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Abstract

Currently, we do not understand why there is more matter than antimatter in our

universe. The matter-antimatter asymmetry could only occur under specific condi-

tions called the Sakharov conditions, one of which involves the violation of combined

CP symmetry. Our understanding of the universe is based on the preservation of

quantities such as energy, momentum, and charge. Advances in elementary particle

physics have led to the discovery of new symmetries, including parity P, charge con-

jugation C, and time-reversal T symmetries. Traditionally, these symmetries were

believed to be universal. However, over the past few decades, small violations of

C, P, and combined CP symmetries have been detected and incorporated into the

Standard Model of particle physics and cosmology. Nonetheless, these violations are

insufficient to explain the observed domination of matter over antimatter. Hence,

the search for additional CP-violating phenomena continues. A possible manifesta-

tion of additional CP violation is the Electric Dipole Moment (EDM) of elementary

particles. The Standard Model predicts a highly suppressed EDM, requiring ex-

periments with high statistical and systematic sensitivity for detection. Conversely,

models of physics beyond the Standard Model predict significantly larger EDMs,

making EDM measurements an important tool for excluding certain beyond Stan-

dard Model theories. To date, all measurements of EDMs have been consistent

with zero, providing only upper limits on the EDM size of various particles. The

EDM must be a vectorial property aligned with a particle’s spin, so measurement

techniques focus on detecting changes in spin polarization signals caused by the

interaction of a potential EDM with electric fields. Because charged particles are

accelerated by electric fields, storage rings are ideal for charged particle EDM ex-

periments such as the deuteron, for which no experimental limit is available so far.

The goal of this thesis is to perform the first direct measurement of the deuteron

Electric Dipole Moment at the Cooler Synchrotron at Forschungszentrum Jülich by

observing the influence of the Electric Dipole Moment on the polarization of a stored

bunched and polarized deuteron beam. The measured values presented in this the-

sis are dominated by systematic errors, from which an upper limit of the deuteron

Electric Dipole Moment is derived:

|dd| < 2.2× 10−16 e · cm (95 % C.L.)
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5.2.2. Jülich Light Ion Cyclotron (JULIC) . . . . . . . . . . . . . . . . . . . . 39

5.2.3. Injection beamline (IBL) and Injection . . . . . . . . . . . . . . . . . . . 40

5.3. COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1. Beam Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2. Stochastic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.3. Beam Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4. Spin Manipulators in COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1. Radio Frequency Solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.2. Radio Frequency Wien Filter . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3. Siberian Snake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.4. 2 MV Solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5. Polarimeters in COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1. Wide Angle Shower Apparatus (WASA) . . . . . . . . . . . . . . . . . . 51

5.5.2. Jedi Polarimeter (JePo) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6. The Fiber-Optics-based Reference Frequency Distribution System . . . . . . . . 54

6. Data Analysis 55

6.1. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1. ROOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.2. EPICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2. Event Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3. Event and Bunch Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1. Event Selection Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4. Left - Right Asymmetry (Vertical Polarization) . . . . . . . . . . . . . . . . . . 61

6.4.1. Left - Right Asymmetry Correction using Unpolarized Cycles . . . . . . 62

6.5. Up - Down Asymmetry (In-Plane Polarization) . . . . . . . . . . . . . . . . . . 64

6.5.1. Determination of the Spin Tune . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.2. Correction of the Up - Down Asymmetry . . . . . . . . . . . . . . . . . 69

6.6. Angle between Vertical and Horizontal Polarization & Total Polarization . . . . 72

6.7. The Phase Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7. The Deuteron EDM Precursor Experiment 83

7.1. Measuring Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2. Spin Coherence Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1. Influence of the Siberian Snake on the Spin Coherence Time . . . . . . . 87

7.3. Cycle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3.1. Beam Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2. Steerer & Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4. Determination of the Invariant Spin Axis using Static Solenoids . . . . . . . . . 92

7.4.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4.4. Event Selection Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5. Calibration of the RF Wien Filter Levels . . . . . . . . . . . . . . . . . . . . . . 101

ii



Contents

7.6. Determination of the Invariant Spin Axis using the RF Wien filter . . . . . . . 103

7.6.1. The Resonance Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6.2. The Initial Slope Method . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6.3. The Pilot Bunch Method . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.6.4. Comparison of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.7. Experimental Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.7.1. Precursor I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7.2. Technical Improvements in COSY . . . . . . . . . . . . . . . . . . . . . 132

7.7.3. Precursor II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.8.1. Event Selection Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.9. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8. Systematic Studies 147

8.1. Systematic Calculations on the Buildup of the Vertical Polarization considering

Beam and RF Wien Filter Misalignments . . . . . . . . . . . . . . . . . . . . . 147

8.2. Measurement of the Solenoidal Field Directions . . . . . . . . . . . . . . . . . . 149

8.3. RF Wien Filter Field Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.1. Initial Idea of Measuring the Wien Filter Fields Orientation . . . . . . . 151

8.3.2. Measurement of the Orientation of Betatron Planes . . . . . . . . . . . 153

8.3.3. Scraper Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3.4. Measurement with Orbit Bumps in the First Arc after Injection . . . . 156

8.3.5. Measurement with Orbit Bumps at the RF Wien Filter . . . . . . . . . 157

9. Results 163

10.Outlook 165

10.1. Determination of the Electric Dipole Moment using Static Solenoids . . . . . . 165

10.2. Staged Storage Ring Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2.1. Prototype EDM Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2.2. Final Proton EDM Storage Ring . . . . . . . . . . . . . . . . . . . . . . 168

11.Summary 171

Appendices 175

A. Physical Offsets of the Beam Position Monitors 177

B. Constraints on the Cycle Selection for the Measurements of the Invariant Spin Axis179

B.1. Steerer Setting Margins for the Deuteron EDM Precursor experiments . . . . . 179

B.2. BPM Value Margins for the Deuteron EDM Precursor experiments . . . . . . . 180

C. Additional Material on the Determination of the Invariant Spin Axis using Static

Solenoids 183

C.1. Description of the Spin Motion in a Static Solenoid Providing a Magnetic Field

Pointing in Beam Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.2. Event Selection Studies for the Determination of the Longitudinal Component

of the Invariant Spin Axis during the First Precursor Run. . . . . . . . . . . . . 185

iii



D. Additional Material on the Determination of the Invariant Spin Axis using the RF

Wien Filter 187

D.1. Description of the Spin Motion in an RF Wien Filter . . . . . . . . . . . . . . . 187

D.2. Resonance Strengths for the EDM Precursor Experiments . . . . . . . . . . . . 191

D.3. Analysis of the Off-Resonance Behaviour of the Phase Feedback . . . . . . . . . 201

E. Additional Material on the RF Wien Filter Field Studies 203

E.1. Measurements with Orbit Bumps at the location of the RF Wien Filter . . . . 203

Bibliography 205

List of Figures 217

List of Tables 220



1. Introduction

Presently, we lack an understanding of why there is more matter than antimatter in our uni-

verse. This matter-antimatter asymmetry could only arise if certain conditions, known as the

Sakharov conditions, are met, one of which involves the violation of the combined CP symme-

try. The preservation of quantities like energy, momentum, and charge forms the foundation of

our comprehension of the universe. With the developments in particle physics, new symmetries

were discovered, namely the parity P, charge conjugation C and time-reversal T symmetries.

Traditionally, it was believed that these symmetries held universally. However, over the past

decades, small amounts of C, P and combined CP violation have been identified and incorpo-

rated into the Standard Model of particle physics and cosmology. Nevertheless, these are not

sufficient to explain the dominance of matter over antimatter. Hence, the search continues for

additional manifestations of CP violation.

One potential contribution to additional CP violation is the so-called Electric Dipole Moment

(EDM) of elementary particles. The EDM is highly suppressed by the Standard Model of

elementary particles. Therefore, experiments with high statistical and systematic sensitivity are

required for their determination. However, models incorporating physics beyond the Standard

Model predict significantly larger Electric Dipole Moments. Hence, EDM measurements are an

important tool to exclude beyond the Standard Model physics parameter space. Discovering a

finite EDM would enhance our comprehension and potentially extend the Standard Model. So

far, all measurements of EDMs are statistically and systematically consistent with zero. From

these measurements, only upper limits have been derived on the size of an EDM.

Electric Dipole Moments have to be aligned with the particle’s spin. Therefore, measurement

techniques aim to detect a change in the spin polarization signal resulting from the interaction

of a potential EDM with electric fields. Since charged particles are accelerated by electric fields,

particle storage rings are a natural choice for charged particle EDM experiments. While EDM

measurements for muons have been conducted in storage rings, the current experimental limit

for protons is derived from theoretical considerations applied to atomic EDM measurements.

Additionally, no experimental limit for the deuteron is available so far. Future direct measure-

ments for protons and deuterons are proposed in dedicated storage rings utilizing pure electric

fields or a combination of electric and magnetic fields. Feasibility studies are underway within

the JEDI (Jülich Electric Dipole moment Investigations) collaboration at the existing storage

ring, the Cooler Synchrotron COSY at Forschungszentrum Jülich.

The aim of this thesis is to perform the first direct measurement of the deuteron Electric

Dipole Moment at the Cooler Synchrotron facility at Forschungszentrum Jülich by observing

the influence of the Electric Dipole Moment on the polarization of a stored bunched and

polarized beam in the storage ring. The measured values reported in this thesis are dominated

by systematic uncertainties from which a first upper limit of the deuteron Electric Dipole

moment is derived:

|dd| < 2.2× 10−16 e · cm (95 % C.L.). (1.1)

1



CHAPTER 1. INTRODUCTION

This thesis is structured as follows:

In chapter 2, the matter-antimatter asymmetry is introduced. After discussing fundamental

symmetries, the Electric Dipole Moment of fundamental particles is introduced as an additional

manifestation of CP violation. The chapter is finalized with an overview of existing EDM limits

for various particles.

In sections 3 and 4, the motion of particles, including relevant parameters such as tunes and

chromaticity, and the evolution of polarized beams in accelerators are described. Most impor-

tantly, the basic principle of the measurement is outlined by explaining how an EDM modifies

the polarization of a bunched beam in a particle accelerator.

Section 5 illustrates the Cooler Synchrotron COSY at Forschungszentrum Jülich. An overview

of the full facility is given, along with all installations which are important for this thesis,

including the spin manipulators and polarimeters installed in the ring.

Chapter 6 describes the data analysis methods. The extraction of all important variables, such

as the vertical and horizontal polarization from data taken with the internal polarimeters, is

relevant for the experiment.

In chapter 7, the methodology of the first direct measurement of the deuteron Electric Dipole

Moment is explained. It was found that unknown systematics are dominating the experiment,

which are explored in the following section 8.

The results of the first direct measurement of the deuteron Electric Dipole Moment are dis-

cussed in section 9.

The thesis ends in section 10 with an outlook of possible future Electric Dipole Moment mea-

surement activities in storage rings and conclusions in section 11.

2



2. Scientific Motivation

This thesis is written within the JEDI [1] (Juelich Electric Dipole moment Investigations) Col-

laboration at Forschungszentrum Jülich. The aim of the collaboration is contributing to the

understanding of the matter-antimatter asymmetry in the universe by exploring possible exper-

iments of measuring permanent and oscillating Electric Dipole Moments of charged particles

in storage rings.

2.1. Baryon Asymmetry

The matter-antimatter asymmetry in the visible universe remains unexplainable by the Stan-

dard Model of elementary particles and the theory of general relativity. In the early moments

of the universe, particularly during the first fractions of a second after the Big Bang, conditions

were extremely energetic and hot. At such high temperatures (≈ 3000 K), particle-antiparticle

pairs were continuously created from the available energy and shortly after annihilated, result-

ing in the conversion of the particles and antiparticles into energy. The processes that created

particles and antiparticles were expected to be in balance, resulting in an equal amount of

matter and antimatter. However, as the universe expanded and cooled, the conditions changed

and the creation and annihilation of particle-antiparticle pairs became less frequent. At some

point, the universe underwent a phase called baryogenesis, where a tiny excess of matter over

antimatter was generated. This slight imbalance had significant consequences, leading to the

predominance of matter in the observable universe today. The matter-antimatter asymmetry

can be quantified by the baryon asymmetry parameter η [2]

η =
NB −NB̄

NB +NB̄

≈ NB −NB̄

Nγ
, (2.1)

where NB, NB̄ and Nγ denote the baryon, antibaryon and photon densities respectively. The

approximation NB + NB̄ ≈ Nγ is used since the end products of annihilation processes are

mostly photons. The ratio was independently determined from the power spectrum of the

temperature fluctuations in the Cosmic Microwave Background (CMB) and the abundance of

light elements in the intergalactic medium (IGM). The two measurements are consistent within

their uncertainties [2]

ηIGM = (5.80± 0.27)× 10−10 and ηCMB = 6.160+0.153
−0.156 × 10−10. (2.2)

The Standard Model of elementary particle physics combined with the Standard Model of

cosmology predicts the baryon asymmetry [3]

ηSM ≈ 10−18, (2.3)

3



CHAPTER 2. SCIENTIFIC MOTIVATION

which is eight orders of magnitude smaller than the measured values. Two possible scenarios

could explain the domination of matter

1. Antimatter regions, separated from matter-dominated regions like our Milky Way, are

still existing. The Alpha Magnetic Spectrometer (AMS) experiment on the International

Space Station (ISS) [4] is actively searching for antimatter-dominated regions in our

universe.

2. Symmetry breaking during the annihilation of baryons and antibaryons during the baryo-

genesis phase of the universe.

Andrei Sakharov postulated three conditions in 1967 to explain baryogenesis [5].

1. Baryon number violation: Processes that violate baryon number conservation are

required to evolve from a state with no baryons into a state with baryons, considering

that the initial system was in a state with baryon number B = 0.

2. C and CP symmetry violation: Conservation of C and CP symmetries would result

in the same probability of processes creating particles and their respective antiparticles.

This is linked to baryon number violation, as otherwise, no baryon asymmetry could have

occurred. More information about C and CP symmetries is given in section 2.2.

3. Interactions out of thermal equilibrium: A system in thermal equilibrium means

that all physical quantities are stable, making the transition from B = 0 to B 6= 0

impossible.

2.2. Symmetries and their Transformations

The formal connection between the conservation of a physical quantity and the invariance of

the corresponding system under a transformation, which defines a symmetry, was found in 1918

by the mathematician Emmy Noether [6]. In other words, each conservation law is connected

to an underlying symmetry. She found that the invariance of a system to a time transformation

leads to the energy conservation law and translation invariance and rotation invariance result

in momentum and angular momentum conservation, respectively. These symmetries are also

called continuous symmetries.

With further discoveries in elementary particle physics, new, discrete symmetries were found,

which can be mathematically described by operators applied to quantum systems. The main

discrete symmetries in particle physics are parity transformation (P), charge conjugation (C),
and time reversal (T ) symmetry [7].

• Parity Transformation describes the inversion of the three spatial coordinates while

leaving the time coordinate unchanged

(~x, t)→ (−~x, t). (2.4)

Polar vectors, such as momentum or position, undergo inversion through parity transfor-

mation. However, axial vectors like spin and angular momentum remain unaffected by

the transformation. Similarly, electric fields, which are represented by polar vectors, are

reversed under parity transformation, while magnetic fields, represented by axial vectors,

remain unaffected.

4



2.2. SYMMETRIES AND THEIR TRANSFORMATIONS

• Charge Conjugation Transformation inverts additive quantum numbers like charge,

baryon number, lepton number, or strangeness, which leads to the conversion of particles

into their respective antiparticles in the underlying physical process. An inversion of

charge also leads to a direct change in the direction of electric and magnetic fields.

However, spin, momentum, mass, and the lifetime of a particle remain unaffected.

• Time Reversal Transformation inverts the sign of the time coordinate

(~x, t)→ (~x,−t). (2.5)

For a time-reversal symmetric process, the reaction rate of a process should be the same

as for the reverse reaction.

2.2.1. Symmetry Breaking in the Standard Model

In the early 20th century, it was common sense that the symmetries are conserved in any

process. However, the interest in their violations arised starting from 1950 when the first

symmetry breaking theories were developed. In 1957, Wu et al. saw the first evidences of

parity violation in the weak sector in their famous experiment observing the beta decay of

polarized 60Co [8]
60Co→60 Ni + e− + ν̄e. (2.6)

It was observed that the direction of electron emission tended to be opposite to the direction of

nuclear spin. Applying a parity transformation would reverse the sign of the electrons’ veloc-

ity, but the polarization direction would remain unchanged. A second important experiment

considering symmetry breaking is the decay of charged pions [9]

π− → µ− + ν̄µ, (2.7)

π+ → µ+ + νµ. (2.8)

By measuring the spin direction of the emitted muon, it was discovered that neutrinos have neg-

ative helicity i.e., the projection of the spin axis on the momentum vector h = ~S · ~p, whereas

anti-neutrinos only appear with positive helicity. Consequently, neutrinos are named left-

handed and anti-neutrinos are referred to as right-handed. Although the existence of right-

handed neutrinos is theoretically possible, no empirical evidence supporting their presence has

been found so far. As a result, the unique handedness of neutrinos breaks the P invariance [10].

A C transformation converts a neutrino into an anti-neutrino while preserving the spin and

momentum. Applying a C transformation on the reaction described in Eq. (2.8) leads to

C(π+ → µ+
L + νµ,L)⇒ π− → µ−L + ν̄µ,L. (2.9)

Consequently, a left-handed neutrino would be transformed into a left-handed anti-neutrino.

However, as no evidence of such a particle has been discovered, there is experimental evidence

that the C symmetry is also broken.

As a consequence of parity and charge conjugation symmetry breaking, a new combined sym-

metry can be applied to the pion decay

CP(π+ → µ+
L + νµ,L)⇒ C(π+ → µ+

R + νµ,R)⇒ π− → µ−R + ν̄µ,R, (2.10)

5



CHAPTER 2. SCIENTIFIC MOTIVATION

which is in fact a conversion from Eq. (2.8) to (2.7), meaning that the process is CP conserving.

The first evidence of CP violation was found in the Kaon sector. In 1964, James Cronin and

Val Fitch conducted an experiment [11], revealing that the Kaon decay violates CP symmetry,

by observing the decay of KL into pions. The decay into two pions would not be possible if KL

was a pure CP eigenstate. However, decays into two pions were observed. This implies that

CP symmetry can be broken in weak interactions. It is possible to extend the Standard Model

using the so-called CKM (Cabibbo-Kobayashi-Maskawa)[12] matrix to account for the finding

of CP violation. In recent times, CP violation was also observed in the B meson sector [13].

In strong interactions, the QCD Lagrangian of the Standard Model includes CP-violating term

(the so-called θ̄QCD term), which can be linked to an Electric Dipole Moment (EDM) of nucle-

ons. More information is given in the following section 2.3.2.

Lastly, a new symmetry, known as the CPT theorem [14], was introduced by combining all

three symmetries. This implies that, through successive applications of the C, P, and T
transformations to a system, it will return to its initial state. To date, the CPT theorem has

remained valid, with no observed violations. The stability of the CPT theorem has implications

for other processes involving symmetry violation: if a reaction violates time reversal symmetry,

the CP symmetry is also violated if the CPT theorem holds.

2.3. Electric Dipole Moments

The Electric Dipole Moment of an elementary particle is a fundamental property like momen-

tum, charge, or mass and is aligned with the particle’s spin axis. The existence of a permanent

Electric Dipole Moment above the predictions of the Standard Model would be an additional

source of CP violation and a hint towards physics beyond the Standard Model if the CPT the-

orem holds, and it could contribute to our understanding of the matter-dominated universe.

2.3.1. Definition

Classically, the Electric Dipole Moment ~d describes the separation of charges in a system

~d =

∫
V

dx3 ~x · ρ(~x), (2.11)

where ρ(~x) denotes the charge density distribution of the system. The Magnetic Dipole Moment

(MDM) is defined in an analogous way

~µ =
1

2

∫
V

dx3
(
~x×~j(~x)

)
. (2.12)

For the Magnetic Dipole Moment, ~j(~x) describes the current density. The dependencies of the

Electric Dipole Moment and the Magnetic Dipole Moment with the spin of a particle are given

by [15]

~d = d · ~S with d = ηEDM
q~

2mc
and ~µ = µ · ~S with µ = g

q~
2m

, (2.13)

6



2.3. ELECTRIC DIPOLE MOMENTS

where ~S denotes a unit vector, i.e. |~S| = 1, directed along ~s, the true spin vector with

|~s| = ~
2
, (2.14)

for spin-1/2 particles and

|~s| = ~, (2.15)

for a spin-1 particle. The particle’s mass and charge are given by m and q, Planck’s constant

and the speed of light are denoted by ~ and c and the dimensionless factors ηEDM and g describe

the strength of the Electric Dipole Moment and the Magnetic Dipole Moment, respectively.

Using the Magnetic Dipole Moment as defined in Eq. (2.13), the g-factor can be calculated for

an elementary particle X using

µX = gX
q~

2mX
sX . (2.16)

Rearranging leads to the g-factor which reads for the deuteron

gd = µd
2md

q|~s| ≈ 1.714 025 461. (2.17)

However, for neutral particles like the neutron (q = 0), Eq. (2.17) cannot be used. Therefore,

the magnitudes of the Magnetic Dipole Moment are described using the Bohr magneton for

leptons or the nuclear magneton for hadronic systems [16]

µB =
q~

2me
= 5.788 381 801 2(26)× 10−5 eV/T, (2.18)

µN =
q~

2mp
= 3.152 451 255 0(15)× 10−8 eV/T. (2.19)

In official databases like the NIST database [17], the g-factor of hadrons is defined with respect

to the nuclear magneton

µX = gX
e~

2mp
sX = gXµNsX with X ∈ {p, n, d, ..}, (2.20)

which leads to a g-factor of

gd =
µd
µN
≈ 0.857 438 234. (2.21)

Thus, for the deuteron, the genuine definition of the g-factor as defined in Eq. (2.17) and the

g-factor with respect to the nuclear magneton as defined in Eq. (2.21) can be transformed into

each other using

gd =
µd
µN

md

mp
. (2.22)

In section 4.2, the so-called Thomas-BMT Equation is discussed which describes the motion of

spins in external electric and magnetic fields with a nonzero Electric Dipole Moment component.

The differential equations are a central element for the experimental methods described in this

thesis. For the derivation of the Thomas-BMT Equation, the definition of the fundamental

g-factor as defined in Eq. (2.17) is used [18].

7



CHAPTER 2. SCIENTIFIC MOTIVATION

Related to the dimensionless g factor is the anomalous gyromagnetic g-factor G, defined as

G = a =
g − 2

2
. (2.23)

In the leptonic sector, the letter a is often used for the anomalous gyromagnetic factor, while in

the hadronic sector the letter G is used. The g-factor can be related to Dirac’s equation which

describes fundamental properties of fermions (spin-1/2 particles). The outcome of the g-factor

is given by g = 2 and a = 0. However, higher order correction factors of the fine structure

constant lead to deviations of g = 2. Unrelated to the Dirac Equation, the factor (g-2)/2 appears

also in the derivation of the Thomas-BMT Equation. In this case it is important to use the

g-factor as defined in Eq. (2.17). The magnetic properties of the deuteron and the proton are

summarized in Table 2.1.

Note the Electric Dipole Moment and the Magnetic Dipole Moment are always aligned (parallel

or antiparallel) to the particle’s spin direction since the spin axis is the only marked direction

in a quantum system [19]. The proof of the alignment of the Electric Dipole Moment with

the spin axis in the absence of external electric fields, assuming that |a〉 is a state of definite

parity (P |a〉 = ± |a〉), makes use of the so-called Wigner-Eckart theorem and shows that the

expectation value of the Electric Dipole Moment is proportional to the spin vector [20]

〈a| ~d |a〉 ∝ 〈a| ~S |a〉 . (2.24)

Table 2.1.: Magnetic properties of the proton and the deuteron [17]. The g-factor is calculated
according to Eq. (2.17).

Particle S / ~ Mass / mc2 (MeV) µ / µN g G

proton 1/2 938.272 081 3(58) 2.792 847 344 63(82) 5.585 694 689 3(16) 1.792 847 344 650(8)
deuteron 1 1875.612 928(12) 0.857 438 233 5(22) 1.714 025 45(1) −0.142 987 270(8)

2.3.2. Electric Dipole Moments and CP-Violation

The CP violating properties can be revealed by applying a parity P and time reversal symmetry

T transformation to the non-relativistic Hamiltonian Ĥ of a particle at rest in an external mag-

netic ~B and electric ~E field with Electric Dipole Moment and Magnetic Dipole Moment [21]

Ĥ = −µ ~S · ~B − d ~S · ~E, (2.25)

P : Ĥ = −µ ~S · ~B + d ~S · ~E, (2.26)

T : Ĥ = −µ ~S · ~B + d ~S · ~E. (2.27)

By applying the parity operator in Eq. (2.26), the direction of the electric field is inverted, while

the magnetic field and the spin remain unchanged. The change of sign in the Electric Dipole

Moment contribution of the Hamiltonian means that the Electric Dipole Moment violates P
invariance while the Magnetic Dipole Moment contribution preserves the parity. The time

reversal transformation in Eq. (2.27) behaves in an almost identical way. Spin and magnetic

field are inverted, while the electric field is preserved, leading to the same conclusions as for the

parity transformation. Consequently, also CP is violated if the CPT theorem holds. The breach

8



2.3. ELECTRIC DIPOLE MOMENTS

of parity and time reversal symmetry, assuming a nonzero Electric Dipole Moment d 6= 0, is

shown in Figure 2.1.

Figure 2.1.: Schematic of a particle with an Electric Dipole Moment and Magnetic Dipole Mo-
ment in an external electromagnetic field. Applying time reversal transformation,
spin and magnetic field are inverted. Parity transformation leads to an inversion
of the electric field. Both transformations lead to a breach of symmetry in the
Electric Dipole Moment contribution of the Hamiltonian. Created by Jörg Pretz/
JEDI Collaboration.

Predictions of Electric Dipole Moments within the Standard Model can be calculated from

Feynman diagrams. The Electric Dipole Moment of quarks requires at least three-loop diagrams

resulting in very small predictions [21, 22]

dq ≤ 1× 10−34 e · cm− 1× 10−35 e · cm. (2.28)

Four-loop Feynman diagrams are required for non-vanishing Electric Dipole Moments for lep-

tons, resulting in significantly smaller predictions for electrons [19, 21]

de ≤ 1× 10−38 e · cm. (2.29)

The Electric Dipole Moment also plays an important role in the strong sector of the Stan-

dard Model, where it contributes to the so-called θ̄QCD term. The Lagrangian of quantum

chromodynamics (QCD) contributing to the CP violation is given by [23]

Lθ̄QCD
= −θ̄QCD

g2
s

64π2
εµναβGaµνG

a
αβ, (2.30)

9
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with Gaµν being the gluon field strength tensor, εµναβ denoting the total-asymmetric four-tensor

and the strong coupling constant represented by gs. Predictions of the proton and neutron

Electric Dipole Moment have been parameterized with respect to θ̄QCD, leading to [24]

d
θ̄QCD
n = θ̄QCD · (−2.9± 0.9)× 10−16 e · cm, (2.31)

d
θ̄QCD
p = θ̄QCD · (−1.1± 1.1)× 10−16 e · cm. (2.32)

Measurements of the Electric Dipole Moment of the neutron constrain the θ̄QCD parameter

to [23]

θ̄QCD ≤ 10−10. (2.33)

While the order of magnitude of θ̄QCD is expected to be O(1), the smallness of this parameter

remains theoretically not understood. This problem is also called the strong CP problem. The

postulation of hypothetical new particles, like axions, could solve the strong CP problem. How-

ever, no experimental observations have been made up to date. Also, the JEDI collaboration

conducted a measurement for the search of axions or axion-like particles. More information

about this measurement is given in section 4.2.3 [25, 26].

2.3.3. Existing Electric Dipole Moment Limits

Due to its CP-violating properties, the Electric Dipole Moment is an interesting measurable

quantity. All experiments rely on the fact that the Electric Dipole Moment is either parallel

or antiparallel to the spin of a particle, making the polarization of an ensemble of particles the

most important observable.

The first measurement of the neutron Electric Dipole Moment was published in 1957 by Smith,

Ramsey, and Purcell. Starting from a neutron sample created by a reactor, the neutron beam

is polarized using total reflection from a polished, magnetized iron mirror. Afterwards, the

polarized neutrons traversed the main magnetic field. When applying an additional radio-

frequency (RF) magnetic field whose frequency is adjusted to the Larmor frequency of the

neutrons, the polarization rotates into the plane perpendicular to the main magnetic field.

After this, a homogeneous electric field is superimposed either parallel or antiparallel to the

quantization axis leading to a precession of the perpendicular polarization with the angular

frequency

ω =
2|µB ± dE|

~
. (2.34)

The sign change indicates the flip of the electric field. By subtracting the two frequencies, the

Electric Dipole Moment can be determined using

d =
∆ω~
4E

. (2.35)

The experiment led to the first measurement of the neutron Electric Dipole consistent with

zero [27]

dn = (−0.1± 2.4)× 10−20 e · cm. (2.36)

10



2.3. ELECTRIC DIPOLE MOMENTS

Over the past years, the experiments became more and more sensitive leading to more stringent

neutron Electric Dipole Moment limits using ultracool neutrons in modernized experimental

setups [28]. The history of neutron Electric Dipole Moment limits is depicted in Figure 2.2.

In the early days of Electric Dipole Moment measurements, neutrons were a natural choice as

they are not accelerated by electric fields. However, it was not possible to measure Electric

Dipole Moments of charged particles. Trapping charged particles in particle accelerators where

they are stored with long beam lifetimes offers the possibility to measure their electric dipole

moments in future experiments.

1960 1970 1980 1990 2000 2010 2020
Year
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Neutron (achieved)

Proton (achieved indirectly from 199Hg)

Figure 2.2.: Proton and neutron Electric Dipole Moment limits determined from direct and
indirect measurements are sorted by publication year. The limits are taken from
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] and [38, 39] and adapted to 95 % C.L.
if necessary. In dedicated storage rings, the sensitivity of the measurement of
Electric Dipole Moments of charged particles is expected to drastically increase.
More information about future Electric Dipole Moment storage ring experiments
is given in section 10.2.

The proton Electric Dipole Moment can be measured in diamagnetic atoms. The finite size

of the nucleus and magnetic interactions between nucleons and electrons results in an atomic

Electric Dipole Moment. The best limit was achieved using mercury-199 (199Hg). The atoms

are polarized by a 254 nm laser system and the precession of polarization is measured in two

cells with aligned and anti-aligned static magnetic and electric fields. The obtained Electric

Dipole Moment limit for 199Hg and the deduced proton Electric Dipole Moment limit are

given in Table 2.2 [38]. There is no direct measurement of the proton Electric Dipole Moment

available.

The Λ-hyperon and the µ Electric Dipole Moment limit were parasitically measured while

measuring the Magnetic Dipole Moment of the particles. The direct Electric Dipole Moment

measurement of the muon at the g−2 experiment [15, 40] is similar to the experiment reported

in this thesis.
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The Electric Dipole Moment of the τ lepton was measured by the BELLE collaboration at the

KEKB e+e− collider analyzing the e+e− → τ+τ− reaction [41].

The Electric Dipole Moment of the electron was measured using trapped molecular ions
180Hf19F+ using spin resonance spectroscopy on metastable electronic states [42].

An overview of recent Electric Dipole Moment measurements, including the confidence limits

is shown for a few particle species in Figure 2.3. The values are summarized in Table 2.2. The

goal of the JEDI collaboration is to extend Figure 2.3 with a first direct measurement of the

proton and deuteron Electric Dipole Moment.

e−(HfF+) µ τ n p(199Hg) Λ 199Hg
10−30
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Figure 2.3.: Experimental 95 % confidence limits for various particles. For the electron and
proton, no direct measurement is available. The confidence limits are calculated
from measurements with 199Hg and 180Hf19F+. The values are taken from Table 2.2
and adapted to 95 % C.L. if necessary.

Table 2.2.: Most recent Electric Dipole Moment results of various particles. Each result is
consistent with 0. In case statistical and systematic errors are reported, they are
combined in quadrature. There is no direct measurement of the proton Electric
Dipole Moment limit available. The confidence limit is calculated from the mea-
surement of the mercury Electric Dipole Moment limit.

Particle Experimental Result / (e · cm) Limit / (e · cm) C.L. / % Year Ref.

