
Bachelorthesis

Optimisation of electric deflectors for a storage ring experiment

prepared by

Alexander Heinrich
at the I Physical Institute (IIIB)

in the

RWTH-Aachen

supervised by
Prof. Dr. Achim Stahl

and
Prof. Dr. Jörg Pretz

October 8, 2018

Abstract

In der Physik stehen noch sehr viele Fragen offen. Eine unter denen ist das ungleiche
Verhältnis zwischen Matierie und Antimaterie. Eine Vermutung warum dies zustande kam
ist die CPT-Verletzung. Daher suchen wir nun Teilchen auf denen eine CPT-Verletzung
zutrifft. Ein Teilchen bei dem wir dies herausfinden möchten ist das Proton, indem wir
dessen Dipolmoment bestimmen möchten. Dies versuchen wir mithilfe eines Speicherrings
zu bestimmen, der kein Magnetisches Feld beinhaltet. In diesem elektrischen Feld kann sich
das Proton, falls es ein Dipolmoment hat, ausrichten, so dass wir das erkennen können. Für
diesen Speicherring gibt es jedoch auch hohe Anforderungen. Das elektrische Feld sollte
keine zu großen Abweichungen vom Mittelwert haben. Daher ist es wichtig zu schauen,
welche Maße die einzelnen Bestandteile, die für das elektrische Feld verantwortlich sind
haben sollten. Aufgabe dieser Arbeit ist es, die Maße, sowie die Anzahl einzelner Kompo-
nenten numerisch zu bestimmen, sodass das elektrische Feld dem Mittelwert so wenig wie
möglich abweicht. Dabei werden verschiedene Programme und Programmiersprachen ver-
wendet. Unter anderem Agros2D, um ein Modell des Speicherrings zu erstellen und dessen
E-Feld berechnet. Andere Programiersprachen, die hierbei benutzt wurden sind C++ mit
der ROOT Bibliothek, sowie Python mit weiteren Paketen, wie zum Beispiel numpy. Diese
weiteren Programme sind in der Lage, das elektrische Feld, welches in Agros2D berechnet
wurde auszuwerten und die Abweichung vom Mittelwert zu bestimmen. Ein Pythonskript
wurde geschrieben um eine grafische Darstellung der Abweichung abhängig von verschiedenen
Parametern zu erzeugen.

I

In physics many questions are still open. One of these is the unequal ratio of matter and
antimatter. One assumtion why it became that way, is the CPT-Violation. Therefore, we
now search particles which have a CPT-Violation. One possible particle where there could
be a CPT-Violation is the proton. We want to examine it by looking for a dipole moment
inside the proton. This can be done with the help of a storage ring which works without a
magnetic field. In this electric field the proton can align if it has a dipole-moment that can
be measured. But this storage ring has high expectations. The electric field should be as
constant as possible without much deviations. Therefor we have to look at all measures of
elements in the storage ring which are responsible for the elecric field. The goal for this thesis
is to numerically detemine the number and the measurements of the different elements, so
that the deviation of the field is as small as possible. By doing this, we use different programs.
One program is Agros2D. It is able to create a model of the storage ring and can calculate
it’s electric field. Other programming languages used are C++ with the ROOT library and
Python with some packages like numpy. These other programs are written for examining the
field calculated from Agros2D and to see how the field deviates from the mean value. One
Python script is written to have a graphical presentation of the deviation, dependant from
different parameters.

II

Contents

1 Motivation 1

2 Physical Basics 1
2.1 Electric Field . 1
2.2 Elektrical Dipole . 1
2.3 Elektrical Quadrupole . 2

3 Basics in Programming 2
3.1 Python . 3

3.1.1 numpy . 4
3.1.2 matplotlib . 4
3.1.3 re . 4

3.2 C++ . 5
3.3 ROOT . 5
3.4 bash . 5
3.5 Agros2D . 5

3.5.1 Planar capacitor . 6
3.5.2 Cylindrical capacitor . 8

4 The storage ring in Agros2D and examining the results 10
4.1 The physical system . 10
4.2 Chosing the parameters . 11
4.3 Fitting, Residuals and deviation of the Residuals 13
4.4 Plotting the results of a series of mesurements . 17
4.5 Automatisation of the processes and containing clarity 18

5 Evaluation of the results 20
5.1 Relevance of the Parameters . 20
5.2 Method of chosing the parameters . 21
5.3 Finding the minimum . 22
5.4 Problems and uncertanty . 24

6 Conclusion 24

7 Annotations 26

III

1 Motivation

At the beginning of the universe, the number of matter was equal to the number of anti-
matter. Now we know that the matter dominates. One assumption why this happens is the
CPT-Violation. A number which can give us information about the assymetrie of matter and
antimatter is the baryon asymetrie:

ν =
nB − nB̄

nγ
(1)

The experimental result therefore is much higher than the theoretical result. This means there
are more particles which have a CPT-Violation than we know. Therefore we try to find them by
finding some properties of barions which can give us information about the CPT-Violation. One
information that gives us a hint about the CPT-Violation is the dipole moment inside a barion
like a proton or neutron. After finding out that the neutron doesn’t have a dipole moment, we
now try to find a dipole moment inside the proton. The problem with the proton compared
to a neutron is that it has a charge. We can’t simply take a proton in an electric field we can
do it with the neutron without accelerating it. But we can take the proton inside a storage
ring with an electric field and see if the proton will align or not. If it aligns, that can tell us
that the proton has a dipole moment. This storage ring contains no magnetic field, because
this can influence the spin. Only an electric field which extends to the middle of the ring like a
cylindrical capacitor. So accellerated protons in there are held in this ring by the force of the
electric field. Now when protons have a dipole momentum they will align in the field like other
dipoles. Then the poton aligns, the spin will align with it and we are able to measure the spin.
So we can find out if there is a dipole moment or not. If there is one we found another particle
with a CPT-Violation.

2 Physical Basics

2.1 Electric Field

By describing the strength of the coulomb force in a physical system we have to use a quantity.
Therefore the electric field stregth was defined. It could be defined the following way: The
electric field strength ~E is the coulomb force of a test charge divided by the charge of the test

charge. It’s unit is
~F
C or V m. The electric field gives us information about the electric field

stregth in the whole sytstem. In a statical system which means no current and no chage of the
system dependant from the time, the electric field stregth can be described by the first Maxwell
equation:

~∇ · ~E =
ρ

ε
(2)

2.2 Elektrical Dipole

An electrical dipole is an arrangement of two opposite charges. An electrical dipole can be
descriped by the electric dipole moment ~p which is dependent of the electrical charge q and the
distance between the charges ~d.

~p = q · ~d (3)

For electrical dipoles you can differentiate between mathematical dipoles and physical dipoles.
A physical dipole has a finite charge and a finite distance. In a mathematical dipole the distance
is infinitisemal small and the charge infinitisemal big but has a finite electric dipole momentum.
Like others object with a electrical charge, the electric dipole will also be influenced in an
electric field. Therefore we look what happens with a free mathematical dipole in an electric
field. Because the sum of the charges in a dipole is zero, the dipole will not change it’s translation.

1

But there will be a rotation. The dipol will turn along the lines of the E-field so that ~p and ~E
are parrallel. The difference between a mathematical and a physical dipole in an electric fiel is,
that the physical dipole can change it’s translation in an inhomogeneous electric field.
For this thesis mainly the caracteristics of the physical dipolefield between the two charges are
important. The equation of the field inside the dipole can be described with the coulombs law

(a) Potential of a electric dipole (b) Elektric field of a electric dipole

Figure 1: Potential and electric field of an electric dipole

and for two charges q and -q, it is:

E(r) =
q

4πε
· 4

2r2 − d2
(4)

where r is the distance from the middle of the dipole and d is the distance between two dipoles.
When you have many parrallel dipoles the arrangement can be seen as a planar capacitor, so
the dipole field is constant.

2.3 Elektrical Quadrupole

The electrical quadrupole is an arangement of two dipoles. The particles in a quadrupole are
disposed so that the momentum of the two dipolemomentums are antiparrallel. You can see the
field and the potential in figure 2

Also the Field inside can be described with the coulombs law by the sum of the electric field
strength of each charge. Also with a quadrupole there is more than one kind of quadrupole. The
mathematical description where the quadrupole is a point and the physical where the quadrupole
is a finite object. By using plates instead of pointed charges you also can create a quadrupole.
Compared with the dipole which consits of plates, the field of this quadrupole isn’t constant.
The x-component of the field increases linear in x-direction and the y-component of the electric
field increases linear in y-direction.

3 Basics in Programming

Programms, how they are stored in the hard disk drive and how the cpu reads them are very
difficult to write and to understand. So in the early times when computers were invented
people tried to make it easier for humans to write programs. First by using mnenonics in an
assembler language, where a single word represents a specific byte or some bytes in the program.
For converting the more readable language to the binary code assemblers were created. The
advantage of this languages is the possibility to tell the computer exactly what to do. So it is a

2

(a) Potential of a electric quadrupole (b) Elektric field of a electric quadrupole

Figure 2: Electric Quadrupole

good language for writing kernels and drivers and also today these languages are used for specific
cases. The disadventage is the dependancy of the operating system, the processor-architecture
and also the librarys you use. Also the error-rate can be higher compared with some other
programming languages.
Later programming language like Fortran and C were developed. They are called the higher
programming languages where every line can represent many bytes of the assembler language.
There also came the possibility to define variables classes and different kinds of loops. They used
a compiler to convert the program code into binary code. An other advantage of the compiler
languages are that they are mostly platform independant. So with the exception of some librarys
the code in the different operating systems is the same.
The next generation of programing are interpreter languages like python. This languages were
mostly designed for more simplicity and doing more complex things with fewer lines of codes.
They offer many librarys for all kinds of operations. They were called interpreter language,
because they don’t need a compiler. The main advantage is the ability of very exact calculations
without having to take attention to memory management. The disadvantage is the efficiency of
these languages which run slower than compiler languages.
Programming languages are used in all kinds of sectors. In physics, languages like python or
C++ are often used. C++ mainly when you have much data to examine and Python for doing
many things with a few lines of code.

3.1 Python

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.

3

Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

How you can see in the Zen of Python, python is designed for simplicity and readibility. The
Zen of Python says in general that the scrips should be written so that it is as simple as possible
to understand the code. The Zen of Python says that there is only one way to do it. Python
should be an easy to learn language. It is easier to learn one way than many ways.
Python is a multiplatform, opensource, simple and modern programming language. It is us-
able for objectorientated, functional but also aspectorientated programming. It is a interpreter
language so it doesn’t need a compiler to convert the script into machine language. So after
you have written the code, you only need to excecute it. You don’t have to take care of the
exactness of each number. Python will take care of it and it can store numbers of a very wide
range with a very high exactness. Even without packages, it contains a lot of build in functions
and classes. For more complex operations it is possible to import packages. For Python there
are many packages for all kind of programming. The most important packages used for this
thesis are numpy, matplotlib and re.

3.1.1 numpy

Numpy is a very usefull package which is mainly used for arrayoperations. It contains the n-
dimensinal array structure. In this structure the whole array is saved in one chain in the memory,
instead saving the elements in separate regions of the memory. Like this, array operations are
faster in a nd-array than in a Python list. Numpy offers many vector and matrix operations
for linear algebra like vectorproduct or matrix multiplication. It also offers to create arrays in
a special form like creating arrays filled with zeros or ones. The created arrays can be saved
in an ascii file. Ascii files in tabular form can be read from numpy and saved into an array.
Other functions of numpy are the creation of random numbers or the fourier transformation.
For integration of C/C++ or fortran code in Python, numpy can also be used.

