced oscillations of particle velocities in resonance with
the spin precession in order to expose the EDM (‘resonance method‘) and alternately
producing two sub-beams with different betatron tunes such that false EDM signals
resulting from the ring imperfections could be corrected [16]. The idea is described
by Orlov,Morse and Semertzidis. The concept describes the injection of sideways
polarized particles into a machine with a vertical invariant spin axis. If one now
oscillates the electric field ~E in the rest frame of the particle in resonance with the
spin planar precession ΩG = GγΩR, one will observe a slow buildup of the vertical
polarization of the particle proportional to the electric dipole moment. ΩR denotes
the revolution frequency ΩR = 2π~v

L of the polarized particle rotating in the storage
ring. As shown in [16] the only way to produce this spin resonance with the help of
such an electric field is to oscillate the particle lab frame velocity ~v. The sensitivity
for a proton EDM is estimated to reach dp = 10−29 e · cm

yr , but one have to challenge
the problem of systematic errors.

2.2.3 Resonance EDM effect with RFE Flipper

This method focuses on a pure vertical ring magnetic field ~B and pure radial electric
flipper field ~E with initial vertical particle spin. The radio-frequency electric flipper
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RFE is installed in a section where the magnetic field vanishes ~B = 0. If a charged
particle passes through the RFE, the spin would precess for a non-vanishing EDM
proportional to the electric field ~E in the RFE and the strength of the electric dipole
moment ~ΩEDM = η q

2m
~E. For every particle pass through the RFE with the length L

the initial vertical Spin ~S‖Sy is tilted and a longitudinal component occurs Sz = Sy ·α
where α = ηEL

β . The so generated longitudinal spin would precess in the magnetic
field of the ring with respect to the momentum vector with the frequency fs = γGfr
where fr denotes the ring frequency. Per single turn the angle of the spin precession
is θs = 2πγG. The EDM effect on this frequency is very tiny, thus the precession will
be not disturbed by that. If one now modulates the electric field in sync with the
precession of the spin the EDM signal would build up.

2.2.4 Frozen Spin Method FSM

Figure 2.2: frozen spin method

The idea of this method is to find the
momentum of the particle where the spin
precession and the momentum vector pre-
cess at the same rate thus the spin is kept
along the momentum direction during the
storage time as it is outlined in figure 2.2
(‘Frozen Spin‘) [17]. A radial electric field
~E in the rest frame on the particle acts
on the EDM vector by precessing it out of
plane and building up a vertical spin com-
ponent. For a vanishing magnetic field
~B = 0 and no parallel electric field com-
ponents ~β · ~E = 0 the spin precession rate
with respect to the momentum vector pre-
cession rate is given by

~Ωa = q

m

( 1
γ2 − 1 −G

)
~β × ~E (2.15)

The so called ‘magic‘ momentum locks the angle, i.e. Ωa = 0, as a function of time
by setting:

1
γ2 − 1 −G = 0 (2.16)

→ γ =
√

1
G

+ 1 (2.17)

This has only a real solution for G > 0, thus one can use the FSM in a ring with
vanishing magnetic fields just for protons. One obtains a momentum for the proton
of

pp = m√
G

= 0.938 GeV√
1.79

= 0.701 GeV. (2.18)
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For negative anomalous moments G < 0 one has to apply a combination of radial
electric and dipole magnetic fields. The required E-field is given approximately by
E ≈ GBβγ2. In the following table the required settings for a ring with a radius
r ≈ 30 are shown [13].

particle p[GeV] E [MV
m ] B[T]

proton 0.701 16.789 0
deuteron 1.000 -3.983 0.160
helium-3 1.285 17.158 -0.051

Since not all particles will be exactly at this “magic” momentum there is going to be
a spread in the spin angles relative to their momentum vectors. In linear order this
spread could be canceled by using an radio-frequency cavity in a straight section in
the ring.

For the resonance and frozen spin method the spin coherence time SCT represents
one of the limiting statistical factors. In the next chapter this quantity is discussed in
more detail.

2.3 Spin Tune and Spin Coherence Time

The spin tune νs = γG describes the number of spin oscillations per turn of the particle
in the storage ring. It is proportional to the Lorentz γ-factor and the anomalous
magnetic moment G of the particle. The spin coherence time τSCT denotes the time

Figure 2.3: Left panel: At injection all spin vectors are aligned and vertical polarized.
Right panel: After some time, the spin vectors get out of phase and fully
populate the cone, but the polarization is not affected

where the spin oscillations of a particle bunch remains in phase. A long τSCT is
achieved when the spin tune among all particles remain approximatively the same.
For different emittance and different momenta particles could have variant spin tunes
and as consequence the spin oscillations becomes increasingly off-phase, i.e. the angle
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between the spin ~si vector and its corresponding invariant spin field vector ~ni increases.
For N particles the reciprocally spin coherence time denotes

1
τSCT

= 1
N

N∑
j=1

1
~sj ·~nj

d(~sj ·~nj)
dt

. (2.19)

For a vertical polarized beam the polarization is conserved even if the particles are
out of phase (figure 2.3). If the particles are horizontally polarized the decoherence of
the spins leads to an equally distributed spin orientation in the horizontal plane (see
figure 2.4) and therefore the overall beam polarization decreases which aggravates the
measurement of an EDM. For an experiment with a minimal detectable precession of

Figure 2.4: Left panel: At injection all spin vectors are aligned and horizontal polar-
ized. Right panel: After some time, the spin vectors get out of phase and
are fully distributed in the horizontal plane. The longitudinal polarization
vanishes.

θ ≈ 10−6 the storage time can be derived from

θEDM = 2dEt ≈ 5(10−9) rad
s · 10−6 s ≈ 10−15 rad

turn . (2.20)

Assuming an EDM of d ≈ 10−29 e · cm and an electric field of E = 17 MV
m , approx-

imately 109 turns are needed for a measurement of an deuteron EDM, which corre-
sponds to a storage time of t > 1000 s. In chapter 4 the results of the beam time in
May 2012 at COSY are discussed which was focused on increasing the SCT for varying
conditions in the storage ring.
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3 Polarimetry

In this section a short theoretical description of a polarization formalism is given,
followed by an overview of polarimetry techniques and their implementations.

3.1 Formalism of Particle Polarization

The spin of a particle with spin 1
2 can be described in quantum mechanical states by

a Pauli spinor [18],

χ =
(
a1
a2

)
= a1

(
1
0

)
+ a2

(
0
1

)
(3.1)

where the amplitudes a1 and a2 are complex and |a1|2 + |a2|2 = 1. The expectation
value of a spin operator A in the state χ is defined as,

〈A〉 = 〈χ|A|χ〉 = χ†Aχ (3.2)

The corresponding operators for a spin 1
2 particle are the Pauli matrices [19]

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, andσz =

(
1 0
0 −1

)
(3.3)

which yields to the spin three vector

~S = 1
2

 〈σx〉〈σy〉
〈σz〉

 = 1
2

 a∗1a2 + a∗2a1
−ia∗1a2 + ia∗2a1
a∗1a2 + a∗2a1

 (3.4)

This spin three vector can be treated as a classical vector in case of spin precession.
For an ensemble of N particles a set of Pauli spinors can be defined by,

χ(n) =
(
a

(n)
1

a
(n)
2

)
(3.5)

where n runs from 1 to N counting all involved particles. For averaging the spin a
beam spin can be described through the density matrix:

ρ = 1
N


N∑
n=1
|a(n)

1 |
2

N∑
n=1

a
(n)
1 a

(n)∗
2

N∑
n=1

a
(n)
2 a

(n)∗
1

N∑
n=1
|a(n)

2 |
2

, (3.6)
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This matrix represents the direction and the magnitude of the spin expectation of the
particle beam and can be expanded into a combination of Pauli spin operators

ρ = 1
2

I +
3∑

j=x,y,z
pjσj

 (3.7)

where I is the unit matrix

I =
(

1 0
0 1

)
. (3.8)

The pj coefficients represent the spatial components in the x,y and z directions of a
chosen coordinate system. The vector

~p =

 px
py
pz

. (3.9)

can be interpreted as a classical vector representing the polarization of the beam. For
spin 1 particles like deuterons the formalism works in analogy with the spin 1

2 ones.
The difference is that now the spin can have three states: -1, 0 and 1. In consequence
the spinor of the particle has to have three components

χ =

 a1
a2
a3

. (3.10)

The basic angular momentum operators for a spin 1 particle are

Sx = 1√
2

 0 1 0
1 0 1
0 1 0

, Sy = 1√
2

 0 −i 0
i 0 i
0 i 0

, andSz = 1√
2

 1 0 0
0 0 0
0 0 −1


(3.11)

These operators including the 3 × 3 identity matrix are not sufficient to describe
the state of a spin 1 particle completely. Five other Hermitian operators are still
necessary.
A tensor of rank two can be constructed from nine operator products of the spin
component operators Sx, Sy andSz.

