
Bachelorthesis
Physics

RWTH Aachen University

Physics Institute III B

Digital Rate Regulation
at the Cooler Synchrotron COSY

Lefan Zhang

Aachen, September 2021

Eigenhändigkeitserklärung

Diese Arbeit ist von mir selbstständig angefertigt und verfasst. Es sind keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt worden.

(Ort, Datum) (Lefan Zhang)

Diese Arbeit wurde betreut von:

1. Prüfer: Prof. Dr. Jörg Pretz (RWTH Aachen)
2. Prüfer: Prof. Dr. Oliver Pooth (RWTH Aachen)

Sie wurde angefertigt im Institut für Kernphysik (IKP-4) der
Forschungszentrum Jülich GmbH

Acknowledgement
I would like to thank the people involved into my bachelor thesis. First I want to
thank Ilja Bekman for helping me throughout my work, especially with the technical
questions. Secondly I want to thank Prof. Jörg Pretz not only for correcting my
thesis but also for helping me with the related physical questions. I would also like
to thank the people at the IKP-4 institute for being very helpful with COSY related
questions.

Abstract
Particle accelerators are an important tool in modern particle physics. Accelerators
can be used in different collision experiments to gain deeper knowledge about the
behaviour of elementary particles. Operating such accelerators demands a wide range
of precise data processing systems.
One of the tasks in a collision experiment is the target rate regulation, responsible
for regulating the particle rate hitting a fixed target. At the Cooler Synchrotron in
Jülich the current device responsible for this is the so-called "Schneiderbox", an ana-
logue counting and regulating device.
The task of this bachelor thesis is to replace the analogue "Schneiderbox" with a Field
Programmable Gate Array (FPGA). Using Hardware Description Language (HDL),
the rate regulation is digitized, which makes it possible to access the regulation sys-
tem remotely and makes automatic rate regulation possible.

Contents

 List of Figures iv

 List of Tables iv

 1. Introduction 1

 2. Physical Background and Set Up 3
 2.1. Scattering Experiments and Target Rate Regulation 3
 2.2. Fourier Transform and White Noise . 5
 2.3. Cooler Synchrotron . 5

 2.3.1. Replacing the Analog Regulation System 6
 2.4. FPGA Basics . 7

 2.4.1. The Red Pitaya Board . 7
 2.4.2. Verilog . 7

 3. Implemented Design 9
 3.1. Fundamental Design . 9
 3.2. Counting Module . 10
 3.3. Amplitude Adjusting Module . 12
 3.4. The ’generate’ Function . 15

 4. Testing and Simulations 17
 4.1. Simulations with Vivado Testbench . 17

 4.1.1. Simulations at 30.000 Signals per Second 17
 4.1.2. Simulations at 200.000 Signals per Second 18
 4.1.3. Simulations at 80.000 Signals per Second 19

 4.2. Tests with Frequency Generator . 21
 4.3. Tests with Discriminator . 24

 5. Summary and Outlook 27

 Bibliography 29

 A. Appendix A 1
 A.0.1. Verilog Code for Counting Module A 1
 A.0.2. Verilog Code for Amplitude Adjustment Module A 10
 A.0.3. Verilog Code for Verilog Testbench Source A 22

i

Contents

iii

List of Figures

 2.1. Rutherford’s scattering experiment set up [4] 3
 2.2. Scattering experiment set up . 4
 2.3. Power spectrum density of an arbitrary band limited white noise signal 5
 2.4. Layout plan of the COSY accelerator [7] 6
 2.5. The Red Pitaya board [11] . 7

 3.1. Flowchart of the FPGA modules . 10
 3.2. Positive flank detection with a 4 bit shift register 11
 3.3. Sketch of the adjusting step function . 14

 4.1. Simulation results for a target rate of 30.000 signals per second 18
 4.2. Simulation results for a target rate of 200.000 signals per second 19
 4.3. Test results with a constant signal rate of 150.0000 signals per second . 21
 4.4. Test results with a constant signal rate of 2000 signals per second . . . 21
 4.5. Set up with the signal generator . 22
 4.6. Test at 400khz, the upper plot describes the behaviour of the amplitude

register, the lower plot describes the difference between measured signal
rate and the desired rate . 23

 4.7. Test at 7Mhz, the upper plot describes the behaviour of the amplitude
register, the lower plot describes the difference between measured signal
rate and the desired rate . 23

 4.8. Set up at the discriminator . 24
 4.9. Test results without generator . 25
 4.10. Test results with generator . 25

List of Tables

 3.1. Port listing for the whole design . 9
 3.2. Scale for various msb differences between desired rate and signal rate

deviation in decimal notation . 13

 4.1. Simulation conditions for simulation at low target rates 17
 4.2. Simulation conditions for simulation at high target rates 18

iv

List of Tables

 4.3. Simulation conditions for simulation with one failing signal 19
 4.4. Results of the test series with reduced target rate 20
 4.5. Simulation conditions . 20

v

1. Introduction

Over a hundred years ago Ernest Rutherford marked the beginning of modern nu-
clear physics with his famous scattering experiment. By scattering alpha particles
against a thin gold sheet, he proved that atoms have a dense center with a positive
charge. Nuclear physics has advanced a lot since then, the accelerators have improved
significantly and the elaborated designs are more complicated, but they still follow
Rutherford’s concept of two colliding particles. [10]
These accelerators still deliver new insights about elementary particles and help us
understand physics on a very small scale. In order to achieve very precise and repro-
ducible results, particle accelerators need a wide spectrum of components that work
with a high precision and process data in real time. [9]
At the Forschungszentrum Jülich (FZJ) the Institute for Nuclear Physics (Institut
für Kernphysik short IKP) operates the Cooler Synchrotron (COSY) accelerator and
storage ring. COSY is able to accelerate and store the protons and deuterons pre-
accelerated by the Jüoverllich Light Ion Cyclotron (JULIC). [8] The storage ring
uses a wide range of real-time data acquisition and processing systems. One of this
systems is the so-called "Schneiderbox". It is a beam regulation system responsible
for controlling the particle rate hitting the target in a fixed target experiment.
The goal of this thesis is to replace the old regulating system with a modern digital
regulation system using the Field Programmable Gate Array (FPGA) on a Red Pitaya
single-board. The digital implementation should be able to adjust the particle beam
automatically and allow for remote manual configuration.
This thesis contains a short description of the experimental set up, the current rate
regulation system, a short introduction to FPGAs and the hardware description lan-
guage Verilog. It explains the overall idea of the digital rate regulation system. An
in-depth discussion about the problems of implementing the system on an FPGA
board and how they are solved are given in the thesis. The thesis also includes a
short discussion about the advantages, disadvantages of the developed digital rate
regulation, possible ways to improve the system and alternative approaches.

1

2. Physical Background and Set Up

This chapter is a brief summary of the physical background and sets up knowledge
needed for the target rate regulation. This includes a basic summary of scattering
experiments and white noise signals. It also includes the current rate regulation set
up at the COSY accelerator and a brief introduction to FPGA technology and the
corresponding programming language.

2.1. Scattering Experiments and Target Rate Regulation

Rutherford’s scattering experiment is one of the most influential experiments in the
field of physics. The experiment uses a radioactive source emitting α particles. The
emitted α particles are used as a particle beam and collide with a thin layer of gold.
The set up can be seen in Fig. 2.1 .

Figure 2.1.: Rutherford’s scattering experiment set up [4]

This set up was used by Rutherford to come to the conclusion, that most of the space
occupied by the gold atoms is empty and the positive charge is concentrated around
a dense center, by evaluating the angle distribution of the transmitted and reflected
α particles.