µ (−0.1± 0.9)× 10−19 1.9× 10−19 95 2018 [15]
τ (−0.62± 0.63)× 10−17 6.1× 10−18 95 2022 [41]
p
(

199Hg
)

2.0× 10−25 95 2017 [39]
e−
(
HfF+

)
(0.9± 7.9)× 10−29 1.6× 10−28 90 2017 [42]

199Hg (2.2± 3.1)× 10−30 7.4× 10−30 95 2009 [38]
n (−0.21± 1.82)× 10−26 3.6× 10−26 90 2020 [28]
Λ (−3.0± 7.4)× 10−17 1.5× 10−16 95 1981 [40]
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3. Beam Dynamics in Storage Rings

To understand how the Electric Dipole Moment is measured, it is crucial to understand particle

behaviour in an accelerator. In an accelerator, electric and magnetic fields affect the particles,

keeping them on course. This path evolution is known as beam dynamics. This chapter explains

the coordinate system used in accelerators and discusses the interaction of different accelerator

components through the Lorentz force. The mathematical descriptions in the following sections

are taken from [43].

3.1. Coordinate System

The equation of motion for particles in an ensemble is parameterized by their spatial coordinates

(~r) and momenta (~p). This results in trajectories described in a six-dimensional phase space.

In a storage ring composed of deflectors with static electromagnetic fields, particle motion is

time-independent, and the arc length s is chosen as the independent variable. For convenience,

it is better to use a Cartesian coordinate system based on curvilinear coordinates. The origin

of this system moves precisely along the reference orbit ~rref with the reference momentum ~pref.

In a planar ring, the basis vectors (~es and ~ex) define a plane, and their orthogonal vector is

~ey = ~es × ~ex. It is worth noting that ~es is parallel to the momentum vector of the reference

orbit ~pref. The coordinate transformation from si to sf , illustrated in Figure 3.1, involves a

rotation

~ex,f = cos(θ)~ex,i + sin(θ)~es,i, (3.1)

~ey,f = ~ey,i, (3.2)

~es,f = − sin(θ)~ex,i + cos(θ)~es,i, (3.3)

with

θ =

∫ sf

si

ds

ρ(s)
=

∫ sf

si

h(s)ds. (3.4)

The bending radius is given by ρ(s) and for convenience purposes the inverse h(s) = 1/ρ(s) is

also introduced. Consequently, also the change of the unit vectors over time can be derived

~̇ex =
d~ex
dθ

dθ

dt
=

1

ρ
s~es, (3.5)

~̇ey = 0, (3.6)

~̇es =
d~es
dθ

dθ

dt
= −1

ρ
ėx. (3.7)
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Figure 3.1.: Co-moving curvilinear cartesian coordinate system. The black dotted line denotes
the reference particle’s trajectory. The vertical direction is given by ~ey, the unit
vector ~ex always points in the radial direction, and the tangential component ~s
always points in the direction of the momentum of the reference particle. Taken
from [44].

A particle’s trajectory (~r(s)) can be described with respect to the trajectory of the reference

particle

~r(s) = ~rref.(s) + x(s)~ex(s) + y(s)~ey(s), (3.8)

where x(s) and y(s) describe the transverse deviations of the particle in horizontal and vertical

directions with respect to the reference particle’s trajectory.

3.2. Lorentz Force

The Lorentz force describes the change of momentum ~p of a particle with mass m and charge

q in the presence of electric ~E and magnetic fields ~B

~FL =
d~p

dt
= q

(
~E + c~β × ~B

)
, (3.9)

where c~β denotes the particle’s velocity. A typical particle accelerator comprises magnets with

static fields that do not change over time if the beam is not accelerated, guiding and focusing

the particle beam. The subsequent description will concentrate on planar storage rings using

purely magnetic elements. In principle, electric fields can also bend the particle’s trajectory.

However, reaching sufficient magnetic fields is technically easier than constructing pure electric

deflectors. Nonetheless, in conventional particle accelerators, the particles are accelerated using

electric fields because an acceleration using only magnetic fields is not possible (F ∝ ~β× ~B).
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3.3. TRANSVERSE MOTION

3.3. Transverse Motion

Magnets like dipole, quadrupole, and sextupole magnets define the transverse motion of a

particle beam in an accelerator. An equilibrium of centrifugal force and Lorentz force is used

for deflection

mγ|~βc|2~h+ qc
(
~β × ~B

)
= 0, (3.10)

where ~h = (hx, hy, 0) = (1/ρx, 1/ρy, 0) is already introduced in Eq. (3.4) as the inverse of the

bending radius.

3.3.1. Bending Magnets (Dipoles)

Vertical magnetic fields leading to momentum changes in the accelerator plane (bending the

beam) are present in dipole magnets. The bending radius of a particle with a momentum of

px = γmv can be expressed by
1

ρx
=

q

px
By. (3.11)

Note that a vertical magnetic field leads to a change of direction in the accelerator plane (or

vice versa). The total reflection angle θbend can be calculated by integrating over the length of

the dipole magnet

θbend =

∫
ds

ρ
=

∫
B
q

p
ds =

q

p
BL, (3.12)

where L denotes the length of the magnet. Dipole magnets appear in particle accelerators in

arcs to bend the beam on a circular path. In addition, smaller dipole magnets, also called

steerer magnets, are used to correct the trajectory from the deviation of the ideal path.

3.3.2. Focusing Magnets (Quadropoles)

The next important family of magnets are quadrupole magnets, which have two north and

two south poles. Due to the natural inherent divergence of a charged particle beam, focusing

magnets like quadrupoles are necessary. In a quadrupole, the magnetic field increases with

increasing radius from the magnetic center. The magnetic field lines of a quadrupole magnet

are shown in Figure 3.2b. The deflection angle can be calculated via

α = −L
ρ

=
qc

βE
B(r)L = − qc

βE
grL, (3.13)

where L denotes the path length of the particle through the magnetic field B(r). The energy

of the particle is given by E and the magnetic field is given by

B(r) =
dB(r)

dr
r = gr, (3.14)

where r denotes the radial distance from the magnetic center of the quadrupole magnet. The

dependency of the deflection angle α with respect to the increasing magnetic field in the outer

regions of the quadrupole is shown in Figure 3.2a.
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(a) Focusing properties of a quadrupole. (b) Magnetic field patterns of a quadrupole.

Figure 3.2.: The left panel depicts the focusing properties of a quadrupole magnet with increas-
ing deflection angle for outer particles. The right panel shows the magnetic field
lines of a quadrupole. Taken from [45].

The linear dependence of the magnetic field with increasing distance from the magnetic center

is obtained from the scalar potential V = −gxy. The derived fields are given by

−∂V
∂x

= Bx = gy, (3.15)

−∂V
∂y

= By = gx. (3.16)

As a consequence, the focusing strength of a quadrupole is given by

k =
q

p
g =

qc

βE
g, (3.17)

which leads to the definition of the focal length

f =
1

kL
. (3.18)

In this manner, the quadrupole magnet deflects particles that are not horizontally aligned

in the magnet towards the center, creating a focusing effect. Simultaneously, any particle not

vertically centered will be diverted away from the magnet’s center. Therefore, a combination of

focusing and defocusing magnets is required to achieve a net focusing effect in both horizontal

and vertical planes.

3.3.3. Equations of Motion

There are several ways to derive the equations of motion of particles using the Lorentz force

or the Lagrangian or Hamiltonian in curvilinear coordinates. In this section, the derivation is

only outlined. The full derivations can be looked up in [43].

The Lorentz force can be used as an ansatz to derive the equations of motion. As only a pure

magnetic accelerator is assumed, the Lorentz force is reduced to

m~̈r(s) = q
(
~̇r(s)× ~B

)
. (3.19)
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The derivatives of ~r as defined in Eq. (3.8) are given by

~̇r(s) = ẋ~ex + ẏ~ey +

(
1 +

x

ρ

)
ṡ~es, (3.20)

~̈r(s) =

[
ẍ−

(
1 +

x

ρ

)
ṡ2

ρ

]
~ex + ÿ~ey +

[
2

ρ
ẋṡ+

(
1 +

x

ρ

)
s̈

]
~es. (3.21)

Since the arc length s, rather than the time t is the independent variable, the time derivatives

get replaced by derivatives with respect to the arc length s

dx

dt
= ẋ→ dx

ds
= x′, (3.22)

transforming the derivatives of ~r into

~̇r(s) = x′ṡ~ex + y′ṡ~ey +

(
1 +

x

ρ

)
ṡ~es, (3.23)

~̈r(s) =

[
x′′ṡ2 + x′s̈−

(
1 +

x

ρ

)
ṡ2

ρ

]
~ex +

(
y′′ṡ2 + y′s̈

)
~ey

+

[
2

ρ
x′ṡ2 +

(
1 +

x

ρ

)
s̈

]
~es.

(3.24)

Using Eq. (3.19) and (3.24) the famous Hill equations can be derived

x′′(s) +

(
1

ρ2(s)
− k(s)

)
x(s) =

1

ρ(s)

∆p

p0
, (3.25)

y′′(s) + k(s)y(s) = 0, (3.26)

where x(s) and y(s) describe the transverse deviations of the particle in horizontal and ver-

tical directions with respect to the reference particle’s trajectory. The bending radius ρ(s)

and the focusing strength k(s) were introduced in previous sections. Lastly, a final term tak-

ing the dispersive effects (off-momentum particles with respect to the reference momentum

poff = ∆p+ p0) are also taken into account. In a horizontal focusing lattice (k > 0), the beam

gets simultaneously defocused in the vertical direction. Therefore, horizontal focusing and

defocusing magnets are necessary to achieve net focusing effects.

Neglecting dispersive effects (∆p = 0) reduces Hill’s equations to second-order homogeneous

differential equations of the form

x′′(s) +K(s)x(s) = 0 with K(s) =
1

ρ2(s)
− k(s), (3.27)

y′′(s) + k(s)y(s) = 0. (3.28)

The general solutions, being similar to the solution of a harmonic oscillator, of both equations

are identical since they both have the same structure. Using the following ansatz

x(s) =
√
εβ(s) cos (Ψ(s) + Ψ0) , (3.29)

where β(s) and Ψ(s) denote the so-called betatron function and the betatron phase, respec-

tively. The amplitude of the oscillation is given by
√
εβ(s). The emittance ε and the betatron
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Figure 3.3.: Transverse motion (in x and y) of a particle beam limited be the envelope
E(s) =

√
εmaxβ(s). Taken from [46].

function β(s) will be discussed in further detail in the following section. Since the coefficient

K(s) describes the magnetic layout of the circular accelerator, it is periodic with respect to C,

where C describes a periodic length

K(s+ C) = K(s). (3.30)

The emittance is a unique quantity for a particle in an ensemble of particles. The envelope

E(s) of a particle beam is defined by the particle with the largest emittance. Figure 3.3 shows

the transverse motion of a particle beam with a maximum oscillation amplitude being the

envelope.

3.3.4. Beam Emittance and Betatron Tune

Using the solution of Hill’s Equation (3.29), its first derivative, and considering only conser-

vative forces, the betatron phase Ψ0 drops out, leading to the following equation defining an

ellipse

γ(s) = x2(s) + 2α(s)x(s)x′(s) + β(s)x′(s) = ε = const. (3.31)

The area of this ellipse, F = πε, remains constant, but the orientation of the ellipse varies at

each position of the accelerator. The parameter ε exemplifies Liouville’s theorem [47], which

states that the six-dimensional phase space is conserved. The optical functions α(s) and γ(s)

are given by

α(s) = −β
′(s)

2
, (3.32)

γ(s) =
1 + α2(s)

β(s)
, (3.33)

and are also called Twiss parameters. The Twiss parameters describe the emittance of a particle

at position x and angle x′ at each position s in the ring.
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3.3. TRANSVERSE MOTION

Figure 3.4.: Phase Space Ellipse of transverse deviation x and momentum deviation x′. Accord-
ing to Liouville’s theorem, the area F = πε stays constant while the orientation of
the ellipse varies along the ring position s. Taken from [44].

Related to the betatron function β(s) is the so-called betatron tune. The betatron tune is

defined as the number of betatron oscillations per turn in the ring and can be calculated as

Q =
1

2π

∫ s+C

s
ψ′ds =

1

2π

∫ s+C

s

ds

β(s)
, (3.34)

where C denotes the periodicity of the ring. Note that the oscillation amplitude is an intrinsic

property of each particle, as depicted in Figure 3.3. Errors in the quadrupole field distribution

can distort the motion of the beam. These errors are closely linked to the betatron motion,

resulting in alterations to the β-functions and tunes. Small adjustments in the tune can be

reasonably estimated by [48]

∆Q =
1

4π

∮
β(s)∆K(s)ds, (3.35)

where ∆K describes the variation in the quadrupole strength function K(s) due to field er-

rors.

3.3.5. Chromaticity

Particles deviating in momentum from the reference momentum p0 experience a slightly varied

quadrupole strength compared to the reference particle, resulting in different focusing. The

phenomenon of chromatic aberration, familiar from optics, manifests this error. Figure 3.5

displays this effect, with the focusing quadrupole.

Starting from quadrupole strength with a particle off-momentum p = p0 + ∆p

k(p) = −q
p
g = − q

p0 + ∆p
g ≈ − q

p0

(
1− ∆p

p0

)
g = k0 −∆k. (3.36)
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CHAPTER 3. BEAM DYNAMICS IN STORAGE RINGS

Figure 3.5.: The influence of the momentum-dependent variation in the focusing strength of
a quadrupole is called chromaticity. Sextupoles generate quadrupole components
depending on the radial position of particles. When placed in dispersive regions,
these sextupoles can correct the chromaticity effect. Taken from [49].

A momentum deviation is equivalent to a quadrupole field error

∆k =
∆p

p0
k0. (3.37)

As the particle maintains its momentum deviation across numerous turns, every quadrupole

adds the same error to the particle’s trajectory. Consequently, the overall tune shift is calcu-

lated by integrating across all quadrupoles within the accelerator and using Eq. (3.35). This

dimensionless quantity,

ζ =
∆Q

∆p/p0
=

1

4π

∮
k(s)β(s)ds, (3.38)

is called natural chromaticity and increases with increasing focusing strength k(s). The primary

influences originate from quadrupoles characterized by significant focusing strengths, particu-

larly in regions where the betatron function is substantial, such as dispersive regions. Given

that a tune shift might result in an operational point coinciding with optical resonances [45],

leading to particle losses, compensation for chromaticity becomes imperative. To address

this, corrections are implemented at locations where particles diverge based on their mo-

menta—specifically, positions featuring non-zero dispersion. Sextupole magnets are strate-

gically placed at these positions, possessing a focusing strength chosen to counteract chromatic

effects.

3.4. Longitudinal Motion

The longitudinal motion of the particle beam phase space is mainly driven by dispersive effects

and synchrotron motion.
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3.4.1. Dispersion

The longitudinal motion of the beam is primarily influenced by the longitudinally oscillating

accelerating electric field of the cavity. Particles in the circulating beam must arrive with a

fixed phase in relation to the accelerating frequency for successful acceleration and bunching.

Therefore, the cavity frequency needs to be an integer multiple of the revolution frequency. This

poses a challenge as the cavity frequency (and the magnetic field in the dipoles) needs to be

adjusted while accelerating the particle beam, hence the name synchrotron. Orbit lengthening

due to dispersive effects leads to momentum deviations, which affect the revolution frequency

according to the following relation

∆f

f0
=

∆L

L0
− ∆v

v0
. (3.39)

The change in revolution frequency when changing the momentum of a particle can be rewritten

as
∆f

f0
=

(
αp −

1

γ2
0

)
∆p

p
= ηslip

∆p

p
, (3.40)

where ηslip is called the slip factor. The momentum-dependent path-length change of the

particle with respect to the reference orbit L0 can be described by the momentum compaction

factor αp

αp =
1

L0

∫ L0

0

D(s)

ρ(s)
ds. (3.41)

The dispersion is contingent upon the particle’s curvature K(s) Eq. (3.30), relying on the

bending powers of the main dipoles designed for particles possessing different momenta.

3.4.2. Synchrotron Oscillations

Synchrotron oscillations occur when particles arrive too late or too early at the accelerating

cavity. The energy gain per revolution in the cavity is given by

∆Es = qU0 sin (φs) , (3.42)

where φs denotes the phase at which the reference particle is supposed to arrive at the cavity.

Deviations from this phase, ∆φ = φparticle − φs, lead to oscillations in the longitudinal phase

space. The differential equation describing these oscillations is given by [48]

d2

dt
∆φ+

hηω2
s

2πpsvs
qU0 cos (φs) ∆φ =

d2

dt
∆φ+ ω2

syn∆φ = 0. (3.43)

The oscillation frequency of the longitudinal oscillation is given by fsym = ωsyn/2π. The number

of oscillations per turn can be written as

Qsyn =
ωsyn

2πfCOSY
, (3.44)

where fCOSY denotes the revolution frequency of the beam.
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3.5. Orbit Correction

Building an accelerator without any imperfections is impossible, inevitably leading to align-

ment and field errors. To mitigate these effects, accelerator designers install steerer correction

magnets. These magnets are used for both horizontal and vertical correction. The corrective

influence of these magnets can be mathematically expressed by the following equation [45]

∆ui =
βi

2 sin(πQ)

n∑
k=1

θk
√
βk cos(Ψi −Ψk − πQ). (3.45)

Here, ∆ui denotes the alteration in orbit observed at the ith Beam Position Monitor (BPM),

influenced by the beta functions (β) and betatron phases (Ψ) at both the BPM location and the

steerer magnets. The steerer magnets introduce a correction with a kick of θk. The summation

encompasses all steerer magnets indexed by n. Furthermore, the equation incorporates the

betatron tune Q. It is important to note that this equation assumes no coupling between

planes and no dispersion. The steerer magnets’ kick angles θ can be calculated by measuring

the change in orbit at each beam position monitor ui. For m beam position monitors and n

steerer magnets, the relation between orbit deviation at the ith beam position and steerer kick

angle θk can be expressed as a matrix equation of the form
∆u1

∆u2
...

∆um

 =


M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
. . .

...

Mm1 Mm2 . . . Mmn



θ1

θ2
...

θn

 . (3.46)

The matrix M is also called the Orbit Response Matrix. The Orbit Response Matrix entries

can be calculated via

Mik =

√
βi
√
βk

2 sin(πQ)
cos (Ψi −Ψk − πQ) . (3.47)

By inverting the Orbit Response Matrix, the steerer magnet corrector kicks can be calculated

as
~θ = −M−1~u. (3.48)

However, in most accelerators, the number of beam position monitors is not equal to the

number of steerer magnets, making the inversion of the Orbit Response Matrix with classical

tools impossible. In this case, methods like Singular Value Decomposition solve the issue

approximately.

The importance of Orbit Correction becomes evident when studying its effects in spin tracking

simulations. In short, the Electric Dipole Moment leads to a buildup of the vertical polarization

component on a longitudinally polarized beam. However, stray fields and other imperfections

can mimic this effect. These imperfections lead to a deviation of the transverse orbit, which

can be quantified with the root mean square value measured at the beam position monitors.

The buildup |Sy| as a function of the distorted vertical orbit is shown in Figure 3.6. In the

case of a vertical orbit RMS of ∆yRMS = 1.6 mm, the buildup to an Electric Dipole Moment
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Figure 3.6.: The simulation studies the absolute average change in the vertical spin compo-
nent, denoted as |∆Sy|, per turn. This analysis is conducted in relation to varying
∆yRMS values within a simulation setting. These different ∆yRMS values are gener-
ated through randomized Gaussian shifts in vertical quadrupoles. The simulation
also considers different magnitudes of the Electric Dipole Moment. The solid line
represents the 90 % upper confidence limit for purely misaligned conditions. The
dashed line corresponds to the point where the signal induced by misalignments
matches an Electric Dipole Moment signal with an associated Electric Dipole Mo-
ment value ηEDM = 10−4 while maintaining an initial Wien filter phase with respect
to the spin precession frequency of φrel. = 0°. More information about the phase
feedback is provided in section 6.7. Taken from [50].

of ηEDM = 10−4 cannot be distinguished from a buildup due to accelerator imperfections [50].

The orbit RMS for the horizontal and vertical plane is given by

∆xRMS =

√
1

nx

∑
i∈BPMs

x2
i and ∆yRMS =

√
1

ny

∑
i∈BPMs

y2
i , (3.49)

where xi and yi denote the beam position in the horizontal and vertical plane, measured using

the ith beam position monitor. The total number of horizontal and vertical orbit measurements

is given by nx and ny.
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4. Spin Dynamics in Storage Rings

The so-called EDM Precursor experiments in COSY are conducted using polarized deuteron

beams. In the following section, the theoretical background of polarized beams inside a storage

ring is described. As COSY is a fully magnetic machine, the discussion focuses on the equation

of motions for the spin in magnetic machines.

4.1. Polarization

For a collection of particles with spins, the polarization of the ensemble is defined as the

average orientation of those spins along a particular axis. In quantum systems, the spin defines

the unique quantization axis. Consequently, other vectorial attributes of the system, such as

the magnetic moment or the Electric Dipole Moment, must align with this axis. The spin

of a single particle can have different configurations relative to its quantization axis which is

by convention the z-axis in a Cartesian coordinate system. The projection of the spin along

the z-axis can be described by the operator Sz = m~, where ~ denotes the reduced Planck’s

constant and m is the associated spin quantum number. For a particle with the spin quantum

number s, (2s+1) different configurations for m can be found taking the following values: m ∈
{−s,−s+ 1, . . . , s− 1, s}. A schematic configuration for spin-1/2-particles (m ∈ {−1/2, 1/2})
and spin-1-particles (m ∈ {−1, 0, 1}) is shown in Figure 4.1. In this section, a mathematical

description of the beam polarization based on the spin formalism is given for spin-1/2 particles

(Fermions) as well as spin-1 particles (Bosons). The definitions of the polarization used in

sections 4.1.1 and 4.1.2 are taken from [51].

Figure 4.1.: Configurations of the spin quantum number m for spin-1/2 particles (left) and
spin-1 particles (right). Taken from [52].
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4.1.1. Spin-1/2-Particles

Particles with half-integer spin (s = 1/2) like electrons and protons are also called fermions and

can only be in the states m = ±1/2. They can be characterized by two-component normalized

Pauli spinor ψ

ψ =

(
u

d

)
. (4.1)

The two compex amplitudes u and d satisfy the normalization condition |u|2 + |d|2 = 1. In

quantum mechanics, a measurement of an observable is given by the expectation value of a

hermitian operator Â

〈Â〉 = 〈ψ|Â|ψ〉 = ψ†Âψ. (4.2)

For simplification, the matrix ρ can be defined for spin-1/2 particles as

ρ = |ψ〉〈ψ| =
(|u|2 ud∗

u∗d |d|2
)
, (4.3)

where the star denotes the complex conjugate of the variable. The expectation value of an

observable can then be rewritten as

〈Â〉 = Tr(ρÂ). (4.4)

In a cartesian coordinate system (~ex, ~ey, ~ez), the two components of the spinor correspond to

the two different spin states along the quantization axis, which can be arbitrarily chosen as ~ez.

A spin measurement corresponds to the hermitian operator

~̂S =
~
2
~σ, (4.5)

where ~σ = (σ1, σ2, σ3) denotes the vector of the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0

0 −1

)
. (4.6)

For completion, the 0 th Pauli matrix is also referred to as the identity matrix

σ0 =

(
1 0

0 1

)
. (4.7)

The spin vector ~S = (Sx, Sy, Sz) is defined as the expectation value of the hermitian spin

operator ~̂S

~S =
〈
~̂S
〉

= Tr
(
ρ~̂S
)

=
~
2

Tr (ρ~σ) =
~
2

 2Re(ud∗)

2Im(ud∗)

|u|2 − |d|2

 . (4.8)

The spin ~S is a property of a single particle. Since billions of particles are injected and stored

into the ring, it makes more sense to change to the expectation value of spin observables of an
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ensemble with a total amount of particles N . The density matrix ρ reads for an ensemble of

particles

ρ =
1

N


N∑
i=1
|u(i)|2

N∑
i=1

u(i)d(i)∗

N∑
i=1

u(i)∗d(i)
N∑
i=1
|d(i)|2

 =
1

2

(
σ0 + ~P~σ

)
. (4.9)

The polarization vector ~P contains the expectation values of the spin operators in the ensemble

of particles

~P =
1

N

N∑
i=1

~Si. (4.10)

Having an ensemble of N+ particles in the quantization state m = +1/2 and N− particles in

the quantization state m = −1/2, the polarization vector along the quantization axis PV can

be written as

PV =
N+ −N−
N+ +N−

. (4.11)

The polarization vector along the quantization axis of a beam of several spin-1/2-particles can

take the following values

− 1 ≤ PV ≤ 1, (4.12)

where PV = 0 denotes an unpolarized beam.

4.1.2. Spin-1-Particles

As the quantum number m of a spin-1-particle can take three configurations (m ∈ {−1, 0, 1}),
a three-dimensional spinor is needed to describe the spin state of an individual particle

ψ =

a1

a2

a3

 . (4.13)

The Pauli matrices get replaced by the following spin operators

Ŝ1 =
~√
2

0 1 0

1 0 1

0 1 0

 , Ŝ2 =
~√
2

0 −i 0

i 0 −i
0 i 0

 , and Ŝ3 = ~

1 0 0

0 0 0

0 0 −1

 . (4.14)

The consequence of the spin-1 operator having three eigenvalues is that the density operator,

which was introduced in Eq. (4.3), turns into a 3 × 3 matrix meaning that nine independent

hermitian matrices are required. In addition to the identity matrix I, five further matrices can

be defined in Cartesian notation as

Ŝij =
3

2

(
ŜiŜj + ŜjŜi

)
− 2Iδij with i, j ∈ {1, 2, 3} , (4.15)

where δij denotes the Kronecker delta

δij =

{
1 for i = j

0 for i 6= j
. (4.16)
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The results for the operators yield the following density matrix for an ensemble of spin-1

particles

ρ =
1

3

I +
3

2

3∑
i=1

PiSi +
1

3

3∑
i=1

3∑
j=1

PijSij

 with Pij = Pji. (4.17)

The polarization states of the spin-1 particle are given by the parameters Pi and Pij . In an

ensemble of spin-1 particles with N+ particles in the quantization state, m = +1, N0 particles

with m = 0 and N− particles in m = −1, the vector polarization PV along the quantization

axis is defined in a similar way as for spin-1/2 particles

PV =
N+ −N−

N+ +N− +N0
, (4.18)

while the tensor polarization is given by

PT =
N+ +N− − 2N0

N+ +N− +N0
. (4.19)

The connection of the formulas of vector and tensor polarization for spin-1 particles leads

to the following boundary of the vector polarization for nontensor components of the beam

polarization

PT = 0⇒ −2

3
≤ PV ≤

2

3
, (4.20)

which means that for spin-1 particles only a maximum vector polarization of |PV | ≤ 66.6 % can

be measured. However, if tensor components are present in the beam polarization, a vector

polarization of |PV | = 1 can be achieved as well.

4.2. The Generalized Thomas-Bargmann-Michel-Telegdi (T-BMT)

Equation

In Eq. (2.25), the non-relativistic Hamiltonian for a particle in external electromagnetic fields

in its rest frame is introduced, leading to the non-relativistic spin equation of motion

d~S

dt
= ~Ω× ~S = ~µ× ~B + ~d× ~E. (4.21)

The Electric Dipole Moment ~d and Magnetic Dipole Moment ~µ are defined in Eq. (2.13).

This differential equation describes the spin precession, perpendicular to ~Ω with an angular

frequency of |~Ω|. Since external electromagnetic fields are usually described in the laboratory

reference frame, Eq. (4.21) needs to be transformed from the particle’s rest frame to the

laboratory frame, resulting in the so-called Thomas-BMT equation. The generalized form of
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the Thomas-BMT equation describes the spin motion of relativistic particles in homogeneous

electromagnetic fields, including contributions from the Electric Dipole Moment [53]

d~S

dt
= ~ΩMDM × ~S + ~ΩEDM × ~S, (4.22)

~ΩMDM = − q

m

[(
G+

1

γ

)
~B − Gγ

γ + 1

(
~β · ~B

)
~β −

(
G+

1

γ + 1

)
~β ×

~E

c

]
, (4.23)

~ΩEDM = − q

mc

ηEDM

2

[
~E − γ

γ + 1

(
~β · ~E

)
~β + c~β × ~B

]
. (4.24)

The electric field ~E and magnetic field ~B are evaluated in the curvilinear laboratory reference

frame while the spin vector ~S is defined within its rest frame.

4.2.1. Spin Tune and Invariant Spin Axis in a Magnetic Storage Ring

Assuming a beam motion perpendicular to the electromagnetic fields (~β · ~B = ~β · ~E = 0),

subtracting the rotation of the momentum vector in a storage ring and ignoring electric fields

(full magnetic ring), the T-BMT equation can be reduced to

~Ω = ~ΩMDM + ~ΩEDM = − q

m

[
G~B +

ηEDM

2
~β × ~B

]
. (4.25)

By applying the following transformations

dl = cβdt, (4.26)

~S = S~es, (4.27)

the rotation angle is given by

d~S

S
=

1

cβ
~Ω× ~es = ~Ω′ × ~es. (4.28)

In the following, B⊥ denotes the vertical magnetic field component (in ~ey), and consequently∫
B⊥dl describes the integral of the magnetic field a particle experiences in one turn around

the accelerator. Ignoring the EDM contribution for the moment (ηEDM = 0), the modified

rotation axis can be written as

~Ω′MDM = − 1

cβ

q

m
GB⊥dl · ~ey. (4.29)

For a full turn, this can be written as

~Ω′MDM = − 1

cβ

q

m
G

∫
B⊥dl · ~ey. (4.30)
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The field integral
∫
B⊥dl can be evaluated by comparing the Lorentz force with the centrifugal

force

mγv2

r
= qvB⊥ (4.31)

mγcβ

q
= B⊥r (4.32)

2πmγcβ

q
= B⊥2πr. (4.33)

The last term describes the ring integral of the vertical magnetic field around the storage ring

which can also be written as the integral of the vertical magnetic field along the storage ring

2πmγcβ

q
=

∫
B⊥dl. (4.34)

Using Eq. (4.30) and (4.34) finally leads to

~Ω′MDM = − 1

cβ

q

m
G

2πmγcβ

q
· ~ey (4.35)

= −2πγG · ~ey. (4.36)

In an ideal pure magnetic ring with vertical magnetic fields, the spins rotate around the vertical

axis (~ey) by an angle |γG| per turn. This rotation angle of the spin per turn of the beam in

the storage ring is also called the spin tune

νs = γG. (4.37)

The rotation frequency of the spins can be calculated by multiplying the spin tune with the

revolution frequency of the beam circulating in the ring

fs = |νs|fCOSY ≈ 121 kHz, (4.38)

using γ ≈ 1.126 and fCOSY ≈ 751 kHz at pd ≈ 970 MeV/c, and the gyromagnetic anomaly

for deuterons G ≈ −0.142. Note that the spin tune is a negative quantity, meaning that for a

clockwise rotating beam, the spin precesses counterclockwise (and vice versa). The axis around

which the spins precess is also called the Invariant Spin Axis. In the case of a pure magnetic

ring without an Electric Dipole Moment, the Invariant Spin Axis always points in the vertical

direction along the dipole magnet field axis (~ey) in an ideal storage ring.

4.2.2. Influence of the Electric Dipole Moment on the Spin Motion in a
Magnetic Storage Ring

Allowing for a non-zero Electric Dipole Moment, an additional rotation out of the plane needs

to be added for the full one-turn rotation

~Ω′EDM = − 1

cβ

q

m
η
β

2

∫
B⊥dl · (~ez × ~ey) (4.39)

= πγηβ · ~ex, (4.40)
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Figure 4.2.: Effects of a non-zero EDM on the spin motion: In an ideal magnetic ring without
taking EDM effects of the circulating beam into account, the spin precesses in the
x−z plane around the vertical axis. The beam moves along the z axis. A non-zero
EDM leads to a rotation of the precession plane by an angle φEDM perpendicular
to the beam momentum direction. Figure is adapted from FIG. 1 in [54].

which describes the rotation of the Invariant Spin Axis in radial (~ex) direction. The tilt angle

of the rotation plane with respect to the spin precession plane without EDM (x− z) plane, can

be calculated using

tan

(
|~Ω′EDM|
|~Ω′MDM|

)
= tan(φEDM) = −η β

2G

φEDM�1≈ φEDM. (4.41)

To determine the Electric Dipole Moment of the deuteron, the radial component (x) of the so-

called Invariant Spin Axis needs to be measured. Note that no longitudinal tilt of the Invariant

Spin Axis is expected. The effect of the Electric Dipole Moment is also depicted in Figure 4.2.

The black dotted circle shows the spin precession plane without an Electric Dipole Moment.

In this case, the vertical y axis coincides with the Invariant Spin Axis ~n. A non-zero Electric

Dipole Moment rotates the spin precession plane (and the Invariant Spin Axis) by an angle

φEDM in the radial direction with respect to the beam momentum vector. In an ideal ring,

the Invariant Spin Axis would be constant along the ring. However, field imperfections and

orbit distortions add tilts to the Invariant Spin Axis along the ring. In spin tracking simulation

studies, these systematic tilts need to be separated from the actual signal of the Electric Dipole

Moment.