T =

 Sx
Sy
Sz

 (
Sx Sy Sz

)
=

 SxSx SxSy SxSz
SySx SySy SySz
SzSx SzSy SzSz

 (3.12)
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In standard Cartesian notation a set of ten operator can be constructed:

I =

 1 0 0
0 1 0
0 0 1



Sx; Sy; Sz

Txy = 3SxSy;Txy = 3SxSz; Tyz = 3SySz;

Txx = 3SxSx − 2I; Tyy = 3SySy − 2I; Tzz = 3SzSz − 2I;

From these ten operators only nine can be independent. Considering the relation

Txx+ Tyy + Tzz =

 0 0 0
0 0 0
0 0 0


one can replace one operator by a pair of the other two which yields in a complete set
of orthogonal operators. The density matrix of an ensemble for spin 1 particles can
now be written as

ρ = 1
3

I +
∑
i

piSi +
∑
i,j

pijTij

 (3.13)

where pi and pij stand for the polarizations associated with each operator.
Typical polarized beam sources that may be used for the deuteron EDM search posses
axial symmetry. In that case all off diagonal elements of ρ are zero. Assuming the z
axis as the symmetry axis equation 3.13 can be simplified to

ρ = 1
3

(
I + pzSz + 1

2pzzTzz
)

(3.14)

One can now identify the vector polarization PV and tensor polarization PT by the
population densities,

PV = pz = ρ+ − ρ−

ρ+ + ρ0 + ρ−
(3.15)

PT = pzz = ρ+ + ρ− − 2ρ0

ρ+ + ρ0 + ρ−
, (3.16)

where ρ+ =
∑
|a(n)

1 |, ρ0 =
∑
|a(n)

2 |, and ρ− =
∑
|a(n)

3 |.
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3.2 EDDA Polarimeter at COSY

Assuming an EDM experiment where the spin is slowly build up from the longi-
tudinal polarization to the vertical direction, one has to sample small changes of
the vertical component (≈ 10−6 per turn). This requires a high sensitivity and a
large analyzing power of the polarimeter and one has to keep the systematic errors
below the signal level. For these requirements the EDDA system located on the
Cooler Synchrotron (COSY) at Jülich was chosen to study systematics and prop-
erties of the polarimeter and the storage ring. The EDDA detector was originally

Figure 3.1: Scheme of the EDDA detector: Internal Cosy beam, beampipe (160mm
diameter, 2mm thick Aluminum tube), inner detector shell with scintil-
lating fibers H, outer detector shell with scintillator bars B, scintillator
semirings R and semirings from scintillating fibers F

designed for measurements of proton-proton elastic scattering excitation functions
for energies from 0.5 to 2.5 GeV [20]. In figure 3.1 a schematic view of EDDA is shown.

Figure 3.2: Carbon target of EDDA

The detector consists of several ring and bar
scintillators for the measurements of φ and θ in
an arrangement that wraps completely around
the beampipe downstream of the target posi-
tion. For the first high efficient investigations
of the detector systematics a thick carbon tar-
get was chosen 3.2. The beam of polarized
deuterons was slowly extracted by moving it
into the target direction. The advantage of
choosing polarized deuterons is the well-known and easy method to polarize them
and that they can simply be measured by an elastic scattering on the carbon target.
The sensitivity and efficiency of a polarimeter like EDDA is discussed in the following
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section. Before discussing the sensitivity one has to define the signal of the elastic
scattering.

3.2.1 Signal

The differential elastic cross section for a polarized deuteron (spin 1 particle) inter-
acting with an unpolarized target is given by [19]

dσ

dΩ(θ, φ, β) = dσunp
dΩ (θ)[(1+2

√
3

2 PV sin β sinφ iT11(θ)

+ 1
2
√

2
PT (3 cos2 β − 1)T20(θ)

−2
√

3
2PT sin β cosβ cosφ T21(θ)

+2
√

3
4 PT sin2 β sin 2φ iT22(θ)],

where PV and PT are the vector respectively tensor polarization (see 3.15 and 3.16)
and further iT11 and T2m stand for the corresponding analyzing powers. dσunp

dΩ denotes
the differential cross section for unpolarized scattering. For a purely vector polarized
beam with I particles per second impinging on a target of thin thickness and a density
ρ, the counting N (i) rate of a detector element i with solid angle Ω(i) is given by

N (i) = Iρ

∫
Ω(i)

dσ

dΩ (θ, φ, β) dΩ (3.17)

= Iρ

∫
Ω(i)

dσunp
dΩ (θ)dΩ +

√
3PV sin β

∫
Ω(i)

[
dσunp
dΩ (θ)iT11(θ) sinφ

]
dΩ (3.18)

= N
(i)
0

[
1 +
√

3PV sin βA(i)
0

]
, (3.19)

with the variables N (i)
0 and A

(i)
0 defined as

N
(i)
0 = Iρ

∫
Ω(i)

dσunp
dΩ (θ) sin θdθdφ, (3.20)

A
(i)
0 = 1

N0

∫
Ω(i)

[
dσunp
dΩ (θ)i11(θ) sinφ

]
sin θdθdφ. (3.21)

The rates for two similar detectors at identical scattering angle θ centered at φ1 = −π
2

and φ2 = π
2 , i.e. left and right of the beam, will be affected in a different way. One

gets sinφ1 = −1 and sinφ2 = 1, so for the counting rates

N(φ1 = −π2 ) = N0
[
1−
√

3PV sin βA0
]
, (3.22)

N(φ2 = π

2 ) = N0
[
1 +
√

3PV sin βA0
]
. (3.23)
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The relative asymmetry A of these rates is a measure of PV and A0

A =
N(π2 )−N(−π

2 )
N(π2 ) +N(−π

2 ) =
√

3PVA0 sin β, (3.24)

i.e. one can determine the vector polarization PV of a particle beam when A0 is known

Figure 3.3: The coordinate system for polarization direction (arrow) based on the
observation of the reaction product in a detector(small box). The beam
travels along the z-axis. The detector position at an angle β defines the
reaction plane and positive x. The quantization axis for the polarization
lies in a direction given by the polar angle θ and φ as measured from the
y axis.

without knowing the particle flux I. The laboratory frame has not to be necessarily
the same as the scattering frame. Usually the z-axis is defined as the beam momentum
axis. The orientation of the spin, which defines the y axis in the scattering frame,
then defines a rotation about the z-axis of the scattering plane with respect to the
laboratory frame (figure 3.3). The azimuthal angle φ of a detector in the laboratory
frame is then shifted by ∆φ compared to the corresponding angle in the scattering
plane. ∆φ is the enclosed angle between the spin plane and the laboratory y-z plane.
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By rotating the plane of figure 3.3 about the z axis the detectors can be placed at
x(φ = π) and -x(φ = 0). In the laboratory frame this setting is sensitive to the vertical
component of the vector polarization PV and its associated analyzing power ALR

ALR = L−R
L+R

= PVA0 sin β cos ∆φ = P yVA0 = εLR → P yV = ALR
A0

. (3.25)

With L respectively R represent the rate in the left and right detector. During the
storage time of the deuterons the size of P yV will uniformly increase proportional to
the EDM.

For a horizontal polarized beam the measurement method works equally with a de-
tector pair placed above and below the beam (φ = −π

2 andφ = π
2 ). The ratio ADU is

then given by

ADU = D − U
D + U

=
√

3PVA0 sin β cos ∆φ = P xVA0 = εDU → P xV = ADU
A0

. (3.26)

where D and U stand for the rates in the “down” and “up” detector, respectively.

3.2.2 Efficiency

The efficiency of a polarimeter is defined as the ratio between the number of scattered
particles used for polarimetry and the number of particle stored in the experiment.
For a single detector element i it can be calculated by

η(i) = N
(i)
0
I

= ρ

∫
Ω(i)

(
dσ

dΩ(i)

)
dΩ. (3.27)

The statistical uncertainty of the asymmetry can be evolved by the propagation of
error as

σ2
ALR

= 4L
2σ2
R +R2σ2

L

(L+R)4 = 4 LR

(L+R)3 . (3.28)

Using the known rates this can be written as

σ2
ALR

= 4N
2
0
[
1− 3(P yV )2A2

0
]

8N3
0

≈ 1
2N0

, (3.29)

for small values of 3(P yV )2A2
0 as it will be in an EDM experiment with deuterons. One

can now calculate the error of P yV as

σ2
P yV

=
σ2
ALR

A2
0

= 1
2N0A2

0
. (3.30)

The dominator of this term is referred to as the figure-of-merit depending on the
scattering cross section and the detector acceptance A0.