3.1.2 matplotlib

Matplotlib is a python package to generate all kinds of plots. It is able to generate two di-
mensional plots like a simple line plot or histogram or heatmaps, but also animated or three
dimensinal plots. You can set a title, describe the axis, add some text in the plot and also make
a legend. You can also draw elements in the graph like arrows or circles. Matplotlib is also able
to set the scale of the axis like you want. Matplotlib has a very detailed documentation how to
use all the classes and functions of matplotlib. So it is possible to understand this package with
only some basic knowledge of Python.

3.1.3 re

The name re stands for regular expression. Like the name says the package helps to find struc-
tures in a string. It only needs a pattern which you have to define. If re find this pattern in the
string it is able to return the part of the string where it founds the pattern but also the parts
of the string. You can use it after reading from an ascii file to extract some values or other
information of this file. For the thesis it is used to find the values of an ascii file which Python

4

opened. The advantage of using re compared to numpy is that it is able to find the values of a
more complex ascii file than a tabular.

3.2 C++

C++ is a very fast, efficient, open-source and multiplatform compilerlanguage. It is invented
by Bjarne Stroustrup in 1979 as a successor of C. In C++ you have a lot of control of what
the computer is finally doing. You also have some control over the memory for example how
much memory is saved for a variable, or reserve memory for an array. Therefore it is suitable
for systemprogramming like operation systems, drivers and also programs which have to run as
fast as possible. It is easier than the assembler language which was used for systemprogramming
and drivers before the developpment of C/C++, but with an optimized compiler, it is nearly
as fast as an assembler. In C++ you can acces a lot of functions of the standard C++ library
which are often usefull like iostream(reading and writing to the terminal), fstream (reading and
writing to a file), cmath (mathematical functions), vector (a kind of array which supports many
array operations) and a lot of others. It is also possible to implement other library in C++ like
the ROOT library, which is also used for this thesis. But this control also means responsability.
Even if the compiler do not give an error that doesn’t mean that the program runs without
problems. It can produce a segmentation fault in C++ very fast for example when you reserve
less memory for an array than you need. In this case the compiler doesn’t give any error but
the program will not exit succesfully. Because of this you have to take into account all possible
cases which can happen and perhaps use exception handling in the script.

3.3 ROOT

ROOT is developped by CERN for data Analysis. It is an open-source project written 1994 in
C++. Root can manly be used as a python library or C/C++ library but other programming
languages are also supported. It can also be used as an own language which supports the C
commands with the root extensions. Root is able to generate plots from arrays or ascii files. It
is also designed to create 2d or 3d plots and histogramms. These plots can be fitted to every
function with and also without predefined parameters. Every plot and fit can be exported as a
pdf file.

3.4 bash

Bash (Bourne-again shell) is a scripting language which can be used to automatisate some
processes. Bash is mainly used in unix like systems for example linux or macintosh but there is
also a equivalent for windows computers. The main adventage in bash is the ability to launch
other programs within this script as a main thread or a subproces. It also supports variables,
loops, conditions functions and other things. In general it is simple to use even without much
knowledge, it is possible to write simple scripts. Unlike python or C++ bash is designed for
straight forward programming. So the scripts are very readable. Bash is a good script for
automatisation processes or to connect some programs, so that one is excecute after one other.
You don’t need to always be there to launch every single programm when one is finished. Bash
supports the commands from terminal but it also has it’s own commands. You can also use
regular expressions in bash when you will do one operation with to many files. In the thesis we
are using bash but also sh which is similar to bash.

3.5 Agros2D

Agros2D is an open source application for Windows and Linux operation systems. It is designed
to numerically calculate properties of a system like the electric field or the temperature of a

5

system. It uses many librarys and applications like dealii or Hermes. It supports graphical
usage but also python scripting with it’s own library. But there are also some limits in this
application. The most important limit is the ability to only calculate the electric field in two
dimensions. The other limit which is to take in account is, that the numerical calculation isn’t
exact.
For the thesis, this application was used to calculate the electric field of the system. Because
of the complexity of this system, it is easier to write an python script than using the graphical
surface. The python script also has the advantage of using python functions like numpy in this
script to use the ability to save the results of the electric field in an ascii file.
We will now treat two examples to get a better understanding in Agros2D

3.5.1 Planar capacitor

For a better understanding Agros2D calculating the electric field of a planar capacitor in Agros2D
is a good excercise. Therefore we have to do the folowing:
First creating a world volume. In the end it is the place where Agros2D finally calculates the
electric field. So it should be big enough that the two plates matches inside the volume and also
that the influence of the plates on the border of the Volume are not to be considered. We begin
by placing four nodes at the edges of the world volume. Then we use the edges to connect the
edges that it looks like a quadrangle. Then we create two plates inside this square. Also we
begin with the four nodes for each plate and connect them with the edges. Then we use the
labels and create a label in every square. Now we have the structure of the system.
What we need to do now is creating boundary conditions and materials. By right clicking on
the surface of the preprocessor you can chose new boundary conditions. In a new window that
appears you can choose between fixed voltage and surface charge density and give the boundary
condition a name. By choosing fixed Voltage you are also able to set this voltage to a specific
value. For the plates we add 2 new boundary conditions with fixed voltage. One Voltage for
the one plate and a different voltage for the other plate. For the border of the world volume we
create a third boundary condition where we set the first option to surface charge density. This
is the nearest option to treat the border like it doesn’t exist. The other possibility to set the
boundary condition to a fixed surface and set the voltage equal zero. But therefore you have
to choose a bigger world volume that this border doesn’t influence the electric field near this
border. Next comes the materials. First we add labels inside every square. In our example these
are the square of the world volume and the sqare which demonstrates each plate. But we only
need to link the label inside the worldvolume with a material because we aren’t interessted in
the field inside one of the plates. You can add a new material by rightclicking on the surface
and choose new material. In the widow that appears you can give the material a name define
the dielectricum and define a charge density. Because the world volume is filled with air, we
leave the dielectricum at 1 and the charge density at 0 (default values). Then the system is
defined. By clicking on solve Agros2D will do the rest. The result with the electric field and the
potential can be seen in figure 3

For defining a system in Agros2D you also have to take attention to the folowing things:

• Every edge must have a boundary condition if not Agros2D will give an error.

• It is not possible to connect the nodes with only one edge. Every edge must have a closed
surface if not there will be an error

• Not every label must have a material but in every field must be a label.

• Agros2D will not calculate the electric field inside a field where isn’t defined a material.

6

(a) Potential field of a planar capacitor (b) Elektric field of a planar capacitor

Figure 3: Potential and electric field of a planar capacitor

• You are able to generate curved edges by right clicking on the edge and chosing object
properties. There you can change the value of angle to get a curved edge. By clicking on
swap directions (above object properties) you can change the direction of the curve.

• Agros2D reserves only a limited amound of memory for the calculations. So there are limits
of the complexity of the system you define. But by decreasing the number of refinements
and the polynomial order in the properties tab there is a change to calculate more complex
systems. But by decreasing this two parameters, the calculations are less exact.

The advantage of the graphical method to generate a system are the following:

• It is easy to use and it doesn’t need much time to learn. It don’t requires programming
knowledge.

• You can see direcly how you have defined your system. And therefore you can see very
fast if there is error.

An other method to use Agros2D is by python scripting. Therefore Agros2D offers his own de-
veloppment environement. This environement offers the usage of converting a graphical created
system into a python script. There you have the possibility to also use the python functions.
The adventage of python scripting are the folowing:

• Imoport of other package like numpy or matplotlib

• Usage of variables, loops and functions from Python

• Automatisation of the script

• Faster to generate complex calculations

• Possibility to generate more than one system in one script

• Possibility to extract values and export them in an ascii file with the usage of numpy

• Usable for comparision of the theoritical value with the calculations of Agros2D

With the formula of the infinite planar capacitor

E =
U1 − U2

d
(5)

7

0.0 0.5 1.0 1.5 2.0
length [m]

4000

4200

4400

4600

4800

5000

5200

E
 [

V
m

]

comparision Agros2D and theoretical result planar

Agros2D
theoretical value

(a) Calculation from Agros2D vs the theoretical calcu-
lation

0.0 0.5 1.0 1.5 2.0
length [m]

1.0

0.5

0.0

0.5

1.0

∆
E
 [

V
m

]

1e 5 comparision Agros2D and theoretical result

residuals

(b) Theoretical value minus Agros2D

Figure 4: Electric Field of a planar capacitor between the plates

we can calculate the theoretical value and compare this with the result of Agros2D. We have
an electric fiel strength of 5000Vm. By increasing the length of the plates the Agros2D field
converges to this value. So we can see that we have defined our system the right way. With the
help of the matplotlib library we are also able to display the result graphically. In figure 4 you
can see the electrical field strength in the middle of the capacitor dependant from the length of
the plates. By electric field strength increases and converts to the theoretical result.

3.5.2 Cylindrical capacitor

The cylindrical capacitor is similar to write. Because of the capability of Agros2D to only draw
in 2 dimensions, you are able to draw the capacitor on 2 different ways. One way is to draw
in the x-y-plane the other way in the r-z-plane. Because of the radialsymetrie of a cylindrcal
capacitor, we choose the r-z-plane to also see the field at the edges of the capacitor. Also like
the planar capacitor we beginn by drawing the system and the extend this system by converting
it into a python script. The biggest difference between the planar capacitor and the cylindrical
capacitor in Agros2D is the use of axisymmetric coordinates. The coordinates can be changed
in the properties tab. Then you can see in the preprocessor tab that you now have the r and z
axis and you aren’t able to place nodes, edges or labels in the negative r-area. Then you have to
create the cylindrical capacitor in the same way like the planar capacitor. You can see the result
with the electric field and the potential in figure 5. By looking at the solved system you can see
that the field decreases with the distance from the inner plate, which also says the theory of a
cylindrical capacitor.

E(r) =
U1 − U2

r · ln(r2r1)
(6)

Also there we compare the result from Agros2D with the theoretical result in figure 6. But
compared to the planar capacitor the result differs much more from the theoretical result also
by increasing the length of the plates. The reason of the difference of the result comes from the
error of the numerical calculation. By increasing the number of refinements and the polonical
order you can see that the final result converges to the theoretical calculation. But now it
takes more time to calculate. The difference from the theoretical result on nearly infinite plates
gives us information about the accuracy in Agros2D. For this thesis the information about the
accuracy is espessialy important for the final system at which we will look later.

