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Abstract

The excess of matter over antimatter in the known part of the Universe cannot be explained
by the Standard Model of particle physics. Mechanisms that violate CP symmetry exist
in the Standard Model and can be used to explain the excess of matter over antimatter.
However, they are too weak to account for the observed asymmetry. Therefore, additional
sources of CP violation are being investigated. A promising candidate for further CP vi-
olation beyond those established in the Standard Model is the permanent electric dipole
moment of elementary particles. Using storage rings as particle traps, the EDM of charged
particles can be studied, since the orientation of the polarization rotation axis also called
the invariant spin axis is determined by the EDM.

Therefore, the JEDI collaboration at Jülich has carried out the first direct EDM mea-
surement of deuterons with the Precursor Runs at the storage ring COSY. Using solenoids
and an RF Wien filter, the invariant spin axis tilt angle was determined. In addition to the
influence of the EDM, the ISA tilt angle is also influenced by the storage ring systematics.
Therefore, particle and spin tracking simulations in an accurate simulation model of the
COSY storage ring are required to disentangle a potential EDM signal from the storage
ring systematics.

This thesis presents the development of such a simulation model of the COSY storage
ring, based on the BMAD software library, in order to investigate the systematic effects,
present during the Precursor Run 2 in 2021. Correction factors depending on the mea-
surement method are shown and the uncertainties of the systematic effects and the COSY
orbit measurements are discussed. Finally, it is shown that the measured ISA tilt angles
at the RF Wien filter obtained during Precursor Run 2 are too large to originate from
storage ring systematics in COSY or a potential EDM.

I



II



Zusammenfassung

Der Überschuss an Materie gegenüber Antimaterie im bekannten Teil des Universums
lässt sich nicht mit dem Standardmodell der Teilchenphysik erklären. Allerdings existieren
Mechanismen, die die CP-Symmetrie verletzen, im Standardmodell und können zur Erk-
lärung des Überschusses von Materie gegenüber Antimaterie herangezogen werden. Diese
sind jedoch zu schwach, um die beobachtete Asymmetrie zu erklären. Daher werden
zusätzliche Quellen der CP-Verletzung untersucht. Ein vielversprechender Kandidat für
CP-Verletzungen, die über die im Standardmodell etablierten hinausgehen, ist das perma-
nente elektrische Dipolmoment von Elementarteilchen. Mit Hilfe von Speicherringen als
Teilchenfallen kann das EDM geladener Teilchen untersucht werden, da die Orientierung
der Polarisationsdrehachse, auch invariante Spinachse genannt, durch das EDM bestimmt
wird.

Aus diesem Grund hat die JEDI-Kollaboration in Jülich eine erste direkte EDM-Messung
von Deuteronen mit den Precursor Runs am Speicherring COSY durchgeführt. Mit Hilfe
von Solenoiden und dem RF Wien Filter wurde der Neigungswinkel der invariante Spinach-
sen bestimmt. Neben dem Einfluss des EDM wird der Neigungswinkel der ISA auch durch
die Systematik des Speicherrings beeinflusst. Daher sind Teilchen- und Spin-Tracking-
Simulationen in einem präzisen Simulationsmodell des COSY-Speicherrings erforderlich,
um ein potenzielles EDM Signal von der Systematik des Speicherrings zu entkoppeln.

In dieser Arbeit wird die Entwicklung eines solchen Simulationsmodells des COSY Spe-
icherrings, basierend auf der BMAD-Softwarebibliothek, vorgestellt um die systematischen
Effekte während des Precursor Runs 2 im Jahr 2021 zu untersuchen. Es werden Korrek-
turfaktoren in Abhängigkeit von der Messmethode aufgezeigt und die Unsicherheiten der
systematischen Effekte und der COSY Orbitmessungen diskutiert. Abschließend wird
gezeigt, dass die gemessenen ISA-Neigungswinkel am RF Wien Filter, die während des
Precursor Run 2 ermittelt wurden, zu groß sind, um von Speicherringsystematiken in
COSY oder einem möglichen EDM herrühren zu können.
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CHAPTER 1

Introduction

The purpose of physics is to explain the nature of things in terms of equations and mathe-
matical models. One of the most famous and well-established models is the SM (Standard
Model) of particle physics. This generally accepted model describes elementary particles
and their interactions, and has been confirmed by many experimental observations, while
also making predictions that have led to many new discoveries in the past. Despite its
success, there are areas of modern physics where the SM cannot provide an explanation.
One such area is the dominance of matter over antimatter in the known part of the Uni-
verse. Although the SM predicts this asymmetry, the observed asymmetry is orders of
magnitude larger than the SM prediction. One possible explanation for this observation
is the disappearance of antimatter during the baryogenesis of the Universe. However, this
would require more violation of the CP symmetry than the SM considers. The perma-
nent EDM (Electric Dipole Moment) of elementary particles is predicted by the SM and
contributes to the violation of the CP symmetry. So far, only upper bounds on the EDM
magnitude have been derived from measurements. The measurement of a finite EDM can
therefore be seen as a probe for models that try to explain physics beyond the SM, and
improves the understanding of the fundamentals of physics.

One of those measurements is being carried out by the JEDI (Jülich Electric Dipole
Moment Investigation), which wants to measure the EDM of protons and deuterons di-
rectly. This is currently done at the COSY (COoler SYnchrotron) storage ring, located at
Forschungszentrum Jülich in Germany, although there are future plans for direct measure-
ments of protons and deuterons proposed in dedicated storage rings, which are utilizing
pure electric fields or a combination of electric and magnetic fields. So far, two direct
measurements of the deuteron EDM have been performed in 2019 and 2021 by the JEDI
collaboration in the so-called Precursor Runs 1 and 2, which should demonstrate that the
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principles and tools necessary for an EDM measurement in a storage ring are applicable
and operational. The aim of this thesis is to simulate the COSY storage ring and the con-
ditions during Precursor Run 2 in order to understand and interpret the measured data
and to disentangle a potential EDM signal from systematic effects that naturally occur in
any storage ring.

Therefore the thesis is structured, so that Chapter (2) gives an overview over the matter-
antimatter asymmetry in the modern Universe and motivates the theoretical background
of the topic by discussing fundamental symmetries and introducing the EDM.

In Chapter (3) and Chapter (4) the basic knowledge necessary to understand particle and
spin physics in storage rings is presented. The influence of an EDM on the spin motion is
also discussed. The focus is on the equations of motion describing particle trajectories, the
evolution of spin and polarization in electromagnetic fields, and the derivation of particle
and spin transfer matrices for the magnetic elements present in a storage ring.

The chapters (5) and (6) present the main features of the storage ring COSY used and
needed for an EDM experiment and describe how these features are implemented in the
simulation model used for this thesis. In addition, the simulation program BMAD (Baby
Methodical Accelerator Design) is presented, which was used for the simulations per-
formed in this thesis.

Chapter (7) will discuss the measurement method for the EDM using the RF Wien filter
and static solenoids in COSY. The determination of the correction factors, which have to
be considered in view of a disturbed beam path, will also be presented.

In Chapter (8) the systematic effects and the beam orbit in COSY present during Precursor
Run 2 are discussed. To reproduce the measured beam orbit, an optimization algorithm is
presented and applied in the BMAD simulation. On this basis, the expected measurement
results of the RF Wien filter and the solenoids are compared with the simulation results.

Finally this thesis will conclude with Chapter (9), where a conclusion and a short sum-
mary of the result presented in this thesis is given. In addition, on outlook on the future
of the project is presented.
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CHAPTER 2

Scientific Motivation

This thesis was written as part of the JARA-FAME program within the JEDI project.
The JARA program (Jülich Aachen Research Alliance) [1] is a cooperation between
the Forschungszentrum Jülich [2] and the RWTH (Rheinisch-Westfälische Technische
Hochschule) Aachen University [3], which combines disciplinary research at the RWTH
Aachen University with programme-oriented research at Forschungszentrum Jülich. The
FAME (Forces and MAtter Experiments) [1] section of the JARA program deals with
particle physics and tries to explain the currently visible dominance of matter over anti-
matter. Therefore, the JEDI project [4] is collaborating to search for a permanent electric
dipole moment in protons and light nuclei, as this would represent a difference between
matter and antimatter and thus contribute to the visible asymmetry between both. Details
about the matter-antimatter asymmetry, the necessary violation of fundamental discrete
symmetries in physics as well as details about the EDM are discussed in the following
chapter to give a scientific background for this research.

2.1 Matter-Antimatter Asymmetry

The SM of particle physics, which describes elementary particles and their interactions,
is very successful in explaining many experimental observations. Unfortunately, it fails
to explain the observed dominance of matter over antimatter in the known part of the
Universe, which is one of the great unsolved puzzles of cosmology [5]. In the early stages
of its history, the Universe was hot and antimatter was present when pair production and
annihilation reactions were in thermal equilibrium. As the Universe expanded and cooled
down, the energy available for pair production became too small. For this reason, almost all
particles and antiparticles were annihilated, with a small amount of matter surviving. The
amount of remaining matter over antimatter is defined as the BAU (Baryon Asymmetry
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of the Universe), the difference between the number of baryons NB and the number of
antibaryons NB̄ divided by their sum. Assuming that there are no antibaryons left in the
modern universe and that the products of the annihilation processes are mostly photons,
the ratio of baryons to anti-baryons can be redefined by a baryon-to-photon density ratio
ηBAU [6]:

ηBAU = NB
Nγ

= NB −NB̄

Nγ
≈ NB −NB̄
NB +NB̄

. (2.1)

The study of the abundance of light elements in the BBN (Big-Bang-Nucleosynthesis)
provides one source of estimation of the baryon-to-photon density ratio ηBAU [7]. Another
source is the observation of the temperature fluctuations in the CMB (Cosmic Microwave
Background) [8]. Both methods show consistent results, giving values of ηBAU ≈ 6 · 10−10.
However, estimates based on the SM give a smaller density ratio of ηBAU ≈ 1·10−18 [9, 10].
There are two different theories to explain this discrepancy:

• During the evolution of the Universe, regions of matter and antimatter were formed
and separated. As a result, antimatter exists in larger quantities in the modern
Universe. However, regions dominated by antimatter have yet to be discovered.

• During the evolution of the Universe, an asymmetric annihilation process of matter
and antimatter resulted in the dominance of one over the other.

This work is based on the assumption that the asymmetry between matter and antimatter
is caused by the asymmetric annihilation process. The conditions that form the basis for
such a process were formulated by A. D. Sakharov and are therefore called Sakharov
criteria [11]:

• Violation of baryon conservation law: The annihilation process must violate the
baryon conservation law, where each baryon carries the quantity nB = +1 and each
antibaryon carries the quantity nB = −1. The process of violating this law played
an important role in the early universe, but has a negligible role under laboratory
conditions [11].

• Violation of C and CP symmetries: Without a violation of C and CP symmetries,
the production rate of baryons and antibaryons is equally likely. Therefore, this
violation of fundamental symmetries is necessary to obtain an excess of baryons over
antibaryons [11].

• Phase of non thermal equilibrium: The generation of the assymetry had to
take place during a phase of non thermal equilibrium in Universe. The reason is
that CP invariance would assure that the baryon conservation law would hold on
average [10].
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In the SM there is the violation of fundamental symmetries, such as C and CP violation,
included and explainable [10]. These symmetries are discussed in the following section.

2.2 Discrete Symmetries and Their Violation

Since a symmetry is defined as a transformation under which a system remains invariant,
it is naturally related to conservation laws. Besides continuous symmetries, there are
also discrete symmetries in nature, which played an important role in the development of
quantum mechanics [12]. This section discusses the three fundamental discrete symmetry
transformations and their violation.

P-Symmetry

The P symmetry defines a parity transformation that reverses the sign of all spatial
coordinates of a process while leaving the time coordinates unchanged. Polar vectors
such as position are affected by the transformation, while axial vectors such as angular
momentum are not. When considering electromagnetic fields, an electric field represented
by a polar vector is inverted by the P transformation, whereas a magnetic field retains
its orientation since it is represented by an axial vector [12]. One process that violates
P-symmetry is the beta decay of polarized 60Co [13], described by Equation (2.2). In this
decay, the direction in which the electron is emitted is favoured to be opposite to the
direction of the nuclear spin, regardless of its orientation. Since the velocity inverts its
sign under parity transformation, this indicates a parity-violating process.

60
28Co →60

27 Ni + e− + ν̄e + 2γ (2.2)

C-Symmetry

The charge conjugation C defines a symmetry transformation of a particle into its an-
tiparticle. Applying this symmetry transformation therefore inverts all additive quantum
numbers such as charge, baryon and lepton number or strangeness, while preserving other
quantities such as spin, position or momentum [12]. Evidence for a C violating process can
be found by considering the C transformation of a left-handed neutrino into a left-handed
anti-neutrino, which is not observed [13]:

π+ → µ+
L + νµ,L

C−Transformation⇒ π− → µ−
L + ν̄µ,L. (2.3)

T -Symmetry

A transformation where only the time coordinate is inverted is called a time reversal
transformation T . This implies a reversible physical process with equal rates in both
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directions. Tests of this symmetry in the strong and electromagnetic interactions showed
no evidence for a violation of this symmetry. A first observation of a T violating process
in the weak sector was measured in the decay of neutral kaons, where the probability P

of the transformation K0 into K̄0 and vice versa showed an asymmetry [14]:

P (K̄0 → K0) − P (K0 → K̄0)
P (K̄0 → K0) + P (K0 → K̄0)

̸= 0. (2.4)

Violation of CP-Symmetry in the SM

As mentioned above, a violation of CP symmetry is required for the mechanism that
creates the asymmetry between baryons and antibaryons. A first indication of a CP vi-
olation in nature was found in the measurement of the decay of the K0 [15]. The decay
into two pions implies that the K0 is not a pure eigenstate of CP, since decay into a
two-pion final state would not be allowed in this case. This process was included in the
SM via a complex phase proportional to the CP violation in the CKM matrix (Cabibbo-
Kobayashi-Maskawa) [16]. Unfortunately, the CP violation in the CKM matrix of the
SM is not sufficient to explain the matter-antimatter asymmetry. Therefore, additional
sources of CP violation are important to investigate. The EDM is a possible candidate
for an additional symmetry breaking process and will be discussed in the following section.

Since the symmetries already discussed seem to be violated individually, it is practical
to combine them to find a combined symmetry that is not broken. The CPT -Theorem is
such a combined symmetry [17]. It requires that the local quantum field theory is Lorentz
invariant, which leads to the conservation of the combination of C, P and T transforma-
tions to arbitrary order.

2.3 Electric Dipole Moment

An EDM d⃗ is defined as a permanent separation of charges within a particle. Similar to
the MDM (Magnetic Dipole Moment) µ⃗, it is a fundamental property. Its orientation
parallel or anti-parallel to the particle spin s⃗ and is the only distinguishable quantization
axis:

d⃗ = ηEDM
2

q

mc
s⃗, (2.5)

µ⃗ = gMDM
2

q

mc
s⃗. (2.6)

MDM and EDM are scaled by the charge q and the mass m of the particles. They also
include a dimensionless scaling factor gMDM and ηEDM for the different dipole moments.
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The Hamiltonian H in Equation (2.7) shows the interaction of the dipole moments for a
particle at rest with an external electric E⃗ and magnetic B⃗ field [5]. Performing symme-
try transformations on this Hamiltonian demonstrates the symmetry breaking due to an
existing EDM:

H = −µ⃗ · B⃗ − d⃗ · E⃗,

P : H = −µ⃗ · B⃗ + d⃗ · E⃗,

T : H = −µ⃗ · B⃗ + d⃗ · E⃗.

(2.7)

Figure 2.1: Schematic of the effect of an external magnetic field B⃗ and electric field E⃗
on the particle’s spin axis s⃗, assuming an EDM d⃗ and MDM µ⃗ contribution.
Symmetry transformations such as the parity transformation P and the time
reversal transformation T reverse the design of the electric field while leaving
the magnetic field contribution unchanged. Taken from [18].

The consequence of the symmetry breaking of P and T is equivalent to a CP violation,
provided that the CPT theorem holds. In the SM an EDM cannot arise in the first order.
It just appears as a higher order loop effect. Therefore the SM prediction for the weak
sector for an EDM is for example very small for the neutron [5]:

dNeu ≈ 10−32 e · cm. (2.8)
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In the strong sector of the SM an EDM also arises as an higher order loop effect and is
coupled to the θQCD term. Unfortunately this quantity is also expected to be very small,
with an upper limit derived from a neutron measurement [19, 20]:

dNeu ≈ (−2.9 ± 0.9) · 10−16 e · cm · θQCD, with θQCD < 10−10. (2.9)

Measuring an EDM at a higher limit than the SM prediction increases the CP violation
and helps to explain the measured asymmetry between matter and antimatter. So far,
upper bounds for an EDM have been found, but not an EDM signal itself. It is not
sufficient to measure only the EDM of one particle, e.g. the neutron, because the source
of the EDM cannot be found in this way. The results for upper limits of different particles
are summarized in the Table (2.1) [21]:

Particle Neutron Proton Electron
|d| 1.8 · 10−26 e · cm 7.9 · 10−25 e · cm 4.1 · 10−30 e · cm

(90% C. L.) [22] (95% C. L.) [23] (90% C. L.) [24]

Table 2.1: Upper EDM limits for different particle species.

The JEDI collaboration aims to determine the EDM in protons and deuterons using a
storage ring. A first direct measurement of the deuteron EDM was therefore carried out
in the so-called Precursor Runs 1 and 2 at the COSY storage ring in Jülich [25]. Since
a storage ring EDM experiment requires high precision, it is essential to have a thorough
understanding of the behaviour of a particle beam circulating in a storage ring. Therefore,
the next chapter discusses the fundamental forces induced by the magnetic and electric
fields and on the stored particle beam as well as its transverse and longitudinal motion.
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CHAPTER 3

Beam Dynamics in a Synchrotron

3.1 Lorentz Force

The forces that deflect, focus and accelerate charged particles in a storage ring result from
the interaction of these particles with electric and magnetic fields. This interaction is
described by the Lorentz force [26]:

F⃗L = q(E⃗ + v⃗ × B⃗). (3.1)

The Lorentz force indicates the direction and magnitude of the force on a particle with
charge q and velocity v⃗ in face of an electric field with strength E⃗, and a magnetic field with
flux density B⃗ in the lab system at the particle’s current position. For singly charged parti-
cles such as protons and deuterons, the charge q is equal to the elementary charge e. Forces
perpendicular to the current velocity v⃗ result in a circular deflection of the particles, keep-
ing the kinetic energy constant as the magnitude |v| remains unchanged. Forces parallel to
the current velocity v⃗ lead to a change in velocity and hence a change in kinetic energy [27].

In a storage ring, the forces induced by the magnetic field are mainly perpendicular to
the particle’s velocity v⃗. As a result, they can only deflect and focus the particles. Ac-
celeration, which is defined as a change in kinetic energy, requires a longitudinal electric
field. By understanding the location and strength of electric and magnetic fields inside
a storage ring, one is able to forecast the trajectory of charged particles. The process of
guiding particles through the electric and magnetic fields of a storage ring is called beam
optics or beam dynamics [26, 27]. The general physical principles of beam dynamics in a
strong focusing synchrotron were developed by E. B. Courant and H. S. Snyder [27, 28].
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3.2 Coordinate System

To be able to perform calculations to guide the charged particles on dedicated trajectories
through the ring, one has to define suitable coordinate system. Given that the dimensions
of a beam are significantly smaller than the entire storage ring, particle coordinates are
defined relative to their ideal trajectory around the storage ring. This ideal trajectory
is also called design orbit. The individual particles are characterized within a co-moving
coordinate system, originating from the design orbit. The horizontal discrepancy between
the reference particle on the design orbit and the described particle is denoted as x, the
vertical as y, and the longitudinal as z. Figure (3.1) provides a visual representation of
the co-moving coordinate system [27].

Figure 3.1: Sketch of the co-moving coordinate system with the Cartesian coordinates
e⃗x(s/s′), e⃗y(s/s′) and e⃗z(s/s′) at two different location s and s′ inside the
storage ring. The coordinate system at s′ is rotated by an angle Θ in relation
to s. The origin of co-moving coordinate system is always the design orbit.
Adapted from [27].

A special feature of the co-moving coordinate system is a rotation of the whole coordinate
system when the reference particle is deflected by a magnet due to the Lorentz force. In
most cases this deflection takes place in the xz plane of the storage ring. Therefore, the
transformation of the basis vectors from one location, denoted s, to another, denoted s′,
is defined by the following equations [27, 29]:

e⃗x(s′) = + cos(θ) · e⃗x(s) + sin(θ) · e⃗z(s),

e⃗y(s′) = e⃗y(s),

e⃗z(s′) = − sin(θ) · e⃗x(s) + cos(θ) · e⃗z(s).

(3.2)
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3.3 Transverse Beam Dynamics

3.3.1 Magnetic Multipole Fields

In order to keep the reference particle with momentum p0 on its circular trajectory through
the storage ring an equilibrium between Lorentz force and centrifugal force is necessary.
Therefore a static transversal magnetic field By is needed, which is indicated in Equation
(3.3). The magnetic field can be expanded in a Taylor series for small deviations from the
ideal trajectory, as shown below [27]:

1
R(x, y, z) = q

p0
By(x, y, z) (3.3)

⇒ q

p0
By(x) = q

p0
By,0 + q

p0

dBy
dx

· x + 1
2!
q

p0

d2By
dx2 · x2 + ...

= 1
R

+ k1 · x + 1
2!k2 · x2 + ...

Dipole Quadrupole Sextupole

(3.4)

This way, one receives a description that shows the effect of different magnetic multipole
contributions such as the dipole, the quadrupole and the sextupole. Higher order con-
figurations can also be considered in this way. The quantities k1 and k2 represent the
strengths of the quadrupole and sextupole. While dipole fields are used for beam deflec-
tion and guidance, quadrupole fields contribute to beam focusing. The next higher order
is the sextupole, which are used for chromaticity correction. In cases where only the two
lowest multipoles are used to guide the beam in a storage ring, this is referred to as linear
beam optics [27].

3.3.2 Hill’s Differential Equation

The effect of linear beam optics on the beam path will be discussed in the next sections.
As a consequence of the chosen approaches for the co-moving coordinate system, taking
into account the Taylor series of the magnetic field, Hill’s differential equations for the
horizontal and vertical motion follow. The complete differential equation is given in the
Equation (3.5). Hill’s differential equations are the fundamental basis for describing linear
particle motion in transverse phase space. They assume magnetic multipoles up to linear
order and decoupling of horizontal and vertical motion [27, 29].

x′′(s) +
( 1
R2(s) − k1(s)

)
x(s) = 1

R(s)
∆p
p0
,

y′′(s) + k1(s)y(s) = 0.
(3.5)
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The quantities used in the differential equations are the second derivatives with respect to
the parameter s of the local horizontal displacement x′′(s) and the local vertical displace-
ment y′′(s). The dependence on s of the bending radius R(s) indicates that it contributes
only at locations along the particle’s path s where dipole fields are present. Similarly,
k1(s) denotes the strength of a quadrupole and is therefore associated with quadrupole
fields. Since a quadrupole focuses in one direction but defocuses in the other, a convention
must be chosen for a positive k1(s). In this context, a positive k1(s) value describes a
horizontally defocusing quadrupole. A momentum deviation of a particle with respect to
the reference particle is given by ∆p/p0. Its presence in the horizontal motion is related to
the deflection by dipoles of the plane of the storage ring, which is momentum dependent
[27].

3.3.3 General Trajectories - Homogenous Solution

Assuming that there is no coupling between the horizontal and vertical planes of particle
motion, the differential equation can be solved independently for each plane. Another sim-
plifying assumption is that the fields of the dipoles and quadrupoles start at full strength
immediately at the start of the magnets and drop abruptly to zero at the end. The fields
are also constant along the beam axis inside the magnets. This magnet model is called
the hard edge model and is a very good approximation for calculating the beam optics of
complex magnet structures. It is also postulated that all particles have nominal energy,
giving ∆p/p0 = 0. This leaves a simplified version of the differential equation, which
represents the horizontal motion of the particles in a quadrupole, given by [26, 27]:

x′′(s) − k1 · x(s) = 0, with k1 = const. (3.6)

In the same way, the vertical motion is defined. These linear and homogeneous second
order differential equations can be solved directly analytically. The integration constants
are determined by the initial conditions. Therefore, it is postulated that at the beginning
of the magnet the particle position is given by x0 = x(0) and the angular velocity by
x′

0 = x′(0). In the case of a horizontally defocusing magnet with k1 > 0 the solution is
given by [27]:

x(s) = x0 cosh(
√
k1s)+

x′
0√
k1

sinh(
√
k1s),

x′(s) =
√
k1x0 sinh(

√
k1s)+ x′

0 cosh(
√
k1s).

(3.7)
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An elegant notation for the transformation of the phase space from the beginning of a
magnet to the point s1 is the matrix form. Equation (3.7) can be rewritten as a matrix
MQ,k1>0 which transforms the initial conditions to their final position:

(
x(s)
x′(s)

)
=

 cosh(
√
k1s) 1√

k1
sinh(

√
k1s)

√
k1 sinh(

√
k1s) cosh(

√
k1s)

(x0

x′
0

)
= MQ,k1>0

(
x0

x′
0

)
. (3.8)

Similarly, the matrix MQ,k1<0 for a horizontally focusing quadrupole with k1 < 0 can be
constructed:

(
x(s)
x′(s)

)
=

 cosh(
√

|k1|s) 1√
|k1|

sinh(
√

|k1|s)

−
√

|k1| sinh(
√

|k|s) cosh(
√

|k1|s)

(x0

x′
0

)
= MQ,k1<0

(
x0

x′
0

)
. (3.9)

So far only the horizontal space has been discussed. Since the quadrupole has a focusing
effect in one phase space direction and a defocusing effect in the other, the vertical phase
space is just a matrix with inverted focusing and the insertion of x = y.

A simplified version of Hill’s differential equations can also be constructed for a dipole.
Assuming particles with nominal energy ∆p/p0 = 0 and a dipole field with no gradient
k1 = 0, a differential equation given by

x′′(s) − 1
R2 · x(s) = 0, with R = const, (3.10)

follows. Since a dipole only acts in horizontal phase space, the effect in vertical phase
space is only a translation by the dipole length. The solution of the differential equation
for a dipole, is the sector dipole matrix MSD [27]:

(
x(s)
x′(s)

)
=
(

cos( sR) R sin( sR)
− 1
R sin( sR) cos( sR)

)(
x0

x′
0

)
= MSD

(
x0

x′
0

)
. (3.11)

In storage rings, rectangular dipole magnets are often used because they are easier to
manufacture. Unlike sector dipole magnets, these magnets have their face angles rotated
relative to the beam path by an angle ψ. While this rotation of the face angles does
not change the total deflection angle in the dipole, it introduces another effect called edge

1This can also mean the end and thus the length of the magnet.
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focusing. Therefore, horizontally, the rectangular dipole matrix MRD must be corrected for
each face angle by the edge focusing matrix MEdge, shown in Equation (3.12) in contrast
to the sector dipole matrix [27].

Figure 3.2: Sketch of the edge focusing effect caused by rotating the face angles of a sector
dipole magnet relative to the beam path. The result is a rectangular shaped
dipole magnet. Adapted from [27].

MEdge =
(

1 0
tan(ψ)
R 1

)
⇒ MRD = MEdgeMSDMEdge

(3.12)

Edge focusing also occurs in the vertical direction. It is identical to the horizontal edge
focusing effect, but the sign is reversed. This means that edge focusing has a defocusing
effect in the horizontal plane and a focusing effect in the vertical plane [27].

The particle trajectories can thus be calculated as a system of transformation matri-
ces from one particular location in the storage ring to another. The composition of the
transformation matrices depends on the magnetic elements through which the trajectory
vector passes. This will be explained in more detail in Section (3.3.5).

3.3.4 Dispersive Trajectories - Inhomogeneous Solution

The dipole magnet also has another effect on the particle trajectory. Since the deflection
angle is momentum dependent, the assumption ∆p/p0 ̸= 0 leads to a special trajectory
called dispersive trajectory or dispersion Dx(s). The modified differential equation under
the condition ∆p/p0 = 1 for a dipole therefore is [27]:
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x′′(s)+ 1
R2(s)x(s) = 1

R(s)
∆p
p0

⇒ D′′
x(s)+ 1

R2(s)Dx(s) = 1
R(s)

(3.13)

The solution of this inhomogeneous differential equation is a combination of the homoge-
neous part already presented and the inhomogeneous part due to the momentum offset.
The result of the inhomogeneous part thus extends the homogeneous part with the initial
conditions Dx,0 and D′

x,0 [27]:

Dx(s) = Dx,0 cos
(
s

R

)
+ D′

x,0R sin
(
s

R

)
+ R

(
1 − cos

(
s

R

))
,

D′
x(s) = −Dx,0

R
sin
(
s

R

)
+ D′

x,0 cos
(
s

R

)
+ sin

(
s

R

)
.