FOM(θ) = σunp(θ)A0(θ)2 (3.31)
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Providing a good statistical basis for the measurement the challenge is to find the
best balance between the large cross section at small angles and the large analyzing
powers at large angles. In the next chapter the results of the beam time at COSY in
May 2012 are discussed.
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4 Data Analysis of the Beam Time at
COSY (May 2012)

As described in 2.3 the spin coherence time SCT plays a crucial role in the measure-
ment of a potential EDM. Therefore one goal of the May 2012 beamtime at COSY was
to improve the understanding of the SCT. To study the feasibility of optimizing the
SCT at COSY a bunched beam of horizontal polarized deuterons was stored in the
ring and slowly drifted to a carbon target, so that elastic scattering between deuterons
and the carbon nucleons takes place. The kinetic energy of the deuterons is about
Ekin = 232 MeV, which leads to a beam momentum of p = 0.97 GeV. In this chapter
the techniques and the results of this experiment are presented and discussed.

4.1 Implementation of the Experiment

One important requirement to measure a proton, deuteron or light nuclei EDM is a
high sensitive polarimeter with a very good efficiency. The key to efficient polarimetry
is to interact the beam with a thick target by elastic scattering. Therefore a tube
target made of carbon was designed and placed in front of the detector. Due to
the geometric limitation of the detector system one is limited to a target thickness
of 1.5 cm with an opening of 2.5 cm (see figure 3.2). Slow extraction of the stored
deuteron beam by shifting it into the target, yields to an effective analyzing power of
3Ay

2 = 0.67(4) and an efficiency near η = 10−3, i.e. for every 1000 particles extracted
from the beam, one should be scattered from the target material and recorded for
polarization calculation. In addition one has to monitor any systematic errors arising
from geometric or counting rate changes during the beam store. These requirements
were met in a first study in 2009 with polarized deuterons at COSY. A summary of
these investigations is given in the article [21] by Ed Stephenson.

The EDM signal is the rotation of the polarization from its initial direction parallel
to the velocity. Only the vertical polarization component is stable in a storage ring
thus the polarization will precess in the horizontal plane at a high rate determined by
the spin tune νS = γG. The momentum spread of the beam will quickly decohere the
longitudinal polarization. This first-order problem is solved by bunching the beam,
thus all orbit periods should be the same on average. However, emittance and small
non-linear momentum effects will lead to different path length, changes to γ, and
a spread in the spin tunes of the particles in the bunch. Including beam cooling
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(electron-beam or stochastic) will reduce the emittance and momentum spread. In
addition, sextupole fields or even higher order fields could correct the orbit lengths
of the particles. Since the deuterons are initially injected in the ring with a vertical
polarization, a radio frequency RF solenoid is used to rotate the spin of the particles
into the horizontal plane. To measure the spin coherence time of the particles, the
asymmetry and, thus, the polarization of the beam has to be determined as a function
of time. In the following section the DAQ and the time stamp analysis to extract the
horizontal polarization are discussed.

4.1.1 Data Handling

The data of a turn are taken by starting with a vertically polarized beam, which is
rotated into the horizontal by means of a RF solenoid. Pre-scaled signals from the
RF signals for the solenoid as well as for COSY are put on time-to-digital-converter
TDC. In addition, a signal is provided as soon as both signals are once in the same
phase.

4.1.1.1 Data Format

The precision of the time stamps from the TDC and the system controller is 92.59 ps
with a full range of 6.4µs. The precision, respectively the bin width can be ad-
justed during the set up by using a control parameter hsdiv setting the bin width to
bw = 25 ns · 128

216 ·hsdiv . For the DAQ the parameter was set to hsdiv = 160. Each overflow
of this full range is counted internally up to a maximum range of about 6.7 s (20 bit)
for the TDC and 0.21 s (15 bit) for the system controller, whereas both systems run
synchronized. For time measurements beyond this maximum range the corresponding
offsets have to be counted within the data analysis, thus the signals on the TDC have
to be more frequent than once per 6.7 s and the read out trigger for the DAQ has to
come at least every 0.21 s. With this method one provides a precise time stamp for
every signal since start of the run.

The data are divided in two different data streams within the DAQ using two different
sequences of event numbers. The TDC readout is asynchronously, i.e. whenever
data are available the system controller reads out these data and send them to the
attached readout computer. In addition, whenever a read-out trigger occurs, the
system controller reads out the complete crate including the TDC and sends the data
to the attached computer, as well. The latter event stream contains a time stamp from
the system controller and is synchronized with the rest of the DAQ. Before the data
are analyzed, both data streams are merged together by assigning all asynchronous
data to the next synchronized event.
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4.1.1.2 Time Stamping

For defining the macroscopic time three definitions are used:

• The start of a cycle is defined as the point in time when the polarization bits
change from 0 to a defined value.

• The start of the analysis period is defined as the point in time when the flat top
bits change from 0 to 1. This is used for the analysis of the vertical polarization.

• The horizontal polarization can only be extracted once the phase-match time
stamp between two RFs signals has appeared. Thus, the starting time t = 0
for the horizontal analysis is defined. For the current period, this time stamp
appeared about 6.35 s after the flat top signal.

A usual run consists in general of about 57 cycles, where every cycle lasts for 120 s.
There are three polarization states: two vector polarized PV = −1,+1 and one tensor
polarized beam PT = 0, thus every third cycle is of the same polarization state. The
variable PV,T does not describe the real polarization but stands for initial polarization
state at the beginning of a cycle.
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Figure 4.1: Time distribution TRFCosy of the RF COSY signal

The pre-scaled signal from the RF solenoid is used to time-stamp and count the
number of turns. For this, the difference between two signals TRF,i+1 and TRF,i is
divided by the pre-scale factor nps and the result is used to get the interpolated time
stamps for the turns in between:

Tturn = TRF,i+1 − TRF,i
nps

= TRFCosy
nps

(4.1)
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and

TRF,i,j = TRF,i + j ·Tturn, j = 0...nps − 1, (4.2)

where TRF,i,j denotes the time of the jth turn after TRF,j .

The time of one beam turn TRFCosy is monitored and saved in a histogram. In figure
4.1 an exemplary distribution of the COSY period TRFCosy in nanoseconds is shown.
The frequency fRFCosy of the beam stored in the ring is calculated by

fRFCosy = 1
TRFCosy

= 1
1332.2651 ns ≈ 750.601 kHz (4.3)

The time stamps for the pre-scaled RF solenoid signal are determined in the same way
as the COSY RF period. The measured time TRFSolenoid is also saved in a histogram,
which is plotted in figure 4.2.
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Figure 4.2: Time distribution TRFSolenoid of the RF soneloid signal

In this case one gets for the frequency of the solenoid:

fRFSolenoid = 1
TRFSolenoid

= 1
1147.5401 ns ≈ 871.429 kHz (4.4)

Knowing the time stamp for each turn of the beam Tturn, the relative time of every
polarimeter signal can be extracted, which corresponding to a position within that
turn

tsignal,rel = tsignal − tRF,i,j , (4.5)

with tRF,i,j being the last interpolated RF time stamp before the signal itself. Fig 4.3
shows a plot of the signal time distribution within a turn as function of the macroscopic
cycle time.
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Figure 4.3: Signal time distribution within a turn as function of the macroscopic cycle
time

In figure 4.3 one can see the slow movement of the beam into the target. It is demon-
strated, that at the beginning of the horizontal polarization measurement (t = 40 s)
the number of the scattered deuterons is small and is increasing constantly until the
center of the beam is reached. This is explainable by a spherical beam geometry,
where less particles are located at the edges of the beam profile. If the center of the
beam is moved closer to the target, the rate of scattered deuterons will increase.

4.1.2 RF Solenoid

Figure 4.4: Picture of the RF solenoid op-
erating in COSY on the spin
tune resonance

As mentioned before the RF solenoid (fig-
ure 4.4) was used to shift the initial verti-
cal polarization of the beam into the hor-
izontal plane. The ramp up and ramp
down time of the solenoid is about 200
ms. In fig 4.5 the effect of the solenoid on
the vertical polarization is shown. The
y-axis represents the left-right asymme-
try in the counting rates of the detector,
which corresponds directly to a measure-
ment of the vertical polarization. The fol-
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lowing steps are identifiable in the plot:

• At the beginning of the run the solenoid is turned off and the left-right asym-
metry stays constant. The negative asymmetry denotes a polarization state
PV = −1.

• After about 6.35 s to 13 s the solenoid is activated and the vertical polarization
starts to oscillate. The period is proportional to the strength of the solenoid.

• Then the solenoid is turned off when the vertical polarization vanishes and the
spin is precessing in the horizontal plane, thus there is no variation of the asym-
metry.