8

(a) Potential field of a cylindrical capacitor (b) Elektric field of a cylindrical capacitor

Figure 5: Potential and electric field of a planar capacitor

0.0 0.5 1.0 1.5 2.0
length [m]

9300

9350

9400

9450

9500

9550

9600

9650

E
 [

V
m

]

comparision Agros2D and theoretical result cylinder

Agros2D
theoretical value

(a) Calculation from Agros2D vs the theoretical calcu-
lation

0.0 0.5 1.0 1.5 2.0
length [m]

100

50

0

50

100

∆
E
 [

V
m

]

noise_cylinder

residuals

(b) Theoretical value minus Agros2D

Figure 6: Electric Field of a planar capacitor between the plates

9

4 The storage ring in Agros2D and examining the results

In this section, we will create a model of the storage ring in Agros2D, calculate it’s electric field
and put the results from a previously defined box into an ascii file. With C++ and ROOT we
can plot this data and fit a linear function to it. The reason of a linear function is that with the
Quadrupole part the function has to increase linear and the dipole part should give an electric
field with a constant value. This is also the optimum which we want to reach. The plot in
ROOT should match as best as possible a linear function. We can reach this by changing some
parameters in the Agros2D script.
With the fit, we can calculate the difference for each value and the value of the fit in this position.
The standard deviation for all these values is the number which gives us information about the
proximity to the optimum. So we need to minimize this one value. Another advantage of having
only one value of how good the values matches is that we can display many of them graphically
dependant from some system parameters. This will help us finding the minimum. Therefore we
will also write a short python script which reads all values and plots them.
In the following sections the steps are described more detailled.

4.1 The physical system

The physical system is a model from the storage ring written in Python with Agros2D (see also
in the annotations). The model in Agros2D mainly looks like this:

Figure 7: The storage ring model in Agros2D

It contains the vertical stripes and the horizontal wires. This stripes and wires all have
a voltage, so the field insde the stripes looks like a dipole field or a Quadrupole field. That

10

depends on the values you set in the script. We use a dipole part and a quadrupole part, so
we can take care of both in one run. You can also see the blocks outside, but they do not
have much influence on the final field. The first problem with this script was the complexity of
the designed structure. By trying to excecute this script the first time, there a memory error
occured. Some parameters were changed like the number of refinements and the polonomical
order, so that the script runs without problems. The disadvantage is that Agros2D doesn’t
calculate it very excacly. We will later see something about the uncertainty of the electric field
of this parameters. After the system is solved, the python script grabs the data of the x-and
y-component of the electric field in a defined surface inside the stripes and wires and saves them
into an ascii file with the coresponding x-and y-values.

4.2 Chosing the parameters

By looking at the system in the annotations you can see many parameters. But with some
parameters you already know that they do not have a big influence on the electric field and
some are dependant on each other. So we don’t need to examine them all. We chose to examine
the parameters of the stripes and wires (Deflector geometry in the annotations). For knowing
exactly which they are, we need to look at the python script.
The python script is written, so that you can simply change some values and excecute the script.
By looking at the system you can also find what parameters can change the electric field, and
what parameters don’t do a lot of changing or they scale only the electric field.
So the following parameters were chose as variables that will be tried to optimize (See figure

8).

• ratioVS (ratio of vertical stripes) it is the ratio between the length of one stripe divided
by the length of the stripe and the gap. So with ratioVS=1.0 there is no gap and with
ratioVS=0.0 there are no stripes

• dVS (thicknesl of vertical stripes)

• hVS (height of vertical stripes)

• NVS (Number of vertical stripes)

• NHW (Number of horizontal wires)

• rHW (radius of horizontal wires)

These parameters all have some limits. One is the technical limit the other one is the limit from
Agros2D. For example Agros2D canot create a mesh when some edges are overlapping. The
technical limits are for example limits for the thickness of the material. They need to withstand
the current and other physical factors.
Now we have to run the script and changing the values, so that we finally find the best parameters
possible. There we have to take attention to the following things:

• how we can save time by automatisating the script

• the fineness of changing the parameters (finding the parameters more excacly or saving
time)

• trying if possible as many combinations as possible

With this points, I’ve chosen to only change two parameters for one series of measurements
and let the other ones stay constant. Later I will do the same with two other parameters in
an other series of calculations. By using only two parameters you have a compromise between
time consuming and trying as many parameters as possible. By naming the ascii file where the
results are saved with the parameter values, you can later see which file has which parameters.

11

Figure 8: geometry in the deflector (see also in the annotations)

12

4.3 Fitting, Residuals and deviation of the Residuals

Now that we have the ascii file which contains all important information about this measurement
we can write a program which reads this file and calculates the deviation from an optimal E-field.
For writing this program a language like C++ linked with ROOT is a good choise because of
the efficenty of C++ and the ability of ROOT to create a fit and calculate the Residuals.
In this program we begin by reserving space for four arrays x, y, Ex, Ey which are in the ascii
file. We also reseve space for saving the number of lines in this file and the number of different
x and y elements. So by reading the file which we place the filename in the arguments of the
program we can fill the arrays with the corespanding value. We also write the number of lines
and the number of different x and y values in the appropriate reserved space. So we have stored
all information from the file, so we can finally close it.
Next comes the part where we are using the root library. With the number of x and y values and
the minimal and maximal value, we create two empty histograms. The neseccary arguments of
the Th2f function which defines an empty histogram are the name of the histogram the name
of the axis, the borders of the axis and the number of bins for each axis. One for the Ex values
and one for the Ey values. By defining the histogram it is important to shift the borders from
x and y a half bin to the outside of the histogram. If we don’t do it some Ex and Ey values will
be in the same bin. The reason of this is that by defining a 2D histogram the function sees the
borders as the borders of the bin which it is not in the ascii file.

Figure 9: part of the program thats aligns the histogram so, that each value is in the middle of
a bin

With the functions findbin and setbincontent, we can add the z values Ex and Ey to the
histograms. By saving the histgramm into an pdf-file we are able to see the resulting plot. Then
it is a good time to compile and excecute the program and looking at the resulting plot. This is
a necessary step to compare the result with the result in Agros2D. When there are some errors,
it is better to look for the right binning or to see if there are other errors. A good hint for a
wrong binning are holes in the plot where the value there is zero. That often means that there
was never a assigned value to this bin. By replacing setbincontent with addbincontent, you are
easily able to see if a bin was found twice. Another possible source for an error are the numbers
of different x and y values counted by reading the file. Also you can print the two numbers and
see if they are the same as the defined number in Agros2D. When the histogram was defined
right, it should look a bit like a dipole field combined with a quadrupolefield. Some sinus-like
deviations at the border of the histogram can also be seen in Agros2D and are normal. Now that
we know that everything is defined right, we can continue by fitting a linear 2D function to the
histogram. Root has some predefined functions for linear fitting, but mostly they are defined
in one dimension. I have chosen to defining the function myself with the expected parameters.
Then you can call the fit-function. Now it is a good time to also write the plots with the fits in

13

0.01−
0.005−

0
0.005

0.01x[m]

0.06−
0.04−

0.02−
0

0.02
0.04

0.06y[m]

600−

400−

200−

0

200

400

600

2D Histo Ey [V/m]
histy

Entries 651

Mean x 0.00508

Mean y 694.4

Std Dev x 0.0115

Std Dev y 694.4

2D Histo Ey [V/m]

Figure 10: Y-component of the electric field from one sample

14

a pdf-file, compile the program and excecute it. The fit-function gives us information how the
fit runs and if there was an error or the fiting finished without errors. We also get information
about how the fitting finished. By looking at the plot we can also see if there was a gross
mistake.
By calculating the residuals and plotting them you can also see if the fit runs without erros.
The residuals aren’t difficult to calculate. You make a loop where you search the corresponding
bin for each x and y value. Then you can use the getbinvalue function to get this value. With
the eval function you can get the corresponding value from the fit-function. Now when you
have calculated the residuals you can do many things with them. The first thing is to make a
residualplot and see how the fitting runs. Another thing is to store the residuals and create a
1D histogram with it. And the most important thing is to calculate the standard deviation of
the residuals. This is the value which should later be minimized. In the residualplot you can

0.01−
0.005−

0
0.005

0.01x[m]

0.06−
0.04−

0.02−
0

0.02
0.04

0.06y[m]

8−
6−
4−
2−
0
2
4
6
8

10

2D res dEy [V/m]
resy

Entries 651

Mean x 0.00395−

Mean y 6.785

Std Dev x 7.002

Std Dev y 18.63

2D res dEy [V/m]

Figure 11: Residuals of the Y-component of the electric field from one sample

see that the electric field isn’t optimal and you can see some structures in them. The sinus like
behavior at the border is one of them and when you compare it with the Agros2D result, you
can see the same behavior.
By looking at the 1D histogram you can also control if there was an error. The mean value of
the histogram should be around zero. If not we have to control our code another time.
The last thing we need to do in this program is to calculate the standard deviation and print out
the standard deviation. I’ve chosen to print out the filename which contains all the parameters
and in the same line the standard deviation of each electric field. So when we excecute the
program we get an output of the two fittings from the root function and in another line we get
the filename and the standard deviation.
This program should be designed to read only one ascii file and calculates the standard devi-

15

Figure 12: Example for one output.log file. You can see the output from the fit and the final
result with the corresponding filename

16

ation. Now that we know the program is written wright, we can uncomment everything that
prints out the plots. So when we excecute the program now. It gives us only output in the
terminal.
By automatisating with an sh script, we can run this program for each file in a series of mea-
surements and store the output in a file called output.log. How excacly this happens will be
explained later. For now it is important that we have stored the output from the program for
all files in one file.

4.4 Plotting the results of a series of mesurements

The next step is to plot the result of the series of mesurements. For this we write a python-
script. The reason for using python is the simplicity of reading a file and the matplotlib library.
We can read from a complex ascii file and create a graph quickly. We begin by importing all
packages we need. These are import sys for reading the program arguments, numpy for using the
numpy array and other functions numpy supports, re for finding the values of the parameters,
different things from matplotlib like pyplot and colors. From collections we import OrderedDict
for specific anlaysis of an array like sorting or removing double values.
We begin writing a function dependant of the filename which reads the file, extracs all param-
eters, looks which parameters stay constant and which change. They store all values in arrays.
We begin by reading the file line by line and defining empty lists for each parameter. The system
dependant parameters from Agros2D are ratioVs, dVS, hVS, NVS, rHW EDipole and k. We
also create two empty lists zx and zy which will later be filled with the deviation values. We
also have two empty lists xy and xypar which are later filled with the variables.
With re we create a pattern which recognizes if the actual line is a line from the fitting or a
line which contains the parameters and the deviation. The lines for the fitting are ignored, but
the other lines were read. Re finds the values of each parameter and stores all values to the
specific lists. When the file is finished reading we need to find the lists which contains constant
values and the lists where the values changes. For zx and zy we do nothing because we already
know it is the standarddeviation which changes. The lists where it is important are the ones
defined from Agros2D (ratioVS, dVs, hVS, NVS, NHW, rHW). For finding the other values
which change we use the count function for lists. It counts the number of elements which are
equal to the one defined in the argument of the system. So when all elements of a list are equal
to the first element it is constant. If not they are changing parameters.
The lists of the changing parameters are added to the xy lists. Parameters names are added to
xypar list as a string.
Then we need to look at the xy and the xypar list. If the number of lists in xy are equal too, we
have nothing else to do with this list, because our goal is to plot the zx and zy lists in a 2D hist
dependant from the two lists in xy. If the number of changing parameters is greater the two we
have to examine the lists. How it is said in a prior section, I made some measurements where
more than two parameters are changing. But the third parameter is correlated to one of the
other two. So we need to find this one by looking at a dependance of of two or more lists. When
we found this one, we can delete them from the xy list and the xypar list. Also in the xypar
list I’ve added the string of the dependant parameter the dependancy of the third parameter,
so in the final plot we know of this dependancy. The third case is that xy contains only one list.
This can happen if Agros2D could only calculate the results of one parameter as a variable and
couldn’t change the other without giving an error. Then we add a list which only contains zeros
to xy and the string ’0’ to xypar. For the case that xy doesn’t contain a list it raises an error.
If this happens it is possible that python wasn’t able to find the structure in the ascii file.
When this is done a few other thing are done in this function like defining a plotname and
calculating the number of different x and y values. At the end of this function x, y, zx, zy, the
number of x-values, the number of y-values, xypar and the plotname are returned.
The next step is to define the plot function dependant from x, y, z, the numbers of x and y

17

elements and the name of the axis, which creates a 2dHistogram like a heatmap. Like in the
C++/ROOT program we begin by aligning the bins. Then the only thing we need to do is using
the hist2d function from matplotlib.pyplot, define names for the axis, a colorbar and saving the
result as an image or pdf file.
Now that we have defined all functions, we can excecute the functions. Like said before we take
the filename from the arguments of the program and excecute the read-function dependant from
this argument. Now it returns us every necessary value and also the names of the axis and the
plotnames. The function was excecuted with the value for z beeing the sum of zx and zy. Then
we can find the saved plots and see where the minimum is located.

