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1 Motivation

Over the past decades the Standard Model of particle physics (SM) has been validated to
unprecedented accuracy and is now the foundation for our understanding of the universe.
Nevertheless it currently fails at explaining the baryogenesis, i.e. the origin of the matter-
antimatter asymmetry, which enables our very existence [1, p7].

In 1967 Andrei Sakharov identified a strong violation of the charge- and parity-reversal
symmetries (CP violation) as one requirement for this process [2].
Although CP violation is not strictly forbidden within the SM (it can be parametrized
by the phase in the Cabibbo-Kobayashi-Maskawa matrix, if the number of quark families
is bigger than two), the resulting baryon asymmetry as deduced from the SM

η =
nB − nB̄

nγ
≈ 10−18 (1.1)

is eight orders of magnitude smaller than the value measured by the COBE and WMAP
satellites [1, 3]. Experimentally CP violation has been discovered in 1964 in the kaon
decay processes [4]. It is now being studied in meson and B-decays, for example at LHCb
and in the neutrino flavour oscillation.

Figure 1.1: PT violation visualised
c©Andreas Knecht

The existence of an electric dipole moment (EDM)
alongside the well-known magnetic dipole moment
(spin) would be time and parity-reversal violat-
ing [1]. This can be easily understood in a semi-
classical model, in which the spin can be thought
as the magnetic dipole moment generated by a
circular current. In the same model the EDM
is the vector between two opposite and separated
charges along the axis of spin. Under time-reversal
the current flow and thus the MDM is reversed
while the charge distribution (EDM) stays unaf-
fected. In the case of parity-reversal the opposite
is true (see also figure 1.1).

Under the assumption of CPT-invariance time-
reversal violation implies CP violation. Thus the
EDM, if it exists, is CP violating.
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The SM expectation for the EDM of nucleons is between 10−33 to 10−31 e · cm. Equiva-
lent estimations of EDM-strength can be deduced from extensions of the SM (see figure
1.2), while the measured baryon numbers yield an expectation of up to 10−25 e · cm [1].

Over the past five decades numerous experiments have set ever decreasing upper limits
on the neutron EDM (see figure 1.2). The current record (as of 2012) is held by the
university of Sussex at 2.9 · 10−26 e · cm. To put this value into a human perspective
consider the following: If we were to expand a neutron (around 1 fm) to the size of
the earth (around 13,000 km), the current EDM limit would equal a separation of two
electrons by less than a quarter of a millimeter. The accuracy on the neutron EDM is
fundamentally limited by the lifetime of free neutrons and the availability of ultra-cold
neutrons [5].

Figure 1.2: Upper limit on n-EDM vs. time [6]

It has recently been proposed to extend the EDM search onto charged baryons, namely
protons, deuteron and Helium-3. For charged particles particle-trap experiments, as
used for neutrons, can no longer be employed because large electro-magnetic fields have
to be applied. Instead the particles can be stored, manipulated and analysed within
a particle accelerator. At the end of 2011 the JEDI (Jülich Electric Dipole moment
Investigations) collaboration was created to work towards such an experiment at the
Jülich polarized hadron accelerator COSY or a subsequent machine. Should these new
experiments reach the design criteria it will then be possible to increase the sensitivity
to around 10−29 e · cm [1].
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The measurements on deuteron and helion (Helium-3 nucleus) will gain mayor impor-
tance, should a non-vanishing EDM be found, as only the combination of results allows
to unfold the underlying physics and extract the source of the charge separation [7].

This thesis deals with the evaluation of a new dipole magnet, which is supposed to be used
for spin manipulation in the first of three proposed steps towards a final EDM experiment
at Forschungszentum Juelich. Its main purposes will be to evaluate false spin rotations
induced for example by fringe fields and to evaluate the effect of different waveform on
spin-coherence-time [1, p12]. In the following the needed accelerator and spin-dynamics
physics will be summarized to then briefly present the proposed experimental method
to measure EDMs in storage ring. From this arises the need for the new dipole magnet.
The integral field and other associated characteristics of the newly built device are then
deduced from measurements and simulation and will be compared to data recorded
during the May 2012 JEDI beamtime at the COSY accelerator facility.
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2 Theoretical background

2.1 Accelerator basics

A particle accelerator is a device to specifically manipulate the motion of charged sub-
atomic particles. Today devices like this are used for a wide variety of applications,
spanning the fundamental, material, medical and even energy sciences. The acceleration
of a charged particle in electro-magnetic fields is given by the Lorentz force

~F = q( ~E + ~v × ~B). (2.1)

In the following basic concepts of different accelerator types and some fundamentals of
linear beam optics are introduced to aid the understanding of the later presented spin
dynamics.
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2.1.1 Linear accelerators

The first accelerators in existence simply used a static electric field for acceleration. In
this approach the maximum energy is severely limited (several MeV) by the maximum
voltage that can be technically supplied. The breakthrough to higher energies was only
possible with the availability of high frequency (RF) amplifiers. In the original design
by Ising and Widerøe (theoretical: 1925, experimental: 1929 [8, p12]) the particles are
accelerated in gaps between grounded drift tubes. The drift tube lengths and the RF
have to be matched, so that the particles always see an accelerating potential when
leaving the drift tubes. In theory the energy of such a device is only limited by its
length.

Figure 2.1: Linear particle accelerator

2.1.2 Circular accelerators

The existence of RF cavities also made it possible to cut down the size of accelerators by
building circular devices, so that the beam particles pass the same set of manipulating
fields periodically. The two most common designs are:

Cyclotron (see figure 2.2a)

The particles get injected into the center of a constant magnetic field transverse to their
momentum direction and travel in so called ’DEEs’ that shield the particles from electric
fields for half a revolution each. The frequency of a driving electric field between the
dees is chosen so that the particle get accelerated each time they travel from dee to dee.
The beam spirals to the outside of the cyclotron as the energy increases and is then
extracted via a kicker electrode.
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In a purely classical situation the revolution frequency (cyclotron frequency) is constant
and is given by an equilibrium between the Lorentz force and the centripetally force:

mv2

r
= qvB f =

v

2πr
=

qB

2πm
. (2.2)

The maximum energy of a cyclotron is (for heavy particles) mainly limited by relativistic
effects, which are partially dealt with in so called synchro-cyclotrons [8, p17].

Synchrotron (see figure 2.2b)

In contrast to a cyclotron the beam path within a synchrotron is fixed to a beam pipe.
This allows for easy installation of experiments, higher order magnets and diagnostic
tools. In order to achieve this the guiding magnetic field has to be increased as the
beam energy increases. Synchrotrons usually have a limited operating range in energy,
so that pre-accelerators are needed to provide the initial beam.

For heavy particles the maximum beam energy is only limited by the product of the
magnetic field and the ring diameter (see equation 2.2). Light particles quickly start to
lose energy due to synchrotron radiation ( ∆E ∝ E4/(m4R) [8, p38]), which severely
limits their upper energy, but gives rise to a new research area which utilises the produced
light.

(a) Cyclotron [9] (b) Synchrotron [10]

Figure 2.2: Circular accelerator concepts
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2.1.3 Linear beam optics of circular accelerators

Up to now we have only considered the dipole fields needed to bend the particles along the
desired beam path. In a real beam the particles trajectories are always slightly diverging,
so that the beam quickly spreads out and eventually gets lost at the beampipe [8, p51].
Additional elements are needed to guide these particles back onto the desired path.

Figure 2.3: Accelerator coordinate
system [11]

The trajectory of each particle in the beam is given
by the electro-magnetic elements along the beam
pipe. For the following discussion we want to con-
sider only magnetic fields, which is the most com-
mon case, and introduce the co-moving coordinate
system K(x,y,s). The origin sits on any point on an
ideal beam trajectory called orbit [8, p54], around
which the particles oscillate and moves forth with
the orbit angle θ. The axis s points along the
beam momentum, while x and y denote the radial
(horizontal) and vertical directions.