• At tcycle ≈ 64 s the solenoid is turned on again and the polarization is rotating
in the vertical plane.
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Figure 4.5: Example of the a vertical polarization measurement

The RF solenoid is operating at the first negative harmonic (H=-1) of the spin tune
frequency

fRFSolenoid = (1− γG) · fRFCosy = (1− νS) · fRFCosy, (4.6)

where 2π · γG describes the angle between the beam momentum and the spin after
one turn in the storage ring. This choice was made to put the frequency in a good
operating range for the solenoid power range. In addition, the spin tune frequency
fνS can be measured by matching it with the RF solenoid system. Only when both
are on the resonance better than 1Hz the oscillation continue with no deterioration
of the amplitude. In the next section the investigation of the vertical polarization for
various runs is presented.
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4.2 Analysis of the Vertical Polarization

In this section the vertical polarization of the beam is discussed for 60 runs. The
left-right asymmetry is calculated by the following equation

ALR = L−R
L+R

= εLR, (4.7)

where L and R represents the counting rates in the left and right detector respectively.
The error of the asymmetry is calculated by

σALR = 2(RσL + LσR)
(L+R)2 , (4.8)

with σL =
√
L and σR =

√
R.

To analyze the left-right asymmetry the distribution in figure 4.5 was fitted by two
sine curves, one for the first and one for the second oscillation respectively, and three
constant terms before, between and after the oscillations. In figure 4.6 an example
of a fitted distribution is shown taking into account the continuity at the transitions.
The fit data comprises the offset, the amplitude and the period of the first oscillation.

 / ndf 2χ  9.299 / 26

Sine Offset  0.005009± 0.001844 

Sine Amplitude  0.0069± 0.1708 

Sine Period  0.024± 3.179 

Sine Phase  0.24± -53.83 
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Figure 4.6: Vertical polarization fitted by sine curves for polarization state PV = −1

First of all the times of turning on and off the solenoid are discussed. Defining t1
and t2 as the starting and ending point of the first oscillation, t3 and t4 describes it
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Figure 4.7: Time distribution for polarization state 01: PV = −1

for the second oscillation respectively. In 4.7 the distribution of these values for the
polarization state PV = −1 are plotted.

It is obvious that all values are close to each other, which is strengthen by the small
RMS of the distributions. In table 4.1 the mean and the RMS of both polarization
states are given. One can see, that all time values are compatible with each other

t1[s] t2[s] t3[s] t4[s]
PV = 1 6.405±0.893 12.94±0.38 63.42±0.93 73.34±0.64
PV = −1 6.385±0.870 12.93±0.36 63.55±0.90 73.14±0.54

Table 4.1: Table of the starting and ending times of the sine oscillations

within their errors. This indicates, that the solenoid was always used at the same
times in the cycles.

Another interesting quantity is the strength of the solenoid and its stability in time.
The strength of the solenoid is defined as the number of vertical polarization oscilla-
tions during one beam turn

ε = TCOSY
TPV

≈ 10−7, (4.9)
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where TPV denotes the period time of one oscillation of the vertical polarization. This
leads to an integrated B-field of the solenoid of∫

B · dl = 4πεBρ
1 +G

≈ 200 G · cm, (4.10)

where Bρ is the rigidity of the storage ring. One sees that the period of the oscillation
of the polarization TPV in the vertical plane is inverse proportional to the strength
of the solenoid, thus one has to compare the first and second period length in one
cycle and furthermore one has to check, if the period stays constant for all runs. The
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Figure 4.8: Upper panel: The period of the first oscillation is plotted against the runs.
Lower panel: The distribution of these periods is shown.

letter purpose is handled in figure 4.8, where in the upper panel the periods of the
first oscillation in polarization state PV = −1 are plotted against the runs. The lower
panel of the figure shows, that the period do not change significantly, thus one can
assume a constant solenoid strength over the time.
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Figure 4.9: Period of the second TPV =−1,2nd versus the first oscillation TPV =−1,1st for
polarization state PV = −1

In figure 4.9 the periods of the first oscillation are plotted against the periods of
the second one. As previously, this plot represents the data from measurements of
the polarization state -1. One recognizes that the entries are concentrated in one
point, thus the period stays constant over one cycle, which indicates a stable solenoid
strength, as well.

An additional quantity which can be studied is the initial vertical polarization of
the beam. Therefore the first constant term of the left-right asymmetry distribution
in figure 4.6 has to be examined. In figure 4.10 the values of the initial left-right
asymmetry is plotted versus the run. One sees, that the polarization is nearly the
same for all runs and within their errors. This indicates, that the system which
ensures the vertical polarization of the beam works on a constant level.
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Figure 4.10: Upper panel: The initial vertical polarization of the beam is plotted
against the runs. Lower panel: The distribution of the initial polarization
is shown.
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4.2.1 Systematics
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Figure 4.11: Vertical polarization fitted by sine curves for polarization state PV = 1

As mentioned before, the solenoid is turned off, when the beam is completely horizontal
polarized, thus the vertical polarization should vanish. However, the plot in figure 4.6
displays a small negative asymmetry after the first oscillation for polarization state
PV = −1. For state PV = 1 this effect is inverted as shown in figure 4.11, i.e. a
slightly positive asymmetry is measured after the first oscillation. Therefore the fitted
sine waves are not oscillating around zero, but are shifted a little by ∆ALR. The
reason of a asymmetry shifted into the direction of the polarization might be a RF
solenoid frequency not exactly operating on the 1−γG resonance. This is reasonable,
because the operation point of COSY is changing and a little deviation of 0.5 Hz
induces effects like this. To investigate this issue in more detail, firstly a baseline
measurement for the non-polarized beam is analyzed and afterwards a cross ratio of
the two polarization states is done.

Since the experiment was performed also with a non-polarized beam, the first idea is
to determine an offset ∆APV =0 from this reference measurement by fitting a constant
term to the asymmetry distribution (figure 4.12). Afterwards this offset is subtracted
from the asymmetry measurement of the polarized beams PV = −1, 1 for every run.
In figure 4.12 the left-right asymmetry of a non-polarized beam is shown fitted by
a constant term. Obviously the polarization is constant but shifted by an offset of
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∆ALF,PV =0 = −0.028± 0.001. There are the following possible explanations of these
shifts:

• The rate of the left detector is different from the right one, caused by uneven
gains thus the thresholds are not the same.

• Geometrical reasons, i.e. the right detector is larger than the left one.

• The beam is off center to the right or traveling in a direction that is angled a
bit to the right, which makes the scattering angle on the right smaller than on
the left side.

• If the solenoid is not exactly operating on the spin tune frequency, the asymmetry
is shifted into the direction of the polarization.
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Figure 4.12: Baseline measurement of vertical polarization by fitting a asymmetry
distribution of unpolarized beam PV = 0.

The first issue can be reduced by calculating the asymmetry from a non-linear com-
bination, also referred to as the cross ratio. Therefore the counting rates in the left
and right detectors for beams with opposite polarization state are combined. The
counting rates are given by

L(+) = f+L0(1 +ALP
+
y ),

L(−) = f−L0(1 +ALP
−
y ),

R(+) = f+R0(1 +ARP
+
y ),

R(−) = f−R0(1 +ARP
−
y ),

where f+ and f− describe the fraction of the integrated beam luminosity for the
corresponding polarization state and L0 respectively R0 the counts for an unpolarized
beam in the left and right detector. AR and AL represent the analyzing power of the
two detectors. From these rates, a squared ratio r2 can be determined, where the
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integrated luminosity and the detector acceptance (L0 and R0) drops out

r2 = L(−)R(+)
L(+)R(−) =

1 +ALP
−
y −ARP+

y −ALARP−y P+
y

1 +ALP
+
y −ARP−y −ALARP−y P+

y
. (4.11)

Assuming the same polarization and analyzing power of the detectors P+
y = P−y = Pp

and AL = AR = A, for this ratio the asymmetry can be calculated

εLR = 1− r
1 + r

, with (4.12)

r2 =
(

1 +APy
1−APy

)2

(4.13)

→ εLR = (1−APy)− (1 +APy)
(1−APy) + (1 +APy)

= 3
2APy. (4.14)

This measure is independent of the detector acceptance and the integrated beam
luminosity and will cancel out any asymmetry shifts due to different detector rates.
From the asymmetries of each polarization state PV = 1 and PV = −1 it is possible
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Figure 4.13: Cross ratio distribution of the vertical asymmetries PV = 0 and PV = −1.

to define a left-right ratio of the counting rates χ = L
R , thus the cross ratio εLR is
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calculated by

r2 = L(−)R(+)
L(+)R(−) = χPV =−1

χPV =1
(4.15)

εLR = r − 1
r + 1 (4.16)

σεLR = r

(r + 1)2

√√√√σ2
χPV =−1

χ2
PV =−1

+
σ2
χPV =1

χ2
PV =1

, (4.17)

whereas σεLR denotes the error of the cross ratio. In figure 4.13 the calculated cross
ratio εLR is plotted versus the cycle time for run 1117. One sees, that the offset of
the sine wave is different from zero what points to the explanation that the solenoid
is off resonance. If the solenoid getting closer to the spin tune frequency, then these
small offsets should all go to zero. Figure 4.14 displays for the polarization state
PV = −1 the offsets of the cross ratios ∆ALR,CR, the uncorrected asymmetry distribu-
tion ∆ALR,Unc and the asymmetries corrected by the baseline measurement ∆ALR,Co
versus the runs. Since the expectation is a vanishing offset, values near zero represents
a better resonance of the solenoid with the spin tune frequency. Therefore the cor-
rected asymmetries (blue points) and the calculated cross ratio (black points) seems
to be a good adjustment.
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Figure 4.14: Offset of the uncorrected (red), the corrected (blue) asymmetry and the
calculated cross ratio (black).
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4.3 Analysis of the Horizontal Polarization

The solenoid is switched off, once the polarization is purely horizontal. Due to a
high spin tune frequency of about fνS = νS · fRFCosy ≈ 120 kHz it is not possible to
measure the horizontal polarization in real time, since the event rate is too low. To
solve this problem the solenoid is operating on resonance with the spin tune. The
analysis method handling with this problem is presented in this section.