(3.14)

Due to the inhomogeneous solution, the system of equations can no longer be represented
by a 2x2 matrix. One has to switch to a 3x3 matrix, given by [27]:


Dx(s)
D′

x(s)
1

 =


cos

(
s
R

)
R sin

(
s
R

)
R
(
1 − cos

(
s
R

))
− 1
R sin

(
s
R

)
cos

(
s
R

)
sin
(
s
R

)
0 0 1



Dx,0

D′
x,0
1

 = MSB


Dx,0

D′
x,0
1

 (3.15)

In this way, dispersion shifts the total horizontal particle path xTot at positions inside the
storage ring where it does not vanish [27]:

xTot(s) = x(s) + xD(s) = x(s) +Dx(s)∆p
p0
. (3.16)

3.3.5 Particle Transfer Matrix Formalism

As outlined above, the change in path caused by a magnetic element2 can be represented
using a matrix. So far it has only been shown for the horizontal and vertical space sepa-
rately. To describe the full motion of the particles, a 6x6-dimensional matrix is required.
This is why one also speaks of a six-dimensional phase space. A passage of several elements
is obtained by multiplying the corresponding matrices. For example, the transport of a
particle from position s = 0 with phase space coordinates V⃗ (s = 0) through a dipole MSD

and a quadrupole MQ,k1<0 to position s′ can be represented as [29]:

2The same works for an electrical element.
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V⃗ (s′) = MSDMDriftMQ,k1<0 · V⃗ (s = 0)

⇒ V⃗ (s′) = MTransport · V⃗ (s = 0).
(3.17)

In this equation the matrix MDrift denotes the empty space, also called drift space, between
the magnets. This is a simple translation matrix defined by the length LDrift of the drift
space. Assuming decoupled horizontal and vertical motion, the basic structure of a 6 × 6-
dimensional transport matrix can be represented as sketched by [29]:

MTransport =



M11 M11 0 0 0 M16

M21 M22 0 0 0 M26

0 0 M33 M34 0 0
0 0 M43 M44 0 0
M51 M52 0 0 1 M56

0 0 0 0 0 1



=



⟨x|x⟩ ⟨x|x′⟩ 0 0 0 ⟨x|δ⟩
⟨x′|x⟩ ⟨x′|x′⟩ 0 0 0 ⟨x′|δ⟩

0 0 ⟨y|y⟩ ⟨y|y′⟩ 0 0
0 0 ⟨y′|y⟩ ⟨y′|y′⟩ 0 0

⟨z|x⟩ ⟨z|x′⟩ 0 0 ⟨z|z⟩ ⟨z|δ⟩
0 0 0 0 0 ⟨δ|δ⟩


.

(3.18)

The corresponding phase space vector V⃗ must then be defined by [29]:

V⃗ =



x

x′

y

y′

z

δ


=



local horizontal displacement
angular horizontal displacement

local vertical displacement
angular vertical displacement

local longitudinal displacement
relative momentum deviation


. (3.19)

In the 6x6-dimensional transport matrix the elements M16 and M26 show the dispersive
component due to a momentum offset in a dipole. On the other hand, M11, M12, M21 and
M22 represent the homogeneous solution of the horizontal phase space, while M33, M34,
M43 and M44 denote the homogeneous solution of the vertical phase space. The other
aspects of this matrix will be discussed in the context of the longitudinal phase space in
Section (3.4) [29].
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3.3.6 Betafunction und Betatron Oscillation

Although the matrix formalism developed so far allows the calculation of individual particle
trajectories through any magnetic structure, it does not yet provide any information about
the properties of the beam as a collective of particles. Therefore, the calculation method
needs to be extended to treat the entire beam. A similar approach can be used to solve the
differential equation for a quadrupole, now assuming that k1 is a property of the particle
position s. The resulting differential equation and its solution for the horizontal phase
space are sketched in the following equations [27]:

x′′(s) − k1(s)x(s) = 0 (3.20)

⇒ xβ(s) =
√
ϵxβx(s) cos(ψx(s) + ϕx). (3.21)

The solution xβ(s) shows an oscillation of the particles around the orbit. The combination
of
√
ϵxβx(s) forms the location dependent amplitude of the oscillation, where the parameter

ϵx is called emittance or Courant-Snyder invariant. This property depends on the initial
conditions of the particle and is therefore constant3. The so-called β function is the optical
parameter that varies with the beam focusing k1(s) and therefore depends on the position
s. Together with the phase advance ψx(s) and the phase ϕx, these quantities describe
the motion of a single particle induced by the quadrupole magnets. The phase advance
is directly related to the β function as shown in Equation (3.22). An identical solution is
obtained for the vertical phase space with the sign reversed [27].

ψx(s) =
∫ s

0

1
βx(s′)ds

′. (3.22)

3.3.7 Phase Space Ellipse and Liouville’s theorem

To describe the motion of particles in the each transverse plane i, two additional param-
eters αi(s) and γi(s) are introduced, which directly depend on the β-function as shown in
Equation (3.23). In combination with β(s) they are called optical functions as they define
the optics of the storage ring [27].

αi(s) = −1
2

dβi(s)
ds

and γi(s) = 1 + α2
i (s)

βi(s)
. (3.23)

3This simple assumption holds if a linear, energy conserving system is considered for the storage ring. In
general, the emittance of a particle is subject to change over the storage time due to numerous effects
such as cooling, intrabeam scattering, etc.
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An ellipse equation can be constructed from the equations of motion and the optical
functions. This phase space ellipse puts the previously introduced emittance into a physical
context. The emittance now defines the area A = πϵ of the phase space ellipse. This is
described for the horizontal phase space in Equation (3.24) and illustrated in Figure (3.3).
The vertical phase space behaves in the same way. The shape and orientation of the ellipse
depends on the β-function and therefore changes with the position s in the storage ring.
The area of the ellipse is independent of the position s and therefore constant over the
circumference of the ring. This is also manifested in the Liouville theorem, which states
that the volume element of a phase space is constant in time if the particles obey the
canonical equations of motion [27].

γx(s)x2(s) + 2 · αx(s)x(s)x′(s) + βx(s)x′2(s) = ϵx (3.24)

Figure 3.3: Horizontal phase space ellipse at a position s inside a storage ring. The horizon-
tal axis shows the local horizontal displacement x of a particle relative to the
design trajectory, and the vertical axis shows the angular horizontal displace-
ment x′. The optical functions αx(s), βx(s) and γx(s) define the orientation
and shape of the ellipse, while the area Ax is defined by the Courant-Snyder
invariant ϵx. Adapted from [27].

As the phase space ellipse has been derived under the assumption of vanishing ∆p/p0 and
1/R(s) = 0, for a complete description one has to consider dispersive trajectories in the
horizontal phase space due to dipole magnets. Dispersive trajectories move the horizontal
phase space ellipse sideways around a reference point, but do not change its area. The
reference point around which the phase space ellipse is constructed and around which the
dispersive motion will take place is called the closed orbit. Figure (3.3) sketches a scenario
in which the closed orbit is chosen to be on the design trajectory of the storage. In reality,
this is not necessarily the case.
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3.3.8 Periodic Solution and Closed Orbit

Since the particles are to be kept in a storage ring, both the calculated orbit and the
optical functions must merge into themselves after a full revolution and thus represent a
periodic solution of Hill’s differential equation. For this purpose, the magnetic structure is
arranged according to certain symmetries in order to simplify the calculation of the beam
optics and to reduce the number of different magnetic circuits. By varying the quadrupole
strengths k of the individual symmetry groups, the β function can be varied until a closed
solution is found. This closed solution of the β-function represents the so-called working
point of the storage ring. More on this topic will be presented in the next section [27].

In an idealized storage ring, particle motion due to betatron oscillations and dispersive
trajectories would fully describe the behavior of the individual particles in a particle beam.
In reality, the reference path inside the storage ring is also perturbed by magnetic mis-
alignments, dipole errors, etc. These perturbations are called systematics. A perturbed
orbit that still gives a closed solution is called closed orbit. In general, the motion of par-
ticles in the case of an uncoupled system can be described as a combination of betatron
oscillations xβ(s), dispersive trajectories xD(s) and the closed orbit xClo(s) via [26]:

x(s) = xClo(s) + xβ(s) + xD(s). (3.25)

These perturbations due to various effects cannot be avoided. One way to get some
control over the closed orbit is to use short dipole magnets at different positions inside the
storage ring, which are therefore called corrector magnets or steerer magnets. This topic
is discussed in more detail in Section (3.3.11).

3.3.9 Working Point and Betatron Tune

Since the magnetic structure repeats itself after each full revolution, the magnetic forces
acting on the beam are also periodically repeated. As the particles in the beam also
oscillate due to the transverse focusing forces, they can become resonant. In the case
of resonance, the oscillation amplitude increases, which can lead to beam loss. As these
resonances only occur at a certain number of betatron oscillations per revolution and are
therefore related to the optics of the storage ring they are called optical resonances. The
number of betatron oscillations per revolution is called the betatron tune. It must be
calculated separately for the horizontal and vertical phase space, assuming an uncoupled
motion, and is given by the Equation (3.26), where i denotes the horizontal and vertical
phase space respectively [27].

Qi = 1
2π

∮
ds

βi(s)
with i = x, y (3.26)
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The combination of horizontal Qx and vertical Qy betatron tune defines the working point
of a storage ring. This working point can now be associated with an optical resonance.
The resonance condition criteria for an optical resonance is described by [27]:

m ·Qx + n ·Qy = p with m,n, p ϵ Z. (3.27)

The reason that the beam amplitude increases as a result of resonance lies in the field errors
of the magnets and their fringe fields, which deviate from the previously very simple hard
edge model. As a result, when a resonance condition is met, these errors add up over
several revolutions and drive the beam further and further away from its closed orbit.
The class of magnet causing this effect determines the order of the resonance. This is
represented by the integer parameters m and n, which together define the order of the
resonance over |m| + |n|. An integer resonance is generated by a dipole, a half integer
resonance by a quadrupole, and so on. The lower the order of the resonance, the stronger
it is. To avoid losing particles due to optical resonances, the working point must be chosen
far away from any low order resonance. Typically a tune diagram like the one shown in
the Figure (3.4) is used to show the position of the working point with respect to the main
resonances [27].

3.3.10 Chromaticity

Due to a momentum deviation ∆p/p0 from the reference particle, other particles move on a
different trajectory than the design particle. For this reason, they also experience a change
in the optics of the storage ring. The quantity that describes the relationship between
the change in optics in the form of a change in the working point ∆Qi as a function of
the momentum deviation is called the chromaticity and is defined individually for both
transverse planes i by [27]:

ξi := ∆Qi
∆p/p0

with i = x, y. (3.28)

A momentum deviation can also be interpreted as a quadrupole error. Since a particle
permanently retains a momentum deviation, all quadrupoles in a storage ring have a
quadrupole error proportional to ∆p/p0. In a large, strongly focused storage ring, the
contribution of the quadrupole strength k1(s) to the chromaticity becomes dominant in
combination with the local β-function βi(s). Therefore, to determine the total shift of the
working point, the chromaticity has to be calculated by integration over all quadrupoles
[27, 30]:
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Figure 3.4: Tune diagram with arbitrary working point and optical resonances up to third
order. The horizontal axis shows the horizontal betatron tune Qx and the
vertical axis the vertical betatron tune Qy. The integers m and n define the
order of the resonance over |m| + |n|. Inspired by [27].

∆QNat
i = 1

4π

∮ ∆p
p0
k1(s)βi(s)ds with i = x, y. (3.29)

Sextupoles distributed in the ring, placed on regions of non-vanishing dispersion, are
used to adjust chromaticity. They generate local quadrupole components depending on
the transverse position of the particle as it passes through the sextupole, as shown in
figure (3.5). Their effect on the chromaticity depends on their strength k2(s) and the
local dispersion Dx(s). The so-called natural chromaticity is therefore defined as the
chromaticity of the ring arising from the focusing fields of quadrupoles and dipoles [29, 30].
The total chromaticity of a storage ring is a combination of the natural chromaticity and
the chromaticity correction by the sextupoles, which is defined by [27]:

∆QSex
i = 1

4π

∮ ∆p
p0
k2(s)Dx(s)ds with i = x, y. (3.30)
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Figure 3.5: Sketch of the principle of chromaticity correction by a sextupole. Sextupoles
produce a local quadrupole component depending on the transverse position
of the particle. Adapted from [29].

3.3.11 Orbit Correction and Orbit Response Matrix

As discussed in Section (3.3.8), control of the closed orbit is required so that the storage
ring systematics4 that cause orbit perturbations can be compensated. This requires two
devices. The first is called a corrector magnet, which is a short dipole magnet used to
give the beam a controlled kick in the vertical or horizontal direction. The second one is
called BPM (Beam Position Monitor) and is used to measure the orbit with respect to
its centre. For more information on how the BPM works, please refer to Section (5.1.3).
Using both devices, the orbit can be corrected using the ORM (Orbit Response Matrix)
method. The ORM MORM is a matrix that defines how the beam responds to the dipole
corrector magnets. It relates the beam offsets at the BPM positions in horizontal ∆x⃗
and vertical ∆y⃗ phase space to the dipole corrector kicks ∆θ⃗x and ∆θ⃗y at their respective
positions inside the ring via [31, 32] :

(
∆x⃗
∆y⃗

)
= MORM

(
∆θ⃗x
∆θ⃗y

)
. (3.31)

A single element Mij of the ORM is therefore defined by the shift in orbit at BPM i caused

4This includes misalignments of magnetic elements, field errors, etc.
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by the change in magnetic strength in the corrector magnet j [31, 32]:

Mij,x = ∆xi
∆θx,j

or Mij,y = ∆yi
∆θy,j

. (3.32)

A theoretical derivation of the ORM is possible based on the optical function β, the phase
advance ϕ and the dispersion Dx at the position of the BPMs i and the corrector magnets
j. Also to be considered are betatron tunes Q, the momentum compaction factor αp

5,
the Lorentz factor γ0 of the reference particle and the ring circumference C0. Assuming
vanishing coupling of the horizontal and vertical beam dynamics, the matrix elements
given in Equation (3.32) can be calculated theoretically using [31, 33]:

Mij,x =
√
βx,iβx,j

2 sin(πQx) cos(ϕx,i − ϕx,j − πQx) − Dx,iDx,j(
αp − 1

γ2
0

)
C0
,

Mij,y =
√
βy,iβy,j

2 sin(πQy) cos(ϕy,i − ϕy,j − πQy).
(3.33)

To find the appropriate set of steerer kicks to flatten the orbit, a pseudoinverse of the
ORM matrix must be computed. This is typically done using SVD (Singular Value
Decomposition) [31, 33].

3.4 Longitudinal Beam Dynamics

3.4.1 Momentum Compaction Factor

Due to the dipole contributions, particles with momentum deviation follow dispersive
orbits. Usually, the dispersive orbits have a different length compared to the design orbit.
The change in orbit length can be specified as a function of the momentum deviation.
For circular accelerators this also leads to a dependence of the revolution period on the
particle momentum. This plays an important role in the longitudinal phase focusing of
the individual particles of a beam. The ratio of the relative change in path length ∆C/C0

to the relative change in momentum ∆p/p0 is called the momentum compaction factor α0

and is defined as [27]:

∆C
C0

= α0
∆p
p0
. (3.34)

Since the main contribution to the momentum compaction factor comes from the curva-
ture R(s) of the dipoles, the path lengthening effects of the quadrupoles can be neglected,

5This property will be discussed in Section (3.4).
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as they only occur as higher order effects. The relationship between curvature and disper-
sion Dx(s) at the dipoles leads to another more theoretical description of the momentum
compaction factor [27]:

α0 = 1
C0

∮
Dx(s)
R(s) ds. (3.35)

A consequence of the different path length of particles with a momentum difference is a
change in their revolution time ∆T with respect to the revolution time T0 of the reference
particle. The difference in revolution time depends on particle’s energy, represented by
the relativistic γ-factor γ0, and the momentum compaction factor [27]:

∆T
T0

=
(
α0 − 1

γ2
0

) ∆p
p0
. (3.36)

3.4.2 Phase Focusing and Synchrotron Frequency

Electric fields are used to accelerate, decelerate or bunch a particle beam. In a storage
ring, this is done by using so-called cavities. The circulating particles must maintain a
well-defined fixed phase ψs with respect to the high-frequency voltage U0 of the cavity.
In this way a focusing effect in the longitudinal phase space is achieved. The focusing
effect in the longitudinal phase space is called phase focusing. While the fixed phase ψs

defines whether energy is gained or lost through the cavity, the property W0 describes the
energy loss of a particle per revolution, e.g. by synchrotron radiation. In this way one can
formulate an equation describing the energy change for one revolution [27]:

E0 = eU0 sinψs −W0. (3.37)

Since not all particles pass through the cavity with the ideal phase, but with a small phase
difference ψ∆ = ψs + ∆ψ, they receive an additional amount of energy ∆E. From this
fact one can derive a second order differential equation,

∆Ë + ω2
s∆E = 0, (3.38)

which describes the motion in the longitudinal phase space of a particle entering the cavity
with a phase difference from the reference phase. What enters the description is the second
derivative of the energy change after the time ∆t and the so-called synchrotron frequency
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ωs, given by [27]:

ωs = ω0

√
−eU0h cosψs

2πβ2
0E

(
α0 − 1

γ2
0

)
. (3.39)

The synchrotron frequency describes the oscillation of the particles around the reference
particle in longitudinal phase space. It is intuitively related to the momentum compaction
factor, since this property describes the difference in revolution time and thus the time
and phase of arrival at the cavity. Other important quantities are the cavity’s maximum
voltage U0, the harmonic h at which it operates with respect to the rotational frequency
ω0, the relativistic γ0 and the velocity β0 and the energy of the particle E [27].
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CHAPTER 4

Spin Dynamics in a Storage Ring

In addition to the description of the particle motion, the description of the spin motion
is necessary for a storage ring EDM experiment. The spin motion is strongly coupled to
the particle motion, which is referred to as spin-orbit-coupling. This chapter discusses the
properties related to the particle spin, the general spin motion in a storage ring, and the
effect of different spin manipulation devices on the spin.

4.1 Polarization Formalism

Polarization is the beam property that provides access to the particle spin. It is defined
as the average spin orientation of a particle ensemble:

P⃗ = 1
N

N∑
i=1

S⃗i. (4.1)

The formalism is very different for spin-1
2 particles such as protons and spin-1 particles

such as deuterons. Therefore, the formalism for both types of particles will be discussed
below [34].

4.1.1 Spin-1
2 Particles

The spin state of a single spin-1
2 particle can be expressed by the Pauli spinor ψ, where

the two possible spin states of spin-1
2 particles correspond to the spinor components ψi

[36]:

ψ =
(
ψ1

ψ2

)
. (4.2)
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Each observable spin is associated with a Hermitian operator, which is also the case for
spin-1

2 particles. A useful tool for describing this operator are the Pauli spin operators
extended by the identity matrix σ0. They form a complete basis of the Hermitian 2x2
matrices [36]:

̂⃗
S = ℏ

2 σ⃗, (4.3)

σ⃗ =


σ1

σ2

σ3

 with σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.4)

An observable is defined as the expectation value ⟨A⟩ of the associated operator Â. This
leads to a dependence on the density matrix ρ as shown below [36]:

⟨A⟩ = ⟨ψ†|Â|ψ⟩ = TrρÂ, (4.5)

with ρ = |ψ⟩⟨ψ| =
(

|ψ1|2 ψ1ψ
∗
2

ψ∗
1ψ2 |ψ2|2

)
. (4.6)

In the case of a single spin 1
2 particle, the density function based on Equation (4.3) is in

terms of the Pauli spin operators [36]:

⟨ ̂⃗S⟩ = ℏ
2Trρσ⃗, (4.7)

ρ = 1
N

 ∑N
i=1 |ψ(i)

1 |2
∑N
i=1 ψ

(i)
1 ψ

(i)∗
2∑N

i=1 ψ
(i)∗
1 ψ

(i)
2

∑N
i=1 |ψ(i)

2 |2

 = 1
2(σ0 + P⃗ σ⃗). (4.8)

An ensemble of N particles with a quantization state m = +1
2 and N with a quantization

state m = −1
2 in a beam will have a vector polarization according to Equation (4.9). One

speaks of a fully polarized beam if PV = ±1 and of a fully unpolarized beam if PV = 0
[34].

PV = Nm=+ 1
2 −Nm=− 1

2

Nm=+ 1
2 +Nm=− 1

2
(4.9)
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4.1.2 Spin-1 Particles

Similar to a spin-1
2 particle the spin state of a single spin-1 particle can be expressed by

the Pauli spinor [36]:

ψ =


ψ1

ψ2

ψ3

 . (4.10)

The three different spin states along the quantization axis correspond to the three spinor
components ψi. To characterize a spin-1 system, a minimum set of nine independent
Hermitian matrices is required. Taking into account the 3x3 identity matrix Ŝ0 and the
basic spin-1 operators, defined by:

Ŝ1 = ℏ√
2


0 +1 0

+1 0 +1
0 +1 0

 , Ŝ2 = ℏ√
2


0 −i 0

+i 0 −i
0 +i 0

 , Ŝ3 = ℏ


+1 0 0
0 0 0
0 0 −1

 , (4.11)

at least five more matrices are needed to complete the set. In principle, the nine second
order tensors constructed by the outer product can be used as a basis for the 3x3 Hermitian
operators. For simplicity, however, the commonly used operators Ŝ0, Ŝ1, Ŝ2, Ŝ3 should be
retained. The standard Cartesian notation is based on the ten operators shown below [36]:

Ŝ0, Ŝ1, Ŝ2, Ŝ3, Ŝij = 3
2(ŜiŜj + ŜjŜi) − 2Ŝ0δij, i, j ∈ 1, 2, 3 (4.12)

Analogous to Equation (4.7) the expectation value ⟨ ̂⃗S⟩ depends on the density function ρ.
In case of a spin-1 particle the density function does look as follows [36]:

ρ = 1
3

Ŝ0 + 3
2

3∑
i=1

PiSi + 1
3

3∑
i=1

3∑
i=j

PijSij

 , with Pij = Pji. (4.13)

Considering the three particular quantization states of spin-1 particles, a vector polariza-
tion PV and a tensor polarization PT along the quantization axis can therefore be defined
via [34]:
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PV = Nm=+1 −Nm=−1

Nm=1 +Nm=0 +Nm=−1 , (4.14)

PT = Nm=+1 +Nm=−1 − 2Nm=0

Nm=+1 +Nm=0 +Nm=−1 . (4.15)

Figure 4.1: Sketch of the possible spin states for a spin-1
2 particle like the proton and a

spin-1 particle like the deuteron. The spin-1
2 particle with s = 1

2 shown on the
left has two different spin states, while the spin-1 particle shown on the right
has three. The quantization axis is chosen to be the z-axis. Taken from [35].

4.2 Generalized Thomas-BMT Equation

After the general definition of spin and polarization it is necessary to describe the effect of
electric E⃗ and magnetic B⃗ fields on these properties. Since these fields are also the ones
experienced by the spin inside the storage ring, the evolution of the spin in the center of
mass system of the particle depends on their interaction with the EDM d⃗ and MDM1 µ⃗.
This is summarized by [37]:

dS⃗

dt
= Ω⃗ × S⃗ = µ⃗× B⃗ + d⃗× E⃗. (4.16)

Transforming both electromagnetic fields into the curvilinear laboratory reference sys-
tem of a storage ring, leads to the so called Thomas-BMT (Bargmann-Michel-Telegdi)
equation [38, 39]:

dS⃗

dt
= Ω⃗ × S⃗ = Ω⃗MDM × S⃗ + Ω⃗EDM × S⃗, (4.17)

1See also Equation (2.5) and Equation (2.6)
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with Ω⃗MDM = − q

m

[(
G+ 1

γ0

)
B⃗ − Gγ0

γ0 + 1(β⃗ · B⃗)β⃗ −
(
G+ 1

γ0 + 1

)
β⃗ × E⃗

c

]
, (4.18)

and Ω⃗EDM = − q

mc

ηEDM
2

[
E⃗ − γ0

γ0 + 1(β⃗ · E⃗)β⃗ + cβ⃗ × B⃗

]
. (4.19)

It is important to note that the spin vector is defined in the rest frame of the particle,
unlike the electric and magnetic fields which are evaluated in the curvilinear laboratory
reference frame. In the following, the spin motion is discussed under the assumption of
a vanishing EDM, since the MDM contribution to the spin motion is dominant. Section
(5.2.4) will illustrate how the EDM contribution to the spin motion can be investigated.
In terms of particle motion, the electromagnetic fields can be decomposed into parallel
and perpendicular contributions with respect to the design orbit [39]:

Ω⃗MDM = Ω⃗B⊥ + Ω⃗B∥ + Ω⃗E⊥ (4.20)

= − q

γ0m

[
(1 + γ0G)B⃗⊥ + (1 +G)B⃗∥ −

(
Gγ0 + γ0

γ0 + 1

)
β⃗ × E⃗

c

]
. (4.21)

The momentum of a particle p⃗ itself precesses under the influence of electromagnetic fields
in a storage ring. Therefore, the relative orientation of spin to the particles momentum
has to be identified by using the cyclotron frequency ΩCyc, given by [39]:

dp⃗

dt
= Ω⃗Cyc × p⃗, (4.22)

Ω⃗Cyc = − q

γ0m

(
B⃗⊥ − 1

β2
0
β⃗ × E⃗

c

)
. (4.23)

The relative spin precession Ω⃗MDM,Rel is then derived from the difference between the spin
rotation due to MDM and the spin rotation due to the total particle momentum rotation
[39, 40]:
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Ω⃗MDM,Rel = Ω⃗MDM − Ω⃗Cyc (4.24)

= − q

γ0m

[
Gγ0B⃗⊥ + (1 +G)B⃗∥ −

(
Gγ0 − γ0

γ2
0 − 1

)
β⃗ × E⃗

c

]
. (4.25)

In principle, one can easily observe the effect of an EDM on the spin motion by suppressing
any contribution of the MDM to the spin rotation with Ω⃗MDM,Rel

!= 0 This is commonly
referred to as the Frozen Spin Method. Unfortunately, in a classical pure magnetic storage
ring, it is not possible to achieve a configuration that satisfies this criterion, although it
is mathematically possible. The reason is that a vertical magnetic field from the dipoles
B⃗⊥ is needed to keep a particle inside the storage ring [41, 42]:

Gγ0B⃗⊥
!= 0. (4.26)

However, in a storage ring with purely electrical bending elements, the criteria for frozen
spin can be satisfied by [41, 42]:

(
Gγ0 − γ0

γ2
0 − 1

)
= 0 ⇒ pMag = mc√

G
. (4.27)

This is possible when the stored particle reaches its so-called magic momentum pMag,
which depends on the properties of the particle itself. This limits the set of elementary
particles where frozen spin can be achieved, since only a positive G can lead to frozen
spin. Another way to achieve frozen spin in a storage ring is to use combined fields in the
bending elements. Using combined fields it does no longer matter whether particles with
positive or negative G are stored, as long as the required field magnitudes can be achieved
[41, 42]:

E⃗x = γ0mβ
2
0

qR

1(
1

γ2
0−1 −G

)
β2

0
G + 1

, (4.28)

B⃗y = γ0mβ
2
0

qR

(
1

γ2
0−1 −G

)
(

1
γ2

0−1 −G
)
β2

G + 1
β0
G
. (4.29)

Since no frozen spin can be achieved in a classical storage ring, another property is needed
to study the EDM. Since, Ω⃗MDM is perpendicular Ω⃗EDM a non-vanishing EDM tilts the
spin rotation axis in the radial direction. This is indicated by Figure (4.2). The tilt angle
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is described by the ratio of the EDM and MDM contributions:

ϕEDM = arctan
(
ηEDMβ0

2G

)
. (4.30)

In addition to the EDM other ring properties also tilt the spin precession axis. To show
their impact on the spin precession axis the spin transfer matrix formalism has to be
introduced.

Figure 4.2: Sketch of the radial tilt of the spin precession axis by an existing EDM signal.
The blue plane and arrow indicate the spin precession plane and axis with
MDM contribution, while the orange plane and arrow assumes the existance
of an EDM in parallel, giving the spin rotation axis a constant radial tilt angle
ϕEDM.