3

2. Physical Background and Set Up

Modern particle accelerators have developed a lot since then. Nowadays the radioac-
tive source has been replaced by particle accelerators, but still they work similar to
Rutherford’s set up. The accelerated particles are used to collide with atoms or other
particles. A distinction is made between fixed target scattering and collider experi-
ments. The fixed target experiment takes a beam of particles with known energy E
and momentum p and scatters them at bulk matter, while the collider experiment
scatters two particle beams [5]. The relevant scattering experiment at the COSY ac-
celerator is a fixed target experiment. First the particle beam is widened by a kicker
with an oscillating electric field. The scattering target is placed behind the widened
beam. In order to know the approximate particle rate hitting the target there are 4
detectors behind the target, up, down, left and right. The whole set up is shown in
Fig. 2.2 . The number of particles hitting the target can be adjusted through adjust-
ments on the capacitor voltage. Subject of this thesis is to develop an FPGA system
with the capabilities of automatic voltage adjustments, in order to achieve a constant
target rate.

Figure 2.2.: Scattering experiment set up

The purpose of the target rate regulation is to control the rate of the particles hitting
the target by evaluating the detector signals and adjusting the amplitude of the
capacitor signal.
A higher amplitude at the capacitor leads to the beam being widened more, which
then leads to more particles hitting the target.
The detector signals have underlying statistical errors, primarily due to quantum
mechanical effects. The total signal count therefore underlies counting statistics,
which can be approximated by a Poisson distribution. Therefore the statistical error
for k signal counts is

√
k.

With this information, it makes sense to evaluate the detector signals over a long
time, in order to achieve a high signal count, which would then result in a low relative

4

2.2. Fourier Transform and White Noise

statistical error. However evaluating the signals over a long period of time would
mean that the response time of the target rate regulation system is very slow.

2.2. Fourier Transform and White Noise

The signal at the capacitor, that is responsible for widening the beam, is a band
limited white noise signal. So it makes sense to briefly talk about Fourier transforms
and white noise generation.
The Fourier transform is the mathematical transformation of a time-domain waveform
into a frequency-domain representation or vice versa [1]. The time domain shows the
signal as a function of time. The frequency domain represents the wave as a continuous
spectral function of periodic waves. The Fourier transform of signal f(t) from the
time domain into frequency domain is calculated by

F (ω) =
1

√
2π ∫

R

f(t)e−iωtdt (2.1)

White noise is a random signal with a constant power spectrum density, meaning
that the frequency domain function is constant. A power density spectrum that is
constant in [f0, f1] and zero elsewhere is called a band limited white noise signal. The
power density spectrum of a band limited white noise is shown in Fig. 2.3 .

Figure 2.3.: Power spectrum density of an arbitrary band limited white noise signal

2.3. Cooler Synchrotron

This subsection introduces the Cooler Synchrtron COSY, where the design developed
in this thesis will be implemented.

5

2. Physical Background and Set Up

The accelerator has a total circumference of 183.47m with two arcs connected by two
40m long linear sections. [9] The Jülich Light Ion Cyclotron is connected to the COSY
ring for preacceleration and it has an extraction line for external beam experiments.
COSY is used in the fields of hadron, particle and nuclear physics. Designed for
experiments in the medium energy range, it offers unpolarized and polarized proton
and deuteron beams in the momentum range from 200 MeV/c to 3.7 GeV/c. A special
feature is that it offers two different cooling types: electron and stochastic cooling.
[3]
A layout plan of COSY is shown in fig. 2.4 .

Figure 2.4.: Layout plan of the COSY accelerator [7]

2.3.1. Replacing the Analog Regulation System

As elaborated above, target rate control is very important for scattering experiments.
The current system responsible for this at the COSY accelerator is the so-called
"Schneiderbox". The signal pulses from the detectors first go through a discrimina-
tor that transforms the pulses into ≈ 80ns wide logic signals. The 4 logic signals go
through an analog rate meter which can be set up for different integration times be-
tween 0.3s to 3s. The measured signal rate then gets converted to a voltage amplitude
according to a preset proportionality.
This preset proportionality needs to be adjusted regularly by hand. This is where
the digital rate regulation system is supposed to come in. The goal is to implement
a system with remote capabilities and automatic rate regulation. A modern FPGA
board provides a suitable base for designing a system, that can fullfill these demands.

6

2.4. FPGA Basics

2.4. FPGA Basics

The FPGA board is the most important hardware part for the digital rate regulation
system. FPGAs or field programmable gate arrays are built around an array of
logic blocks embedded in a grid of logical interconnections with I/O blocks on the
edges for interaction with outside appliances [2 , p.5], which allows us to implement
unique hardware solutions without developing custom chips. This saves money and
developing time for small projects [2 , p.1].
The programmable interconnections are a set of wires in the grid of logic blocks
that can be used to create arbitrary logic networks by connecting them. Each block
consists of programmable logic functions implemented as a 4-6 bit configurable look-
up table [2 , p.6]. Memory is either embedded in the logic blocks or as external DDR
memory. The embedded memory can be implemented as discrete registers, shift
registers, distributed RAM or block RAM [2 , p.7].

2.4.1. The Red Pitaya Board

The FPGA board used for the digital rate regulation is a Red Pitaya board equipped
with a STEMLab 125-14 FPGA . The board itself is a mixture of FPGA and con-
ventional CPU based computer which runs on a Linux OS loaded onto an SD-Card.
The Red Pitaya, that will be used, is shown in Fig. 2.5 .

Figure 2.5.: The Red Pitaya board [11]

2.4.2. Verilog

Verilog is the hardware description language (HDL) used for the FPGA program-
ming. HDLs are similar to conventional programming languages with the difference

7

2. Physical Background and Set Up

that HDLs can be used to create digital circuits. HDL programs are also called de-
signs, in order to differentiate between conventional programing languages. When the
circuit generator is able to create a gate circuit out of the source code the model is
called a synthesizable model, otherwise its called unsynthesizable. The most common
reason for a model to be unsynthesizable is that the digital circuit described is too
complicated and cannot be automatically written into a realistic circuit. Verilog is
very similar to C in syntax [6 , p.5ff].
While programming in Verilog is very similar to programming in C there are some con-
straints that need to be considered, when the design is supposed to be synthesizeable.
The main difference is that the operations are all bit by bit, meaning that complicated
divisions and floating point numbers can result in a design, that is too complicated to
be synthesized. Due to the physical limitations of the FPGA board, ressources like
register storage are scarce compared to traditional programming languages.

8

3. Implemented Design

Creating an FPGA design, that is able to replace manual input reliably comes with
a few challenges. The main problem is that the regulation system needs to be able to
deal with a desired rate scale of 104 and 105 particles per second and has to consider
edge cases to avoid over regulating the particle beam. This chapter discusses the
implemented design, the potential scenarios that were considered and how the design
deals with them.

3.1. Fundamental Design

The digital target regulation is split into 2 different modules, which both can be
found in the Appendix. The first module counts the number of pulses during the
given integration time. It checks the detector rate of each detector and is able to
correct for eventual detector errors (further explanation in 3.2). The second module
takes the pulse count from the first module and compares it to a given target value
and adjusts the output relative to the difference between target value and measured
pulses. A program flowchart can be found in Fig. 3.1 The IOs are listed in Table 3.1 .

port name bit size comment
inputs
clock 1 125Mhz clock provided by the Red Pitaya
reset 1 reset signal provided by the Red Pitaya

signals 1-4 1 detector signals after discrimination
integration time 32 integration time in multiples of clock cycles
detector threshold 32 minimum amounts of detected particles in given time

mode control 1 switch to choose between counting modes
target/desired rate 32 desired signal count from the detectors

outputs
amplitude 14 noise amplitude
signal count 32 amount of signals during int time

Table 3.1.: Port listing for the whole design

9

3. Implemented Design

Figure 3.1.: Flowchart of the FPGA modules

3.2. Counting Module

This module is responsible for counting the signals in a given integration time and
providing the total number of measured particles. The design has two modes to count
the input signals. The first counts every signal separately and adds them all together
after the integration time has passed while the second bundles up all the signals into
one wire counting the signals on the single wire. The program can check for potential
detector errors and adjust accordingly.

FPGAs are not able to directly detect signal changes and can only periodically check
the state of a signal input. The detector signals from the discriminator are logical
one bit signals with the logical one representing a particle hitting the detector. The
signal length is approximately 80ns.