The spin starts to precess in the horizontal plane by an angle of γG · 2π in respect to
the beam momentum per turn, since the solenoid is turned off. Thus, counting the
turns of the particles is equivalent of measuring the spin direction. Counting turns
is started when the time stamp indicates, that the RF signal of COSY and the RF
signal of the solenoid are in phase. Turn numbers Nturns are counted as discussed in
section 4.1.1.2. The total spin precession angle is then given by

Ωspin,total = 2πνSNturns = 2πγGNturns (4.18)

where νS = γG = −0.160975 is the spin tune, γ the relativistic Lorentz-factor and
G the anomalous moment. The current spin phase Ωspin is calculate by Ωspin,total

modulo 2π. For counting the events the 2π range of the spin phase is divided into
nine bins Nbin,2π = 9 and for every signal of the four polarimeter the spin phase ΩSpin

is calculated, thus the content of the corresponding bin is increased by one. To find a
good compromise between statistics and time resolution for the given beam conditions,
this is done for a time period of tbin = 3 seconds. At the end of the cycle for each of
the 3 s time periods the up-down asymmetry is calculated according to formula 3.26
as a function of the spin phase and the result is fitted by the following function

fAUD,fit(ΩSpin) = a sin(ΩSpin) + b cos(ΩSpin) + c, (4.19)

where the free fit parameter are the amplitude defined as A =
√
a2 + b2, the phase

φfit = arctan b
a of the sine wave and c denotes a constant offset. Taking into account

the signs of the phase the following arctangent definition is used

arctan(a, b) =


arctan(ab ), b > 0
arctan(ab ) + π, b < 0, a ≥ 0
arctan(ab )− π, b < 0, a < 0

. (4.20)

In figure 4.15 a up-down asymmetry distribution of the first time bin in a cycle is
shown. Since the spin precesses during one turn in the ring by the spin tune νS , the up-
down asymmetry AUD depends on the direction of the spin vector, thus as well on the
phase of this precession ΩSpin, because the phase describes the angle between the spin
vector and the momentum vector of the bunch. The maximal up-down asymmetry
occurs, when this angle vanishes, i.e. the spin vector is parallel to the momentum
vector. The relation between the up-down asymmetry and the spin phase is therefore
a sine function.
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Figure 4.15: Example of an up-down asymmetry fit for one cycle. The x axis denotes
the spin phase ΩSpin in radiant from 0 to 2π

For each cycle the asymmetry is calculated for 17 time bins (tbin = 3 s), thus in total
for one cycle the horizontal polarization is calculated for tcycle = tbin ·Ntimeslices =
3 s · 17 = 51 seconds.

4.3.1 Analysis Procedure

The precision of the spin tune measurement νS = γG needs to be at least

∆(γG) =
1

Nbin,2π

tbin · fRFCosy · νS
, (4.21)

assuming an interval of 3 seconds measurement with a COSY RF frequency of
fRFCosy ≈ 750 kHz, nine bins Nbin,2π = 9 within the 2π range and a spin tune of
νS = −0.160975 one gets

∆(γG) =
1
9

3 s · 750 kHz · 0.160975 ≈ 3 · 10−7. (4.22)

The knowledge of the absolute value to the precision given above is necessary in order
to make the procedure work. It is not possible to simply read the numbers from the
COSY RF and the solenoid RF and extract this number with the required precision.
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The most important reason is, that the two frequency generators use different clocks.
Thus, in the analysis the periods for the COSY RF and the solenoid RF are measured
with the same TDC. The time distributions are fitted and the results are used to
calculate the spin tune by

νS,measured = γG = 1− tRFCosy
tRFSolenoid

. (4.23)

As both times are measured with the same clock reference any global calibration pa-
rameters are canceling. The equation 4.23 is valid, as long as the solenoid is operating
on the first negative harmonic (H=-1) of the spin tune frequency fνS . Since the spin
tune describes the angle between the beam momentum and the particle spin, the spin
tune frequency is given by

fνS = γG · fRFCosy, (4.24)

where fRFCosy denotes the orbital frequency of the beam in the storage ring. Assuming
the condition of harmonic operation one gets:

fRFSolenoid = (1− γG) · fRFCosy (4.25)

→ γG = 1− fRFSolenoid
fRFCosy

= 1− TRFCosy
TRFSolenoid

. (4.26)

The so calculated spin tune νS,calc is taken as the central value of a range of spin
tunes, which are used to calculate the asymmetry. In the analysis the range of the
spin tune interval is ±5 · 10−5, with iteration steps of 5 · 10−8. The main idea is, that
hitting the correct spin tune leads to a maximization of the amplitude in the up-down
asymmetry function, which corresponds to the highest polarization. In figure 4.16 a
result of such a scan is shown. One sees, that the polarization passes into a clear
maximum for a selected spin tune, thus for each time slice the spin tune is selected
νS,max = νS,selected, which delivers the highest associated polarization. Since the phase
is alternating from π to −π the sign of the extracted amplitude parameter is scattering
from plus to minus. This method provides a precision of ∼ 10−8 for the selected spin
tune.

There are two practicable options of analyzing the polarization for one cycle:

• Counting the turn numbers from the phase-matching time stamp.

• Turn numbers are reseted, whenever a new time bin starts.

In the first case the start phase at the beginning of every time bin is accumulated over
time, i.e. the procedure gets more and more sensitive to a variation of the spin tune.
This may lead to errors at the end of the cycle, and therefore it is necessary, that the
spin tune is quite stable within one cycle.
In the second case the assumption is made, that the spins are all coherent at the
beginning of the time slice and previous decoherence effect only enter as common
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Figure 4.16: Polarization parameter a as function of the selected spin tune νS . It
reaches the maximum close to the central value.

effect.
Although the spin tune stability was given, the second method was chosen, due to
higher robustness against fluctuations of the spin tune. The consequence is, that one
cannot add the statistics from different cycles directly, but that one has to analyze
every cycle individually. This causes a statistical limitation in one cycle for choosing
the time bins, thus the calculation of beam intensity and polarization is more crucial.
The next section will describe, how this problem was handled.

4.3.2 Systematics

The method described in the section before, provides a fitted polarization value pi
for each cycle and its corresponding error σi. These results are added using an error
weighted average:

pmean =

∑
i
pi
σ2
i∑

i
1
σ2
i

, (4.27)
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and

σmean =
√∑

i

1
σ2
i

. (4.28)

Figure 4.17: Extracted horizontal polarization for an unpolarized beam (polarization
state 15)

The polarization pi for each cycle is extracted by fitting the function 4.19 and calcu-
lating the amplitude of the this function pi = A =

√
a2 + b2. Due to the free phase fit

parameter φ = arctan b
a all results are positive (pi = A > 0), even in the absence of

any beam polarization, thus the average polarization pmean is positive, as well. This
leads to a systematic offset of the polarization due to the analysis method. As a
demonstration of the scope of this effect a zero measurement of the unpolarized beam
(polarization state 15) is shown in figure 4.17. Due to the reduction of this effect for
increasing polarizations, the correction value from the unpolarized beam cannot be
used as an general offset and thus subtracted from the asymmetry measurements of
the polarized beam. To handle this problem, one has to find the true polarization
ptrue by correcting the corresponding polarization given by the fit pfit.

This is done by simulating a sine wave with the amplitude ptrue smeared with a given
uncertainty. For simplicity it is assumed, that the errors are Gaussian distributed
and the same for all bins. Figure 4.18 shows the distribution of the fitted polariza-
tion versus the true polarization, i.e. for a given true polarization ptrue it shows the
probability distribution wPtruef (pfit) for the fitted values.