4.5 Automatisation of the processes and containing clarity

The reason for autimatisation of all the processes is the amount of data and the amount of
results from all calculations. So in this chapter i will explain the things i have used and all
things that i had to take care of for automatisation.
By automatisation, many things are to take care of to contain clarity. I will list them in the
following:

• contain clarity in the mass of files

• therefore create folders

• filenames and foldernames should contain all essential informations

• changing parameters and parameters range should be as easy as possible

• the programs for examining the data should stay how they are and should not need to be
changed

• the programs should take attention to all exceptions which can happen

• there should be as few as possible moments necessary for the user to step in.

So let’s begin by looking at some part of the Agros2D script in figure 14 We have defined the
function calc which takes all parameters as arguments. They normally calculate the electric field
and save them into an ascii file. The name of the file is important for clarity. It was chosen to
bring all values of the parameters and the parameters name into this file. Before we excecute the
function we create a folder with the name of the variables, the date and time when the function
first excecutes. In this folder all the calculations for one series of measurements are saved. For
caling the function, we use two for loops, because we always takes two ranges of parameters
and the other ones as constant. So when the loop is finished, we can see many ascii files. From
the names of the files you can see that two parameters changes the other ones stay constant.
There also is the possibility that Agros2D can’t calculate the system with some parameters for
example if the wires overlap. The solution therefore is to use the try function from python.
When one function can’t be calculated yet it continues. If there was an exception an other code
runs instead. This part stores in a file called error.log for which parameters an error occurs.
By making it easier to change the parameters i’ve created some dictionarys you can see in the
annotations.
The next step is to use the C++ program which calculates the standard deviation of all of these
files. The good thing at this files are that they always have the same format. So we can read
them always the same way. For not always changing and recompiling the code i’ve chosen to
take the filename from the first program argument. So we only need to call the program in the
terminal and write the filename. Than it prints the filename and the standard deviation. Now
that we can’t do this with every file we need to write a small sh script. It will look like this: The
script searches for every ascii file from the Agros2D script and excecutes the C++ programm

18

Figure 13: defining the calc function with the changable parameters as arguments

for each file. To save some time this script creates many subprocesses in parallel. The output
from the program will be saved in an output.log file. For excecuting this script you need to be
in the folder which contains the ascii files with the terminal. The writeoutput script has to be
placed in the parant directory. With the command ../writeoutput the script runs. Then this
output file can be read with a python script which displays the results in a 2d histogram.
The next step of automatisation became necessary because of the reason of having more than
only one folder of series of calculations. For this I have written an other sh script, which looks
for every output.log file in every folder and excecutes the python script with the output.log file
as an argument. The script was written like the writeoutput script and it works the same way.

1 #!/bin/sh

2 for argument in */ output.log; do #search in every folder a file called output.log

3 ./ findmin3.py "$argument"& #excecutes the pythonscript with the output.log file as argument

4 done

5 wait #wait till all scripts are finished

Figure 16: script which excecutes the findmin3.py program for each output.log file

The last script i’ve written combines the two sh scripts. By excecuting this, it looks for every
folder from Agros2D, goes into this folder end excecutes the writeoutput script. When this is
finished it goes to the next folder and so on. When all output.log files are written it excecutes
the other bash script which writes all plots.

1 #!/bin/sh

2 for directory in *_*/; do #the directorys from agros2D contains the _ caracter so this script will find this folders

3 cd "$directory"

4 ../ writeoutput #execites the script writeoutput for the actual directory

5 cd ..

6 echo $directory "output written" #only for confirmation that this script was in this folder

7 done

8 ./ writeplot #finally excecute the python script

Figure 17: script for linking the two sh scripts

19

Figure 14: Part of the Agros2D script where the calc function is excecuted with all possible
values and how the calc function saves the data to an ascii file

5 Evaluation of the results

Basically the evaluation of the results is done by looking at the plots and finding a structure
in this heatmap. A very important thing is by looking at the colormap. By comparing the
colormaps you can see which parameter has a big influence and which not. By seeing stripes
you also know if one of the two parameters which are compared in the plot dominates. Later
you have to adapt the parameters to find a finer result. For evaluating the results, we need to
have plots dependant from all combinations of the six parameters.

5.1 Relevance of the Parameters

In the plots you can see very well which parameter has a big influence and which not (colormap
stripes). The most influence of the deviation have the parameters dVS and hVS like you can see
in this plot. This is also the plot where you can regognize a good structure and see that hVS
must be a bit greater than dVS. If the difference between dVS and hVS is big, the deviations also
become very big. The white area is the area where the calculation of the field wasn’t possible,
because hV S < dV S or the deviation is too high (∆E > (max(z)−min(z))∗0.1+min(z)). The
other parameter which also have a big influence are ratioVS and NVS. The other two parameters
NHW and rHW have the least influence at the deviation.

20

1 #!/bin/sh

2 thread =0 #counter for the number of actual processes running

3 rm -f output.log # if existing delete the actual output.log file

4 for filename in Calc*.txt; do #search every file from Agros2D

5 ../ Readdata4 $filename >> output.log & #excecutes the program Readdata. The results are printed to the output.log

file

6 if ["$thread" -gt "256"] #when 256 processes are running the script waits till all are finished then it continues

7 then

8 wait

9 thread =0

10 fi

11 thread=$(expr $thread + 1) #counter

12 done

13 wait

Figure 15: sh script for handling the Readdata program for each file

(a) Standarddeviation of the residuals dependant from
ratioVS and rHW

(b) Standarddeviation of the residuals dependant from
NVS and NHW

Figure 19: Standarddeviation from Ex and Ey dependant from some parameters

5.2 Method of chosing the parameters

So at the beginning we try out every combination of the parameters with the whole range
possible. I’ve chosen a fineness of 20 values per range. So calculatiing all combinations doesn’t
take too much time. Like said in the previous chapter, we begin by adapting the range of the
parameters which have the greatest influence. By looking at all plots the dependance of dVS
and hVS is very clear, so that we change the Agros2D script so that hVS is always a bit bigger
than dVS like hV S = dV S+ 0.0001m. Now we have to find the other 5 values. Therefore it is a
good idea to do the same things we know now with this one condition. Also now that we have
an idea which values are the best, we can also change the some constants. By looking at the
plots now it is a good idea to compare the results of the parameters which have a big influence
at the deviation. There you can adapt the range of the parameters. Sometimes you can also
find two interessting ranges of values for one parameter for example dVs has an interessting
range about 0.009 and 0.018. The finess should be left by around 20 values for one range for
not taking too much time. After the calculations the constants should also be adapted to the
value where you previously found a good value. You need to take attention of the colormap
to confirm that the deviation becomes smaller and so you have to try out a bit. When you
found the best values for the parameters with big influence you can now try to adapt the other
parameters a bit more and look at the developpment. When you continue doing this you begin
to see more and more irregularities, that means that you are near the point where the influence
of the parameter doesn’t dominate the deviation, but the uncertanty from Agros2D. That is the
point where Agros2D is limiting us and we aren’t able to make more exact measurements.

21

Figure 18: Standarddeviation of the residuals dependant from dVS and hVS

5.3 Finding the minimum

In figure 19 you can see that ratioVS and NVS has a lot more influence to the deviation than
rHW and NHW. So we need to optimize them first. For ratioVS it’s interessting to see examine
the range between 0.35 and 0.6 to examine further. For NVS we can see that more stripes makes
the deviation smaller. There we can see what happens by the higher range of NVS.

(a) Standarddeviation of the residuals dependant from
ratioVS and dVS

(b) Standarddeviation of the residuals dependant from
NHW and rHW

Figure 20: Standarddeviation from Ex and Ey dependant from some parameters

22

You can see in figure 20 plots of a finer range. Especialy in figure 20b) you can see the
irregularities of NHW. A problem that needs to be examined further. Therefore we can look at
the output.log file if there was an error by fitting the parameters which didn’t happened. The
most probable source for this irregularity is the uncertainty from Agros2D. Other parameters
also take on this form of irregularity when the range becomes finer. So we can’t do much then
giving the optimum a wide error.

(a) Standarddeviation of the residuals dependant from
dVS

(b) Standarddeviation of the residuals dependant from
rHW

Figure 21: Standarddeviation from Ex and Ey dependant from some parameters. Here you can
see only the dependancy of one parameter for one heatmap

In figure 21 you can see how you can chose the parameters when you are near the minimum.
We only use one dimensional plot to see the minimum easier. This can be done with every single
parameter. After looking at all these plots following results were found:

• ratioV S = 0.438± 0.005

• dV S = 0.009m± 0.0001m

• hV S = 0.0091m± 0.0001m

• NV S = 29± 1

• NHW = 27± 1

• rHW = 0.00021m± 0.00001m

Additional information about the results:

• The difference of hVS and dVS should be as small as possible but greater than zero. This
has the greatest influence.

• dVS and hVS also have a second minimum at 0.016 and 0.0161. This has nearly the same
standard deviation, perhaps a bit bigger. Both minimas are sourounded by some high
values, but it can also be an uncertanty of Agros2D

• ratioVS also has a wide range of local minimas. The widest minimum was chosen

• For NVS you can say that the greater the value is the smaller the deviation, but at some
point the deviation only gets better a small amount

• For NHW the number doesn’t have a very big influence so if there are other limits, it isn’t
nesessary to force the system to this value

23

• rHW was one of the easier determinable values because by rHW you can always see a good
structure and for all series the minimus stayed at the same place

• The values are only determined with Agros2D by a numerical method without a very high
finesse. So perhaps other algorithms will find completely different values. For finding good
values there a more powerful program than Agros2D should be used.

• The number of refinements was set to zero for not having a memory error by running
the script. By comparing systems, like the planar or cylindrical capacitor with theoretical
values, we know they aren’t always very exact.

• Some parameters like ratioVs and dVS show also some dependacy

• When we incrise the number of horizontal wires (NHW), we need to decrease the radius
of horizontal wires to stay at a minimum.