The clock provided by the Red Pitaya has a frequency of 125MHz, meaning that
using this clock the design would check the signal inputs every 8ns. This is the first
problem. The design would check every 8ns and count multiple signals for one 80ns
long signal. In order to avoid multiple counts, the design creates a wire responsible
for detecting positive flanks on the input signal. This is done by using a 4-bit shift
register on the signal input. When a positive flank occurs the shift register will have
the bits set to 1-1-1-0 with 0 being the last bit on the shift register. This can also
be seen in Fig. 3.2 . It does cause a delay of 3 clock cycles in detecting the incoming
signal, but this is irrelevant for the counting process.

10

3.2. Counting Module

Figure 3.2.: Positive flank detection with a 4 bit shift register

The clock is also used to figure out when the integration time has passed. The
design creates a 32-bit register for a clock counter, which simply counts the amount
of cycles the clock has been through, it checks if the clock counter is equal to the
input int_time. If it is equal to the integration time the clock counter is reset and
signals the rest of the design that the integration time has passed through a clock
reset register.
The counting algorithm has two separate counting modes. It can either count each
signal on its own and add them up at the end of the integration time or bundle the
4 signals into one combined signal and count the combined signal. This combined
signal is made by setting a wire, which is set to one whenever one of the signal inputs
is one.
The second mode loses, accuracy because overlapping signals from detectors can ap-
pear to be only one signal, however the loss in accuracy should be negligibly small.

11

3. Implemented Design

Assume that each detector has the same signal rate f and a signal length of τ =

80ns. With the assumption of independent random signals, a conservative worst case
overlap rate fo of two signal inputs overlapping can be calculated by

fo = 2 ⋅ τ ⋅ f 2 . (3.1)

This rate describes a worst case scenario of how often a signal is lost due to overlaps.
Each of the 4 signal inputs could overlap with one of the other inputs which results
in 6 different possible overlapping cases. So the total overlap rate ftotal is given by

ftotal = 6 ⋅ fo = 12 ⋅ τ ⋅ f 2 . (3.2)

The expected signal rate is somewhere in the range between 104 and 105, while τ is
on a scale of 10−8s. So the total overlap rate would be in the range of 100 and 102 s−1.
This idealized view would at worst result in ≈ 100 missed signals per second. This
missed signal rate is negligible compared to the expected statistical errors discussed
in the previous chapter.
With every clock cycle the program first checks for the counter reset register. If it
signals that the the integration time has ended, the design then checks if the signal
count is above the threshold. If it is, the counter value gets stored in a storage register
and the counter resets. If it is not the storage value is set to zero and the fail switch
register is set to one signalling a defective signal input.
At the end the design checks the mode control input and assigns the signal count of
the chosen counting mode to the signal count output. It also checks the fail switches of
each detector, if one signal has not enough counts, the design throws out the opposing
detector count too and just doubles the amount of the remaining two signals. This is
done because multiplying by two is very easy in bit notation. The error state of each
signal input can be accessed through an implemented bug fixing register output.

3.3. Amplitude Adjusting Module

This module takes the output of the counting module and calculates the difference
between the signal count and the desired value. The output of the module is the
amplitude of the regulating white noise and gets adjusted relative to the difference of
the particle count to the desired value. One important property is that the module
can detect certain signal problems and does not over adjust the amplitude.
Every time the signal count is updated the design calculates the absolute difference
between the signal count and the desired rate. One of the main problems is that
the rates can vary from a 30.000 particles per second to rates in the range of 105s−1

. An absolute difference of for example 10.000 could be negligible for a high signal
rate while very significant for a low signal rate. The logical conclusion would be to
work with relative differences, but FPGA designs cannot handle complicated division
calculations very well, making it unreliable to just calculate the relative differences.
However FPGA designs allow for an easy way to divide by two. The numbers are all

12

3.3. Amplitude Adjusting Module

stored in a binary notation, so removing the least significant bit (lsb) is the same as
dividing by two and discarding the remainder. This means that the index of the most
significant bit (msb) is also the number of times one can divide by two and discard
the remainder without going below one. It is basically the same as finding out the
order of magnitude of a number written in a decimal system(10d), but in a binary
notation (2d). In the decimal system the difference between the order of magnitude of
two numbers can give information about the relative difference between two numbers.
Similar to this, the difference in msb of two binary numbers can also give information
about the relative difference between two numbers.

Suppose x > y with x, y ∈ N and n =msbx −msby, then:

y ∝
1
2n
x . (3.3)

The design uses this method to approximate the relative difference between signal
and desired rate by taking the difference between the msb of the desired rate and the
msb of the absolute difference. Table 3.2 shows the scale of this method.

difference in msb approximate scale of signal rate/desired rate
1 0.5
2 0.25
3 0.125
4 0.0625
5 0.03125
6 0.015625
7 0.0078125
....
n 1

2n

Table 3.2.: Scale for various msb differences between desired rate and signal rate de-
viation in decimal notation

This results in a step function for the amplitude correction. An example function is
plotted in Fig. 3.3 . This method has the problem of number neighbours, that are on
the verge of an msb increment. In a decimal system an example would be 999 and
1000, both are only separated by one but have different orders of magnitude. The
same is true for numbers like 16 and 15 in binary notation. However this should not
be a major problem for the rate regulation design, because if the difference between
signal count and desired value is near the desired value the design has to adjust a lot
anyway and it would at worst result in a lag of one integration time for the regulation
to get the rate back into the target territory.

13

3. Implemented Design

Figure 3.3.: Sketch of the adjusting step function

The rate regulation design has a confidence interval. If the signal rate is in this interval
around the desired rate, the design stops adjusting the amplitude and accepts the
signal rate as right. A confidence interval is needed because the signal rate underlies
statistical fluctuations. Without it the program would oscillate around the target
amplitude by constantly adjusting in different directions, which in turn would cause
for unwanted frequencies to show up in the band limited white noise signal.
This problem is solved by ignoring rate differences with ∆msb > 4, where ∆msb =

msbtarget−msbdif . The biggest possible confidence interval can then be calculated by:

Suppose that x, y, z ∈ N and d ∈ N with x being the smallest number with msb= d, y
being the largest (d − 5)-bit number and z = y + 1, then (in binary notation):

x = 100000000....
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

y = 00000 1111....
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

d-5

z = 0000 10000....
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d-4

Multiplying a binary number by two or dividing a binary number by two is a simple
bit shift, then:

z =
1
24x Ô⇒ y <

1
24x (3.4)

14

3.4. The ’generate’ Function

This means that the biggest possible confidence interval is at ± 6.25 percent of the
target value. The confidence interval can be adjusted to be smaller by choosing
integration times that will result in target counts that are not on the verge of changing
msb.
The output amplitude of the module is limited to a number between 0 and 16383 (the
highest 14-bit number). However the design has a self set lower and upper boundary
of 1000 and 15900 in order to stop itself from overflowing and over regulating.
The confidence interval and the amplitude boundaries can be changed in the firmware
by adjusting the corresponding parameters.

3.4. The ’generate’ Function

The Red Pitaya comes with a few preinstalled functions written in C. One of them
is the generate command which is used to generate predefined periodic signals . The
beam regulation requires a band limited white noise signal. In order to accommodate
that, the generate function was extended with the "arbitrary" signal setting. This
setting allows the user to upload an arbitrary waveform in a .csv file.
The generate function stores the wave parameters like amplitude and frequency in
registers. Changing the entries in these registers will also change the properties of the
output signal. The developed design changes the amplitude register of the generate
function with the amplitude output.

15

4. Testing and Simulations

This chapter discusses the results of tests and simulations run on the design. These
tests and simulations are supposed to simulate real world cases as close as possible
and test the limits of the design by testing the response to input, that is different
from the expected input .

4.1. Simulations with Vivado Testbench

The HDL IDE Vivado Design Suite offers a simulation tool. The only thing needed
is a testbench source, which simulates the input signals and reads the output. The
main advantage of the simulation is, that it is very easy to customize and the ability
to monitor every register closely makes bug fixing easier. The disadvantage is, that
the simulation can only simulate very idealized cases.
The main goal of the simulations is to verify the functionality of the design in the
expected signal rate range and that the implemented features like detector failure
function properly. In order to achieve this series of simulations are done with different
conditions.