Only transverse magnetic fields act on the pri-
marily longitudinally moving particles and induce
transverse motion. The relevant particles stay
close to the orbit compared to the overall radius,
so that the for example vertical magnetic field By,
inducing motion in the horizontal direction, can be expressed by a Taylor series:

q

p
By(x) =

q

p
By0 +

q

p

∂By

∂x
x +

1
2

q

p

∂2By

∂x2
x2 + ... (2.3)

=
1
R︸︷︷︸

Dipole

+ kx︸︷︷︸
Quadrupole

+
1
2
mx2︸ ︷︷ ︸

Sextupole

+...

The values have been rescaled by the momentum in order to archive energies independent
field strengths (1/R, m, k). Each term can be associated with a magnetic multipole and
has a specific primary action on the beam. Dipole fields keep the beam on its circular
motion. Quadrupole fields focus the particles around the orbit. And sextupole fields
correct for chromatic effect, this is the slightly different focussing strength of particles
which are not at the nominal momentum. In modern accelerators each multipole is
being realised by an independent set of magnets, although it is also easily feasible to
superimpose different multipoles in one component, to allow for a great flexibility in
settings [8, 3.1]. In the following we do not want to consider chromatic and higher order
effects, so that the only remaining multipoles to consider are dipoles and quadrupoles.
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Only considering transverse fields to this order one can, for a perfect beam (i.e.
∆p/p = 0), deduce the following set of linear, homogeneous differential equations from
the Lorentz force and the above defined coordinate system alone [8, p58]:

x′′(s) +
(

1
R2(s)

− kx(s)
)

x(s) = 0, (2.4)

y′′(s) + ky(s)y(s) = 0. (2.5)

R(s) and k(s) are the local bending radii and quadrupol focussing strength, which re-
peat periodically with the accelerator circumference. The set of differential equations
describes the so called betatron motion, this is the motion in the transverse plane. Each
equation is basically a harmonic oscillator with an orbit position dependent spring factor
(Hill equation) for which the general solution is given by the Floquet theorem [11, p12]
to be

fβ(s) =
√

εx/yβ(s) · cos (Ψ(s) + Φ). (2.6)

This betatron oscillation function fβ cannot only be utilised to describe the motion
of single particles but also (when choosing εx/y and β(s) accordingly) describes the
position dependent 1σ transverse beam size along the beam pipe [8, 88]. The emittance
εx/y can for our purposes be considered as a constant value and is a measure of the
beam quality. The local betatron value (β(s)) is a result of the arrangement of magnets
in the accelerator (lattice) and is usually calculated with a matrix technique in which
each magnet in the machine is represented [8, 3.11]. Figure 2.4 shows an example of a
β function for the COSY lattice.

For very simple devices the betatron function can be analytically deduced from the
differential equation [8, p89]

√
β(s)− 1√

β(s)
3 − k(s) ·

√
β(s) = 0. (2.7)

The phase of the betatron motion is given by substituting the ansatz 2.6 back into 2.5:

Ψ(s) =
∫ s

0

ds
′

β(s′)
+ Ψ0. (2.8)

The number of betatron oscillations in one direction during one revolution of the beam
is called betatron tune ν and is directly given by the advance in phase during this time:

ν =
Ψ(s + 2πr)−Ψ(s)

2π
=

1
2π

∮
ds

β(s)
. (2.9)
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Figure 2.4: Example betatron function of the COSY lattice [11]

2.1.4 Optical resonances

The magnetic fields and so the forces on the beam particles act periodically with each
revolution. The placement and the field of each magnet is never ideal. This can, under
certain circumstances, lead to a resonance between the betatron oscillations and the
lattice which dramatically increases the beam size. Detailed calculations on this topic
are lengthy and basically follow the above train of thought [8, p118ff]. In order to
understand the concept we can instead qualitatively discuss a simple example.

Consider an ideal accelerator with only a single slightly missplaced dipole magnet. Each
time the beam passes this spot the beam particle suffers a slight angular kick. They are
not directly lost as following quadrupole fields force them back close to the orbit, but
in the following sections the amplitude of the betatron oscillation is increased. If the
particles reach the defective dipole with varying phases of the betatron oscillation, the
effect of the angular kicks will average out over a number of turns. But if the phase is
always the same the kicks will add up resonantly and the beam will eventually be lost.
Hence we see that integer tune are to be avoided.

Higher order field defects lead to higher order resonances, which accordingly decrease in
strength. So in order to avoid quadrupole/sextupole resonances multiples of 1/2 / 1/3
have to be avoided as tune [8, p125f].
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2.2 Spin-dynamics

While the amplitude of the magnetic moment of any particle is an intrinsic property,
the direction of this vector can be manipulated by external fields. The behaviour of
individual particle spin and of the beam polarisation as a whole, is a function of the
lattice as described below. The polarisation P along an axis ~n is the sum of the scalar
products of all particles spins with this axis:

P =
∑

i

~Si · ~̂n. (2.10)

2.2.1 Thomas-BMT equation

The force (torque) on a magnetic moment at rest due to a magnetic field in the rest
frame B∗ is given by [11, p35f]

d~S

dt
= ~µ× ~B∗. (2.11)

Where the spin ~S and the magnetic moment ~µ are related by

~µ = g
q

2m
~S. (2.12)

For a Dirac particle g is given to be 2, due to not point-like charge-distributions the
actual values differ from this by the gyromagnetic anomaly G:

G =
g − 2

2
=


0.00116, for the electron
1.79284, for the proton
−0.14298, for the deuteron

(2.13)

The torque on a resting EDM, which as magnetic and electric moments always point in
the same direction also effect the spin-axis, in an electric field is given by the Lorentz
force [12, 3]

d~S

dt
= ~d× ~E∗. (2.14)

In the resulting sum the fields have to be transformed from the rest frame of the particles
to the lab frame ( ~B∗ → ~B, ~E∗ → ~E) in order to see the effects of the lattice. The
resulting rotational movement with the angular frequency Ω is given by the so called
Thomas-BMT (Bargmann, Michel and Telegdi) formula [1, 12, 11, 13]:
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d~S

dt
= ~S × (~ΩMDM + ~ΩEDM ) (2.15)

~ΩMDM =
e

mγ
·

[
(1 + γG) ~B⊥ + (1 + G) ~B‖ −

(
γG +

γ

1 + γ

) ~β × ~E

c

]
(2.16)

~ΩEDM = −d
c

S~
·

(
~E

c
+ ~β × ~B

)
(2.17)

Where the magnetic field has been split up into components parallel and perpendicular
to the momentum.

This expression is structurally similar to the Lorentz force that governs the particles
movement (Ω = eB/mγ). In an ideal accelerator, only consisting of dipole magnets
the spin thus rotates (1 + γG) times during one rotation of the beam. The number
of rotations of the spin in the rest frame of the particle is commonly called spin tune
νs = γG. This value derived only from the holding dipole fields is usually accurate
within the error of measurement even for a referance particle in a real machine. In
the same model the axis of rotation is fixed along the vertical axis. This axis is called
invariant spin axis, as only polarisation along this axis is preserved [11, 4.2.2]. For a real
accelerator the invariant spin axis might be slightly different and will also dependent on
the position along the orbit.

2.2.2 Spin-resonances

Unexpected fields in respect to a reference particle on the calculated orbit kick the spin
orientation of off-orbit particles away from the invariant spin axis just as they kick the
momentum axis each time the beam passes. We can thus follow the same principle
argumentation as in section 2.1.4 to understand the resonance conditions that lead to a
loss of polarisation in respect to the invariant spin axis [11, 13, p11f, p30].

Imperfection resonances:
If the phase of the spin rotation is the same each time a field defect (i.e. due
to positioning errors) is passed the kicks add up resonant. This condition can be
translated to an integer spin tune.

νs = γG = k ∈ N (2.18)

Intrinsic resonances:
The particles undergoing betatron oscillations will see additional (horizontal) fields
due to the focussing quadrupoles. Their kicks add up when spin oscillation and
betatron motion are in phase.

νs = γG = k ± νy (2.19)
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Higher order resonances
due to for example the horizontal betatron oscillation or the synchrotron motion
of the beam.

There are two common methods to avoid polarisation losses when approaching a res-
onance during acceleration. One involves adiabatically crossing the resonance, which
results in a reversed polarisation (see section 2.2.3). The other method uses fast
quadrupoles that can temporally move the tune and thus shift the spin resonance con-
dition.