A non-zero Electric Dipole Moment changes the spin tune

2πνEDM
s = |~Ω′EDM + ~Ω′MDM| = 2πγG

√
1 +

(
ηβ

2G

)2

. (4.42)

However, this correction term is tiny and can be safely ignored.
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4.2.3. Axion or Axion Like Particles Search using Oscillating Electric Dipole
Moments

The following section is based on First Search for Axionlike Particles in a Storage Ring Using

a Polarized Deuteron Beam [26]. The presented limits on the axion-like particle’s mass and,

conclusively, on the oscillating Electric Dipole Moment are derived by the JEDI collaboration,

from data taken during a six-week-long beam time in spring 2019 at the Cooler Synchrotron

COSY.

Axions, or axion-like particles (ALPs), are hypothetical particles first proposed in 1977 by

Weinberg [55] and Wilczek [56]. Axions were initially postulated to resolve the strong CP
problem in quantum chromodynamics, possessing a strict correlation between their mass ma

and the decay constant fa. ALPs, on the other hand, do not address the strong CP problem

and lack a strict correlation between their mass and decay constant. However, both types

of particles are considered candidates for dark matter. According to the pre-inflationary PQ

symmetry breaking, axions were created during the inflation period of the Big Bang, coherently

oscillating in a classical scalar field [57]

a(t) = a0 cos
(
ωa(t− t0) + φa(t0)

)
, (4.43)

where a0 denotes the amplitude of the scalar field and ωa the angular frequency. The angular

frequency of the field can be directly related to the axion mass via

~ωa = mac
2. (4.44)

The local phase of the axion or ALP field is given by φa(t0) and is an unknown quantity which

can even change depending on the starting point of the measurement t0. As a consequence

of the axion coupling to the nucleon or the nucleon spin, the Electric Dipole Moment gets an

additional oscillating contribution [58, 59]

d(t) = ddc + dac cos
(
ωa(t− t0) + φa(t0)

)
, (4.45)

where ddc describes the permanent Electric Dipole Moment which is discussed in the previous

section. The spin motion can be calculated using the Thomas-BMT Eq. (4.22) relative to the

momentum vector. For simplicity, the terms including ~β · ~B and ~β · ~E are omitted. The axion

enters the spin motion through the time-dependent Electric Dipole Moment contribution d(t)

and the so-called axion wind effect [18, 53]

d~S

dt
= ~Ω× ~S = (~ΩMDM − ~Ωrev + ~ΩEDM + ~Ωwind)× ~S with (4.46)

~ΩMDM = − q

m

(
G+

1

γ

)
~B, (4.47)

~Ωrev = − q

γm
~B, (4.48)

~ΩEDM = − 1

S~
d(t)c~β × ~B, (4.49)

~Ωwind = − 1

S~
CN
2fa

[~∂0a(t)]~β. (4.50)
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EQUATION

Through the time derivative ∂0a(t), a second oscillating contribution is present called axion-

wind, which depends on the coupling strength CN and the generic axion or ALP decay constant

fa, also called the PQ order parameter. This parameter is crucial for describing the interaction

between gluons and nucleons. The torque from axion-wind causes the particles’ spins to rotate

around an axis parallel to the beam’s direction, while the torque from oscillating EDM results

in spin rotation about an axis perpendicular to the beam’s direction, away from the ring plane,

at an oscillation frequency of fosc in both cases, if the resonance condition

c2ma

π
= γGfCOSY, (4.51)

is met. By changing the beam momentum γ, it is possible to scan for the axion mass ma. As

soon as the resonance condition is met, a jump is expected from the in-plane polarization into

the vertical component. By changing the beam momentum, the dipole magnetic fields also

need to be adjusted to keep the particle orbit stable.

(a) Axion Scan (b) Artificial Axion Scan using the RF Wien filter

Figure 4.3.: The left-right asymmetry, which is proportional to the vertical polarization (cf.
section 6.4), varies as a function of time. Left: During the measurement of the
left-right asymmetry, the beam momentum is changed, scanning for the axion
mass. As soon as the resonance condition is met, a sudden jump of the vertical
polarization is expected, as shown in the right panel. Right: Here the RF Wien
filter is used as an artificial axion signal. Step functions are fitted to search for
this jump. Taken from [26].

Such a scan is shown in Figure 4.3a. The left-right asymmetry measured using an internal

polarimeter in COSY, which is proportional to the vertical polarization (cf. section 6.4), is

plotted as a function of time. The polarization is rotating in the horizontal plane with the spin

precession frequency fs. By changing the cavity frequency, the particles are slightly accelerated,

which increases the gamma factor. As soon as the resonance condition is met, a sudden jump

appears, as shown in Figure 4.3b. Here, the RF Wien filter is used as an additional spin

rotator. Because of the unknown phase of the axion fields, four bunches are co-rotating in the

accelerator, each with a different direction.

The left-right asymmetry is fitted using a step function with a step at a fixed time in the cycle.

The time is varied through all bins. The change of polarization shown in Figure 4.3a yields

results consistent with zero. In total, 103 ramps were measured, covering a spin precession
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range from 119 997 to 121 457 Hz, and hence an axion mass of 4.95 to 5.02 neV/c2. No signal

was observed.

The construction of the 90 % confidence limit is based on the sensitivity of the measured

jumps of vertical polarization and Feldman-Cousin intervals. The limits as a function of spin

precession frequency (or scanned axion mass) are shown in Figure 4.4. The green data points

are taken with a slower ramp speed than the blue data points. The sensitivity depends mostly

on the luminosity of the particle beam. If more deuterons are injected into COSY and scattered

into the polarimeter, the statistical uncertainty is lower for the step fits.

Figure 4.4.: Exclusion plot of the ALP-induced oscillating EDM for the 90 % confidence level
sensitivity in an axion mass range from 4.95 to 5.02 neV/c2 for two different mo-
mentum ramp speeds ∆p. Taken from [26].

The averaged upper limit on the oscillating amplitude of the Electric Dipole Moment is given

by

|ddac| < 6.4× 10−23 e · cm (90 % C.L.). (4.52)

This experimental value can be used to derive limits on various coupling constants of axion-like

particles. A limit of the axion coupling to the deuteron EDM operator gadγ can be set to

|gadγ | < 1.7× 10−7 GeV2. (4.53)

Also, the coupling of axion-like particles to gluons can be constrained to∣∣∣∣CdGfa
∣∣∣∣ < 0.46× 10−4 GeV−1. (4.54)
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4.3. Polarimetry

The notation and coordinate system conventions described in the upcoming section are taken

from [60, 61].

To describe the cross-section of a spin-1 beam hitting an unpolarized target, two distinct

coordinate systems are needed. The first coordinate system describes the orientation of the

incoming spin component, which is also illustrated in Figure 4.5a. When considering the

momentum vectors of the incident particle (~pin) and the outgoing particle (~pout), the z-axis

aligns with ~pin, while the y-axis aligns with the cross product of ~pin and ~pout. The x-axis

completes a right-handed coordinate system with the other two axes. The target is located

at (0, 0, 0). In this context, Φ represents the angle between the spin axis projected into the

x-y-plane, and Θ represents the angle between the spin axis and the z-axis.

The differential cross-section for the elastic scattering process of polarized spin-1 particles onto

an unpolarized (carbon) target, in units of the unpolarized differential cross-section σ0, can be

written as

σ

σ0
= 1 +

3

2
pyAy(θ) +

2

3
pxzAxz(θ) +

1

3

(
pxxAxx(θ) + pyyAyy(θ) + pzzAzz(θ)

)
, (4.55)

where pi denotes the components of the deuteron vector polarization and pik the Cartesian

components of the deuteron tensor polarization, with i, k ∈ {x, y, z}. In addition, the vector and

tensor analyzing powers of the spin-1 particles are given by Ai and Aik, respectively. Relative

to the fixed Cartesian coordinate system, the scattering angles of the outgoing particles are

defined in spherical coordinates ϑ(θ, φ).

Notably, the left side of the detector corresponds to φ = 0°, the right side to φ = 180°, the

upward direction to φ = 270°, and the downward direction to φ = 90°. The scattering angle θ

is located in the x-z plane (cf. Figure 4.5b).

(a) Spin angles S = (Θ,Φ).

(b) Scattering Angle θ

Figure 4.5.: Cartesian coordinate system for polarimetry. The left panel shows the spin con-
figuration angle at the target S = (Θ,Φ). The right panel shows the experimental
setup with the scattering angle θ. The polar angle φ describes the angle out or in
the plane. Taken from [60, 62].

The atomic beam source provides first pZ and second-rank pZZ polarizations relative to the

quantization axis S. The vector polarization pZ of a spin-1/2 of a spin-1 beam can take values
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between -1 and 1. The tensor polarization is between −2 and 1 for a spin-1 particles. A

spin-1/2 can not have a tensor component. Throughout this experiment, deuterons (spin-1

particles) only having vector polarization are used, which reduces Eq. (4.55) to

σ

σ0
= 1 +

3

2
pyAy(θ). (4.56)

In the given coordinate system, the vertical component can be written as

py = pZ sin(Θ) sin(Φ− φ). (4.57)

Using Eq. (4.55) and (4.57) yields

σ

σ0
= 1 +

3

2
pZAy sin(Θ) sin(Φ− φ). (4.58)

• Vertical Polarization: The beam is vertically polarized when the spin vector points in

S = (Θ,Φ) = (π/2, 0). The cross-section becomes

σ

σ0
= 1 +

3

2
pZAy cos(φ). (4.59)

• Horizontal Polarization: In section 4.2.1, the spin tune was introduced, denoting the

angular frequency of the horizontal spin precession Ωs = 2πfCOSYνs. In the case of a

horizontally polarized beam rotating in the accelerator plane, the spin vector S can be

written as S = (Θ,Φ) = (Ωst, 0). The cross-section is given by

σ

σ0
= 1− 3

2
pZAy sin(Ωst) sin(φ). (4.60)
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5. Experimental Setup

The experiments described in this thesis were conducted at the Cooler Synchrotron (COSY)

at Forschungszentrum Jülich. In this section, an overview of the accelerator facility is given,

along with all the devices that are relevant to this thesis.

5.1. The Cooler Synchrotron COSY - Overview

The facility encompasses more than just the COSY ring. It consists of various sections, each

serving a distinct purpose. Initially, the H− and D− negative ions are extracted from the sources

and directed to the cyclotron through the Source beamline (SBL). The particle sources differ

for polarized and unpolarized particles due to the need for a small collider in the production

of polarized beams. Within the cyclotron, the beams undergo acceleration to reach their

designated injection kinetic energy of 45 MeV (momentum p = 295 MeV) for H− ions and

76 MeV(p = 540 MeV) for D− ions. Subsequently, they traverse the Injection beamline (IBL)

and are injected into COSY utilizing a charge-exchange injection system. In the main ring,

with a circumference of 184 m, the particles can be accelerated up to a momentum of 3.7 GeV.

In addition, two Stochastic Coolers (for vertical and horizontal phase space cooling each) and

two Electron Coolers provide excellent beam conditions for experiments. To manipulate the

polarization of the bunched, polarized beams, an RF Solenoid, a Siberian Snake, and an RF

Wien filter are available. The polarization can be measured at two different polarimeters in

the ring, namely WASA (Wide Angle Shower Apparatus) and JePo (JEDI Polarimeter). Three

additional extraction beamlines are available for experiments in external areas [63]. For the

experiment reported in this thesis, only the two internal experiments are relevant. An overview

of the facility is shown in Figure 5.1

5.2. Beam Sources and Pre-Accelerator

In this section, a short overview of the beam sources providing polarized and unpolarized

protons and deuterons for the experiments, and the pre-accelerator JULIC of the facility is

given.

5.2.1. Beam Sources

The initial phase of particle travel starts in the beam source, where three specialized ion sources

are utilized — two for unpolarized beams and one for polarized beams (cf. Figure 5.2). To

function as an injector in COSY, the beam needs pulsing with a maximum repetition rate of

0.5 Hz and a macro-pulse duration ranging from 10 to 20 ms. While most cyclotron systems

operate continuously, macro-pulsing is achieved by modulating the extraction voltage in the
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Figure 5.1.: Overview of the accelerator facility: The beam sources are located below the pre-
accelerator COSY, from where they are injected into the injection beamline after
initial acceleration in the cyclotron. The main ring is equipped with an accelerating
cavity, two electron coolers, and two stochastic coolers to reduce the beam’s phase
space, as well as several polarization manipulators and polarization measurement
devices. Created by Jamal Slim/ JEDI Collaboration and adapted by this author.

ion sources. Optionally, a beam chopper in the beamline can be employed for micro-pulsing,

reducing beam intensity before entering the cyclotron. The particle energy from the source is

around 4.5 keV for H− ions and 7.6 keV for D− ions [64].

The IBA and AEA sources provide unpolarized H− and D− ions. These industrial-grade

sources, named after the companies IBA in Louvain-la-Neuve (Belgium) and AEA in Culham

(England), can operate independently. They deliver over 300µA beams in pulsed operation.

The polarized beam source was built by a collaboration of three groups from Bonn, Erlangen,

and Cologne [65] and is based on a colliding process of polarized uncharged hydrogen or deu-

terium atoms, initially proposed by Haeberli in 1967 [66]. A sketch of the polarized source is

shown in Figure 5.3. The source consists of three parts, namely the pulsed atomic beam source,

the cesium beam source, and the charge exchange and extraction region.

Within the atomic beam source, hydrogen or deuterium molecules undergo initial dissociation

into individual atoms through an electric discharge. To avoid recombination, small quantities

of oxygen and nitrogen are introduced. The atoms then traverse a nozzle, undergoing cooling to

reach temperatures of approximately 30 K. By cooling the beam, it is optimized to be focused by

hexapole magnets after the dissociator. The focusing is necessary for the charge exchange with

cesium later on. The polarization of the uncharged hydrogen or deuterium atoms is achieved

by three radio frequency transfers. These consist of adjustable magnetic fields, which can be

switched on or off individually to achieve transitions into different hyperfine states. Different

combinations of magnetic fields lead to different states of vector and tensor polarization. The
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Figure 5.2.: Overview of the particle sources in COSY: The AEA and IBA sources provide
unpolarized charged hydrogen or deuterium ions, which are guided through the
source beamline (SBL or QBL) to the cyclotron. In the left part, the source for
polarized charged hydrogen or deuterium ions is shown. A detailed schematic is
shown in Figure 5.3. Taken from [64].

collision between the neutral cesium beam (Cs0) coming from a cesium ionizer and the polarized

atomic beam (~H
0

and ~D
0
) occurs in a central charge exchange region. The charge exchange

reaction

~H
0

+ Cs0 → ~H
−

+ Cs+, (5.1)

~D
0

+ Cs0 → ~D
−

+ Cs+, (5.2)

generates negatively charged ions that can be extracted. Subsequently, the polarized beam

undergoes passage through a Wien filter, which adjusts the spin orientation to align with

the vertical magnetic field direction in the cyclotron to preserve the polarization during the

preacceleration process [67].

5.2.2. Jülich Light Ion Cyclotron (JULIC)

The Jülich light ion cyclotron (JULIC) accelerates ions up to their injection energies into COSY,

reaching 45 MeV for H− beams and 76 MeV for D− beams. Functioning as an isochronous

cyclotron, it has been utilized for nuclear physics experiments since 1968. While initially

designed for this purpose, it underwent refurbishment between 1990 and 1992 to function as a

pre-accelerator for COSY.

Cyclotrons accelerate charged particles outward along a spiral path. The acceleration is

achieved through an RF electric field between magnetic regions, with magnetic fields main-

taining the particles’ trajectory. The changing electric field polarity in this region ensures a

continuous accelerating force for the particles.

In an isochronous cyclotron like JULIC, particles consistently complete one loop in the same

amount of time, meaning that the acceleration frequency can be constant, ensuring they always
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Figure 5.3.: Source providing polarized beams in COSY: Hydrogen or deuterium atoms are
dissociated and focused at the polarized atomic beam source. By switching on or
off the three radio frequency units, the atoms get polarized. After polarizing, the
atoms collide with a cesium beam coming from the cesium ionizer, where they pick
up an extra charge to be deflected by the dipole. They are then sent through the
source beamline to the injection cyclotron. Figure is taken from [67].

reach the same RF phase in the accelerating gap. For continuous beams, the magnetic field

increases by the Lorentz factor γ in the radial direction. Additionally, JULIC operates as a

separated sector cyclotron, utilizing the shape of its poles to vertically focus the beam due to

edge focusing and compensate for the relativistic mass increase. The RF electric field employed

for charged particle acceleration is referred to as the cyclotron frequency [68]. For the return

yoke of the magnet, approximately 700 t of iron is necessary.

5.2.3. Injection beamline (IBL) and Injection

When the particles are accelerated in the cyclotron, they get extracted into the injection

beamline (IBL) to COSY. The IBL is a transfer line, being 94 m long, containing quadrupole

magnets to focus, dipole magnets to bend, and steerer magnets to steer the beam. In addition,

several devices like Faraday Cups to measure the beam intensity at the exit of the cyclotron

and at the injection at COSY, and slit systems to measure the beam emittance, are installed.

Also, a polarimeter called LEP (Low Energy Polarimeter) is installed in the injection beamline,

which is used to measure the polarization of the incoming ions. The injection into COSY is a

so-called stripping injection. While injecting into the main ring, two electrons at a thin carbon

foil are ”stripped” away, turning the H− or D− ions into protons or deuterons.
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5.3. COSY

In the main COSY ring, polarized and unpolarized deuteron and proton beams are acceler-

ated up to a momentum of p = 3.7 GeV/c, equivalent to approximately Ekin,d = 2.2 GeV for

deuterons and Ekin,p = 2.8 GeV for protons.

Figure 5.4.: Floorplan of COSY showing dipole magnets (red), quadrupole magnets and their
names (black), beam position monitors and their names (orange), and horizontal
(blue) and vertical (purple) steerer magnets. Figure is taken from [69].

COSY is built as a racetrack-shaped synchrotron and consists of two 40-meter-long straight

sections. Each straight segment contains 16 quadrupole magnets, arranged in four groups

of four quadrupoles each. In the straight sections, the RF cavity for acceleration, the two

electron and stochastic coolers, spin manipulators like the Siberian Snake and the RF Wien

filter, and the two internal polarimeters, WASA and JePo are installed. The arc sections, with

a length of 52 meters each, consist of three replicated cells (magnet combinations). In total, 24

water-cooled dipole magnets with a maximum magnetic field of 1.58 T bend the beam around

the ring. Each half-cell section follows a quadrupole-dipole-quadrupole-dipole structure, with

adjustable quadrupole polarities, resulting in a six-fold symmetric arc. The total length of the

synchrotron is 184 m.

Additionally, COSY incorporates 18 sextupoles for chromaticity correction, influencing the Spin

Coherence Time − a critical parameter for experiments requiring a long in-plane polarization of

the beam, such as those conducted within the JEDI collaboration for Electric Dipole Moment

measurement [70].

Throughout the accelerator complex, all components operate under vacuum conditions. For

the successful operation of COSY, a vacuum pressure of approximately 10−10 − 10−11 mbar is

needed. The vacuum chamber exhibits a rectangular shape in the arcs to fit into the geometrical

design of the dipoles and a circular configuration in the straight sections.
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Additionally, the beam position is measured with 29 Beam Position Monitors (BPMs) dis-

tributed along the ring. Schottky pickups for revolution frequency, tune, and chromaticity

measurements are incorporated, along with an Ionization Profile Monitor (IPM) for observing

the beam profile. The beam position can be corrected with 25 horizontal and 21 vertical steerer

magnets [63, 71]. A floor plan of COSY is shown in Figure 5.4.

Since the commissioning of COSY in 1992, many successful hadron physics experiments like

ANKE1 [72], WASA2 [73], EDDA3 [74], and PAX4 [75] have been conducted.

5.3.1. Beam Cooling

The electron cooler, operating at a maximum voltage of 100 kV, is positioned in the middle of

the Cooler Telescope, as illustrated in Figure 5.1. Electrons are electrostatically accelerated in

the electron gun to match the velocity of the stored ion beam in COSY. Guided and focused by

a longitudinal magnetic field generated by the gun solenoid, these electrons are subsequently

deflected 90° into the 2 m-long drift solenoid region using a dipole.

Within this region, the paths of the electron and the ion beam overlap on an effective cooling

length of approximately 1.5 m. Afterwards, a second dipole separates the electron beam from

the ion beam, directing it towards the collector solenoid. Before being discharged, the electron

beam undergoes electrostatic deceleration to the potential of the electron gun. A schematic of

the 100 kV Cooler is shown in Figure 5.5. To counteract the Coulomb repulsion, it is necessary

to apply a magnetic field along the trajectory of the electron beam. A more dense electron

beam requires an increased guiding field to prevent overheating. Typically, solenoid and toroid

magnets around the electron cooler drift section generate the guiding field [76].

The primary objective of the electron cooler is to reduce the beam emittances and momentum

spread of the ion beam in longitudinal and transverse directions, which is crucial in polar-

ization experiments to increase the so-called Spin Coherence Time. More information about

the interplay of Spin Coherence Time and beam width is given in section 7.2 [77]. In 2015, a

second electron cooler, namely the 2 MV cooler, was installed in the opposite straight after the

injection in the ring, which allows cooling ion beams up to the full momentum range of COSY.

The electron cooler itself was not used in the experiment reported in this thesis, as a 970 MeV

deuteron beam can be cooled with the 100 kV cooler. However, the solenoidal field of the 2 MV

solenoid was used as an additional spin manipulator. More information including a schematic

can be found in section 5.4.4.

5.3.2. Stochastic Cooling

COSY is equipped with two stochastic coolers (horizontal and vertical), a system comprising a

pickup detector and a kicker. The pickup detector measures the deviation of the particle beam

from the designated orbit. Subsequently, the information is transmitted diagonally to the

kicker. Upon the beam’s entry into the kicker, a corrective bump is applied, effectively correct-

1Apparatus for Studies of Nucleon and Kaon Ejectiles
2Wide-Angle Shower Apparatus
3Excitation function Data acquisition Designed for Analysis of phase shifts
4Polarized Antiproton eXperiments
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Figure 5.5.: Schematic view of the 100 kV cooler: The electrons are electrostatically accelerated
in the electron gun and guided via a 90° deflector into the beamline where they
mix with the ion beam. After cooling the ion beam, the electrons are bent again
by 90° with a second deflector and collected with the electron collector. The x and
y steerer before and after the electron cooler are used to match the ion beam with
the electron beam. Taken from [78].

ing the deviation observed earlier. This process enables phase space reduction in both planes.

During the experiments reported in this thesis, no stochastic beam cooling is used [79].

5.3.3. Beam Diagnostics

In this section, a few diagnostic components installed in the COSY ring, which are important

for the experiments reported in this thesis, are presented.

• Beam Cooling: The quality of the beam cooling can be quantified by analyzing beam

profiles of recombined particles at the exit of the first dipole after the Cooler telescope,

approximately 24 m downstream of the electron cooler. The recombined particle beam

profiles are detected using a multi-wire proportional chamber (MWPC). More information

about this analysis is given in section 7.3.1.

• Beam Position Monitors (BPMs): The measurement of horizontal and vertical beam

positions is conducted through a set of 31 (horizontal) and 30 (vertical) beam position

monitors (BPMs) in the respective planes. To accommodate the varying shapes of the

beam pipe, a design featuring rectangular (150 mm × 60 mm [80]) tubes in the arcs and

cylindrical tubes in the straight sections has been developed. Each BPM typically com-

prises electrode pairs placed around the beam pipe.
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During each revolution, the bunched ion beam induces signals on these electrodes. The

signals from opposing electrodes are combined into a difference and a sum signal. The

sum signal is directly proportional to the beam intensity, while the ratio of the difference

and sum signals allows for the determination of the beam position concerning the BPM

center [81]. The position of the beam in horizontal and vertical direction can be calculated

by using the following formulas

X = Kx

(
VL − VR
VL + VR

)
+Xoff, (5.3)

Y = Ky

(
VU − VD
VU + VD

)
+ Yoff. (5.4)

The measured voltage values in the four electrodes of the beam position monitor are

VL, VR, VU , and VD. The geometry factors Kx and Ky are related to the sensitivity of

the sensors and Xoff and Yoff are correction factors taking physical offsets of the beam

position monitors into account. In 2019, these offsets were measured using the so-called

beam-based alignment technique [69]. The offsets which that found for all beam po-

sition monitors are listed in Table A.1. More information about the orbits during the

experiments reported in this thesis is given in section 7.7.2.1.

The JEDI collaboration developed a new generation of beam position monitors based on

Rogowski coils. The main advantage is the reduced size of 13 cm, saving space in the

accelerator ring. The disadvantage is that they can only be operated on a designated

revolution frequency [82].

• Ionization Profile Monitor (IPM): Measuring beam profiles allows determining the

transverse widths of the ion beam in the horizontal and vertical directions. By considering

the optical function values at the measurement location, it becomes possible to calculate

the beam emittances. In synchrotrons, the most common non-destructive measurement

of beam profiles is the ionization profile monitors (IPM) [83]. In COSY, the IPM is

positioned in the middle of the second arc after injection.

Within the IPM setup, ions and electrons are generated through collisions involving the

circulating ion beam and residual gas atoms. The electrodes of the IPM create an electric

field, accelerating ions and electrons towards a micro-channel plate (MCP)[84]. The

accelerated electrons collide with a phosphor screen located behind the MCPs, generating

light spots that are captured by CCD cameras. This method provides a spatial resolution

of approximately 100µm.

• Betatron Tune and Chromaticity: Betatron tunes are crucial parameters for compar-

ing simulation models of COSY with the real machine. At COSY, tune measurements are

carried out by exciting coherent betatron oscillations using a so-called stripline unit [80].

Resonant oscillations occur when the excitation frequency aligns with a betatron side-

band frequency. From these measurements, the fractional part of the betatron tunes can

be determined. Obtaining the beam chromaticities involves repetitive tune measurements

for different ion beam velocities.
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5.4. Spin Manipulators in COSY

Throughout the ring, a few devices are installed which are and can be used as spin manipulators.

The RF solenoid is used to rotate the initial vertical polarization provided by the source into

the accelerator plane. The Siberian snake, the RF Wien filter, and the 2MV solenoid are used

to determine the Invariant Spin Axis.

5.4.1. Radio Frequency Solenoid

The RF solenoid serves as one of the spin manipulation devices at COSY. This 57.5 cm-long

solenoid comprises a 25-turn air-core water-cooled copper coil with an average diameter of

21 cm [85]. The solenoid produces a sinusoidal magnetic field (maximum 1.17 mT) parallel to

the beam momentum vector and is used to rotate the vertical polarization provided by the beam

source into the accelerator plane. The solenoid operates as part of an RLC resonant circuit at

an RF voltage of 5.7 kV, producing a longitudinal RF field integral of 0.67 Tmm [86].

According to the Thomas-BMT equation (4.22), particle spins experience kicks as soon as they

possess a component perpendicular to the magnetic field, resulting in a rotation around the

solenoidal magnetic field. To rotate the polarization into the horizontal plane, the frequency

of the solenoid needs to be set to one of the harmonics of the spin precession frequency

fsol = |K +Gγ|fCOSY with K ∈ Z. (5.5)

The magnetic anomaly, the revolution frequency, and the Lorentz factor are denoted by G,

fCOSY, and γ. For technical reasons, the K = 1 harmonic is used. Even though the resonance

frequency can be calculated using Eq. (5.5), the resonance frequency needs to be determined

experimentally as it can change due to imperfections in the experimental conditions. The

resonance frequency is found by performing a so-called variable-frequency Froissart-Stora scan

sweeping through a frequency range around the expected resonance frequency. By changing

the solenoid frequency and finally hitting the resonance, the vertical polarization starts to flip

according to the Froissart-Stora formula [87]

PV,f = PV,i

(
2 exp

(
−πε

2
sol

2|α|

)
− 1

)
. (5.6)

The initial and final vertical polarization before and after crossing the resonance are given

by PV,i and PV,f . The resonance strength and the rate at which the resonance is crossed

are denoted by εsol and α. Once the resonant frequency is found, it is fixed throughout the

experiment, and the duration of the RF solenoid is varied until half a flip of the polarization,

i.e., the polarization is rotated into the horizontal plane, is done. During the experiment, the

RF solenoid was sometimes adjusted when the flip was not completely successful. However,

a polarization which is not completely rotated into the horizontal plane is not crucial for the

experiment as it is shown in sections 7.6.2 and 7.6.3. The frequencies used for the experimental

periods described in this thesis are given in Table 7.2. In Figure 5.6, the rotation of the left-

right asymmetry (proportional to the vertical polarization, section 6.4) is shown. At 175 s for

a period of ten seconds in the cycle, the RF solenoid is switched on at the resonant frequency

resulting in the full rotation such that PV,f/PV,i = −1. By adjusting the timing of the RF
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CHAPTER 5. EXPERIMENTAL SETUP

solenoid, the polarization is rotated into the accelerator plane, i.e., PV,f = 0. The absolute

value of the asymmetry reduces during the spin flip due to a loss of spin coherence. This

process is further discussed in section 7.2.
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Figure 5.6.: The left-right asymmetry, which is proportional to the vertical polarization of the
beam as a function of time for a cycle using unpolarized and polarized beam. At
175 s, the RF Solenoid is switched on for a period of 10 s at the resonant frequency
resulting in a full rotation of the polarization, such that PV,f/PV,i = −1. During
the measurement, two polarized bunches were circulating in the machine. For
illustration purposes, only the rotation of the first bunch is shown. The absolute
value of the asymmetry reduces during the spin flip due to a loss of spin coherence.

5.4.2. Radio Frequency Wien Filter

A conventional Wien filter provides an electric and a magnetic field which are orthogonal to

each other and the beam momentum direction. By adjusting the electromagnetic field inside

the device to the design momentum of the particle beam, the force acting on the beam becomes

zero

FC = FL (5.7)

qE = qβcB (5.8)

E = βcB. (5.9)

The particle’s velocity for no deflection in the device is given by

βc =
| ~E|
| ~B|

. (5.10)
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A simulation of the Lorentz force inside the real device, installed in the first straight section after

injection, at a power of 1 kW is shown in Figure 5.7. When entering and exiting the device,

the beam experiences a Lorentz force with opposite signs, which means that the integrated

Lorentz force is zero. Inside the device, the Lorentz force is the same as outside the device.

Figure 5.7.: Simulation of the Lorentz force inside the RF Wien filter. The z axis points in
the direction of the beam momentum vector. When entering the RF Wien filter,
the beam experiences non-zero Lorentz forces which have the same amplitude in
opposite directions and cancel out. In the device, the main field is zero. Taken
from [88].

If a particle does not fulfill the Lorentz force condition (cf. Eq. (5.10)), it is either deflected by

the electric or magnetic field, meaning that the Wien filter selects only particles at the correct

momentum, hence the name filter. For the experiment reported in this thesis, the filtering

purpose of the device is not relevant as COSY provides fantastic beam conditions. However,

for the determination of the Invariant Spin Axis, a vertical magnetic field is necessary for spin

manipulation, which has to be compensated by an electric field to avoid impact on the beam’s

trajectory. While the magnetic field allows a rotation of the polarization, the beam itself stays

unaffected. In order to observe an effect on the beam polarization, the magnetic field needs to

run on one of the harmonics of the spin precession frequencies. This is where the radio frequency

enters the field, which allows for a periodic switching of the magnetic field, similar to the radio

frequency of the RF solenoid. The electromagnetic field is produced using parabolically-shaped

parallel plates through which the electromagnetic wave travels in the device. The RF Wien

filter is designed to operate at frequencies ranging from 120 kHz to 1621 kHz. To ensure, that

the RF Wien filter runs on the right frequency, an online phase feedback system was developed

which is further discussed in section 6.7.

In addition, the entire Wien filter can be rotated around the beam pipe. When the magnetic

RF Wien filter is pointing vertically to the accelerator plane, the RF Wien filter is in the so-

called Electric Dipole Moment mode. When the magnetic field of the RF Wien filter is in the

accelerator plane, the RF Wien filter is in the Magnetic Dipole Moment mode. By rotating the

RF Wien filter around the beam pipe, the radial component of the Invariant Spin Axis can be
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probed. More information about the determination of the radial component of the Invariant

Spin Axis is given in section 7.6. The RF Wien filter is typically operated at a power of 1 kW.

The RF Wien filter after it was installed in COSY can be seen in Figure 5.8.

Figure 5.8.: RF Wien filter installed in COSY. The beam enters the device from left to right.
The white belt is used to rotate the device around the beam pipe. The picture was
taken by Volker Hejny/ JEDI Collaboration.