4.3 Spin Transfer Matrix Formalism

Similar to the particle transfer matrix formalism in Section (3.3.5) a spin transfer matrix
formalism can be defined. It utilizes the matrix T to describe the change of the spin vector
S⃗ in between two positions θi and θj inside a storage ring caused by one element:

S⃗(θj) = T(θj, θi) · S⃗(θi). (4.31)

Since the Pauli Matrices σi supplemented by the identity matrix σ0 form a complete basis
of the Hermitian 2x2-matrices, a spin transfer matrix can be parametrized as follows:
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T = σ0t0 + iσ1t1 + iσ2t2 + iσ3t3

=


t20 + t21 − t22 − t23 2(t1t2 − t0t3) 2(t1t3 + t0t2)

2(t1t2 + t0t3) t20 − t21 + t22 − t23 2(t2t3 − t0t1)
2(t1t3 − t0t2) 2(t2t3 + t0t1) t20 − t21 − t22 + t23

 . (4.32)

Based on the Thomas-BMT equation and depending on the orbit, the values ti can be
determined for each element. Passing through more than one element is realized by mul-
tiplying the matrices of the elements passed. Since the forces in a storage ring act peri-
odically on a closed orbit, a one turn matrix TOT = T(θi+2π, θi) can be defined. At each
position inside the ring an eigenvector of this matrix can be constructed. This eigenvector
n⃗ is called the invariant spin axis, while the rotation around this eigenvector is named
spin tune vs [43, 44]:

n⃗ = 1√
1 − T (θi+2π, θi)2


±Tx(θi+2π, θi)
±Ty(θi+2π, θi)
±Tz(θi+2π, θi)

 . (4.33)

4.3.1 Dipole influence on the Invariant Spin Axis

In the following, the invariant spin axis and the spin tune are briefly discussed in some
special cases. Assuming that the only field a particle experiences during a revolution in the
storage ring is the dipole field, Equation (4.25) can be used to set up a one-turn matrix:

TOT = TDip =


cos(2πγ0G) 0 sin(2πγ0G)

0 1 0
− sin(2πγ0G) 0 cos(2πγ0G)

 (4.34)

This one-turn matrix results from the fact that a dipole rotates the ISA on the design
orbit only around its vertical axis. If the particle spin has an orientation in the accelerator
plane, each individual dipole magnet rotates the spin vector by an amount γG · α, which
correlates with the rotation angle α of the dipole magnet. The spin tune can now be
determined over a full revolution as follows:

Tr(TOT) = 2 cos(2πγ0G) + 1 (4.35)

⇒ νs = γ0G = νs,0. (4.36)
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As the rotation of the dipoles on the spin tune is dominant over all other rotations, which
will now be discussed, and also necessary, to keep a particle in the storage, Equation
(4.36) defines the reference spin tune νs,0. As mentioned above, the position dependent
eigenvector can be determined from the transfer matrix for the spin over the whole ring.
Under the assumption that only dipole magnets influence the beam, this is constant and
points purely in the vertical direction, indicated by:

Eigenvector: n⃗ =


0
1
0

 = n⃗0 (4.37)

A purely vertically aligned invariant spin rotation axis therefore reflects the idealized
invariant spin axis orientation n⃗0. If the closed orbit is perturbed and thus deviates from
the design orbit, the invariant spin axis will be tilted. The effects of this will be discussed
later in this thesis. The remainder of this chapter deals with so-called spin manipulators
on a perfect design orbit in order to neglect the effects of a perturbed orbit.

4.3.2 Solenoid Influence on the Invariant Spin Axis

A solenoid is such a spin manipulator. It has a longitudinal magnetic field B⃗∥ = Bz

and therefore does not perturb the orbit if its magnetic field is completely parallel to the
particle beam. In contrast to a dipole magnet, a solenoid causes a rotation χSol around
the horizontal spin axis as shown by:

TSol =


+ cos(χSol) + sin(χSol) 0
− sin(χSol) + cos(χSol) 0

0 0 1

 , (4.38)

with χSol = q(1 +G)
γ0m

∫
Bzdl. (4.39)

In order to construct the one turn matrix for a solenoid, the influence of the dipole magnets
must be taken into account. However, since a solenoid only acts at one point in the storage
ring, the new one-turn matrix for the solenoid can be calculated directly by multiplying
the solenoid spin transfer matrix and the one-turn matrix for the dipoles:
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TOT = TSol · TDip =


+ cos(χSol) cos(2πγ0G) + sin(χSol) + cos(χSol) sin(2πγ0G)
− sin(χSol) cos(2πγ0G) + cos(χSol) + sin(χSol) sin(2πγ0G)

− sin(2πγ0G) 0 + cos(2πγ0G)

 .
(4.40)

The presence of the solenoid changes both the spin tune, given by Equation (4.42), and
the invariant spin axis, given by Equation (4.43). Due to the rotation of the invariant spin
axis at the position of the solenoid, it now depends on the position θ in the ring, so that
both the solenoid and the dipoles affect its tilt from the vertical axis.

Tr(TOT) = cos(χSol) cos(2πγ0G) + cos(χSol) + cos(2πγ0G) (4.41)

⇒ νs = arccos
(

cos
(
χSol

2

)
cos(πγ0G)

)
(4.42)

Eigenvector: n⃗(θ) = 1√
1 − cos2(πγ0G) cos2 (χSol

2
)


sin(χSol/2) sin((π − θ)γ0G)
cos(χSol/2) sin(πγ0G)

sin(χSol/2) cos((π − θ)γ0G)

 (4.43)

4.3.3 RF Wien Filter Influence on the Invariant Spin Axis

Finally, the so-called RF (Radio Frequency) Wien filter will be discussed at this point.
The concept of this spin manipulator for measuring the tilt of the invariant spin axis will
be neglected for the time being and moved to Section (5.2.4). Only its direct influence on
ISA and Spin Tune will be discussed here. As the name suggests, the RF Wien filter is
a device that periodically changes its electromagnetic fields. This is a vertically oriented
magnetic field B⊥ = By and a radially oriented electric field E⊥ = Ex. The strength of
the fields is set so that there is no perturbation of the particle beam2 is caused by this
device. Similar to a dipole, the RF Wien filter thus causes the spin to rotate around the
vertical axis:

TWF =


cos(χWF) 0 sin(χWF)

0 1 0
− sin(χWF) 0 cos(χWF)

 , (4.44)

2See Lorentz force in Equation (3.1). This also reflects an idealized assumption, as will be shown later.
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with χWF = q

γ0m

(
γ0G

∫
Bydl −

(
γ0G− γ0

γ2
0 − 1

)
β0
c

∫
Exdl

)
. (4.45)

In addition, the dipoles must also be taken into account for the RF Wien filter to construct
the one-turn matrix, which is defined by:

TOT = TWF · TDip =


+ cos(2πγ0G+ χWF) 0 + sin(2πγ0G+ χWF)

0 1 0
− sin(2πγ0G+ χWF) 0 + cos(2πγ0G+ χWF)

 . (4.46)

Since both the dipoles and the RF Wien filter represent a spin rotation around the vertical
axis, the spin tune also results from the sum of both effects, as can be seen in Equation
(4.48). The eigenvector thus remains vertically aligned, as given by Equation (4.49), which
means that an RF Wien filter does not affect the invariant spin axis itself but the spin
tune.

Tr(TOT) = 2 cos(2πγ0G+ χWF) + 1 (4.47)

⇒ νs = γ0G+ χWF
2π (4.48)

Eigenvector: n⃗ = n⃗0 =


0
1
0

 (4.49)
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CHAPTER 5

Experimental Setup at COSY

The JEDI collaboration aims to determine the EDM in protons and deuterons using a
storage ring. A first direct measurement of the deuteron EDM was therefore carried out
in the so-called Precursor Runs 1 and 2 at the COSY storage ring in Jülich. This chapter
provides an overview of the accelerator complex around COSY (COoler SYnchrotron)
at the Forschungszentrum Jülich. In addition, a detailed description of the experimental
setup utilized for the polarization measurements of the ISA (Invariant Spin Axis) will be
provided.

5.1 The Accelerator Facility COSY

The COSY accelerator facility, located at Forschungszentrum Jülich in Germany, is a large
scientific infrastructure, designed to accelerate and store polarized and unpolarized ions.
This facility is composed of three essential sections, each playing a distinctive role in the
overall particle acceleration process. The first component is the ion source, responsible
for generating polarized and unpolarized hydrogen H−- or deuterium D−-ions. Those
ions receive an initial acceleration in the following section, a cyclotron known as JULIC
(JUelich Light Ion Cyclotron). Connected to JULIC via an injection beam line is the
storage ring COSY. Marking the last section of the acceleration process, the ions are further
accelerated in COSY until reaching their targeted energy. From here, the ion beams will be
guided to internal and external experiments. A schematic overview of accelerator facility
is provided in Figure (5.1). For a better understanding of the three sections of the COSY
accelerator facility, they will be discussed in more detail in the following chapters [45, 46].
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Figure 5.1: Schematic view of the COSY storage ring and the JULIC pre-accelerator.
Highlighted are the main magnets, the cooling sections, the radio frequency
Wien filter device and a polarimeter. Adapted from [47].

5.1.1 Polarized Beam Source

The ions, which are required for the accelerator experiments, are generated by a CBS
(Colliding Beam Source). It takes advantage of the charge exchange reaction of neutral
hydrogen H0 or deuterium D0 beams with neutral cesium Cs0 beams in a collision region
[48].

H0/D0 + Cs0 ⇒ H−/D− + Cs+ (5.1)

The neutral hydrogen and deuterium beams are produced in ground state by a dissocia-
tor and a cooled nozzle. To receive polarization, the neutral hydrogen/deuterium beams
have to pass through two sextupole magnets. Using the inhomogeneous field of the first
sextupole magnet, the beam is split by the spin states of the shell electrons. The sec-
ond sextupole magnet serves as an achromatic lens, focusing the atoms into the collision
region. Prior to reaching the ionization region, the electron polarization is converted to
nuclear polarization via two RF (Radio Frequency) transition units switching between the
hyperfine substates of the atoms. Two available RF transition units allow the selection of
desired spin states. After the collision, a Wien filter is utilized to separate the ions from
electrons and background, while also aligning the beam polarization with the cyclotron’s
main magnetic field. This alignment preserves the polarization during the subsequent
pre-acceleration process within the cyclotron [49].
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5.1.2 The Cyclotron JULIC

Ions originating from the CBS undergo pre-acceleration as they are injected into the
cyclotron JULIC. Beam pulses are initiated by a chopper positioned in the beamline
between the ion source and the axial injection into the cyclotron. The ion beams from
the source are adjusted to align with the RF-phase acceptance of the cyclotron using a
combination of a double-gap buncher and a sawtooth buncher. For the injection onto a
constant orbit, a Hyperbolic Inflector located near the cyclotron center is utilized. At
the end of the acceleration process, the beam is extracted through a septum deflector
in the pole gap area, redirecting it into the injection beam line leading to COSY. This
extraction process is achieved through multi-turn extraction. Typically, polarized H−-
ions are delivered at a kinetic energy of 45 MeV/c for injection into COSY, while polarized
D−-ions are delivered at a kinetic energy of 75 MeV/c [46, 50].

5.1.3 The Cooler Synchrotron COSY

Connected to JULIC via a roughly 100 m long transfer beam line is the main synchrotron
and storage ring COSY. After traversing the transfer beam line, a stripping injection
method is used to shoot the particles into the COSY storage ring. In this process, nega-
tively charged ions pass through a thin foil, resulting in the removal of two electrons. This
way, polarized and unpolarized protons or deuterons are stored in COSY. Another feature
of this process is the option to stack new injections on top of particles already stored.

Design

The storage ring and synchrotron COSY is designed in a racetrack configuration, compris-
ing two 180◦ arcs measuring 52 m each and two straight sections with a length of 39.7 m.
Consequently, the entire structure has a circumference of approximately 183.4 m. The ion
beams within COSY can achieve momenta of up to 3.7 GeV/c. The acceleration occurs
within an RF cavity situated in the middle of one of the straight sections. Following the
synchrotron principle of COSY, a continuous adjustment of the magnetic bending fields,
corresponding to the beam momentum, is necessary. This adjustment is carried out by
the dipole magnets in the arcs of COSY. In total, there are 24 normal-conducting dipoles,
each generating magnetic fields of up to 1.67 T. Upon reaching the desired energy, the ion
beams become available for deployment in internal experiments located at various target
positions within the straight sections. Over time, a multitude of experiments, such as
ANKE [51], EDDA [52] and the WASA [53] experiments, have been conducted at these
internal target locations. Additionally, the beam can also be extracted from the storage
ring. Directed along a transfer beam line, the ion beams can be shot on three external
measurement stands.
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Beam Cooling

The acronym COSY derives from the use of cooling systems based on two different prin-
ciples. Since 1993, a 100 keV electron cooler has been used to reduce the phase space
distribution immediately after injection. The maximum electron energy of 100 keV/c lim-
its the cooling range of the facility to beam energies of about 600 MeV/c for protons and
1200 MeV/c for deuterons. The primary objective of the electron cooler is to increase the
intensity of polarized protons by cooling during the stacking process [54]. In addition, a
second 2 MeV electron cooler was installed at COSY in 2013, allowing cooling over the
entire energy range of COSY [55].

In addition to electron cooling, stochastic cooling is available for both protons and deuterons.
The stochastic cooling system for COSY is designed for proton momenta in the range of
1500 MeV/c to 3400 MeV/c. Within COSY, stochastic cooling is regularly used for in-
ternal target experiments to achieve equilibrium conditions between target heating and
stochastic cooling. The cooling system consists of a 4 m pick-up tank and a 2 m kicker for
the horizontal and vertical planes respectively [54].

Ion Optics

To achieve beam focusing, 56 magnetic quadrupoles were installed. They are organized
into a total of 14 families, each consisting of four quadrupoles. Within a given family, the
magnets share the same dimensions and are connected to a common power supply.

Among these families, eight quadrupole families (MQT1-MQT8) are situated in the straight
sections. These families collectively form four triplets (either FDDF or DFFD1) within
each of the straights. Such a triplet acts an optical lens, as it focuses in the two transverse
dimensions. By adjusting the quadrupole strengths to achieve a betatron phase advance
of either π or 2π per straight section a telescope configuration is established2. Hence,
the straight sections are also referred to as the ’Target Telescope’ and the ’Cooler Tele-
scope’. When there is a phase advance of 2π, the linear transfer matrix of transverse phase
space coordinates within each straight section transforms into a unity matrix [43]. Con-
sequently, in terms of linear optics, the straight sections are ion-optically transparent and
do not affect the optical functions in the arc sections. The remaining six quadrupole fami-
lies (MQU1-MQU6) are located in the arcs, forming six identical mirror-symmetrical unit
cells (configuration FODO-OFOD3). This arrangement allows for tuning the ion optics
in various configurations, as both arcs show mirror symmetry with respect to the center
of the straight sections. Therefore, a sixfold symmetry (P = 6) can be established by
equally powering each cell. During the polarization experiments described in this thesis, a

1F = horizontally focusing quadrupole, D = horizontally defocusing quadrupole
2See Equation (3.21) and Equation (3.22) for more information.
3O = space (optical elements) in between the quadrupoles

44



configuration with minimized dispersion in the straights was utilized, to minimize the mo-
mentum dependency at the interaction point. The MQU4 family was employed to reduce
the dispersion in the straights, while the MQU1/MQU5 and MQU2/MQU6 families were
used to preserve both betatron tunes. This adjustment results in a twofold symmetry (P
= 2). Both optical settings are illustrated in Figure (5.2) [43].

Figure 5.2: Optical functions (βx, βy) and dispersion D for two different configurations of
COSY. Top: Sixfold symmetry, typical used for injection with the arc unit
cells behaving symmetrically. Bottom: Twofold symmetry with minimized
dispersion in the straights. The position of 0 marks the beginning of the
straight right after the injection. Taken from [56].

The sextupole magnets represent the highest multipole order implemented at COSY, with
a current total of 17 sextupoles installed. Among these, seven sextupole magnets are placed
in the straight sections, each powered by an individual power supply. The remaining ten
sextupole magnets in the arcs are organized into three families (MXS, MXL, MXG), each
sharing a common power supply. While the MXS and MXG sextupole families comprise
four magnets each, the MXG sextupole family consists out of two magnets positioned at
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the center of the arcs. The sextupoles in the arcs play a crucial role in the chromaticity
correction. Their impact on the chromaticity does strongly depend on the optical functions
at the sextupole locations. The seven reside in the telescopes are responsible to form the
separatrix for the outgoing particles [43, 45]. A sketch of all optical elements forming a
family and their position within COSY can be found in Figure (9.1).

Magnet Type Groups Location Quantity
Dipole no Arc 24

Quadrupole MQT1-MQT8 Telescope 32
MQU1-MQU6 Arc 24

Sextupole no Telescope 7
MXS Arc 4
MXL Arc 4
MXG Arc 2

Table 5.1: Overview of optical magnetic elements installed in COSY.

Beam Position Monitors

In order to accurately control the particle beam, it is essential to know the exact position
of the beam in relation to the design orbit. Consequently, a total of 30 BPMs (Beam
Position Monitors) are used to track the beam trajectory in both horizontal and vertical
planes. The choice of BPM shapes is dictated by the different configurations of the beam
pipes in telescopes and arcs. For arcs, a rectangular shape with dimensions of 150 mm
× 60 mm is chosen, while for telescopes a cylindrical shape with a diameter of 150 mm is
used [57]. A typical BPM consists of pairs of electrodes, each 130 mm long [45, 58].

With each revolution, the ion beam generates signals at the electrodes. These signals
from opposite electrodes are then combined to produce a difference and a sum signal.
The ratio of the difference and sum signals is used to determine the position of the beam
relative to the center of the BPM. A linear correlation between this ratio and the beam
position is established by a diagonal cut in the structure of both rectangular and cylindri-
cal tubes. Figure (5.3) and Figure (5.4) provide visual representations of the cylindrical
and rectangular BPM designs [58].

Each BPM contains four plates to measure the amplified and digitized signal in the upper
VUp, lower VDown, right VRight and left VLeft plates. This configuration allows simultaneous
determination of the horizontal xBPM and vertical yBPM beam positions. It is crucial to
take into account the geometric factors Kx and Ky related to the sensor sensitivity, as well
as the relative position of the BPMs to the designed beam path xOff and yOff. Equation
(5.2) summarizes the measurement principle of the BPMs [59, 60, 61].
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xBPM = Kx · VLeft − VRight
VLeft + VRight

+ xOff

yBPM = Ky · VUp − VDown
VUp + VDown

+ yOff

(5.2)

Figure 5.3: Illustration of a conventional rectangular BPM, cut diagonally to separate it
into electrodes for position detection in each direction. The signal at electrodes
1 and 2 can be used to determine the horizontal beam position, while the signal
at electrodes 3 and 4 can be used to determine the vertical beam position.
Adapted from [58].

In addition to the BPMs mentioned above, there are also BPMs with a special geometry
inside the beamline. These are in particular the two associated with the 2 MeV electron
cooler [55] and the two thin Rogowski coil BPMs near the so-called RF Wien filter [62].

A quantity that usually occurs together with BPMs is the so-called orbit RMS (Rooth
Mean Square). The orbit RMS is defined by the difference between the design orbit and
the closed orbit in the horizontal xi and vertical yi phase space at the position of the BPMs
in a storage ring as sketched by Equation (5.3).

xRMS =

√√√√ 1
N

N∑
i=1

x2
i and yRMS =

√√√√ 1
N

N∑
i=1

y2
i (5.3)
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Figure 5.4: Illustration of a conventional split-cylindrical BPM, which is cut diagonally to
separate it into two electrodes for position detection in each direction. With
the electrodes 1 and 2, also called right and left, one is able to determine the
horizontal position of the beam while with electrodes 3 and 4, typically called
up and down, work the same way for the vertical direction. Adapted from [63].

Steerer Magnets for Orbit Control

After the BPMs measure the beam’s position, it is essential to make corrections. This
involves utilizing orbit control software, which uses the measured orbit data and computes
the necessary adjustments for the correcting magnets, known as steerers, using the Or-
bit Response Matrix. For closed orbit corrections 40 steerers are installed. The objective
is to achieve the desired orbit by implementing these adjustments in those steerers [45, 64].

There are two approaches for obtaining an Orbit Response Matrix for orbit correction.
The simpler method involves calculating the Orbit Response Matrix from the accelerator
model. However, for better optimization that reflects the current machine state, a mea-
sured Orbit Response Matrix is preferred. In the earlier stages of orbit control software
usage, the Orbit Response Matrix was derived from the model due to the absence of a fast
automated procedure for measurement. Presently, automated measurement procedures
for the Orbit Response Matrix are available, making a measured Orbit Response Matrix
the predominant choice for orbit optimization [59].

Once the optimal steerer settings for the desired orbit are determined by the Orbit Re-
sponse Matrix, they are applied to the machine. Determining these optimal settings in-
volves utilizing SVD (Singular Value Decomposition) to pseudo-invert the Orbit Response
Matrix, with the exclusion of small singular values. The cut-off threshold, typically a fixed
value, may be selected by the user. The desired orbit change is then multiplied by the
inverted Orbit Response Matrix to calculate the necessary steerer adjustments. To avoid
beam loss, only a fraction of the calculated change is applied in each step, and the process
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is repeated until the orbit is as close as possible to the desired state [31, 59].

5.2 Spin Manipulators in COSY

In addition, several devices are installed in COSY to manipulate and detect the polariza-
tion of the bunched ion beam. These devices will be presented in the following sections.

5.2.1 Radiofrequency Solenoid

The COSY injection system provides only vertically polarized protons and deuterons [65].
The RF Solenoid provides a time-dependent longitudinal field to switch from vertical
polarization to in-storage plane polarization, where the polarization vector starts to precess
around the invariant spin axis [66, 67].

5.2.2 Snake Solenoid

Siberian snakes provide a static longitudinal field and can be used to avoid crossing de-
polarizing resonances in circular accelerators during the acceleration process. It is also
possible to use a Siberian Snake as a spin rotator. In this case, a vertically polarized beam
has already been accelerated to the desired energy. The Siberian Snake is switched on
after the acceleration process to transfer the vertical polarization to the horizontal plane
and to provide longitudinal polarization at the position of the Siberian Snake [65, 68].
Such a Snake Solenoid is implemented in COSY and used to measure the invariant spin
axis in two independent ways.

5.2.3 2 MeV Solenoid

Apart from the solenoids deliberately installed in COSY to manipulate the spin and thus
the polarization, there are also solenoids with longitudinal fields that mainly serve a differ-
ent purpose. These include the compensation solenoids of the two electron coolers [54, 55].
In the context of this work, only the compensation solenoid of the 2 MEV cooler plays a
role. Its main function is to compensate for the longitudinal magnetic field generated by
the electron cooler at both ends of the cooler [55, 69, 70]. Similar to the Snake Solenoid
its static longitudinal magnetic field can be used to determine the Invariant Spin Axis.

5.2.4 RF Wien Filter

The so-called RF Wien filter is, as the name suggests, an RF device. It is installed in
COSY so that its electric field is radial and the magnetic field is vertical. Both fields are
designed so that the Lorentz force on the nominal beam is always zero, despite permanent
changes in field strength. This is to avoid perturbation of the closed orbit by the RF Wien
filter. The RF Wien filter is thus a pure spin manipulator with the purpose of measuring
the radial component of the ISA, which carries information about the magnitude of the
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EDM. Since a non-vanishing EDM causes a tilt of the radial ISA and an oscillation of the
vertical polarization, one can try to determine these quantities. Unfortunately, the ISA
cannot be measured directly. The frequency of the oscillation of the vertical polarization
comes from the spin rotation in COSY plane due to the MDM and is therefore given by
fs = νsfRev = γGfRev. This fast oscillation of the vertical polarization in combination
with the amplitude of the oscillation, which becomes very small for protons and deuterons,
cause the vertical polarization to average out over time. The RF Wien filter is able to
introduce an artificial spin resonance that causes an additional rotation of the spin around
the vertical axis, preventing the signal from averaging out. Due to the additional spin
kick, a fraction of the vertical polarization is preserved each revolution, resulting in an
accumulation of vertical polarization over time. This principle of operation is illustrated
in the Figure (5.5) [71, 72].

Figure 5.5: Schematic representation of the working principle of the RF Wien filter. While
in the left figure the spin s⃗ (green) precesses freely in the COSY plane and is
on average 50% parallel to the direction of motion p⃗ (blue) and 50% antipar-
allel to it, the situation changes with the introduction of the RF Wien filter,
represented by the blue box in the right figure. The additional spin kick at
the RF Wien filter position breaks the symmetry so that the spin vector is
no longer 50% parallel and 50% antiparallel to the direction of motion. As a
result, some of the vertical polarization remains and accumulates over time.

In order to accumulate the vertical polarization, the RF Wien filter must run at one of
the harmonics kWF of the spin precession frequency. Assuming a beam momentum of
p0 = 970 MeV/c, the revolution frequency of deuterons fRev in COSY is about 750 kHz. If
the kWF = −1 harmonic of the precession frequency is chosen, the WF frequency at which
the fields must change is fWF ≈ 871 kHz, as shown in Equation (5.4). The values given
here correspond to those used during the Precursor Runs, which are further discussed in
Section (5.3) [73].
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fWF = (1 + kWF)fs = (1 + kWF)γGfRev ≈ 871 kHz (5.4)

With the RF Wien filter induced build-up of vertical polarization one measures the relative
orientation of the magnetic field axis of the RF Wien filter n⃗WF and the ISA n⃗ISA. This
can be roughly described by:

|n⃗WF × n⃗ISA|2 =

∣∣∣∣∣∣∣∣

ϕWF

1
0

×


ϕEDM + ϕRing

1
ξSol + ξRing


∣∣∣∣∣∣∣∣
2

= (ϕEDM + ϕRing − ϕWF)2 + (ξSol + ξRing)2.

(5.5)

As the RF Wien filter can be rotated around the beam by an angle ϕWF it is used to
compensate the radial tilt of the ISA due to ring systematics ϕRing and the EDM signal
ϕEDM in parallel. A static solenoid in the opposite straight of the RF Wien filter tilts
the longitudinal ISA by ξSol and can be used to compensate for the existing ISA tilt due
to ring systematics ξRing. If both ISA and RF Wien filter are parallel to each other, the
build-up of vertical polarization is zero despite the RF Wien filter being switched on. This
state must therefore be found. The goal of this thesis is to evaluate ϕRing and ξRing using
simulations and to compare the simulation results to measurement results.

Experimental results have been obtained by the JEDI collaboration, which is carrying
out a long-term project to measure the permanent EDM of protons and deuterons in a
storage ring. In order to develop the final high-precision experiment, a multi-stage strategy
is proposed. The goal of the first step of the strategy is to demonstrate the feasibility of
critical technologies for EDM measurement at an already existing facility. For this reason,
the so-called Precursor Runs 1 and 2 have been carried out at the COSY facility in 2019
and 2021 [25].

5.3 The Precursor Runs

During the Precursor Runs, vertically polarized deuterons with momenta of p0 = 970 MeV/c
were stored in the COSY storage ring. By using the RF Solenoid, the vertical polarization
was transferred in the storage ring plane. By observing the build-up of vertical polar-
ization induced by the RF Wien filter on a polarimeter, the tilt angle of the ISA was
determined. Since, besides the EDM, several systematic effects in the COSY storage ring
affect the vertical build-up, a simulation of the experiment is necessary to separate the
actual EDM signal from these systematic effects. This was the starting point for the work
carried out in this thesis. Since several improvements have been made between Precursor
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Run 1 and 2, such as alignment campaigns of the COSY magnet system, the installation
of the new JEPO polarimeter or an improved tuning of the RF Wien filter, this work will
mainly compare its results with those obtained during Precursor Run 2 [25].
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CHAPTER 6

Simulation Model of COSY

In order to fully investigate particle and spin motion, it is crucial to construct a simu-
lation model that accurately represents the real machine and experimental setup during
Precursor Run 2. This chapter presents the model created for this thesis and for this
purpose.

6.1 BMAD and TAO

The simulations carried out in this thesis use BMAD, a subroutine library used to track
charged particles in storage rings. The nomenclature BMAD is derived from the MAD
simulation program (now known as MAD-X [74]). Developed at the Laboratory for Ele-
mentary Particle Physics at Cornell University, this library of subroutines takes an object-
oriented approach and is coded in Fortran (FORmula TRANslation) 90. BMAD has a
modular structure to increase flexibility. Its design aims to empower programmers by pro-
viding pre-built functions for common tasks such as lattice file parsing and particle track-
ing, reducing the need to code such functions from scratch. Using the BMAD subroutine
library streamlines program development, saving time and minimizing programming er-
rors. BMAD enables the study of single and multiple particle beam and spin dynamics. It
provides tracking algorithms, including Runge-Kutta [76], PTC (Polymorphic Tracking
Code) [75] and symplectic integration. It also provides various routines for calculating
transfer matrices, emittances, Twiss parameters, dispersion and more. BMAD is equipped
to handle elements such as quadrupoles, RF cavities, solenoids, dipole bends, etc. In ad-
dition, elements can be defined to control the attributes of other elements [77].