5.4 Problems and uncertanty

The method I used for finding the minimum is a bit like a brute-force method. I calculated
the electric field and saw how the standard deviation looks like. This was tried for a lot of
parameters. The problem is only that it takes a lot of time to calculate the standard deviation
of each possibility. So we have to limit the parameters we choose. And our strategy was to find
the minimum of the plots we see and analyse the places excacly. But that means it is possible
that we only found a local minimum and not a global. There are also some other things which
have some influence of the uncertainty. One is the numeric kind of calculation in Agros2D which
also gives us an uncertainty. The second thing is that we only calculate the deviation in specific
places.
So the question is now which uncertainties have to be taken into account and which are so
small that they do not have to be considered. How I already said it is possible that we only
found a local minimum and not the global. To know how the probability is we need to make
more measurements and look at other minimums where we need much time. To look at other
minimums makes the propability near zero not to have a local but a global minimum but it is
never zero. So it is possible to optimize it with more aviable time.
The second source of uncertanty is the numerical calculation from Agros2D. There it is easier
to estimate the error. One reason for this is that we know the theoretical values of some electric
systems which we can also defined in Agros2D and compare then. One other help for estimationg
the error is by looking at some calculations from our system in Agros2D. By looking at the noise
of the standard deviation from the last calculations we also can estimate an error.
The third error which comes from our fineness of the parameters is not to take into account.
The fineness is good enough to see the noise of the Agros2D calculation what means it is much
more smaller than the other errors.

6 Conclusion

This thesis gives us one method how to find the minimum of a physical system. We also know
of some other possible minimums which we can examine if we want to do it. The result also
gives us a bit more information at how we can improve the system. For furher optimization it
is perhaps possible to use one dimensional plots, there you can find the local minimums better
for each parameter. It is also easier to find minimums of not so influenced parameters. But I’ve
chosen to use 2 dimensinal histograms for also seeing the dependance of the parameters to each
other. You can see more information on two dimensional histograms. Perhaps there should also
be more use of the changing of the dipole field and quadropole field. They were left constant.
The programs written for analysing the electric field runs very reliable and they also consider
many variations of the variables. But they always can be optimized and shortened more.

24

The results have to be handled with care. It could be possible that the minimum found isn’t a
global minimum. To be sure that it is a global minimum, we need to try every single combination
of the six parameters. If we try 20 values for each parameter, we have to calculate 206 electric
fields when we want every combination. But we tried at least every combination of the most
influencable parameters, so if we have only found a local minimum, the global minimum should
be near our determined values.
We need to compare this result with other results for this system. The second problem is the
uncertanty of Agros2D. For not having a memory error we need to take the number of refinements
to zero and the polimomical order to two. This means Agros2D can’t calculate very excactly.
The third disadvantage of Agros2D is the use of only two dimensions. To improve the result
it is a good idea to write an own algorithm for the calculation of complex systems which we
can optimize for our own needs. It should need a bit of time writing a Program which is able
to numerically calculate the electric field more excacly but it is possible. Perhaps the are also
other programs like Agros2D which can do it more exacly. In conclusion the optimization of the
electric field of the storage ring is not finished yet and needs more detailed calculations for the
complete understanding of the problem.

25

7 Annotations

1 import agros2d as a2d

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 U1, U2=1000, -1000 #voltage of the plates U1 is the left plate U2 the right plate

6 d_2 =0.2 #half of the distance between the plates

7 l=0.8 #length of the plates

8 h=0.05 #thickness of the plates

9 wl=5 #half length of on side of the world volume

10 def calc(l=l, d_2=d_2 , h=h, wl=wl):

11 # problem

12 problem = a2d.problem(clear = True)

13 problem.coordinate_type = "planar"

14 problem.mesh_type = "triangle"

15

16 # fields

17 # electrostatic

18 electrostatic = a2d.field("electrostatic")

19 electrostatic.analysis_type = "steadystate"

20 electrostatic.matrix_solver = "mumps"

21 electrostatic.number_of_refinements = 0

22 electrostatic.polynomial_order = 2

23 electrostatic.adaptivity_type = "disabled"

24 electrostatic.solver = "linear"

25

26

27 # boundaries

28 electrostatic.add_boundary("U1", "electrostatic_potential", {"electrostatic_potential" : U1})

29 electrostatic.add_boundary("U2", "electrostatic_potential", {"electrostatic_potential" : U2})

30 electrostatic.add_boundary("border", "electrostatic_surface_charge_density", {"electrostatic_surface_charge_density" : 0})

31

32

33 # materials

34 electrostatic.add_material("worldvolume", {"electrostatic_permittivity" : 1, "electrostatic_charge_density" : 0}) #for the

outside of the condensator

35

36

37 ############

38 # geometry #

39 ############

40

41 #left plate

42 geometry = a2d.geometry

43 geometry.add_edge(-d_2 -h, l, -d_2 , l, boundaries = {"electrostatic" : "U1"})

44 geometry.add_edge(-d_2 , -l, -d_2 , l, boundaries = {"electrostatic" : "U1"})

45 geometry.add_edge(-d_2 -h, l, -d_2 -h, -l, boundaries = {"electrostatic" : "U1"})

46 geometry.add_edge(-d_2 -h, -l, -d_2 , -l, boundaries = {"electrostatic" : "U1"})

47

48 #right plate

49 geometry.add_edge(d_2 , -l, d_2 , l, boundaries = {"electrostatic" : "U2"})

50 geometry.add_edge(d_2 , l, d_2+h, l, boundaries = {"electrostatic" : "U2"})

51 geometry.add_edge(d_2+h, l, d_2+h, -l, boundaries = {"electrostatic" : "U2"})

52 geometry.add_edge(d_2+h, -l, 0.2, -l, boundaries = {"electrostatic" : "U2"})

53

54 #world volume

55 geometry.add_edge(-wl, wl, wl , wl , boundaries = {"electrostatic" : "border"})

56 geometry.add_edge(wl, wl, wl, -wl , boundaries = {"electrostatic" : "border"})

57 geometry.add_edge(wl, -wl, -wl , -wl, boundaries = {"electrostatic" : "border"})

58 geometry.add_edge(-wl, -wl , -wl, wl, boundaries = {"electrostatic" : "border"})

59

60 #labels of the materials this only calculates the field outside the plates and inside the worldvolume

61 geometry.add_label(0, 0, materials = {"electrostatic" : "worldvolume"})

62 geometry.add_label(-d_2 -h/2, 0, materials = {"electrostatic" : "none"})

63 geometry.add_label(d_2+h/2, 0, materials = {"electrostatic" : "none"})

64 a2d.view.zoom_best_fit ()

65

66 #create mesh and calculate the field

67 problem.solve ()

68

69 return electrostatic.local_values (0, 0)["E"]

70 l=np.arange (0.1, 2.0, 0.05)

71 E=[]

72 for i in l:

73 E+=[calc(l=i)]

74

75 plt.figure ()

76 plt.plot(l, E, label=’Agros2D ’)

77 plt.plot(l, np.ones(len(l))*(U1-U2)/(2* d_2), label=’theoretical value ’)

78 plt.xlabel(’length [m]’)

79 plt.ylabel(’E [Vm]’)

80 plt.legend ()

81 plt.title(’comparision Agros2D and theoretical result planar ’)

82 plt.savefig(’comparision_planar.pdf’)

83

84 plt.figure ()

26

85 plt.plot(l, np.array(E) -(U1 -U2)/(2* d_2), label=’residuals ’)

86 plt.xlabel(’length [m]’)

87 plt.ylabel(r’ΔE [Vm]’)

88 plt.ylim(-1e-5,1e-5)

89 plt.ticklabel_format(axis=’y’,style=’sci’,scilimits =(1 ,4))

90 plt.legend ()

91 plt.title(’comparision Agros2D and theoretical result ’)

92 plt.savefig(’noise_planar.pdf’)

Agros2D and Python script for the planar capacitor (named plattenkondensator.py)

27

1 import agros2d as a2d

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 r1=0.2

6 r2=0.4

7 h=0.05

8 l=0.8

9 wl=4

10 U1=1000

11 U2= -1000

12

13 def calc(r1=r1 , r2=r2 , h=h, l=l, wl=wl):

14 # problem

15 problem = a2d.problem(clear = True)

16 problem.coordinate_type = "axisymmetric"

17 problem.mesh_type = "triangle"

18

19 # fields

20 # electrostatic

21 electrostatic = a2d.field("electrostatic")

22 electrostatic.analysis_type = "steadystate"

23 electrostatic.matrix_solver = "mumps"

24 electrostatic.number_of_refinements = 2

25 electrostatic.polynomial_order = 3

26 electrostatic.adaptivity_type = "disabled"

27 electrostatic.solver = "linear"

28

29

30 # boundaries

31 electrostatic.add_boundary("U1", "electrostatic_potential", {"electrostatic_potential" : U1})

32 electrostatic.add_boundary("U2", "electrostatic_potential", {"electrostatic_potential" : U2})

33 electrostatic.add_boundary("border", "electrostatic_surface_charge_density", {"electrostatic_surface_charge_density" : 0})

34

35

36 # materials

37 electrostatic.add_material("worldvolume", {"electrostatic_permittivity" : 1, "electrostatic_charge_density" : 0})

38

39 # geometry

40 geometry = a2d.geometry

41 #world volume:

42 geometry.add_edge(0, wl, wl, wl, boundaries = {"electrostatic" : "border"})

43 geometry.add_edge(wl, wl, wl, -wl , boundaries = {"electrostatic" : "border"})

44 geometry.add_edge(wl, -wl, 0, -wl , boundaries = {"electrostatic" : "border"})

45 geometry.add_edge(0, -wl, 0, wl, boundaries = {"electrostatic" : "border"})

46

47 #left plate r1

48 geometry.add_edge(r1, -l, r1, l, boundaries = {"electrostatic" : "U1"})

49 geometry.add_edge(r1-h, -l, r1 -h, l, boundaries = {"electrostatic" : "U1"})

50 geometry.add_edge(r1, l, r1-h, l, boundaries = {"electrostatic" : "U1"})

51 geometry.add_edge(r1, -l, r1-h, -l, boundaries = {"electrostatic" : "U1"})

52

53 #right plate r2

54 geometry.add_edge(r2, -l, r2, l, boundaries = {"electrostatic" : "U2"})

55 geometry.add_edge(r2+h, -l, r2+h, l, boundaries = {"electrostatic" : "U2"})

56 geometry.add_edge(r2, l, r2+h, l, boundaries = {"electrostatic" : "U2"})

57 geometry.add_edge(r2, -l, r2+h, -l, boundaries = {"electrostatic" : "U2"})

58

59 geometry.add_label ((r1+r2)/2, 0, materials = {"electrostatic" : "worldvolume"})

60 geometry.add_label(r1-h/2, 0, materials = {"electrostatic" : "none"})

61 geometry.add_label(r2+h/2, 0, materials = {"electrostatic" : "none"})

62 a2d.view.zoom_best_fit ()

63

64 problem.solve ()

65

66 return electrostatic.local_values ((r1+r2)/2, 0)["E"]

67 l=np.arange (0.1, 2, 0.05)

68 Ea=[]

69 for i in l:

70 Ea+=[calc(l=i)]

71 def E(r):

72 return (U1 -U2)/(r*np.log(r2/r1))

73

74 plt.figure ()

75 plt.plot(l, Ea , label=’Agros2D ’)

76 plt.plot(l, np.ones(len(l))*E((r2+r1)/2), label=’theoretical value’)

77 plt.xlabel(’length [m]’)

78 plt.ylabel(’E [Vm]’)

79 plt.legend ()

80 plt.title(’comparision Agros2D and theoretical result cylinder ’)

81 plt.savefig(’comparision_cylinder.pdf’)

82

83 plt.figure ()

84 plt.plot(l, np.array(Ea)-E((r2+r1)/2.), label=’residuals ’)

85 plt.ticklabel_format(axis=’y’,style=’sci’,scilimits =(1 ,4))

86 plt.xlabel(’length [m]’)

87 plt.ylabel(r’ΔE [Vm]’)

88 plt.ylim (-100. ,100.)