After the first experimental period using the RF Wien filter for the determination of the

Invariant Spin Axis in 2018, fast RF switches were installed into the driving circuit of the

device, which produced the electromagnetic wave. The RF switches can be triggered at the

revolution frequency, allowing for bunch selection. By preparing two (or four) bunches with

the RF cavity, the Wien filter can be used to only influence the polarization of the so-called

signal bunch, while the so-called Pilot bunch is unaffected by the RF Wien filter fields and acts

as a co-magnetometer [89]. This gating of the Pilot bunch allows for the measurement of the

Invariant Spin Axis using the so-called Pilot bunch method, which will be further explained

in section 7.6.3. The switches can only be operated at a reduced RF Wien filter power of

500 W. The plates inside the RF Wien filter creating the RF electromagnetic wave are shown

in Figure 5.9.

Initially, the RF Wien filter was planned with a ferrite cage around the device. Simulations have

shown that the parallelism of the electrodes has the largest influence on the homogeneity of the

electric field, while the alignment of the ferrite blocks significantly impacts the homogeneity

of the magnetic field in the RF Wien filter. However, these ferrite blocks have never been

installed [88]. There is a simulation of the magnetic field axis available in which the effects

of the geometrical misalignments (within a reasonable range) of the electrodes and the ferrite

cage are studied. The simulations conclude that the variance of possible relative field errors of

the vertical magnetic field with respect to the full field integrated over the length of the RF

Wien filter is given by

Var


∫ l

2
−l
2

| ~H⊥|dl∫ l
2
−l
2

| ~H|dl

 ≈ 1× 10−3. (5.11)
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Figure 5.9.: A view along the beam axis in the RF Wien filter. The parabolic parallel electrodes
produce the RF electromagnetic wave used to rotate the polarization. The picture
was taken by Irakli Keshelashvili/ JEDI Collaboration.

Using small angle approximation, this relative field error corresponds to a systematic error

of 1 mrad for the vertical magnetic field axis in the longitudinal direction. However, these

simulations correspond to the case with the installed ferrites, which were never used in the real

experiment [90].

5.4.3. Siberian Snake

The superconducting Siberian snake installed in COSY was delivered in 2017 for the PAX

(Polarized Antiprotons Experiment) experiment to provide longitudinal polarization at the

PAX installation. It was installed in the second straight section of COSY at the former ANKE

magnet position. The superconducting magnet is cooled using liquid helium and provides a

maximum longitudinal field of 6 T at a current of 258.83 A. The Siberian snake in COSY is

of the first kind, meaning that the rotation axis of the spin is longitudinal with respect to the

beam momentum direction.

In circular accelerators providing polarized particles, Siberian snakes are used to avoid crossing

of depolarizing resonances by forcing the spin tune to half-integers. The great advantage is

that this procedure is independent of beam energy. When setting up COSY for the Precursor

experiments, no depolarizing resonances occur when accelerating to 970 MeV/c. However, the

Siberian snake is used to rotate the Invariant Spin Axis after acceleration. More information

about the effect of the Siberian snake on the Invariant Spin Axis is given in section 7.4. The

Siberian snake installed in COSY is shown in Figure 5.10.

5.4.4. 2 MV Solenoid

Although the 2MV electron cooler is not used during the experiment reported in this thesis

to cool down the deuteron beam, as the 100 kV cooler is sufficient, the solenoidal field of the

straight cooling section can be used as an additional spin rotator. The principle is the same as

already described in the previous section for the Siberian snake, as it only adds an additional

solenoidal field in the beam momentum direction in the first straight section after injection.
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Figure 5.10.: The superconducting Siberian snake in COSY during the commissioning experi-
ment in 2017. The picture was taken by Irakli Keshelashvili/ JEDI Collaboration.

However, by adding an extra field, the spin physics developed in section 7.4 and 7.6 can be

further probed.

The maximum solenoidal field is much weaker than the field of the Siberian snake, being 0.2 T.

To ensure the magnetic field in the cooling section meets the required straightness, a solenoid

made up of many short coils is used. Each coil can be adjusted horizontally and vertically. The

desired straightness is gven by (∆θ < 1× 10−5 rad). After assembling the cooling solenoid, the

magnetic field’s straightness is checked. This system incorporates a moving mirror inside the

solenoid that reflects a laser beam. The mirror is connected to a magnetic rod that aligns

with the magnetic field. The mirror support, using jewel bearings, helps to precisely track the

magnetic field’s sideways components. A detector captures the reflected laser beam to measure

the straightness of the field [91].

5.5. Polarimeters in COSY

Polarimeters are instruments installed in COSY to measure the vertical polarization component

and the amount of in-plane polarization of the particle bunch circulating in the accelerator. Two

polarimeters are installed in the ring. Until late 2019, the forward detectors of the Wide Angle

Shower Apparatus (WASA) served as a polarimeter. In 2019, the JEDI collaboration built

a new dedicated polarimeter for proton and deuteron Electric Dipole Moment measurements,

known as the Jedi Polarimeter (JEPO).

Both polarimeters operate on a common principle: a scattering process on a thick carbon target

scratches the halo of the bunched beam. Depending on the beam’s polarization orientation,

the beam scatters into four detector segments: up, down, left, and right as seen from the

beam direction. An asymmetry in the left-right direction indicates the vertical polarization

component, while an asymmetry in the up-down direction is used to determine the amount of

in-plane polarization. For detailed determination methods, refer to sections 6.4 and 6.5.
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The process of extracting particles from the target involves applying a white noise electric field,

comprising overlaid sinusoidal signals. This electric field’s influence on the target’s extraction

rate is continuously controlled by a feedback system called the Schneider Box. The Schneider

Box regulates the voltage applied to the beam to maintain a consistent extraction rate over

time. Figure 5.11 illustrates the loss of particles over time due to extraction from the carbon

target. Beam loss occurs linearly as soon as extraction begins, at a rate in the order of

2.5× 107 particles/s. Earlier loss in the cycle is due to acceleration and orbit correction.
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Figure 5.11.: Beam loss due to the beam extraction on the carbon target occurs at a rate in the
order of 2.5× 107 particles/s. The dashed lines in the figure mark the extraction
period. The initial loss occurs when running the orbit correction.

5.5.1. Wide Angle Shower Apparatus (WASA)

The Wide Angle Shower Apparatus (WASA) initial development and construction took place

in 1996 at the Department of Radiation Sciences of the University of Uppsala in Sweden, and it

was subsequently installed at the CELSIUS accelerator and storage ring. The primary objective

of WASA was to detect light mesons like π0 and η. It comprised two main components: a central

detector, often referred to as the calorimeter, made up of CsI crystal scintillators capable of

covering nearly 4π solid angles, and a forward detector located downstream of the beam.

In 2006, the entire WASA detector, along with its microsphere hydrogen pellet target, was

relocated to the COSY accelerator facility at Forschungszentrum Jülich for the WASA-at-

COSY [92] campaign. Some upgrades were introduced to accommodate higher energies and

count rates. This updated configuration allowed the WASA detector to conduct experiments

until 2014.

Between 2014 and the end of 2016, the entire detector, including the pellet target, was removed

from COSY. The central detector was moved to the Fragment Separator at GSI in Darmstadt

to search for hypernuclei [93]. The forward detector part was reinstalled to function as a

polarimeter for the JEDI collaboration. Additionally, a new FPGA-based trigger system was

developed for this revised configuration.
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Figure 5.12.: Schematic of the WASA forward detector. The beam travels horizontally from left
to right, passing a 2-cm-thick carbon block target. The beam is heated in the ver-
tical direction to bring the particles to the target’s front face. Forward-scattered
particles exit the vacuum through a stainless steel window at angles between 2°
and 17°. They then pass through two pie-shaped plastic scintillator window coun-
ters, an array of straw tubes for position and angle tracking, a segmented trigger
hodoscope, and five layers of plastic scintillator calorimeter detectors (depicted
in light blue). All scintillator counters are read out using photomultiplier tubes
mounted at the outer edges of each segment. Taken from [26].

The final detector setup for the first experimental period in 2018 to measure the orientation

of the Invariant Spin Axis consisted of an unpolarized carbon target from which the deuterons

scatter into two layers of forward window counters (FWC1 and FWC2) with 24 elements each.

These were followed by four layers of straw tubes, which were rotated by 45°. Next, a single

layer of the forward trigger hodoscope (FTH) was mounted, featuring 48 elements rotated by

3.75° relative to the other detector modules. The last part of the detector consisted of five

layers of the forward range hodoscope, with 24 elements in each layer. The first three layers

(FRH1, FRH2, and FRH3) were constructed from 11 cm thick plastic scintillators, while the

latter two (FRH4 and FRH5) were made from 15 cm thick scintillators. A schematic of the

WASA forward detector is shown in Figure 5.12.

For polarimetry, the detector is partitioned into four distinct segments, each responsible for

monitoring a specific azimuthal angle approximately spanning ∆φ ≈ 90°. These four segments

are referred to as ”up,” ”down”, ”left,” and ”right” when viewed from the perspective of the

incoming beam direction. The angular geometrical area encompasses θ = 2 to 17° and φ = 0

to 360°.
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5.5.2. Jedi Polarimeter (JePo)

(a) Conceptual Design (b) LYSO crystal locations and FOM.

Figure 5.13.: Left: Schematic of the polarimeter with (1) a target chamber containing horizon-
tal and vertical 2 cm thick carbon blocks which are movable, (2) a vacuum flight
chamber equipped with an 800µm stainless steel exit window, (3) ∆E counter
and 2+2 cm plastic scintillators for tracking, and (4) the scattered projectiles are
stopped in the LYSO modules. Right: The black boxes show the coordinates of
the LYSO crystals. Figures are taken from [94].

In 2019, a new dedicated polarimeter for proton and deuteron Electric Dipole Moment research

was installed in the ring. A schematic of the polarimeter is shown in Figure 5.13a. A horizontal

and a vertical target are deployed in the polarimeter. For the experiments reported in this

thesis, only the vertical target is used. When the beam is accelerated and cooled, the target

is moved using a rod close to the halo of the beam. By applying a local beam bump, the

beam is moved to its final position close to the target. After scattering and passing through

an 800µm thick stainless steel window, the projectiles encounter a plastic scintillator energy-

loss detector. Finally, the projectiles are stopped using heavy inorganic LYSO (cerium-doped

lutetium yttrium oxyorthosilicate) crystal scintillators. Each crystal measures 3 × 3 × 8 cm3.

The signals are read out using SiPM chips directly mounted on the scintillators.

In COSY, the operating deuteron momentum of p = 970 MeV/c (Td = 270 MeV) is chosen as

the so-called Figure of Merit defined by FOM = σ(θ)A2
y(θ) sin(θ) is maxing out for the chosen

design of the polarimeter when analyzing d+C scattering events. It can be shown that the

statistical uncertainty squared on an Electric Dipole Moment measurement is proportional to

the inverse of the Figure of Merit. Therefore, a detector design is crucial for maxing out the

integral of the FOM over the polar angle θ. The placement of the scintillators measuring the

polar angle, along with the Figure of Merit for a deuteron beam scattering elastically on a

carbon block, is shown in Figure 5.13b [94].
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5.6. The Fiber-Optics-based Reference Frequency Distribution

System

The Fiber-Optics-based Reference Frequency Distribution System was installed during the

summer shutdown in 2020 and is used to synchronize all frequency-related devices in COSY. For

the Electric Dipole Moment experiment, the essential systems are the frequency generators for

the COSY RF cavity, the RF solenoid, and the RF Wien filter. For reference synchronization,

a GPS-driven 10 MHz signal is used. Without the reference signal, the individual oscillators

for each device had to be retuned once per day in the range of 10 mHz, which is up to two

orders of magnitude larger than the typical cycle-by-cycle variation of the spin tune. Without

corrections of the frequencies, off-resonance behavior is observed. This adds new sources of

uncertainties when running the RF solenoid to rotate the initial vertical polarization into the

horizontal plane, which is described in section 5.4.1. Off-resonance behavior leads to incomplete

or too large rotations of the polarization and therefore different starting conditions for the

experiment in each cycle. Off-resonance behavior also leads to a more complex buildup of

vertical polarization when running the RF Wien filter. This behavior is further described in

section 7.6.3.1.

The signals are distributed using fiber-optic cables to the relevant systems of the Electric Dipole

Moment experiment, providing clean frequency signals with low phase noise and a high signal-

to-noise ratio. The advantage of fiber-optic cables is that signals and data are transported

over short and long distances without distortions, as fiber-optic cables are electromagnetically

non-radiating and immune to interference and grounding issues on low and high bandwidths.

Using the fiber-optic system, the source generators of TTL (transistor-transistor logic) and

sine-wave signals are decoupled from their origin and destination systems.
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To determine the Invariant Spin Axis and consequently the first direct result of the Electric

Dipole Moment of the deuteron, the polarization of the bunched deuteron beam needs to

be studied using data from the internal polarimeters in COSY. In the following sections, an

overview of the analysis of the extraction of the polarization and other relevant parameters is

given.

6.1. Software

To start this chapter about the data analysis, a short introduction to the software is given.

As the main tool for data collected in COSY, Python is used for calculations and simulations

as well as for connecting to the EPICS servers. All data recorded with the polarimeters is

analyzed using the analysis tool ROOT.

6.1.1. ROOT

ROOT is an object-oriented, open-source software framework developed at CERN for analyzing

data. It started in 1994 when René Brun and Fons Rademakers created it to replace the older

Fortran-based PAW software. The need for something stronger arose because of the expected

challenges in handling data from the Large Hadron Collider (LHC). While initially designed for

particle physics, ROOT is now used in different areas like data mining. Written in C++, ROOT

has many functionalities, including console or graphical user interface operation, advanced

statistical analysis (multidimensional histogramming), making histograms and graphs, fitting

functions, statistical data analysis, various math functions, 3D visualizations, and supporting

distributed computing. ROOT has become a vital tool for researchers in various scientific

fields [95].

6.1.2. EPICS

The Experimental Physics and Industrial Control System (EPICS) is an open-source soft-

ware framework designed for creating distributed control systems for large-scale experiments,

including applications in particle accelerators, telescopes, and fusion reactors [96]. These ex-

periments require the collection and transmission of data from multiple sources for operational

and analytical purposes. Originally built for a collaboration between the Los Alamos National

Laboratory and the Argonne National Laboratory, EPICS has evolved into a widely adopted

platform, with numerous institutions worldwide contributing to its ongoing development.

EPICS relies on Client/Server and Publish/Subscribe communication methods to allow for data

exchange between various computing components. Servers, known as Input/Output Controllers
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(IOCs), handle real-world input/output operations and local control functions. Data transfer

within EPICS utilizes a unique data structure known as the Process Variable (PV). A PV can

be envisioned as a comprehensive data entity, encompassing essential information such as the

name and value of a measured variable, along with additional details like units and timestamp

information. Moreover, a PV is versatile enough to support more complex data types, including

waveforms and machine states, as well as facilitating the processing of other PVs.

6.2. Event Rates

The following sections about the determination of polarization quantities are valid for both

polarimeters (WASA and JePo). After scattering on the carbon target, the projectiles are

measured by all four quadrants of the polarimeter. The event rate in each quadrant RX is

given by

RX = ṄX =
dNX

dt
with X ∈ {L,U,R,D}, (6.1)

where N denotes the number of detected events. The letters L, U, R, and D represent the

detector in which the particle scatters. The detectors are placed at azimuthal angles of φL = 0°,
φU = 90°, φR = 180° and φD = 270°, each covering a range of ∆φX ≈ 90°. The detector rates

in each quadrant can be calculated by integrating over the solid angle

RX = Idt

∫
X
aX(ϑ, φ)σ(ϑ, φ)dΩ. (6.2)

The variable I denotes the beam current intensity, dt the target density, aX(θ, φ) the combined

detector efficiency and acceptance, and σ(θ, φ) the spin dependent elastic cross-section on an

unpolarized carbon target, introduced in section 4.3. In each time bin (Ti, Ti + ∆T ), where

∆T = 2 s, the total number of detected events is given by

NX =

∫ Ti+∆T

Ti

RXdt. (6.3)

The quadrants are illustrated for the Jedi Polarimeter JePo in Figure 6.1. The marked red

regions denote a single quadrant that encompasses 13 LYSO crystals. The colour denotes the

number of measured particles in each crystal. During an extraction time of 220 s, approximately

1.13× 107 scattered particles are detected. In this example, a typical cycle for the determina-

tion of the Invariant Spin Axis is used. Using the quadrants, the left-right asymmetry (vertical

polarization), as well as the up-down asymmetry (horizontal polarization) can be computed.

The directions are noted as seen from the beam.

An example of the events measured by the four quadrants of the polarimeter is shown in

Figure 6.2. The example is taken from a so-called Spin Coherence Time (cf. section 7.2)

measurement with the Jedi Polarimeter JePo during the Precursor Run II. Events occur in the

polarimeter when the noise extraction of the beam starts at 75 s. The event rates change in the

left and right detector at 90 s when the RF solenoid rotates the vertical polarization into the

accelerator plane. A feedback loop, called Schneiderbox, measures the total amount of rates in

the polarimeter and controls the voltage on the stripline to keep the extraction rate constant.

The counting rates of each detector differ in absolute value due to variations in the acceptances
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Figure 6.1.: Illustration of the four distinct quadrants of the Jedi polarimeter JePo. The quad-
rants are marked with a red colour. The z axis denotes the number of mea-
sured scattered particles during a 220 s extraction interval in each crystal. In total
1.13× 107 particles are measured. The directions are noted as seen from the beam.

of individual detectors. Furthermore, the beam does not precisely pass through the geometric

center of the detector, contributing to asymmetrical counting rates.

6.3. Event and Bunch Selection

At the polarimeter, the particles with the largest vertical betatron amplitudes scatter on the

carbon target. The scattered particles are detected by the four quadrants inside the polarimeter.

The selection of events and bunches is based on the COSY phase, which is defined as

φCOSY =
tevent − tturn

fCOSY
mod 2π, (6.4)

where tevent denotes the time of an event hitting the detector, tturn denotes the time of the turn,

and fCOSY denotes the revolution frequency. The COSY phase is shown as a function of time

in the cycle in Figure 6.3a for single-bunch operation (Precursor I) and two-bunch operation

(Precursor II) in Figure 6.3b. The colour denotes the number of entries within a time and

COSY phase bin. As the COSY phase is calculated from the time of arrival in the polarimeter,

the width of the peak for a constant time reflects the longitudinal beam profile of the particles

with the largest betatron amplitudes at the polarimeter.

In Figure 6.4a and 6.4b, the time-integrated over the entire cycle COSY phase is shown for

single-bunch and two-bunch operation. Assuming a Gaussian distribution, the individual peaks

are fitted using a least squares fit. In the upcoming sections, only events within a two-standard-
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Figure 6.2.: Example of the number of events measured using the four quadrants of the WASA
polarimeter throughout a cycle. The change of number of events in the left and
right detector occurs due to the rotation of the vertical polarization using the RF
solenoid at 90 s. More information about the detection of the vertical polarization
is given in section 6.4.

deviation range around the mean value are taken into account for the determination of the

Invariant Spin Axis, ignoring the other tails of the bunches. Systematic studies of event se-

lections are further discussed in section 7.4.4 and 7.8.1. In addition, a good separation of the

bunches is important for successful gating of the RF Wien filter when applying the Pilot bunch

method (cf. section 7.6.3).

6.3.1. Event Selection Studies

In section 6.3, the event selection based on the COSY phase is discussed. The COSY phase

scales with the longitudinal bunch shape. Note that no exact values of the bunch length can

be determined from this analysis as, at the target in the polarimeter, particles of the bunches

scatter with the largest betatron amplitude. However, by selecting only events in the head and

tails of the Gaussian distribution, particles with larger synchrotron oscillation amplitudes can

be compared with events with smaller synchrotron oscillation amplitudes in the center of the

bunch distribution.
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(b) Two Bunches

Figure 6.3.: COSY Phase φCOSY for a single bunch and two bunches stored in COSY as a
function of time in the cycle.

bunchHist

0 1 2 3 4 5 6
 / rad

COSY
φCOSY Phase 

0

50

100

150

200

250

300

350

310×

N
um

be
r 

of
 E

nt
rie

s

bunchHist

(a) Single Bunch

bunchHist

0 1 2 3 4 5 6
 / rad

COSY
φCOSY Phase 

0

100

200

300

400

500

600
310×

N
um

be
r 

of
 E

nt
rie

s

bunchHist

(b) Two Bunches

Figure 6.4.: COSY Phase φCOSY for a single bunch and two bunches stored in COSY integrated
over the cycle time. A two-standard-deviation range around the mean is used for
further calculation of the Invariant Spin Axis.

To have enough statistics in both cases, the event distribution is split in such a way that the

number of events remains constant. Due to the symmetry of the Gaussian distribution, it is

sufficient to find the solution for x of the following equation∫ x

−∞
G(x′;µ, σ)dx′

!
=

∫ µ

x
G(x′;µ, σ)dx′. (6.5)

This can be numerically solved, which leads to x ≈ 0.67σ, where σ denotes the standard

deviation of the distribution. The following events in the center of the distribution

φCOSY ∈ [−0.67, 0.67]σφCOSY
, (6.6)

and the events in the head and tail of the distribution

φCOSY ∈ [−5σφCOSY
,−0.67σφCOSY

] ∨ [0.67σφCOSY
, 5σφCOSY

], (6.7)
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are studied when calculating the orientation of the Invariant Spin Axis at the solenoids and

the RF Wien filter. The results are presented in section 7.4.4 and 7.8.1.

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
COSY Phase / rad

0.0

0.5

1.0

1.5 Event Selection 1

Event Selection 2

STD

Figure 6.5.: Schematic of the optimal split for event selection studies of the COSY phase. For
the event selection studies, all events inside the range of [−0.67, 0.67] standard
deviations of the COSY phase event distribution are compared with all events
outside this range.

The event selection of real data is shown in Figure 6.6 for the case of two bunches in COSY.

In Figure 6.6a, the center events are shown, and in Figure 6.6b, the head and tail event

selection is shown. Note that the number of events in both cases for the individual bunches is

approximately the same, which simplifies the remaining fitting procedure as the fit to the spin

tune phase and the buildup of the polarization is prone to errors when the number of events is

too small.
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Figure 6.6.: Example of the event selections based on the COSY phase φCOSY, as defined in
Eq. (6.4), for two bunches stored in COSY. The left panel illustrates the event
selection of the central events, and the right panel depicts the selected events in
the head and tail of the two bunches.
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6.4. Left - Right Asymmetry (Vertical Polarization)

To compute the left-right asymmetry, two point-like detectors at azimuthal angles of φL = 0°
and φR = 180° are assumed. The left-right asymmetry is directly proportional to the vertical

polarization component of the bunched beam. The averaged unpolarized differential cross-

section is given by

σ̄0X =

∫
Detector

σ0dΩ with X ∈ {L,R}. (6.8)

Using the differential cross-section derived in Eq. (4.59), the event rates in a time interval ∆t

in both detectors are given by

NR = Idtσ̄0R∆t

(
1− 3

2
pZAz

)
, (6.9)

NL = Idtσ̄0L∆t

(
1 +

3

2
pZAz

)
, (6.10)

assuming that the vector analyzing component Az is the same for all four quadrants. To

determine the vector polarization, the following left-right-asymmetry is calculated

εLR =
NR −NL

NR +NL
(6.11)

=
3

2
pZAZ , (6.12)

assuming σ̄0L = σ̄0R. Note that the constructed asymmetry is independent of beam parameters

such as the beam intensity I and the target density dt. The statistical uncertainty of the left-

right asymmetry can be calculated using Gaussian error propagation as

σεLR =

√
4N2

RNL + 4NRN2
L

(NR +NL)4
=

√
4NLNR

(NR +NL)3
, (6.13)

assuming Poisson statistics for the number of events in the individual detectors for a distinct

time bin

σNX =
√
NX for X ∈ {R,L}. (6.14)

An example of the left-right asymmetry as a function of time in the cycle is shown in Figure 6.7

for a measurement of the Spin Coherence Time (cf. section 7.2). The left-right asymmetry

changes at 90 s when rotating the vertically polarized beam into the horizontal plane. After-

wards, the Siberian snake is switched on at 100 s, which leads to a small change in the left-right

asymmetry. These fake effects are a result of imperfections in the Siberian snake. Towards

the end of the cycle, the left-right asymmetry saturates at −10 %. In principle, the left-right

asymmetry should read zero after rotating the vertical polarization into the horizontal plane.

However, fake asymmetries occur when the beam hits the carbon target at an angle or due to

acceptance differences of the quadrant. Therefore, unpolarized cycles are used as a baseline to

correct the left-right asymmetry of polarized cycles. More information about this calibration

is given in the following section 6.4.1.
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Figure 6.7.: Left-right asymmetry as a function of time in the cycle during a measurement of
the Spin Coherence Time.

6.4.1. Left - Right Asymmetry Correction using Unpolarized Cycles

The calibration of the left-right asymmetry is performed using the left-right asymmetry from

unpolarized cycles. As no vertical or tensor polarization is present in the beam, the left-right

asymmetry should be zero throughout the cycle, which can be used as a baseline for cycles with

a polarized beam. Each setting for the determination of the Invariant Spin Axis was measured

five times. In total, four cycles are taken with a polarized beam, and one cycle is measured

using an unpolarized beam. The five cycles for the same setting, including the unpolarized

one, are collectively referred to as a ”Run” in this thesis. The cycles in which polarized beams

are used are corrected using the cycles with an unpolarized beam. Subsequently, the settings

for measuring the Invariant Spin Axis are altered, and the same procedure is repeated.

An example of the uncorrected left-right asymmetry from a cycle using an unpolarized beam

is shown in Figure 6.8 (red data points). Assuming a linear model for the fake buildup of the

left-right asymmetry, a least squares fit is performed according to

fbuildup(t; tWF, A,B) = A · (t− tWF) +B, (6.15)

where tWF denotes the fixed time switching on the RF Wien filter. The time-dependent cor-

rection is empirical. It is probably caused by small movements of the beam during the cycle

and cannot be related to polarization rotations as no polarization is present in the beam. Only

the time range after switching on the RF Wien filter is used, as this is the main measurement

time for the determination of the Invariant Spin Axis. The left-right asymmetry is corrected

using the fit parameter values

εcorr.
LR (t ≥ tWF) = εuncorr.

LR (t ≥ tWF)− fbuildup(t; tWF, A,B). (6.16)
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Figure 6.8.: Correction of the left-right asymmetry of an unpolarized cycle during the main
measurement period after switching on the RF Wien filter at tWF = 155 s (dashed
black line) assuming a fake asymmetry according to Eq. (6.15). The fit pa-
rameters read A = 0.66(25)× 10−4 1/s, B = 0.0190(16) and the fit quality is
given by χ2/ndf = 54.17/53 = 1.02. The left-right asymmetry is corrected according
to Eq. (6.16), leading to the zero line polarization, which is expected for an unpo-
larized beam.

For simplicity, the corrected left-right asymmetry is written as εLR in the following. The

corrected left-right asymmetry of a cycle using an unpolarized beam is shown in Figure 6.8

(blue data points). The corrected left-right asymmetry is a zero line. The fit results are used to

correct the left-right asymmetry for the remaining cycles for each Run with the same settings

with a polarized beam. An example of such a cycle is illustrated in Figure 6.9. Note that the

shown time range is restricted to the main measurement period when running the RF Wien

filter to determine the orientation of the Invariant Spin Axis at the location of the RF Wien

filter. The change of left-right asymmetry before switching on the RF Wien filter is related to

orbit and beam profile changes when ramping the Siberian snake.

The corrected left-right asymmetry is proportional to the true vertical polarization component.

In principle, the asymmetry should be at zero before switching on the RF Wien filter at 155 s in

the cycle. However, sometimes the RF solenoid has inconsistencies in rotating the polarization

into the horizontal plane. This is not an issue, as the experimental observable which is used to

determine the orientation of the Invariant Spin Axis is based on the polarization change after

switching on the RF Wien filter.1 The change in polarization is also corrected by the slope

A in Eq. (6.15). More information about the change of polarization and its relation to the

measurement of the Invariant Spin Axis is explained in sections 7.6.2 and 7.6.3.

1Linear change of εLR between 155 s and 180 s.
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Figure 6.9.: Correction of the left-right asymmetry of a cycle using a polarized beam which was
taken during the same Run as the unpolarized cycle in Figure 6.8. Note that the
time range of correction is limited to the measurement period when the RF Wien
filter (tWF = 155 s, dashed black line) is rotating the polarization. At 90 s, the RF
solenoid rotates the initial vertical polarization into the accelerator plane.

6.5. Up - Down Asymmetry (In-Plane Polarization)

The analytical work from Eq. (6.20) to (6.31) is taken from former IKP student Dennis

Eversmann’s PhD Thesis High Precision Spin Tune Determination at the Cooler Synchrotron

in Jülich [44, p.41-46].

The difficulty of analyzing the in-plane polarization is related to the fast in-plane rotation of

the polarization, i.e., the spin tune which is introduced in section 4.2.1. The angular precession

of the in-plane polarization can be written as

PH(t) = PZ sin(2πνsfCOSYt). (6.17)

The magnitude of the in-plane polarization is given by

PZ =
√
p2
x + p2

z, (6.18)

with z pointing in the longitudinal beam direction and x pointing in the radial direction.

Note that with a polarimeter, the in-plane polarization can only be measured in quadrature.

A determination of the individual longitudinal and radial polarization is not possible. The

angular frequency of the polarized deuteron beam is approximately

fs = |νs|fCOSY ≈ 0.16 · 751 kHz = 121 kHz. (6.19)

On the other hand, the data acquisition (DAQ) of the polarimeter can only handle event rates

up to 5000 Hz. A simple least squares fit of the event rates with the spin tune and in-plane
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magnitude as parameters is not possible, as only one event is detected per 24 spin revolutions.

In the following chapter, a method based on mapping the event rates into two periods (4π)

oscillation period is given. First, the event rates of the upper and lower detectors are subdivided

into ∆T = 2 s(≈ 106 turns) bins. By generating specialized count rate asymmetries, the in-

plane polarization can be calculated. One significant benefit of the mapping method is its

freedom from dependence on beam properties, except for polarization. Factors such as beam

luminosity and detector acceptance do not influence the results.

For each event recorded in the up and down detector, a turn number n is assigned. The spin

phase advance φs is defined as

φs(n) = 2πn|ν0
s |, (6.20)

where ν0
s denotes the assumed spin tune for each recorded event. In theory, it is known that

the spin tune is negative (counter-clockwise rotation of the polarization for a clockwise rotating

beam). For practical and historical reasons, only the absolute value is used in this thesis. Using

the modulo operator, the spin phase advance is mapped into a 4π interval

φs(n) = φs(n) mod 4π. (6.21)
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Figure 6.10.: The spin phase advance, as per Eq. (6.21), is computed separately for the up
and down detectors, each under the assumption of two distinct spin tunes νs over
a macroscopic time range. The left panel shows a distinct oscillation pattern,
indicating that the assumed spin tune is close to the real spin tune, while the
right panel shows no effect.

This process is iterated for each microscopic time interval, separately for the up and down detec-

tors. In Figure 6.10, two examples of the mapped spin phase advance, following Eq. (6.21), are

presented for two distinct assumed spin tunes. The statistical error for each bin is determined

by σbin =
√
N assuming Poisson statistics. Figure 6.10a shows a distinct oscillation pattern

for both detectors with opposite signs, suggesting that the assumed spin tune approximately

matches the actual spin tune. The phase shift of π is a result of the polar angle dependence φ

in the cross-section of a polarized deuteron beam scattering on a carbon target (cf. Eq. (4.60)).

Conversely, in Figure 6.10b, no oscillation pattern is evident, indicating that the assumed spin

tune is inconsistent with the true spin tune. The events depicted in Figure 6.10 depend on the
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Figure 6.11.: Vertical up-down asymmetry εUD as a function of the Spin Phase Advance along
with a least square fit according to Eq. (6.26). The data is collected during a
two-second interval. The amplitude of the oscillation corresponds to the amount
of the up-down asymmetry which is proportional to the in-plane polarization.

acceptance of the upper and lower detectors, the beam luminosity, and the target density. In

the following, new count rates are computed which cancel out these dependencies.

Based on the spin phase advance in Eq. (6.21), the following new count rates are defined

N±X (φs) =

{
NX (φs)±NX (φs + 3π) for 0 ≤ φs < π

NX (φs)±NX (φs + π) for π ≤ φs < 2π
, (6.22)

where X denotes either the upper or lower detector. Based on these count rates, an up-

down asymmetry, similar to the asymmetry for the vertical polarization in Eq. (6.12) can be

computed

εUD (φs) =
N−U (φs)−N−D (φs)

N+
U (φs) +N+

D (φs)
(6.23)

=
3

2
pZ
σ0UAy − σ0DAy
σ0U + σ0D

sin
(
φs + φ̃s

)
(6.24)

= ε̃UD sin
(
φs + φ̃s

)
, (6.25)

where ¯σ0U and ¯σ0D denote the unpolarized scattering cross-section averaged over the detector

acceptance for the upper and lower detector. The averaged analyzing power is given by Āy and

the amount of in-plane polarization is given by PZ . An example of the up-down asymmetry is

shown in Figure 6.11. The resulting sine curve is fitted by the least squares method according

to

εUD(φs) = A1 sin(φs) +A2 cos(φs). (6.26)
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Note that this formula corresponds to a normal sine fit with

A1 sin
(
φ̃s

)
+A2 cos

(
φ̃s

)
= ε̃UD sin

(
φs + φ̃s

)
with A1 = ε̃UD cos(φs) and A2 = ε̃UD sin(φs).