2.2.3 Spin manipulation with RF-B-fields

Artificial spin-resonances can be introduced into the machine, so that a polarisation
along an arbitrary axis can be produced. If the RF-frequency of the dedicated magnet
matches the primary resonance condition the spin will rotate around an axis along the
magnetic field of the magnet. The rotational angle per revolution on resonance can be
deduced from the BMT-equation 2.17, by basically multiplying by the revolution period
and considering only the phases when the magnet acts on the spin, to be [11, 14]

εBDL =

〈
1
4π

∮
[(1 + γG) · B⊥

B︸ ︷︷ ︸
dipole

+ (1 + G) ·
B‖

B︸ ︷︷ ︸
solenoid

]eiνrθdθ

〉
. (2.20)

The rotation is only present when the magnet is powered (at the correct frequency),
so that an arbitrary axis in the plane of rotation can be set by adjusting the time the
magnet is in action. Figure 2.5 shows such a behaviour as measured in COSY during
the 2012 JEDI beamtime.

2.2.4 Froissart-Stora-frequency scans

In 1959 Froissart and Stora (FS) first theoretically described the spin evolution close to a
spin resonance [15]. In the theoretical case where the frequency of a spin-manipulating B-
field is swept from zero over a single spin-resonance with the constant speed α = ∆f/∆t
the polarisation after the sweep Pf in respect to the polarisation before the sweep Pi

is given by the FS-formula where fc is the cyclotron frequency and ε is the resonance
strength [15, 16, 11]:

Pf

Pi
= 2 · exp

[
−(πεFSfc)2

∆f/∆t

]
− 1. (2.21)

If the crossing speed α is small in respect to the resonance strength ε2 the polarisation
will be reversed. In the contrary case the spin is left almost unaffected. Anything in
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Figure 2.5: Spin oscillation with a RF solenoid

between will mean a partial loss of polarisation. The FS method can be used to cross
resonance while preserving the polarisation or to measure the effective integral field of
a magnet.

The orbit integral in 2.20 can be substituted with a line integral along the orbit (dθ =
dl/r) and the effective field can be expressed by the synchrotron condition (e/p = 1/Br).
The resonance strength of the dipole magnet is then given by

εBDL ==
1
4π
· e(1 + γG)

p

∫
Bdl =

1√
8π
· e(1 + γG)

p

∫
BRMSdl. (2.22)

In an ideal accelerator, with only the RF spin-flipper, the resonance strength as calcu-
lated from the integral field of the flipper εBDL would be the same as one measures with
a FS-scan (εFS). This can obviously not be true when the magnet is operated close to
an (intrinsic) resonance as given by the rest of the lattice. The ratio εFS/εBDL is well
described by

εFS

εBDL
= 1 +

k

|νy − νRF |
. (2.23)

This expression diverges when the frequency of the RF magnet matches the vertical tune.
k is a constant given by the lattice. For deuterons the situation is somewhat different
as the whole frequency range is effected by overlapping higher order spin resonances.
Previous measurements (SPIN@COSY 07/08) have shown an εFS/εBDL of 0.15 ± 0.01
for deuterons at COSY far away from an intrinsic resonance [16].
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2.3 Experimental method for EDM measurements

The basic idea of detecting EDMs at storage rings is based on the fact that spin and
EDM always point along the same axis. So if one can build up a spin-rotation due to
a none vanishing EDM (see BMT-equation 2.17), the resulting spin-angle can then be
measured in a polarimeter.

2.3.1 Dedicated machine

Frozen-spin-method (FSM) [12]:

In order to maximize the EDM effect we wish to maximize the length of the exciting
element. This can be achieved in an accelerator with electric bending and horizontal
beam polarisation. The radial electric bending field then also tilts the EDM out of the
horizontal plane. In order for this to work the spin must be always aligned with the
momentum vector (νs = 0). The BMT equation 2.17 can be rewritten in the case of a
pure dipole accelerator in the momentum rest-frame neglecting the EDM to be

Ω =
e

m

[
G~B +

(
1

γ2 − 1
−G

) ~β × ~E

c

]
. (2.24)

Figure 2.6: “All-In-One” ring for EDM measurements of p,d and 3He [17]

In order to meet the above condition (νs) Ω is required to be zero. For the proton
(G ≈ 1.8) an all electric bending machine can be realised at around 0.7 GeV. For
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deuteron and 3He a purely electric machine is not possible, due to the negative G factor.
Richard Talman recently presented the basic layout of an accelerator that would be able
to produce the fields needed to fulfill the FSM condition for all three types of particles
(see figure 2.6) [17]. With some modifications to the design, this machine might even fit
into the currently existing COSY building [18].

Spin-coherence-time (SCT)

In previous experiments, with the spins aligned vertically, spin coherence, this is their
relative phase, has never been considered, as it did not effect the polarisation (see figure
2.7). This will be different in an EDM experiment as a loss of coherence will mean a
loss of the horizontal polarisation (see again figure 2.7) and will thus stop the further
buildup of EDM signal. The SCT in respect to an arbitrary axis ~a is defined by [12]

1
τSCT

=

∣∣∣∣∣∣ 1
N

N∑
j=1

1
~sj ·~a

· d(~sj ·~a)
dt

∣∣∣∣∣∣ . (2.25)

The spin decoherence mainly arises from a momentum difference between individual
particles and so a difference in spin tune. In an unbunched machine this effect is enor-
mous as the spread in revolution frequencies is large between particles. In the case of a
bunched beam the cavity forces the particles back into the center of the bunch, which
results in a longitudinal oscillation (synchrotron oscillation) and an according oscillation
of individual spins around the reference spin (windshield wiper motion). In this case an
average momentum spread can only arise through different pathlength for particles with
different betatron oscillation amplitudes [19].

The spin coherence time currently accessible at any hadron machine is in the order of
dozens of seconds, with substantial effort on the way to increase this for example by
utilising sextupole fields to flatten the pathlength distribution [19].

In the final experiment the tilt angle per revolution due to the EDM effect will (at an
EDM of 10−24 ecm) be in the order of 10−12 rad. Which means that it takes around
1011 revolutions or 105 seconds until a measurable polarisation has been achieved. The
SCT will have to be in the same order of magnitude .

Sensitivity

The statistical sensitivity of such an experiment, neglecting any systematic errors, is
given by [12]

σ ≈ 3~
P ·A ·ER ·

√
(NBeamfcTtotalτspin)

. (2.26)
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Figure 2.7: Spin coherence [12]

A and f are the polarimeter analysing power and efficiency respectively. P and Nbeam

describe the beam polarisation and total number of stored particles. ER denotes the
radial electric field that tilts the EDM. Ttot and τspin are the total running time per year
and the spin-coherence-time (see section 2.7).

Assuming a number of feasible values a sensitivity of around 3 · 10−29 ecm seems possible
[1].

2.3.2 Systematics

Whenever trying to set limits on a minutely small quantity, systematics that mimic the
same behaviour as the searched for quantity have to be carefully considered. Going back
to the BMT equation 2.17 we see that in a machine with radial (horizontal) electric
holding fields, non average vertical electric and horizontal magnetic fields would also
result in a vertical tipping of the spin, as expected for the EDM.

A rough estimation from the current deuteron EDM limit already calls for a ratio of
average vertical electic field to the horizontal field of below 10−10. Precision at this level
will need a substancial design, placement and commissioning effort. During the runs
even the room temperature will eventually have to be controlled [12].

This is only the leading systematic effect. Other effects for example involve the wind-
shield wiper motion, which will call for a fast polarimeter to monitor the frequency
stability and frequency locking of the RF magnet and the cavity. The actual measure-
ment will most likely not be dominated by the sensitivity discussed in section 2.3.1, but
by the systematic errors.
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2.3.3 Preliminary experiments at COSY

Before being able to build a dedicated machine, about a decade from now, a number of
issues have to be studied in further depth. Among these are SCT, polarimetry, RF-E
fields with high field strength, systematic effect of unwanted field components and spin
dynamics simulations.