28

89 plt.legend ()

90 plt.title(’noise_cylinder ’)

91 plt.savefig(’noise_cylinder.pdf’)

Agros2D and Python script for the cylindrical capacitor (named Cylindercondensator.py)

29

1 ###

2 # S E T U P #

3 ###

4 from __future__ import division

5 import numpy as np

6 import agros2d as a2d

7 import time

8 import os

9 dep=’’

10

11 ### Function arguments

12

13 ### Number of vertical strips (VS) and horizontal wires (HW)

14 #NVS

15 #NHW

16

17 ########### vertical strips (VS) #######################

18 ### ratio of width of strips wVS to the pitch [m]

19 #ratioVS

20

21 ############ horizontal wires (HW) ######################

22 ### radius [m]

23 #rHW

24

25 ### thickness of vertical strips [m]

26 #dVS

27

28 ### depth of the cutout of the strips

29 ### should be greater than dVS

30 #hVS

31

32 ############ field strength #######################

33 ### nominal field of dipole [V/m]

34 #EDipole

35

36 ### Quadrupole strength [V/m^2]

37 #kx

38 #ky

39

40 def calc(ratioVS =0.4, dVS =0.001 , hVS = 0.01, NVS=19, NHW=9, rHW = 0.0005 , EDipole =10500 , kx=10500 , ky=-10500, dep=dep):

41 # problem

42 problem = a2d.problem(clear = True)

43 problem.coordinate_type = "planar"

44 problem.mesh_type = "triangle"

45

46 # fields: electrostatic

47 multipole = a2d.field("electrostatic")

48 multipole.analysis_type = "steadystate"

49 multipole.matrix_solver = "mumps"

50 multipole.number_of_refinements = 0

51 multipole.polynomial_order = 2

52 multipole.adaptivity_type = "disabled"

53 multipole.solver = "linear"

54

55

56 ###

57 # User: Input Quantities #

58 ###

59

60 ### Size of the beam volume [m]

61 xCap = 0.038

62 yCap = 0.200

63

64 ### usable area [m]

65 ### this is not a physical area. Field quality will only be recorded in this area

66

67 xUse =0.6* xCap #record 60% of the physical length and width

68 yUse =0.6* yCap

69

70 ### the blocks [m]

71 hVBlock = 0.198

72 dVBlock = 0.06

73 wHBlock = 0.08

74 dHBlock = 0.04

75

76 ### empty gap at the end of the block [m]

77 offVS = 0.002

78

79 ### pitch

80 pitcwVS = (hVBlock - 2.* offVS) / (NVS - 1. + ratioVS)

81

82 ### width of the strips (wVS)

83 wVS = ratioVS * pitcwVS

84

85 ### empty gap at the end of the block [m]

86 offHW = 0.021

87 ### depth of the wires in the block (from the surface of the block to the center of the wire [m]

88 hHW = rHW

30

89 ### pitch between centers of the wires

90 pitchHW = (wHBlock - 2.* offHW) / (NHW - 1.)

91

92 ### distance of world volume to the outer face of the blocks [m]

93 dWorld = 0.01

94 ### horizontal width and vertical height of the world volume

95 xlWorld = xCap + 2. * (dVS + dVBlock + dWorld)

96 ylWorld = yCap + 2. * (dHBlock + dWorld)

97 ### Coordinates of the world label

98 xWLabel = xlWorld /2. - dWorld /2.

99 yWLabel = ylWorld /2. - dWorld /2.

100

101 ###

102 # Now we calculate the position of the strips #

103 ###

104 ### coordinates of the strip specify the center of the front face of the strip

105 def xVS(N):

106 xpos = xCap /2.

107 return xpos

108

109 def yVS(N):

110 ypos = -hVBlock /2. + offVS + wVS/2. + N * pitcwVS

111 return ypos

112

113 ### coordinates of the wires specify the center of the wire.

114 def xHW(N):

115 xpos = -wHBlock /2. + offHW + N * pitchHW

116 return xpos

117

118 def yHW(N):

119 ypos = yCap /2.

120 return ypos

121

122 ##

123 # Define the potentials on the electrods #

124 ##

125 ### These function calcualate the nominal potential

126 ### Dipole

127 def UD(x,y):

128 U = -EDipole * x

129 return U

130

131 ### Quadrupole

132 def UQ(x,y):

133 U = 0.5 * kx * (x**2 - 0.25* xCap **2) + 0.5 * ky * (y**2 - 0.25* yCap **2)

134 return U

135

136 ############################### vertical electrods #####################################

137 for i in range(0 , NVS):

138 U = UD(-xVS(i),yVS(i)) + UQ(-xVS(i),yVS(i))

139 multipole.add_boundary("UVL%d"%(i), "electrostatic_potential", { "electrostatic_potential" : U })

140 U = UD(xVS(i),yVS(i)) + UQ(xVS(i),yVS(i))

141 multipole.add_boundary("UVR%d"%(i), "electrostatic_potential", { "electrostatic_potential" : U })

142

143 ############################### horizontal electrods #####################################

144 for j in range(0 , NHW):

145 U = UD(xHW(j), yHW(j)) + UQ(xHW(j), yHW(j))

146 multipole.add_boundary("UHU%d"%(j), "electrostatic_potential", { "electrostatic_potential" : U })

147 U = UD(xHW(j),-yHW(j)) + UQ(xHW(j),-yHW(j))

148 multipole.add_boundary("UHL%d"%(j), "electrostatic_potential", { "electrostatic_potential" : U })

149

150 ##################################### other potentials #################################

151 multipole.add_boundary("ground", "electrostatic_potential", {"electrostatic_potential" : 0.})

152 multipole.add_boundary("block", "electrostatic_surface_charge_density", {"electrostatic_surface_charge_density" : 0.})

153

154 ##

155 # Materials #

156 ##

157 multipole.add_material("vacuum", {"electrostatic_permittivity" : 1, "electrostatic_charge_density" : 0})

158 multipole.add_material("ebaboard", {"electrostatic_permittivity" : 10, "electrostatic_charge_density" : 0})

159

160 ##

161 # Build the geometry of the electrostatic #

162 ##

163 deflector = a2d.geometry

164

165 ################################# world volume ###

166 deflector.add_edge(-xlWorld /2., -ylWorld /2., xlWorld /2., -ylWorld /2., boundaries = {"electrostatic" : "ground"})

167 deflector.add_edge(xlWorld /2., -ylWorld /2., xlWorld /2., ylWorld /2., boundaries = {"electrostatic" : "ground"})

168 deflector.add_edge(xlWorld /2., ylWorld /2., -xlWorld /2., ylWorld /2., boundaries = {"electrostatic" : "ground"})

169 deflector.add_edge(-xlWorld /2., ylWorld /2., -xlWorld /2., -ylWorld /2., boundaries = {"electrostatic" : "ground"})

170 deflector.add_label(xWLabel , yWLabel , materials = {"electrostatic" : "vacuum"})

171

172 ############################## vertical strips ###

173 for i in range(0 , NVS):

174 ### left strips first

175 deflector.add_edge(-xVS(i)-dVS , yVS(i)-wVS/2., -xVS(i) , yVS(i)-wVS/2., boundaries = {"electrostatic" : "UVL%d"%(i)})

176 deflector.add_edge(-xVS(i) , yVS(i)-wVS/2., -xVS(i) , yVS(i)+wVS/2., boundaries = {"electrostatic" : "UVL%d"%(i)})

31

177 deflector.add_edge(-xVS(i) , yVS(i)+wVS/2., -xVS(i)-dVS , yVS(i)+wVS/2., boundaries = {"electrostatic" : "UVL%d"%(i)})

178 deflector.add_edge(-xVS(i)-dVS , yVS(i)+wVS/2., -xVS(i)-dVS , yVS(i)-wVS/2., boundaries = {"electrostatic" : "UVL%d"%(i)})

179 deflector.add_label(-xVS(i)-dVS/2., yVS(i), materials = {"electrostatic" : "none"})

180

181 ### now right strips

182 deflector.add_edge(xVS(i)+dVS , yVS(i)-wVS/2., xVS(i) , yVS(i)-wVS/2., boundaries = {"electrostatic" : "UVR%d"%(i)})

183 deflector.add_edge(xVS(i) , yVS(i)-wVS/2., xVS(i) , yVS(i)+wVS/2., boundaries = {"electrostatic" : "UVR%d"%(i)})

184 deflector.add_edge(xVS(i) , yVS(i)+wVS/2., xVS(i)+dVS , yVS(i)+wVS/2., boundaries = {"electrostatic" : "UVR%d"%(i)})

185 deflector.add_edge(xVS(i)+dVS , yVS(i)+wVS/2., xVS(i)+dVS , yVS(i)-wVS/2., boundaries = {"electrostatic" : "UVR%d"%(i)})

186 deflector.add_label(xVS(i)+dVS/2., yVS(i), materials = {"electrostatic" : "none"})

187

188 ############################# horizontal wires ###

189 for i in range(0 , NHW):

190 ### upper wires first

191 deflector.add_edge(xHW(i)-rHW , yHW(i) , xHW(i) , yHW(i)-rHW , angle=90, boundaries = {"electrostatic" : "UHU%d"%(i)})

192 deflector.add_edge(xHW(i) , yHW(i)-rHW , xHW(i)+rHW , yHW(i) , angle=90, boundaries = {"electrostatic" : "UHU%d"%(i)})

193 deflector.add_edge(xHW(i)+rHW , yHW(i) , xHW(i) , yHW(i)+rHW , angle=90, boundaries = {"electrostatic" : "UHU%d"%(i)})

194 deflector.add_edge(xHW(i) , yHW(i)+rHW , xHW(i)-rHW , yHW(i) , angle=90, boundaries = {"electrostatic" : "UHU%d"%(i)})

195 deflector.add_label(xHW(i), yHW(i), materials = {"electrostatic" : "none"})

196

197 ### now lower wires

198 deflector.add_edge(xHW(i) , -yHW(i)+rHW , xHW(i)-rHW , -yHW(i) , angle =90, boundaries = {"electrostatic" : "UHL%d"%(i)})

199 deflector.add_edge(xHW(i)+rHW , -yHW(i) , xHW(i) , -yHW(i)+rHW , angle =90, boundaries = {"electrostatic" : "UHL%d"%(i)})

200 deflector.add_edge(xHW(i) , -yHW(i)-rHW , xHW(i)+rHW , -yHW(i) , angle =90, boundaries = {"electrostatic" : "UHL%d"%(i)})

201 deflector.add_edge(xHW(i)-rHW , -yHW(i) , xHW(i) , -yHW(i)-rHW , angle =90, boundaries = {"electrostatic" : "UHL%d"%(i)})

202 deflector.add_label(xHW(i),-yHW(i), materials = {"electrostatic" : "none"})

203

204 ################################## vertical blocks #######################################

205 ### left block

206 deflector.add_edge(-xCap/2.-dVS+hVS ,-hVBlock/2.,-xCap/2.-dVS+hVS ,yVS (0)-wVS/2., boundaries = {"electrostatic" : "block"})