Figure 4.19 shows a projection for zero true polarization ptrue = 0. The fitted values
are positive and within the fit errors not consistent with zero. The width of the
distribution in the plot reflects the parameter error in the fit. As consequence, the
fit results have to be corrected for this systematic offset caused by the experimental
method. The mode (most probable value) of the distribution is at σbin/

√
Nbin and
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Figure 4.18: Fitted polarization pfit versus true (i.e. input) polarization. The axes
are normalized with respect to the error in one bin in the underlying
asymmetry plot.

Figure 4.19: Distribution of the fitted polarization for ptrue = 0, i.e. the probability
distribution wPtrue=0

f (pfit)

the mean value is:

〈p0
fit〉 = σbin√

Nbin
· π2 (4.29)

The error for one bin can be extracted from the error for the constant value σc

σbin = σc ·
√
Nbin. (4.30)
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From the simulation we get the expectation mean value for the fitted polarization
pfit as function of the true one ptrue. The width of these distributions should be
consistent with the error of the fitted polarization σpfit , which is extracted from fitting
the asymmetry. As long as pfit > 〈p0

fit〉 is valid, there is no problem to convert the
central value of the fitted polarization into an estimate for the true polarization. The
challenge is the correct mapping, when the fitted value approaches the reconstruction
value. This can be solved by introducing a mapping function f(ptrue) which the
following characteristic:

prec = f−1(pfit)→ ptrue for N →∞ (4.31)

Using f(ptrue) = 〈pfit〉 leads to the problem, that the function f−1 is only defined for
pfit > 〈p0

fit〉. All smaller values are cut and can no longer contribute to the average:

prec = f−1(pfit > 〈p0
fit〉) > ptrue (4.32)

Therefore, although both, the fit results as well as the original polarization, are always
positive, one has to allow negative values for the reconstructed polarization prec in
order to properly map the regime pfit < 〈p0

fit〉 and to retain a correct expectation
value for prec. The analysis code provides the solution, that for all pfit < 〈p0

fit〉 the
function f is mirrored at (0, 〈p0

fit〉) : f(−p) = 〈p0
fit〉 − f(p) in such a way, that the

negative value balance the positive value to get close to the optimum: 〈prec〉 = ptrue.
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4.3.3 Phase of the Asymmetry Function

Figure 4.20: Random time distribution of the phase φ from the up-down asymmetry
fit with selected spin tune in each time bin.

Defining the spin tune νS by finding the maximal up-down asymmetry in every time
slice tbin = 3 s for each cycle provides a sensitivity of ∆νs ∼ 10−8. In this case the
phase φ = arctan b

a of every time slice fluctuates randomly in one cycle from time bin
to time bin (fig. 4.20). This indicates, that the spin tune sensitivity of this method
is not high enough to match the spin tune exactly. To increase the sensitivity of the
analysis, the spin tune can be fixed for the whole cycle in the ninth decimal place,
which leads consequently to a sensitivity in the order of σνs ∼ 10−9. Nevertheless,
the first method is used to find an initial central value to define an interval, in which
the sought-after spin tune is searched. In figure 4.21 a distribution of the phase φ is
plotted against the cycle time tcycle. One sees, that the phase alternates from around
0 to −π and the slope is constantly decreasing from rising slightly at the beginning
and decreasing faster and faster at the end of the cycle.

The error of the phase σφ is calculated from the errors of the fit by error propagation.
To investigate the behavior of the phase, the distribution (figure 4.21) is fitted by a
quadratic polynomial, whereas the error of the time is defined as σtcycle = 0,

φ2(t) = a2 · t2 + a1 · t+ a0, (4.33)

where a2 describes the quadratic coefficient of the polynomial. In figure 4.22 the time
depending phase distribution fitted by the quadratic polynomial (red curve) and the
fit parameters are shown. The integer value of the fixed spin tune νS,fixed (here: = 57)
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Figure 4.21: Time distribution of the phase φ from the up-down asymmetry fit with
fixed spin tune.

run RFSolenoid Periods [ns] RFCosy Periods [ns]
1117-1119 1147.53973518 1332.26485549
1126-1154 1147.53955942 1332.26437085
1164-1191 1147.53718912 1332.26322190
1202-1222 1147.53637813 1332.26277431

Table 4.2: Table of the used periods of the solenoid and COSY for different runs.

has no meaning by itself, but has to be interpreted in the context of the spin tune
calculated from the analysis parameter, i.e. the RFCosy and RF solenoid frequency.
Since this values are changing slightly for different runs, one has to provide these
frequencies to calculate the absolute spin tune νS . In tabular 4.2 the chosen time
periods for COSY and the solenoid operating during the analysis are presented for
different run intervals. Additionally one can find the calculated spin tunes used as the
central value νS,CV taking into account the given frequencies. The central spin tune
is calculated by

νS,CV = γG = 1− TRFCosy
TRFSolenoid

(4.34)

The total spin tune is then defined as the sum of the central value and the fixed spin
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Figure 4.22: Distribution of the phase φ of the up-down asymmetry fit with fixed spin
tune νS,fixed = 57, fitted by a quadratic polynomial.

tune selected in the analysis

νS = νS,CV + νS,fixed · 10−9. (4.35)

As mentioned before the sensitivity of the fixed spin tune is at the order of 10−9, i.e.
the selected spin tune has to be multiplied by 10−9 to add it to the central value.
Additionally, one has to consider, that the central value νS,CV represents the fixed
spin tune νS,fixed = 50, thus, it is necessary to subtract 50 from the selected spin tune
to obtain the total spin tune νS .

νS = νS,CV + (νS,fixed − 50) · 10−9 (4.36)

For different fixed spin tunes νS,fixed the time depending phase distribution is chang-
ing. The effect of changing νS,fixed is demonstrated in figure 4.23. Normally the phase
is bounded in the interval [−π, π], but in these plots 2π was added respectively sub-
tracted to φ, whenever the phase jumps from −π to π or vice versa. This was done
to facilitate the fit procedure. The behavior of the time depending phase is discussed
in the next sections, whereas firstly the linear coefficient and secondly the quadratic
parameter is discussed.
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Figure 4.23: Distributions of the time depending phase φ for different selected fixed
spin tunes νS,fixed = [51..60] (run 1117, cycle 3).

4.3.3.1 Linear Coefficient

For higher fixed spin tunes the linear slope of the quadratic polynomial fit is decreasing.
This is explainable, because choosing a higher νS,fixed leads to a higher spin tune
frequency used in the analysis for matching the true spin tune frequency, i.e. for
positive slopes the fixed spin tune is underestimated and for higher ones νS,fixed is
overestimated, respectively:

fνS,fixed = νS,fixed · fRFCosy (4.37)
∂φ

∂t
> 0 : νS,fixed < νS,real (4.38)

∂φ

∂t
= 0 : νS,fixed = νS,real (4.39)

∂φ

∂t
< 0 : νS,fixed > νS,real. (4.40)
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Figure 4.24: Schematic illustration of the phase shift for a higher fixed spin tune fre-
quency (blue curve) than the true one (red curve).

If fS,fixed is getting higher with respect to the true frequency fνtrue , the sine waves of
these frequencies would shift away from each other in this way, that the phase of the
up-down asymmetry plots is reduced. That simply means, that a full period of the
fixed spin tune is minor than the true spin tune period.

In figure 4.24 the phase shift is demonstrated by two sine waves. The red stands for
the true spin tune frequency fνtrue , while the blue curve denotes the selected fixed spin
tune frequency fνS,fixed . In the plot it is fνS,fixed > fνtrue , which induces a negative
phase shift in the second period of the spin tune. This relation is represented by the
decreasing linear slope in figure 4.23 for increasing fixed spin tunes. To find the best
fixed spin tune, defined as the closest value to the true spin tune, one has to find the
phase distribution, where the slope of the phase distribution fit vanishes. Therefore the
linear coefficient a1 of the quadratic polynomial fit is extracted for different selected
νS,fixed. Afterwards the fixed spin tune is chosen, where the linear coefficient is closest
to zero.

In figure 4.25 the linear coefficient of the quadratic polynomial fit is plotted versus
the selected spin tune from νS,fixed = 25 to 75 for run 1117 and cycle 3. Taking
into account that one run contains of about 57 cycles, i.e. for every of the three
(up,down,unpolarized) polarization states 57

3 = 19 cycles are implemented, in every
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Figure 4.25: Linear coefficient of the quadratic polynomial fit versus the selected spin
tune νS,fixed ∈ [25, 75] for run 1117 and cycle 3

run 19 quadratic polynomial fits are realized for each selected spin tune. By calculating
the mean of these 19 linear fit parameters a1,i, i ∈ [1..19] it is possible to define a
standard deviation, which represents the error σa1 of the distribution in figure 4.25.
Due to the small error bars it is reasonable to define one linear coefficient for all cycles
in one run. Additionally one sees, that the linear coefficient a1 decreases linearly for
increasing fixed spin tunes and for the fixed spin tune νS,fixed ≈ 61 the linear fit
intercepts the x-axis, thus this value is selected for the subsequent analysis.