To study systematics it is unreasonable to try and manipulate the unknown EDM.
Fortunately the effect of EM-fields is principally the same on the EDM as it is on the
MDM (see BMT-equation). Therefore all systematics can be studied by manipulating
the well-known MDM. The RF magnet that will be presented and investigated in this
theses is supposed be be used for investigations concerning the effect of different RF
waveform shapes on the SCT and to learn to deal with unwanted field components.

Once these issues have been looked at seperately the JEDI collaboration then aims to
conduct a first direct EDM measurement with a sensitivity of around d = 10−24 ecm [1].
For this a short section of RF-E field will be utilised, that tilts the initially vertical spin
into the accelerator plane.
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2.4 COSY

The COoler-SYnchrotron (COSY, see figure 2.8) at the Forschungszentrum Jülich can
provide vertically polarized H− and D− beams with energies from 300 MeV (H−) / 600
MeV (D−) to 3.7 GeV for internal as well as external targets.

The ring has a circumfrence of 183.4 m which includes two straight sections for experi-
ments and diagnostics. The emittance of stored beams at injection energy is reduced by
injecting a highly ordered electron beam into a small section of the accelerator (electron
cooling). Above β = 0.85 stochastic cooling can be utilised for the same purpose. It
consists of a set of pick-up electrodes that sense the particle distribution in respect to
the orbit within one bunch. Their signal is transported to a set of kicker electrodes with
the proper phase, where it is used to correct the particle position and effectively reduce
entropy [11, 13].

Figure 2.8: COSY accelerator facilities [20]
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2.4.1 EDDA-polarimeter

Figure 2.9 shows a schematic of the EDDA polarimeter, the internal COSY experiment
that is used to determine the beam polarisation. It consists of two layers of interwoven
scintillators and covers the forward region of a solid scattering target [13]. During the
2012 beamtime this was a hollow carbon rectangle. The vertical polarisation of the beam
is directly linked to the count-rates left and right (horizontally) from the target, by the
energy dependent analysing power.

ε = Py ·Ay =
NR −NL

NR + NL
(2.27)

Figure 2.9: Schematic of the EDDA polarimeter [13]
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3 Magnet design

The JEDI proposal states the following requirements for the new RF-B flipper:
“A broad-band RF-B spin flipper has to be utilized to have the capability to apply
magnetic fields with different wave forms and over a wide frequency range (roughly 80
kHz and 1 MHz). The required integral field strength depends on the momentum spread
of beam and will roughly be 0.025 Tmm. The intended system is able to deliver a
RF-B field over a wide frequency range and is based on a stripline design (transverse
electromagnetic (TEM) transmission line).” [1] The expected frequency range was later
extended to 1.5 MHz. Higher frequencies generally allow a more precise shaping of
the desired waveform. The integral field of 0.025 Tmm has to be understood as field
amplitude and not as effective field.

3.1 Geometry

In order the meet the design criteria the following design has been proposed and realised
[21]:

The magnet is made up of four independent stripline units, each being build from 1
mm copper plates, which are arranged as shown in figure 3.1. The outer conductor is
65 cm long and 5 cm wide. The inner conductor is slightly smaller at 61 cm · 3.5 cm
and separated from the outer conductor by a 1 cm gap. This geometry guarantees an
impedance (see next section) of 50 Ω for each stripline unit, which is needed for a lossless
coupling of the magnet to an amplifier via coaxial cables. This value has been confirmed
by Ralf Gebel and can be reproduced in simulation (see chapter 6).

Opposing stripline pairs are separated by 8 cm to allow for a good fit around a rectangular
ceramic chamber, which functions as beam-pipe at the position of the magnet in COSY.
Neighbouring striplines can either be directly adjacent (compact geometry) or can be
separated by a 5 cm gap (extended geometry).
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Figure 3.1: CAD view of the stripline magnet in compact geometry

3.2 Transmission line theory

All aspects of electromagnetic fields and circuits can be derived from Maxwell’s equations
(here given in differential form):

∇ ·E =
ρ

ε0
, (3.1)

∇ ·B = 0, (3.2)

∇×E = −∂B
∂t

, (3.3)

∇×B = µ0J + µ0ε0
∂E
∂t

. (3.4)

The magnet is operated at a frequency of about 1 MHz. This frequency is equivalent to
a wavelength of 300 m. Even with all conductors wired in series the total length of the
magnet is orders of magnitude shorter. This in turn means that for any given point in
time the phase of the current is nearly constant all over the magnet. It should thus be a
rather good approximation to calculate the circuit properties based on standard circuit
theory (lumped element method) and to neglect all dynamics when calculating fields.
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Figure 3.2: Transmission line schematics
(R,G ≈ 0)

In the lumped element method a transmis-
sion line such as the stripline elements of the
magnet can be thought of as an infinite se-
ries of elements as shown to the right. In or-
der to calculate characteristics the elements
can be added to one effective schematic and
the overall impedance can be derived from
this as follows:

The general solution containing incoming
(I+) as well as reflected (I−) currents is
given by

U(x, t) = Û+ exp(iωt) exp(γz) + Û− exp(iωt) exp(−γz). (3.5)

Applying Kirchhoff’s circuit laws

γÛ+ = RÎ+ + iωLÎ+, (3.6)
γÎ+ = GÛ+ + iωCÛ+, (3.7)

yields the characteristic impedance

Z0 =
U+

I+
=

√
R + iωL

G + iωC
≈
√

L

C
. (3.8)

The actual impedance of a device is only equivalent to the characteristic impedance if
no reflections occur. This is true for an infinite transmission line or (and practically
actually relevant) if the device is terminated by its characteristic impedance [22, p63].

In a laboratory environment the standard waveguide is a 50 Ω coaxial cable. The
impedance of the stripline and of the terminating resistor have to match this value to
avoid partial reflections at transition points. For a simple stripline made of two infinite
plates of width w, spaced d apart the impedance is given by

Z0 ≈
√

L

C
=

√
µ

ε

(
d

w

)2

= 377Ω
d

w
. (3.9)
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3.3 Wiring scenarios

The great number of conductors allows for a variety of wiring schemes. One has to
distinguish between two different operation modes:

1. Stripline mode: Currents flow through the outer conductors as well as the inner
conductors. The current on the outer conductor is opposite to the current on the
inner conductor.

2. Classical mode: Currents only flow through the inner conductors. The 50 Ω
impedance is lost in this mode when the magnet is operated at high frequencies.
Whether losses due to reflections are negligible has to be further investigated. In
the following the device is always assumed lossless.

For the sake of a simple and accurate terminology lets define the following coordinate
system: The origin sits at the center of the magnet, which will be the region the beam
passes through. The X-axis points along the direction of beam, this is along the long
side of the magnet. The Z-axis points along the short side of the stipline plates and the
Y-axis point into the plane of conductors.

From now on only the direction of current on the inner conductor will be denoted, this
is done by crosses and arrows (see figure 3.3) in the same fashion as one is used to from
field vectors.

The main component we are interested in is Bz. In order to achieve a strong field in
this direction wiring 1 has to be used. Rotating this configuration by 90 degrees yields
wiring 3, which gives a strong By component, which can be used for systematic studies
of unwanted field components. The extended geometry is optimised to produce equally
strong fields into the z and y direction, depending on the wiring.

Figure 3.3: Different wiring schemes

Another sensible wiring scheme, in which currents through neighbouring units are always
opposite is denotes as wiring 2. The expected field has a quadrupole arrangement and
is thus of minor interest.
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4 DC analytical model

In order to be able to quickly produce good field estimates, an analytical model is
supposed to be established. As we have already seen, it is a good approximation to
neglect all dynamics in Maxwell’s equations. The fields can thus be deduced from the
charge and current densities alone.

For the complex geometry of the magnet this is analytically still rather challenging. As
a further simplification we may substitute the copper conductors for one-dimensional
current densities and consider these to be infinite in length. The magnetic field of an
infinite pointlike wire at origin is given by:

~B(~r) = −µ~I

2π
× ~r

r2
. (4.1)

The field of the magnet can be deduced from this equation by integrating over the current
densities. The z component of the magnetic field somewhere on the z-axis is then for
example given by:

Bz(z) = − µ

2 ·π
∑

conductori

∫
i

I

li
· yi

y2
i + (z − z′)2

dz
′
. (4.2)

li and yi denote the length and central y value of conductor i. The following section
shows the resulting field strength of wiring 1 in both operating modes and geometries.
This is supposed to give a first impression of the magnets field and is to be used for later
comparison against measurements and simulations.
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4.1 Classical mode - wiring 1

Figure 4.1 shows the Bz component along the z-axis for the classical mode in wiring 1
and has been generated with a current of 1 A on each conductor. The field strength
in compact geometry is nearly constant in the region of interest around the origin at
around 0.145 G/A.