During the development of BMAD it became apparent that many simulation programs
have common requirements such as data plotting and machine parameter display. As
mentioned above, the advantage of BMAD over a stand-alone simulation program is the
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streamlined development process. However, a disadvantage of BMAD is that, as a toolkit,
it is not possible to perform calculations without first developing a program. To overcome
this limitation, the program TAO (Tool for Accelerator Optics) was developed using the
BMAD software library. TAO provides functions such as viewing lattices, performing
Twiss and orbit calculations, and non-linear optimization on these lattices and their pa-
rameter. In addition, TAO’s object-oriented design makes it relatively easy to extend its
functionality. In the course of this thesis, TAO was frequently used for these tasks [78].

BMAD offers several calculation methods for tracking a particle through a lattice ele-
ment. These methods are able to determine the phase space or spin coordinates at the
exit end of the element based on the coordinates at the start. In addition, they define
how the linear transfer map through an element is calculated [79]. For consistency, only
one calculation method is used for all these tasks. Nevertheless, a selection of calculation
methods will be shown in the next section, as they will be discussed later in this thesis in
more detail.

6.1.1 Particle Tracking Algorithms

A ’tracking_method’ attribute can be set for each element in a BMAD lattice file. This
attribute defines the algorithm used to calculate the phase space coordinates at the exit
end of an element, based on the coordinates at the start of the same element. Three
routines are examined in more detail:

• Bmad_Standard: This calculation method uses typical tracking formulas based
on a paraxial approximation, with an emphasis on computational speed. Although
the tracking is non-symplectic, the non-symplectic errors generally fall within a small
regime, allowing the use of Bmad_Standard in the vast majority of cases [79].

• Runge_Kutta: Runge_Kutta tracking in BMAD uses the fourth-order Runge-
Kutta integration algorithm with adaptive step-size control. Although this method
is slower and non-symplectic compared to non-Runge-Kutta methods, it is typically
accurate [76, 79].

• Symp_Lie_PTC: This approach involves symplectic tracking by using a Hamil-
tonian with Lie operator techniques. While this method preserves symplecticity, it
can have a very slow computational speed [75, 79].

6.1.2 Spin Tracking Algorithms

In addition to specifying the ’tracking_method’ attribute, it is necessary to define the
’spin_tracking_method’ attribute. Similar to the previous attribute, this parameter de-
termines the algorithm used to calculate the spin orientation at the exit end of an element,
based on the spin orientation at the beginning of the same element. Three routines, the
same as those discussed before, are examined in more detail:
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• Bmad_Standard: Regarding spin tracking, the Bmad_Standard method uses
Romberg integration of spin rotation matrices for spin tracking [80, 79].

• Runge_Kutta: Spin tracking in the Runge_Kutta method uses the same fourth-
order integrator used for orbital coordinates to track the spin rotation vector [79, 76].

• Symp_Lie_PTC: Similar to particle tracking, the Symp_Lie_PTC tracking method
applies symplectic integration using Hamiltonian and Lie operators [75, 79].

6.2 Lattice Model

Originally, a BMAD simulation model of COSY created by V. Poncza [18] and Y. Dutheil
[81] served as the initial basis for the BMAD simulation model created for this thesis.
However, it became clear that certain modifications were needed for this work, as magnetic
elements had been replaced or moved along the storage ring. At that time, the most
accurate model with shifted elements already incorporated was the MAD-X simulation
model of COSY developed by I. Bekman and J. Hetzel [82, 74]. Using the MAD-X model
as a reference, a new BMAD simulation model was created with shifted elements, while
retaining most of the characteristics of the old BMAD simulation model. This refined
BMAD simulation model subsequently served as the structural framework for the thesis,
with ongoing updates and incorporation of new features. The following sections provide a
comprehensive overview of the old and new features embedded in the BMAD simulation
model of COSY.

6.2.1 Dipole Design

When describing dipole magnets in COSY, one has to distinguish between the physical
length of the magnet and the effective field length. While the physical length of the magnet
is LDip

Phy = 1.755 m [83], its effective field length is LDip
Eff = 1.833 m. The C-type dipole

magnets are arranged alternately in the ring, with a pattern of alternating joke inside
and joke outside the ring. When viewed from above, these dipoles have a rectangular box
shape and can also be described as such [84]. Since the MAD-X model and other COSY
simulation programs use a sector bend as a starting point for the design of the bending
magnets, this behavior was adapted in the design process for the BMAD simulation model.
Therefore, a series of 24 sector bends is implemented with a field that produces a bend
angle of αDip

0 = 15◦. The entry and exit angles are modified by βDip
1 = βDip

2 = 7.5◦ to give
the sector bend the shape of a rectangular bending magnet. The length of the implemented
dipole magnet is chosen to be the effective field length of the dipole, as BMAD does not
work with the physical elements, but with the field of the elements. If, as in the Precursor
Run 2, deuterons with a momentum of pDeu

0 = 970 MeV/c are to be stored in the COSY
simulation model, the application of these quantities leads to a dipole field strength of
BDip

y,0 = 0.472 T and a bending radius of ρDip
0 = 7 m. By default, the dipole field in BMAD

is described by a box field via a hard edge model.
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Dipole Fringe Fields

As fringe fields of dipoles can have a significant influence on orbit and optics, the imple-
mentation of fringe fields for the dipole magnets is a critical issue in the BMAD simulation
model [85]. In contrast to the hard edge model, a fringe field describes a more realistic
field profile with an increase in field strength at the entrance region, a constant peak
value BDip

y,0 in the center and a decrease in field strength at the exit region of the dipole
[86, 87, 88]. In BMAD an implementation of fringe fields can be achieved by adjusting
two parameters describing the total fringe field integral FInt and the half pole gap of the
dipole HGap as shown in Equation (6.1). These parameters are directly related to the
Enge function BEnge

y with its coefficients Ci as described in Equation (6.2) [79, 89].

FInt ·HGap =
∫

Pole
BEnge

y (s) ·
BDip

y,0 −BEnge
y (s)

2 · (BDip
y,0 )2

(6.1)

BEnge
y (s) =

BDip
y,0

1 + exp(P (s)) , with P (s) = C0 + C1 · s+ C2 · s2 + O(s3) (6.2)

This naturally leads to the question of the appropriate values for the parameters FInt and
HGap when characterizing the dipole magnets of COSY. The determination of the half pole
gap is straightforward, as the geometric aperture of the dipole is easily quantifiable and
has already been documented in design reviews [83, 84]. It is found to be HGap = 0.045 m.

Determining the fringe field integral FInt is a bit more complicated. If the evolution
of the dipole field strength and the size of the half-pole gap are known, the fringe field
integral can be calculated. This is done by a simulation based on the geometric properties
of the COSY dipoles, performed by J. Böker in 2019 [90, 91]. This simulation considers
the dipoles BE21 and BE22, as well as the vertical steerer magnet, quadrupole and sex-
tupole between them. The results of the simulation show that the field integral FInt is
in the expected range of 0.510 to 0.530, depending on the nearby material. If a dipole is
free standing, the magnitude is about 0.530, whereas in the presence of a nearby vertical
steerer magnet, the dipole field is shortened, resulting in a reduced fringe field integral of
about 0.510. For simplicity, a fringe field integral of a free standing dipole of FInt = 0.530
is assumed for each dipole in the BMAD simulation model of COSY.

Dipole Shortening Effect

Another detail shown by J. Böker’s simulation is the reduction of the effective field length
of the dipoles due to nearby magnetic material. While the effective field length of a sin-
gle detached dipole is determined to be LDip

Eff = 1.833 m, the situation changes when the
dipole is installed in COSY. The same effect is also discussed by L. Leunissen based on a
simulation and measurement in 1997 [92]. In his work he observes that the iron of nearby
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steering magnets interacts with the fringe fields of the dipoles and thus shortens the ef-
fective length. Using a dipole field strength of BDip

y,0 = 1 T, he estimates the shortening to
be about 0.26% to 0.34% of the effective length of a dipole, depending on the distance,
the type of steering magnet1 and the direction of steering. He also investigated the effect
of a quadrupole on the dipole field. It turns out that this dipole shortening effect due to
quadrupoles is negligibly small due to the large distance between quadrupoles and dipoles
in the COSY lattice.

In contrast, J. Böcker’s simulation assumes a dipole field strength of BDip
y,0 = 0.462 T.

In his simulation it can be seen that a neighboring sextupole also causes a reduction in
the effective field length of a dipole. J. Stein [91] uses J. Böcker’s simulation to estimate
the shortening of the effective field length of the dipoles due to the sextupoles and steerer
magnets in the COSY ring. He finds a much larger reduction in the effective field length of
the dipole magnets from 1.07% to 2.60%. This is most likely due to the lower field strength
of the dipole magnets. Assuming that only dipoles with sextupoles and steerers in their
vicinity are affected by a shortening of their effective fields, a total of 15 dipoles in COSY
are affected by a shortening effect. The Table (6.1) shows the 15 dipoles with steerers and
sextupoles in their vicinity, including the expected shortening. The shortening effect itself
can be summarized as a property of the distance, field shape and geometry of the iron.
This effect is also directly related to the reduction of the fringe field integral FInt due to
nearby material.

Dipole Perturbation Source Expected Shortening
BE02 MSV10 1.07 %
BE03 MSH11 2.60 %
BE04 MX05 1.07 %
BE05 MSH13 2.60 %
BE06 MSV14 & MX07 1.60 %
BE09 MX09 1.07 %
BE10 MSV18 1.07 %
BE11 MSH19 2.29 %
BE14 MSV30 1.07 %
BE16 MX14 1.07 %
BE18 MSV34 & MX16 1.95 %
BE19 MSH35 2.29 %
BE21 MX18 1.07 %
BE22 MSV38 & MSH39 2.37 %
BE24 MSH41 2.60 %

1A distinction is made between the different construction types of steering magnets, namely H-type and
C-type .
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Table 6.1: Dipoles with steerer magnets (MSV/MSH) and sextupoles (MX) in the vicinity,
including the expected shortening calculated by J. Stein based on the simulation
by J. Bökers.

There are several ways to model a dipole shortening effect in the BMAD simulation model
of COSY. On the one hand, the shortening can be produced by a horizontal steerer of
zero length in the dipole center. The passing particle receives a horizontal kick angle ∆x′

from this steerer, which pushes the particle to an outer trajectory, mimicking a shortening
of the effective dipole length. On the other hand, BMAD offers the possibility to apply
attributes to a dipole, such as an additional horizontal kick2, or the insertion of a magnetic
field error. In terms of particle tracking, all these options are equivalent, as shown by the
Equation (6.3), with negligible small deviations. For the BMAD simulation model of
COSY, the method of applying a magnetic field error is used [27].

∆x′ = LDip
Eff

ρDip
0 BDip

y,0
·BDip

Err (6.3)

In addition to the shortening effects estimated by J. Stein, M. Hartmann [93] is currently
investigating the dipole shortening effect, based on the results of a beam time at the COSY
storage ring in 2023. He claims that it is not possible to distinguish the dipole shorten-
ing effect from the effects caused by magnet misalignment and the estimated adjustment
accuracy of the dipole magnetic fields, which is about 0.5 % of their absolute field. By
assuming a shortening in all dipole magnets, he is able to produce a good match between
simulated and measured orbits. The shortenings determined by this method are in the
same order of magnitude as those determined by J. Stein.

As these systematics strongly influence the horizontal closed orbit, they have to be im-
plemented in the BMAD model of COSY. Initially, the shortenings estimated by J. Stein
in Table (6.1) are used for the model. Later in this work they will be redefined as fitting
parameters, since it is not possible to distinguish them from other systematic effects. The
Table (6.2) provides a overview of the attributes of a dipole magnet, which are introduced
in this section and utilized to simulate the Precursor Run 2 in the COSY storage ring via
BMAD.

2In contrast to the steerer magnet of zero length in the dipole center, this kick is applied along the whole
length of the dipole, not just at its center.
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Attribute Magnitude
Effective Length LDip

Eff 1.833 m
Bending Angle αDip

0 15◦

Entry Angle βDip
1 7.5◦

Exit Angle βDip
2 7.5◦

Magnetic Field BDip
y,0 0.462 T

Bending Radius ρDip
0 7 m

Fringe Field Integral FInt 0.530
Half Pole Gap HGap 0.045 m
Field Error BDip

Err individual

Table 6.2: Datasheet of the sector dipole magnet implemented in the BMAD simulation
of the COSY lattice for the simulation of the Precursor Run 2.

6.2.2 Quadrupole Design

The design of the quadrupoles in COSY’s BMAD simulation model is also not straight-
forward. There are two main reasons for this. The first reason is that the quadrupole
magnets have to be implemented with magnet misalignments to account for systematic
effects. These misalignments are given for a specific reference position of the quadrupole.
In BMAD this reference position is always the center of the magnet. Unfortunately, the
physical reference marks are at the beginning of the quadrupole, as will be shown in Sec-
tion (6.2.6). In order to implement measured misalignments without additional effort, all
quadrupoles are divided into two halves. The reference positions are marked by adding
two marker elements, one in front of the first half and one in front of the second half.
The two markers and the two dipole halves are supported by a girder structure to trans-
fer misalignments. The reference point of the girder structure is chosen as the marker
at the beginning of the quadrupole. This allows the misalignments to be applied to the
girder structure, which transfers the misalignments from the marker at the start of the
first quadrupole to the individual dipole halves. The mathematical background for this is
given in Section (6.2.6). An example of a split quadrupole supported by a girder structure
is shown below:

Quadrupole: QU01 ⇒ QU01: line =
( QU01_Marker_1, QU01_Half_1 , QU01_Marker_2 , QU01_Half_2 )︸ ︷︷ ︸

Supported by the girder structure QU01_Support.

Another problem is that some of the quadrupoles in the straight sections have correc-
tor windings fitted, which act as steerer magnets when powered. To account for this,
steerer magnets are added in the center of the previously explained girder structure where
necessary. This is sketched below.
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Quadrupole: QT01 ⇒ QT01: line =
( QT01_Marker_1, QT01_Half_1 , QT01_Marker_2, HKicker_01 , QT01_Half_2 )︸ ︷︷ ︸

Supported by the girder structure QT01_Support.

As with dipole magnets, a distinction must be made between the physical length and the
effective length of quadrupole magnets. There are also two different types of quadrupoles.
One is the quadrupole in the straight section QT and the other is the quadrupole in the arc
QU. In total there are 32 quadrupoles in the straight section and 24 in the arcs, with four
quadrupoles forming a family. Table (6.3) therefore summarizes the main characteristics
of all the quadrupoles, while Table (6.4) shows the strengths applied to each quadrupole
family to simulate Precursor Run 2 [83].

Attribute Magnitude
QU Physical Length LQU

Phy 0.300 m
QU Effective Length LQU

Eff 0.380 m
QU Families QU1-QU6
QT Physical Length LQT

Phy 0.570 m
QT Effective Length LQT

Eff 0.650 m
QT Families QT1-QT8

Table 6.3: Attributes implemented in the BMAD simulation model of COSY for the
quadrupole families in the straight section QT and in the arc QU.

Quadrupole Family Quadrupole Strength
QU1 −0.291997 1

m
QU2 +0.363592 1

m
QU3 −0.291997 1

m
QU4 +0.446509 1

m
QU5 −0.291997 1

m
QU6 +0.363592 1

m
QT1 −0.537464 1

m
QT2 +0.498917 1

m
QT3 +0.711981 1

m
QT4 −0.658880 1

m
QT5 −0.603644 1

m
QT6 +0.558404 1

m
QT7 −0.601440 1

m
QT8 +0.548490 1

m
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Table 6.4: Quadrupole settings of the BMAD simulation model of COSY used to pro-
duce sixfold symmetry with minimized dispersion in the straight sections at a
deuteron momentum of pDeu

0 = 970 MeV/c. These settings are used to simulate
Precursor Run 2.

A shortening of the effective quadrupole field length has so far not been considered in the
BMAD simulation model of COSY. The reason for this is that its effect on the orbit and
optic of COSY is expected to be very small and even more difficult to estimate than the
shortening effect in the dipoles. The same applies to the fringe field of the quadrupoles.
Therefore, a quadrupole fringe field is not implemented in the current model.

6.2.3 Sextupole Design

There are a total of 17 sextupole magnets in the COSY storage ring. These are divided
into 10 sextupoles in the arc regions of COSY and 7 sextupoles in the straight sections
of COSY. The 10 sextupoles in the arcs together form 3 families, each family having sex-
tupoles of different construction. The four sextupoles of the MXS family are symmetrically
located in the outer sections of the arcs, while the four sextuplets of the MXL family are
symmetrically distributed further inside the arc. The two sextuplets of the MXG family
are located in the center at the apexes of the arcs. The 7 sextupoles in the straights are
all identical in construction and are the same as the MXL sextupoles in the arcs. While
the sextupoles in the arcs are used to control the chromaticity in COSY, the sextupoles
in the straights are used to compensate for the multipole components of the dipoles and
quadrupoles. As the sextupoles in the straights were not used during Precursor Run 2
they will be not further discussed. A distinction must also be made between the physical
length and the effective field length of the sextupoles. The Table (6.5) shows both lengths,
as well as a summary of the sextupole families in the arcs and their settings during Precur-
sor Run 2. By specifying the effective field length and the sextupole field, the sextupoles
can be easily implemented in the BMAD simulation of COSY. No systematic effects were
deliberately assumed for the sextupole magnets, as these are currently neither known nor
considered to have a significant influence on the orbit and optics.
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Attribute Magnitude
MXS Physical Length LMXS

Phy 0.090 m
MXS Effective Length LMXS

Eff 0.140 m
MXS Family Members 4
MXS Position Outer Arc
MXL Physical Length LMXL

Phy 0.200 m
MXL Effective Length LMXL

Eff 0.243 m
MXL Family Members 4
MXL Position Inner Arc
MXG Physical Length LMXG

Phy 0.300 m
MXG Effective Length LMXG

Eff 0.328 m
MXG Family Members 2
MXG Position Center Arc
MXS Sextupole Strength kMXS

2 +2.48768 1
m3

MXL Sextupole Strength kMXL
2 −0.38585 1

m3

MXG Sextupole Strength kMXG
2 +1.14209 1

m3

Table 6.5: Sextupole families in the COSY arcs and settings of the BMAD simulation
model of COSY for the simulation of Precursor Run 2.

6.2.4 Steerer Magnets and Calibration

The BMAD simulation model of COSY uses the ’Hkicker’ and ’Vkicker’ elements to per-
form orbit corrections analogue to those in the real COSY storage ring. In the real COSY
storage ring there are a total of 23 steerer magnets for horizontal orbit control and a total
of 20 steerer magnets for vertical orbit control. In the simulation, these are implemented
by 23 HKickers and 20 VKickers, which are positioned at identical locations to their real
counterparts, but without physical length. The effect of a steerer magnet on the orbit is
a change in momentum based on its direction of action and the magnitude of its angle
θKick. To determine this kick angle from the real COSY storage ring for the simulation,
the steerer magnets have to be calibrated.

The aim of calibrating the steerers is to find a coefficient CKick for each steerer that
relates the steerer current I%, given as a percentage of its maximum current, to the an-
gle θKick. As this angle depends on the momentum of the particle beam, the calibration
coefficients are normalized by the rigidity BDip

y,0 ρ
Dip
0 . This is described by Equation (6.4).

The calibration coefficients were recalibrated at COSY in the summer of 2020 using the
4-bump method and the ORM method [94]. The results of the campaign are shown in
Figure (6.1) and Figure (9.2).
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CKick = I%
θKickB

Dip
y,0 ρ

Dip
0

(6.4)

Figure 6.1: Calibration factors for the vertical steerers magnets determined by the 4-bump
and ORM method at two different beam energies. The recalibration campaign
from summer 2020 is compared with the previously determined calibration
factors. Taken from [94].

Based on the calibration factors, the kick angles θKick can be determined for the Precursor
Run 2 in spring 2021. Their values are listed individually for each steerer in the Table
(6.6). Here, a positive kick for a horizontal steerer pushes a particle to an outer trajectory,
while a negative kick pushes it to an inner trajectory. Similarly, a positive kick for a
vertical steerer pushes a particle upwards, while a negative kick pushes the particle beam
downwards.
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HKicker Steerer Kick θKick VKicker Steerer Kick θKick

MSH01 +0.222 mrad MSV02 −0.089 mrad
MSHBLW2 +0.057 mrad MSVBLW1 +0.043 mrad
MSHBLW3 +0.114 mrad MSVBLW4 −0.058 mrad

MSH05 +0.050 mrad MSV06 −0.123 mrad
MSH07 −0.239 mrad MSV08 −0.035 mrad
MSH09 +0.184 mrad MSV10 +0.023 mrad
MSH11 −0.244 mrad MSV12 +0.058 mrad
MSH13 −0.394 mrad MSV14 −0.054 mrad
MSH17 +0.890 mrad MSV16 −0.111 mrad
MSH19 −0.332 mrad MSV18 +0.053 mrad
MSH21 +0.060 mrad MSV20 +0.063 mrad
MSH23 +0.267 mrad MSV22 −0.016 mrad

MSHBLWD1 −1.722 mrad MSV24 −0.056 mrad
MSHBLWD3 +0.704 mrad MSV26 −0.068 mrad

MSH27 +0.626 mrad MSV28 −0.012 mrad
MSH29 +0.030 mrad MSV30 +0.035 mrad
MSH31 −0.233 mrad MSV32 +0.093 mrad
MSH33 +0.905 mrad MSV34 −0.158 mrad
MSH35 −0.410 mrad MSV36 +0.272 mrad
MSH37 +0.050 mrad MSV38 −0.164 mrad
MSH39 −0.201 mrad / /
MSH41 −0.509 mrad / /
MSH43 −0.346 mrad / /

MSC100KEVGUN −1.239 mrad MSC100KEVGUN +0.204 mrad
MSC100KEVCOL +2.278 mrad MSC100KEVCOL +0.195 mrad

Table 6.6: Horizontal and vertical steerer magnets including their kick angle θKick from
the Precursor Run 2.

6.2.5 Beam Position Monitors

The BPMs implemented in the simulation also have a physical length of zero and are
installed in the same position as their counterparts in the real COSY storage ring. The
COSY simulation model comprises a total of 30 horizontal BPMs and 29 vertical BPMs.
These elements can be used in the simulation for orbit control, as they have an attribute
that specifies the beam position relative to their center, the so-called BPM orbit. Ideally,
this simulated BPM orbit should correspond to the orbit measured by the BPMs in the
real COSY storage ring. Therefore the alignment of the BPMs in the simulation plays a
crucial role, which will be further discussed later in this thesis.
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6.2.6 Implementation of Magnet Misalignments

As mentioned above, it is important to know the position of the magnets design orbit in
order to estimate their influence on the particle beam. One way to determine the orien-
tation of the magnets relative to the design orbit is to make a laser-based measurement
between their reference marks and then correct their orientation. The company Stollen-
werk&Burghof [95] carried out such a measurement and correction of the COSY magnets
in April 2019 and January 2020. Only the alignment of the dipoles and quadrupoles,
which have reference marks, can be determined, as shown in the Figure (6.2).

Figure 6.2: Reference marks P1-P5 of the quadrupole and dipole magnets used by the com-
pany Stollenwerk&Burghof to determine the orientation of the COSY magnets.

This allows the horizontal xOff, vertical yOff and longitudinal zOff offsets of a magnet to be
determined. It also gives the horizontal θOff and vertical ϕOff orientation and its roll angle
around the design axis ψOff. As sketched in Figure (6.2), the measurement for the dipoles
is performed at their center, while the measurement for the quadrupole is performed at
its beginning. The offsets measured at the quadrupole start, given by the vector V Beg

Off ,
have to be transformed to its center, given by V Cen

Off . In BMAD, for this purpose, an
internal coordinate transformation is applied to a quadrupole of length LQua, described
by Equation (6.5).

V Cen
Off = R · LHalf + V Beg

Off (6.5)
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with R = Ry(θOff)R−x(ϕOff)Rz(ψOff), LHalf =


0
0
L/2

 and V Beg
Off =


xOff

yOff

zOff

 (6.6)

Ry(θOff) =


+ cos(θOff) 0 + sin(θOff)

0 1 0
− sin(θOff) 0 + cos(θOff)

 (6.7)

R−x(ϕOff) =


1 0 0
0 + cos(ϕOff) + sin(ϕOff)
0 − sin(ϕOff) + cos(ϕOff)

 (6.8)

Rz(ψOff) =


+ cos(ψOff) + sin(ψOff) 0
− sin(ψOff) + cos(ψOff) 0

0 0 1

 (6.9)

In general, misalignments of sextupoles and steerers magnets cannot be measured, since
they have no reference mark. As some steerers are mounted on top of quadrupoles in
form of windings they share the same misalignments as the corresponding quadrupole.
The misalignments of all other steerer magnets and sextupoles are assumed to be zero.
The measurement results of the company Stollenwerk&Burghof regarding the offsets of
the quadrupole magnets in the straight sections of COSY and in the arcs can be found as
an example in the Figure (6.3) and (6.4). All other results can be found in the appendix in
the figures (9.3), (9.4), (9.5), (9.6). A detailed discussion of these offsets will be postponed
to a later chapter.
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Figure 6.3: Measured offset of the quadrupole magnets in COSY in its straight sections
by the company Stollenwerk&Burghof in April 2019 and January 2020. The
blue and red colored bars show the measured magnitude of the offset, while a
measurement error given by the company is shown as a black error bar.

6.2.7 RF Wien Filter

In the simulation, the RF Wien filter is represented in two different ways. On the one
hand, it is possible to implement a idealized RF Wien filter. For this, its radial electric
field Ex and its vertical magnetic field By are defined as box fields. Thus, a passing par-
ticle beam experiences both Rf Wien filter fields at full strength as soon as it enters the
RF Wien filter. This idealized model of a RF Wien filter has a length of LWF = 1100 mm
and has its center at the target position TP1 in COSY. The magnetic field has a strength
of 0.03 mT, while the electric field is defined so that the Lorentz force is zero in the RF
Wien filter.

Alternatively, the BMAD simulation program can read in the field map of an electromag-
netic field to use for particle and spin tracking. A simulated electromagnetic field map by
Jamal Slim [47] is available for the RF Wien filter, which describes the full length of the
RF Wien filter LWF = 1100 m, as well as ±5 mm from its center in transverse phase space.
The field map consists of 106 simulated data points. Each phase space direction, horizon-
tal x, vertical y and longitudinal z, is described by 102 data points. Interpolation between
the points is done in BMAD to describe the intermediate spaces. Figure (6.5) and Figure
(6.6) show the radial electric field Ex and the vertical magnetic field By of the simulated
RF Wien filter in the plane y = 0 mm. In addition, figures (9.7), (9.8), (9.9) and (9.10)
show the electromagnetic fields of the simulated RF Wien filter field in all other directions.
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Figure 6.4: Measured offset of the quadrupole magnets in COSY in its arc sections by the
company Stollenwerk&Burghof in April 2019 and January 2020. The blue and
red colored bars show the measured magnitude of the offset, while a measure-
ment error given by the company is shown as a black error bar.

In Figure (6.5) and Figure (6.6) it can be seen that, unlike the idealized RF Wien fil-
ter, this simulated model of a realistic RF Wien filter has a fringe region that describes
the rise and fall of the electric and magnetic fields. Within this fringe region the Lorentz
force is not zero because the electric and magnetic fields rise at different rates. Therefore,
there is a kick in the horizontal phase space. In order to minimize the disturbance to the
particle beam caused by the RF Wien filter, one of the filter’s fields must be scaled. To
describe the orbit along the storage ring globally, the horizontal orbit RMS (Rooth Mean
Square) xRMS is defined. This is shown in Equation (6.10) and results from the relative
horizontal deviations xi from the nominal orbit at each element i.

xRMS =

√√√√ 1
N

N∑
i=1

x2
i (6.10)

Figure (6.7) shows the dependence of the horizontal orbit RMS on the scaling of the
simulated magnetic field of the RF Wien filter by the factor BSca. Since a scaling factor is
required at which the horizontal orbit RMS is minimal, it can be roughly determined to
be BSca = 1.00045. This scaling factor will be used in the rest of this paper. As the figures
(9.7), (9.8), (9.9) and (9.10) show, the influence of all other field components of the RF
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Wien filter is negligible compared to the main fields Ex and By. This is also the reason
why the realistic RF Wien filter has no influence on the vertical orbit and its RMS value.
By default, these RF Wien filter fields are all statically defined in the COSY simulation
model. During tracking, however, these can be varied so that the RF Wien filter acts like
an RF device from the perspective of the particle beam.