207 deflector.add_edge(-xCap/2.-dVS+hVS , hVBlock/2.,-xCap/2.-dVS+hVS ,yVS(NVS -1)+wVS/2., boundaries = {"electrostatic" : "block"})

208

209 for i in range(0, NVS):

210 if i < NVS -1:

211 deflector.add_edge(-xCap/2.-dVS+hVS , yVS(i)+wVS/2.,-xCap/2.-dVS+hVS , yVS(i+1)-wVS/2., boundaries = {"electrostatic" : "

block"})

212 if hVS != 0.:

213 deflector.add_edge(-xCap/2., yVS(i)+wVS/2,-xCap/2.-dVS+hVS , yVS(i)+wVS/2, boundaries = {"electrostatic" : "block"})

214 deflector.add_edge(-xCap/2., yVS(i)-wVS/2,-xCap/2.-dVS+hVS , yVS(i)-wVS/2, boundaries = {"electrostatic" : "block"})

215

216 deflector.add_edge(-xCap/2.-dVS -dVBlock ,-hVBlock/2.,-xCap/2.-dVS -dVBlock , hVBlock /2., boundaries = {"electrostatic" : "block"})

217 deflector.add_edge(-xCap/2.-dVS -dVBlock ,-hVBlock/2.,-xCap/2.-dVS+hVS ,-hVBlock /2., boundaries = {"electrostatic" : "block"})

218 deflector.add_edge(-xCap/2.-dVS -dVBlock , hVBlock/2.,-xCap/2.-dVS+hVS , hVBlock /2., boundaries = {"electrostatic" : "block"})

219 deflector.add_label(-xCap/2.-dVS -dVBlock /2., 0. , materials = {"electrostatic" : "ebaboard" })

220

221 ### right block

222 deflector.add_edge(xCap /2.+dVS -hVS ,-hVBlock /2., xCap /2.+dVS -hVS ,yVS(0)-wVS/2., boundaries = {"electrostatic" : "block"})

223 deflector.add_edge(xCap /2.+dVS -hVS , hVBlock /2., xCap /2.+dVS -hVS ,yVS(NVS -1)+wVS/2., boundaries = {"electrostatic" : "block"})

224

225 for i in range(0, NVS):

226 if i < NVS -1:

227 deflector.add_edge(xCap /2.+dVS -hVS , yVS(i)+wVS/2., xCap /2.+dVS -hVS , yVS(i+1)-wVS/2., boundaries = {"electrostatic" : "

block"})

228 if hVS != 0.:

229 deflector.add_edge(xCap/2., yVS(i)+wVS/2, xCap /2.+dVS -hVS , yVS(i)+wVS/2, boundaries = {"electrostatic" : "block"})

230 deflector.add_edge(xCap/2., yVS(i)-wVS/2, xCap /2.+dVS -hVS , yVS(i)-wVS/2, boundaries = {"electrostatic" : "block"})

231

232 deflector.add_edge(xCap /2.+ dVS+dVBlock ,-hVBlock /2., xCap /2.+ dVS+dVBlock , hVBlock /2., boundaries = {"electrostatic" : "block"})

233 deflector.add_edge(xCap /2.+ dVS+dVBlock ,-hVBlock /2., xCap /2.+dVS -hVS ,-hVBlock /2., boundaries = {"electrostatic" : "block"})

234 deflector.add_edge(xCap /2.+ dVS+dVBlock , hVBlock /2., xCap /2.+dVS -hVS , hVBlock /2., boundaries = {"electrostatic" : "block"})

235 deflector.add_label(xCap /2.+ dVS+dVBlock /2., 0. , materials = {"electrostatic" : "ebaboard" })

236

237

238 ################################## horizontal blocks #####################################

239 ### upper block

240 deflector.add_edge(-wHBlock /2., yCap/2.-hHW , xHW (0)-rHW , yCap/2.-hHW , boundaries = {"electrostatic" : "block"})

241 deflector.add_edge(wHBlock /2., yCap/2.-hHW , xHW(NHW -1)+rHW , yCap/2.-hHW , boundaries = {"electrostatic" : "block"})

242

243 for j in range(0, NHW):

244 if j < NHW -1:

245 deflector.add_edge(xHW(j)+rHW , yCap/2.-hHW , xHW(j+1)-rHW , yCap/2.-hHW , boundaries = {"electrostatic" : "block"})

246 if hHW != 0:

247 deflector.add_edge(xHW(j)-rHW , yCap/2.-hHW , xHW(j)-rHW , yCap/2., boundaries = {"electrostatic" : "block"})

248 deflector.add_edge(xHW(j)+rHW , yCap/2.-hHW , xHW(j)+rHW , yCap/2., boundaries = {"electrostatic" : "block"})

249

250 deflector.add_edge(-wHBlock /2., yCap /2.+ dHBlock , wHBlock /2., yCap /2.+ dHBlock , boundaries = {"electrostatic" : "block"})

251 deflector.add_edge(-wHBlock /2., yCap/2.-hHW , -wHBlock /2., yCap /2.+ dHBlock , boundaries = {"electrostatic" : "block"})

252 deflector.add_edge(wHBlock /2., yCap/2.-hHW , wHBlock /2., yCap /2.+ dHBlock , boundaries = {"electrostatic" : "block"})

253 deflector.add_label (0., yCap /2.+ dHBlock /2., materials = {"electrostatic" : "ebaboard" })

254

255 ### lower block

256 deflector.add_edge(-wHBlock/2.,-yCap /2.+hHW , xHW (0)-rHW ,-yCap /2.+hHW , boundaries = {"electrostatic" : "block"})

257 deflector.add_edge(wHBlock /2.,-yCap /2.+hHW , xHW(NHW -1)+rHW ,-yCap /2.+hHW , boundaries = {"electrostatic" : "block"})

258

259 for j in range(0, NHW):

260 if j < NHW -1:

261 deflector.add_edge(xHW(j)+rHW ,-yCap /2.+hHW , xHW(j+1)-rHW ,-yCap /2.+hHW , boundaries = {"electrostatic" : "block"})

262 if hHW != 0:

32

263 deflector.add_edge(xHW(j)-rHW ,-yCap /2.+hHW , xHW(j)-rHW ,-yCap/2., boundaries = {"electrostatic" : "block"})

264 deflector.add_edge(xHW(j)+rHW ,-yCap /2.+hHW , xHW(j)+rHW ,-yCap/2., boundaries = {"electrostatic" : "block"})

265

266 deflector.add_edge(-wHBlock/2.,-yCap/2.-dHBlock , wHBlock/2.,-yCap/2.-dHBlock , boundaries = {"electrostatic" : "block"})

267 deflector.add_edge(-wHBlock/2.,-yCap /2.+hHW , -wHBlock/2.,-yCap/2.-dHBlock , boundaries = {"electrostatic" : "block"})

268 deflector.add_edge(wHBlock /2.,-yCap /2.+hHW , wHBlock/2.,-yCap/2.-dHBlock , boundaries = {"electrostatic" : "block"})

269 deflector.add_label (0.,-yCap/2.- dHBlock /2., materials = {"electrostatic" : "ebaboard" })

270

271

272 # Activate preprocessor

273 deflector.activate ()

274 # Solve problem

275 problem.solve ()

276

277 # Extract data from usable volume

278 x, y, efieldx ,efieldy =[], [], [], []

279 xmin , xmax = -xUse/2., xUse /2.

280 ymin , ymax = -yUse/2., yUse /2.

281 nstepx = 30

282 nstepy = 20

283 dx = (xmax -xmin)/nstepx

284 dy = (ymax -ymin)/nstepy

285

286 for i in xrange(nstepx +1):

287 for j in xrange(nstepy +1):

288 efieldx.append(multipole.local_values(xmin + i * dx, ymin + j * dy)["Ex"])

289 efieldy.append(multipole.local_values(xmin + i * dx, ymin + j * dy)["Ey"])

290 x.append(xmin + i * dx)

291 y.append(ymin + j * dy)

292

293 # Save data

294

295 np.savetxt(os.path.join(dep , ’Calc_ratio {:f}_dVS{:f}_hVS{:f}_NVS {:.1f}_NHW {:.1f}_rHW{:f}_EDipole {:.1f}_kx {:.1f}.txt’.format(

ratioVS , dVS , hVS , NVS , NHW , rHW , EDipole , kx)), np.array ([x,y,efieldx ,efieldy]).T, header="x y Ex Ey", comments=’’)

296

297

298 #Variables ranges

299 ratioVS=np.arange (0.436 , 0.440, 0.00025)

300 dVS=np.arange (0.016 , 0.018 , 0.0001)

301 #hVS=np.arange (0.0005 , 0.01, 0.0005)

302 NVS=np.arange (29, 30, 1)

303 NHW=np.arange (24, 27, 1)

304 rHW=np.arange (0.00020 , 0.00022 , 0.000001)

305

306 def doev(Variables):

307 arguments ={’ratioVS ’:0.435 ,’dVS’:0.0089 ,’hVS’:0.0090 ,’NVS’:29,’NHW’:25,’rHW’:0.000215} #all constants tring to take them as near

as possible to the minimum

308 keys=list(Variables.keys())

309 #for naming the folder:

310 date=time.strftime("%d %b %H.%M", time.gmtime ())

311 dep=’_’+keys [0]+’_’+keys [1]

312 dep=date+dep

313 os.makedirs(dep)

314 errorlog=open(os.path.join(dep ,"error.log"), "w")

315

316 for i in Variables[keys [0]]:

317 for j in Variables[keys [1]]:

318 try:

319 arguments[keys [0]]=i

320 arguments[keys [1]]=j

321 calc(ratioVS=arguments[’ratioVS ’], dVS=arguments[’dVS’], hVS=arguments[’dVS’]+0.0001 , NVS=arguments[’NVS’], NHW=

arguments[’NHW’] ,rHW=arguments[’rHW’], dep=dep)

322 except Exception:

323 errorlog.write("exception for i="+str(i)+" j="+str(j)+"\n")

324 continue

325 errorlog.close()

326

327 #calculate the electric field for all combinatins of ranges and constants

328 doev({’ratioVS ’:ratioVS , ’dVS’:dVS})

329 doev({’ratioVS ’:ratioVS , ’NVS’:NVS})

330 doev({’ratioVS ’:ratioVS , ’NHW’:NHW})

331 doev({’ratioVS ’:ratioVS , ’rHW’:rHW})

332 doev({’dVS’:dVS , ’NVS’:NVS})

333 doev({’dVS’:dVS , ’NHW’:NHW})

334 doev({’dVS’:dVS , ’rHW’:rHW})

335 doev({’NVS’:NVS , ’NHW’:NHW})

336 doev({’NVS’:NVS , ’rHW’:rHW})

337 doev({’NHW’:NHW , ’rHW’:rHW})

Agros2D and Python script for the storage ring (named Multipole-V03.py)

33

1 #include <iostream >

2 #include <fstream >

3 #include <algorithm >

4 #include "TH2F.h"

5 #include "TF2.h"

6 #include "TFitResult.h"

7 #include "TCanvas.h"

8

9 using namespace std;

10

11 void Read(const char *filename , float *x, float *y, float *Ex , float *Ey , int *bins);

12 void adaptdata(float *x, float *y, float *Ex, float *Ey, int *bins , float *dzx , float *dzy);

13 void stddev(float *dzx , float *dzy , int *bins , const char *name);

14

15 int main(int argc , char** argv)

16 {

17 const int N=651;

18

19 int *bins=new int [3];

20 float *x=new float[N];