4.1.1. Simulations at 30.000 Signals per Second

This simulation is supposed to ensure the functionality of the rate regulation at the
lower particle range by setting a target rate of 30.000 signals per second. A series of
simulations is done by simulating a time frame of one integration time with a range
of signal rates. At the end the difference between signal rate and target rate and the
amplitude output is recorded for analysis. The testing conditions can be found in
Table 4.1 .

target rate 30000 s−1

signal rate 10000-50000 s−1

integration time 0.25s , 2.5s

Table 4.1.: Simulation conditions for simulation at low target rates

Simulating 2 s on the design can take a relatively long time. That is the reason why
the simulation for this time frame is done only a few times to show that it shares the
same functionality as the simulations at 0.25s. The results are shown in Fig. 4.1

17

4. Testing and Simulations

Figure 4.1.: Simulation results for a target rate of 30.000 signals per second

Overall one can observe that the design regulates the amplitude according to the
expected step function. The step function for the long integration time seems to have
different step intervals. This is probably due to the difference in bit representation of
the numbers, as elaborated in the previous chapter.

4.1.2. Simulations at 200.000 Signals per Second

The purpose of this simulation series is similar to above but this time its to prove
the functionality of the design at high frequency rates. The simulation procedure is
similar to the simulation at 30.000 signals per second. The simulation conditions can
be found in Table 4.2 .

target rate 200000 s−1

signal rate 50000-350000 s−1

integration time 0.25s , 2.5s

Table 4.2.: Simulation conditions for simulation at high target rates

18

4.1. Simulations with Vivado Testbench

Figure 4.2.: Simulation results for a target rate of 200.000 signals per second

The simulation results are shown in Fig. 4.2 . Similar to the results above the simula-
tions show the expected step function with different step width for different integration
times.

4.1.3. Simulations at 80.000 Signals per Second

The simulations at a target rate of 80.000 signals per second are done to verify the
functionality of the design in special conditions and that the implemented features are
working as planned. Multiple special cases were considered in the simulation tests.
The first case is one of the input signals falling below a certain threshold value. The
design is supposed to detected the detector signal rate being too low and adjust the
signal count accordingly. In order to verify this feature, four simulations are done.
With each simulation one signal input rate is significantly reduced. The simulation
conditions can be found in Table 4.3

detector count threshold 500 s−1

signal rate per detector 80000 s−1

integration time 0.25s

Table 4.3.: Simulation conditions for simulation with one failing signal

19

4. Testing and Simulations

simulation 1 simulation 2 simulation 3 simulation 4
signal count 1 4 4563 4563 4563
signal count 2 4648 5 5186 5114
signal count 3 5165 5165 53 5422
signal count 4 5800 6082 6082 19
output counter 21930 22494 19498 19354

Table 4.4.: Results of the test series with reduced target rate

The results in Table 4.4 show that the design is able to detect the low signal rate
on one source and adjust the output counter accordingly, by also ignoring the signal
rate of the opposite source and doubling the the signal count of the remaining signal
counts.

The next feature that needs to be verified is that the design stops regulating the
amplitude when there is no change and stops itself from adjusting the amplitude
register at preset boundary thresholds. This is important, in order to stop effects
like bit overflows. To test this functionality the simulated signal sources are either
much lower or much higher than the expected signal rate and they do not change
throughout the whole simulation process. The testing conditions are shown in Table

 4.5 .

target rate 80000 s−1

signal rate 2000 , 150000 s−1

integration time 0.25s
simulation duration 3s

Table 4.5.: Simulation conditions

20

4.2. Tests with Frequency Generator

Figure 4.3.: Test results with a constant signal rate of 150.0000 signals per second

Figure 4.4.: Test results with a constant signal rate of 2000 signals per second

The simulation results are shown in Fig. 4.3 and Fig. 4.4 . The design stops adjusting
the amplitude register at the threshold values of 1000 and 15900. This response was
expected as it stops the design from over regulating.

4.2. Tests with Frequency Generator

This test is done with the help of a signal generator, which allows us to test the design
with real signals but still have a good amount of control over signal rate and signal

21

4. Testing and Simulations

width. The main goal of this test series is to verify the design’s functionality on a real
FPGA board with real signals and the correct regulating response to signal changes.
The set up is very simple. The generator has a signal output which is split by T
connectors in 4 signal outputs. These signal outputs are connected to the Red Pitaya
with LEMO cables. The set up is shown in Fig. 4.5 .

Figure 4.5.: Set up with the signal generator

The first test is done with a generator frequency of 7MHz. The generated frequency
is much higher than the expected signal frequency from the detector ring. But due
to constraints on the signal generator this frequency is needed to simulate the correct
detector signal width of approximately 80ns. The second test is done with a signal
rate of 400kHz, which is supposed to simulate the detector rate.
For both tests the generator is set to the right frequency and the Red Pitaya is given
the integration time of approximately 2.1s and the target signal count, calculated
from signal rate and integration time. Afterwards the generator frequency is changed
in both directions. The amplitude register and signal count register is read every 6
seconds. The results for the 7Mhz test is shown in Fig. 4.7 and the results for the
400kHz test is shown in Fig. 4.6 .

22

4.2. Tests with Frequency Generator

Figure 4.6.: Test at 400khz, the upper plot describes the behaviour of the amplitude
register, the lower plot describes the difference between measured signal
rate and the desired rate

Figure 4.7.: Test at 7Mhz, the upper plot describes the behaviour of the amplitude
register, the lower plot describes the difference between measured signal
rate and the desired rate

The tests show the expected amplitude regulation behaviour. The design stops ad-
justing the amplitude register when the signal count stays in a certain confidence
interval around the target count. However it seems, that the design lags behind one
integration time while adjusting.

23

4. Testing and Simulations

4.3. Tests with Discriminator

The goal of this test is to verify the ability of the design to properly detect the
discriminator signal inputs. During the time of writing the thesis, COSY was not
operating, so the only possible way to get signal inputs was with background noise
from the detectors, which can have multiple different sources like cosmic rays, and by
connecting the detector with the discriminator. The set up is shown in Fig. 4.8 .

Figure 4.8.: Set up at the discriminator

Two tests are done with and without generator. Due to the low rate of noise captured
by the detectors a long integration time of 5s is chosen. The generator is set to a
frequency of 20kHz. The results of these tests are shown in Fig. 4.9 and Fig. 4.10 .

24

4.3. Tests with Discriminator

Figure 4.9.: Test results without generator

Figure 4.10.: Test results with generator

The results are as expected. The background noise picked up by the detectors seems
to be distributed randomly. The results with generator also suggest that the design
is able to count every incoming signal, because a signal frequency of 20kHz over 5s
would result in 100.000 signals counted.

25

5. Summary and Outlook

The last chapter summarizes the overall results of the thesis and provides an outlook
for further improvements. It also includes a short discussion about possible different
approaches.
Goal of this thesis was the development of a new rate regulation system. The result
of the thesis is a digital rate regulation system running on an FPGA board.
The tests and simulations performed in this thesis show that the developed design is
able to appropriately respond to signal rate changes and the different special cases,
which were considered. The developed design also allows for easy remote access for
manual tweaking once it is set up. Due to the modular structure it is relatively easy
to adjust or split the system if needed.
However due to the lack of tests with real beam signals it is not clear if further tweaks
are needed. Possible problems could be that the provided amplitude adjustment is
not exact enough. It is also not entirely clear how well the amplitude adjustment
works with the white noise signal generator.
There are two other approaches, that could be considered for replacing the current
target rate regulation. The first one would be to use a CPU based programming lan-
guage like C to process the signals and adjust the beam. This approach has the benefit
that mathematical operations like division are not a problem to handle allowing for
adjustment through a mathematical function based on the relative difference between
target rate and signal rate. However this approach requires deeper knowledge of how
CPUs prioritize calculations and processes.
The second approach would have been replacing the current analogue rate regulation
system with a digital version of itself. This would have the benefit of being similar to
the present system and would be safer to implement in the regulation circuit. This
would result in only minor advantages compared to the old system, as one could do
everything remotely. But the regulation itself would not be automatic.
Overall, the developed design can be used as a base structure for further development
and improvements of the target rate regulation system at the COSY accelerator.