Figure 6.5: Simulated field map of the vertical magnetic field component of a realistic RF
Wien filter in the plane y = 0 mm. The field map consists of a total of 104,
with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].

6.2.8 Solenoids

A total of three static solenoids are implemented in the COSY simulation model. These
are the previously mentioned Snake Solenoid and the two compensation solenoids of the
electron coolers, the 2 MeV Solenoid and the 100 keV Solenoid [55, 65]. These are repre-
sented in simplified form by a purely longitudinal field. They are also assigned the same
length of LSol = 676.667 mm. This length was chosen for the Snake Solenoid in J. Hetzel’s
MAD-X model and is adopted for all static solenoids in COSY’s BMAD model. Thus,
the effect of each solenoid on orbit and spin at the same field strength depends only on
the position of the solenoid in the lattice. The RF Solenoid is currently not represented
in either the MAD-X COSY lattice or the BMAD COSY lattice [66, 67]. Its mode of
action, the transfer of the vertical polarization into the COSY plane, can be reproduced
differently in a simulation. For tracking, the initial spin components must be defined dif-
ferently depending on the orientation of the polarization direction. As the RF Solenoid is
switched off after this transfer, it does not affect the beam or the ISA and does not need
to be considered further in a simulation.

69



Figure 6.6: Simulated field map of the radial electric field component of a realistic RF
Wien filter in the plane y = 0 mm. The field map consists of a total of 104,
with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].

Figure 6.7: Dependence of the horizontal orbit RMS on the scaling parameter BSca of
the simulated magnetic RF Wien filter field. The minimal horizontal orbit
perturbation occurs at a scaling of approximately BSca = 1.00045.
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CHAPTER 7

Determination of the Invariant Spin Axis

Having discussed Precursor Run 2 to determine the ISA and presented the BMAD sim-
ulation model to replicate the experiment, it is necessary to look at the determination
mechanism of the ISA tilt angle in the BMAD simulation model. As part of this, it is
necessary to analyze several factors that influence the calculation of the ISA. A starting
point for the discussion will be the effect of the spin tracking algorithm on the ISA tilt
angle.

7.1 Benchmarking of Spin Tracking Algorithm

To better understand the impact of the BMAD tracking algorithms on the ISA tilt angle, it
is necessary to compare the results of the algorithms when calculating the particle’s passage
through an existing element in the storage ring. The algorithms studied for this purpose
have already been presented in the previous chapter. In the later context they will be
referred to as BS (Bmad_Standard), RK (Runge_Kutta) and PTC (Symp_Lie_PTC).

In this study, deuterons with a momentum of p0 = 970 MeV/c are stored in the BMAD
COSY lattice and the dipole, quadrupole and sextupole magnets are operated with the
values from the tables (6.2), (6.4) and (6.5). The effects of a potential EDM signal,
the shortened acting dipoles, those due to magnet displacements and contributions from
steerer magnets have initially been neglected. As a result, the closed beam orbit in COSY
should be exactly on the design orbit and the orientation of the ISA should be purely
vertical. The TAO program is then used to calculate the closed orbit and the ISA tilt an-
gle on the closed orbit for various tracking algorithms, resulting in all tracking algorithms
being able to describe this initial setup in terms of orbit and ISA tilt angle.
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Incorporating an EDM signal or a longitudinal field that mimics a solenoid into the sim-
ulation will shift the ISA tilt angle as shown in the previous chapters. However, the orbit
does not change. Again, the result of all tracking algorithms is identical and perfectly
described by theory. A first differences in the outcome of the tracking algorithm occur
when an orbit kick is introduced by either a ramping up a steerer magnet or misaligning
an arbitrary quadrupole magnet. As the ISA tilt angle is mainly influenced by the vertical
phase space, as it will be demonstrated further below, the kick or misalignment has to
be in the vertical direction so that any difference in the ISA tilt angle becomes visible.
For this reason, the performance of all tracking algorithms is tested for the scenario of
one vertically misaligned quadrupole. Since the quadrupole can be arbitrarily chosen, the
quadrupole QT02 is misaligned by yQT02

Off = 1 mm during the investigation. Figure (7.1)
summarizes the results of the computed vertical closed orbits yClo for the tracking algo-
rithms used and also compares their differences.

Figure 7.1: Comparison of the tracking results of three different tracking algorithms for
the vertical closed orbit in COSY after vertical displacement of the quadrupole
QT02 by yQT02

Off = 1 mm. As the graphs in the top panel, which show the
absolute vertical orbit, overlap, the differences between the tracking algorithms
are shown in the bottom panel.

In the top panel of Figure (7.1) the y-axis describes the position of a particle on the vertical
closed orbit with respect to the design orbit. The reason why the horizontal orbit is not
shown is that the particle moves completely in horizontal phase space on the design orbit.
This is not the case for the vertical phase space, where the closed orbit deviates from the
design orbit by a few millimeter due to the vertical misalignment of the quadrupole QT02.
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The graphs in different colors represent the results of the different tracking algorithms.
As in the upper panel there is hardly any difference between the different tracking algo-
rithms visible, the lower panel shows the calculated differences in between the tracking
algorithms. As the differences in orbit tracking are four orders of magnitude less than
the absolute orbit, it can be concluded that these differences are negligible. However, it
should be noted that the largest differences occur when PTC tracking is included.

Identical simulations with similar results were performed for other quadrupoles to ac-
count for different β functions at their dedicated position in COSY. The vertical orbits
always ended in a range of a few mm, while the difference between the tracking algorithms
is calculated to be well below µm. It will be shown later that a closed orbit of a few
millimeter or a quadrupole misalignment of up to 1 mm is also the order of magnitude
to be expected in a realistic COSY setup. Therefore, it is not necessary to check for
larger magnet displacements or closed orbits. Similar results are also obtained when the
quadrupole is misaligned in horizontal direction. Unfortunately, one aspect that cannot
be illuminated by the horizontal displacement of a quadrupole is the tilt angle of the ISA
for different tracking algorithms. This tilt angle is therefore analyzed in more detail for
the vertical quadrupole QT02. Here, Figure (7.2) summarizes the results of the absolute
radial |nx| and longitudinal |nz| ISA tilt angles for the different tracking algorithms, while
Figure (7.3) shows these differences explicitly.

Figure 7.2: Absolute radial (top image) and longitudinal (bottom image) ISA tilt angle for
the particle on the closed orbit in COSY after displacement of the quadrupole
QT02 by yQT02

Off = 1 mm in the vertical direction. The results of three different
tracking algorithms are compared. In this scope, no discernible difference is
visible, as the corresponding graphs overlap.
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As illustrated in Figure (7.2), both panels demonstrate that a vertical closed orbit, situ-
ated a few millimeters from the design orbit, results in an ISA tilt angle of less than one
milliradian in both the radial and longitudinal directions. At this scale, the differences
between the chosen tracking programs are not discernible, and it is therefore worthwhile
to plot their differences instead. This is done in Figure (7.3). It shows that the differences
between the tracking algorithms studied are less than 10−2 mrad. Similar to the orbit
case, the largest differences between the tracking algorithms occur when PTC tracking is
considered.

Figure 7.3: Differences in the absolute radial (top image) and longitudinal (bottom image)
ISA tilt angle for the particle on the closed orbit in COSY after displacement of
the quadrupole QT02 by yQT02

Off = 1 mm in the vertical direction. The results
of three different tracking algorithms are compared.

In addition to the scenario of a misaligned quadrupole, the scenario of a steerer kick on
the orbit can be analyzed. In this case, the misalignment of the quadrupole is removed
while an arbitrary steerer magnet is used to kick the vertical orbit. Steerer magnet MSV02
is chosen with a kick magnitude of θKick = 1 mrad, as this represents the magnitude of
the largest steerer kicks during Precursor Run 2. Figure (7.4) shows the resulting vertical
closed orbit as well as the differences in between the analyzed tracking algorithms. As the
steerer kick is only applied in vertical phase space, the horizontal closed orbit is identical
to the design orbit and is therefore not shown. Due to the large steerer kick, the vertical
closed orbit is now at a distance of up to 10 mm from the design orbit and is about four
times larger than the vertical closed orbit due to the quadrupole misalignment. When
comparing the differences in the closed orbit between the tracking algorithms, there are
deviations in the order of some µm. However, the difference of a some µm is still about
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four orders of magnitude smaller than the absolute vertical closed orbit. The differences
become more impactful when comparing ISA tilt of the particle on the closed orbit, illus-
trated by Figure (7.5) and Figure (7.6).

Figure 7.4: Comparison of the tracking results of three different tracking algorithms for
the vertical closed orbit in COSY after giving the vertical orbit a kick of
θKick = 1 mrad at the position of steerer magnet MSV02. The top panel shows
the absolute vertical orbit, while the bottom panel displays the difference in
between the different tracking algorithms.

The RK tracking algorithm has, as Figure (7.5) and Figure (7.6) indicate, a problem to
properly track the ISA orientation in comparison to the other two tracking algorithms.
The reason for this problem is the slicing approach that RK uses when tracking through
an element. As the steerer magnet in the BMAD simulation model has a length of zero,
the RK tracking algorithm is unable to handle the steerer magnet properly. One solution
out of this problem is therefore the assignment of length to the steerer magnet. However,
for the sake of simplicity, this is not done. Therefore, RK tracking algorithm is excluded
as a possible tracking algorithm for this thesis. Having ruled out RK, the question remains
as to whether the BS or PTC tracking algorithm should be used as the preferred tracking
algorithm. While PTC takes advantage of symplectic tracking by using a Hamiltonian
with Lie operator techniques, it should be more accurate than the BS tracking algorithm.
However, PTC has a very slow computation time and is therefore unsuitable for many of
the computationally intensive algorithms involved in ISA determination. For this reason,
BS is selected as the preferred tracking algorithm. Based on the differences between of BS
and PTC in orbit and spin tracking, the uncertainties σTracking,Orbit and σTracking,ISA are
defined when using the BS algorithm instead of PTC algorithm. Since this uncertainty is
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dominated by the size of the closed orbit, it can be shown that it cannot be larger than:

σTracking,Orbit ≤ 5µm and σTracking,ISA ≤ 5µrad (7.1)

Figure 7.5: Absolute radial (top image) and longitudinal (bottom image) ISA tilt angle
for the particle on the closed orbit in COSY after giving the vertical orbit a
kick of θKick = 1 mrad at the position of steerer magnet MSV02. The results
of three different tracking algorithms are compared.

7.2 Determination of Stable Spin Axis with Solenoids

Unlike the direct calculation of the ISA in a simulation using TAO or BMAD, the ISA
tilt cannot be measured directly in a real experiment. As explained before, radial and
longitudinal ISA tilt angle can be measured simultaneously at the RF Wien filter position
using a static solenoid and the RF Wien filter. Alternatively, each static solenoid in the
COSY storage ring also provides access to the longitudinal ISA tilt angle at its position.
The so-called spin tune mapping method can be used for this purpose [96]. This method
can also be used in a simulation to determine the ISA tilt angle.

7.2.1 Spin Tune Map and Solenoid Calibration

As the name of the method suggests, spin tune mapping analyzes the change in spin tune in
the form of a map. In an idealized storage ring with purely magnetic guiding elements, as
in COSY, the spin tune is given by νs,0 = γ0G, as explained in Section (4.3.1). Misaligned
magnets and other systematics in COSY perturb the idealized closed orbit and thus also
the idealized spin tune νs,Clo. The perturbed spin tune can additionally be manipulated by
static solenoids ∆νs as described in Section (4.3.2). In COSY the Snake Solenoid and the
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Figure 7.6: Differences in the absolute radial (top image) and longitudinal (bottom image)
ISA tilt angle for the particle on the closed orbit in COSY after giving the
vertical orbit a kick of θKick = 1 mrad at the position of steerer magnet MSV02.
The results of three different tracking algorithms are compared.

2 MeV Solenoid are static and are therefore used to generate a spin tune map described by
the Equation (7.2). This map depends on the longitudinal magnetic field of the solenoid
magnets BSol and BSna.

π sin(πνs,Clo) · ∆νs = − cos(πνs,Clo)
(

cos kSnaBSna
2 cos kSolBSol

2 − 1
)

− cSol sin(πνs,Clo) sin kSnaBSna
2 cos kSolBSol

2
− cSna sin(πνs,Clo) cos kSnaBSna

2 sin kSolBSol
2

− sin kSnaBSna
2 sin kSolBSol

2

(7.2)

Two important variables that appear in Equation (7.2) are the calibration factors of the
solenoids kSol and kSna. The calibration factor of the Snake Solenoid kSna is also needed
in the next section to determine the longitudinal ISA tilt angle at the RF Wien filter
location. Two other variables not explained so far are the projections of the ISA at the
solenoid location cSol and cSna. These quantities give access to the longitudinal ISA at
each solenoid location. These four variables must be determined by fitting the Equation
(7.2) to a spin tune map. To illustrate this process and how a spin tune map is calculated
in the BMAD simulation, an example is shown in Figure (7.7), where the measured steerer
magnet kicks from Precursor Run 2 and the measured magnet misalignments in 2020 by
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Stollenwerk&Burghof have been loaded into the BMAD simulation model, creating an
arbitrary closed orbit.

Figure 7.7: Spin tune map after applying measured steerer kicks and magnet misalign-
ments to an idealized COSY lattice. The black dots indicate the simulated
data points, while the continuous plane in blue and red shows the result of fit-
ting the Equation (7.2) to the data points. The corresponding fit parameters
are shown in the legend.

Figure (7.7) shows the effect of varying the field strength of the 2 MeV Solenoid BSol and
the Snake Solenoid BSna on the spin tune. Field values in the range ±5 mT are chosen as
the spectrum of field variation. The resulting simulated changes in the spin tune ∆νs are
shown on the z-axis, indicated by black dots. An arbitrarily chosen grid of 11 × 11 points
forms this spin tune map. The error on each of the simulated spin tune changes is deter-
mined to be 10−13, which comes from the numerical precision of the BMAD simulation
program. No residuals are shown because the numerical error is an order of magnitude
larger than the residuals of the fit. The blue-red surface plot shows the result of fitting
the Equation (7.2) to the simulated points. The resulting fit parameters are given in the
legend to the plot. It is noticeable that the results of kSol and kSna differ. Since both mag-
nets in the simulation model have a purely longitudinal field and do not differ in length,
one would expect an identical calibration parameter. It can be shown that this is the case
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if the closed orbit is identical to the design orbit, so it can be concluded that the difference
is caused by the path difference in the individual solenoid.

On the other hand, it is not surprising that the projections of the longitudinal ISA cSol and
cSna differ from each other, since they should indicate the longitudinal ISA tilt angle at
different positions inside the COSY ring. To check the accuracy of the spin tune mapping
method, these quantities have to be compared with the respective longitudinal ISA tilt
angle at the position of the solenoids nz,Sol and nz,Sna. This is done in Equation (7.3) and
Equation (7.4).

nz,Sol = −393.95µrad ⇎ cSol ≈ +140.79µrad (7.3)

nz,Sna = +79.04µrad ⇎ cSna ≈ +11.95µrad (7.4)

Both equations show that the projection of the longitudinal ISA is not equivalent to the
tilt of the longitudinal ISA at identical positions. This has not been the case and will be
explained in Section (7.2.2) with the need for correction factors. Before that, the so-called
solenoid calibration should be introduced. This is nothing more than the simplification of
Equation (7.2), assuming that only one solenoid is turned on. The resulting equation

∆νs = − 1
π

(
cot(πνs,Clo)

(
cos kSolBSol

2 − 1
))

− cSol sin kSolBSol
2 , (7.5)

shows the case where the 2 MeV Solenoid is switched on. An analogous equation can also
be formulated for the Snake Solenoid. Based on this simplified equation, the calibration
factors and the projection of the longitudinal ISA at the solenoid position can be deter-
mined from simulated spin tune changes using only one solenoid. Figure (7.8) and Figure
(9.11) show this determination method for the scenario already discussed for the spin tune
map method. In these figures the simulated spin tune changes are shown in the top panel
as a function of the solenoid field variations. The lower panels show the residuals of the
fitting Equation (7.5) to the simulated data points. The simulated data points are shown
in black, while the fit is shown in blue. As explained above, the errors in the simulated
spin tune changes are due to the numerical precision of the BMAD simulation program.
They are an order of magnitude larger than the residuals of the fit. The parameters of
the fit are given in the legend. They differ by a small amount from the corresponding fit
parameter of the spin tune map, which cannot be explained within their errors. The exact
reason for this has not yet been identified.

The advantage of the solenoid calibration method is that only one solenoid is required
to determine the projection of the longitudinal ISA at its position. The other solenoid can
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be used to manipulate the tilt angle of the longitudinal ISA. In this way it can be shown
that the projection of the longitudinal ISA is equal to the longitudinal ISA tilt angle when
the closed orbit and the design orbit are identical, as shown by Equation (7.6).

Figure 7.8: Calibration of the 2 MeV Solenoid after applying the measured steerer kicks
and measured magnet displacements to an idealized COSY lattice. In the top
panel, the black dots indicate the simulated data points, while the blue line
shows the result of fitting the Equation (7.5) to the data points. The bottom
panel shows the residuals from the top panel.

Closed Orbit = Design Orbit ⇒ nz,Sol = cSol and nz,Sna = cSna (7.6)

This shows that the orientation of the beam trajectory and the magnetic field of the
solenoid have an effect on the determination of the ISA longitudinal tilt angle and must
therefore be taken into account. This fact will be investigated in more detail in the next
section in the form of solenoid tilt angles and different beam trajectories at the solenoid
position to determine correction factors for the spin tune map and solenoid calibration.

7.2.2 Correction Factors for Spin Tune Map and Solenoid Calibration

In order to determine a correction factor for the spin tune map method and the solenoid
calibration method, it is necessary to generate various closed orbits that deviate from the
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design orbit in transverse phase space. To generate these closed orbits, random kick values
are generated for the horizontal and vertical steerer magnets of COSY and implemented
in the BMAD simulation model. They are calculated using a normal distribution with
an expectation value equal to no steerer kick. The standard deviation is set to produce
kick values of σGaus,Ste = 1 mrad. It can be shown that this constraint only plays a role
in avoiding particle loss, but has no effect on the result of this investigation. Using these
closed orbits, the correlation between the orientation of the beam axis at solenoid magnet
position, given by the relative horizontal Px,i = px,i

p0
and vertical Py, i = py,i

p0
momentum,

and the difference between the longitudinal ISA projection and the longitudinal ISA tilt
angle ci − nz,i can be studied. The i denotes the individual solenoid position while p0

represents the reference particle momentum. A clear dependence on the relative vertical
momentum can be observed as shown in Figure (7.9) and Figure (9.12) for the single
solenoid. A dependence on the relative horizontal momentum at the solenoid position
cannot be observed.

In the upper panel, Figure (7.9) and Figure (9.12) show the aforementioned difference
on their y-axis as a function of the relative vertical momentum at the position of the
solenoids on the x-axis. The simulated data points are shown in black. Their error bars
result from the fit error in the determination of ci by the solenoid calibration method. A
blue line indicates a linear fit to the simulated data points. The residuals of this linear
fit are shown in the lower panel, while the fit parameters with error are shown in the
legend. These plots confirm that there is no difference in the absence of relative vertical
momentum. This can be seen from the non-existent offset in the linear fit function. When
such an offset is considered as a fitting parameter, it is zero within the fitting error. Once
the beam passes through the magnet with a relative vertical momentum, the projection
of the longitudinal ISA must be corrected for this relative vertical momentum so that it
again corresponds to the longitudinal ISA. This is indicated by the slope of the linear fit,
which is close to 1 mrad

mrad for both magnets. The small deviation from a slope of exactly
1 mrad

mrad can be explained by the fact that a solenoid has a steering effect on the trajectory
of the beam as soon as it does not pass through the center of the solenoid. The correction
factor for passing the solenoid with a relative vertical momentum can be interpreted as a
change from the particle reference system to the storage ring reference system.

In addition to the investigation of the beam axis orientation at solenoid position, also
the orientation of the solenoid magnets has to be investigated. To do this, the random
steerer kicks are set back to zero so that the closed orbit and the design orbit are identical.
To measure a non-zero longitudinal ISA without disturbing the orbit, one solenoid magnet
is operated statically1 while the other magnet is varied for the solenoid calibration. The
solenoid calibration is performed for different horizontal ϕx,i and vertical ϕy,i pitch angles
of the solenoids as shown in figures (7.10), (9.13), (9.14) and (9.15). A pitch angle is a

1Without being rotated relative to the beam path.
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horizontal or vertical rotation of the solenoid around its center.

Figure 7.9: Determination of a correction factor for the 2 MeV Solenoid after perturbation
of the closed orbit by random steerer kicks. The top panel shows the difference
between the projection of the longitudinal ISA and the actual longitudinal ISA
tilt at the solenoid position as a function of the relative vertical momentum
of the beam at the solenoid position. The simulated differences are shown as
black dots, while a linear fit with the fit parameter given in the legend is shown
in blue. The bottom panel shows the residuals of the linear fit.

The dependence of the difference on the vertical pitch angle of the solenoid magnets can
be seen in Figure (7.10) and Figure (9.13), while Figure (9.14) and Figure (9.15) show the
dependence of the difference on the horizontal pitch angle of the magnets. In all these fig-
ures, the simulated differences are shown in black, while a cubic fit is shown in blue, with
the fit parameters and errors given in the legend. The bottom panel shows the residuals
of the fit. As before, the errors in the simulated data points come from the fit error on ci

by the solenoid calibration method.

In contrast to the previous investigation, a cubic rather than a linear fit is required to
describe the simulated data points. In addition, significantly larger angles of rotation
were analyzed due to the precise determination of the third order polynomial in the cubic
fit. In general, it can be seen that there is a dependence on the pitch angle of the solenoid
magnet. This dependence is vanishingly small in contrast to the dependence of the differ-
ence on the relative vertical momentum beam at the magnet position. This can be seen
immediately by comparing the fit parameters of the slopes. Whereas previously this factor
was of the order of 1mrad

mrad , it is now of the order of 10−4 mrad
mrad and lower. Furthermore,

this factor is now different for the Snake Solenoid and the 2 MeV Solenoid. This can be
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explained by the steering effect of the solenoid when it is not aligned with the beam tra-
jectory. Due to the difference in the β function at the position of the different magnets, a
different orbit response is caused. The fit parameters for the offset and the second order
polynomial were zero within their fit errors and are therefore not shown. Since the pitch
angle of the solenoid magnets is thus assumed to be negligibly small for the determination
of a correction factor between the projection of the longitudinal ISA and the longitudinal
ISA tilt, Equation (7.7) can be formulated to determine the longitudinal ISA from the
projection of the longitudinal ISA.

nz,Sol = cSol − Py,Sol

nz,Sna = cSna − Py,Sna
(7.7)

Figure 7.10: Determination of a correction factor for the 2 MeV Solenoid after pitching
the solenoid by an angle ϕy,Sol in the vertical direction. The top panel shows
the difference between the projection of the longitudinal ISA and the actual
longitudinal ISA at the solenoid position as a function of the vertical tilt angle
of the solenoid. The simulated differences are shown as black dots, while a
cubic fit with the fit parameter given in the legend is shown in blue. The
bottom panel shows the residuals of the cubic fit.
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7.3 Determination of the ISA with an idealized RF Wien Filter

The parallel determination of the radial and longitudinal ISA at one location in COSY
requires more effort than the previously discussed method. The RF Wien filter was devel-
oped to make this possible. The background was that an existing EDM signal of a particle
on the design orbit causes a very fast oscillation νs,EDM of the vertical spin component with
small amplitude Aver,EDM. This topic has already been discussed in Section (5.2.4). The
amplitude and spin tune for an EDM of size ηEDM = 1 · 10−4 and a deuteron momentum
of p0 = 970 MeV/c are given by:

|Aver,EDM| =
∣∣∣∣ηEDM · β0

2G

∣∣∣∣ ≈ 1.60633 · 10−4, and (7.8)

|νs,EDM| =

∣∣∣∣∣∣γ0G

√
1 +

(
ηEDMβ0

2G

)2
∣∣∣∣∣∣ ≈ 0.1609772. (7.9)

Figure (7.11) displays a BMAD simulation of a scenario, where a particle is moving in an
idealized COSY lattice on the design orbit with spin components initially in the COSY
plane. In addition, an EDM signal of the previous described magnitude is assumed. In
the upper panel the horizontal spin component sx at a fixed position in COSY is plotted
against the simulated revolutions n in COSY, while in the lower panel the vertical spin
component sy at a same fixed position in COSY is also plotted against the revolutions in
COSY. Simulated data points are indicated in black. A sinusoidal curve was fitted to the
simulated data to determine amplitude and frequency and is shown in blue. The fitting
parameters are given in the legends. The evaluation position for the simulated data points
in COSY was chosen to be the RF Wien Filter location. However, the location does not
matter so far, because the design orbit and the closed orbit are identical.

In Figure (7.11) the horizontal spin component sx has been chosen as an example to
show the full rotations around the mainly vertically oriented ISA. This can be observed
from the amplitude of |Ahor,EDM| ≈ 1 and the fact that the longitudinal spin component
sz would show a π-shifted oscillation with the amplitude of |Alon,EDM| ≈ 1. The frequency
of the horizontal oscillation is given by the EDM and MDM contributions, as shown by
Equation (7.9), and agrees with the theoretical prediction. The same applies to the ver-
tical oscillation frequency. Similarly, the amplitude of the vertical oscillation |Aver,EDM|
agrees with the theoretical prediction from Equation (7.8). This small and fast oscillation
is difficult to access experimentally. Therefore, the RF Wien filter has to be used.

The RF Wien filter running on one of the harmonics khar of the spin precession frequency
νs,Clo, as explained in Section (5.2.4), causes an additional rotation of the spin around the
vertical axis, resulting in a macroscopic build-up of the vertical polarization. This spin
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Figure 7.11: Evolution of the horizontal (top panel) and vertical (bottom panel) spin com-
ponents for a few revolutions in COSY. The particle moves on the design orbit
and an EDM of ηEDM = 1 · 10−4 is assumed. The simulated data points are
marked in black, while a fitted sinusoidal curve is indicated by a blue line.
The legends show the fitted amplitude and frequency of the oscillation. Er-
rors in the simulated data points and fit parameters are at a numerical level
of 1 · 10−12.

precession frequency νs,Clo must be the one on the closed orbit and can therefore differ in
general from a spin tune of νs,0 or νs,EDM. To adjust the RF Wien filter fields Ex,WF and
By,WF in the BMAD simulation model, they are varied at the beginning of each revolution
n in COSY. To increase the effect of the RF Wien filter and reduce the simulation time,
a parameter AAmp is introduced to scale the maximum RF Wien filter fields Emax,WF and
Bmax,WF. The magnitude of AAmp has to be carefully chosen for each COSY setup, as too
large fields can lead to particle loss in the RF Wien filter during tracking due to imperfect
Lorenz force cancellation. In addition, a relative phase φrel for the RF Wien Filter has to
be chosen. Its purpose is explained later in this section. The complete adjustment of the
RF Wien Filter fields in the simulation is shown by Equation (7.10).
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Ex,WF = AAmp · Emax,WF · cos (2π · n · |khar + νs,Clo| + φrel)

By,WF = AAmp ·Bmax,WF · cos (2π · n · |khar + νs,Clo| + φrel)
(7.10)

Based on these periodic field changes of the RF Wien filter, it is now possible to observe
a build-up of vertical polarization. The next section will explain how the tilt of the ISA
can be determined from this build-up.

7.3.1 Direct Fit method

The build-up of vertical polarization Py can also be defined as the angle α between vertical
polarization and polarization in the COSY plane, given by Px and Pz. This is shown in
Equation (7.11). In a simulation, a beam does not necessarily have to be used to describe
the build-up of vertical polarization by the RF Wien filter. In first order, this it can also
be described by the spin components sx, sy and sz of the particle on the closed orbit.

α = arctan
(

Py√
P 2

x + P 2
z

)
≈ arctan

(
sy√
s2

x + s2
z

)
(7.11)

In the following, the tilt of the ISA, for a particle on the design orbit, assuming an EDM
corresponding to ηEDM = 10−4 is investigated. It is the identical scenario as in Section
(7.3), except that this time the RF Wien filter and the Snake Solenoid are switched on.
As described in Section (5.2.4), the fields of both elements are required to find a set-up in
which the RF Wien filter field is parallel to the ISA.