The outcome of this section is, that a linear slope in the phase-time diagram can be
corrected in the analysis by finding the fixed spin tune for which the linear slope is
closest to zero, thus the occurrence of the linear term originates from overestimating
or underestimating the real spin tune.
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4.3.3.2 Quadratic Coefficient

Since the phase of the up-down asymmetry fit φAUD,fit is not only depending on
time linearly but also quadratically, in this section the quadratic coefficient a2 is
investigated. A non-linear time depending phase indicates, that the spin tune νS,real =
γG of the particles in the beam is changing in time. To determine the order of this
phenomena, respectively on which parameter the quadratic coefficient a2 depends, first
of all, one has to extract one value per run. Afterwards these values are compared to
different adjustable observables of the storage ring like the heating and the sextupole
strength.
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Figure 4.26: Quadratic coefficient versus fixed spin tune νS,fixed = [25, 75] for cycle 1
in run 1118 and polarization state PV = −1.

Changing the selected spin tune effects only the linear term of the asymmetry fit but
the quadratic coefficient stays constant for all fixed spin tunes within one cycle. This
is demonstrated in figure 4.26, where the quadratic coefficients are plotted versus the
selected fixed spin tune for the first cycle of run 1117 and polarization state PV = −1.
The error of the quadratic parameter σa2 is extracted from the fit function. One
sees, that a2 is constant for all tunes within its error and that a2 is in the order of
−0.0015 1

s2 .

For the following investigation of a2 the best fixed spin tune provided by the analysis
in the section before is used. Since one run contains normally of about 15-19 cycles for
every of the 3 polarization states, it is possible to extract several quadratic coefficients
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for one run. In this analysis every of the initial vertical polarization state PV was
treated independently, thus the coefficients a2 were calculated separately for PV = 1
and PV = −1.

Figure 4.27: Upper panel: quadratic coefficient a2 versus the cycle number.
Lower panel: distribution of a2 with mean and RMS.

In figure 4.27 the upper panel illustrates, that the quadratic coefficient a2 is constant
within its error for all cycles in one run. Therefore, it is possible to define one a2 value
for each run. In the lower panel one sees the distribution of a2 and its corresponding
RMS. The mean value defines the quadratic parameter for the run and the RMS
of the distribution is taken as the error. The stability of a2 over the cycles in one
run indicates, that for identical storage ring settings, namely heating and sextupole
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strength, the effect of the quadratically time depending phase shift is the same.

One possible explanation of the quadratic phase shift could be the method how the
beam is extracted. As mentioned before, the beam was moved towards the carbon
target, thus the outer particles of the beam distribution, i.e. particles with longer
path length in the orbit interact firstly with the target. Since the energy of the
particles depends on the path length, the spin tune varies in time. This induces a
time depending phase, because a non-constant spin tune will change the phase of the
asymmetry distribution of the horizontal polarization.

To estimate the effect of the quadratic phase shift one has to calculate the total phase
drift ∆φcycle during the time of one cycle tcycle = 51 s. Assuming a quadratic coefficient
of a2 = −2 · 10−3 one gets

∆φνS (t) = a2 · t2cycle + a1 · t+ a0 (4.41)

∆φcycle,shift = ∆φνS (t = 51 s) = −0.002 1
s2 · (51 s)2 ≈ −5 rad. (4.42)

That means, that in a time interval of 51 seconds the phase variation is minus 5 radiant.
Taking into account the minimization of the linear parameter one can assume a1 = 0.
The time depending spin tune frequency shift is then calculated by

∆fνS (t) = 1
2π

∂∆φνS
∂t

= 1
π
a2 · t (4.43)

∆fνS (t = 51s) = −0.002 · 51 s
π

≈ −0.0325 Hz, (4.44)

which leads to a relative variation to the spin tune frequency fνS = γGfRFCosy of

δfνS = ∆fνS
fνS

= ∆fνS
γG · fRFCosy

= −0.0325 Hz
−0.1609 · 750.601 kHz ≈ 2.7 · 10−10, (4.45)

with a RF COSY frequency of fRFCosy = 750.106 kHz (run 1117-1119) and a spin
tune of νS = γG = −0.1609.

Taking into account the negative sign of the phase shift, the spin tune frequency
will decrease by ∆fνS . As previously explained one quadratic coefficient a2 for every
run was calculated, thus one phase shift ∆φshift respectively one spin tune frequency
shift ∆fνS for each run can be determined. In figure 4.28 ∆fνS is plotted versus the
runs. One recognizes, that the values are scattering from nearly 0 Hz to 0.05 Hz and
are obviously not constant over the runs. Since different runs were performed with
different settings, in the next section two possible observables are presented on which
the frequency shift may based on.

After all, it should be noted, that a phase shift ∆φcycle,shift of -5 radiant provided
by a fixed spin tune setting in the analysis, corresponds to a shift in the spin tune
∆νS = ∆γG at the same order of the spin tune frequency shift δνS ≈ 10−10 calculated
in equation 4.45. That means, that the spin tune of the particles is changing slightly
during the storage time. It is very impressing, that the analysis method provides a
sensitivity to measure such small spin tune differences.
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Figure 4.28: Spin tune frequency shift ∆fνS versus run number. The connection lines
are plotted for a eye-friendly view.

4.3.3.3 Heating and Sextupole Strength

In the following section it is shown, how the setting of the storage ring influences
the quadratic parameter a2 respectively the phase shift. Therefore the possible de-
pendency of two variables, namely the heating of the beam and the strength of the
sextupole magnets, is discussed. As mentioned in chapter 1.2 heating the beam by a
an additional dipole E-field expands the phase space of the beam by increasing the
emittance, thus the lifetime of the beam reduces, due to the higher interaction rate
between the beam particles and the carbon atoms of the target placed in front of the
EDDA detector. Since several runs were performed with the same heating setting,
one obtains multiple values for each alignment. The sorting is shown in figure 4.29,
in which it is hardly visible to define any relation between heating and the spin tune
frequency shift. Therefore the weighted mean of every bin and the corresponding
standard deviation are calculated by

∆fheatνS ,mean
=

∑
i

fheatνS,i

σ2
fheat
νS,i∑

i
1

σ2
fheat
νS,i

, (4.46)
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Figure 4.29: Spin tune frequency shift ∆fνS separated by the different heating values.

and

σfheatνS,mean
=
√√√√∑

i

1
σ2
fheatνS,i

, (4.47)

where the index heat stands for all selected heating values in the interval [0, 0.4] in
steps of 0.05. With this method one spin tune frequency shift fheatνS ,mean

is allocated to
the associated heating value. The result is shown in figure 4.30, whereas the upper
panel shows the weighted spin tune frequency shifts versus the heating value and the
lower one displays the number of runs performed adjusting the corresponding heating,
thus the error bars of the corresponding heating values in the upper plot normally
decreases for a increasing number of runs with the same heating. As the upper panel
shows, the spin tune frequency shift is constant within its error, that suggests a zero
correlation between the heating and ∆fνS within the resolution of this analysis.

The same analysis can be done for the sextupole strength abbreviated as MXS. As
mentioned in chapter 1.2, sextupole magnets are used to correct the beam chromatic-
ity, by providing magnetic fields BSext with a quadratic field profile, thus the second
derivation of BSext does not vanish.

BSext = 1
2
∂2By
∂x2 [(x2 − y2)~ex + 2xy~ey] (4.48)

In this experiment four sextupoles were implemented in the storage ring where the
betatron oscillation along the x-axis is separately large and the dispersion is small.
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Figure 4.30: Upper panel: Weighted mean spin tune frequency shift ∆fνS ,mean versus
the heating fitted by a constant term.
Lower panel: number of runs performed with the corresponding heating.

Applying the same method as for the investigation of the heating parameter, one MXS
value is given for every selected sextupole strength. The results are shown in figure
4.31, where the upper panel represents the spin tune frequency shift ∆fνS versus the
MXS in percent of the maximum strength and in the lower one the number of runs
performed with the respective sextupole strength are displayed. One sees, that ∆fνS is
constant (≈ 0.035 Hz) up to the relative sextupole strength of 25% and then decreases
to 0.005 Hz. Considering the low statistics for the spin tune frequency shift values
at higher sextupole strength, due to the small number of runs performed with the
associated setting, a potential relation between these two quantities is not secured.
Additionally the investigation of two observables leads to a two dimensional problem,
where a correlation between the heating and the sextupole strength will influence the
results. Therefore it is reasonable to look into a series of measurement where the
heating is fixed, but the sextupole strength stays variable. Accordingly the heatings
with the most performed corresponding runs are chosen (heating=0.2 and =0.35) to
identify the relation between ∆fνS and the applied sextupole strength (figure 4.32).
For heating=0.25 it seems, that the spin tune phase shift does not change for different
sextupole strengths, however for heating=0.3 a linear negative slope is observable for
sextupole strength higher then 20% intercepting the x-axis near 35%.
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Figure 4.31: Upper panel: Weighted mean spin tune frequency shift ∆fνS ,mean versus
the sextupole strength MXS.
Lower panel: number of runs performed with the corresponding sextupole
strength.