27

Bibliography

[1] “Fourier Transform”. In: Encyclopedia of Neuroscience. Ed. by Marc D. Binder,
Nobutaka Hirokawa, and Uwe Windhorst. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 1626–1626. isbn: 978-3-540-29678-2. doi: 10.1007/978-
3-540-29678-2_1833 . url: https://doi.org/10.1007/978-3-540-29678-
2_1833 .

[2] S. Churiwala. Designing with Xilinx® FPGAs. Springer, 2017.
[3] COSY (Cooler Synchrotron) - Helmholtz Gemeinschaft. url: https://www.

helmholtz.de/forschungsinfrastrukturen/beschleuniger/cosy-cooler-
synchrotron/ .

[4] Experimental Evidence for the Structure of the Atom - George Sivulka. url:
 http://large.stanford.edu/courses/2017/ph241/sivulka2/ .

[5] Brigitte Falkenburg. “Scattering Experiments”. In: Compendium of Quantum
Physics. Ed. by Daniel Greenberger, Klaus Hentschel, and Friedel Weinert.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 676–681. isbn: 978-3-
540-70626-7. doi: 10.1007/978-3-540-70626-7_191 . url: https://doi.
org/10.1007/978-3-540-70626-7_191 .

[6] Harald Flügel. FPGA-Design mit Verilog. Oldenbourg Wissenschaftsverlag,
2011.

[7] IKP intern GitLab - GitLab. url: https://gitlab.cce.kfa-juelich.de/ .
[8] Institut für Kernphysik - JULIC. url: https://www.fz-juelich.de/ikp/ikp-

4/DE/Leistungen/_doc/Beschleunigerbetrieb/betriebJULIC_node.html .
[9] Taline Kehlenbach. “Real Time Integration of MHz Signal using a Fast Pro-

grammable Gate Array”. Bachelor Thesis. RWTH Aachen III. Physikalisches
Institut B, 2020.

[10] Hans Paetz gen. Schieck. Atome, Kerne, Quarks - Alles begann mit Rutherford.
Springer Spektrum, 2019.

[11] The Red Pitaya Board. url: https://marceluda.github.io/rp_lock-in_
pid/TheApp/RedPitaya_board/ (visited on 08/21/2021).

29

https://doi.org/10.1007/978-3-540-29678-2_1833
https://doi.org/10.1007/978-3-540-29678-2_1833
https://doi.org/10.1007/978-3-540-29678-2_1833
https://doi.org/10.1007/978-3-540-29678-2_1833
https://www.helmholtz.de/forschungsinfrastrukturen/beschleuniger/cosy-cooler-synchrotron/
https://www.helmholtz.de/forschungsinfrastrukturen/beschleuniger/cosy-cooler-synchrotron/
https://www.helmholtz.de/forschungsinfrastrukturen/beschleuniger/cosy-cooler-synchrotron/
http://large.stanford.edu/courses/2017/ph241/sivulka2/
https://doi.org/10.1007/978-3-540-70626-7_191
https://doi.org/10.1007/978-3-540-70626-7_191
https://doi.org/10.1007/978-3-540-70626-7_191
https://gitlab.cce.kfa-juelich.de/
https://www.fz-juelich.de/ikp/ikp-4/DE/Leistungen/_doc/Beschleunigerbetrieb/betriebJULIC_node.html
https://www.fz-juelich.de/ikp/ikp-4/DE/Leistungen/_doc/Beschleunigerbetrieb/betriebJULIC_node.html
https://marceluda.github.io/rp_lock-in_pid/TheApp/RedPitaya_board/
https://marceluda.github.io/rp_lock-in_pid/TheApp/RedPitaya_board/

A. Appendix

A.0.1. Verilog Code for Counting Module

module drr_counter (
counter_reset , // out : couner r e s e t / i n t time over s i g n a l
ctr l_sw , // in : switch to detemine which count ing method to use
c lk_i ,// c l o ck
s i g n a l 1 , // in : s i g n a l s i n s
s i g n a l 2 ,
s i g n a l 3 ,
s i g n a l 4 ,
r s tn_i , // RP r e s e t
target_value ,
int_time , // in : i n t e g r a t i o n time
counter , // out : s i g n a l count
out_debug , // out : debug i n f o
thresho ld , // in : s i g n a l count th r e sho ld that each de t e c t o r needs to surpas s

debug , // out debug
clk_cnt // out debug i n f o about c l k cnt

) ;

// input exp lanat ion : ctr l_sw i s f o r sw i t ch ing between 4 s epe ra t e counter s (1) and one counter count ing the or s i g n a l (0)
// th r e sho ld i s the minimal amount o f p a r t i c l e s that should be counted by each de t e c t o r i f i t f a l l s below the count f o r that de t e c t o r i s 0
// c lk_i and rstn_i are the RP in t e rn c l o ck and r e s e t s i g n a l
// s i g n a l X i s the input o f d e t e c t o r X
// int_time i n t e g r a t i o n time

// output :
// out i s the output f o r the r e g i s t e r that c on t r o l s the amp
// counter r e s e t i s the r e s e t s i g n a l that int_time i s over and counter s got updated
// counter i s the t o t a l count o f s i g n a l s

input c lk_i ;
input [3 1 : 0] th r e sho ld ;
input ctr l_sw ;

input s i g n a l 1 ;

A 1

A. Appendix

input s i g n a l 2 ;
input s i g n a l 3 ;
input s i g n a l 4 ;

input rs tn_i ;

input [3 1 : 0] int_time ;

input [3 1 : 0] target_value ;

output [3 1 : 0] counter ;
output [3 1 : 0] clk_cnt ;
output [3 1 : 0] debug ;

output counter_reset ;

output [1 3 : 0] out_debug ;

wire r e s e t ;

reg fa i l_sw1 , fa i l_sw2 , fa i l_sw3 , fa i l_sw4 ;
// f a i l sw i t che s 1 = de t e c t o r s i g n a l s are to low

wire s i g n a l ; // s i g n a l wire f o r or combination f o r count ing method

wire rs tn_i ;

wire c lk_i ;

wire [3 1 : 0] int_time ; //

reg [3 1 : 0] counter ;

A 2

reg [3 1 : 0] clk_count ;

reg counter_reset ;

reg [3 1 : 0] counter1 ;
reg [3 1 : 0] counter2 ; // s i g n a l counter f o r each de t e c t o r
reg [3 1 : 0] counter3 ;
reg [3 1 : 0] counter4 ;

reg [3 1 : 0] counter1_uncl ip ; // temp co iun t e r s t o rage f o r when int_time i s over
reg [3 1 : 0] counter2_uncl ip ;
reg [3 1 : 0] counter3_uncl ip ;
reg [3 1 : 0] counter4_uncl ip ;

reg [4 −1 :0] s i g n a l 1_ sh i f t ;
reg [4 −1 :0] s i g n a l 2_ sh i f t ; // s h i f t r e g i s t e r f o r edge de t e c t i on (f o r more i n f o see t h e s i s chapter : implemented des ign − count ing module
, f i g : p o s i t i v e f l ank de t e c t i on
reg [4 −1 :0] s i g n a l 3_ sh i f t ;
reg [4 −1 :0] s i g n a l 4_ sh i f t ;

reg s ignal1_edge ;
reg s ignal2_edge ; // edge d e t e t c t i o n r e g i s t e r s ee above
reg s ignal3_edge ;
reg s ignal4_edge ;

a s s i gn r e s e t = rstn_i ;