To achieve this state, the RF Wien filter must be rotated by different angles ϕset
WF around

the particle beam. The change in angle α per revolution n as a function of the rotation
angle of the RF Wien filter provides information about the radial tilt of the ISA. Sim-
ilarly, the dependence of the angle α per revolution n for different Snake Solenoid field
strengths provides information about the longitudinal tilt of the ISA. Unfortunately, the
2 MeV solenoid cannot be used for this purpose because it is located in the same straight
section of COSY as the RF Wien filter2. To convert the Snake solenoid field strength Bset

Sna
to a rotation angle of the longitudinal ISA ξset

Sna, the calibration factor kSna, which will be
properly introduced in Section (7.2.1), must be used:

ξset
Sna = kSna ·Bset

Sna (7.12)

2Due to its location it will also affect the radial ISA tilt. This problem can also be understood by looking
at Equation (4.43) and assuming a phase advance of θ = π.
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The RF Wien filter field and ISA are parallel to each other if there is no build-up of
vertical polarization with different relative RF Wien filter phases φset

rel . The dependence
of the build-up of the angle α per revolution n on the previously described variables ϕset

WF,
ξset

Sna and φset
rel can be summarized by:

(dα
dn

)
Sim

= Asol ·
(

sin
(

ξset
Sna

2 sin π · νs,Clo
− ξ0

Sna

)
· cos(ϕset

WF − ϕ0
WF) · cos(φset

rel − φ0
rel)
)

−AWF ·
(
sin(ϕset

WF − ϕ0
WF) · sin(φset

rel − φ0
rel)
)
.

(7.13)

The variables ASna, AWF, ξ0
Sol, ϕ0

WF and φ0
rel introduced in Equation (7.13) are fitting

parameters. Here ASna and AWF represent scaling depending on the RF Wien filter field
By,WF and the path s of the particle beam through the RF Wien filter. Equation (7.14)
displays the expected scaling parameters for a deuteron passing the RF Wien Filter at its
maximum field of Bmax,WF = 0.03 mT at a momentum p0 = 970 MeV/c.

ASna = AWF = 4π · 1 +G

γ2
0

·
∫ LWF

0

By,WF
β0

ds

≈ 4π · 1 +G

γ2
0

· By,WF · LWF
β0

≈ 3.865 · 10−9 1
mrad

(7.14)

The quantities ξ0
Sna and ϕ0

WF in Equation (7.13) represent the tilt angles of RF Wien Filter
and Snake Solenoid at which the vertical polarization build-up is zero. They thus show
the tilt of the ISA at the RF Wien filter position and are to be computed in the simulation
for an idealized RF Wien filter to determine the ISA tilt due to an EDM of ηEDM = 10−4.
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To do this, the build-up of vertical polarization must first be determined in the BMAD
simulation. To speed up the simulation, the RF Wien filter fields are first scaled up by
a factor of AAmp = 100. The vertical build-up for a particle starting on the closed orbit
with initial spin purely in COSY plane can then be accurately determined for n = 100
revolutions using the fitting function from Equation (7.15). Figure (7.12) shows this as an
example for an arbitrary setup of RF Wien filter and Snake Solenoid.

α(n) = x0+ x1 · n+ x2 · cos (2π · x3 · n+ x4)

= x0+
(dα

dn

)
Sim

·AAmp · n+Aα · cos (2π · νs,α · n+ x4)
(7.15)

Figure 7.12: Example of the build-up of vertical polarization due to the RF Wien filter for
a particle on the design orbit, assuming an EDM of ηEDM = 10−4. The top
panel shows the build-up of the vertical polarization angle α at the position
of the RF Wien filter as a function of the number of revolutions n in COSY.
The simulated data points are marked in black, while the fit according to
Equation (7.15) is shown in blue. The bottom panel shows the residuals of
the fit. The main parameters of the fit are shown in the legend in the middle,
while the title indicates the RF Wien filter and Snake Solenoid setup used to
create this buildup. A red line shows the linear build-up of Equation (7.15).

The top panel of the Figure (7.12) shows the simulated data points of the vertical polar-
ization angle α at the position of the RF Wien filter in black as a function of the number of
revolutions n in COSY. The result of fitting Equation (7.15) to the simulated data points
is shown in blue, while the most important fit parameters are shown in the center of the
figure.
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In contrast to the situation in Figure (7.11), where only a numerical error of 10−12 was
assumed for the simulated data points, the situation regarding the errors becomes more
complicated. The reason for this problem is that the RF Wien filter not only causes a
net build-up of vertical polarization, which can be described in the fit formula by the fit
parameter x1, but it also causes a periodic change in the spin tune νs,α. This relationship
can also be found in Equation (4.48) and is not described by the fit formular. A solution
out of this problem is the proper scaling of the error on the simulated data points. This
works, since the RF Wien filter field is on average zero, so that the average spin tune is the
one predicted by theory, as shown in Equation (7.9). Thus, the assumption of a constant
spin tune is still reasonable. To upscale the errors, Equation (7.15) was first fitted to
the simulated data with a numerical error of 10−12. The average residual of the first six
simulated data points is determined, as these six data points describe an almost complete
spin rotation to a good approximation, and adopted as the new error for all data points.
The result of this approach can be observed in the residuals in the lower panel of the
Figure (7.12). These residuals show that the fit was successful. The expected systematic
scattering of the residuals can be observed, which moves cyclically around the fitting line
due to the changing spin tune. In addition, it can be shown that χ2/ndof moves between
0.5 and 2.0 for different setups of RF Wien filter and Snake Solenoid.

As discussed before, the fitting parameter νs,α is expected to be the spin tune predicted
by the theory from (7.9). This is the case within the error of the fitting parameter. The
amplitude of the oscillation |Aα| also matches the expectation from Equation (7.8) within
its error. This has been deliberately sketched for a solenoid switched off, as the Snake
Solenoid shifts the amplitude and the spin tuning in addition as this spin manipulator is
not vanishing average in contrast to the RF Wien filter field.

The red line shows a linear fit based on the offset and the slope from the fit of Equa-
tion (7.15) to the simulated data points. The slope can be found in the legend. It can
be seen very clearly that the simulation of 100 cycles with a RF Wien filter field scaling
factor of AAmp = 100 is already sufficient to precisely determine the structure of vertical
polarization. In order to determine the inclination of the ISA based on Equation (7.13),
nine different relative phases φset

rel , equally distributed between 0 and 2π, are run through
with fixed RF Wien filter rotation and fixed solenoid strength. In total, three different
RF Wien filter rotations ϕset

WF and three different solenoid settings ξ0
Sna are simulated.

In combination with the relative RF Wien filter phases 81 different build ups of vertical
polarization are simulated. The different simulated slopes are summarized in Figure (7.13).

When fitting the Equation (7.13) to the simulated slopes
(

dα
dn

)
Sim

, the resulting fit pa-

rameters can be used to recalculate so-called fitted slopes
(

dα
dn

)
Fit

. An ideal line is shown
in blue for comparison. Both slopes agree quite well with each other and have a difference
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Figure 7.13: Vertical polarization build-up α per revolution n for different RF Wien filter
settings and Snake Solenoid strengths. The black dots mark the simulated
slopes on the y-axis, as shown in Figure (7.12). After fitting the Equation
(7.13) to these simulated slopes, the resulting fit parameter, given in the
legend of the figure, can be used to construct so-called fitted slopes. These
fitted slopes mark the counterpart to the simulated slopes and are therefore
plotted against each other. An ideal line, indicating that the simulated slope
and the fitted slope are equal, is shown in blue.

just below the order of 10−12 where the fit errors are located. This form of presentation
was chosen because it is not possible to show four individual parameters in dependence on
each other in one plot. For a better form of presentation, slices can be made by fixing the
Snake Solenoid to a particular strength and plotting the simulated build-ups as a function
of ϕset

WF and φset
rel as shown in Figure (7.14). Here the simulated slopes are marked in black,

while the fit is shown as a blue surface plot.

Since the fits using the fit parameters from Figure (7.13) agree quite well with the simu-
lated data, these fit parameters have to be discussed in terms of their agreement with the
theoretical prediction. The scaling parameters ASol and AWF differ by several σ from their
theoretical prediction from Equation (7.14). An exact reason for this discrepancy has not
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Figure 7.14: Three-dimensional slice of the simulated slopes of the vertical polarization
build-up

(
dα
dn

)
Sim

as a function of the RF Wien filter rotation ϕset
WF and dif-

ferent RF Wien filter phases φset
rel at a fixed solenoid setting. The simulated

slopes are marked in black, while a surface plot based on the Equation (7.13)
and the fit parameter given in Figure (7.13) is shown in blue.

yet been found. Meanwhile, the tilt of the radial ISA, given by the fitting parameter ϕ0
WF,

agrees perfectly with the prediction from Equation (4.30). The tilt of the longitudinal
ISA, given by ξ0

Sna, is also zero within its fitting error, and is therefore as expected.

In summary, the simulation of the RF Wien filter and its use to determine the ISA tilt
angle within the BMAD simulation is successful. The method used to determine the ISA
tilt angle directly from the build-up of the vertical polarization should be called the di-
rect fit method. Its disadvantage is the difficulty in visualizing the results. Therefore, an
alternative method is shown below.

7.3.2 EDM Resonance Map Method

This method is the construction of the so-called EDM resonance map. This is a simplifi-
cation of the direct fit method by reducing one parameter. Equation (7.13) is transformed
into Equation (7.16) and Equation (7.17). In this way the determination of the maximum
vertical polarization build-up

∣∣∣(dα
dn

)
max

∣∣∣ for different relative phases at the RF Wien filter
with a fixed RF Wien filter tilt and Snake Solenoid setting using Equation (7.16). The in-
dividual simulated vertical polarization build-ups

(
dα
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)
Sim

are determined in the same way
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as in the previous section. Figure (7.15) shows the dependence of
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rel and the determination of the maximum vertical polarization∣∣∣(dα
dn

)
max

∣∣∣ for a fixed RF Wien filter rotation and Snake Solenoid field.

(dα
dn

)
sim

(φset
rel ) =

√(dα
dn

)2

max
· sin (φset

rel + x1)

= x0 · sin (φset
rel + x1)

(7.16)

∣∣∣∣(dα
dn

)
max

∣∣∣∣ =

√√√√A2
Sna

(
ξset

Sna
2 sin πν − ξ0

Sna

)2

+A2
WF(ϕset

WF − ϕ0
WF)2 = ϵEDM (7.17)

For this reason, Figure (7.15) shows the simulated build-up as a function of the relative
phase of the RF Wien filter. While the simulated data points are shown as black dots,
Equation (7.16) is fitted to them in blue to determine the amplitude of the oscillation and
thus the maximum build-up for the applied RF Wien filter rotation and Snake Solenoid
field. The residuals of the fit are shown in the bottom panel, while the determined ampli-
tude is shown in the legend. The errors of the simulated data points are propagated errors
from the fit parameter from the build-up of vertical polarization. If needed magnitude of
the error bars can be reduced in the BMAD simulation by simulating more revolutions
n. The fit parameter

∣∣∣(dα
dn

)
max

∣∣∣ including the its fit error can be used to generate an
EDM resonance map depending on ξset

Sna and ϕset
WF, which is described by Equation (7.17).

In addition, the quantity
∣∣∣(dα

dn

)
max

∣∣∣ can be interpreted as the so-called EDM Resonance
Strength ϵEDM. Figure (7.16) shows the EDM resonance map corresponding to Figure
(7.13). Comparing the fit parameters of the EDM resonance map with those of the direct
fit method, no differences can be detected. Using the perfectly aligned 2 MeV Solenoid,
which runs statically during the determination of a map minimum, the longitudinal ISA
can also be manipulated without perturbing the closed orbit. This allows a relationship
between map minimum and ISA to be derived for a small angle approximation, as shown
by:

Closed Orbit = Design Orbit ⇒ nx,WF = −ϕ0
WF and nz,WF = −ξ0

Sna. (7.18)

7.3.3 EDM Resonance Map Correction Factors

As shown in the determination of the longitudinal ISA using the solenoid calibration
method, correction factors are required whenever there is a relative angle between the
beam path and the device. This is also the case for the RF Wien filter using the direct
fit method and the EDM resonance map method. This aspect will be addressed in this
section. Firstly, a pitch angle of the Wien filter is discussed.
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Figure 7.15: Dependence of the vertical polarization build-up on the relative RF Wien
filter phase with fixed RF Wien filter tilt and Snake Solenoid setting. The
top panel shows the simulated vertical polarization as black points, while the
fit of Equation (7.16) to these points is shown in blue. The important fit
parameter for the amplitude of the oscillation is shown in the legend. The
residuals of the fit are shown in the bottom panel.

A pitch of the RF Wien filter is a horizontal or vertical rotation of the RF Wien fil-
ter around its center. This means that the electric and magnetic fields of the RF Wien
filter are no longer perpendicular to the beam direction, but at an angle θx,WF or θy,WF.
The result is that the Lorentz force on the beam no longer adds up to zero, so that the
pitch of the RF Wien filter perturbs the particle beam. This effect occurs mainly in the
horizontal phase space and therefore has no effect on the tilt of the ISA. For pitch angles
up to 1 mrad, oscillations with an amplitude of a few nm occur in the horizontal phase
space and below 1 nm in the vertical phase space. These periodic oscillations move at the
synchrotron frequency around the closed orbit. To a good approximation, the closed orbit
can therefore be assumed to be stable for small tilt angles of the RF Wien filter.

In a BMAD simulation, the pitch angle of the RF Wien filter can be specified directly in
its definition. An EDM resonance map can then be calculated as explained in the previ-
ous section. The sum of the minima ϕ0

WF and ξ0
Sna determined in this way and the ISA

tilt at the RF Wien filter nx,WF and nz,WF determined using the TAO program can then
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Figure 7.16: EDM resonance map for a deuteron moving on the design orbit with an EDM
signal of ηEDM = 10−4. The black dots show the EDM resonance strengths
determined by Equation (7.16) as a function of RF Wien filter rotation and
Snake Solenoid field. The fitting of Equation (7.17) is shown as a blue-red
plane, with the fitting parameters given in the legend.

be plotted against the pitch angle of the RF Wien filter. The results of this procedure
using an idealized COSY lattice and an idealized RF Wien filter with an EDM signal of
ηEDM = 10−4 are shown in the figures (7.17), (9.16), (9.17) and (9.18). The top panel
shows the aforementioned difference between the horizontal and vertical slopes of the RF
Wien filter. A linear fit, shown in blue, was applied to the simulated data points, shown
in black. The errors on the simulated data points come directly from fitting the map
minima. The lower panel shows the results of the linear fit, with the slope of the fit given
in the legend. As the offset of the fit is zero within its errors for all different figures, it is
not shown here.

The most interesting dependency is shown in Figure (7.17). In all other figures, the
slope indicates that there is no dependence of the difference on the RF Wien filter pitch
angle. The situation changes when comparing the longitudinal ISA slope and the longi-
tudinal map minimum as a function of vertical pitch angle. A slope can be determined
which is comparable to the relativistic γ0 of the reference particle within one standard
deviation. Varying the reference momentum p0 of the particle beam shows that this fit
parameter is indeed correlated with the γ0. It is also possible to derive this scaling fac-
tor directly from the Thomas-BMT equation. It can also be seen how the errors on the
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simulated data points increase with larger vertical pitch angles. This is due to the fact
that the resonance map only covers the range of ±0.1 mrad in the longitudinal direction.
If the fitting points are outside the resonance map, the error on these points also increases.

Figure 7.17: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the vertical pitch angle of
an idealized RF Wien filter. In the top panel the simulated data points and
their errors are shown in black. The errors of the simulated data points are
derived from the fitting errors of the EDM resonance map. A straight line
fit to the simulated data points is shown as a blue line and its main fitting
parameters are given in the legend. The residuals of the fit are shown in the
bottom panel.

Therefore, the vertical orientation of the RF Wien filter in relation to the beam path must
be taken into account when comparing experimentally determined map minima with esti-
mates of the ISA tilt at the RF Wien filter position. A correction factor due to rotation
of the RF Wien filter, which has not been discussed so far, is the tilt of the RF Wien filter
around the beam. As this rotation is also used to determine the radial map minimum, it
can be directly related to an additional offset in the radial ISA tilt.

In addition to the pitch angle of the RF Wien filter, the angle at which the particle
beam passes through the RF Wien filter must also be known in order to determine a cor-
rection factor for this. This beam angle is given by the relative horizontal Px,WF = px,WF

p0

and vertical Py,WF = px,WF
p0

momentum at the RF Wien filter position. In order to be able
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to set these momenta in the simulation specifically for the RF Wien filter position, 4 addi-
tional steers are added to the COSY lattice in the horizontal phase space and 4 additional
steers in the vertical phase space. Their task is to generate a local orbit bump at the RF
Wien filter position, while the closed orbit still lies on the design orbit in the rest of the
lattice. To do this, two steerers per phase space are installed around the BPM51 before
the RF Wien filter and two steerers per phase space are installed around the BPM52 after
the RF Wien filter.

Analogous to the previous approach, the difference between the minima ϕ0
WF and ξ0

Sna
determined by the EDM resonance map and the ISA tilt angle at the RF Wien filter
nx,WF and nz,WF determined by the TAO program can then be plotted against the rel-
ative momentum at the RF Wien filter position. The results of this procedure using an
idealized COSY lattice with an EDM signal of ηEDM = 10−4 are shown in the figures
(7.18), (9.19), (9.20) and (9.21). The top panel shows the aforementioned difference be-
tween the horizontal and vertical relative momenta at the RF Wien filter location. A linear
fit, shown in blue, was applied to the simulated data points, shown in black. The errors
on the simulated data points come directly from fitting the map minima. The bottom
panel shows the results of the linear fit, with the slope of the fit shown in the legend. As
the offset of the fit is zero within its errors for all different figures, it is not shown here.

In summary there is a dependence of this difference observable when there is relative
vertical momentum present, shown by Figure (7.18). There is only negligibly small de-
pendency on the relative horizontal momentum at RF Wien filter present. By changing
the particle’s reference momentum p0, which also changes γ0, it can be shown that the
correction factor for the longitudinal map minimum is given by γ − 1. By combining the
results for having a pitched RF Wien filter and a relative beam momentum at RF Wien
filter, one derives Equation (7.19).

nx,WF = −ϕ0
WF

nz,WF = −ξ0
Sna + (γ − 1) · Py,WF − γ · θy,WF

(7.19)

Provided that the RF Wien filter is aligned with the beam trajectory in such a way that
it causes minimal beam interference, a pure dependence of the correction factor on the
vertical momentum is possible. However, it is difficult to estimate how accurate this align-
ment can be during an experiment such as Precursor Run 2.
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Figure 7.18: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the vertical momentum at
an idealized RF Wien filter. In the top panel the simulated data points and
their errors are shown in black. The errors of the simulated data points are
derived from the fitting errors of the EDM resonance map. A straight line
fit to the simulated data points is shown as a blue line and its main fitting
parameters are given in the legend. The residuals of the fit are shown in the
bottom panel.

7.3.4 Correction Factors using simulated RF Wien Filter Fields

As only an idealized RF Wien filter has been discussed so far, it is important to discuss
the differences that occur when more realistic RF Wien filter fields with a fringe region
are used. For this purpose, the simulated RF Wien filter fields from Section (6.2.7) are
implemented in the simulation model. Then, analogous to Section (7.3.3), the dependence
of the minima of the EDM resonance map on the relative beam momentum at the RF
Wien filter and the tilt angle of the RF Wien filter is analyzed. The most important
dependencies are shown in Figure (7.19) and Figure (7.20), all others are shown in figures
(9.22), (9.23), (9.24), (9.25), (9.26) and (9.27). All figures are designed in the same
way as their counterparts in the previous section. It is noticeable, that in contrast to
the idealized RF Wien filter the dependencies on relative vertical beam momentum and
vertical RF Wien filter pitch angle are scaling with 2γ0 instead of γ0. By changing the
reference momentum, it is possible to benchmark that the scaling factor is also in fact
proportional to γ0. It can also be seen that the implementation of the simulated RF Wien
filter fields results in a small constant error in the determination of the radial ISA tilt
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angle given by the offset of ϕOff
WF ≈ 0.0054 mrad. A summary of the results relating to the

simulated RF Wien filter field can be found below:

nx,WF = −ϕ0
WF + ϕOff

WF

nz,WF = −ξ0
Sna + (2γ0 − 1) · Py,WF − 2γ0 · θy,WF.

(7.20)

Figure 7.19: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the vertical pitch angle of
an realistic RF Wien filter. In the top panel the simulated data points and
their errors are shown in black. The errors of the simulated data points are
derived from the fitting errors of the EDM resonance map. A straight line
fit to the simulated data points is shown as a blue line and its main fitting
parameters are given in the legend. The residuals of the fit are shown in the
bottom panel.

7.4 Summary on ISA Determination and Correction Factors

As shown in this chapter, there are many factors to consider when determining the ISA
tilt angle, starting with the choice of tracking algorithm in a simulation. Two tracking
algorithms are available for the existing BMAD simulation model of COSY. While the
BS tracking algorithm has a very short computation time, the PTC tracking algorithm
provides more accurate results, but at the cost of significantly longer simulation times. It
can be shown that the difference between the two tracking algorithms depends on the size
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Figure 7.20: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the vertical momentum at
an realistic RF Wien filter. In the top panel the simulated data points and
their errors are shown in black. The errors of the simulated data points are
derived from the fitting errors of the EDM resonance map. A straight line
fit to the simulated data points is shown as a blue line and its main fitting
parameters are given in the legend. The residuals of the fit are shown in the
bottom panel.

of the closed orbit. For a closed orbit of a few millimeters there are only differences of a
few µm and µrad between the two different tracking algorithms. For this reason, the BS
tracking algorithm is preferable due to its speed. It is therefore used throughout this thesis.

While the ISA tilt angle can be determined directly in a simulation, it is more diffi-
cult to do so in an experiment in COSY. Two different methods are available. On the one
hand, the two static solenoids of COSY, the 2 MeV Solenoid and the Snake Solenoid, can
be used to determine the tilt of the longitudinal ISA at their position via their influence
on the spin tune. If the beam trajectory is at an angle relative to a solenoid magnet, a
correction must be applied to the fit parameters to match the ISA tilt angle. This correc-
tion depends on the relative vertical momentum of the beam at the magnet position and
hence its vertical angle relative to the magnet. As the tilt angle of the solenoid magnets
relative to the beam path itself has only a negligible effect compared to the tilt angle of
the beam path the behavior can be summarized by:
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nz,Sol = cSol − Py,Sol,

nz,Sna = cSna − Py,Sna.
(7.21)

When the RF Wien filter and Snake Solenoid are used in combination, the radial and
longitudinal ISA tilt can be determined in parallel at the RF Wien filter position. This is
done by determining the macroscopic build-up of vertical polarization as a function of RF
Wien filter rotation and Snake Solenoid field. A correction factor must also be taken into
account if the beam path is pitched vertically relative to the RF Wien filter. In addition,
the vertical pitch angle of the RF Wien filter plays a role, but not its horizontal pitch
angle. These results are summarized by:

nx,WF = −ϕ0
WF,

nz,WF = −ξ0
Sna + (γ0 − 1) · Py,WF − γ0 · θy,WF.

(7.22)

If more realistic RF Wien filter fields from a separate simulation are used instead of the
idealized RF Wien filter fields, there are further correction factors that need to be taken
into account. These are given below, where in particular, the radial map minimum offset
of ϕOff

WF ≈ 0.0054 mrad must be considered:

nx,WF = −ϕ0
WF + ϕOff

WF,

nz,WF = −ξ0
Sna + (2γ0 − 1) · Py,WF − 2γ0 · θy,WF.

(7.23)

Now that the determination of the ISA tilt angles and the factors to be taken into account
in the presence of perturbations have been analyzed and understood, the next chapter
will examine what ISA tilt angles can be expected for the closed orbits present during
Precursor Run 2.
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CHAPTER 8

Study of Ring Systematics in the Context of the Precursor Runs

While the last chapter showed how to determine the ISA tilt angle for a fixed closed orbit
and which correction factors and uncertainties have to be taken into account, this chapter
deals with the beam orbit and the systematics in the COSY storage ring during Precursor
Run 2. A proper description of the orbit and the systematic effects is necessary since the
ISA tilt angle in COSY is determined by both. Therefore, the BMAD simulation model
of the COSY storage ring should represent them accurately. For a proper implementation
of the systematics, it must be first controlled if the BMAD simulation model of COSY
without systematics is able to represent the optical setup of COSY during Precursor Run
2.

8.1 The idealized BMAD Simulation Model and its Optics

To show this, the dipole fields from Table (6.2) and the quadrupole settings from Table
(6.4) are used in the simulation model. This setup should result in a twofold optical sym-
metry with minimized dispersion in the straight sections, capable of holding deuterons
at a momentum of p0 = 970 MeV/c on the design orbit of COSY. In order to create
an idealized version of the COSY storage ring, all sources of perturbations of the beam
orbit due to systematic effects are first neglected. Since no systematic effects are taken
into account, there is no need to switch on the steerer magnets, since no additional orbit
control is required. Figure (8.1) shows the simulated β-function and dispersion using the
setup described above. By plotting the distance from the injection point on the x-axis,
Figure (8.1) shows that the horizontal and vertical β functions are twofold symmetric.
The horizontal dispersion is also twofold symmetric and is minimized in the straight sec-
tions of COSY. On the basis of the β-functions the betatron tunes of the idealized BMAD
simulation model of COSY are determined to be QSim

x = 3.632 and QSim
y = 3.708. These
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simulated betatron tunes differ from the measured betatron tunes during Precursor Run
2, which were determined to be QPR2

x ≈ 3.531 and QPR2
y ≈ 3.592. The simulated betatron

tunes for an idealized BMAD simulation model of COSY are therefore both too large
and off by ∆Qi ≈ 0.1. This is a typical behavior when predicting the betatron tunes
by calculation or via a simulation and can also be observed in other simulation models
of the COSY storage ring. The reason for this difference are two systematic effects, as
the betatron tunes for example depend on the quadrupole field description, the beam
trajectory as well as on the magnetic multipole components of all magnets inside the stor-
age ring. These systematic effects however are not implemented in the idealized BMAD
simulation model of COSY. It can therefore be concluded that this initial description of
the simulated COSY optics is sufficient for an idealized lattice. Furthermore, deuterons
with a momentum of p0 = 970 MeV/c move perfectly on the design axis of COSY of
the BMAD simulation model as intended. As this idealized BMAD simulation model of
COSY has all the expected features implemented, it is taken as the starting point for the
implementation and investigation of systematic effects. The following sections will discuss
the systematic effects expected in COSY and their impact on the orbit. However, the
impact of systematic effects on the betatron tune is neglected. The reason for this is that
the betatron tune is already roughly described by the BMAD simulation model and it can
be shown in Section (8.3) that primarily the closed orbit plays a crucial role for the ISA tilt.

8.2 Ring Systematics of COSY

8.2.1 Quadrupole systematics and Beam Based Alignment

In the BMAD simulation model of COSY, the quadrupole magnets are only characterized
by their effective field length LQua

Eff and their focusing strength k1. These quantities are
determined by moving a Hall probe across the fields of the COSY magnets. The accu-
racy of this measurement is quite good, as long as the Hall probe behaves linearly in the
measurement regime and is accurately positioned within the measurement setup [18, 97].
In the BMAD simulation model, both of these quantities are assumed to be error-free,
which is not the case in reality. In addition, the shortening of the effective length of the
quadrupole magnet due to nearby magnetic material must be considered as a systematic
effect. With respect to the closed orbit, these effects act as additional effective dipole
kicks in the horizontal and vertical phase space at the location of the quadrupole. This is
identical to an effect caused by a misalignment of a quadrupole. This can be illustrated
as follows. Due to the field linearity of a quadrupole, a misalignment can be represented
by an ideally placed quadrupole with the beam passing through its center and a small
effective dipole kick at the position of the quadrupole. The effective dipole kick will be in
the direction of the misalignment. Therefore, a purely horizontally misaligned quadrupole
will mainly affect the horizontal orbit, while a purely vertically misaligned quadrupole
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Figure 8.1: BMAD simulation of the COSY optics during Precurser Run 2 assuming an
idealized lattice. The top panel shows the horizontal in vertical β-function,
while the bottom panel shows the horizontal and vertical dispersion as a func-
tion of the distance from the injection point inside the COSY storage ring. For
better orientation, the black dashed lines mark the straight sections and the
arc regions of COSY.

will mainly affect the vertical orbit, assuming vanishing coupling between the transverse
phase spaces. Figure (8.2) sketches this. As the modulation of effective field length and a
shortening of it act similarly as a misalignment, it is not possible to distinguish between
them when considering the closed orbit isolated and neglecting the optics. For simplicity
these systematic effects will therefore be later included in the misalignments.