Assuming an effective length of 60 cm would require a peak current of 2.9 A, which is
equivalent to a power of 200 W at the usual RF impedance of 50 Ω. At the time of first
commissioning this was exactly the power that was available from the amplifier.

In the extended geometry the Bz field strength at the point of beam passage is reduced
by approximately 50% compared to the compact geometry. For the By component on
the y-axis a similar result to equation 4.2 can be found for wiring 3:

By(y) = − µ

2 ·π
∑

conductori

∫
i

I

li
· zi

y2 + (z′)2
dz

′
. (4.3)

At the origin this yields a By of 0.1, which is approximately the same as the Bz strength
in wiring 1. We can thus conclude that the ability to produce equally strong fields in y
and z should be met in classical mode.

(a) Compact geometry (b) Extended geometry

Figure 4.1: Classical mode - wiring 1
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4.2 Stripline mode - wiring 1

Figure 4.2 shows the Bz(z) behaviour in stipline mode, generated at a current of 21 mA.
This has been chosen as the later alternating field measurements were conducted at a
mean current of 15 mA. The central field in compact geometry is severely reduced in
comparison to the classical mode, due to the outer conductors contributing an opposing
field. At 21 mA the central field is 42 · 10−5 G small, which is 0.028 G/A and factor
7.25 smaller than in classical mode. Accordingly a 11 kW amplifier would be needed to
reach the required field.

(a) Compact geometry (b) Extended geometry

Figure 4.2: Stripline mode - wiring 1

For the extended geometry the situation is even worse, as the central field is tiny at
less than a quarter of the field in compact arrangement and is furthermore negated in
respect to the rest of the central magnet.

In order to understand this behaviour the central Bz strength is plotted vs. the sep-
aration of neighbouring conductors in Figure 4.3a shows such a plot. For the sake of
simplicity the conductors have been substituted by point currents. The y-axis has not
been scaled to give any meaningful fieldstrength and is only supposed to show the sign.
It is found that the central field quickly vanishes with growing separation, the field nega-
tion then takes place at around 9 cm. In the extended geometry the central point of the
neighbouring conductors are 10 cm apart. Although finite element field simulations are
only introduced later (see section 6) figure 4.3b indicates that the ’return fields’ within
the stripline units spread into the center of the magnet as the separation increases.

Should this behaviour be confirmed in later measurements, we can then rule out the
extended geometry in stripline mode for any useful purpose.
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(a) Bz negation as a function of separation

(b) COMSOL simulation for a seperation of the outer conductors of 5 cm

Figure 4.3: Field negation in extended geometry
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5 Field measurements

In order to evaluate the field strength and field geometry under a great variety of cir-
cumstances a number of measurements have been carried out. In order to establish field
strength and homogenity in classical mode a spacial scan of the magnet powered by DC
(static field) has been performed. In a second set of measurements the stripline and
frequency characteristics have been studied.

5.1 Static field

5.1.1 Experimental setup

3D Hall-magnetometer

Figure 5.1: Sketch of the Hall effect

For the DC measurement a three-axis Hall
Magnetometer (THM1176) from Metrolab
Instruments has been utilised. The Hall
voltage is a charge separation inside a con-
ductor, which arises from an equilibrium
state between the magnetic force on the con-
duction electrons moving with an effective
velocity and the electric force due to the pro-
duced charge separation. The actualprobe
inside the THM1176 has a sensitive area of
5.3 mm · 1.3 mm and is encased in a 10 mm · 16 mm plastic housing [23].

The manufacturer specifies a sensitive frequency bandwith from DC to 1kHz and a
resolution of an offset corrected measurement of 1% of the selected operating range,
which for our case is 0.03 G [23].

Prior to the actual field measurement some characteristics of the Hall probe were inves-
tigated. The Hall voltage is directly proportional to the current through the probe and
is thus temperature dependent in the same way the resistance is temperature dependent.
Figure 5.2 shows a scatter plot of the absolute magnetic field of 22000 data points sam-
pled over 22 minutes in respect to the temperature as measured by the same probe. A
small yet statistical significant dependency on the temperature can be seen (0.01 G/500
temperature steps).
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Figure 5.2: Temperature dependency of the Hall-magnetometer

From now on the temperature correction is always applied. Figure 5.3 shows the resulting
field strength in respect to the time spent in the same measurement as above. The
data is constant within the error of the slope. Projecting this graph onto the Y-axis
(see figure 5.4) yields the statistical distribution of the measured B-field strength. The
values exactly follow the naively expected Gaussian distribution. Each measurement has
a statistical error of 0.012 (which is a factor 2.5 better than specified by the manufacturer
(see page 5.1.1). The mean of around 0.6 G is the local strength of the earth magnetic
field, which is an unwanted background to all following DC measurements.

Measuring procedure

In order to evaluate the field geometry a X-Y table with a 5 mm scale division has been
built (see figure 5.5).

The field measurement is very sensitive on surrounding paramagnetic material. The field
was for example already greatly disturbed when the magnet was fixed to the X-Y table
with the help of a thin steel plate, which was in turn replaced by an aluminium plate.
The magnet is therefore separated from the metal components of the X-Y table by a 2
cm PVC plate.

Due to the laboratory environment (lots of currents, magnets and paramagnetic materi-
als) the strength of the environmental magnetic field is expected to change significantly
when the probe is moved by only a couple of centimeters. As a result the probe has been
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Figure 5.3: Time dependency of the Hall-magnetometer

Figure 5.4: Statistical distribution of field strength values
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Figure 5.5: Stripline magnet with X-Y table and hall probe

placed statically and the magnet mounted on the X-Y table has been moved around
the probe. There can still be minor changes to the field seen without currents on the
conductors as the surrounding material changes as the magnet is moved. In order to
cope with this problem background measurements have been carried out.

The whole of the magnet could not be scanned at once, due to obstructing plexiglas
bars that keep the conductors in place and the fact that the movement of the X-Y table
is limited to 20 cm in each degree of freedom. There were two sets of measurements
performed:

Central region:
The 15 cm · 8 cm central part of the magnet as defined by the plexiglas bars.
The background field is expected to only change slightly within these bounds and
has thus only been measured on the four edges. The spacial grid for measurement
consists of 13 · 7 data point spaced 1 cm apart.

Fringe region:
An overall 205 mm · 185 mm big region extending 80 mm further than the outer
conductors. The background field has been scanned at 21 points spaced between
two and three centimeters apart. The actual field measurement is made up of 63
data points (mostly) 2 cm apart.

In both cases the magnetic field probe was placed 38 mm below the upper edge of the
magnet, which is almost central. The grid points were then passed in a sweeping motion,
with a couple of hundred measurements being taken at each position.
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(a) central region (b) fringe region

Figure 5.6: Static field measurement regions

5.1.2 Results

The temperature correction has been applied around an arbitrary chosen value of 26000,
before the values from each grid point have been averaged. By this procedure the fields
with and without current on the conductors can be reconstructed. To obtain the actual
field produced by the magnet the background field strength has to be substracted from
the total field at each point. At points where no background measurement was available
the strength of the background field was interpolated by the Delaunay algorithm. See
figure 5.10 for an example.

The background and total fields are not absolute due to the arbitrary temperature
correction offset. But as this offset is the same for both fields, the actual field generated
by the magnet can be given without any temperature uncertainty.

In order to estimate the error on each field point two main contributions have to be
considered:

1. The error on a single measurement has been established to be 0.012 G (see page
31). At each grid point around 300 data points have been taken. This makes for an
error of 0.0007 G (0.07% at 1 G). The errors on the background values due to the
Hall Probe are of similar magnitude, but cannot be considered purely statistical
as each background point is being considered multiple times when calculating the
field of the magnet alone.