(6.27)

From the resulting fit parameters, the initial spin precession phase φ̃s and the in-plane polar-

ization can be calculated via

ε̃UD =
√
A2

1 +A2
2, (6.28)

φ̃s = atan2(A2, A1), (6.29)

where atan2 denotes the two-dimensional arctangent [97]. For simplification, the amplitude and

phase are from here on written as εUD and φs. The statistical uncertainty can be calculated

using Gaussian error propagation

σ2
εUD

=
A2

1σ
2
A1

+A2
2σ

2
A2

+ 2A1A2σA1σA2ρ(A1, A2)

A2
1 +A2

2

, (6.30)

σ2
φs =

A2
2σ

2
A1

+A2
1σ

2
A2
− 2A1A2σA1σA2ρ(A1, A2)(
A2

1 +A2
2

)2 , (6.31)

where ρ(A1, A2) denotes the correlation coefficient between the fit parameters A1 and A2. An

example of the vertical up-down asymmetry as a function of time is shown in Figure 6.15.

When fitting an oscillation, a bias of the amplitude parameters occurs if the amplitude relative

to the uncertainties is small, i.e., if the in-plane polarization is small. A new method, based on

Feldman - Cousin confidence intervals and Bayes’ theorem was developed in reference [98].

6.5.1. Determination of the Spin Tune

For the determination of the time-dependent spin tune, a fixed, constant spin tune ν0
s is chosen,

which acts as a baseline for the change of the spin tune ∆νs. The turn-dependent spin tune

can be split into a constant term and the turn-dependent deviations

νs(n)

ν0
s

= 1 +
∆νs(n)

∆ν0
s

(6.32)

= 1 +
∆fs(n)

fs
− ∆fCOSY(n)

fCOSY
(6.33)

= 1 +
1

2πν0
s

∂φs(n)

∂n
. (6.34)

The definition of the spin tune νs = fs/fCOSY transfroms Eq. (6.33) into Eq. (6.34) and the

phase φs(n) corresponds to the phase defined in Eq. (6.29). The determination of the turn-

dependent phase difference allows for the calculation of the spin tune

νs(n) = ν0
s +

1

2π

∂φs(n)

∂n
, or (6.35)

νs(t) = ν0
s +

1

2πfCOSY

∂φs(t)

∂t
. (6.36)
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In Eq. (6.36), the conversion from the turn number to the time frame is used,

t =
n

fCOSY
. (6.37)

The effect of sampling a spin tune ν0
s which does not correspond to the true oscillation frequency

is depicted in Figure 6.12. The orange curve illustrates the sampling frequency while the blue

curve represents the true oscillation frequency. The phase difference between the curves is

depicted by the arrows which increase over time. As soon as the sampling frequency hits the

true oscillation frequency, the phase difference remains constant. In other words, the spin tune

phase φs denotes the phase difference between the assumed spin tune ν0
s and the true spin tune

frequency νs.

In Figure 6.13, this effect is shown for real spin tune data. The left panel shows the spin tune

phase for different assumed spin tunes ν0
s . To determine the derivative of the spin tune phase,

the spin tune phase is fitted with a polynomial of 8th order. The instability of the phase (and

consequently of the spin tune) is a consequence of imperfections in the ring, like small orbit

changes, etc. The change of phase according to the fit is given by

φs =
8∑
i=0

ait
i. (6.38)

The derivation is given by

∂φs
∂t

=
8∑
i=0

ait
i−1i, (6.39)

where ai denotes the ith fit parameter. The statistical uncertainty including the correlation

coefficient ρ(aj , ak) between the fit parameters aj and ak of ∂φs
∂t is given by

σ( ∂φs∂t )(t)2 =
8∑
i=0

(
ti−1iσai

)2
+ 2

8∑
j=1

8∑
k=1
j 6=k

tj−1j · tk−1k · σajσakρ (aj , ak) . (6.40)

The statistical uncertainty of the time-dependent spin tune is given by

σνs(t) =
1

2π
σ( ∂φs∂t )(t). (6.41)

The time-dependent spin tune is shown in Figure 6.13 (right panel). The results are inde-

pendent of the initial choice of the baseline spin tune ν0
s . Small deviations can occur due to

inconsistencies in the fitting procedure. The statistical sensitivity is in the order of O(10−10)

which corresponds to a sensitivity for the oscillation frequency of the polarization of O(1 mHz).

The online determination of the spin tune is crucial for the experiment, as an online feedback

system constantly measures the oscillating polarization frequency and adjusts the RF Wien

filter frequency to one of the harmonics of the spin tune. More information about the phase

feedback is given in section 6.7. During the experiment, the spin tune is determined based

on the resonance frequency of the RF solenoid to rotate the vertical polarization into the

accelerator plane. If the spin tune is changed due to additional solenoidal fields of the Siberian

68



6.5. UP - DOWN ASYMMETRY (IN-PLANE POLARIZATION)

0 2 4 6 8 10 12
x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)
True Oscillation

Sampling Frequency

Figure 6.12.: Schematic showing the phase difference when the assumed spin tune (orange
curve) is faster than the real spin tune (blue curve). The arrows indicate the
phase shift. If the assumed spin tune matches the real one, the phase shift stays
constant over time.

snake or the 2 MV solenoid, a Fourier spectrum of the data rates in the polarimeter in a certain

range around the expected spin tune is computed. The spin tune which leads to the largest

amplitude is used as a new spin tune for the next cycle.

6.5.2. Correction of the Up - Down Asymmetry

In principle, the procedure in the last section can be used to calculate the amount of in-plane

polarization throughout a cycle. However, for most runs, a polynomial fit of the spin tune

phase is not possible. The RF Wien filter rotates the polarization several times in a cycle,

resulting in spin tune phases that cannot be fitted directly. Therefore, an easier approach is

chosen, assuming a constant spin tune throughout a cycle. An initial guess for the spin tune

can be calculated using the following formula

ν0
s,guess = νInit

s + ∆νSolenoids
s (6.42)

= γG+ ∆νSolenoids
s (6.43)

=
G√

1− v2

c2

+ ∆νSolenoids
s (6.44)

=
G√

1− f2COSYL
2
COSY

c2

+ ∆νSolenoids
s , (6.45)

where G, fCOSY, and LCOSY denote the anomalous g factor, the revolution frequency, and the

length of COSY, respectively. In addition, ramping solenoidal fields, such as the 2MV Cooler

solenoid or the Siberian snake, manipulate the spin tune. The change of spin tune due to

solenoidal fields is discussed and derived in section 7.4. In this section, the final result of the
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Figure 6.13.: The change of spin tune phase for different baseline spin tunes which is used to
determine the time-dependent spin tune change by fitting a polynomial is shown
in the left panel. The resulting time-dependent spin tune is shown in the right
panel.

change of the spin tune with respect to the initial spin tune without extra solenoidal fields is

given by

∆νSolenoids
s =

1

−π sin(πν0
s )
×[

cos
(
πν0

s

)(
cos

(
kSnakeISnake

2

)
cos

(
k2MV Sol.I2MV Sol.

2

)
− 1

)
− sin

(
kSnakeISnake

2

)
sin

(
k2MV Sol.I2MV Sol.

2

)
−n2MV Sol.

z sin
(
πν0

s

)
sin

(
kSnakeISnake

2

)
cos

(
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(6.46)

The parameters ISnake and I2MV Sol. denote the currents in amperes applied to the power

supplies of the solenoids. The calibration factors kSnake and k2MV Sol. describe the conversion

from applied current to effective spin rotation angle inside the solenoidal field. Additionally,

n2MV Sol.
z and nSnake

z represent the longitudinal projection of the Invariant Spin Axis at the

location of the 2MV solenoid and the Siberian snake magnet. The offset ∆νs,0 takes spin tune

changes during the cycle into account. The final results for the individual measurements are

given in section 7.4. The combination of Eqs. (6.45) and (6.46) allows for a calculation of an

initial guess of the spin tune to determine the final up-down asymmetry. In most cases, the first

guess of the spin tune does not precisely match the correct spin tune of the cycle. Therefore,

the phase calculated from the initial guess is fitted with a linear function

φs = at+ b⇒ ∂φs
∂t

= a. (6.47)
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Using Eq. (6.36), the final guess for the spin tune can be calculated via

νFinal
s = νInit.

s +
a

2πfCOSY
. (6.48)

This procedure is illustrated in Figure 6.14. The red data points represent the spin tune phase,

which is calculated using the initial guess of the spin tune νInit.
s . The spin tune phase is fitted

with a linear function (black curve). The fit parameters are used to calculate the final guess

for the spin tune νFinal
s . As it can be clearly seen, the final spin tune phase remains more

constant throughout the cycle than the spin tune phase calculated from the initial guess of the

spin tune.
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Figure 6.14.: The red data points represent the spin tune phase calculated using the initial guess
calculated via Eq. (6.45). The phase is fitted with Eq. (6.47) from 120 to 150 s.
The fit quality is given by χ2/ndf = 10.52/13 = 0.81, and the slope reads −0.051 1/s.
Using Eq. (6.48), the final spin tune guess can be calculated resulting in more
stable phases and a more precise determination of the up-down asymmetry.

The gain of this optimization method is illustrated in Figure 6.15. The uncorrected asymmetry

corresponds to the asymmetry calculated using the initial guess of the spin tune, while the

corrected asymmetry shows the up-down asymmetry for the final guess of the spin tune. The

lower panel shows the ratio of the two asymmetries. Depending on how close the initial guess

is to the true initial spin tune, the ratio changes. In the case of Figure 6.15, the correction is

in the order of magnitude of 1 %.

To summarize this chapter, the up-down asymmetry is calculated using the following steps:

1. Calculate an initial guess for the spin tune taking the extra solenoidal fields of the Siberian

snake and the 2MV solenoid into account, i.e., Eq. (6.45).

2. Calculate the spin tune phase using the initial guess for the spin tune and fit the phase

using a linear function. From the fit parameters, the offset to the true spin tune can be

calculated, which leads to the final guess of the spin tune.

3. Using the final guess of the spin tune, the up-down asymmetry can be calculated while

the spin tune phase should stay more or less constant during the cycle.
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Figure 6.15.: Comparison of the up-down asymmetry using the initial guess of the spin tune
νInit.
s and using the final guess of the spin tune νFinal

s . The lower panel shows the
ratio of the two ratios. In this case, the correction of up-down asymmetry is in
the order of 1 %.

6.6. Angle between Vertical and Horizontal Polarization & Total

Polarization

As it will be further described in sections 7.6.2 and 7.6.3, the determination of the Invariant

Spin Axis can be calculated by observing a buildup rate of the vertical polarization initialized

by the RF Wien filter. In section 7.6.2, a model for the buildup is developed describing the

angle between the vertical and in-plane polarization components and the total polarization.

The angle is defined as

α = arctan

(
PV
PH

)
= arctan

(
εLR

εUD

)
, (6.49)

σ2
α =

ε2UDσ
2
εLR

+ ε2LRσ
2
εUD

ε2UD + ε2LR

, (6.50)

and is independent of the magnitude of the polarization and of analyzing powers.

The total amount of polarization of the circulating deuteron beam can be determined from the

in-plane and vertical polarization components

P =
√
P 2
V + P 2

H . (6.51)
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From the left-right and up-down asymmetries measured using the polarimeters, a new variable

εtot. can be computed, which scales with the total amount of polarization as both asymmetries

share the analyzing power as a common scaling factor

εtot =
√
ε2LR + ε2UD, (6.52)

σεtot =
1

εtot

√
ε2LRσ

2
εLR

+ ε2UDσ
2
εUD

. (6.53)

For simplicity, εtot. is called from here on also total polarization. An example of both, the

angle between vertical and horizontal polarization and the total polarization, is given in the

final section of this chapter in Figure 6.22.

6.7. The Phase Feedback

The spin tune phase feedback serves two purposes:

• By continuously monitoring the deuteron-carbon scattering events at the polarimeter, the

spin precession frequency is measured throughout the measuring period. The feedback

ensures that the RF Wien filter is operating on resonance with a sideband of the spin

precession frequency.

• In addition, the phase feedback ensures a constant phase relation (or relative phase)

between the spin direction and oscillating frequency of the RF Wien filter.

The effects of the Phase Feedback are shown in Figure 6.16. The bunched beam crossing an RF

device (for example, the RF Wien filter) is depicted by the Gaussian bunch distribution at the

integer values. On top of the bunched beam, the spin precession in the horizontal accelerator

plane is shown. Lastly, also the oscillating radio frequency of the device (RF Wien filter) is

shown. If the device is on resonance, the phase of the radio frequency has a fixed relation with

respect to the phase of the spin precession at each crossing. In the context of the experiment,

the precession frequency in the horizontal plane is given by

fs = γGfCOSY. (6.54)

The RF Wien filter needs to run on resonance with the precessing spin. The resonance condition

is fulfilled when

fWF = fCOSY|k + γG| with k ∈ Z. (6.55)

For technical reasons, the factor k = −1 is chosen for the RF Wien filter which corresponds to

a Wien filter frequency of approximately fWF = 871 kHz.

In an ideal machine, the phase feedback is only necessary to adjust the relative phase between

the spin precession frequency and the RF Wien filter frequency and thus, the spin direction

at each turn inside the RF Wien filter. However, during the past years, the spin tune was the

main subject of many measuring campaigns. It was found that the spin precession frequency

changes from cycle to cycle and even during the cycle, the spin tune changes slightly. In Figure

6.17, the change of spin tune over the experimental period of two days is shown. The initial spin

tune is defined as the spin tune which is measured during the period of 100 s and 110 s in the

cycle before the solenoids are switched on. The typical change of the spin precession frequency
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Figure 6.16.: Schematic of the functionality of the phase feedback. The bunched beam, which
is represented by the black Gaussian-shaped curves, enters the RF Wien filter
each turn. While the horizontal polarization vector component is precessing in
the accelerator plane, the RF Wien filter needs to run on a harmonic of the
precession frequency for the measurement of the orientation of the Invariant Spin
Axis. At each distinct turn number, the phase relation between spin precession
and Wien filter remains constant which is represented by the black data points.
This is achieved and corrected by an active online phase feedback controlling the
RF Wien filter frequency and absolute phase of the oscillation while measuring the
oscillation frequency and phase of the precessing polarization on the horizontal
plane.

is in the order of 10 mHz. The change of spin tune is very sensitive to temperature changes,

magnet settings, and other systematic sources. However, the phase feedback is indispensable,

not just because of the day-to-day change in spin tune, but also because of the change in spin

tune during a cycle. The change of spin tune during a cycle is shown in Figure 6.13.

In previous experiments at the Cooler Synchrotron COSY, the absolute phase of the spin tune

was varied leading to a different buildup when using the RF solenoid [99, 100]. For these

experiments, the frequency of the cavity of COSY is changed, slightly changing the Lorentz

factor and consequently also the spin precession oscillation frequency. For the experiments

reported in this thesis, the frequency of the cavity in COSY fCOSY is kept constant, and the

RF Wien filter frequency fWF or phase φWF is changed to keep the phase relation constant.

The phase relation is given by

φrel.(t) = 2π(t− t0)(fWF − νsfCOSY) + φ0, (6.56)
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Figure 6.17.: An example of the change of the initial spin tune over the experimental period
of two days. The change of spin tune, which is in the order of 10 mHz, is the
reason why the phase feedback is necessary to match the phase between the radio
frequency of the RF Wien filter and the spin tune oscillation.

where t denotes the time in the cycle, t0 the start of the measurement and φ0 the phase at

t = t0. The time can be sampled as the RF Wien filter is located at a fixed position in the ring

to t− t0 = n/fCOSY, where n denotes the turn number

φrel.(n) = 2πn

(
fWF

fCOSY
− νs

)
+ φ0. (6.57)

If the resonance condition as defined in Eq. (6.55) is fulfilled, the fraction of Wien filter

frequency and revolution frequency can be written as

fWF

fCOSY
= k + γG, (6.58)

leading to a stable and fixed phase relation between Wien filter frequency and spin precession

frequency

φrel.(n) = 2πnk + φ0. (6.59)

Figure 6.18 shows the basic signal flow of the phase feedback. Using the polarimeter, the

horizontal spin precession frequency (the spin tune νs) and the phase of the spin precession is

constantly measured

PH(t) = PZ sin(ωst+ φs) with ωs = 2πfCOSYνs. (6.60)

The RF Wien filter frequency fWF is set by a frequency generator. The absolute phase of the

frequency generator is controlled φabs.
WF . In addition, also the timestamps of the zero crossings
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of the Wien filter radio frequency signal are recorded. Since this signal is periodic, Fourier

analysis is not necessary. Instead, the average duration of the periods (denoted as Ti) between

the signals is calculated. This approach achieved highly precise frequency measurements, with

uncertainties in the millihertz range

AWF(t) = A0 sin
(
ωWFt+ φabs.

WF

)
with ωWF = 2πfWF. (6.61)

For the resonant case, the spin tune frequency matches the RF Wien filter frequency, ωs = ωWF.

Then, the relative phase is determined by calculating the difference between the RF Wien filter

phase and the spin precession phase

φmeas
rel. = φrel. + φoffset = φabs.

WF − φs
!

= φset
rel , (6.62)

where φset
rel denotes the desired phase relation between Wien filter frequency and spin preces-

sion frequency. The desired phase relation is tuned by adjusting the Wien filter phase φabs.
WF .

The constant offset φoffset originates from the relative position of the RF Wien filter and the

polarimeter and from cable delays. For each cycle, the phase offset is constant.

Figure 6.18.: Signal workflow for the phase feedback. Using the polarimeter, the spin tune is
constantly measured. By adapting the Wien filter frequency and the absolute
Wien filter phase to be the spin tune frequency, the phase relation between spin
precession and Wien filter frequency remains constant. The desired phase relation
is controlled by the operator. Adapted from FIG. 2 in [99].

In Figure 6.19, the purpose and method of the phase feedback are illustrated. Three mea-

surement periods of 2 s each are schematically shown. The top panel depicts the oscillation

of the Wien filter. Without losing generality, the Wien filter phase is set to zero (φabs.
WF = 0)

for each of the periods. The black dot at each zero crossing represents the signal measured at

the discriminator to determine the Wien filter frequency. The panels in the middle represent

the horizontal precession of the spins. As the spin precession is too fast for the detector to

resolve, only one drawn period in solid lines corresponds to the determination of the up-down

asymmetry amplitude and the spin tune phase, as shown in Figure 6.11.

The lower panel depicts the measured relative phase between the Wien filter frequency and

spin tune frequency. Two scenarios that can be corrected by the phase feedback are illustrated.
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The blue curve corresponds to the case where the frequency of the RF Wien filter is matched

to the spin precession frequency but with a constant offset. In this case, a phase shift in the

Wien filter frequency generator needs to be introduced, as shown in Figure 6.20 (left panel).

The second scenario is illustrated by the orange curve. If the spin precession frequency does

not match the Wien filter frequency, the relative phase between the Wien filter frequency and

spin precession changes linearly over time. In this case, the frequency of the RF Wien filter

needs to be changed. To calculate the correction factors, the relative phase is fitted in real-time

with an analytical fit using a linear model. An offset of the fit with respect to the desired phase

relation is fed into the frequency generator. A slope indicates a a frequency shift which can be

corrected using

∆fWF =
a

2πfCOSY
. (6.63)

The Wien filter frequency and the absolute phase changes at the frequency generator of the

RF Wien filter are shown schematically in Figure 6.20. If the spin tune or the spin tune phase

of the polarized deuteron beam changes, either the Wien filter frequency or the absolute phase

(or both) can be changed.

In Figure 6.21, the action of the phase feedback is shown for a real cycle. The top panel

depicts the relative phase between the Wien filter frequency and the spin tune, i.e., Eq. (6.57).

The panel in the middle shows the correction the phase feedback is doing on the Wien filter

frequency which is in the order of milli Hertz and the lower panel shows the set values for the

absolute Wien filter phase to correct the relative phase between Wien filter frequency and spin

precession for arbitrary changes of the spin tune phase.

6.8. Summary

To summarize this chapter, each measured cycle contains relevant information for the deter-

mination of the direction of the Invariant Spin Axis. For each cycle, the following parameters

need to be computed:

• Vertical Polarization: Computed from an asymmetry of scattered particles in the

left and right quadrant of the polarimeter. The asymmetry scales directly with the

vertical polarization. The asymmetry of detected events needs to be corrected using

cycles without polarization.

• Horizontal Polarization: Computed from an asymmetry of scattered particles in the

upper and lower quadrant of the polarimeter. Since the in-plane polarization is rotating

with the spin precession frequency (or spin tune), the amount of in-plane polarization

cannot be determined directly. The algorithm to compute the asymmetry is based on

a mapping method in which events are mapped into a single oscillation period. An

oscillation is revealed as soon as the right spin precession frequency is chosen. Therefore,

this algorithm is also used to determine the spin precession frequency. The amplitude of

the oscillation is also called up-down asymmetry and scales directly with the amount of

in-plane polarization.

• Angle between Vertical and Horizontal Polarization: Determined by calculating

the angle between vertical left-right and up-down asymmetry.
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Figure 6.19.: The top panel shows the Wien filter oscillation for three consecutive measurement
periods, each set to 2 s. Without loss of generality, the Wien filter phase is set to
0 rad. The black dots represent the measurements of the discriminator to measure
the Wien filter frequency. The panels in the middle show the precession of the
spin for the same periods. The spin tune phase is determined from a mapping
method, which is further described in section 6.5, and illustrated by the arrows.
Two scenarios are shown: Off-resonance (orange): The Wien filter frequency
is not a harmonic of the spin precession frequency, which leads to an increase
in the relative phase. This is adjusted by changing the Wien filter frequency
correspondingly (cf. Figure 6.20, right panel). Off-phase (blue): A constant
offset of the relative phase leads to an offset of the relative phase with respect to
the desired phase φset. This is corrected by changing the phase of the Wien filter
frequency generator (cf. Figure 6.20, left panel).
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Figure 6.20.: Schematic of the operation of the RF Wien filter frequency generator. When
the spin tune frequency changes, either the absolute phase or the frequency of
the RF Wien filter wave can be adjusted to match the horizontal spin precession
frequency and phase.

• Total Polarization: Calculated from the sum of squared left-right asymmetry and up-

down asymmetry and describes the amount of polarization of the particle bunch.

• Relative Phase: Describes the phase relation between Wien filter frequency and spin

precession frequency and is used to correct the frequency and absolute phase of the RF

Wien filter frequency generator.

An example of all relevant variables for the Electric Dipole Moment Precursor experiment

for a typical cycle in COSY is shown in Figure 6.22. A vertically polarized beam is injected

into the ring, accelerated, and cooled. After 90 s, the target is moved into the beam, and the

extraction into the polarimeter starts. At 100 s, the RF solenoid rotates the polarization into

the accelerator plane. Afterwards, the phase feedback measures the phase relation between the

spin precession frequency and the RF Wien filter (which is not switched on) and adjusts the

frequency generator to the desired frequency and phase. At 155 s, the RF Wien filter is switched

on, and a vertical polarization buildup appears. The buildup can be used to determine the

orientation of the Invariant Spin Axis and hence the Electric Dipole Moment. More information

about the buildup is given in the following section 7.
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Figure 6.21.: Top: Relative Phase between the measured spin precession frequency and the
Wien filter frequency. The other panels show the corrections of the Wien filter
frequency fWF and the absolute phase of the RF Wien filter φWF

abs .
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Figure 6.22.: Summary of all relevant observables, namely the left-right asymmetry, the up-
down asymmetry, the angle between vertical and horizontal polarization, the to-
tal polarization and the relative phase between Wien filter and spin precession
frequency, which are used to determine the orientation of the Invariant Spin Axis.
The dashed line marks the timestamp when the RF Wien filter is switched on.
The resulting change of polarization can be used to determine the orientation of
the Invariant Spin Axis as further described in section 7.6.2 and 7.6.3.
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7. The Deuteron EDM Precursor Experiment

In the following sections, the experimental periods, which lead to the first direct determination

of the deuteron Electric Dipole Moment are described. In the first half of the chapter, the pre-

requisites are discussed, followed by a description of the experimental method and an overview

of both measurement periods. Afterwards the final results are summarized.

The measurement of the deuteron Electric Dipole Moment was done during two experimental

periods, also referred to as Precursor 1 (2018) and Precursor 2 (2021). The experimental

periods along with an overview of all data taken are further described in section 7.7. The

first experimental period gave valuable input for the second measurement time. Upgrades in

between both experimental periods are described are discussed in section 7.7.2. The most

important beam parameters are summarized in Table 7.1. As they only serve as estimates, no

statistical and systematic uncertainties are given.

Table 7.1.: Beam parameters used during both experiments Precursor 1 (2018) & 2 (2021).
No uncertainties are given, as they only serve as estimators. During the second
Precursor Run, the number of particles is shared between two bunches circulating
in the machine.

Parameter Symbol Value

Beam Revolution Frequency fCOSY 750 602.6 Hz
RF Wien filter resonant frequency fWF 871 422 Hz
RF solenoid resonant frequency fsol 871 422 Hz
Spin tune frequency fspin 120 847.3 Hz
Lorentz Factor γ 1.126
Beam Velocity β 0.460 c
Momentum p 970 MeV/c
COSY Circumference LCOSY 183.57 m
Number of polarized (unpolarized) deuterons Nd ≈ 109(1010)

7.1. Measuring Scheme

This section outlines a standard configuration of a typical experimental cycle. The period,

spanning from the particle injection to the conclusion of the measurement period and the

subsequent ramp-down of COSY magnets, is referred to as a cycle. At the end of each cycle,

the magnets ramp down for the next injection. Successive cycles, maintaining accelerator

and beam conditions, constitute a run. An exception arises in the selection of polarized and

unpolarized beams for various cycles within the same run. While maintaining beam conditions

and experimental settings the same as in cycles with polarized beam, an unpolarized beam

is injected into the ring, which is used to calibrate the rates inside the polarimeter. More
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information about this calibration is outlined in section 6.4.1. The order of polarization states

for the experiment is in Precursor I and II: Up Polarized, Up Polarized, Up Polarized, Up

Polarized, Unpolarized. A typical cycle encompasses the following steps:

1. A vector-polarized deuteron beam is injected into COSY. The initial polarization of the

beam aligns with the Invariant Spin Axis of COSY, nearly vertical and parallel to the

guiding fields of the dipole.

2. The up-polarized or unpolarized deuteron beam gets bunched and accelerated up to the

final momentum of 970 MeV/c. The RF cavity remains switched on after acceleration for

continuous bunching of the beam.

3. Electron cooling of the bunched beam to reduce beam emittances and momentum spread

in horizontal and vertical directions. An orbit bump is applied at the cooler sections to

align the deuteron beam with the electron beam. After cooling, the bump is removed,

and the cooler dipole magnets are switched off to reduce systematic effects on the orbit.

4. Orbit correction with steerer magnets takes place as depicted in section 3.5.

5. Application of a local bump at the polarimeter to bring the beam close to the carbon

target.

6. White noise is introduced to the stripline unit to induce vertical heating of the beam and

initiate scattering processes involving the outermost deuterons onto the internal carbon

target. The scattered particles are detected using the internal polarimeters installed in

COSY.

7. The initial vertical polarization is rotated into the accelerator plane using the RF solenoid.

If a polarized beam is injected into COSY, the polarization starts to precess with the

angular frequency Ωs = 2πfCOSYνs after rotation of the polarization. The RF solenoid is

also ramped for unpolarized cycles but has no impact on the beam. The frequency and

the amplitude of the RF solenoid for both experimental periods are given in Table 7.2.

Table 7.2.: Frequencies of the RF solenoid to rotate the vertical polarization of the particle
beam into the horizontal accelerator plane.

Precursor 1 (2018) Precursor 2 (2021)

fsol / Hz 871 430.6 871 429.66

8. Ramping of the Siberian snake to rotate the Invariant Spin Axis accordingly. The ramping

of the Siberian snake changes the spin precession frequency.

9. Using the rates measured with the polarimeter, the (modified) spin precession frequency

is measured for the phase frequency loop to adjust the Wien filter frequency and the

relative phase between the Wien filter frequency and spin tune.

10. The actual measurement period starts. The polarization of the beam is manipulated

using the RF Wien filter. Polarization behavior changes as a function of time and is

measured using the counting rates in the polarimeter. The measuring period typically

lasts for a hundred seconds until most deuterons are removed from the beam.

11. Lastly, a measurement of the horizontal and vertical betatron tunes is performed before

the COSY magnets ramp down at the end of each cycle.
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The timings for the individual steps are summarized in Table 7.3 for the two measurement

campaigns Precursor I & II. During the second Precursor Run, the measurement period was

extended during the experiment to switch from the initial slope method to the Pilot bunch

method. The timing from the extended measurement period is given inside the brackets. For

the optimization of the Spin Coherence Time and the determination of the Invariant Spin Axis

at the solenoids, steps 9 and 10 are not relevant.

Table 7.3.: Timings of the individual measurement steps. During the second Precursor exper-
iment, the cycle length was extended. The numbers inside the brackets stand for
the extended measurement period.

Precursor I Precursor II

Acceleration Off 0.674 s 0.674 s
E-Cooling 3− 43 s 5− 50 s
Orbit Correction 87 s 55 s
Carbon Target In 85 s 75 s
White Noise Extraction & Schneiderbox 85 s 75 s
DAQ On 91 s 75 s
RF solenoid 100− 102.6 s 87.4− 89.2 s
Siberian Snake / 2MV solenoid On 110 s 100 s
Phase Feedback On 124 s 130 s
RF Wien filter On 155 s 155 s
Tune/ Chromaticity Measurement - 299.2 s (440 s)
RF Wien filter & Siberian Snake / 2MV solenoid Off 285 s 300 s (442 s)
DAQ Off 288 s 300 s (448 s)

7.2. Spin Coherence Time

The Spin Coherence Time is a crucial parameter for the experiments reported in this thesis.

During the cycle length of 300 s to 500 s, the polarization in the horizontal (also called in-plane

polarization) plane needs to be preserved. The in-plane polarization represents the alignment of

particle spins along a single direction within the horizontal plane. Any depolarizing effects of the

in-plane polarization need to be taken into account on the buildup of the vertical polarization

when the RF Wien filter is switched on, which is further discussed in sections 7.6.2.1 and 7.6.3.1.

The duration for which the beam maintains its polarization is termed the Spin Coherence

Time (SCT). It is essential to ensure that the Spin Coherence Time is at least as long as the

measurement duration. Typically, the Spin Coherence Time is defined as the time taking for

the polarization to decrease to 1/e with respect to its initial value.

The source of depolarization is related to the fast precession of the in-plane polarization at

the spin tune νs = Gγ. Consequently, a spread of the beam energy distribution ∆γ leads to a

spread of the spin tune distribution, meaning that some particles oscillate slower or faster than

the design particle
∆νs
νs

=
∆γ

γ
∝ ∆p

p
∝ ∆lorbit

lorbit
, (7.1)

where lorbit denotes the orbit circumference. In an ideal accelerator, the length of the orbit

corresponds to the length of the storage ring. The momentum distribution leads to the de-
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polarization of the in-plane polarization. Optimizing Spin Coherence Time means reducing

the momentum spread of the beam. Various methods are applied at COSY to reduce the

momentum spread:

• Bunching using the RF Cavity: The basic principle of a radio-frequency cavity is

bunching the coasting beam into bunches by applying oscillating fields. Particles that

arrive with their design momentum encounter zero potential. However, particles arriving

either earlier or later will encounter fields that either slow down or speed up their motion,

respectively. Consequently, the beam momentum spread is reduced.

• Phase space reduction using electron cooling: Recent studies of beam cooling,

reducing the velocity distribution of the deuterons, showed a significant effect on the

Spin Coherence Time [101]. However, constant beam cooling is not desirable during the

experiment, as usually, a local bump has to be applied to align the deuteron beam with

the electron beam, which leads to further rotations of the Invariant Spin Axis due to

a disturbed orbit. Therefore, the deuterons are only pre-cooled at the beginning of the

cycle.

• Sextupole field correction: Enhanced Spin Coherence Times are obtained through the

optimization of three sextupole magnet families within the arcs of the ring to counteract

secondary effects. Particles undergo transverse betatron oscillations around the typical

orbit, elongating the path length and subsequently the momentum as the beam is grouped.

Sextupoles counterbalance this effect by guiding oscillating particles towards an orbit with

a reduced radius within the arcs. Furthermore, sextupoles offer the flexibility to regulate

the chromaticity of the ring. Minimal or absent chromaticity is linked with the longest

Spin Coherence Time [70].