The misalignments of the COSY quadrupoles were determined by the company Stollen-
werk&Burghof by laser-based measurement and an attempt was made to align them as
precisely as physically possible. Along the beam axis, the quadrupole offset zoff may still
deviate by a few millimeters from the intended position, since other elements block the
movement of the quadrupole magnets along the COSY design axis in this direction. In
the horizontal and vertical phase space, the alignment of the quadrupoles is much better
and misalignments are in the order of less than one millimeter. In general, the com-
pany Stollenwerk&Burghof states that they are able to align magnets with an accuracy of
about ±200µm using their laser based system [59, 95]. Unfortunately, the accuracy of this
measurement depends on the measurement marks on the top of the quadrupole magnets,
which can be loose in some cases. In addition, there is no guarantee that the laser-based
reference system used by Stollenwerk&Burghof in their measurement matches the COSY
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Figure 8.2: Simplified representation of quadrupole misalignment as an ideally positioned
quadrupole and an effective dipole kick at the position of the quadrupole.

reference system used in a simulation. Therefore, the laser-based measurement of the
magnetic misalignments should only be used to estimate the magnitude of the magnetic
displacements and should also be taken into account in this form in the BMAD simulation.

This becomes even clearer when considering an alternative approach to determining the
misalignment of the quadrupoles. This approach is to calibrate the BPMs. Such a cal-
ibration is necessary for a precision experiment such as Precursor Run 2, since a BPM
that is not aligned with the beam axis can lead to an incorrect orbit measurement. T.
Wagner performed a BPM calibration at COSY in 2020 [59] using the BBA (Beam-Based
Alignment) method. By creating subsystems in form of groups of nearby BPMs and
quadrupole magnets, the BBA uses the magnetic center of the quadrupoles as a reference
point to calibrate the BPMs in COSY. In addition, the optimal beam position within the
quadrupoles is determined, which corresponds to a misalignment of a quadrupole in this
direction. The Figure (8.3) shows the results of T. Wagner regarding the optimal beam
position within the quadrupoles of COSY.

Compared to the misalignments determined by Stollenwerk&Burghof, the misalignments
determined by BBA tend to be larger, especially in the horizontal phase space. Unfortu-
nately, it cannot be excluded that the interpretation of the optimal position of the particle
beam in a quadrupole as a misalignment of the quadrupole is prone to error. To discuss
this aspect, a distinction must be made between the calibration of the BPMs via BBA
in the straight sections and the calibration of the BPMs in the arcs. The COSY struc-
ture is responsible for this. In its straight sections, four quadrupoles in close proximity
always form an optical triplet, usually with a BPM positioned somewhere between these
quadrupoles. In COSY arcs, the individual quadrupoles are evenly distributed over the
entire length of the arc. In most cases a BPM is positioned close to each quadrupole.

Due to this constructional difference, the magnetic center of all four quadrupoles in an
optical triplet in the COSY straights can be used to calibrate the one BPM located in the
triplet. With this BPM as a common reference point, it can be assumed that all elements
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Figure 8.3: Optimal beam position inside the COSY quadrupoles as determined by the
BBA before and after calibration of the COSY BPMs. The upper panel shows
the horizontal position, while the lower panel shows the vertical position. The
data before BPM calibration are shown in light blue and the data after BPM
calibration are shown in dark blue. Taken from [59].

in this subsystem of COSY have exactly the relative position to each other as determined
by the BBA with an uncertainty of σBBA=40µm of the BBA method, indicated in Figure
(8.3) as the red error bar. However, the BBA does not provide any information about the
position of this subsystem in reference system of COSY. The position of this subsystem can
only be estimated on the basis of the laser based measurement by Stollenwerk&Burghof
and should be aligned by roughly 200µm. In the COSY arcs, only one BPM and one
quadrupole form a subsystem in which the relative magnetic misalignments determined
by the BBA are valid. The errors within this subsystem are σBBA=40µm, while the posi-
tion of the whole subsystem can only be determined by roughly 200µm. As in some cases
even a dipole is positioned in between BPM and the quadrupole magnet the uncertainties
on the optimal position in the quadrupole magnet or on the calibration value of the BPM
may be even larger. Due to these uncertainties in determining the misalignments of the
magnets and since other systematic effects also act as effective orbit kick, the quadrupole
misalignments are used as fitting parameters in the further course of this work. It makes
sense to limit the size of the possible misalignments. For the sake of simplicity, the rotation
of the quadrupoles is neglected in the BMAD simulation model of COSY. Also neglected
will be the impact of quadrupole fringe field and magnetic multipoles.

8.2.2 Dipole Systematics

In contrast to the quadrupole magnet, the dipole magnet implemented in the BMAD
simulation model is characterized not only by its deflection angle and its bending radius,
but also by its fringe field and the shortening of its effective length. Although the latter
was estimated by J. Stein on the basis of the distance to nearby magnetic elements, an
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independent determination of the dipole shortening is not possible in the COSY storage
ring. One reason for this is that the dipoles in the COSY storage ring do not build up
their magnetic field synchronously with the particle energy, but with a certain degree
of uncertainty. Even when injected into COSY, the field in the dipole magnet and the
expected beam momentum, which should ideally always be synchronized, do not match.
A smaller dipole current than expected is required, because only then a beam can be
injected into COSY. This discrepancy between momentum and dipole current remains
during beam acceleration and is caused by non-linearities and remanence effects in the
dipole magnet. To represent this effect, a base correction of the dipole field is required,
which should generally be the same for all dipoles and is of the order of about 1.0 % of the
dipole field [97]. In addition to the base correction of the dipole field, the misalignment of
a dipole magnet influences the determination of the shortening of the effective field lengths
of dipole magnets. Since all these effects in the horizontal orbit act like an effective kick
in the dipole, they cannot be distinguished from each other. Therefore, in the BMAD
simulation model, the dipole shortening is used later as a fitting parameter to represent
the influence of these systematic effects on the horizontal orbit.

A dipole magnet also acts in the vertical phase space via its misalignment. If the dipole is
not rotated and therefore the horizontal phase space is not coupled to the vertical phase
space, the misalignment of a dipole can be represented by its fringe field through a purely
vertical misalignment. If both phase spaces couple, for example if the dipole is tilted
around the beam axis, the shortening of the effective dipole length also affects the vertical
phase space. For simplification, however, it is assumed that the influence of the dipole
on the vertical phase space is only given by its vertical offset. It will be shown later in
the work that this assumption is absolutely sufficient, as this offset is also used here to
represent the effective kick of a dipole through systematic effects in the vertical phase space.

Since only the effect on the orbit is to be considered the multipole moments located in the
dipole are only represented via the dipole shortening and the vertical dipole offset. Now
that all essential systemic effects have been discussed, it will be shown in the next section
that the representation of these via effective kicks at their points of action is sufficient to
describe the inclination of the ISA.

8.3 Impact on systematics on the ISA Tilt

To investigate the influence of the systematic effects on the ISA tilt, closed orbits pertur-
bated by these have to be created for the BMAD simulation model of COSY. Therefore,
starting with an idealized BMAD simulation model of COSY, all quadrupoles are randomly
misaligned in both transverse phase space directions based on a normal distribution. This
way, effective kicks at the quadrupole positions mimic systematics effects that influence
the closed orbit and tilt the initially purely vertical ISA direction. The expectation value
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of the normal distribution is zero, indicating that there is no average misalignment of the
quadrupole center away from the design axis of COSY. The standard deviation of the
normal distribution is gradually increased by an algorithm to produce increasingly larger
closed orbits. To compare this perturbed lattice with a version where the orbit correction
is applied in COSY and the closed orbits are optimized by the steerer magnets using the
ORM method. The goal of the implemented ORM algorithm is to correct the closed orbits
at the BPM positions back to the design axis.

Figure (8.4) shows the results of these two algorithms by simulating a thousand differ-
ent closed orbits and plotting the average1 radial nx and longitudinal nz ISA tilt as a
function of the vertical yClo

RMS closed orbit RMS. This form of presentation is chosen be-
cause the vertical closed orbit is much more important for ISA tilt than the horizontal
closed orbit. The closed orbit RMS values are obtained at the BPM positions in the COSY
storage ring and are used instead of the RMS values at all elements within COSY, so that
the real storage ring and the BMAD simulation have a common reference value. However,
the average ISA tilt is calculated for all elements over the whole COSY ring circumference
to account for different relative momenta and longitudinal fields from elements passing
off-center or at a relative angle.

There are two interesting observations in Figure (8.4). The first one is that the spread
of the average ISA tilt is increasing with an increasing vertical orbit RMS. This is rea-
sonable as in a lattice with larger orbit RMS stronger kicks tilt the ISA away from the
ideally purely vertical orientation. Although the spread of the ISA tilt angles increases
with increasing RMS values of the vertical orbit, the distribution of average ISA tilts re-
mains centered around a purely vertical ISA position in both the radial and longitudinal
directions. This can be explained by the random quadrupole misalignments, which are on
average on the design axis and preferring no direction for their misalignment. The second
observation in Figure (8.4) is that there is only a small difference visible in between the
ISA tilt angle with or without orbit correction applied. One explanation for this is that
the orbit correction optimizes only the BPM positions in the simulation model of COSY
and does not care about any other position. Another issue is that the steerer magnets
are not placed directly next to the quadrupoles. In result the orbit kicks induced by the
quadrupoles cannot be corrected at the position of their origin. The small deviation in
between the results before and after the orbit correction can therefore be explained by
the fact that due to the optimization process more kicks in the vertical phase space are in
general present. This does in particular influence the longitudinal ISA tilt, which will be
demonstrated in the following.

The RMS value of the ISA tilt angles over the entire circumference of the storage ring can

1This means nj = 1
N

∑N

i=1 nj,i.
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Figure 8.4: Average radial (left panel) and longitudinal (right panel) ISA tilt angles in the
COSY storage ring as a function of the vertical orbit RMS value as recorded by
the BPMs. In black a situation is shown where the vertical orbit is caused by
randomly misaligned quadrupole magnets, while in blue an orbit correction is
applied using the steerer magnets after the random quadrupole misalignment
is applied.

be used to explain the difference between the scenario with and without orbit correction,
and to further illustrate the different effects of the horizontal and vertical phase space on
the ISA tilt angle. The reason for this is that the RMS value of the ISA tilt angle carries
information about the magnitudes of the ISA tilt angles to be expected for a fixed closed
orbit RMS. To show the individual dependencies, the correlation between the horizontal
phase space with the RMS values for the closed orbit xClo

RMS and for the relative momen-
tum pClo

x,RMS is shown, the vertical phase space with its RMS values for the closed orbit
yClo

RMS and the relative momentum pClo
y,RMS and the RMS values for the radial nx,RMS and

longitudinal nz,RMS ISA tilt must be determined. It is usefull to do this calculation for
optimized orbit, as this mimics the situation in the real COSY storage ring. Therefore the
correlations, after applying an orbit correction, based on the simulations already discussed
for Figure (8.4) are shown in the Figure (8.5).

Figure (8.5) indicates via a color code, how strong the individual quantities are correlated.
As all quantities show same sort of moderate positive correlation with each other, indi-
cated by correlation values around 0.5 and no negative correlation is observed the color
code is chosen in to range from 0.5 to 1.0. The correlations visible in Figure (8.5) need to
be further explained and put into context. For example, by simply steering the horizontal
closed orbit away from the design axis and leaving the vertical closed orbit on the design
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Figure 8.5: Correlations of the horizontal and vertical RMS values of the closed orbit
with the RMS values of the ISA tilt angles. The RMS values are obtained
by perturbing the COSY lattice with random quadrupole displacements and
then applying an orbit correction by the steerer magnets. The color code,
ranging from white at a value of 0.5 to dark blue at a value of 1.0, indicates
how strongly the quantities are correlated.

axis, it can be shown that the ISA is not tilted at all. However, if the vertical orbit is
steered away from the design axis, there is also a very small horizontal orbit distortion,
as there is more transverse coupling in that direction via the bending magnets. The ex-
planation for this phenomenon is that as the vertical trajectories increase, the paths in
the dipole magnets become longer, causing a kick in the horizontal phase space. The
more the vertical trajectory is distorted, the more the horizontal trajectory reacts. At
the same time, the ISA tilt angles also increase as they depend on the vertical orbit. It
can therefore be concluded that the horizontal orbit generally has no effect on the ISA
tilt angle. It should also be noted that, according to Liouville, the vertical orbit and the
relative vertical momentum are directly dependent on each other. Their difference also
results from this small coupling of the transverse phase spaces. In principle, however, it
can be learned from these correlation coefficients that the tilt of the ISA can be in general
deduced from the vertical orbit yClo at every position in the ring.
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Independent of the orbit, the longitudinal fields in the COSY storage play a crucial role
for the ISA tilt angles. To demonstrate this, the 2 MeV Solenoid magnet is switched on
in the BMAD simulation model of the COSY storage ring and the horizontal and vertical
closed orbits are again perturbed by quadrupole misalignments, while an orbit correction
is applied by the steerer magnets. The effects of three different longitudinal field strengths
on the average ISA tilt angles nx and nz are compared as shown in the Figure (8.6). Their
magnitude is chosen so that average longitudinal ISA tilt angles are observed in the mil-
liradian range.

Figure 8.6: Effect of longitudinal fields on the average ISA tilt angle. The average radial
(left panel) and longitudinal (right panel) ISA tilt angles in the BMAD simu-
lation model of COSY are shown as a function of the RMS value of the vertical
closed orbit. Three different fields from the 2 MeV Solenoid magnet influence
the ISA tilt angles in addition to the perturbed orbit and are shown in grey,
blue and black respectively.

As shown in Figure (8.6), longitudinal fields in the COSY storage tilt the ISA in addition
to the vertical closed orbit. Although Figure (8.6) suggests that longitudinal fields have
little effect on the radial ISA tilt angle, it can be shown mathematically using Equation
(4.43) that the effect is only observed because the radial ISA tilts in both positive and
negative radial directions equally when a longitudinal field is present at one position inside
the storage ring. In absolute terms, however, the radial tilt angle of the ISA is about a
factor of 4 smaller than the longitudinal tilt angle, which permanently tilted in one di-
rection. In general unknown longitudinal fields could be present everywhere in the COSY
storage ring. Ultimately, however, it is only necessary to know or estimate the sum of all
longitudinal fields present in COSY to know how much the ISA is tilted in addition to the
tilt due to the vertical orbit.
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In addition to the influence of the longitudinal fields on the ISA tilt, the influence of
a potential EDM signal on the ISA tilt will also be shown. For this purpose, the orbit
is again perturbed by quadrupole misalignments and corrected by steerer magnets at the
BPM positions. Three different EDM signals are implemented as parameters in the BMAD
simulation to investigate their influence on the ISA tilt angles nx and nz as a function of
the vertical RMS of the closed orbit. The magnitude of the EDM signals is chosen so as
to expect milliradian tilt angles of the radial ISA. Figure (8.7) summarizes the results of
this investigation and shows that, as expected, the implementation of an EDM signal only
affects the radial ISA. The influence is in the form of a permanent tilt around the entire
ring circumference. The longitudinal ISA remains completely unaffected by an EDM sig-
nal.

Based on this research, it can be shown that the radial and longitudinal ISA inclina-
tion is determined by the vertical closed orbit yClo, existing longitudinal fields Bz and
an existing EDM signal ηEDM. Equation (8.1) summarizes these influencing factors in
simplified form using the functions Fi and Gi. For example, a longitudinal magnetic field
can also influence the vertical orbit. Other storage ring parameters, such as the betatron
tunes, are included in the orbit description.

nx(s) = F1(yClo)+ F2(Bz) + F3(ηEDM)

nz(s) = G1(yClo)+ G2(Bz)
(8.1)

The work presented so far in this chapter has ensured that the main systematic effects in
the COSY storage ring, which influence the beam orbit, can be represented in a simplified
way by effective dipole kicks in the quadrupole position and in the dipole positions. The
ISA tilt, assuming a vanishing EDM, is defined by the beam orbit, with additional lon-
gitudinal fields to be taken into account. The following section will therefore answer the
question of what ISA tilt angles can be expected for the orbit measured in Precursor Run 2.

8.4 Simulation of Precursor Run 2

As outlined in the previous section, a correct orbit description is crucial for a correct de-
scription of the ISA tilt angles. Therefore, the simulated orbit in the BMAD simulation
model of COSY has to be fitted to the measured orbit during Precursor Run 2. The
optimization algorithm of the TAO program is used as a fitting tool for this purpose. Un-
known systematic effects in the simulation model, which influence the orbit and therefore
have to be fitted, can be represented by effective kicks in the horizontal and vertical phase
space at the quadrupole and dipole locations. To ensure that their effects do not become
unphysically large, constraints must be placed on the optimization parameters. Due to
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Figure 8.7: Effect of a potential EDM signal on the average ISA tilt angle. The average
radial (left panel) and longitudinal (right panel) ISA tilt angles in the BMAD
simulation model of COSY are shown as a function of the RMS value of the
vertical closed orbit. Three different EDM signals influence the ISA tilt angles
in addition to the perturbed orbit and are shown in grey, blue and black
respectively.

the number of optimization variables, it should also be avoided that only one potential
solution of the closed orbit is considered. To do this, the different optimization variables
must be varied before the optimization process is started. Their range of variation should
also be physically justified. Since not only the systematic influence of the quadrupoles
and the dipole magnet is unknown, but also the position of the BPMs with respect to the
design orbit, this property must also be taken into account in the optimization process.
In the following, it is explained how all these effects have been considered during the orbit
optimization by TAO.

On the one hand, the company Stollenwerk&Burghof has aligned the COSY magnets
in several campaigns. They give an accuracy for their laser-based alignment process of
xAbs

Sto = 0.2 mm and yAbs
Sto = 0.2 mm. However, Stollenwerk&Burghof has found some

magnet displacements that exceed the specified accuracy. In addition, T. Wagner’s BBA
showed that individual magnets may have a different misalignment than measured by Stol-
lenwerk&Burghof due to loose fiducials on the COSY magnets. The difference between
the two measurements can be up to 1 mm. Nevertheless, the measurement by Stollen-
werk&Burghof gives a good first approximation of the absolute misalignment xAbs

Off and
yAbs

Off of a single magnet with respect to the design axis of COSY.

As there is no further information on the vertical offset of the dipole magnets, the ac-
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curacy given by Stollenwerk&Burghof of yAbs
Sto = 0.2 mm is chosen as the initial range of

variation for the vertical dipole offset prior to the optimization process. To account for
loose fiducials on the dipole magnets, an upper and lower bound of yAbs

Lim = 0.8 mm is set
for this optimization variable.

In horizontal phase space, the dipole shortening effect is used to describe all system-
atic effects on the orbit. Since the dipole shortening effect BDip

Err cannot be disentangled
from other systematic effects, the optimization variable does not necessarily have to be
positive. An initial range of variation is chosen to be BDip

Err,Set = 0.5 %, as this reflects the
natural correction of the dipole field needed to inject particles. Shortening effects up to
BDip

Err,Lim = 3.0 % of the absolute dipole field are allowed for the optimizer, as this reflects
the maximum shortening effect estimated by J. Stein.

In the case of the quadrupole magnets, in addition to the Stollenwerk&Burghof mea-
surement, T. Wagner’s BBA measurement has to be taken into account. In the straight
sections of COSY, the BBA forms subsystems from a quadrupole triplet and the BPM
in its center. Within a subsystem, the individual quadrupole magnets and the BPM are
assumed to be initially misaligned by up to xRel

BBA = 0.04 mm and yRel
BBA = 0.04 mm, since

this corresponds to the precision of the BBA during T. Wagner’s work. The position of
the subsystem as a whole is used as an optimization variable and shifted before the opti-
mization process based on the precision of the Stollenwerk&Burghof measurement, which
corresponds to xAbs

Sto = 0.2 mm and yAbs
Sto = 0.2 mm. The reason for these two separate

steps is that the BBA is only a relative measurement of the magnet position within the
subsystem, whereas the Stollenwerk&Burghof measurement refers to the assumed absolute
COSY reference system, which is prone to error due to loose fiducials. Another advantage
of this method is that the BPMs move based on the misalignment of the subsystem and
therefore record an orbit depending on the misalignment. An upper and lower bound
of xAbs

Lim = 0.8 mm and yAbs
Lim = 0.8 mm is chosen for the position of the whole subsystem

during the optimization process.

In addition, each straight section of COSY has three BPMs that are not within a quadrupole
triplet, but exactly between them. Their calibration during BBA is therefore assumed to
be less than ideal, since the more distant quadrupoles of a triplet have to be used for
this purpose. Since the position of the triplet subsystem in the global system of COSY
can only be determined with a precision given by Stollenwerk&Burghof, these BPMs are
misaligned by xAbs

Sto = 0.2 mm and yAbs
Sto = 0.2 mm before the start of the optimization

process. Unlike the BPMs within a quadrupole triplet, the position of these BPMs is not
changed during the optimization process as they are not coupled to any subsystem within
COSY.

The BBA also forms subsystems in the COSY arcs. In contrast to the subsystems in
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the COSY straight sections, the subsystems in the COSY arcs consist of a quadrupole
and a BPM located directly next to each other. Similar to the subsystems in the COSY
straight line, it is assumed that the individual elements within the arc subsystem are
aligned relative to each other with an accuracy of xRel

BBA = 0.04 mm and yRel
BBA = 0.04 mm.

The subsystem as a whole is used as an optimization variable and is therefore varied in
the range xAbs

Sto = 0.2 mm and yAbs
Sto = 0.2 mm before starting the optimization process.

Again an upper and lower bound of xAbs
Lim = 0.8 mm and yAbs

Lim = 0.8 mm is chosen for the
optimization variable of the subsystem during the optimization process.

In the COSY arcs it also happens that there is no BPM next to quadrupoles or vice
versa. In such cases, it is questionable how well the calibration of the BPMs via the near-
est quadrupole center has worked. In some cases, there are dipole magnets between the
quadrupole and the BPM, which should make it difficult to determine the quadrupole offset
or the BPMs position relative to the quadrupole. In these special cases, the quadrupoles
are therefore shifted in the range xAbs

Sto = 0.2 mm and yAbs
Sto = 0.2 mm before the start of the

optimization, and then used as independent optimization variables during the optimization
process. The optimization variable is again limited to the range around xAbs

Lim = 0.8 mm
and yAbs

Lim = 0.8 mm. The BPMs are also shifted within xAbs
Sto = 0.2 mm and yAbs

Sto = 0.2 mm
relative to the design orbit, but are not moved any further during the optimization process.

Figure (8.8) shows all the elements involved in the optimization process for better vi-
sualization. For the optimization of the orbit, the steerer kick values from Precursor Run
2 were loaded into the BMAD simulation model of COSY. Based on the variables described
above, 1000 different similar scenarios were generated using magnet and BPM misalign-
ments, as well as the dipole shortenings. The TAO optimization algorithm was designed
to correct the horizontal and vertical closed orbit via the optimization parameters in such
a way that the orbit measured at the BPMs is corrected to zero for all 1000 scenarios.
This reflects the process during the real COSY beam time. The result for the orbit as
perceived by the BPMs in the simulation is shown in Figure (8.9).

Figure (8.9) compares the average closed orbit after the TAO optimization process with
the orbit measured during Precursor Run 2. Since it is only possible to measure the orbit
in the COSY storage ring at its BPMs, the orbit at the position of the BPMs is also ana-
lyzed in the BMAD simulation. To mimic the way a real BPM works, the BPM simulation
does not calculate the difference between the design orbit and the closed orbit, but the
difference between the BPM center and the closed orbit. This is referred to as BPM orbit.
This behavior is present in the BPMs installed in COSY and therefore has to be taken
into account in Precursor Run 2.

Before starting a detailed discussion of Figure (8.9), it should be noted that the optimiza-
tion algorithm has no information about the measured orbit. The goal of the optimization

114



Figure 8.8: Floor plan of the COSY storage ring showing all dipoles, quadrupoles and
BPMs. A BPM is marked as a blue circle if a quadrupole magnet is nearby
and can be used via BBA to calibrate the BPM offset. The quadrupoles used
for this purpose are indicated by a black rectangle. If the calibration is doubtful
because the partners are too far apart or there is a dipole between them, the
BPM or quadrupole is marked in red. Dipole magnets are indicated by a grey
rectangle.

algorithm is to vary systematic effects in such a way that the BPM orbit is as close to zero
as possible at all BPM positions in COSY. It is decided not to adapt the BPM orbit to the
orbit measured in Precursor Run 2, since the transverse position of the BPM center in the
reference system of the real COSY storage is only known to a limited extent. Therefore,
problems arise when the optimization algorithm adjusts the BPM orbit to incorrectly
measured orbits, since a correct description of correctly measured orbits is not always
possible. This is due to the fact that a mathematically closed solution is required for
the closed orbit description. However, this method can be used to estimate which BPMs
may be inadequately calibrated. In addition, this method can be used to estimate the
magnitude of all systematic effects present in the real COSY storage ring. This is due to
the fact that two classes of effects act on the orbit in the simulation model. These are the
steerer magnets and the systematic effects. While the influence of the steering magnets on
the closed orbit is relatively well known from various measurements, the influence of the
systematic effects is only roughly known. Therefore, the optimization algorithm searches
for the correct combination of systematic effects so that the BPM orbit in the simulation
matches the BPM orbit during Precursor Run 2.

In its upper panel, Figure (8.9) compares the average horizontal orbit of the simulation
after applying the optimization algorithm and the horizontal orbit from Precurser Run 2.
The error bars2 in blue graph describe different results of the 1000 iterations in simulation

2One is talking here about σ2
x = 1

N

∑N

i=1(xi + x), at every BPM position, with N being the number of
iterations.
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Figure 8.9: Optimized horizontal and vertical closed orbit as observed by the BPMs of
COSY. The horizontal and vertical beam position at BPM location is shown
in dependency of the individual BPM. In blue the average result of the 1000
scenarios after optimization is displayed, while the orbit during Precursor Run
2 as recorded by the COSY BPMs is shown in black.

with various initial conditions. The measured orbit shown in black also has error bars,
based on the static fluctuation of the BPM results during Precursor Run 2. These are
negligible in the scope presented. From the blue graph describing the simulation results
one is able to observe that the adjustment of the BPM orbit to the value zero is generally
very successful. However, there are exceptions. These exceptions are in the range from
BPMX18 to BPMX23. Interestingly, the BPM orbits for some of these exceptions agree
very well with the measured orbits from Precursor Run 2. This agreement can be explained
by the exceptionally strong horizontal steerer kick at the position of the electron cooler
between BECX01 and BECX02, which significantly determines the horizontal orbit at this
point. In the remaining course, however, the simulated orbit and the measured orbit are
in much worse agreement. An explanation for this difference becomes clear when looking
at the fitting parameters and will be taken up again later. Since the horizontal orbit is
generally only of minor importance for the ISA tilt angle, this orbit description is sufficient.

In the lower panel, Figure (8.9) shows the results for the vertical orbit from BMAD simu-
lation and Precursor Run 2. Similar to the horizontal orbit the optimization algorithm is
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in general successful in its flattening of the BPM orbit. It is also noticeable that the sim-
ulation results around BECY, which is the vertical counterpart to BECX, agree relatively
well with the measurement results without any adjustment of the simulation to Precursor
Run 2. The reason for this agreement is coming from the steerer magnet kicks around the
electron cooler which dominate the orbit. In general, the simulated vertical orbit and the
measured vertical orbit agree much better than is the case in the horizontal phase space.
However, there are also deviations here. These will be discussed in more detail below.

It is not surprising that the BPM orbit results between simulation and measurement
for BPMY113 and BPMY114 are so different. Both BPMs were not calibrated during
the Precursor Run 2 beam time and have a strong noise, so their orbit measurement
is doubtful. Close to these two BPMs are BPMY06 and BPMY07, where simulation
and measurement are also different. Since a quadrupole triplet can be used to calibrate
BPMY06, the BPM orbit measured in Precureser Run 2 should be correct, as should the
BPM orbit at BPMY07. A look at the relative vertical quadrupole misalignments deter-
mined by the BBA shows that the quadrupole triplet located between ECBPMY113 and
BPMY07 is misaligned on average by about 0.5 mm in the vertical direction. However, the
average misalignment is not taken into account in the BMAD simulation. It can therefore
be concluded that the differences after optimization between the BMAD simulation and
Precursor Run 2 are due to an incorrect orbit measurement and inadequate modelling in
parallel. This problem illustrates perfectly the challenge one faces when evaluating why
the BMAD simulation does not describe Precursor Run 2. Still not all deviations between
simulation and measurement can be explained in exactly this same way. For example, it
has not yet been possible to explain why there is such a difference between simulation and
measurement for BPMY16 and BPMY17.