The conclusion of this section is, that the spin tune frequency shifts slightly during
the storage time at the order of 0 − 0.05 Hz, due to a phase shift of the asymmetry
fits. This phase shift is depending quadratically in time, thus the frequency changes
linearly:

∆fνS (t) = ∂∆φνS (t)
∂t

= a2 · t
π

+ a1 ≈
a2 · t
π

, (4.49)

where a2 denotes the quadratic parameter of the phase distribution fit and a1 is
minimized by the method discussed in the section before. Since the spin tune is
depending linearly on the Lorentz-factor νS = γG and consequently on the particle
energy E = γmc2, it is possible to calculate the energy distribution of the particles
in the beam. Therefore it has to be clear, that the time in the cycle corresponds to a
certain position in the horizontal plane of the beam. This is the case, when the beam
is moving with a constant velocity into the target, which is guaranteed by the dipole
magnets providing a constant B-field. For the total energy difference in a 51 second
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Figure 4.32: Upper panel: ∆fνS versus sextupole strength for all runs with heat-
ing=0.2. Lower panel: ∆fνS versus sextupole strength for all runs with
heating=0.3.

time interval ∆E(∆t = 51 s) one gets

∆E(t) = ∆γ(t)mc2 = ∆vS(t)
G

mc2 = ∆fνS (t)
fRFCosy ·G

mc2 = a2 · t ·mc2

π · fRFCosy ·G
, (4.50)

∆E(t = 51 s) ≈ −0.568 eV, (4.51)

where in table 4.3 the quantities for deuterons are written down. The results rep-
resents, that particles interacting firstly with the target have higher energies than
particles near the center of the beam, due to their longer path length induced by
higher betatron oscillations.

Knowing the real spin tune νS,real(t) to a precision of 10−9 it is also possible to calculate
the energy of the particles which are extracted at a certain time t to a sensitivity of
10−9

E(t) = vS,real(t)
G

mc2 (4.52)

From figure 4.23 we know that a selected spin tune of 60 leads to a vanishing linear
slope at the beginning of the cycle. That means, one can calculate the real spin tune
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Quantity Symbol Value with uncertainties
Mass md 1.875612793(47) GeV
Anomalous magnetic moment Gd = g−2

2 -0.1425617692(72)
Speed of light c 1
Cosy frequency (run 1117-1119) fRFCosy 750.6015008(1) kHz
Solenoid frequency (run 1117-1119) fRFSolenoid 871.4295195(1) kHz

Table 4.3: Table of quantities used to calculate the particle energy

for t=0s by

vS,real(t = 0 s) = 1− fRFSolenoid
fRFCosy

+ (60− 50) · 10−9 = −0.1609749328(1), (4.53)

which leads to a particle energy of

E(t = 0 s) = 2.117865435(4) GeV, (4.54)
Ekin(t = 0 s) = 0.242252642(4) GeV, (4.55)

p(t = 0 s) = 0.9835805262(5) GeV, (4.56)

whereas Ekin denotes the kinetic energy and p the momentum of the particles ex-
tracted at t=0s. To obtain the ∆p

p for the time interval where the beam is in the
horizontal plane one has to calculate ∆p by

∆pt=0,t=51 = pt=0 − pt=51 =
√
E2

2 −m2 −
√
E2

1 −m2

=
√

(E1 + ∆E)2 −m2 −
√
E2

1 −m2

=
√
E2

1 + ∆E2 + 2E1∆E −m2 −
√
E2

1 −m2

= ∆E√
1− m2

E2
1

+
√
E2

1 −m2 −
√
E2

1 −m2

= ∆E√
1− (mE )2

≈ 0.97 eV,

where E1 is the particle energy at t=0s and E2 denotes the energy at t=51s. This result
yields to a ∆pt=0,t=51

p of approximately 10−9, what represents a very low momentum
spread of the particles in the beam.
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4.4 Spin Coherence Time (SCT)

The main goal of the experiment in May 2012 was to investigate the spin coherence
time (SCT) of a stored polarized and bunched beam in COSY. In figure 4.33 at typical
plot of the horizontal polarization for a polarized beam against time is shown.
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Figure 4.33: Up-down asymmetry of a polarized beam for one cycle.

Figure 4.34: Template function for
different α

The reduction of the horizontal polarization cor-
responds to a decoherence of the particle spins.
In chapter 2.3 the SCT was introduced as the
quantity describing the time where the particle
spins are in phase, thus the SCT is defined as
the time in which the polarization is fallen down
to 60.6% of the initial polarization, a value cho-
sen to match the Gaussian standard. To extract
the SCT it is not sufficient to fit an exponen-
tial function, however one has to implement an
adjustable template for the shape of the time
evolution. This shape depends on the relative
size of the emittance vertically and horizontally
εx, εy to the beam momentum, which are two
sources of changing the spin tune νS .
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Figure 4.35: Spin distribution ex-
panding with time

Therefore the fit function has to take into ac-
count the changing path length of the parti-
cles due to the betatron oscillations of the par-
ticles. For a bunched beam this goes with
∆L
L ∝

√
θ2
x + θ2

y, where θx,y denotes the angle
between the particle momentum and the axis of
their reference orbit. The maximum angles will
follow a Gaussian distribution with the standard
deviation of σθx and σθy , i.e. the beam profile
depends on the ratio of the two standard de-
viations. For α = σθy

σθx
≈ 1 the beam has a

round profile, however the beam becomes flat
for α = σθy

σθx
< 1, thus the SCT will vary for

different beam profiles.

A flat beam (α = 0) provides the highest SCT,
as it is shown in figure 4.34, where several simulated polarization distributions are
plotted against an arbitrary time scale for different α values. The simulation was
done by calculating the polarization of a spin distribution, whereas the spins are
spread on a circle according to their different rotation angles in the passed turns (fig.
4.35). That is done for 2000 time points in the simulation (the reason, why the curves
in figure 4.34 looks continuously) and for different α values.

Figure 4.36: Reduced chi square for differ-
ent α parameter

The template function has to take into
account the structure of the beam pro-
file and the positivity correction discussed
in chapter 4.3.2. Therefore the simulated
polarization is used as a reference value
for every time bin tTAB in which the sim-
ulation was performed. This polariza-
tion values are stored in a table, thus
the real polarization could be compared
to them by finding the best fitting func-
tion, whereas an interpolation is done to
obtain a continuous distribution. The fit
function is defined as

f(t) = a1Fα(tTAB), (4.57)

tEXP = a2
√

1− α2tTAB + a3, (4.58)

where α describes the beam profile, a1
represents the normalization and a3 de-
notes a constant time offset defined by the
experiment settings. The parameter a2 is
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proportional to the spin coherence time and is obtained by adjusting the two pa-
rameters a1 and a2 to find the chi square minimum. In figure 4.36 the asymmetry
distribution of run 1117 and its corresponding fit function is plotted. Additionally the
reduced chi square for different α values is shown, whereas a quadratic curve is fitted
to find the best value of α.

Figure 4.37: Inverse SCT against the sextupole magnetic field. The crossing point
of the lines represents the best sextupole settings, thus the highest spin
coherence time is reached. The different colors stands for different heating
during the run

The results of the SCT measurement are shown in figure 4.37. The data were taken
for three different heating settings and for several sextupole strength. One sees, that
the reciprocal lifetime of the polarization decreases linearly with the inverse sextupole
strength, whereas the x-axis represents the sextupole field K2 in 1

m3 with

K2 = 1
Bρ

∂2B

∂x2 (4.59)

whereas B is the magnetic field, ρ denotes the gyroradius of the particle. To maintain
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a linearity the sign of the SCT was changed for values lying behind the zero-crossing.

Since the lines are crossing the x-intercept at the same x value, one can define the a
best sextupole setting, which is close to K2 = 5.5 1

m3 . That corresponds to a sextupole
strength of 28 %, which is less than the zero crossing value for the spin tune frequency
shift (35%). The spin coherence time was increased to

τSCT,max = 283± 45 s, (4.60)

which is a few hundred times longer than the measured SCT when the sextupoles were
off or far away from the optimal sextupole settings.

Finally, it should be noted, that manipulating the beam by applying sextupole magnets
can maximize the spin coherence time by a factor of several hundreds. Nevertheless,
the targeted SCT is about 1000 seconds which is a factor 5 higher than the time
measured during the beamtime in March 2012. Therefore several ideas were evolved,
like using sextupole magnets for correcting also the chromaticity of the beam in the
horizontal plane. This investigation is one part of the beamtime in February 2013 in
which the JEDI collaboration will study additional systematics of a potential EDM
machine.
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