In Dennis Eversmann’s PhD thesis, a mathematical description of the loss of polarization

is given [44, p.60-62]. Here, the model description is only outlined. The model tracks the

probability of a particle at turn number n to have a polarization along the longitudinal

axis while rotating in the horizontal plane with the spin tune νs. The up-down asymmetry

(= in-plane polarization) for the decay of spin polarization can be described using

εUD

(
γs(t)

)
= ε0

([
1−√πγs(t)e−γ

2
s (t)erfi

(
γs(t)

)]2
+ πγ2

s (t)e−2γ2s (t)

) 1
2

, (7.2)

with γs(t) =
√

2π∆νst · fCOSY. (7.3)

The attenuation parameter γs(t) includes the spread of the spin tune distribution ∆νs and is

the only fit parameter apart from the up-down asymmetry ε0 after the spin flip when ramping

the RF solenoid. The Spin Coherence Time can be calculated using

εUD

(
γs(τSCT)

)
=

1

e
. (7.4)

This equation can only be numerically solved, yielding

γs(τSCT) =
√

2π∆νsτSCTfCOSY
!≈ 1.571, (7.5)

τSCT ≈
0.3536

∆νsfCOSY
and στSCT ≈

0.3536

∆ν2
sfCOSY

σ∆νs . (7.6)
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Two examples of a measurement of the Spin Coherence Time during a sextupole scan are

shown in Figure 7.1a and 7.1b. At 90 s in the cycle, the vertical polarization is rotated into the

horizontal plane using the RF solenoid. In the left panel, the up-down asymmetry drops after

a few seconds, which leads to a short Spin Coherence Time of

τSCT = (47.53± 1.23) s. (7.7)

The right panel shows a measurement of the Spin Coherence Time, in which a value of

τSCT = (689.63± 77.50) s (7.8)

is reached. In Figure 7.1a, the up-down asymmetry is larger than zero after 150 s due to the

fitting bias of sine functions with small amplitudes and large uncertainties.
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(b) Long SCT.

Figure 7.1.: Two examples of measuring the Spin Coherence Time while changing the sex-
tupole currents. The left measurement yields a short Spin Coherence Time of
(47.53± 1.23) s. The right panel shows a measurement of the Spin Coherence Time
of (689.63± 77.50) s.

The optimization of the Spin Coherence Time by finding the correct currents of the sextupole

families is a lengthy process, carefully measuring a grid of different combinations of applied

currents. In Figure 7.2, a typical scan of the Spin Coherence Time is shown. After the

optimal settings of the sextupole families MXG and MXS are found, the last sextupole family

is optimized. The currents are given in % with respect to the maximum current the power

supply of the magnet can handle. A long Spin Coherence Time along the entire measurement

period is crucial for the success of the experiment.

7.2.1. Influence of the Siberian Snake on the Spin Coherence Time

During the experiment, the dependence of the Spin Coherence Time as a function of the applied

current to the Siberian snake is measured. The dependence is shown in Figure 7.3 for both

experimental periods in 2018 before aligning the Siberian snake with the beam-based alignment

method and in 2021 after the alignment. More information about the alignment of the Siberian
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Figure 7.2.: Sextupole scan of the MXL sextupole family to correct second order effects and
optimize the Spin Coherence Time. A Spin Coherence Time of> 1000 s is necessary
for the experiment. The sextupole currents are in % with respect to the maximum
current the power supply of the magnet can handle.

snake is given in section 7.7.2.2. In both cases, the Spin Coherence Time drastically decreases

for non-zero currents.

The orientation of the Invariant Spin Axis is measured by a buildup of the vertical polarization.

However, spin-decoherence effects can mimic this effect of a buildup and need to be included in

the fits. The buildup models of the vertical polarization are further described in sections 7.6.2.1

and 7.6.3.1.

The reason for the change in Spin Coherence Time for non-zero currents applied to the Siberian

snake is most certainly due to a change in the longitudinal bunch shape structure when ramping

the Siberian snake.

7.3. Cycle Selection

The full determination of the Invariant Spin Axis using the RF Wien filter takes approximately

a day. It’s important that during the measurement period, the experimental conditions are

as stable as possible. Therefore, it’s important to carefully select cycles which enter the final

fit for the determination of the orientation of the Invariant Spin Axis. For each cycle, the

following conditions are checked:

• Fit Quality: For the final fit of the determination of the Invariant Spin Axis, each

cycle needs to be individually fitted to determine the buildup rate of the vertical polar-

ization. Only fits for which the reduced χ2 is within a three standard deviation region

σχ2 =
√

2/ndf around 1 are accepted. More information about the buildup of the vertical

polarization along with examples of the fits is given in section 7.6.2 and 7.6.3.

• Sextupole Magnets: A failure of power supplies connected to the sextupole families

would drastically change the Spin Coherence Time. To exclude failures, the read-back of

the power supply currents is checked for each cycle, as well as the Spin Coherence Time,

which can even be measured for cycles using the RF Wien filter.
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(a) Precursor 1 (2018)
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(b) Precursor 2 (2021)

Figure 7.3.: Dependence of the Spin Coherence Time as a function of the Siberian snake cur-
rent. The data points show an average of the Spin Coherence Time for multiple
consecutive cycles. The left panel depicts the results for the first Precursor run
before the Siberian snake was aligned using the beam-based alignment technique.
The right panel depicts data taken during the second Precursor run. In both cases,
the Spin Coherence Time drastically decreases when ramping the Siberian snake.

In addition to the fit quality and the sextupole magnets, the reduction of beam emittance

using beam cooling and the orbit needs to be stable. These two topics need some sophisticated

explanation, which are given in the following section.

7.3.1. Beam Cooling

Successful electron cooling is crucial for optimizing the operation of the RF Wien filter and

achieving a long Spin Coherence Time. When running the electron cooler, recombination of the

electrons and the circulating protons/deuterons can occur. The neutral hydrogen or deuterium

beam is not affected by magnets. In the first dipole in the arc, at a distance of 24.3 m after

the 100 kV electron cooler, an extraction line is installed to decouple the neutral recombined

particle beam from the circulating protons/deuterons. The extraction line has a length of

75 cm and a width of 5 cm. At the end of the extraction line, the beam passes through a 50µm

thin extraction window, stripping electrons from the neutral beam. The charged particles are

detected via two multi-wire proportional chambers (MWPC) rotated with respect to each other

by 90° to measure horizontal and vertical beam profiles. The extraction beam line in the dipole

is illustrated in Figure 7.4.

The MWPC functions similarly to a proportional counter found in a Geiger-Müller counter. It

comprises a chamber filled with gas, housing a set of parallel wires. These wires connect to a

high voltage (anode), while the conductive walls of the MWPC are grounded. At COSY, the

MWPCs employ 64 thin wires spaced 1 mm apart, and the ionization gas used is a mixture of

argon and isobutane.

As a particle traverses the chamber, it ionizes the gas along its path. The resulting ions and

electrons undergo acceleration due to the electric field across the chamber, triggering a localized

cascade of ionization known as the Townsend avalanche. This cascade generates a current that
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Figure 7.4.: Extraction line for the recombined and neutral particles in the electron cooler,
located in the first dipole of the arc after the 100 kV cooler. After the extraction
line, the particles are detected in the multi-wire proportional chamber (MWPC).
Taken from [102].

flows from the wire closest to the particle’s trajectory to the walls of the wire chambers. Current

pulses can be individually detected at each wire, allowing for the creation of the beam profiles.

An example of the measured profiles as a function of time is shown in Figure 7.5a (horizontal)

and Figure 7.5b (vertical). The y axis represents the 64 wires spaced 1 mm apart. The colour

denotes the number of particles measured at a specific wire. A time binning of 1 s is chosen for

the analysis. The cooling process starts at 10 s and ends at 49 s in the cycle.
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(a) Horizontal Profile.
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(b) Vertical Profile.

Figure 7.5.: Horizontal (left) and vertical (right) neutral, recombined beam profiles measured
at the MWPC as a function of time. In both planes, 64 wires spaced 1 mm apart
measure the incident neutral particles.

The profiles for a time bin of t ∈ [40, 41] s are shown in Figure 7.6a (horizontal) and Figure 7.6b

(vertical). The detected particles are shown as a function of the MWPC wire. Poisson statistics
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are assumed for the hits in each wire, σN =
√
N . The profiles are fitted with a least-square fit

assuming a Gaussian profile distribution

fProfile(w;A,µ, σ) = A exp

(
−1

2

(
w − µ
σ

)2
)
, (7.9)

where A, µ, and σ denote the height, mean, and standard deviation of the profile, respectively.

The position of the wire is given by w. As a measure for the beam profile width, the standard

deviation of the least-square fit is taken.

10 15 20 25 30
Wires (d = 1 mm)

0

5

10

15

20

25

30

H
its

(a) Horizontal Profile

30 35 40 45 50
Wires (d = 1 mm)

0

5

10

15

20

25

30

35

H
its

(b) Vertical Profile.

Figure 7.6.: Recombined beam profiles in the time bin T = (40, 41) s along with a fit to
determine the beam width.

The width of the neutral beam profiles is shown in Figure 7.7 as a function of time in the cycle.

The shadow illustrates the statistical uncertainty on the profile width σσ, determined by the

least-square fit according to Eq. (7.9). The beam profile width decreases from the beginning

of the cooling process from roughly 6 mm to below 2 mm both in vertical and horizontal polar-

ization which is a prerequisite for a successful experiment. For further data processing, only

cycles in which the vertical beam width is in the range from 1.3 mm to 2.2 mm and horizontal

beam width at the end of the cooling process is in the range from 1.8 mm to 2.8 mm are used.

These areas are marked with the dashed lines in Figure 7.7.

For a couple of cycles, the beam cooling was not successful, and no profiles were successfully

measured. These cycles are discarded for any other analysis. Unfortunately, the data of the

recombined particles was only collected during the Precursor II run in 2021.

7.3.2. Steerer & Orbit

Stable conditions throughout the experiment are crucial for the stability of the determination

of the Invariant Spin Axis. The steerers used to correct the orbit as close to the design orbit

are connected to power supplies which fail to ramp the steerer magnets from time to time. The

readback of the applied currents at the power supplies is stored in the COSY archiver. This

data can be used to select cycles in which the steerer magnets ramp to the wrong magnetic

fields. For both experiments, for each steerer magnet power supply, a range of the readback is

determined by analyzing the distribution of steerer currents of each cycle. The ranges are listed
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Figure 7.7.: Horizontal and Vertical Profile width as a function of time measured at the MWPC.
The width of the beam decreases throughout the cooling process. The shadow
illustrates the uncertainty of the least-square fit on the width parameter σ as
defined in Eq. (7.9). The dashed lines mark the range in which the width is
accepted for further analysis.

in Table B.1 and B.2. In addition, the orbit is also constantly measured as the readings of the

BPMs are stored. If a BPM reading is not within a predefined margin, the cycle is discarded

as well. The accepted range for each beam position monitor is listed in Table B.3 and B.4.

7.4. Determination of the Invariant Spin Axis using Static Solenoids

The longitudinal component of the Invariant Spin Axis can be determined using solenoids in

the ring, which provide static solenoidal magnetic fields parallel to the beam direction, thus

not influencing the beam but the beam polarization. For the experiment, the Siberian snake in

the second straight section of COSY, as well as the 2 MV solenoid of the 2 MV electron cooler,

are used. By ramping the solenoids, the spin precession frequency of the beam changes. This

change can be used to calculate the longitudinal component of the Invariant Spin Axis at the

location of the solenoid (either the Siberian snake, the 2 MV solenoid, or both).

Using extra solenoids, the Invariant Spin Axis can be rotated in the longitudinal (beam) di-

rection. This will be important in section 7.8 when the RF Wien filter is used to determine

the orientation of the Invariant Spin Axis as the Siberian snake is used to align the Invariant

Spin axis longitudinally with the magnetic field axis of the RF Wien filter. For the alignment,

calibration measurements of the Siberian snake have to be performed which will be further

explained in the upcoming section.
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7.4.1. Theory

The analytical work from Eq. (7.10) to (7.20) is based on Spin tune mapping as a novel tool to

probe the spin dynamics in storage rings [103]. The full derivations are given in section C.1.

The standard spinor formalism describes the motion of the spin with one-turn spin rotation

matrices. By forcing a closed solution, the change of spin tune ∆νs with respect to the initial

spin tune without extra solenoids ν0
s , can be calculated as

∆νs = − 1

π

[
cot
(
πν0

s

) (
cos
(χX

2

)
− 1
)
−
(
~n · ~kX

)
sin
(χX

2

)]
, (7.10)

where ν0
s denotes the unperturbed spin tune without extra solenoids and ~n denotes the Invariant

Spin Axis. The subscript X denotes either the Siberian snake or the 2 MV solenoid. The spin

rotation angle χX around the ~k axis for one pass through a solenoid can be calculated by

evaluating the Thomas-BMT equation (4.22)

χX~k = ~ΩMDM = − q

md

[(
G+

1

γ

)
~B − Gγ

γ + 1

(
~β · ~B

)
· ~B
]
. (7.11)

For a magnetic solenoid, the electric field contribution can be set to zero. The magnetic field

direction of the solenoid and the beam momentum vector both point in z direction

~B = B~ez and ~β = β~ez. (7.12)

Using γ2 = 1/(1−β2), the spin rotation axis can be further simplified to

χX~k = ~ΩMDM = − qB

γmd
(1 +G)~ez. (7.13)

The magnetic field is given by the field integral which is directly related to the current IX in

the coil

B =

∫
Bzdz = k′XIX . (7.14)

The calibration factor k′X is unique for a solenoid and can be in principle calculated by Ampere’s

law in terms of coil windings. In the following, the spin rotation angle because of the magnetic

field of a solenoid is written as

χX = kXIX with kX = − qk
′
X

γmd
(1 +G) . (7.15)

The Invariant Spin Axis can be defined in a co-rotating frame where y points perpendicular to

the accelerator plane, z points in beam direction, and x points perpendicular to x and y. The

Invariant Spin Axis is defined as

~n ≈ nx~ex + 1~ey + nz~ez, (7.16)

assuming that the tilts in radial (x) and longitudinal direction (z) of the Invariant Spin Axis

are small. For a solenoid, the magnetic field points in the longitudinal direction

~k = ~ez, (7.17)
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which means that the scalar product leads to the projection of the Invariant Spin Axis in the

longitudinal direction at the solenoid

~n · ~kX = nXz . (7.18)

Note that a determination of the radial component of the Invariant Spin Axis using a static

solenoid is in principle also possible by providing a horizontal field. However, horizontal mag-

netic fields lead to orbit distortions. To compensate for the horizontal magnetic field, an

additional vertical electric field could be used, i.e., a static Wien filter.

The final formula for the change of spin tune using a single solenoid is given by

∆νXs = − 1

π

[
cot
(
πν0

s

)(
cos

(
kXIX

2

)
− 1

)
− nXz sin

(
kXIX

2

)]
+ ∆νs,0, (7.19)

where X denotes either the Siberian snake or the 2MV solenoid. An additional offset parameter

∆νs,0 is introduced. This offset takes the drift of the spin tune in the cycle into account. This

parameter is further discussed in section 7.4.2 and 7.4.3.

During the second Precursor run, experiments were done using two solenoids at the same time.

The derivation of the spin tune change as a function of two solenoids ramping at the same time

is very similar to the case using only a single solenoid. By following the same steps as in the

case for a single solenoid, the change of spin tune as a function of two solenoids is given by

∆νSolenoids
s =

1

−π sin(πν0
s )
×[

cos
(
πν0

s

)(
cos

(
kSnakeISnake

2

)
cos

(
k2MV Sol.I2MV Sol.

2

)
− 1

)
− sin

(
kSnakeISnake

2

)
sin

(
k2MV Sol.I2MV Sol.

2

)
−n2MV Sol.

z sin
(
πν0

s

)
sin

(
kSnakeISnake

2

)
cos

(
k2MV Sol.I2MV Sol.

2

)
−nSnake

z sin
(
πν0

s

)
cos

(
kSnakeISnake

2

)
sin

(
k2MV Sol.I2MV Sol.

2

)]
+ ∆νs,0.

(7.20)

A summary of all relevant parameters of the change in spin tune formula is given in Table 7.4.

For a single solenoid (either Isnake = 0 or I2MV Sol. = 0), Eq. (7.20) can be reduced to

Eq. (7.19).

7.4.2. Methodology

The measuring scheme for the determination of the Invariant Spin Axis using the solenoids is

very similar to the measuring scheme described in section 7.1. However, the phase feedback

and the RF Wien filter are not needed, i.e., skipping steps 9 and 10.

In Figure 7.8, the change in spin tune when ramping the solenoids is visualized. In this example,

the current set to the power supply of the Siberian snake is −6 A, and the current set to the
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Table 7.4.: Description of the variables and fit parameters in Eq. (7.20).
Symbol Description Type Unit

ν0
s Initial spin tune without solenoids Fixed Parameter
kSnake Snake conversion factor: Snake current → spin flip angle Parameter rad/A

k2MV Sol. 2MV Sol. conversion factor: Solenoid current → spin flip angle Parameter rad/A

nSnake
z Longitudinal component of the Invariant Spin Axis at the Siberian snake Parameter rad
n2MV Sol.
z Longitudinal component of the Invariant Spin Axis at the 2 MV solenoid Parameter rad
ISnake Set current to the Siberian snake Variable A
I2MV Sol. Set current to the 2 MV solenoid Variable A
νs,0 Offset taking spin tune drifts into account Parameter

power supply of the 2 MV solenoid is −20 A.1 The colour denotes the magnitude of the up-

down asymmetry, which is introduced in section 6.5, as a function of the scanned frequency.

The scanned frequency is scaled by the revolution frequency fCOSY to the spin tune domain.

At 100 s in the cycle, the two solenoids are switched on. Ramping the magnets to their full

magnetic field takes about 5 s, resulting in a new spin tune depending on the 2 MV solenoid

setting, the Siberian snake setting, and the initial orientation of the longitudinal component of

the Invariant Spin Axis.
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Figure 7.8.: The change of spin tune as a function of time in the cycle: The power supplies
of the 2 MV solenoid and the Siberian snake are set to −20 A and −6 A at 100 s
in the cycle. After 5 s, the ramping is finished, which leads to a change in spin
tune, observable in the spectrum using the up-down asymmetry as a function of
the scanned frequency.

To precisely measure the change of spin tune, a frequency scan is done for each cycle contribut-

ing to the determination of the longitudinal Invariant Spin Axis components at the solenoids.

A first estimate for the initial spin tune and the modified spin tune is taken from the spin tune

scan for a time interval before and after ramping the Siberian snake and the 2 MV solenoid.

1Note that the currents set to the solenoids are not directly comparable, as the final magnetic field depends
mainly on the number of loops in the coil of the magnet.

95



CHAPTER 7. THE DEUTERON EDM PRECURSOR EXPERIMENT

An example of the spectra is shown in Figure 7.9a (before solenoids) and 7.9b (after solenoids).

In both examples, the scanned frequency resulting in the peak is taken as an initial guess for

the initial and modified spin tune (νInit.
s,0 , νMod.

s,0 ).
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Figure 7.9.: Histograms of the up-down asymmetry as a function of the scaled scanned fre-
quency for events in a two-second period before and after ramping both solenoids.
A peak arises at the true spin tune, which is used as an initial guess for νInit.

s,0 and

νMod.
s,0 . These spectra essentially correspond to a Fourier Spectrum.

The initial guesses for the initial and modified spin tunes are used to calculate the spin tune

phase as already discussed in section 6.5.1. The spin tune phase for the initial and modified

spin tune guesses are shown in Figures 7.10a and 7.10b. Assuming that the spin tune does not

change over the period of 10 s, the spin tune phase is fitted during the period of 89 to 99 s and

107 to 117 s with a linear function

φs = at+ b⇒ ∂φs
∂t

= a, (7.21)

i.e., the initial spin tune is defined as the averaged spin tune between 89 and 99 s in the cycle,

and the modified spin tune is defined as the averaged spin tune between 107 and 117 s in the

cycle when the solenoids are switched on. The exact initial and modified spin tunes can be

calculated using Eq. (6.36)

νXs = νXs,0 +
1

2πfCOSY

∂φs
∂t

= νXs,0 +
a

2πfCOSY
, (7.22)

where X denotes either the initial or the modified spin tune, and a is the slope of the fitted

linear function. The statistical uncertainties are calculated using Gaussian error propagation

σνXs =
σa

2πfCOSY
. (7.23)

In the example shown in Figure 7.10, the exact spin tunes are given by

νInit.
s = 0.160 973 242 6(21), (7.24)

νMod.
s = 0.161 049 969 8(22). (7.25)
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The spin tune jump is defined as

∆νSolenoids
s = νMod.

s − νInit.
s = 7.6726(3)× 10−5. (7.26)

Note that the difference in spin tunes can not be defined with absolute values, as negative

changes of the modulated spin tunes are also allowed.
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Figure 7.10.: Spin tune phase determined from the initial guesses of the initial and modified
spin tune determined from Figure 7.9a and 7.9b. The spin tune phase is fitted
using a linear function to determine the initial and modified spin tune precisely.

7.4.3. Results

During both experimental periods in 2018 and 2021, dedicated cycles are used to calibrate the

solenoidal spin rotation angles and to measure the orientation of the Invariant Spin Axis in the

longitudinal direction at the Siberian snake and the 2 MV solenoid. The maps are marked as

Map 10 in Table 7.13. However, it is also possible to measure the orientation of the longitudinal

component of the Invariant Spin Axis parasitically during the measurement using the RF Wien

filter. First, the results of the dedicated cycles are presented. The results taken parasitically

are discussed in section 7.4.3.1.

A non-zero measurement of the longitudinal orientation of the Invariant Spin Axis is a direct

hint to systematics in the ring which need to be taken into account for the final measurement

using the RF Wien filter, as in a perfect ring without magnet misalignments, the tilt angle in

longitudinal direction is expected to be zero, even for a non-zero Electric Dipole Moment.

First, the averaged initial spin tune ν0
s among all cycles which contributes to the determination

of the longitudinal component of the Invariant Spin Axis at the solenoids needs to be determined

as they enter the fit (cf. Eq. (7.19) and (7.20)) as a fixed parameter. A histogram of the initial

spin tunes for both experimental periods is shown in Figure 7.11. The averaged initial spin

tunes for both Precursor runs are given by

|ν0
s | = 0.160 970 485(1) (Precursor 1) and |ν0

s | = 0.160 973 254(1) (Precursor 2). (7.27)
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These numbers can slightly differ from experiment to experiment due to different experimental

settings of COSY, which is not an issue, as only the relative changes to the modified spin tunes

are relevant for the experiment. Note that the spin tune is a negative quantity as shown in

Eq. (4.37). The uncertainty on the averaged initial spin tune is neglected for further data

processing.
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(a) Precursor 1: |ν0s | = 0.160 970 485(1)
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(b) Precursor 2: |ν0s | = 0.160 973 254(1)

Figure 7.11.: Distribution of the initial spin tune before ramping both solenoids. The initial
spin tune is measured for each cycle which contributes to the measurement of the
solenoid calibration parameter and the determination of the longitudinal Invariant
Spin Axis component at the respective solenoids. The average values are fed into
the spin tune jump formula (7.20). Note that the spin tune is a negative quantity
as shown in Eq. (4.37).

The calibration measurement of the Siberian snake for the first Precursor Run is shown in

Figure 7.12. The change of spin tune is shown as a function of the applied current to the

power supply of the Siberian snake. The data is extrapolated using Eq. (7.19). During

the second Precursor Run, both the Siberian snake and the 2 MV solenoid are used which

requires a calibration of both solenoids. The spin tune change as a function of Siberian snake

current and 2 MV solenoid current is shown in Figure 7.13 along with a fit according to

Eq. (7.20). The uncertainty of the power supply attached to the Siberian snake is given by

σISnake = 1× 10−3 A. The same uncertainty for the 2 MV solenoid yields σI2MV Sol.
= 5× 10−4 A.

Both values correspond to the standard deviation of the power supply distribution measured

over a couple of minutes.

The fit results are summarized in Table 7.5. Note that during the second Precursor Run, two

bunches are co-rotating in COSY in preparation to use the so-called Pilot bunch technique,

aiming at the measurement of the orientation of the Invariant Spin Axis at the location of the

RF Wien filter. More information about the Pilot bunch technique is given in section 7.6.3.

The spin tunes of these bunches are analyzed and fitted independently since both bunches are

affected by the solenoidal fields.

The most striking result is the decrease of the orientation of the Invariant Spin Axis in the

longitudinal direction by one order of magnitude from Precursor Run I to Precursor Run 2.

The measurement of a tilt angle of 1× 10−4 rad and 1× 10−5 rad is an important result to

estimate the systematic contribution from ring imperfections to the final measurement using

the RF Wien filter, where the orientation of the Invariant Spin Axis can be measured in both
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Figure 7.12.: Siberian snake calibration measurement for the first Precursor run by measuring
the change in spin tune as a function of the set current to the power supply of
the Siberian snake. The data is extrapolated using Eq. (7.19).
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Figure 7.13.: Siberian snake and 2 MV solenoid calibration measurement for the second Pre-
cursor run by measuring the change in spin tune as a function of the set current
to the power supply of the Siberian snake and the 2 MV solenoid. The data is
extrapolated using Eq. (7.20). The plot depicts data taken from the first bunch.

radial and longitudinal directions. The decrease in order of magnitude is most certainly related

to the beam-based alignment campaign and the alignment by Stollenwerk, which are discussed

in further detail in section 7.7.2.1. This improvement is also predicted by simulations from

Maximillian Vitz [104].
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Table 7.5.: Summary of the results from the measurements of the longitudinal component of
the Invariant Spin Axis at the Siberian snake and the 2 MV solenoid.

Precursor 1 Precursor 2
Parameter Bunch 1 Bunch 1 Bunch 2

Siberian Snake
kSnake / rad/A 3.9824(9) 3.9794(2)× 10−3 3.9794(2)× 10−3

nSnake
z / rad 5.3(2)× 10−4 −5.7(1)× 10−5 −5.6(1)× 10−5

2 MV solenoid
k2 MV Sol. / rad/A 3.9906(3)× 10−4 3.9904(7)× 10−4

n2 MV Sol.
z / rad −7.05(9)× 10−5 −7.07(9)× 10−5

∆νs,0 3.9(21)× 10−9 5.7(10)× 10−9 5.3(9)× 10−9

χ2/ndf 18.78/11 = 1.71 162.82/52 = 3.13 185.69/52 = 3.57

The offset parameter ∆νs,0, which is artificially introduced in Eq. (7.19) and (7.20), is related

to the spin tune drift during the cycle. For both measurement periods, the offset parameter is

in the order of 1× 10−9, which is comparable to the drift of the spin tune in a 30 s interval.

7.4.3.1. Studying the Influence of the RF Wien Filter on the Spin Tune

In addition to the dedicated cycles for measuring the longitudinal component of the Invariant

Spin Axis at the solenoids, the cycles using the RF Wien filter can be used to parasitically

determine the orientation of the Invariant Spin Axis in the longitudinal direction at the Siberian

snake. The reason for this analysis is twofold. On one side, the influence of the RF Wien filter

on the longitudinal component of the Invariant Spin Axis at the Siberian snake can be studied.

If the RF Wien filter would change the orientation of the Invariant Spin Axis, the averaged

spin tune in COSY would also change. In addition, for each measurement of the Invariant Spin

Axis at the RF Wien filter, a measurement of the longitudinal component of the Invariant Spin

Axis at the Siberian snake is available, which allows probing the stability of the orientation of

the Invariant Spin Axis at the solenoids during the experimental periods.

To probe the influence of the RF Wien filter on the Invariant Spin Axis, the spin tune difference

between 89 and 99 s and 155 and 165 s in the cycle is compared, which corresponds to a time

interval in which the RF Wien filter is switched on. Multiple spin tune measurements are

available for each Wien filter rotation angle and Siberian snake current. These results are

averaged for each combined setting. The change in spin tune as a function of the Siberian

current and the RF Wien filter rotation angle is shown in Figure 7.14. The data points are

selected by the corresponding RF Wien filter rotation angle to rule out dependencies due to

different rotation angles. The data points are fitted using a two-dimensional extension of

Eq. (7.19), which has no dependencies for the rotation angle of the RF Wien filter. The results

are comparable with the results determined using the dedicated cycles which are summarized

in Table 7.5. If the RF Wien filter changes the spin tune, the Pilot bunch method, which is

used to determine the orientation of the Invariant Spin Axis at the location of the RF Wien

filter in the radial and the longitudinal direction, wouldn’t work.

Upon conducting a consistency check of the Invariant Spin Axis’s longitudinal component at

the Siberian snake, denoted as nSnake
z , using data obtained through the RF Wien filter, it is

observed that the longitudinal component remains relatively stable across the experimental
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Figure 7.14.: The change of spin tune as a function of the current set to the power supply of
the Siberian snake and the RF Wien filter rotation angle. The data is fitted using
a two-dimensional extension of Eq. (7.19).

datasets (cf. Figure 7.15: Precursor 1 on the left and Precursor 2 on the right). This stability

is notable, particularly given that the data-taking period spans multiple weeks.

7.4.4. Event Selection Studies

The explanations of the Event Selection Studies are given in section 6.3.1. After the selection,

the same spin tune determination procedure as described in section 7.4.2 is repeated for both

the events in the heads and tails as well as the center events. The results of the event selec-

tion studies for the second Precursor Run where both solenoids are calibrated are shown in

Figure 7.16. In both cases, the results of the calibration model are consistent with each other.

However, this is not a surprising result. If the solenoidal magnetic fields would lead to a larger

spin tune spread inside the bunch, then the Spin Coherence Time would vanish after a short

period. The results for the first Precursor calibration are shown in Figure C.1. These results

are consistent as well.

7.5. Calibration of the RF Wien Filter Levels

In preparation for all experiments, the orientation of the RF Wien filter with respect to the

COSY accelerator plane needs to be calibrated. It is well known that the COSY plane is tilted.

The orientation of the RF Wien filter with respect to the tilted COSY accelerator plane is

calibrated using a laser tracker installed at the inner wall of the COSY tunnel at the location

of the RF Wien filter. The laser tracker measures the location of mirrors attached to the
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Figure 7.15.: Consistency check of the longitudinal component of the Invariant Spin Axis at the
Siberian snake nSnake

z for the data using the RF Wien filter at different rotation
angles (cf. Figure 7.14). Among the experimental data (left Precursor 1 and
right Precursor 2), the longitudinal component of the Invariant Spin Axis at the
Siberian snake stays reasonably constant, especially considering the data is taken
over multiple weeks.

fiducials at the RF Wien filter. By aligning the z components of the location of the mirrors,

the angle of the RF Wien filter with respect to the COSY plane can be calculated. These

measurements were performed by Markus Schmühl. The results of the angles are summarized

in Table 7.6. The uncertainty corresponds to the uncertainty of the rotation angle of the RF

Wien filter. The value corresponding to the systematic studies is used for the results presented

in section 8.3.

Table 7.6.: Alignment angles of the RF Wien filter with respect to the COSY plane for Precursor
1 & 2.

Precursor 1 (2018) Precursor 2 (2021) Systematic Studies (2023)

φoff
WF / rad 0.000 95(17) 0.000 55(17) 0.000 67(17)

For the correct alignment of the RF Wien filter rotation angle, this offset needs to be subtracted

from the readout of the Wien filter rotation angle, assuming that the magnetic field direction

is directly related to the alignment of the RF Wien filter with respect to the COSY plane. The

rotation angle of the RF Wien filter, and hence, of the magnetic field direction is given by

φWF = φmeas.
WF − φoff

WF. (7.28)

The uncertainty of the measured rotation angle is also given by σφmeas.
WF

= 0.17 mrad. Therefore,

the final uncertainty of the Wien filter rotation angle is given by

σφWF
=
√

2φmeas.
WF =

√
2φoff.

WF = 0.000 24 rad. (7.29)
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Figure 7.16.: Results of the Event Selection Studies for solenoid calibration data taken during
the second Precursor Run. Using both datasets, the fit parameters are deter-
mined, which are consistent within their uncertainties.

7.6. Determination of the Invariant Spin Axis using the RF Wien

filter

The following derivations of the spin dynamics in an RF Wien filter are based on the internal

note Spin motion in an rf Wien filter by Volker Hejny [105].

As discussed in section 4.2, the Electric Dipole Moment of the deuteron causes a small rotation

of the Invariant Spin Axis in the radial direction by an angle

φEDM =
ηβ

2G
, (7.30)

where η denotes the dimensionless Electric Dipole Moment strength parameter introduced

in Eq. (2.13), and β and G are the beam velocity and the anomalous magnetic moment,

respectively. This means that a measurement of the radial direction of the Invariant Spin Axis

(φEDM) can be directly translated into an Electric Dipole Moment.