2. The probe was only loosely fixed by a lab clamp, so that a perpendicular po-
sitioning is not guaranteed throughout the measurement. Assuming an angle
error of four degree yields an error on each field component of 0.35% (Breal =
cos (angle error) ·Bmeasured). This error is also not purely statistical in between
grip points due to the sweeping motion during field scans.

From the above two argumentations it is clear that no exact error on the field strength at
any point on the grid can be given, although 0.4% seems like a very reasonable estimate.
Typical values for the background and overall field are 0.2 G and 1 G. In the following
we may thus consider each measurement field strength to have an error of 0.04 G.
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Central region

Figure 5.7 gives the strength of the Bz component to be constant within errors within
an area 4 cm wide. This as well as the field strength in this area (1.35 ± 0.04 G) is in
accordance with the DC model extrapolated to 9A (1.31 G).

Figure 5.7: Bz central

The other field components Bx and By (figure 5.8) are consistent with zero in the region
of interest.

(a) Bx field (b) By field

Figure 5.8: Bx and By in the central region
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Fringe region

Figures 5.10 and 5.9 give the field strength distributions for all components of the mag-
netic field in the fringe region. The outer extends of the magnet are denoted by a solid
line for the end of the outer conductors and a dashed line for the end of the inner con-
ductors. Within the relevant region (about 1 cm around y = 150 mm) the unwanted
field components Bx and By are consistent with zero (figure 5.9).

The Bz component can be seen to fall of smoothly (figure 5.10). From this behaviour
one can also deduce an effective length (length of the field at maximum Bz = 1.35 G)
of the magnet. The data points in figure 9.3 (appendix) have been taken from the y
= 150 mm line. The statistical error is assumed to be twice the error of the probe on
a single datapoint (0.0007 G), due to the slightly systematic nature of the errors on
the background. The error due to an angle of the probe has not been considered as it
should be purely systematic for a single sweep line. The fall off behaviour can be nicely
approximated by a quadratic function. The resulting effective length (also considering
the error on the maximum strength as statistical) comes out to be 565 ± 5 mm, which
is around 85 mm short of the length of the inner conductors. From the effective length
(565 ± 5 mm) and the central field (1.35 ± 0.04 G @ 9A) the integral field for wiring 1
in classical mode and compact geometry follows to be

∫
Bdl = (0.00848± 0.00026) Tmm/A = (0.0240± 0.0007) Tmm @ 200 W AC (5.1)

which is in a nice agreement with the DC analytical model.

(a) Bx field (b) By field

Figure 5.9: Bx and By in the fringe region
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(a) Background field (b) Raw values

(c) Resulting field

Figure 5.10: Bz strength extraction from background and data fields
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5.2 Alternating field

5.2.1 Experimental setup

(a) R&S test receiver [24] (b) E and B probes [25]

Figure 5.11: Equipment used for the AC measurements

Measurements of alternating fields at the design frequency range cannot be done with
the previous discussed Hall probe. Precision measurements at these frequencies are
generally tricky and involve costly and bulky equipment, usually only with the capability
to measure absolute field strength and not single components.

Due to the limited time and resources available before the scheduled beamtime it was
decided to use an R&S Test Receiver (ESU8 EMI) in combination with a set of magnetic
and electric field probes (HZ-14), which were available from a neighbouring electronics
institute. The set is commonly used for electro-magnetic-compliance tests, where trou-
blespots have to be identified on a circuit-board, but is also advertised as field strength
measurement equipment.

The magnetic field probe measures the field component parallel to the long edge of the
probe, while the E probe only measures the absolute field. The internal mechanism of
the probes is not presented by the manufacturer, but the antenna factor that converts
the voltage output of a probe into an actual field strength (E or H field) is given in the
manual. The antenna factor for the E field probe is given to be constant at 67 dB [25].
For the B probes see figure 5.12.

In the considered range between 0.1 MHz and 1.5 MHz this antenna factor can be
parametrized by:

antenna =
(

70− 17.14 · fvar · ln
(

f

1MHz

))
dB. (5.2)
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Figure 5.12: Antenna factor for B-field probe [25]

The factor fvar is introduced to later estimate the systematic effect of slight discrepancies
of the antenna factor from the given graph. For a probe with the same behaviour as
described in the manual fvar is equal to union.

During measurements with the B probe an additional preamplifier has been utilised. Its
frequency dependent amplification curve (figure 5.13) has also been considered, but is
almost constant compared to the antenna factor.

Figure 5.13: Amplification factor for the preamplifier [25]

The R&S spectrum analyser was operated in receiver mode. This means that only fields
that oscillate at a frequency bandwith of 9 kHz around the set frequency are being
measured [24]. The device was set to operate as quasi-peak detector, which weighs a
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signal by its repetition rate to give an annoyance factor. In our case of a continuous
(sinusoidal) wave, this is luckily equivalent to a measurement of the peak value [26].

With this equipment the following two measurement procedures were repeated for both
available geometries and all possible wirings (except wiring 2 expended geometry) in
stripline mode at an effective current of 15 mA :

Frequency dependent central components:
For each accessible component (z,x for compact geometry and all three for the
extended geometry) the B probe was visually placed at a central position. The
frequency was then varied from 0.1 MHz to 1.5 MHz in 100 kHz steps. At each
frequency step the probe voltage (in dBV) with and without RF was recorded. An
additional frequency sweep like this was done with the E probe.

Bz along the z-axis at 1 MHz:
The frequency of the RF was set to 1 MHz. The B probe was fitted with a 0.5 cm
scale ruler and placed within a styrofoam block, that could only be put at one well
defined position in between the inner conductors. The probe was then retracted in
0.5 cm steps. At each step the voltage with and without RF was again recorded.

For each measurement the antenna factor (in dB) was added and the amplifier factor
subtracted. The background and sum field strengths were then calculated from the dBV
value:

B[T ] = 10
signal [dB[V]]+antenna [dB[(A/m)/V]]−amplifier [dB]

20 ·µ0, (5.3)

E[V/m] = 10
signal [dB[V]]+antenna [dB[(V/m)/V]]

20 . (5.4)

The actual field produced by the magnet is again given by the difference between the
sum and background field strengths. The statistical error on each measurement is given
by 0.1 dB for background and 0.01 dB for sum field measurements. These values were
in both cases chosen to be the last non fluctuating digit and have to be propagated to
the final results.
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5.2.2 Results

General remark

Figure 5.14a (blue curve) shows the frequency dependent Bz strength of a central point
(compact, wiring 1, stripline mode), where the antenna factor has been chosen to exactly
follow the description in the manual. At the 15 mA effective current the component is
roughly 37 · 10−5 G strong, which agrees roughly (10% diviation) with the DC analytical
model (see page 28). In this graph, as in all the following, only statistical errors are
drawn, which at least for magnetic measurements are negligibly small.

Over the whole frequency range all magnetic measurements show a quasi parabolic shape,
where the maximum and minimum values are separated by almost a quarter of the
maximum value. For red and green curve in figure 5.14a fvar (as defined in equation
5.2) has been varied to be 0.9 and 1.1. This slightly tilts the antenna factor straight and
gives a maximum deviation of the antenna factor of 1.7 dB at 1.5 MHz. 1.7 dB is still
significantly below the acceptable systematic deviation between probes of 3 dB specified
by the manufacturer (3 dB is a deviation of roughly 50%), still the overall shape and the
field strengths are severely different (i.e. nearely a factor two between fvar = 0.9 and
fvar = 1.1 at 1.5 MHz).

Due to the strong dependency on the systematically hard to control antenna factor
the measurements with the B probe can thus only be trusted in the resulting order of
magnitude, which is of course not satisfactory for a field evaluation.

Figure 5.14 c shows the measured absolute E field (divided by c) over the frequency
range for wiring 1. For the electric probe the antenna factor is constant, which reduces
the systematical uncertainty. Over the whole frequency range the field is nearly constant
at 11.4 V/m. The slight frequency dependence is exactly the same for all measurements,
which hints to an internal characteristic of the probe. In an electro-magnetic wave
the power is equally distributed within the electric and magnetic field. The absolute
magnetic field is thus given by the electric field divided by the speed of light. In wirings
1 + 3 there is luckily always one component which is strongly dominant by one order of
magnitude as seen with the B probe (i.e. compare figures 5.14 a and b). The strength of
this component can thus be accurately measured (overestimated only by around 0.5%)
from the absolute electric field.