// a s s i gn s ignal1_edge = s i g n a l 1_ sh i f t [0] & ~ s i g n a l 1_ sh i f t [3] ;
// a s s i gn s ignal2_edge = s i g n a l 2_ sh i f t [0] & ~ s i g n a l 2_ sh i f t [3] ;
// a s s i gn s ignal3_edge = s i g n a l 3_ sh i f t [0] & ~ s i g n a l 3_ sh i f t [3] ;
// a s s i gn s ignal4_edge = s i g n a l 4_ sh i f t [0] & ~ s i g n a l 4_ sh i f t [3] ;

a s s i gn s ignal1_edge = (s i g n a l 1_ sh i f t == 4 ' b0111) ;
a s s i gn s ignal2_edge = (s i g n a l 2_ sh i f t == 4 ' b0111) ;
a s s i gn s ignal3_edge = (s i g n a l 3_ sh i f t == 4 ' b0111) ; // edge de t e c t i on above
a s s i gn s ignal4_edge = (s i g n a l 4_ sh i f t == 4 ' b0111) ;

wire s igna l_or ;
wire s igna l_or1 ;// or combination o f s i g n a l s f o r count ing method 2
wire s igna l_or2 ;

A 3

A. Appendix

reg [3 1 : 0] c l o ck_cy l c e s ;

a s s i gn s igna l_or1 = (s i g n a l 1_ sh i f t [3] | s i g n a l 2_ sh i f t [3]) ; // or
a s s i gn s igna l_or2 = (s i g n a l 3_ sh i f t [3] | s i g n a l 4_ sh i f t [3]) ;

a s s i gn s igna l_or = (s igna l_or1 | s igna l_or2) ;

reg [4 −1 :0] s i gna l_or_sh i f t ;
reg signal_or_edge ;

a s s i gn signal_or_edge = s i gna l_or_sh i f t == 4 ' b0111 ; // edge de t e c t i on l i k e above f o r or s i g n a l s

reg [3 1 : 0] debug ;

i n i t i a l begin
counter_reset <= 0 ;
counter <= 0 ; // i n i t a l i z e some va lue s
fa i l_sw1 = 0 ;
fa i l_sw2 = 0 ;
fa i l_sw3 = 0 ;
fa i l_sw4 = 0 ;
c l o ck_cy l c e s = 31 'h1312D0 ;

end

always @(posedge c lk_i) begin

i f (r e s e t == 1) begin

clk_count <= 0 ;
counter_reset <= 0 ; // r e s e t va lue s

end

e l s e i f (int_time == clk_count) begin

clk_count <= 0 ; // i n t time over r e s e t counter
counter_reset <= 1 ;

A 4

end

e l s e begin

clk_count <= clk_count + 1 ;
// count c l o ck c y c l e s

counter_reset <= 0 ;

end

s i g n a l 1_ sh i f t <= { s i g n a l 1_ sh i f t [2] , s i g n a l 1_ sh i f t [1] , s i g n a l 1_ sh i f t [0] , s i g n a l 1 } ;
s i g n a l 2_ sh i f t <= { s i g n a l 2_ sh i f t [2] , s i g n a l 2_ sh i f t [1] , s i g n a l 2_ sh i f t [0] , s i g n a l 2 } ; // s h i f t r e g i s t e r s implementatin
s i g n a l 3_ sh i f t <= { s i g n a l 3_ sh i f t [2] , s i g n a l 3_ sh i f t [1] , s i g n a l 3_ sh i f t [0] , s i g n a l 3 } ;
s i g n a l 4_ sh i f t <= { s i g n a l 4_ sh i f t [2] , s i g n a l 4_ sh i f t [1] , s i g n a l 4_ sh i f t [0] , s i g n a l 4 } ;
s i gna l_or_sh i f t <= { s i gna l_or_sh i f t [2] , s i gna l_or_sh i f t [1] , s i gna l_or_sh i f t [0] , s i gna l_or } ;

end

always @(posedge c lk_i) begin

i f (r e s e t == 1 'b1) begin

counter1 <= 0 ;
// r e s e t va lue s

end

i f (counter_reset) begin

i f (counter1 > thre sho ld) begin
counter1_uncl ip <= counter1 ;

// i f above thesho ld accept count
fa i l_sw1 <= 0 ;
end

e l s e begin
counter1_uncl ip <= 0 ;
fa i l_sw1 <= 1 ;
end

counter1 <= 0 ;

A 5

A. Appendix

end

i f (s ignal1_edge) begin

counter1 <= counter1 + 1 ; // count each s i g n a l edge

end
end

always @(posedge c lk_i) begin

i f (r e s e t == 1 'b1) begin //same as above .

counter2 <= 0 ;

end

i f (counter_reset) begin

i f (counter2 > thre sho ld) begin
counter2_uncl ip <= counter2 ;
fa i l_sw2 <= 0 ;
end

e l s e begin
counter2_uncl ip <= 0 ;
fa i l_sw2 <= 1 ;
end

counter2 <= 0 ;

end

i f (s ignal2_edge) begin

counter2 <= counter2 + 1 ;

end
end

always @(posedge c lk_i) begin //same as above

A 6

i f (r e s e t == 1 'b1) begin

counter3 <= 0 ;

end

i f (counter_reset) begin

i f (counter3 > thre sho ld) begin
counter3_uncl ip <= counter3 ;
fa i l_sw3 <= 0 ;
end

e l s e begin
counter3_uncl ip <= 0 ;
fa i l_sw3 <= 1 ;
end

counter3 <= 0 ;

end

i f (s ignal3_edge) begin

counter3 <= counter3 + 1 ;

end
end

always @(posedge c lk_i) begin //same as above

i f (r e s e t == 1 'b1) begin

counter4 <= 0 ;

end

i f (counter_reset) begin

i f (counter4 > thre sho ld) begin

A 7

A. Appendix

counter4_uncl ip <= counter4 ;
fa i l_sw4 <= 0 ;
end

e l s e begin
counter4_uncl ip <= 0 ;
fa i l_sw4 <= 1 ;
end

counter4 <= 0 ;

end

i f (s ignal4_edge) begin

counter4 <= counter4 + 1 ;

end
end

reg [3 1 : 0] counter_or_running ;
reg [3 1 : 0] counter_or ;

always@ (posedge c lk_i) begin // s im i l a r as above j u s t with the or s i g n a l

i f (r e s e t == 1) begin

counter_or_running <= 0 ;

end e l s e begin
i f (counter_reset) begin

counter_or_running <= 0 ;
counter_or <= counter_or_running ;

end e l s e i f (s ignal_or_edge) begin

counter_or_running <= counter_or_running + 1 ;

end
end

end

always@ (posedge c lk_i) begin // a s s i gn count ing a lgo to out

A 8

i f (r e s e t == 1) begin

counter <=target_value ;

end e l s e begin i f (ctr l_sw == 0) begin
counter <= counter_or ;

end
i f (ctr l_sw == 1) begin

i f (fa i l_sw1 | | fa i l_sw2) begin

counter <= 2∗ (counter4_uncl ip + counter3_uncl ip) ;

end
e l s e i f (fa i l_sw3 | | fa i l_sw4) begin

counter <= 2∗ (counter1_uncl ip + counter2_uncl ip) ;

end
e l s e begin

counter <= counter1_uncl ip + counter2_uncl ip + counter3_uncl ip + counter4_uncl ip ;

end

end
end
end

// a s s i gn to out f o r debugging purposes

a s s i gn clk_cnt = clk_count ;
a s s i gn debug [0] = s i gna l 1 ;
a s s i gn debug [1] = s i gna l 2 ;
a s s i gn debug [2] = s i gna l 3 ;
a s s i gn debug [3] = s i gna l 4 ;
a s s i gn debug [4] = s ignal1_edge ; //debug i n f o
a s s i gn debug [5] = s ignal2_edge ;
a s s i gn debug [6] = s ignal3_edge ;
a s s i gn debug [7] = s ignal4_edge ;
a s s i gn debug [8] = s igna l_or1 ;
a s s i gn debug [9] = s igna l_or2 ;