On the other hand, the differences between simulation and measurement in the BPM
orbit for the BPMs from BPMY22 to BPMY29 can be explained by the fact that in the
second arc of COSY the beam is also injected and extracted. Therefore, in the second
arc of COSY it is not clear whether the BPM calibration was successful or how well the
quadrupoles were aligned, as shown in Figure (8.8). This suspicion is confirmed by similar
observations made by M. Hartmann [93] using an orbit optimizer for the horizontal orbit.
In general, however, it can be assumed that the vertical orbit adjustment is successful
with the reliable information provided. Therefore, the optimization parameters will now
be discussed.

Figure (8.10) and Figure (8.11) show the results of the quadrupole position optimiza-
tion. In the straight sections of COSY, the quadrupole triplet position is optimized, while
in the arcs each quadrupole is adjusted individually. In both figures the initial variation
of the fitting parameters is shown as a blue area, while the limits of the fitting parameters
are shown as a dashed blue line. To obtain an estimate of the magnitude of the mis-
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alignments required to optimize the BPM orbit, the RMS value of the mean quadrupole
misalignment is calculated for each phase space and shown in the legend. It is interesting
to note that the resulting RMS of the mean quadrupole misalignment is identical for the
arc and telescope quadrupoles and also for the horizontal and vertical phase space. One
also obtains a similar RMS value for the transverse quadrupole misalignments when using
the Stollenwerk&Burghof measurements from 2020. It can therefore be concluded that
the magnitude of these misalignments is reasonable.

Figure 8.10: Quadrupole triplet optimization variables. The top/bottom panel shows the
average horizontal/vertical misalignment of the quadrupole triplets in black.
A blue area marks the range of initial variation before optimization, while a
blue dashed line indicates the optimization limits. The legend displays the
initial range of variation and the RMS of the optimization variable.

Another interesting observation is that the horizontal quadrupole misalignment associated
with the quadrupole triplet QT29-QT32 reaches the optimization limit. This particular
quadrupole triplet is located at the end of the second straight section of COSY after the
100 keV electron cooler. It is located at a position with large horizontal momenta due to
the strong steerer kicks from the 100 keV electron cooler steerer. Therefore, the optimizer
tries to compensate for these large horizontal momenta by shifting this quadrupole group
as much as possible in the horizontal phase space in order to smoothly enter the COSY
arc. This problem becomes even more obvious when looking at the optimization parame-
ter associated with the dipole, as shown in Figure (8.12).

This figure sketches the optimized dipole field error in its top panel. The largest kicks
resulting from this optimization process are at the dipoles BE13 and BE14, which are
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Figure 8.11: Arc quadrupole optimization variables. The top/bottom panel shows the
average horizontal/vertical misalignment of the individual arc quadrupole in
black. A blue area marks the range of initial variation before optimization,
while a blue dashed line indicates the optimization limits. The legend displays
the initial range of variation and the RMS of the optimization variable.

located right after the quadrupole triplet QT29-QT32. This demonstrates that strong
horizontal kicks are necessary at positions after the 100 keV electron cooler to enter the
second COSY arcs. However this figure also demonstrates why the horizontal simulated
BPM orbit and the measured BPM orbit during Precursor Run 2 differ. The dipole field
errors are way too small to describe the effective dipole field shortening effect in the real
COSY ring. As the horizontal orbit is not important for the ISA tilt description this
difference is in that context not relevant. However regarding a proper and precise orbit
description it is. Figure (8.12) also shows the vertical misalignment of the dipoles after
optimization. These values show no systematic deviation, although Stollenwerk&Burghof
measured systematic deviations of up to 0.5 mm. Overall, it must be summarized that the
use of the dipoles as an optimization variable did not bring any added value. There is still
potential for improvement here. In principle, it can even be shown that the entire fitting
process also works without the vertical dipole offsets. Despite the problems described, the
optimization of the vertical orbit is successful and the quadrupole misalignments, which
are important in the Straight sections, are in the correct order of magnitude. Therefore,
the ISA tilt angle during Precursor Run 2 can now be discussed.

8.4.1 Discussion of Simulation Results and Experimental Results

In order to analyze the ISA tilt angles resulting from the optimization of the BPM orbit,
the reference system has to be changed from the BPM orbit to the horizontal xClo

Abs and ver-
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Figure 8.12: Dipole magnet optimization variables. The top panel shows the average dipole
field error while the bottom panel displays the average vertical dipole mis-
alignment. The blue area marks the range of initial variation before optimiza-
tion, while a blue dashed line indicates the optimization limits. The legend
displays the initial range of variation and the RMS of the optimization vari-
able.

tical yClo
Abs orbit in the COSY reference system, which results from the difference between

the design orbit and the closed orbit. As shown at the beginning of this chapter, the radial
nx and longitudinal nz ISA tilt angle depends on the vertical orbit in the COSY reference
system. To get a better idea of the expected orbits in the COSY reference system, Figure
(8.13) shows the first 100 iterations of the optimization algorithm after optimization. In
addition, Figure (8.14) shows the corresponding ISA tilt angles.

As shown in Figure (8.13) and Figure (8.14), both the orbit and the ISA tilt angle in the
COSY reference system converge towards a mean solution. Overall, based on the vertical
orbit in the BMAD simulation, radial ISA tilt angles of up to ±80µrad and longitudinal
ISA tilt angles of up to ±600µrad are expected to occur during Precursor Run 2. For the
comparison of the results from Precursor Run 2 with the BMAD simulation the ISA tilt
angle has to be determined at particular locations in COSY. These are the position of the
snake magnet, which is located at a distance of sSna = 126.128 m from the injection point,
the position of the 2 MeV Solenoid, which is located at a distance of sSol = 16.272 m from
the injection point, and at the RF Wien filter, whose distance from the injection point is
given by sWF = 24.890 m. Since correction factors based on the relative vertical momen-
tum at the measurement position are required in the case of a vertically perturbed orbit,
the relative vertical momenta are also determined at all three locations in the BMAD sim-
ulation. Unfortunately an experimental determination of the relative vertical momentum
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Figure 8.13: Simulated horizontal and vertical closed orbits in the reference system of the
COSY storage ring after optimization of the BPM orbit. Both closed orbits
are shown as a function of the distance from the injection point. Each color
corresponds to one iteration of the optimization algorithm. A total of 100
different solutions with different initial conditions are shown.

is prone to error due to the limited number of BPMs in the COSY storage ring. The fig-
ures (8.15), (8.16) and (8.17) show the distribution of the ISA tilt angles and the vertical
momentum at the position of the snake solenoid, the 2 MeV Solenoid and the RF Wien
filter. For the determination of the mean of each distribution a Gaussian function is fitted
to the simulated data points.

Using the means and standard deviations obtained in this way, the measurement results
of Precursor Run 2 can be compared with their simulated counterparts. This is done in
Table (8.1). In the simulation, a distinction is made between the results of an idealized
RF Wien filter and the results of a RF Wien filter with simulated fields, which referred to
as a realistic RF Wien filter. It was also assumed that the both simulated RF Wien filter
fields have no vertical tilt angle relative to the design axis.

Element BMAD/TAO Simulation Precursor Run 2 [98]
2 Mev Solenoid cSol = +0.043(34) mrad cSol = −0.0705(9) mrad
Snake Solenoid cSna = +0.052(27) mrad cSna = −0.057(1) mrad

Idealized RF Wien Filter ϕ0
WF = −0.0201(92) mrad /
ξ0

WF = −0.008(32) mrad /
Realistic RF Wien Filter ϕ0

WF = −0.0147(92) mrad ϕ0
WF = −2.1(1) mrad

ξ0
WF = −0.084(46) mrad ξ0

WF = +3.9(6) mrad
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Figure 8.14: Resulting radial and longitudinal ISA tilt angles for the closed orbits shown
in the Figure (8.13) as a function of distance from the injection point. Each
color corresponds to an iteration of the optimization algorithm.

Table 8.1: Comparison of the ISA tilt results obtained in the BMAD/TAO simulation by
optimizing the BPM orbit and in Precursor Run 2 at COSY’s static solenoids
and the RF Wien filter. The BMAD/TAO simulation assumes no RF Wien
filter tilt angle and no EDM signal.

As it can be seen in the Table (8.1), the BMAD simulation results at the 2 MeV Solenoid
and the Snake Solenoid are in the same order of magnitude and show a 4σ deviation. On
the one hand, this can be explained by the relatively large errors in the simulation. On the
other hand, the magnitudes of the ISA tilt angles are correctly described by the BMAD
simulation. In this sense, the BPM orbit optimization can be seen as a significant success.
Unfortunately, there is no agreement between the BMAD simulation and the Precursor
Run 2 measurement for the ISA tilt angles at the RF Wien filter. The measurement dur-
ing Precursor Run 2 shows significantly larger ISA tilt angles at the RF Wien filter than
expected from the simulation.

This difference needs to be explained and contextualized. As outlined in the previous
sections, there are three things in particular that contribute significantly to the ISA tilt
angle. These three contributions are the vertical orbit, any longitudinal field and an EDM
signal. What the BMAD simulation investigates by optimizing the BPM orbit is how
much the orbit observable at the COSY BPMs contributes to the total ISA tilt angle. The
other two effects are neglected in the BMAD simulation on purpose. On the basis of this
investigation it can be said that the visible vertical orbit contributes in the order of 102

microradians to the ISA tilt. This is sufficient to explain the ISA tilt angle observed at
the 2 MeV Solenoid and the Snake Solenoid. Since larger ISA tilt angles are observed at
the RF Wien filter, they could be explained due to the abundance of an EDM signal and
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Figure 8.15: Distribution of radial and longitudinal ISA tilt and relative vertical momen-
tum at the position of the 2 MeV Solenoid after the optimization process.
The simulated data points are represented by a histogram fitted with a Gaus-
sian function. The corresponding fit parameters are given in the legend above
the plots.

unknown longitudinal fields in COSY. However, this scenario is very unlikely. The reasons
for this are explained in the following.

The RF Wien filter and the 2 MeV Solenoid are about 8 m apart and are located in the
same straight section. The only optical element between them is a quadrupole triplet.
Only a longitudinal magnetic field or the relative vertical momentum can affect the lon-
gitudinal ISA tilt angle at these two elements. According to the BPM orbit optimization
performed, only vertical beam momenta below milliradians are expected at these elements
in this section of COSY. Therefore, an ISA tilt angle in the milliradian range due to the
vertical orbit can be generally excluded. The only possibility to generate such a large ISA
tilt angle due to the vertical orbit would be an orbit bump, which is completely localized
at the RF Wien filter and therefore not observed by the COSY BPMs. The size of the
orbit bump must be larger than 10 mm. In response to this large orbit bump, the RF
Wien filter must also be pitched, as otherwise a turned on RF Wien filter would signifi-
cantly perturb the orbit in the rest of COSY, which is not observed in Precursor Run 2.
In addition, the tilt angle of the RF Wien filter must also be in the order of milliradians.
Since an unrecognized large localized vertical orbit bump and a large RF Wien filter tilt
angle are very unlikely, this scenario is ruled out.

Another explanation for the large longitudinal ISA tilt angles at the RF Wien filter can
be found by considering unknown longitudinal fields in COSY. However, there are two
arguments against this explanation. On the one hand, longitudinal magnetic fields of the
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Figure 8.16: Distribution of radial and longitudinal ISA tilt angle and relative vertical
momentum at the position of the Snake Solenoid after the optimization
process. The simulated data points are represented by a histogram fitted
with a Gaussian function. The corresponding fit parameters are given in the
legend above the plots.

order of 10−3 T·m are required to produce ISA tilt angles in the milliradian range. Such
large longitudinal field components have a significant effect on the beam orbit if the beam
does not pass through them on axis. However, an unexplained orbit bump has not yet
been observed, measured or expected. There is also no physical explanation for a longitu-
dinal field of this size in COSY. It is therefore unlikely that this scenario is possible. On
the other hand would such a large longitudinal field also affect the longitudinal ISA at the
2 MeV Solenoid, since both elements are located in the same straight section of COSY. It
is impossible for a longitudinal field to affect the ISA at the RF Wien filter while leaving
the ISA at the 2 MeV Solenoid unaffected. Discussing longitudinal fields, which are un-
known in COSY or not implemented in the BMAD simulation model of COSY one has
to mention the longitudinal fields arising from the crosstalk of dipole magnets and nearby
magnetic material. Their magnitude can be expected to be in the range of 10−5 T·m.
This effect is not included in the BMAD simulation model. This is because important
information about the direction of their field and the number of times they occur has not
yet been resolved. In J. Bökers’ simulations, longitudinal fields from cross-talk can be
observed when a dipole magnet and a vertical steerer magnet are in close proximity. As
only this particular scenario has been simulated, it is unclear whether the same effect can
occur for a horizontal steerer magnet and how it might differ. As these longitudinal fields
tend to have less effect on the ISA tilt angle than the vertical orbit, they are neglected in
the BMAD simulation so far.
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Figure 8.17: Distribution of radial and longitudinal ISA tilt angle and relative vertical
momentum at the position of the RF Wien filter after the optimization
process. The simulated data points are represented by a histogram fitted
with a Gaussian function. The corresponding fit parameters are given in the
legend above the plots.

With the arguments discussed above, it is clear that a measurement of the longitudi-
nal ISA tilt angle of the order of milliradians at the RF Wien filter location is unlikely.
Unfortunately, a radial ISA tilt angle at the RF Wien filter in the milliradian range must
also be ruled out as a consequence. Since tilt angles due to the vertical orbit and the
longitudinal fields cannot cause such large ISA tilt angles, the only explanation left for
the radial ISA tilt angle is a possible EDM signal. A possible EDM signal is always an
option as it can dominate the ISA tilt angle due to systematic effects without perturbing
the orbit. However, an EDM signal exceeding all previous limits for other particles would
be required to produce such a large ISA tilt angle. This is very unlikely. In addition, a
consistent explanation for the large longitudinal ISA tilt angle at the RF Wien filter is
needed to claim that this large radial ISA tilt angle comes from an EDM signal. Since the
radial and longitudinal ISA tilt angles are very large and no explanation could be found
for the difference in the longitudinal ISA tilt angles at the 2 MeV Solenoid and RF Wien
filter, the natural conclusion is, that the constructed and operated RF Wien filter device
is not completely understood at the moment.

8.5 Summary on potential ISA tilt angles in COSY

This chapter discusses which systematic effects present in the COSY storage ring play a
role for the closed orbit and the ISA tilt angle, and how these can be implemented in the
BMAD simulation model of COSY. It is shown that the systematic effects due to dipoles
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and quadrupoles have to be simplified by effective dipole kicks at the location of these
elements. The reason for this simplification is that only the order of magnitude of each
individual systematic effect is approximately known. This simplification can be justified
as the ISA tilt angle is determined by three main influencing factors. These are given by
the vertical orbit yClo, existing magnetic fields Bz in the direction of the beam momentum
and a potential EDM signal. Equation (8.2) summarizes these once again.

nx(s) = F1(yClo)+ F2(Bz) + F3(ηEDM)

nz(s) = G1(yClo)+ G2(Bz)
(8.2)

Therefore, to a good approximation, a fixed closed orbit will always converge to the identi-
cal ISA tilt angle. Since the exact magnitude of the individual systematic effects affecting
the beam path is unknown, the simulated beam path must be matched as closely as pos-
sible to the measured beam path. This is done by varying the effective kicks at the dipole
and quadrupole magnets to determine the potential ISA tilt angle in the COSY storage
ring coming from the closed orbit. In order not to arrive at unphysical solutions for the
systematic effects, reasonable constraints have to be set by estimating the magnitudes of
systematic effects. In addition, measurement uncertainties of the BPM position in COSY
have to be taken into account. Due to the large number of variables to be considered and
the uncertainty of the BPM position, the orbit matching algorithm provides a distribution
of potential orbits and ISA tilt angles in result. After optimization, the measured vertical
orbit and the simulated orbit match well, with a few exceptions. This result shows that the
orbit matching algorithm is far from final, nor are the systematic effects fully understood
and interpreted. There are various effects that can still be added to the simulation model
and their implementation can still be improved. However, the included systematic effects
give correct information about the ISA inclination angle due to orbit effects.

The resulting ISA tilt angle in the BMAD simulation present results well below 0.1 mrad
over the whole ring circumference. Consistent results can be found when comparing the
ISA tilt angle from the BMAD simulation and Precursor Run 2 at COSY’s static solenoids.
When comparing the ISA tilt angle results at the RF Wien filter however, the large mea-
sured ISA tilt angles of order of milliradians cannot be explained by the BMAD simulation.
In addition, also a consistent explanation of these measured ISA tilt angles due to unknown
longitudinal fields or a potential EDM signal is problematic. Based on the current BMAD
simulation model one can therefore summarize that signal measured at the RF Wien filter
during Precursor Run 2 is not the ISA tilt angle in COSY, which is present, when the RF
Wien filter is not operated. Research is ongoing, what exactly causes this issue.
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CHAPTER 9

Conclusion

The electric dipole moment of elementary particles is a property of great interest in parti-
cle physics, as it may answer the unsolved matter-antimatter asymmetry in the Universe.
The EDM violates P and T in the standard model of particle physics and is predicted
to be very small, since it occurs only as a higher-order loop effect. So far, no finite
experimental signature of an EDM has been measured, although several scientists and col-
laborations are working on this topic to improve the statistical and systematic sensitivities.

This thesis discusses the simulations related to the first direct measurements of the deuteron
EDM by the JEDI collaboration at Jülich in November 2018 and March 2021, in the Pre-
cursor Runs 1 and 2. In a storage ring, the EDM causes a tilt angle of the invariant spin
axis in the radial direction. Therefore, a measurement of the ISA orientation leads to a
first direct measurement of the deuteron electric dipole moment. This can be done with a
static solenoid as well as with a radio frequency Wien filter operated at the spin precession
frequency. Unfortunately, naturally occurring systematic effects in the storage can also
tilt the ISA in the radial and longitudinal directions. Since the expected effect of the EDM
on the ISA is very tiny, particle and spin tracking simulations have to been performed to
separate systematic effects from a potential EDM signal. This has been done in the course
of this thesis using the software library BMAD.

This way the systematic effects and uncertainties, which effect the ISA tilt angle in the
storage ring COSY, were investigated. Although the existing BMAD simulation model of
COSY has so far been successful in identifying correction factors in various ISA measure-
ments and in performing a rough orbit fitting that can predict the magnitude of the ISA
tilt angles at static solenoids, it fails to properly predict the magnitude of the expected sys-
tematic effects. In addition, the simulation model cannot explain the large ISA tilt angles
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observed in the Precursor experiments at the RF Wien filter. The reason for this differ-
ence can be found in the BMAD simulation model as well as in the EDM experiment itself.

Based on the investigations performed for this thesis and other theoretical considerations,
it can be concluded that an ISA tilt angle of the order of milliradians in COSY at the given
beam orbit during Precursor Run 2 cannot reasonably be attributed to systematic effects
or a potential EDM signal. Not only would a radial ISA tilt angle coming solely from
an EDM correspond to an EDM of magnitude 10−17 e·cm, which is much larger than all
upper limits measured so far for other particles, it would still not explain the longitudinal
ISA tilt in the milliradian range. For this reason, another explanation for the observed
ISA tilt angels during Precursor Run 2 have to be found. For this reason, research about
the magnetic field axis of the RF Wien filter is ongoing to explain the observations at the
RF Wien filter [98].

In addition, the BMAD simulation indicates, that only the orbit, longitudinal fields, and
the EDM of a particle can affect the ISA tilt angle. Since systematic effects determine the
orbit and the longitudinal fields in COSY, more information about each systematic vari-
able is needed, as well as information about the measured orbit including its uncertainties.
This can be achieved by using more BPMs than already present in COSY and having more
information about the BPM alignment with respect to the magnets and the design orbit.
This issue will also be critical for any future EDM experiment in a storage ring. In view
of this precise control of the beam trajectory and the knowledge of the systematic effects,
it seems essential to build a dedicated storage ring to study the ISA tilt angles and thus
to measure a potential EDM signal.

Such an experiment is foreseen for the future, as the construction of an all-electric stor-
age ring dedicated to proton EDM measurements is planned. As an intermediate step,
a smaller ring, called the Proton Prototype EDM Ring, is proposed [99]. In contrast to
the all-electric ring, the proton prototype EDM ring will have a low-cost ring design and
operate in different modes, one with all-electric bending elements and one with combined
electric and magnetic bending elements. This approach should provide a proof of concept
for the frozen spin method as well as experience in handling high electric fields in a storage
ring. In addition, features such as the control of two counterclockwise rotating polarized
proton beams can be tested. In the final all-electric ring, the frozen-spin condition can be
achieved using only electric fields by accelerating protons to the magic momentum. Again,
two counter-rotating proton beams circulate simultaneously in the storage ring [100].

In conclusion, this thesis highly supports the demand for the construction of the Pro-
ton Prototype EDM ring under the constraint that all the knowledge available so far in
taken into account when getting the final design for it. As this thesis outlines, systematic
effects must be understood or measured to get an accurate simulation model. In addition,

128



the vertical orbit must also be accurately measured to see if all systematic effects affecting
the orbit are accounted for.
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Appendix

Figure 9.1: Floor plan of the quadrupole and sextupole magnets in COSY, which form a
family with the corresponding family name. Taken from [101].
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Figure 9.2: Calibration factors for the horizontal steerers magnets determined by the 4-
bump and ORM method at two different beam energies. The recalibration
campaign from summer 2020 is compared with the previously determined cal-
ibration factors. Taken from [94].
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Figure 9.3: Measured rotations of the quadrupole magnets in the straight sections of
COSY by the company Stollenwerk&Burghof in April 2019 and January 2020.
The blue and red colored bars show the measured magnitude of the rotation,
while a measurement error given by the company is shown as a black error
bar.

Figure 9.4: Measured rotations of the quadrupole magnets in the arc sections of COSY by
the company Stollenwerk&Burghof in April 2019 and January 2020. The blue
and red coloured bars show the measured magnitude of the rotation, while a
measurement error given by the company is shown as a black error bar.
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Figure 9.5: Measured offsets of the COSY dipole magnets by the company Stollen-
werk&Burghof in April 2019 and January 2020. The blue and red bars show
the measured magnitude of the misalignment, while a measurement error given
by the company is shown as a black error bar.

Figure 9.6: Measured rotations of the COSY dipole magnets by the company Stollen-
werk&Burghof in April 2019 and January 2020. The blue and red bars show
the measured magnitude of the misalignment, while a measurement error given
by the company is shown as a black error bar.
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Figure 9.7: Simulated field map of the radial magnetic field component of a realistic RF
Wien filter in the plane y = 0 mm. The field map consists of a total of 104,
with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].

Figure 9.8: Simulated field map of the longitudinal magnetic field component of a realistic
RF Wien filter in the plane y = 0 mm. The field map consists of a total of
104, with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].
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Figure 9.9: Simulated field map of the vertical electric field component of a realistic RF
Wien filter in the plane y = 0 mm. The field map consists of a total of 104,
with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].

Figure 9.10: Simulated field map of the longitudinal electric field component of a realistic
RF Wien filter in the plane y = 0 mm. The field map consists of a total of
104, with 102 points in each direction. A position of x = 0 mm and z = 0 mm
indicates the target position TP1 and the center of the RF Wien filter [47].
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Figure 9.11: Calibration of the Snake solenoid after applying the measured steerer kicks
and measured magnet displacements to an idealized COSY lattice. In the top
panel, the black dots indicate the simulated data points, while the blue line
shows the result of fitting the Equation (7.5) to the data points. The bottom
panel shows the residuals from the top panel.
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Figure 9.12: Determination of a correction factor for the Snake solenoid after perturbation
of the closed orbit by random steerer kicks. The top panel shows the difference
between the projection of the longitudinal ISA and the actual longitudinal ISA
tilt at the solenoid position as a function of the relative vertical momentum
of the beam at the solenoid position. The simulated differences are shown
as black dots, while a linear fit with the fit parameter given in the legend is
shown in blue. The bottom panel shows the residuals of the linear fit.

Figure 9.13: Determination of a correction factor for the snake solenoid after pitching the
solenoid in the vertical direction. The top panel shows the difference between
the projection of the longitudinal ISA and the ISA tilt at the solenoid position
as a function of the vertical pitch angle. The differences are shown as black
dots, while a cubic fit with the fit parameter given in the legend and the
residuals shown in the bottom panel is shown in blue.
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Figure 9.14: Determination of a correction factor for the 2MeV solenoid after pitching
the solenoid in the horizontal direction. The top panel shows the difference
between the projection of the longitudinal ISA and the ISA tilt at the solenoid
position as a function of the horizontal pitch angle. The differences are shown
as black dots, while a cubic fit with the fit parameter given in the legend and
the residuals shown in the bottom panel is shown in blue.

Figure 9.15: Determination of a correction factor for the Snake solenoid after pitching
the solenoid in the horizontal direction. The top panel shows the difference
between the projection of the longitudinal ISA and the ISA tilt at the solenoid
position as a function of the horizontal pitch angle. The differences are shown
as black dots, while a cubic fit with the fit parameter given in the legend and
the residuals shown in the bottom panel is shown in blue.
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Figure 9.16: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the horizontal pitch angle of an idealized
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.

Figure 9.17: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the vertical pitch angle of an idealized
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.
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Figure 9.18: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the horizontal pitch angle
of an idealized RF Wien filter. In the top panel the simulated data points
and their errors are shown in black. A straight line fit to the simulated data
points is shown as a blue line and its main fitting parameters are given in the
legend. The residuals of the fit are shown in the bottom panel.

Figure 9.19: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the horizontal momentum at an idealized
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.
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Figure 9.20: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the vertical momentum at an idealized
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.

Figure 9.21: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the horizontal momentum
at an idealized RF Wien filter. In the top panel the simulated data points
and their errors are shown in black. A straight line fit to the simulated data
points is shown as a blue line and its main fitting parameters are given in the
legend. The residuals of the fit are shown in the bottom panel.
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Figure 9.22: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the horizontal pitch angle of an realistic
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.

Figure 9.23: Difference between the radial map minimum and the radial ISA tilt at the
RF Wien filter position as a function of the vertical pitch angle of an realistic
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.
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Figure 9.24: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the horizontal pitch angle
of an realistic RF Wien filter. In the top panel the simulated data points
and their errors are shown in black. A straight line fit to the simulated data
points is shown as a blue line and its main fitting parameters are given in the
legend. The residuals of the fit are shown in the bottom panel.

Figure 9.25: Difference between the radial map minimum and the radial ISA tilt at the RF
Wien filter position as a function of the horizontal momentum at an realistic
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.
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Figure 9.26: Difference between the radial map minimum and the radial ISA tilt at the
RF Wien filter position as a function of the vertical momentum at an realistic
RF Wien filter. In the top panel the simulated data points and their errors
are shown in black. A straight line fit to the simulated data points is shown
as a blue line and its main fitting parameters are given in the legend. The
residuals of the fit are shown in the bottom panel.

Figure 9.27: Difference between the longitudinal map minimum and the longitudinal ISA
tilt at the RF Wien filter position as a function of the horizontal momentum
at an realistic RF Wien filter. In the top panel the simulated data points
and their errors are shown in black. A straight line fit to the simulated data
points is shown as a blue line and its main fitting parameters are given in the
legend. The residuals of the fit are shown in the bottom panel.
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Subsystems Straights Subsystems Arcs

Quadrupole Name BPM Name Quadrupole Name BPM Name

QT01 BPM02 QU01 BPM09
QT02 BPM02 QU02 BPM10
QT03 BPM02 QU04 BPM11
QT04 BPM02 QU06 BPM12
QT05 / QU07 BPM13
QT06 / QU08 BPM14
QT07 / QU09 BPM15
QT08 / QU11 BPM16
QT09 BPM06 QU12 BPM17
QT10 BPM06 QU13 BPM22
QT11 BPM06 QU14 BPM23
QT12 BPM06 QU16 BPM24
QT13 BPM08 QU16 BPM24
QT14 BPM08 QU20 BPM27
QT15 BPM08 QU21 BPM28
QT16 BPM08 QU24 BPM01
QT17 BPM18
QT18 BPM18
QT19 BPM18
QT20 BPM18
QT21 BPM19
QT22 BPM19
QT23 BPM19
QT24 BPM19
QT25 BPM20
QT26 BPM20
QT27 BPM20
QT28 BPM20
QT29 BPM21
QT30 BPM21
QT31 BPM21
QT32 BPM21

Table 9.1: BPMs with a quadrupole for calibration via BBA in their vicinity. If the
quadrupole and the BPM are too far apart, or if a dipole magnet is placed
between them, no direct partner is listed. Figure (8.8) shows the situation in
the form of a floor plane of the COSY storage ring.
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