When deducing the magnetic field strength from an electric field measurement an addi-
tional systematic has to be considered. All inner conductors were on a 0.75 V potential
in respect to the common ground of the outer conductors and the test receiver. These
potentials spread into the center and result in a non-zero electric field at points slightly
off the central axis even when no currents are present. The strength of this parasitic
field has been estimated from simulations (see section 6.2) to be 0.4 V/m (0.9 · 10−5 G)
for each component at a point 3 mm off center.
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The overall systematic error due to overestimation and the parasitic E-field is estimated
to be 6%.

(a) Bz vs. frequency (b) Bx vs. frequency

(c) |~E|
c

≈ | ~B| vs. frequency

Figure 5.14: Compact 1 - Fields

42



Compact geometry - Wiring 1

Most aspects of this configuration have already been discussed above. Averaging over
the magnetic field strength as measured by the E probe and only considering statistical
errors yields a central Bz of (38.0 ± 0.3) · 10−5 G @ 15 mA. Considering systematics
yields: (0.0253± 0.0002) G/A.

The magnetic field probe can still be utilised to inspect the relative field changes along
the z-axis. The according plot is given in figure 5.15a. The general behaviour is as
expected from the DC analytical model. A more quantitative comparison can only be
achieved when taking the 3cm y-extend of the sensitive volume of the probe into account.
For this we need simulations (see page 48).

(a) Compact geometry (b) Extended geometry

Figure 5.15: Bz along the z axis in wiring 1 both geometries
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Compact geometry - Wiring 2

The whole set of measurements for this, as well as for all of the following setups, can
be found in the appendix. The only thing worth mentioning for this setup is the Bz

z-dependency, which nicely illustrates the quadrupole characteristic of wiring 2 (no field
at the center, rising fields to the edges).

Compact geometry - Wiring 3

The dominant component is the y-component, which could not be measured in compact
geometry due to obstructions. The other components are weak (around 15 · 10−6 G)
as expected. Due to this the Bz in z dependence measurement is quite noisy for both
measurements in wiring 3. Within the styrofoam block the probe could slightly tilt which
is believed to be the main problem when a non dominating component is measured in
z-dependency.

Extended geometry - Wiring 1

From the DC analytical model it is suspected that this setup produces a negated and
small field in the very center, which would basically render it useless for our purposes.
Figure 5.15b shows the according measurement, which confirms this behaviour.

Compact geometry - Wiring 3

The B field probe shows that indeed component y is dominant. Comparing the electric
field strength to the values measured for wiring 1 in extended geometry confirms that
this geometry can indeed produce equivalently strong fields in the z and y direction.

For compact geometry wiring 2 (quadrupole arrangement) no measurement could be
conducted before the magnet was installed in COSY. But, as we will see later, simulations
can fill the gap (see page 45 onwards).
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6 Simulation

Field measurements at the desired frequencies are limited by systematic uncertainties,
so in order to cross check the measurements and to extend the dataset beyond the
values accessible through measurements extensive simulations have been carried out.
All considered toolkits rely on the finite element method, which basically discretizes
time and space into a mesh and then numerically solves the differential equation of
interest on the resulting grid.

A number of freeware packages (most prominently Poisson/Superfish by the Los Alamos
Accelerator Code Group) are available. Poisson/Superfish is limited to 2D or axially
symmetrical problems, while other programs only allow for a very limited mesh size. 2D
simulations are sufficient to reproduce all of the measurements presented in the section
on alternating field measurements, but in the end a reliable integral field has to be
produced, which is only possible through 3D simulations.

Considering all these criteria it was decided to use the commercial COMSOL-
Multiphysics software library. This toolkit enables simulations in a wide variety of areas.
For our purposes only the AC/DC module is needed in addition to the basic installation.
The whole program is controlled through a graphical user interface, where one starts out
to define the geometry. This can be done to arbitrary precision (i.e. modelling coaxial
cable feedthroughs), but every new detail introduces new systematics. In the presented
simulation only the extends of the conductors were modelled. Next the corresponding
material (copper for the conductors, air for the surrounding volume) and the desired
current / voltage amplitudes are assigned to the geometric elements. The mesh is then
generated automatically, considering the generally desired element size and taking into
account different expected field gradients at different points of the model. Finally the
fields are being simulated at the desired frequencies.

The size of the surrounding air area / volume is of major importance, as it’s edges define
the boundary conditions where the potential is set to zero. The simulated values will
be wrong all over the mesh, if this does not match the actual physical situation. When
first trying to reproduce the field of the extended geometry the total area was only 8
times as big as the magnet which resulted in a central field without field inversion. The
total area was then increased to about 70 times the area of the magnet and the expected
behaviour could be nicely reproduced.

2D and 3D simulations have to be done independently. As the computation time is
strongly dominated by the size of the mesh, it is wise to first learn and refine the 2D
simulations and only then convert the model to 3D. These spatial computations had
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to be done with a rather coarse mash and in DC approximation as any other settings
resulted in computation timeouts or memory overflow.

In the following only results completing previous measurements are being presented.

6.1 Understanding the field inversion

In the DC analytical model and the alternating field measurements we have seen that
at a very central point in the extended geometry wiring 1 the magnetic field is inverted
in respect to the compact geometry. The same can be observed in the simulation (figure
6.1). Maxwells equations (∇ ·B = 0 as in section 3.4) demonstrate that magnetic field
lines have to be closed. Following this line of argumentation the magnetic field within
the stripline units can be thought of as the return field for the central field. As the
neighbouring strip line units separate from the compact to the extended geometry, this
return fields starts to spread into the central region until the central field is negated.

Figure 6.1: Simulation of the field inversion
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6.2 Establishing the parasitic E-field

When deducing the magnetic fields components from the electric field probe the so la-
beled parasitic E-field due to the potentials on the inner conductors has to be considered
(see page 41). Figure 6.2 shows the absolute electric field strength for variations around
the z- and y-axis (15 cm arc length = central position). This figure has been generated
with the model for the compact geometry with only electric potentials (0.75 V effective
as in the measurement) applied to the inner conductors. From it the parasitic electric
field strength of 0.4 V/m for each component at a misplacement of 3 mm has been
deduced.

Figure 6.2: Simulation of the parasitic E-field

47



6.3 Reproducing the Bz vs. z dependency

Although the magnetic field probe has some systematic problems due to the antenna
factor, it can still be used to measure the relative behaviour along the z-axis. From
the field generated for the compact geometry wiring 1 in stripline mode at 1 MHz the
Bz dependency on the position along the z-axis can be extracted (figure 6.3 a, green
curve). This curve is rather flat in comparison to the DC expectation (orange curve)
and the alternating field measurement. This changes for slight deviation from y=0
(other curves). On the actual field probe (for comparison see figure 5.11 b left) the tip,
which likely contains the sensitive component, is 3 cm wide along the y-axis. So when
comparing the simulation and the measurement this has to be taken into consideration.

Averaging over Bz z-dependencies from y=0 cm to y= 1.5 cm in the simulation (and
scaling to best match the measurement point, compensate for the antenna factor un-
certainty) yields the black curve in figure 6.3 b. The agreement between simulation
and measurement (blue data points) is now far better than the original curve along y=0
alone. The asymmetry in the measurement is most likely induced by some ferromagnetic
material in the laboratory.

6.4 Integral field from simulation

3D field simulations directly yield the integral fields on orbit (y=z=0 in the magnet coor-
dinate system), when integrating the calculated field along this axis. But then assigning
an error to these values is hardly possible. Though the simulations yield an error based
on the deviations from iteration to iteration, this number can hardly be trusted as easily
dominating systematic effects in the model are not considered. Accordingly no errors
will be given on simulated values.