In general, the Invariant Spin Axis can be written as

~n = nx~ex + ny~ey + nz~ez (7.31)

≈ nx~ex + 1~ey + nz~ez, (7.32)
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assuming that the radial (nx) and longitudinal (nz) components of the Invariant Spin Axis are

small. In an ideal accelerator, the radial component of the Invariant Spin Axis corresponds

directly to the tilt angle of the Invariant Spin Axis due to the effects of the Electric Dipole

Moment. However, systematic contributions of the ring can lead to additional tilts of the

Invariant Spin Axis in the radial direction. Therefore, the radial component of the Invariant

Spin Axis can be written as

nx = φEDM + nsys.
x , (7.33)

where nsys.
x denotes the systematic contribution of the ring on the radial direction of the In-

variant Spin Axis. In addition, in an ideal case, no longitudinal component of the Invariant

Spin Axis is expected. Therefore, any non-zero measurement of the longitudinal component of

the Invariant Spin Axis is purely systematic

nz = nsys.
z . (7.34)

To probe the radial component of the Invariant Spin Axis, an RF Wien filter is installed in

the ring, which can be rotated around the longitudinal axis (beam pipe) by an angle (φWF).

The RF Wien filter is operated in the so-called EDM mode, in which the magnetic field points

perpendicular to the accelerator plane. By rotating the device, the magnetic field direction

changes with respect to the Invariant Spin Axis.

The longitudinal component of the Invariant Spin Axis can be probed by using the Siberian

snake in the opposite straight in COSY. By ramping the solenoid, the longitudinal component

of the Invariant Spin Axis changes along the ring.

By mapping the so-called resonance strength

ε =
ψ0

4π
|~n× ~m|, (7.35)

where ~m denotes the magnetic field axis direction of the RF Wien filter with |~m| = 1 and ~n

denotes the Invariant Spin Axis, as a function of the Wien filter rotation angle and flip angle

of the Invariant Spin Axis due to the solenoid, the Invariant Spin Axis and the magnetic field

of the RF Wien filter can be aligned. The settings of Wien filter rotation angle and spin flip

in the opposite straight section in the Siberian snake (φWF, χSnake) for which the resonance

strength is zero (~n ‖ ~m) denote the orientation of the Invariant Spin Axis. The spin kick angle

inside the RF Wien filter is given by ψ0.

The coordinate system is chosen to be in a reference frame with respect to the Invariant Spin

Axis ~n at the location of the RF Wien filter

~ey = ~n, ~ex = ~n× ~β, and ~ez = ~ex × ~ey. (7.36)

The coordinate system is illustrated in Figure 7.17 together with the orientation of the magnetic

field of the RF Wien filter.
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Figure 7.17.: Coordinate system for the description of the magnetic field axis of the Wien filter
~m with respect to the coordinate system defined in Eq. (7.36).

The spin vector at the location of the RF Wien filter is defined with respect to the out-of-plane

angle α (the angle between vertical and horizontal polarization plane) and the spin precession

angle ωs = 2πνsfCOSY in the accelerator plane (x− z)

~S =

 cos(α) sin(ωst)

sin(α)

cos(α) cos(ωst)

 . (7.37)

When the measurement time begins, t = tWF, the spin points along ~ez without loss of generality.

In addition, the spin might have a vertical component when the rotation of the initial vertically

polarized beam is not fully rotated into the accelerator plane using the RF solenoid.

In this coordinate system, the magnetic field axis of the RF Wien filter is given by

~m =

 − sin(ay) cos(axz)

cos(ay)

sin(ay) sin(axz)

 . (7.38)

The parameter ay describes the angle between the magnetic field of the RF Wien filter and the

Invariant Spin Axis (cf. Figure 7.17)

sin(ay) = |~n× ~m|. (7.39)

The parameter axz describes the orientation of the magnetic field of the RF Wien filter in the

x− z plane with respect to ~ex.

Using the Thomas-BMT equation (4.22), it is possible to derive coupled differential equations

which describe the relative phase between the Wien filter frequency and spin tune φrel. and

the opening angle between the vertical polarization and the in-plane polarization plane α with

respect to the turn number n. The differential equations depend on the relative phase φrel.,

the opening angle α, the orientation of the magnetic field of the RF Wien filter with respect
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to the radial vector ~ex. Most importantly, they depend on the resonance strength ε, and hence

the opening angle between the magnetic field axis of the RF Wien filter and the Invariant spin

axis. A full derivation is given in section D.1. The differential equations are given by

dφrel.

dn
= 2πε sin(axz − φrel.) tan(α), (7.40)

dα

dn
= −2πε cos(axz − φrel.). (7.41)

Using the following identity between turn number n, beam revolution frequency fCOSY and

time t

n = fCOSYt, (7.42)

the differential equations can be transformed into

dφrel.

dt
= 2πεfCOSY sin(axz − φrel.) tan(α),

dα

dt
= −2πεfCOSY cos(axz − φrel.).

(7.43)

(7.44)

In the following sections, the meaning of the resonance strength ε in the context of the measure-

ment goal of determining the orientation of the Invariant Spin Axis is explained. In addition,

the solution of the differential equations depends on the way the phase feedback is used.

Using the phase feedback, the relative phase remains constant

dφrel.

dt
= 0, (7.45)

which simplifies the coupled differential equations (7.43) and (7.44). This method is used in

the so-called Initial slope method which is further explained in section 7.6.2.

Using the so-called Pilot bunch method, two bunches are co-rotating in COSY. One of the

bunches is gated from the RF Wien filter fields and used by the phase feedback to adjust the

Wien filter frequency and phase. The other bunch is used as a signal bunch and is affected by

the RF Wien filter fields. As it is not phase-locked, the phase behaves according to Eq. 7.43.

More information about the Pilot bunch method is given in section 7.6.3.

7.6.1. The Resonance Strength

The resonance strength ε is introduced in Eq. (7.35) as the angle between the Invariant Spin

Axis and the magnetic field direction of the RF Wien filter scaled with the spin kick of the RF

Wien filter

ε =
ψ0

4π
|~n× ~m|. (7.46)

The parameter is reintroduced in Eq. (7.38) when the orientation of the RF Wien filter field

is described with respect to the orientation of the Invariant Spin Axis. In the experiment, the

lab frame (i.e. Cartesian coordinates) at the RF Wien filer is used instead of the parameters

az and axz. The y axis points perpendicular to the accelerator plane x − z. The z axis (or
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longitudinal component) points into the beam direction and the x axis points perpendicular to

y and z into the radial direction.

The orientation of the magnetic field of the RF Wien filter is given by

~m =

 sin
(
φWF

)
cos
(
φWF

)
0

 φWF�1≈

 φWF

1

0

 , (7.47)

where φWF denotes the rotation angle of the RF Wien filter around the beam pipe which is

typically in the order of a few milli radians.

The Invariant Spin Axis without additional contributions from static solenoids is defined as

~n ≈

 nx
1

nz

 , (7.48)

assuming that the longitudinal nz and radial components nx of the Invariant Spin Axis are

small.

The radial component, as already defined in Eq. (7.33), is given by

nx = φEDM + nsys.
x , (7.49)

where the first term describes the contribution of the Electric Dipole Moment φEDM as defined

in Eq. (7.30). In addition, ring imperfections like magnet misalignments and higher-order mul-

tipoles in the magnets lead to orbit distortions and additional systematic tilts of the Invariant

Spin Axis in radial (nsys.
x ) and longitudinal direction (nz). Tilts in the longitudinal direction

are purely systematic, which is already explained in Eq. (7.34)

nz = nsys.
z . (7.50)

Using the 2 MV solenoid and the Siberian snake, the Invariant Spin Axis at the location of the

RF Wien filter is modified. The modified Invariant Spin Axis at the location of the RF Wien

filter is given by

~n =

 nx + χ2MV Sol.
2

1

nz +
χSnake+χ2MV Sol. cos(πν0s)

2 sin(πν0s )

 , (7.51)
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where χSnake and χ2MV Sol. denote the spin flip in the Siberian snake and the 2MV solenoid

as defined in Eq. (7.15) and ν0
s denotes the unperturbed spin tune. Finally, the resonance

strength can be written as

ε2 =
ψ2

0

16π2
|~m× ~n|2 (7.52)

≈ ψ2
0

16π2

∣∣∣∣∣∣∣
φWF

1

0

×
 nx + 1

2χ2MV Sol.

1

nz +
χSnake+χ2MV Sol. cos(πν0s)

2 sin(πν0s )


∣∣∣∣∣∣∣
2

(7.53)

=
ψ2

0

16π2

[(
nx +

1

2
χ2MV Sol. − φWF

)2

(7.54)

+

(
χSnake + χ2MV Sol. cos

(
πν0

s

)
2 sin(πν0

s )
+ nz

)2

·
(

1 + φWF2
) (7.55)

φWF�1≈ ψ2
0

16π2

(nx +
1

2
χ2MV Sol. − φWF

)2

+

(
χSnake + χ2MV Sol. cos

(
πν0

s

)
2 sin(πν0

s )
+ nz

)2
 . (7.56)

The 2MV solenoid is only used for a few data points during the second Precursor run. For

the measurements using the 2 MV solenoid, the current of the solenoid was not changed but

kept constant. Therefore, the spin flip angle in the 2 MV solenoid is used as a fixed parameter

and not as a variable in Eq. (7.56). The fit formula for the resonance strength using only the

Siberian snake (χ2MV Sol. = 0) is given by

ε2 ≈ ψ2
0

16π2

[(
nx − φWF

)2
+

(
χSnake

2 sin(πν0
s )

+ nz

)2
]
. (7.57)

For a single solenoid, the fit formula for the resonance strength is a two-dimensional paraboloid.

By varying the Wien filter rotation angle φWF, the magnetic field axis of the RF Wien filter

can be aligned with the radial component of the Invariant Spin Axis (nx) setting the first

contribution to zero (nx − φWF = 0). The Siberian snake acts as a compensation solenoid.

By changing the spin flip rotation angle χSnake, the systematic longitudinal contribution of the

Invariant Spin Axis (nz) can be compensated χSnake/2 sin(πνs) + nz = 0. By finding the settings

of (φWF, χSnake) which lead to a vanishing resonance strength, the orientation of the Invariant

Spin Axis can be found. In Table 7.7, an overview of all parameters and variables used in Eq.

(7.56) is given.

For the final fit of the resonance strengths, the unperturbed spin tune (i.e. without solenoids)

enters the fit as a fixed parameter. The initial spin tune is averaged among all cycles which

contribute to the determination of the Invariant Spin Axis.

7.6.2. The Initial Slope Method

In this section, a first method to extract the resonance strength ε from data is presented. The

method is based on the way the phase feedback is used. The differential equations for the angle

108



7.6. DETERMINATION OF THE INVARIANT SPIN AXIS USING THE RF WIEN
FILTER

Table 7.7.: Description of the variables and fit parameters in Eq. (7.56).

Symbol Description Type Unit

ψ0 Spin kick in the RF Wien filter Parameter rad
nx Radial component of ~n: nx = φEDM + nsys.

x Parameter rad
φEDM EDM contribution to the radial component of ~n rad
nsys.
x Systematic contribution to the radial component of ~n rad
φWF Rotation angle of the RF Wien filter Variable rad
χ2MV Sol. Spin flip angle in the 2 MV solenoid Fixed Parameter rad
χSnake Spin flip angle in the Siberian snake Variable rad
nz Systematic longitudinal component of ~n: nz = nsys.

z Parameter rad
ν0
s Unperturbed spin tune Fixed Parameter

between vertical and horizontal polarization and the relative phase between the Wien filter

frequency and spin tune are derived in section 7.6

dφrel.

dn
= 2πε sin(axz − φrel.) tan(α), (7.58)

dα

dn
= −2πε cos(axz − φrel.). (7.59)

During the so-called initial slope method, the phase feedback acts on the measurement bunch,

which means that the bunch is affected by the RF Wien filter fields. In section 7.6.3, the phase

feedback does not act on the measurement bunch, meaning that two bunches are co-rotating

in COSY, while only one bunch is affected by the Wien filter fields, and the other is not.

The effect of the phase feedback is rather easy to explain. It keeps the phase relation be-

tween the RF Wien filter frequency and the spin precession frequency constant, reducing the

differential equations to

dφrel.

dn
= 0, (7.60)

dα

dn
= −2πε cos(axz − φrel.). (7.61)

This describes a linear increase of α as a function of time. The slope depends on the chosen

value for the phase relation between the Wien filter frequency and spin tune

φrel. = φrel.,0, (7.62)

dα

dn
= −2πε cos(axz − φrel.,0). (7.63)

In reality, the relative phase has an arbitrary but constant offset φoff
rel. due to latencies in the

signal processing and the distance between the RF Wien filter and the polarimeter. Therefore,

the relative phase can be written as

φrel. = φrel.,0 = φset
rel. + φoff

rel., (7.64)
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where φset
rel. denotes the relative phase set by the operators. The linear increase of the angle

between vertical and horizontal polarization is shown in Figure 7.18. The angle is fitted using

a polynomial of first order. The slope is given by

α̇ = −2πεfCOSY cos(axz − φrel.,0). (7.65)

As the resonance strength is determined by fitting the linear increase of the angle between

vertical and horizontal polarization, the method is also called the initial slope method.

The fit range is determined by the up-down asymmetry (horizontal polarization). If the hor-

izontal polarization is too small, the spin tune is not detectable, which means that the phase

feedback stops working. If the up-down asymmetry (horizontal polarization) is below a thresh-

old of 6 %, the fit range is stopped. This is shown in the upper right panel in Figure 7.18.

The first vertical dashed line marks the timestamp when the RF Wien filter is switched on

(tWF = 155 s), the second vertical dashed line marks the timestamp when the up-down asym-

metry is below 6 %. This range is used for the determination of the relative phase between

the Wien filter frequency and spin tune (upper left panel) and the initial buildup of the angle

between vertical and horizontal polarization. The relative phase is still stable after the fit

range, which means that the fit range could be extended by lowering the threshold. However, a

threshold of 6 % for the horizontal polarization turned out to be the most stable for the fitting

process.
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Figure 7.18.: Determination of the fit range for the initial slope method. If the up-down asym-
metry (upper right panel) is below a threshold of 6 %, the fit range is stopped.
This fit range is used to determine the relative phase (upper left panel) and the
slope of the linear increase of the angle between the vertical and horizontal po-
larization (lower left panel).
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The dependence of the slope of the buildup of α as a function of the relative phase φset
rel. is

shown in Figure 7.19 for four exemplary cycles. The left panel shows the measured relative

phase as a function of time for four cycles. The right panel shows the angle between vertical

and horizontal polarization for the same four cycles. For better visibility, data points after the

fit range are not shown in both panels.
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Figure 7.19.: Four distinct cycles to determine the resonance strength using the Initial slope
method. Left: Measured relative phases as a function of time in the cycle.
Right: Buildup of the angle between vertical and horizontal polarization plane
for the choices of the relative phase between RF Wien filter frequency and spin
tune.

For the determination of the resonance strength ε, the buildup of α needs to be measured for

different values of the relative phase. The dependence of the slope of the buildup of the angle

between vertical and horizontal polarization is depicted in Figure 7.20 for an RF Wien filter

rotation angle φWF = 0 rad and χSnake = −0.022 rad. The slope determined from data shown

in Figure 7.19 is scaled by the revolution frequency

α̇ =
dα

dt
→ 1

2πfCOSY

dα

dt
=

1

2π

dα

dn

!
= −ε cos(axz − φrel.,0). (7.66)

In the following section 7.6.2.1, it is shown that a linear model is not the true dependence of

the buildup of the vertical polarization as Spin Coherence Time effects are not negligible.

The scaled slope is fitted using the following model

1

2π

dα

dn
= A sin(φrel.) +B cos(φrel.) + C. (7.67)

The offset parameter C is introduced as an additional validation for a systematic buildup. A

non-zero offset parameter would be an additional buildup of the vertical polarization consistent
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for all measured cycles. For the data points given in Figure 7.20, the offset parameter is

consistent with zero. Note that Eq. (7.67) can be written as

A sin(x) +B cos(x) + C = −ε cos(x− ϕ) + C with A = ε cos(ϕ) and B = ε sin(ϕ). (7.68)
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C        11− 2.307e±11 −2.473e− 

Figure 7.20.: Determination of the resonance strength using the initial slope method for a
Wien filter rotation angle φWF = 0 rad and χSnake = −0.022 rad and for various
settings of the relative phase between the Wien filter frequency and spin precession
frequency φrel.. The resonance strength corresponds to the amplitude of the
oscillation.

Using the fit parameters, the resonance strength can be calculated using

ε =
√
A2 +B2 → ε2 = A2 +B2, (7.69)

σε2 = 2
√
A2σ2

A +B2σ2
B + 2σAσBABρ(A,B), (7.70)

where ρ(A,B) denotes the correlation coefficient between the fit parameters A and B. Note

that the resonance strength squared is directly determined from the fit parameters, as the

dependency of the resonance strength squared as a function of the RF Wien filter rotation

angle and spin flip in the Siberian snake is derived for the resonance strength squared in

Eq. (7.56) and (7.57).

7.6.2.1. Spin Coherence Time Correction

The analytical work from Eq. (7.71) to (7.83) is taken from former IKP student Nils Hempel-

manns’s PhD Thesis Polarization Measurement and Manipulation for Electric Dipole Moment

Measurements in Storage Rings [106, p.77-83].
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In section 7.2, the decay of polarization in the horizontal plane is discussed. For the buildup of

the vertical polarization, decoherence plays an important role, as decay leads to a measurable

fake buildup which needs to be distinguished from the buildup due to the RF Wien filter. The

effect is illustrated in Figure 7.21. While the vertical component remains constant, the in-plane

polarization reduces over time by ∆pH . This leads to a systematic offset of the angle α between

vertical and in-plane polarization.

Distinguishing between the effects of spin decoherence and the RF Wien filter can be achieved

by examining the magnitude of polarization ε2
tot = ε2

LR+ε2
UD and the angle α = arctan (εLR/εUD)

at the same time. The RF Wien filter maintains the magnitude of the polarization by solely

rotating the vector, while spin decoherence leads to a reduction in the magnitude of polariza-

tion.

Figure 7.21.: While the vertical polarization component remains constant over time, the in-
plane polarization reduces by ∆pH due to loss of polarization. This leads to an
apparent buildup of the vertical component of the polarization vector, unrelated
to the opening angle of the Invariant Spin Axis and the magnetic field direction
of the RF Wien filter and consequently purely systematic. These effects are
corrected using Eq. (7.82) and (7.83). Taken from [106].

The evolution of α and εtot. can be described by two coupled differential equations. The

differential equation describing α is given by

dα

dt
=
∂α

∂t
+

∂α

∂εUD

∂εUD

∂α
, (7.71)

where the first term describes the explicit time dependence of the buildup rate due to the RF

Wien filter which is already introduced in Eq. 7.65 and given by

∂α

∂t
= −2πε cos(axz − φrel.,0) = A. (7.72)
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The angular velocity of the rotation of the polarization depends on the resonance strength and

the relative phase between the Wien filter frequency and spin precession. Consequently, the

differential equation of the magnitude of polarization is given by

dεtot.

dt
=

d

dt

√
ε2

LR + ε2
UD (7.73)

=
1√

ε2
LR + ε2

UD

(
εLR

dεLR

dt
+ εUD

dεUD

dt

)
(7.74)

=
1

εtot

(
εLR

∂εLR

∂α

∂α

∂t
+ εUD

(
∂εUD

∂t
+
∂εUD

∂α

∂α

∂t

))
. (7.75)

In section 7.2, a sophisticated model is presented for the decay of the in-plane polarization.

However, for the measurements using the RF Wien filter, this model is not used due to its

mathematical complexity. Instead, an exponential model is used introducing the only time

dependence in the system of differential equations

εUD(t) = εUD,0 exp (−Bt) , (7.76)

which consequently leads to
∂εUD

∂t
= −εUDB. (7.77)

The fit parameter B describes the attenuation of the in-plane polarization. Note, that the model

only allows for an estimate of the Spin Coherence Time, as the data presented in Figure 7.1a

and 7.1b show no direct exponential loss. The remaining derivatives can be calculated by using

the following identities which can be directly derived from Figure 7.21

α = arctan

(
εLR

εUD

)
, εUD = εtot. cos(α), and εLR = εtot. sin(α). (7.78)

The derivatives that still need to be calculated are given by

∂α

∂εUD
= − εLR

ε2
tot.

,
∂εUD

∂α
= −εLR, and

∂εLR

∂α
= εUD. (7.79)

The final set of differential equations can be written as

dα

dt
= A+B cos(α) sin(α), (7.80)

dεtot.

dt
= −Bεtot. cos2(α). (7.81)

The first equation has no dependence on the magnitude of polarization, which means that

it can be directly integrated. By inserting the solution of the first equation into the second
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equation, it can be integrated as well. The solution of the coupled differential equations is

given by

α(t) =



arctan
(
tan (α0) eB(t−tWF)

)
A = 0

arctan

(
1

2A

(
√

4A2 −B2
D+tan

(
t−tWF

2

√
4A2−B2

)
1−D tan

(
t−tWF

2

√
4A2−B2

) −B
))

4A2 > B2

arctan

(
1

2A

(
√
B2 − 4A2

D−tanh
(
t−tWF

2

√
B2−4A2

)
1−D tanh

(
t−tWF

2

√
B2−4A2

) −B
))

4A2 < B2

with D =
2A tan(α0) +B√
|4A2 −B2|

,

(7.82)

and

log

(
ε(t)

ε0

)
=


1
2 log

(
2A+B sin(2α0)

2A+B sin(2α(t))

)
+

B√
4A2−B2

arctan
(

sin(α0−α(t))
√

4A2−B2

2A cos(α0−α(t))+B sin(α0+α(t))

)
4A2 > B2

B√
B2−4A2

artanh
(

sin(α0−α(t))
√
B2−4A2

2A cos(α0−α(t))+B sin(α0+α(t))

)
4A2 < B2.

(7.83)

The fit parameters are summarized in Table 7.8. The piece-wise definition is chosen to ensure

non-imaginary fit functions. Both solutions are used in a combined χ2-fit in which the corre-

lation of α and εtot. is neglected. An example of such a combined fit is shown in Figure 7.22.

The model reproduces the shape of the data very well, which also leads to a reasonable χ2/ndf.

The decay of the in-plane polarization leads to a small nonlinearity.

Table 7.8.: Fit parameters to describe the buildup of the vertical polarization using the Initial
slope method taking Spin Decoherence Effects into account.

Symbol Description Unit

A Slope of the buildup rad/s
B Spin Coherence Time 1/s
tWF Fit starts when the RF Wien filter is switched on s
α0 α at t = tWF rad
ε0 Total polarization at t = tWF

A comparison of the sophisticated model and a simple linear model for multiple cycles with

different relative phases between the RF Wien filter and spin precession frequency is shown

in Figure 7.23. The blue data points show the fit results of the slope (A) as a function of

the relative phase using the complex model, taking the decoherence of the polarization into

account, while the red data points are determined by using a pure linear model. The linear

model overestimates the slope, which leads to a larger resonance strength ε. Also, the fit

quality of the sine to the data greatly enhances using the data from the model taking the Spin

Coherence Time into account. The right panel depicts the difference between the data. In

general, the slope is overestimated by a factor of 20% using a linear fit.
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Figure 7.22.: Combined fit of the angle between the vertical and horizontal polarization α and
the total polarization εtot according to Eq. (7.82) and (7.83) to determine the
initial slope of the buildup of the polarization after the RF Wien filter is switched
on at tWF = 155 s (dashed black line).

7.6.2.2. Determination of the Invariant Spin Axis

The determination of the radial and longitudinal components of the Invariant Spin Axis at the

location of the RF Wien filter using the initial slope method was used during the first Precursor

experiment in 2018 for all measured maps and during the second Precursor experiment in 2021

for the first two maps. A summary of all measurements of the Invariant Spin Axis is given in

Table 7.13.

The resonance strengths are measured for various settings of the RF Wien filter rotation angle

and the spin kick inside the Siberian snake. An example of the slopes of the buildup of the

angle between vertical and horizontal polarization for various settings of the relative phase

between the Wien filter frequency and spin tune, the RF Wien filter rotation angle, and the

spin kick inside the Siberian snake is shown in Figure 7.24. The resonance strengths for all

maps using the initial slope method are shown in Appendix D.2.

The resonance strength squared as a function of the RF Wien filter rotation angle and the spin

flip inside the Siberian snake is shown in Figure 7.25 along with a fit according to Eq. (7.57).

The minimum of the map denotes the orientation of the Invariant Spin Axis in radial and

longitudinal directions. The precision of setting the RF Wien filter rotation angle is given by

σφWF = 0.24 mrad. (7.84)

The power supply of the Siberian snake has a repetition error of σISnake = 1× 10−3 A. Using

Eq. (7.15) and neglecting the uncertainty of the calibration constant of the Siberian snake, the

statistical uncertainty on the Spin flip angle can be calculated as

σχSnake
= |ISnake|σISnake . (7.85)
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Figure 7.23.: Comparison of the initial slopes as a function of the relative phase. The red data
points are determined from a standard linear fit to the data shown in Figure 7.22.
The blue data points show the initial slope determined from the Spin Coherence
Time corrections applied in Eq. (7.82) and (7.83). The right panel depicts the
difference between both methods.

The orientation of the Invariant Spin Axis is given by

nx = −4.0(1) mrad and nz = −5.6(1) mrad. (7.86)

The spin kick angle of the RF Wien filter is

ψ0 = 2.83(1)× 10−6 rad, (7.87)

and the quality of the fit is given by

χ2

ndf
=

255.00

6
= 42.50. (7.88)

The initial spin tune, which enters the fit as a fixed parameter, is averaged over all cycles

contributing to the measurement of the Invariant Spin Axis for a particular map. For the data

shown in Figure 7.24, the initial spin tune histogram is shown in Figure 7.26. The averaged

value is

ν0
s = −0.160 970 692(1). (7.89)

The statistical uncertainty of the averaged initial spin tune is neglected. The observed tilts of

the Invariant Spin Axis are larger than expected compared to the results of the measured tilts

using only the solenoids as further explained in section 7.4.3. The large χ2/ndf is a hint towards

missing systematic effects. A more detailed discussion about all results for the orientation of

the Invariant Spin Axis is given in section 7.8.

7.6.3. The Pilot Bunch Method

In this section, a second method on how to extract the resonance strength is shown. Using the

so-called Pilot bunch method, two bunches are rotating in COSY. The measurement scheme
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Figure 7.25.: Determination of the orientation of the Invariant Spin Axis for the second map
during the first Precursor run. Left: The resonance strength is plotted as a
function of the Wien filter rotation angle and the spin flip in the Siberian snake.
The minimum of the two-dimensional paraboloid marks the orientation of the
Invariant Spin Axis at the RF Wien filter. Right: Residuals.

described in section 7.1 remains valid. The vertically polarized beam is injected into the ring.

The beam is separated into two bunches co-rotating in the ring, accelerated, and electron-

cooled. Using the RF solenoid, the vertical polarization of both bunches is rotated into the

accelerator plane. The Siberian snake (and the 2MV solenoid) acts as well on both bunches

and rotates the Invariant Spin Axis for both bunches in the same direction while changing the

spin tune. The only difference is that the RF Wien filter is gated for one of these bunches,

while the other bunch remains unaffected.

The phase feedback acts on the unaffected bunch or Pilot Bunch, while the so-called Signal

bunch is only affected by the RF Wien filter fields. This is depicted in Figure 7.27. Two

bunches are co-rotating in COSY at the COSY revolution frequency fCOSY = frev., and the

spins are rotating at the spin precession frequency fs. The blue bunch (Pilot bunch) is gated

from the RF Wien filter, and only the red bunch (Signal bunch) is used to determine the

resonance strength and consequently the Invariant Spin Axis.

In this case, the in-plane phase of the Signal bunch is not phase-locked, but can rotate according

to the differential equations derived in section 7.6

dφrel.

dn
= 2πε sin(axz − φrel.) tan(α), (7.90)

dα

dn
= −2πε cos(axz − φrel.). (7.91)
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Figure 7.26.: Histogram of the initial spin tune for Precursor 1 Map 2. The averaged value
is |ν0

s | = 0.160 970 692(1). Note that the sign needs to be negative for the fit
function as the spin tune is negative as shown in Eq. (4.37).

This set of equations can be solved by using the following substitutions

k = −χ0 sin(ay), (7.92)

∆φ = −(axz − φrel.), (7.93)

q = 0. (7.94)

and the derivations given in Reference [100]. The parameter q describes the frequency difference

between the spin tune and the RF Wien filter due to statistical fluctuations in the phase

feedback and is defined as

q =
4π∆f

kfCOSY
. (7.95)

The solution for the vertical polarization (left-right asymmetry) is given by

sin
(
α(n)

)
= py = cos(∆φ0) sin(2πεn). (7.96)

Also, here the phase feedback gets an offset due to latencies in the signal processing, which

remains constant for all cycles. Here, ∆φ0 describes the initial (t = tWF) phase relation between

Wien filter frequency and spin tune. By using the Pilot bunch method, the resonance strength

can be extracted from the oscillation of the left-right asymmetry. The oscillation amplitude

depends of the choice of the initial in-plane phase set by the phase feedback using the Pilot

bunch. The oscillation of the left-right asymmetry as a function of the relative in-plane phase

between the Wien filter frequency and spin tune is shown in Figure 7.28. The left panel depicts

the relative phase measured using the Pilot bunch. The right panel shows the oscillation of

the left-right asymmetry as a function of time for three different choices of the initial in-plane

phase. Note that the oscillation frequency is independent of the choice of the relative phase;
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Figure 7.27.: Schematic of the Pilot bunch method. Two bunches are co-rotating in COSY.
The blue bunch (Pilot Bunch) is used for the phase feedback to set the Wien
filter frequency and phase and remains unaffected by the RF Wien filter. The
signal bunch is affected by the RF Wien filter. The polarization of the Signal
bunch behaves according to Eq. (7.96). Created by Frank Rathmann/ JEDI
Collaboration.

only the amplitude changes. By performing a least-squared fit according to Eq. (7.96), the

oscillation frequency and hence the resonance strength can be determined

2πε = 4.86(2)× 10−2 1

s
for φrel. = 5.59(1) rad and, (7.97)

2πε = 4.91(2)× 10−2 1

s
for φrel. = 1.95(1) rad. (7.98)

For a relative phase of φrel. = 4.2 rad, the oscillation amplitude becomes zero. The measure-

ments, shown in Figure 7.28, were taken at an RF Wien filter rotation angle of φWF = −0.070 rad

and spin flip angle in the Siberian snake of χSnake = 0 rad.

The model which describes the oscillation pattern in the right panels of Figure 7.28 is given by

Eq. (7.96). However, off-resonance behaviors due to a non-ideal phase feedback as well as spin

decoherence effects play a crucial role in the final determination of the resonance strengths.

These correction effects are discussed in the following section.

Note, that the same procedure is applied when rotating the initially vertically polarized beam

using the RF solenoid into the horizontal plane as no phase-locking of the spin precession takes

place. In this case, the RF solenoid is switched off after a quarter period of the rotation period

for the final polarization to be in the horizontal plane.

7.6.3.1. Spin Coherence Time and Off-Resonance Corrections

Similar to the corrections of the Spin Coherence Time for the initial slope method in section 7.6.2.1,

the spin coherence also has to be corrected for the oscillations measured using the Pilot bunch
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Figure 7.28.: Left: Relative phase measured using the Pilot bunch for three different cycles at
three different chosen values for the relative phase between spin tune and Wien
filter frequency. Right: As soon as the RF Wien filter is switched on at 155 s
(dashed black line), an oscillation of the left-right asymmetry is visible for the
Signal bunch. The oscillation amplitude depends on the choice of the relative
phase, and, according to Eq. (7.96), the oscillation frequency is given by the
resonance strength, which is independent on the choice of the relative phase.

method. In addition, off-resonance behavior due to a non-ideal phase feedback can be corrected.

The analytical work is based on reference [107].