A 9

A. Appendix

a s s i gn debug [1 0] = s igna l_or ;
a s s i gn debug [1 1] = signal_or_edge ;
a s s i gn debug [1 2] = counter_reset ;
a s s i gn debug [1 3] = counter1 [0] ;
a s s i gn debug [1 4] = counter1_uncl ip [0] ;
a s s i gn debug [1 6] = fa i l_sw1 ;
a s s i gn debug [1 7] = fa i l_sw2 ;
a s s i gn debug [1 8] = fa i l_sw3 ;
a s s i gn debug [1 9] = fa i l_sw4 ;
a s s i gn debug [2 0] = r e s e t ;
a s s i gn debug [3 1] = 1 ;

endmodule

A.0.2. Verilog Code for Amplitude Adjustment Module

module drr_voltage (target_value , // t a r g e t va lue f o r s i g n a l counts input
counter , // s i g n a l coun input from the count ing module
out , // out : adjusment o f the amplitude r e g i s t e r
rstn_i , // in : r e s e t provided by RP
clk_i , // in : c l k providede by rp
er ro r , //debug i n f o
counter_reset , // in : r e s e t s i g n a l o f the counter module
debug2 // out : va r i ous debug i n f o out put
) ;

////////////////////////////

input counter_reset ;

input c lk_i ;

input rs tn_i ;

input [3 1 : 0] counter ;

input [3 1 : 0] target_value ;

A 10

output [1 3 : 0] out ;

output e r r o r ;

output [31 : 0] debug2 ;

////////////////////

reg over f l ow_error ;

reg [3 1 : 0] d i f ; // d i f o f s i g n a l r a t e and ta r g e t ra t e

reg [1 3 : 0] out_temp ; //temp . s to rage o f amp adjustment

reg [1 3 : 0] out1 ;// r e g i s t e r that ge t s changed acco rd ing ly

reg [3 1 : 0] counter_temp ; // l egacy I b e l i e v e i t runs without now

reg [1 5 : 0] r e l_d i f ; // msb d i f from d i f and ta r g e t ra t e

reg [1 5 : 0] msb_t ; //msb o f t a r g e t r a t e

reg [1 5 : 0] msb_r ; // msb o f d i f f

reg [2 3 : 0] counte r_re s e t_sh i f t ; // s h i f t r e g i s t e r f o r the counter r e s e t

reg [1 3 : 0] s tep ; // step s i z e o f one adjustment s tep
reg [1 3 : 0] upper ; // upper boundary f o r out
reg [1 3 : 0] lower ; // lower boundary
reg out_err ; // l egacy debug can be used i f wanted as output

reg [1 3 : 0] s t o rage ; // s to rage o f how many s t ep s in adjustments are needed

A 11

A. Appendix

///////////////////////////

always @(posedge c lk_i) begin

i f (counter_reset) begin // make d i f f e r e n c once the i n t time i s over

i f (target_value > counter) begin

d i f <= target_value − counter ;

end

i f (target_value < counter) begin

d i f <= counter − target_value ;

end

i f (target_value == counter) begin

d i f <= 0 ;

end

end

counte r_re s e t_sh i f t [0] <= counter_reset ;
counte r_re s e t_sh i f t [1] <= counte r_re s e t_sh i f t [0] ;
c ounte r_re s e t_sh i f t [2] <= counte r_re s e t_sh i f t [1] ;
c ounte r_re s e t_sh i f t [3] <= counte r_re s e t_sh i f t [2] ; / /
24 Bit s h i f t r e g i s t e r o f the counter r e s e t s i g n a l
counte r_re s e t_sh i f t [4] <= counte r_re s e t_sh i f t [3] ;
c ounte r_re s e t_sh i f t [5] <= counte r_re s e t_sh i f t [4] ;
c ounte r_re s e t_sh i f t [6] <= counte r_re s e t_sh i f t [5] ;
c ounte r_re s e t_sh i f t [7] <= counte r_re s e t_sh i f t [6] ;

A 12

counte r_re s e t_sh i f t [8] <= counte r_re s e t_sh i f t [7] ;
c ounte r_re s e t_sh i f t [9] <= counte r_re s e t_sh i f t [8] ;
c ounte r_re s e t_sh i f t [1 0] <= counte r_re s e t_sh i f t [9] ;
c ounte r_re s e t_sh i f t [1 1] <= counte r_re s e t_sh i f t [1 0] ;
counte r_re s e t_sh i f t [1 2] <= counte r_re s e t_sh i f t [1 1] ;
counte r_re s e t_sh i f t [1 3] <= counte r_re s e t_sh i f t [1 2] ;
counte r_re s e t_sh i f t [1 4] <= counte r_re s e t_sh i f t [1 3] ;
counte r_re s e t_sh i f t [1 5] <= counte r_re s e t_sh i f t [1 4] ;
counte r_re s e t_sh i f t [1 6] <= counte r_re s e t_sh i f t [1 5] ;
counte r_re s e t_sh i f t [1 7] <= counte r_re s e t_sh i f t [1 6] ;
counte r_re s e t_sh i f t [1 8] <= counte r_re s e t_sh i f t [1 7] ;
counte r_re s e t_sh i f t [1 9] <= counte r_re s e t_sh i f t [1 8] ;
counte r_re s e t_sh i f t [2 0] <= counte r_re s e t_sh i f t [1 9] ;
counte r_re s e t_sh i f t [2 1] <= counte r_re s e t_sh i f t [2 0] ;
counte r_re s e t_sh i f t [2 2] <= counte r_re s e t_sh i f t [2 1] ;
counte r_re s e t_sh i f t [2 3] <= counte r_re s e t_sh i f t [2 2] ;

end

///////////////////////////////

always @(posedge c lk_i) begin // determine msb o f t a r g e t r and d i f f r

i f (counter_reset) begin

i f (target_value [2 3]) begin

msb_t <= 16 'd24 ;
end

e l s e i f (target_value [2 2]) begin

msb_t <= 16 'd23 ;

end

A 13

A. Appendix

e l s e i f (target_value [2 1]) begin
msb_t <= 16 'd22 ;

end

e l s e i f (target_value [2 0]) begin

msb_t <= 16 'd21 ;
end

e l s e i f (target_value [1 9]) begin

msb_t <= 16 'd20 ;
end

e l s e i f (target_value [1 8]) begin

msb_t <= 16 'd19 ;
end
e l s e i f (target_value [1 7]) begin

msb_t <= 16 'd18 ;
end
e l s e i f (target_value [1 6]) begin

msb_t <= 16 'd17 ;
end
e l s e i f (target_value [1 5]) begin

msb_t <= 16 'd16 ;
end
e l s e i f (target_value [1 4]) begin

msb_t <= 16 'd15 ;
end

e l s e i f (target_value [1 3]) begin

msb_t <= 16 'd14 ;
end

e l s e i f (target_value [1 2]) begin

msb_t <= 16 'd13 ;

A 14

end

e l s e i f (target_value [1 1]) begin

msb_t <= 16 'd12 ;
end

e l s e i f (target_value [1 0]) begin

msb_t <= 16 'd11 ;
end

e l s e i f (target_value [9]) begin

msb_t <= 16 'd10 ;
end

e l s e i f (target_value [8]) begin

msb_t <= 16 'd9 ;
end

// e l s e msb_t = 0

i f (d i f [2 3]) begin
msb_r <= 16 'd24 ;
end

e l s e i f (d i f [2 2]) begin

msb_r <= 16 'd23 ;

end

e l s e i f (d i f [2 1]) begin

msb_r <= 16 'd22 ;

end

e l s e i f (d i f [2 0]) begin

msb_r <= 16 'd21 ;