During the measurements with magnetic probes there was some doubt on the frequency
dependent strength of the magnetic field. Simulation confirms that the strength is
constant from 0.1 MHz to 1.5 MHz, as already indicated by the electric probe.
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(a) Bz z-dependency at different y positions and frequencies

(b) Bz z-dependency for the probe as simulated and measured

Figure 6.3: Interpreting the Bz vs. z simulation
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6.5 Integral fields by all accessible methods

Now that all methods have been presented it is time to compare the integral fields and
to decide whether the magnet performs to specifications. This could be done for all
available configurations, but as only wiring 1 in compact geometry has been in use at
the accelerator, this summary will be limited to this scenario. Equivalent calculations
for the other setups can be easily done with the numbers already presented.

The static and the alternating field measurements both do not directly yield integral
fields but only deliver central field strength. For the DC measurement (classical mode)
an effective magnet length and thus an integral field has already been determined from
the fringe field behaviour (see page 36). For the alternating field measurement (stripline
mode) this effective length is not necessarily the same, as the outer conductors are now
additionally powered. In this case the effective length as seen in the 3D simulation (55
cm) can be used alternatively.

The alternating field measurement is of course not directly valid to describe the clas-
sical mode. Still an integral field can be deduced from this measurement when taking
into account a conversion factor from stripline mode to classical mode as given by the
simulation (roughly factor eight).

Combining numbers from different methods to calculate the integral field, although
necessary, introduces a strong correlation between the different final results. Calculating
a common average is thus not sensible. Below the final numbers at 200W are given in
direct comparison:

50



6.5.1 Classical mode

method
∫

Bdl [Tmm]
alternating field meas. · simulated length · simulated factor: 0.023± 0.001 Tmm
static field measurement: 0.0240± 0.0007 Tmm
alternating field meas. · simulated length · factor: 0.023± 0.001 Tmm
3D DC simulation: 0.022 Tmm

6.5.2 Stripline mode

method
∫

Bdl [Tmm]
alternating field meas. · simulated length · simulated factor: 0.023± 0.001 Tmm
alternating field meas. · static length: 0.0031± 0.0002 Tmm
alternating field meas. · simulated length: 0.0028± 0.0001 Tmm
3D DC simulation: 0.0028 Tmm

All above values nicely agree within errors. For the classical mode the required integral
field (0.025 Tmm) has already been reached, if the losslessness holds for the wiring in
the accelerator (see section 7). For the systematically less problematic stripline mode
an additional factor nine has to be achieved.

51



7 Results from the Froissart-Stora-Scans

Figure 7.1: Stripline magnet at the COSY accelerator surrounded by a fast quadrupole

During the JEDI beamtime in May 2012 a couple of measurements with beam were
performed to commission the new magnet. The main purpose of the beam-time was to
investigate the effects of sextupole fields on the SCT [27]. This resulted in a cycle length
of 80 s with deuterons at a momentum of 970 MeV/c at the time of the measurements.

The deuteron is composed of two fermions and is a spin 1 particle. From the relative
abundance of the three possible vertical spin components |+〉, |0〉 and |−〉 the vector
polarisation PV and tensor polarisation PT can be calculated as follows:

PV =
N+ −N−

N+ + N0 + N−
(7.1)

PT = 1− 3 ·N0

N+ + N0 + N−

In the following only the vector polarisation is considered, as the FS-formula (see section
2.2.4) can then be used without modifications [28].
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At first the magnet was wired in configuration 1 stripline mode and was operated at the
spin resonace frequency, as previously measured by the solenoid. Only a 200 W amplifier
was available, which only resulted in an obervable effect on the beam (coherent betatron
oscillation), but not on the spin. The magnet was then rewired to match wiring 1 in
classical mode (figure 7.2 shows how this can be achieved with the coaxial cable input)
and a series of three FS-scans was performed.

Figure 7.2: Circuit scheme to connect stripline to RF in wiring 1 classical mode

During all runs the time the magnet frequency was sweeped was constant at 67 s in order
not to change the total cycle time of COSY. In order to achieve a strong polarisation
change the ratio ε/(∆f/∆t) has to be high. Accordingly low ∆f of 10 Hz (run 1207), 3
Hz (run 1208) and 0.9 Hz (run 1211) had to be chosen.

Figure 7.3 shows the evolution of the left-right asymmetry in the EDDA polarimeter
in respect to the start point of EDDA data acquisition at the experimental energy, as
recorded in run 1211 in 35 cycles. In order to convert to the actual beam polarisation one
needs to consider the target and energy dependent analysing power of the polarimeter.
Luckily we are only interested in ratios of polarisations, which are equivalent to the
ratios of the directly accessible asymmetries.

Figure 7.3: Evolution of the left-right asymmetry in the polarimeter over time (∆f =
0.9Hz)
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From the initial and final asymmetry as well as the revolution frequency of the beam
(750603 ± 1 Hz, from the cavity RF-amplifier) the effective resonance strength εFS in
this run is calculated to be: 43.0± 1.0 · 10−9

The same has been done for the other two runs (see figure 9.1 and 9.2 in the appendix).
The resulting resonance strengths were plotted against the frequency range (see figure
7.4) to check for any dependency as the FS conditions are more closely met. As expected
the resonance strength decreases as ∆f increases [14]. Based on the three data points
it is not possible to deduce εFS for big frequency ranges, so that in the following the
average effective resonance strength εFS = (39.5± 0.9) · 10−9 is considered.

Figure 7.4: ε interpolation for all runs

This value is equivalent to an effective integral field as given by equation 2.22 of 0.00187±
0.00004 Tmm. Away from any intrinsic resonance this value has to be corrected at
maximum by a factor 6.7, which would be equivalent to an integral field as seen in the
laboratory of 0.0125 ± 0.0003 Tmm. Even this value is about a factor 2 away from
the measured field strength (see section 6.5.1), which suggests that the FS-scans was
not complete. The natural width of a resonance is given by 2 · ε · fc which for our case
is around 0.9 Hz. The actual resonance width can easily be ten times bigger than
this. In order for the FS-formula to be meaningful the frequency range has to be big
compared to the resonance width. This condition is not fulfilled for any of the performed
runs. Unfortunately larger frequency ranges were not possible without loosing the effect,
because due to the limited time available at COSY the cycle time could not be increased.
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8 Summary and Conclusions

A new RF dipole in stripline design has been presented and evaluated. The device has
been designed to evaluate spin-rotation-systematics of a future EDM accelerator and is
supposed to deliver an integral, radial field of 0.025 Tmm in a frequency range from 0.1
to 1.5 MHz.

The design of the magnet offers a great flexibility in both wiring scenarios and geometries.
Any arbitrary waveform can easily be implemented as the magnet is constant in field
strength over the considered frequency range..

In classical mode the desired field strength can already be reached at 200 W. In the
systematically less critical stripline mode a factor nine has to be gained. Some weeks
after the beamtime a 2000 W RF-amplifier has been repaired, which means that an
additional factor three is already available without redesigning the magnet.

At about half the central field of the compact geometry the magnet can also be used in
extended geometry to deliver comparably strong fields in both directions perpendicular
to the beam.

These results were obtained through various measurements of static and alternating
fields, as well as of simulations. The various methods agree well within the individual
errors.

Concerning the method

Measurements of alternating magnetic fields at high frequencies are elaborate and
strongly limited by systematics. At 1 MHz extrapolating from DC measurements and
running simulations are good alternatives that yield results of comparable accuracy.

Commissioning with beam is essential to deduce the effective integral field at the specific
accelerator conditions. Froissart-Stora scans offer a great and relatively simple way of
doing so. Still in order to meet the FS conditions a number of parameters have to be
optimised, which calls for a sufficiently long cycle, which could sadly not be delivered
during the JEDI beamtime.
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9 Appendix

Froissart-Stora-Scans

Figure 9.1: FS-scan run 1208 (∆f = 3Hz)

Figure 9.2: FS-scan run 1207 (∆f = 10Hz)
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Static field measurement

Figure 9.3: Fringe field behaviour at y = 150 mm

Alternating field measurements

see the following pages
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Figure 9.4: Compact geometry - Wiring 2
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Figure 9.5: Compact geometry - Wiring 3
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Figure 9.6: Extended geometry - Wiring 1
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Figure 9.7: Extended geometry - Wiring 3
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