21 float *y=new float[N];

22 float *Ex=new float[N];

23 float *Ey=new float[N];

24 float *dzx=new float[N];

25 float *dzy=new float[N];

26 Read(argv[1], x, y, Ex , Ey, bins);

27 adaptdata(x,y,Ex,Ey ,bins ,dzx ,dzy);

28 stddev(dzx ,dzy ,bins , argv [1]);

29 return 0;

30 }

31

32 void stddev(float *dzx , float *dzy , int *bins , const char *name)

33 {

34 float meanx =0;

35 float stdx =0;

36 float meany =0;

37 float stdy =0;

38 for(int i=0; i<bins [0]; i++)

39 {

40 meanx+=dzx[i]/float(bins [0]);

41 stdx+=dzx[i]*dzx[i]/ float(bins [0]);

42 meany+=dzy[i]/float(bins [0]);

43 stdy+=dzy[i]*dzy[i]/ float(bins [0]);

44 }

45 stdx=sqrt(stdx -meanx*meanx);

46 stdy=sqrt(stdy -meany*meany);

47 cout <<name <<" Ex= "<<stdx <<" Ey= "<<stdy <<endl;

48 }

49

50 void adaptdata(float *x, float *y, float *Ex, float *Ey, int *bins , float *dzx , float *dzy)

51 {

52 // define borders

53 float xmin=* min_element(x,x+bins [0]);

54 float xmax=* max_element(x,x+bins [0]);

55 int xbins=bins [1];

56 float ymin=* min_element(y,y+bins [0]);

57 float ymax=* max_element(y,y+bins [0]);

58 int ybins=bins [2];

59 float dx2=(xmax -xmin)/(2*(xbins -1));

60 float dy2=(ymax -ymin)/(2*(ybins -1));

61

62 // alignement:

63 xmin=xmin -dx2;

64 xmax=xmax+dx2;

65 ymin=ymin -dy2;

66 ymax=ymax+dy2;

67

68 TH2F *histx=new TH2F("histx", "2D Histo Ex [V/m];x[m];y[m]", xbins , xmin , xmax , ybins , ymin , ymax);

69 TF2 *fx = new TF2("fx","[0]+[1]*x+[2]*y",xmin ,xmax ,ymin ,ymax); // linear function for fitting the histogram

70

71 TH2F *histy=new TH2F("histy", "2D Histo Ey [V/m];x[m];y[m]", xbins , xmin , xmax , ybins , ymin , ymax);

72 TF2 *fy = new TF2("fy","[0]+[1]*x+[2]*y",xmin ,xmax ,ymin ,ymax); // linear function for fitting the histogram

73

74 int bin; //Fill Histogramm with the electric Field

75 for(int i=0;i<bins [0];i++)

76 {

77 bin=histx ->FindBin(x[i],y[i]);

78 histx ->SetBinContent(bin ,Ex[i]);

79 histy ->SetBinContent(bin ,Ey[i]);

80 histx ->SetBinError(bin , 1.e4); //error unknown at the moment , fit more important in the middle

81 histy ->SetBinError(bin , 1.e4);

82 }// GetBinNumber for SetBinError

83

84 //Fit histogramm

85 fx->SetParameters (10500 , -10500, 0);

86 fy->SetParameters (0,0, 10500);

87

88 // TMinuit *gMinuit=new TMinuit ();

34

89 TFitResultPtr rx=histx ->Fit("fx","SN");//WL stands for Weighted loglikelihoodmethod , S return Status , N do not store the fit in the

plot , q quiet

90 TFitResultPtr ry=histy ->Fit("fy","SN");

91

92 for(int i=0;i<bins [0];i++)

93 {

94 bin=histx ->FindBin(x[i],y[i]);

95 dzx[i]=histx ->GetBinContent(bin)-fx->Eval(x[i],y[i]);

96 dzy[i]=histy ->GetBinContent(bin)-fy->Eval(x[i],y[i]);

97 }

98

99 delete gDirectory ->FindObject("histx");

100 delete gDirectory ->FindObject("histy");

101 delete gDirectory ->FindObject("fx");

102 delete gDirectory ->FindObject("fy");

103 }

104

105 void Read(const char *filename , float *x, float *y, float *Ex , float *Ey , int *bins)

106 {

107 ifstream File(filename);

108 File.ignore (100, ’\n’); // skip the first line (till \n)

109 float a, b, c, d, alast;

110 int i=0;

111 int xbins =0;

112 while(File >> a >> b >> c >> d)

113 {

114 x[i]=a;

115 y[i]=b;

116 Ex[i]=c;

117 Ey[i]=d;

118 if(a!=alast){xbins ++;}

119 alast=a;

120 i++;

121 }

122 bins [0]=i;

123 bins [1]= xbins;

124 bins [2]=i/xbins;

125 File.close();

126 }

C++ script for reading an ascii file and calculation the deviation from an optimal electric field (named
Readdata4.cpp)

35

1 #!/usr/bin/python

2

3 import sys

4 import numpy as np

5 import matplotlib

6 matplotlib.use(’Agg’)

7 import matplotlib.pyplot as plt

8 import re

9 import matplotlib.colors as colors

10 from collections import OrderedDict

11

12 #parameters: ratioVS: 1, dVS: 2, hVS: 3, NVS: 4, NHW: 5, rHW: 6, EDipole: 7, k: 8

13

14 def fill(filename):

15 data=open(filename , "r")

16 zx, zy=[], []

17 xypar =[]

18 xy=[]

19 ratioVS , dVS , hVS , NVS , NHW , rHW , EDipole , k=[], [], [], [], [], [], [], []

20 for i in data.readlines ():

21 line=re.search(r"Calc_ratio (.*) _dVS (.*) _hVS (.*) _NVS (.*) _NHW (.*) _rHW (.*) _EDipole (.*) _kx (.*).txt Ex= (.*) Ey= (.*)", i)

22 if line:

23 ratioVS +=[float(line.group (1))]

24 dVS +=[float(line.group (2))]

25 hVS +=[float(line.group (3))]

26 NVS +=[float(line.group (4))]

27 NHW +=[float(line.group (5))]

28 rHW +=[float(line.group (6))]

29 EDipole +=[float(line.group (7))]

30 k+=[float(line.group (8))]

31 zx+=[float(line.group (9))]

32 zy+=[float(line.group (10))]

33 if ratioVS.count(ratioVS [0])!=len(ratioVS):xy+=[ratioVS]; xypar +=["ratioVS"]

34 if dVS.count(dVS [0])!=len(dVS):xy+=[dVS]; xypar +=["dVS[m]"]

35 if hVS.count(hVS [0])!=len(hVS):xy+=[hVS]; xypar +=["hVS[m]"]

36 if NVS.count(NVS [0])!=len(NVS):xy+=[NVS]; xypar +=["NVS"]

37 if NHW.count(NHW [0])!=len(NHW):xy+=[NHW]; xypar +=["NHW"]

38 if rHW.count(rHW [0])!=len(rHW):xy+=[rHW]; xypar +=["rHW[m]"]

39 if EDipole.count(EDipole [0])!=len(EDipole):xy+=[EDipole]; xypar +=["EDipole[V]"]

40 if k.count(k[0])!=len(k):xy+=[k]; xypar +=["k[V]"]

41 consts ={"ratioVS":ratioVS [0],"dVS[m]":dVS[0],"hVS[m]":hVS[0],"NVS":NVS[0],"NHW":NHW[0],"rHW[m]":rHW[0],"EDipole[V]":EDipole [0],"k[V

]":k[0]}

42 for i in xypar: del consts[i]

43 if len(xy) >2: #sort out if more than two variables

44 zh1=0

45 zh2=len(xy)-1

46 while zh1 <zh2:

47 for i in range(zh1 , zh2):

48 diffxy =[]

49 for j in range(len(xy[0])):

50 diffxy +=[round(xy[zh2][j]-xy[i][j], 8)]

51 if diffxy.count(diffxy [0])==len(diffxy):

52 xy.pop(zh2)

53 xypar[i]=xypar[i]+"="+xypar[zh2]+"-"+str(diffxy [0])+’[m]’

54 xypar.pop(zh2)

55

56 zh2 -=1

57 elif len(xy)==1: #case with only one variable , append array with zeroes

58 xy.append(np.zeros(len(xy[0])))

59 xypar.append(’0’)

60 elif len(xy)!=2:

61 raise Exception(’something strange happened perhapts there is no valid data in the readfile ’)

62 lx=list(OrderedDict.fromkeys(xy[0]))

63 ly=list(OrderedDict.fromkeys(xy[1]))

64 nx=len(lx)

65 ny=len(ly)

66 filedate=re.search(r"([0 -9]{2}) ([A-Z][a-z][a-z]) ([0 -9][0 -9].[0 -9][0 -9])", filename)

67 filedate=filedate.group (1)+" "+filedate.group (2)+" "+filedate.group (3) #Time

68 plotname=xypar [0]+"_"+xypar [1]

69 for k in consts:

70 plotname +="_"+k+":"+str(consts[k])

71 plotname +="_"+filedate

72 plotname +=’.png’

73 return xy[0], xy[1], nx , ny, zx, zy, xypar , plotname

74

75 def plot(x, y, z, xn, yn, xpar , ypar , title):

76 #centering

77 xmin=np.min(x)-(np.max(x)-np.min(x))/((xn -1) *2.) #case xn==1 should normally not happen

78 xmax=np.max(x)+(np.max(x)-np.min(x))/((xn -1) *2.)

79 if yn!=1:

80 ymin=np.min(y)-(np.max(y)-np.min(y))/((yn -1) *2.)

81 ymax=np.max(y)+(np.max(y)-np.min(y))/((yn -1) *2.)

82 else: #case for only one variable

83 ymin=np.min(y)

84 ymax=np.max(y)

85 plt.figure ()

86 plt.hist2d(x, y, range =[[xmin ,xmax],[ymin ,ymax]], bins=[xn , yn], weights=z, cmin=np.min(z), cmax=np.max(z))

87 plt.xlabel(xpar)

36

88 plt.ylabel(ypar)

89 plt.ticklabel_format(axis=’y’,style=’sci’,scilimits =(1 ,4))

90 plt.ticklabel_format(axis=’x’,style=’sci’,scilimits =(1 ,4))

91 plt.title(r’$\Delta Ex + \Delta Ey$’)

92 plt.colorbar ()

93 plt.savefig(r"plots/"+title)

94

95 x, y, nx, ny, zx, zy , xypar , plotname=fill(sys.argv [1])

96 plot(x,y,np.array(zx)+np.array(zy),nx,ny ,xypar [0], xypar[1], "Ex+Ey"+plotname)

97 #plot(x,y,zx ,nx,ny,xypar[0], xypar[1], "Ex_"+ plotname)

98 #plot(x,y,zy ,nx,ny,xypar[0], xypar[1], "Ey_"+ plotname)

Python script for a graphical display of the standard deviation dependant from two parameters named
(findmin3.py)

37

xCap

yC
ap

dVS

pitchVS

pitchHW

dVBlock

dH
B

lock

World volume

dWorld

hVS

hVGap

hVS

hVGap

offVS

offHW
rHW

hV
B

lo
ck

wHBlock

Deflector geometry

38

rHW

pitchHW offHW

hHW

wVS

hVGap

offVS

pitchVS

xCap (to the surface of the strip)

dVS: thickness of strip

hVS

Deflector geometry

39