A 15

A. Appendix

end

e l s e i f (d i f [1 9]) begin

msb_r <= 16 'd20 ;

end

e l s e i f (d i f [1 8]) begin

msb_r <= 16 'd19 ;

end

e l s e i f (d i f [1 7]) begin

msb_r <= 16 'd18 ;

end

e l s e i f (d i f [1 6]) begin

msb_r <= 16 'd17 ;

end

e l s e i f (d i f [1 5]) begin

msb_r <= 16 'd16 ;

end

e l s e i f (d i f [1 4]) begin

msb_r <= 16 'd15 ;

end

e l s e i f (d i f [1 3]) begin

msb_r <= 16 'd14 ;

end

A 16

e l s e i f (d i f [1 2]) begin

msb_r <= 16 'd13 ;

end

e l s e i f (d i f [1 1]) begin

msb_r <= 16 'd12 ;

end

e l s e i f (d i f [1 0]) begin

msb_r <= 16 'd11 ;

end

e l s e i f (d i f [9]) begin

msb_r <= 16 'd10 ;

end

e l s e i f (d i f [8]) begin

msb_r <= 16 'd9 ;

end

e l s e i f (d i f [7]) begin

msb_r <= 16 'd8 ;

end

e l s e i f (d i f [6]) begin

msb_r <= 16 'd7 ;

end

e l s e i f (d i f [5]) begin

A 17

A. Appendix

msb_r <= 16 'd6 ;

end

e l s e i f (d i f [4]) begin

msb_r <= 16 'd5 ;

end

e l s e i f (d i f [3]) begin

msb_r <= 16 'd4 ;

end

e l s e i f (d i f [2]) begin

msb_r <= 16 'd3 ;

end

e l s e i f (d i f [1]) begin

msb_r <= 16 'd2 ;

end

e l s e i f (d i f [0]) begin

msb_r <= 16 'd1 ;

end

e l s e begin

msb_r <= 0 ;

end

end
end

A 18

//////////////

a s s i gn r e l_d i f = msb_t − msb_r ; // r e l a t i v e d i f f e r n e c e

// i n i t a l i z e some va lues
i n i t i a l begin
s tep = 14 ' d614 ;
s t o rage = 14 'd5 ;
lower = 14 ' d1000 ;
upper = 14 ' d15900 ;
end

always @(posedge c lk_i) begin

i f (r s tn_i == 1) begin

out1 <= 14 ' h2000 ; // s e t to 2000 hex when r e s e t

end

i f (d i f > target_value) begin //debug i n f o
out_err <= 1 ;

end

e l s e begin
out_err <= 0 ;

end

i f (counte r_re s e t_sh i f t [1 9]) begin
// determine s t ep s that needs to taken f o r adjustment

s to rage <= 14 'd5 − r e l_d i f ;

end

i f (counte r_re s e t_sh i f t [2 0]) begin

A 19

A. Appendix

i f (s t o rage > 14 'd5) begin

s to rage <= 14 'd0 ;

end

end

i f (counte r_re s e t_sh i f t [2 1]) begin // c a l c temp out

i f (counter < target_value) begin

out_temp <= out1 + (step ∗ s t o rage) ;
end

i f (counter > target_value) begin

out_temp <= out1 − (s tep ∗ s t o rage) ;

end
end

i f (counte r_re s e t_sh i f t [2 2]) begin // determine i f temp out i s in boundar ies i f not throw i t out

i f (counter > target_value) begin

i f (out_temp > upper) begin

out1 <= lower ;

end

i f (out_temp < lower) begin

out1 <= lower ;

end

e l s e begin

A 20

out1 <= out_temp ;
end

end

e l s e i f (counter < target_value) begin

i f (out_temp > upper) begin

out1 <= upper ;

end

i f (out_temp < lower) begin

out1 <= upper ;

end

e l s e begin

out1 <= out_temp ;

end

end

end

end

a s s i gn out = out1 ; // a s s i gn to output

A 21

A. Appendix

a s s i gn e r r o r = out_err ; // debug i n f o

wire [3 1 : 0] debug_value ; // debug i n f o

a s s i gn debug_value = target_value ;

a s s i gn debug2 = d i f ;

endmodule

A.0.3. Verilog Code for Verilog Testbench Source

module tb_drr_main () ;

reg s i gna l1 , s i g n a l 2 , s i gna l 3 , s i g n a l 4 , r e s e t ; // s i g n a l i s the s i g n a l that should be counted , r e s e t s imu la t e s the r e s e t order o f the p i taya and enable i s a switch to turn the counter on , can probably work without i t

reg [3 1 : 0] int_time ; // i n t e g r a t i o n time given as a 4 b i t number that should r ep r e s en t the number o f c y c l e s o f the c l o ck . f o r example 1hz c l o ck and 3 s i n t e g r a t i o n time , use i n t time = 3

wire [3 1 : 0] counter ; // s i g n a l counter

reg ctr l_sw ;

A 22

reg [3 1 : 0] thre shho ld ;
wire [3 1 : 0] clk_count ;

reg c lk_i ; // wire f o r the i n t e r n a l c l o ck , that i s used to get a i n t time benchmark

wire [1 3 : 0] out ; // output

reg [3 1 : 0] va lue ; // compare value . the va lue o f counter i s compared to t h i s va lue i f i t s d i f f e r e n t , output ge t s ad justed

reg reset_m ;
wire counter_reset ;

drr_counter DUT(
. s i g n a l 1 (s i g n a l 1) ,
. s i g n a l 2 (s i g n a l 2) ,
. s i g n a l 3 (s i g n a l 3) ,
. s i g n a l 4 (s i g n a l 4) ,
. r s tn_i (r e s e t) ,
. int_time (int_time) ,
. counter (counter) ,
. c lk_i (c lk_i) ,
. out_debug (out) ,
. th r e sho ld (thre shho ld) ,
. ctr l_sw (ctr l_sw) ,
. c lk_cnt (clk_count) ,
. counter_reset (counter_reset)
) ;

drr_voltage DUT2(
. counter_reset (counter_reset) ,
. c lk_i (c lk_i) ,
. r s tn_i (r e s e t) ,
. target_value (va lue) ,
. counter (counter)
) ;

A 23

A. Appendix

////

i n i t i a l begin // i n i t i a l i z e
reset_m = 0 ;
ctr l_sw = 1 ;
va lue = 32 ' d19000 ;
c lk_i = 0 ;
s i g n a l 1 = 0 ;
s i g n a l 2 = 0 ;
s i g n a l 3 = 0 ;
s i g n a l 4 = 0 ;
int_time = 32 ' d31250000 ;
thre shho ld = 32 ' d500 ;
#1 r e s e t = 0 ;

#20 r e s e t = 1 ;
#8 r e s e t = 0 ;

end

always begin

#4 c lk_i = ~c lk_i ; // c l o ck , the c l o ck input l a t e r comes from the redp i taya i t s e l f

end

always begin
#54733100 s i g n a l 1 = ~ s i gna l 1 ; // c r e a t e s a s i g n a l that turns on every 40−50k ns with the width o f approx . 80ns
#80 s i g na l 1 = ~ s i gna l 1 ;
end
always begin
#53700 s i g n a l 2 = ~ s i gna l 2 ;
#80 s i g na l 2 = ~ s i gna l 2 ;
end
always begin
#48321 s i g n a l 3 = ~ s i gna l 3 ;
#80 s i g na l 3 = ~ s i gna l 3 ;
end
always begin
#43022 s i g n a l 4 = ~ s i gna l 4 ;
#80 s i g na l 4 = ~ s i gna l 4 ;
end

A 24

endmodule

A 25

	Contents
	List of Figures
	List of Tables
	Introduction
	Physical Background and Set Up
	Scattering Experiments and Target Rate Regulation
	Fourier Transform and White Noise
	Cooler Synchrotron
	Replacing the Analog Regulation System

	FPGA Basics
	The Red Pitaya Board
	Verilog

	Implemented Design
	Fundamental Design
	Counting Module
	Amplitude Adjusting Module
	The 'generate' Function

	Testing and Simulations
	Simulations with Vivado Testbench
	Simulations at 30.000 Signals per Second
	Simulations at 200.000 Signals per Second
	Simulations at 80.000 Signals per Second

	Tests with Frequency Generator
	Tests with Discriminator

	Summary and Outlook
	Bibliography
	Appendix
	Verilog Code for Counting Module
	Verilog Code for Amplitude Adjustment Module
	Verilog Code for Verilog Testbench Source