• Off-resonance correction: In previous measurements, a phase feedback spread of σfb ≈
0.2 rad was achieved in a tfb = 3 s interval. The corresponding accuracy of the Wien filter

frequency is approximately given by

∆ffb ≈
σfb

2πtfb
≈ 10 mHz. (7.99)

In the context of this experiment, off-resonance means that the Wien filter frequency fWF

does not match the spin precession frequency fs. The off-resonance angle δ parametrizes

the off-resonance behavior and is defined as

δ =
2π(fs − fWF)

fCOSY
. (7.100)

In contrast to the corrections of the Spin Coherence Time, a detuned Wien filter frequency

leads to a systematic shift of the measured resonance strength. The measured and detuned

resonance strength is given by

ε2det. = ε2 +
δ2

4π2
. (7.101)

where ε denotes the resonance strength as defined in Eq. (7.35). The off-resonance angle

does not directly enter the fit function but appears in another parameter ρ

sin(ρ) =
ε0
εdet

and cos(ρ) =
2δ

4πεdet
. (7.102)

Using Eq. (7.101), it can be shown that sin2(ρ) + cos2(ρ) = 1.
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• Spin Decoherence correction: The Spin Coherence Time is very similarly treated for

the Pilot bunch method as already described in section 7.6.2.1. While the vertical polar-

ization remains preserved over time, an exponential decay of the in-plane polarization is

assumed. The decoherence parameter Q with the Spin Coherence Time τSCT is defined

as

Q =
Γ

2πεdet
with Γ =

1

fCOSYτSCT
. (7.103)

Figure 7.29.: Coordinate system with the Invariant Spin Axis, the tangential, and radial di-
rection. At the time x = 0, where x is defined as x = 2πεdet(n− nWF) or
x = 2πεdetfCOSY(t− tWF), the polarization is rotating in the (~ur, ~ut) plane. After
the RF Wien filter is switched on, the vertical polarization accumulates parallel
to ~n. Adapted from FIG. 1 in [107].

The underlying formalism describes the evolution of polarization vector ~p after some time

x = 2πεdet(n− nWF) (or x = 2πεdetfCOSY(t− tWF)), where n denotes the turn number

~p(x) = E(x) · ~p(x = xWF). (7.104)

The polarization vector is given by ~p = (pr, pv, pt)
T and xWF denotes the time when the RF

Wien filter is switched on, i.e., xWF = 2πεdetnWF. The coordinate system is illustrated in

Figure 7.29. Along the Invariant Spin Axis ~n, the tangential component is defined in the beam

direction, and the radial component points perpendicular to the Invariant Spin Axis and the

tangential component. The radial component corresponds to the x axis and the tangential

component corresponds to the z axis defined in Figure 7.17.
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In case of decoherence and frequency mismatch between the Wien filter frequency and spin

precession frequency, the polarization transfer matrix is given by

E(x) =

 e−2Qx sin2(ρ) + e−Qx cos2(ρ) cos(x) cos(ρ) sin(ρ)(e−2Qx − e−Qx cos(x)) e−Qx cos(ρ) sin(x)

− cos(ρ) sin(ρ)(e−2Qx − e−Qx cos(x)) e−2Qx cos2(ρ) + e−Qx sin2(ρ) cos(x) −e−Qx sin(ρ) sin(x)

e−Qx cos(ρ) sin(x) e−Qx sin(ρ) sin(x) e−Qx cos(x)

.

(7.105)

The initial polarization condition for the experiment is given by

~p(x = 2πεdetnWF) =

 pH0 sin(φrel.,0)

pV 0

pH0 cos(φrel.,0)

 , (7.106)

where pV 0 denotes the initial vertical polarization at the time the RF Wien filter is switched on.

Note that pV 0 should be zero, as the experiment starts with the polarization of the beam in the

accelerator plane. However, non-complete rotations of the RF solenoid rotating the vertically

polarized beam into the horizontal plane may lead to an over- or undershoot of rotations.

The initial phase relation between the Wien filter frequency and the in-plane spin precession

frequency is set by the phase feedback and is denoted as φrel.,0. The initial in-plane polarization

is given by

pH0 =
√
pt(xWF)2 + pr(xWF)2. (7.107)

The initial polarization vector is shown in blue in Figure 7.29. The red vector ~p(n) shows

the polarization after turn number n. Note that not the polarization is fitted directly, but

the left-right and up-down asymmetry which are directly proportional to the vertical and in-

plane polarization. Therefore, pV 0 is replaced by εLR,0 and pH0 is replaced by εUD,0, as the

proportionality factors are the same for the asymmetries in both planes.

By multiplying the polarization transfer matrix as defined in Eq. 7.105 with the initial po-

larization conditions, the transversal, radial and vertical component of the polarization vector

can be calculated as a function of time. The tangential component is given by

pt =− e−Qx cos(ρ) sin(x) cos(φrel.,0)εUD,0

+ e−Qx sin(ρ) sin(x)εLR,0 + e−Qx cos(x) sin(φrel.,0)εUD,0,
(7.108)

the radial component is given by

pr =
[
e−2Qx sin(ρ)2 + e−Qx cos(ρ)2 cos(x)

]
εUD,0 cos(φrel.,0)

+ εLR,0 cos(ρ) sin(ρ)
(
e−2Qx − e−Qx cos(x)

)
+ e−Qx cos(ρ) sin(x) sin(φrel.,0)εUD,0,

(7.109)

and the vertical component is given by

pV =
[
− cos(ρ) sin(ρ)

(
e−2Qx − e−Qx cos(x)

)]
εUD,0 sin(φrel.,0)

+
[
e−2Qx cos(ρ)2 + e−Qx sin(ρ)2 cos(x)

]
εLR,0

− e−Qx sin(ρ) sin(x)εUD,0 sin(φrel.,0).

(7.110)
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Using the polarimeter, only the in-plane polarization (up-down asymmetry), given by

prt =
√
p2
r + p2

t , (7.111)

and the vertical polarization (left-right asymmetry) can be determined. An example of a

combined fit of the left-right asymmetry and the up-down asymmetry is shown in Figure 7.30.

Using Eq. (7.102), the unperturbed resonance strength can be calculated via

ε2 = sin2(ρ)ε2det, (7.112)

σε2 = 2εdet sin(ρ) ·
[
sin2(ρ)σ2

εdet
+ cos2(ρ)ε2detσ

2
ρ + 2εdet sin(ρ) cos(ρ)σεdetσρk(ρ, εdet)

] 1
2 ,

(7.113)

where k(ρ, εdet) denotes the correlation coefficient between the detuned resonance strength and

ρ. The dependency of the resonance strength is computed in section 7.6.1 for ε2. For the data

shown in Figure 7.30, the corrected resonance strength is given by

ε2 = 3.07(2)× 10−17. (7.114)
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Figure 7.30.: Simultaneous fit of the left-right asymmetry (left) and the up-down asymmetry
(right) for determining the detuned resonance strength using the signal bunch.
The spin flip angle in the Siberian snake is given by χSnake = 7.9 mrad, the Wien
filter rotation angle is given by φWF = 34.9 mrad and the relative phase between
the Wien filter frequency is set to φrel. = 3.4 rad. The dotted line marks the
timestamp when the RF Wien filter is switched on (tWF = 155 s).

Using Eq. (7.100) and (7.102), the frequency mismatch between the Wien filter frequency and

the spin precession frequency can be studied by calculating

∆f = fs − fWF = cos(ρ)fCOSYεdet.. (7.115)

A histogram of this mismatch for 158 cycles with different settings for the relative phase between

the Wien filter frequency and spin precession frequency, Wien filter rotation angle, and spin
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flip in the Siberian snake is shown in Figure 7.31. The mean of the distribution is given by

6.329× 10−5 Hz. The width of the distribution is 1.2 mHz.
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Figure 7.31.: Accuracy of the phase feedback matching the Wien filter frequency to the spin
precession frequency derived from 158 cycles with different settings of the rela-
tive phase between the Wien filter frequency and spin precession frequency, RF
Wien filter rotation angle, and spin flip in the Siberian snake. The width of the
frequency mismatch is in the order of 1 mHz.

7.6.3.2. Monte Carlo Studies

To validate the derived formulas in the previous section on the buildup of the vertical compo-

nent of the polarization among all the parameter space, Monte Carlo studies are performed.

An example of a cycle with simulated data according to Eq. (7.110) and (7.111) is shown in

Figure 7.32. The left-right asymmetry (left) and the up-down asymmetry (right) are shown

during a time interval of 300 s. For both, the left-right asymmetry and the up-down asymme-

try, a statistical uncertainty of σεLR = σεUD = 10 %(absolute) is assumed which approximately

corresponds to the statistical uncertainty of both asymmetries as in the real experiment. The

data is fitted using the same formula which is used to produce the data. The input data and

fit results are summarized in Table 7.9. Using the input data, the fit results can reproduce the

expected results.

Table 7.9.: Input parameters and fit results for the Monte Carlo data and regression shown in
Figure 7.32.
εLR,0 εUD,0 ε / rad/n φrel.,0 / rad ρ / rad Γ / 1/n χ2/ndf

Input 0.01 0.14 5× 10−9 1 4.5 2× 10−9

Fit Result 0.012(1) 0.138(1) 4.99(1) 0.9996(92) 4.496(7) 1.84(13)× 10−9 643.9/594 = 1.08
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Figure 7.32.: Example of Monte Carlo data of the left-right and up-down asymmetry during
a cycle of 300 s. The data is produced and fitted according to Eq. (7.110) and
(7.111). The input parameters and fit results are summarized in Table 7.9 and
agree well within their uncertainties.

For small resonance strengths, the fit overestimates the resonance strength. This can be in-

tuitively explained as fitting the onset of a sine wave is more difficult than fitting a constant

slope. Therefore, data points which are measured close to the map minimum are disregarded

in the analysis for the determination of the orientation of the Invariant Spin Axis using real

data.

In Figure 7.33 a projection of the histogram which compares the input to the outcome of the

fit is shown for a constant attenuation parameter of Γ = 5× 10−10 1/n. If the input of the

resonance strength is smaller than ε ≈ 5× 10−10, the resonance strength is overestimated.

These data points are discarded from the analysis of the determination of the Invariant Spin

Axis.

7.6.3.3. Determination of the Invariant Spin Axis

The method of measuring the orientation of the Invariant Spin Axis at the location of the RF

Wien filter using the Pilot Bunch was only used during the second Precursor experiment in

2021 after the fast switches were installed in the driving circuit of the RF Wien filter, which

allowed the Pilot bunch to be gated from the RF Wien filter fields. In addition to data taken

with the Siberian snake alone, the 2MV solenoid was used alongside the Siberian snake at

currents of 5 A and −5 A. A summary of all measured data is given in Table 7.13. However,

while the current of the Siberian snake was changed, the current of the 2 MV solenoid remained

constant, which means that the additional spin flip χ2MV sol. enters the fit as an additional fixed

parameter. According to Eq. (7.15), the currents can be converted into

χ2MV sol.(5 A) = 0.002 rad and χ2MV sol.(−5 A) = −0.002 rad. (7.116)
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Figure 7.33.: Projection of the ratio between the input of the resonance strength versus the
output of the fit for a constant in-plane polarization attenuation parameter of
Γ = 5× 10−10 1/n. For a resonance strength smaller than ε < 5× 10−10, the
resonance strength is overestimated by the fit.

The uncertainty of χ2MV sol. can be neglected for both cases. When using the 2 MV solenoid,

Eq. (7.56) needs to be used to fit the resonance strength as a function of the Siberian snake

spin flip angle and the RF Wien filter rotation angle.

The main advantage of the Pilot bunch method is that no relative phase scans have to be

made to find the resonance strength. Instead, the phase that yields approximately the largest

oscillation amplitude is chosen. For reproducibility, the measurement of the resonance strength

is repeated multiple times for the same setting of the relative phase between the Wien filter

frequency and spin precession frequency, RF Wien filter rotation angle, and spin flip in the

Siberian snake. An example of a repetition of a measurement of the resonance strength for

the same settings is shown in Figure 7.34. The unperturbed resonance strength as defined in

Eq. (7.112) is shown for multiple consecutive cycles. The settings of the Wien filter rotation

angle, spin flip in the Siberian snake, and relative phase between the Wien filter frequency and

spin tune are φWF = −0.035 rad, χSnake = 0.016 rad, and φrel. = 2.94 rad, respectively.

The results presented in this section are derived from Precursor 2 Map 4. The resonance

strength as a function of the Wien filter rotation angle and the spin flip in the Siberian snake

is shown in Figure 7.35. The data points are fitted according to Eqs. (7.57) and (7.56). As

discussed in the previous sections, data points close to the map minimum are discarded as the

resonance strength is overestimated at low oscillation frequencies. The precision of setting the

RF Wien filter rotation angle is given by

σφWF = 0.000 24 rad. (7.117)
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Figure 7.34.: Measurement of the resonance strength for eight consecutive cycles. The Wien
filter rotation angle is φWF = −0.035 rad, the spin flip in the Siberian snake
is χSnake = 0.016 rad, and the relative phase is given by φrel. = 2.94 rad. The
averaged resonance strength is given by ε2 = (24.78± 1.11)× 10−18. The cycles
using unpolarized beam (1 and 8) do not contribute to the determination of the
averaged resonance strength.

The power supply of the Siberian snake and the 2MV solenoid have a repetition error of

σISnake = 1× 10−3 A and σI2MV Sol.
= 5× 10−4 A, respectively. Using Eq. (7.15) and neglecting

the uncertainty of the calibration constant of the Siberian snake and the 2 MV solenoid, the

statistical uncertainty on the Spin flip angle can be calculated as

σχSnake
= |ISnake|σISnake and σχ2MV Sol.

= |ISMV Sol.|σI2MV Sol.
. (7.118)

The orientation of the Invariant Spin Axis is given by

nx = −2.20(9) mrad and nz = 3.74(4) mrad. (7.119)

The spin kick angle of the RF Wien filter is

ψ0 = 1.871(3)× 10−6 rad, (7.120)

and the quality of the fit is given by

χ2

ndf
=

136.92

21
= 6.52. (7.121)

The initial spin tune, which enters the fit as a fixed parameter, is averaged over all cycles

contributing to the measurement of the Invariant Spin Axis for a particular map. For the data

shown in Figure 7.35, the initial spin tune histogram is shown in Figure 7.36. The averaged

value is

ν0
s = −0.160 973 363(1). (7.122)
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The statistical uncertainty of the averaged initial spin tune is neglected. A detailed discussion

of the results of the fits to the resonance strength is given in section 7.8.
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Figure 7.35.: Determination of the orientation of the Invariant Spin Axis for the fifth map
during the second Precursor run. Left: The resonance strength is plotted as a
function of the Wien filter rotation angle and the spin flip in the Siberian snake.
The minimum of the two-dimensional paraboloid marks the orientation of the
Invariant Spin Axis at the RF Wien filter. Right: Residuals.

7.6.4. Comparison of the Methods

The great advantage of the Pilot bunch method over the initial slope method is the reduced time

required to measure the orientation of the Invariant Spin Axis. While relative phase scans are

necessary for the initial slope method, the measurement of the resonance strength with the Pilot

bunch method requires only a single phase with a large amplitude of the vertical component

of the polarization. Additionally, the initial slope method limits the measurement time to the

buildup of the slope. Once the vertical component of the polarization becomes too large, the

spin tune is no longer measurable, and the phase feedback cannot adjust the relative phase

between the spin tune and the Wien filter frequency. Consequently, the remaining measured

data cannot contribute to determining the orientation of the Invariant Spin Axis. This issue is

particularly problematic when measuring the resonance strength at large Wien filter rotation

angles or during large spin flips in the Siberian snake.

Using the Pilot bunch method and the free oscillation of the vertical component of the polar-

ization of the signal bunch, the entire cycle time can be utilized to fit data, provided enough

particles survive until the end of the cycle. At larger angles, a better statistical uncertainty

on the map minimum and consequently on the orientation of the Invariant Spin Axis can be

achieved due to the larger leverage arm. This can be easily explained using Monte Carlo data.

In Figure 7.37, Monte Carlo data of the resonance strength is shown for both small and large

step sizes. The map minimum is set to nx = 1 mrad and nz = 5 mrad. The results of the statis-
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Figure 7.36.: Histogram of the initial spin tune for Precursor 2 Map 5. The averaged value is
given by |ν0

s | = −0.160 973 363(1). Note that the sign needs to be negative for
the fit function as the spin tune is in negative as shown in Eq. (4.37).

Table 7.10.: Comparison of the statistical uncertainty of the map minimum for different step
sizes.

dPoint = 0.01 rad dPoint = 0.04 rad

σnx / mrad 3.51× 10−5 8.76× 10−6

σnz / mrad 2.78× 10−5 6.97× 10−6

tical uncertainty of the map minimum using Monte Carlo data are summarized in Table 7.10.

The larger step size shows a significant difference in statistical uncertainty compared to the

smaller map size.

However, Monte Carlo studies in section 7.6.3.2 have shown that the oscillating vertical com-

ponent close to the minimum cannot be easily fitted, as the buildup cannot be distinguished

from a linear buildup. Close to the map minimum, the slope method can be used, as a lin-

ear buildup can be fit throughout the measurement time. Additionally, at larger fields in the

solenoids, fringe field components also increase, leading to additional systematic contributions

to the buildup of the polarization.

7.7. Experimental Overview

The COSY Beam Advisory Committee (CBAC) granted two measurement periods in 2018 and

2021 for the first direct determination of the deuteron Electric Dipole Moment. In the following

sections, an overview of these experimental periods is presented.
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Figure 7.37.: Comparison of the distance between the data points of the resonance strength
shows that if the distance is larger, the statistical uncertainty on the map mini-
mum decreases.

7.7.1. Precursor I

The first Precursor run took place in November/ December 2018. The measurement period of

four weeks marks the first direct measurement period of the deuteron Electric Dipole moment.

The Spin Coherence Time was optimized for 2.5 weeks and the Invariant spin axis was measured

in so-called maps. During the first Precursor Run, the switches gating one of the bunches in

the RF Wien filter were not installed, which means than only a single bunch was circulating in

the machine and only the initial slope measurement could be used to determine the orientation

of the Invariant Spin Axis. A measurement of a single maps takes approximately 2.5 days.

In total three maps were measured. The first map is the first reference map to determine

the Invariant spin axis. The second maps is a remeasurement of the first map and the final

map is a measurement closer to the minimum of the Invariant Spin Axis. All data was taken

using the WASA detector. In addition, also the Siberian snake was calibrated resulting in the

measurement of the longitudinal component of the Invariant Spin axis at the position of the

Siberian snake. An overview of the measured maps is given in Table 7.13. The table contains

the number of points per map, i.e. the number of different Siberian Snake currents and Wien

filter rotations, the method to determine the resonance strength, the number of relative phase

selections, the number of repetitions per relative phase (4 + 1 stands for four cycles using

polarized beam and a cycle using unpolarized beam), the Wien filter power and a final remark

for each measured map.

7.7.2. Technical Improvements in COSY

The first Precursor Run provided valuable input for improvements of COSY. Beam and spin

tracking simulations have shown that the experiment is highly sensitive to orbit deviations. To

improve the orbit, the so-called beam-based alignment method was carried out in September

2019, which is shortly discussed in section 7.7.2.1. In addition, a new method to match the

RF Wien filter fields was developed (cf. section 7.7.2.3), and the switches were added to the
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Wien filter resonant circuit to allow for the gating of the Pilot bunch. Additionally, the new

Jedi Polarimeter, which was installed in 2019, was used for the first time for the determination

of the Invariant Spin axis.

7.7.2.1. Beam-Based Alignment

Several beam and spin tracking simulation studies showed that maintaining an orbit close to

the design orbit is crucial to reduce systematic contributions from unknown magnetic fields

to the Invariant Spin Axis. To improve the precision of the orbit, a beam-based alignment

method is applied to align the magnetic centers of the quadrupole magnets and the BPMs.

This procedure requires mechanical alignment of the quadrupoles, which was achieved through

a surveying process by Vermessungsbüro Stollenwerk & Burghof with a precision of 200µm.

Detailed alignment data for all quadrupoles can be found in Reference [69].

By carefully moving the beam within a quadrupole and varying the quadrupole strength, the

magnetic center can be located, allowing for the identification of mechanical alignment errors

of beam position monitors. Utilizing the 31 BPMs, the centers of the 56 quadrupoles were

determined, and the offsets between the BPMs and quadrupoles were calculated, resulting in

better offset calibration of the BPMs. The calibration data for the beam position monitors is

summarized in Table A.1.

The horizontal and vertical orbits during the first and second Precursor runs are shown in

Figure 7.38. For the orbit data taken during the first Precursor Run, the BPM offsets (cf.

Table A.1) are subtracted to compare the results with the orbit data from Precursor 2. The

beam-based alignment campaign happened between these two experimental periods. The data

shown in the figure is averaged over multiple cycles, always evaluating the orbit at 200 s in the

cycle and averaging the orbit data for each beam position monitor. The resulting vertical and

horizontal orbit RMS values for both experimental periods are summarized in Table 7.11. In

both planes, the orbit RMS values improved significantly. The orbit RMS for the horizontal

and vertical plane is given by

∆xRMS =

√
1

nx

∑
i∈BPMs

x2
i and ∆yRMS =

√
1

ny

∑
i∈BPMs

y2
i , (7.123)

where xi and yi denote the beam position in the horizontal and vertical plane, measured using

the ith beam position monitor. The total number of horizontal and vertical orbit measurements

is given by nx and ny.

During the first Precursor period, a local vertical bump is visible at 110 m. This bump is used

to align the deuteron beam with the electron beam of the 100 kV electron cooler. After the

cooling process, the orbit correction is applied, bringing the beam close to the design orbit.

However, the steerers responsible for the local bump at the 100 kV cooler were not included in

the orbit correction for technical reasons. Therefore, this bump remained even after electron

cooling.

Figure 7.39 displays the applied steerer values for each vertical and horizontal steerer. While

the RMS values for the horizontal steerers remain in the same order of magnitude for both

experiments, the RMS for the vertical steerers improved significantly, decreasing by a factor of

approximately three. Nevertheless, significant improvements in the orbit have been observed
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Figure 7.38.: Comparison of the vertical and horizontal orbit before and after the beam-based
alignment in the cycle, along with the alignment campaign of the quadrupoles,
both measured at 200 s in the cycle, reveals a significant improvement in orbit
quality. This improvement is evident in the orbit RMS values listed in Table 7.11.

in both planes. Regarding the local bump at the 100 kV electron cooler, a considerable amount

of vertical steering is necessary, particularly at the vertical steerers near the electron cooler.

7.7.2.2. Alignment of the Siberian Snake

During the first Precursor Run in 2018, it was noticed that the Siberian snake acted as an

unwanted steerer, leading to orbit changes. The Siberian snake provides a longitudinal magnetic

field that is parallel to the beam momentum. Due to this parallelism, the force should be zero on

the beam. However, a slightly rotated magnetic field introduces magnetic field components not

parallel to the beam momentum direction, causing this measured steering effect. Consequently,

the orbit changes during the measurement itself, which also means a change of the Invariant

Spin Axis according to section 3.5.

Table 7.11.: Vertical and horizontal orbit RMS values of the orbit during the first and second
Precursor runs. The beam-based alignment and the alignment of quadrupoles
greatly improved the orbit.

Vertical Orbit RMS / mm Horizontal Orbit RMS / mm

Precursor 1 1.808 2.345

Precursor 2 0.398 0.731
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Figure 7.39.: Horizontal and vertical steerer value comparison for the two Precursor experi-
ments. The steerer strength scales with respect to the maximum value of the
power supply of the individual steerer.

The measurement of the alignment of the Siberian Snake solenoidal field was done in November

2020 and repeated in March 2021. The main part of this work was done by a previous PhD

student, Tim Wagner, at IKP.

The principal idea is based on changing the path of the beam through the magnet by applying

steerer kicks before and after the Siberian snake and measuring the change in orbit RMS before

and after switching on the Siberian snake magnet. After a few iterations, the optimal beam

path through the snake was found, and the snake was aligned accordingly. The rotation in the

horizontal plane was clockwise by 0.1445°, as observed from an overhead perspective. In the

vertical direction, the rotation was counter-clockwise by 0.1051°, viewed from the inside of the

ring. Additionally, there was a displacement of 1.385 mm towards the outer side of the ring

in the horizontal direction and a downward shift of 0.27 mm in the vertical direction. After

alignment, the orbit RMS change improved by a factor of 10 when ramping the solenoid (cf.

Table 7.12) [108].

Table 7.12.: The change in the root mean square (RMS) of the orbit in both the horizontal and
vertical directions is observed before and after switching on the Siberian snake to
15 A. Following the alignment of the snake with the magnetic axis of COSY, the
shift in orbit RMS tends to converge to a level comparable to that measured in
the absence of a Siberian snake [108].

Orbit Difference RMS
Horizontal Vertical

With Siberian snake before alignment 0.351 mm 0.337 mm
With Siberian snake after alignment 0.037 mm 0.020 mm
Siberian snake off, only COSY 0.022 mm 0.009 mm
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7.7.2.3. Improved Matching of the RF Wien Filter Fields

During the measurement of the in-plane polarization described in section 6.5, the event rates

of the upper and lower detectors are combined to cancel out the acceptance and luminosity

factors of the beam. When analyzing the count rates in the individual detectors, an interesting

effect can be found. When the electromagnetic fields inside the Wien filter do not exactly

cancel out the Lorentz force on the deuteron beam, the beam experiences a small kick either

by the electric or magnetic field, leading to small coherent oscillations of the beam. These beam

oscillations can be studied by performing a Fourier transformation of the signals measured with

the electrodes of beam position monitors. To enhance the sensitivity, a beam position is chosen

where the natural betatron amplitudes are large, which is in the case of COSY BPM 17. Beam

oscillation amplitudes close to the quantum limit of 0.077(32)µm have been found [109].

A different approach to quantify the matching of the RF Wien filter is by analyzing event

rate changes in the polarimeter. When the unmatched RF Wien filter induces coherent beam

oscillations, the number of deuterons hitting the carbon target in the polarimeter is periodically

changing by the frequency the Wien filter is kicking the beam fWF. The change of rate on the

carbon target is simultaneously measured in the four quadrants of the detector after scattering

on the carbon block. The rate of change can be mathematically expressed by adding an

oscillation term to the luminosity of the beam

LCOSY → LCOSY ·
(
1 + a cos (2πfWFt)

)
, (7.124)

where a denotes an amplitude, scaling with the oscillation amplitude of the beam. The oscilla-

tion beam amplitude parameter a cannot be trivially translated into an amplitude in standard

units as the parameter depends on beam position and vertical betatron oscillation amplitude.

For the analysis, only the relative change of the parameter when the RF Wien filter is switched

off and on is relevant. The oscillation frequency is given by the Wien filter frequency which is

equal to the spin tune when the phase feedback is keeping the phase between the Wien filter

frequency and spin tune constant, i.e., ωWF = ωs. In addition, the phase feedback ensures a

constant phase relation between the Wien filter frequency and spin tune. The event rates in

the individual detector quadrants are therefore given by

ṄUp ∝
(
1 + a cos(ωsn+ φrel.)

)
·
(
1− εUD cos(ωsn)

)
, (7.125)

ṄDown ∝
(
1 + a cos(ωsn+ φrel.)

)
·
(
1 + εUD cos(ωsn)

)
, (7.126)

ṄLeft ∝
(
1 + a cos(ωsn+ φrel.)

)
·
(
1 + εLR

)
, (7.127)

ṄRight ∝
(
1 + a cos(ωsn+ φrel.)

)
·
(
1− εLR

)
, (7.128)

with εLR = 3
2pVAy, εUD = 3

2pxzAy and the dot denotes the time derivative, i.e. the counting

rate (dN/dt). The expected Fourier amplitudes at the frequency of the Wien filter and spin tune

in the left and right detector quadrants can be trivially calculated as

A�(ω = ωWF = ωs) = a. (7.129)

The amplitude of the Fourier spectra in the left and right detectors at the spin tune as a function

of time in the cycle are shown in Figure 7.41 (left and right panel). As soon as the Wien filter is

switched on at 155 s, the unmatched Wien filter starts to periodically kick the beam resulting
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in beam oscillations which are measured in the detectors. Note that the amplitude at low

amplitudes is biased because of the fitting procedure discussed in section 6.5. The measured

amplitudes in the upper and lower quadrants are more complicated as they overlap with the

oscillating signal from the spin tune. The count rates in the up and down detectors are given

by

Ṅ↑↓ ∝
(
1 + a cos(ωsn+ φrel.)

)
·
(
1∓ εUD cos(ωsn)

)
, (7.130)

with ωs = 2πνs. Multiplication leads to

Ṅ↑↓ ∝ 1∓ εUD cos(ωsn) + a cos(ωsn+ φrel.)∓ aεUD cos(ωsn) cos(ωsn+ φrel.). (7.131)

Performing a Fourier transform leads to peaks at ω = 0, ω = ωs, and ω = 2 · ωs.2 Relevant is

the peak at the spin tune. Ignoring the other terms gives

Ṅ↑↓ ∝ ∓εUD cos(ωsn) + a cos(ωsn+ φrel.)

= a
(

cos(ωsn) cos(φrel.)− sin(ωs) sin(φrel.)
)
∓ εUD cos(ωsn)

= cos(ωsn) · (a cos(φrel.)∓ εUD)− a sin(ωsn) sin(φrel.). (7.132)

The Fourier amplitudes at the spin tune are given by

A↑↓(ω = ωs) =

√
(a cos(φrel.)∓ εUD)2 + a2 sin(φrel.)

2

=
√
a2 + ε2UD ∓ 2aεUD cos(φrel.). (7.133)

The amplitudes in the individual detectors depend on the horizontal polarization εUD, the beam

oscillation amplitude a, and the phase between beam oscillations and spin tune precession φrel..

The phase φrel. is a value that is fixed by the operators before starting the measurement and

remains constant throughout the measuring time. The overlap of beam oscillation amplitude

and spin tune amplitude is shown in Figure 7.40. The upper and lower panels show the

amplitude of the Fourier spectra in the up and down detector at the spin tune as a function of

time in the cycle are shown in Figure 7.41.

As a final consequence, signals mimicking in-plane polarization can be detected even in unpo-

larized cycles. The count rates in the individual detectors are given by

ṄUp ∝ 1 + a cos (ωWFn) , (7.134)

ṄDown ∝ 1 + a cos (ωWFn) , (7.135)

ṄLeft ∝ 1 + a cos (ωWFn) , (7.136)

ṄRight ∝ 1 + a cos (ωWFn) . (7.137)

A Fourier transformation of Eq. (7.134) to Eq. (7.137) leads to a Fourier amplitude directly

related to the beam oscillation amplitude parameter a

A�(ω = ωWF
!

= ωs) = a, (7.138)

A↑↓(ω = ωWF
!

= ωs) = a. (7.139)

2cos(a) cos(b) = cos(a−b)+cos(a+b)
2

.
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The findings of the Fourier amplitudes in the individual detectors triggered the idea of a

new tool monitoring the periodic change of luminosity while data taking. During the second

Precursor run, the new tool was used for the first time to properly match the RF Wien filter

fields, minimizing the beam oscillation amplitude. For the tool, not the individual detectors

are relevant but the sum of the count rates in the individual detectors as polarization effects

cancel out

Ṅsum = ṄUp + ṄDown + ṄLeft + ṄRight (7.140)

∝ 4 ·
(
1 + a cos(ωWFt+ ϕWF)

)
. (7.141)

By performing a Fourier transformation of Eq. (7.141) and scaling by the total number of

events per chosen time bin, i.e., Nsum = NUp +NDown +NLeft +NRight, the Fourier amplitude

does not depend on the polarization or feedback settings

Asum(ω = ωWF = ωs) = a. (7.142)

In addition, also the highest accuracy is reached as all detector events can be used to determine

the beam oscillation amplitude parameter a. The Fourier amplitude of all combined detector

events as a function of time in the cycle is shown in the middle panel of Figure 7.40.
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Figure 7.40.: Fourier amplitudes of the event rates measured at the RF Wien filter frequency (=
spin tune) measured individually at the detector quadrants. The upper and lower
quadrants measure an overlap of the horizontal polarization and the beam oscil-
lation amplitude. The overlap becomes visible when the Wien filter is switched
on at 155 s (dotted black line). The left and right detectors show a similar sig-
nal which is directly given by the beam oscillation amplitude. The panel in the
middle shows a combination of all detector events.
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In Figure 7.41, the beam oscillation amplitude a is shown as a function of time in the cycle.

In both panels, the RF Wien filter is switched on at 155 s. The left panel depicts data taken

during the first Precursor period before the new online tool was developed. A clear jump is

visible at tWF = 155 s, when the RF Wien filter is switched on. The right panel shows data

from the second Precursor experimental period when the Pilot bunch method is used. Both,

the unaffected Pilot bunch and the Signal bunch show no effect when the RF Wien filter is

switched on, which means that the Wien filter fields are matched more precisely.

In section 8.1 analytical calculations are presented which prove, that beam oscillations don’t

influence the buildup of the vertical spin component.
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Figure 7.41.: Comparison of the beam oscillation amplitude measured at the polarimeter during
the first (left) and second (right) Precursor run. The matching of the RF Wien
filter fields for both bunches significantly improved for the second experimental
period. The dashed black line marks the time when the RF Wien filter is switched
on (tWF = 155 s).

7.7.3. Precursor II

After alignment campaigns by Stollenwerk, the Beam-based alignment calibrations of the Beam

position monitors, and the installation and commissioning of the switches into the RF Wien

filter for the Pilot bunch method, as well as the new Jedi Polarimeter Jepo, the second Precursor

Run took place in spring 2021. For the Pilot bunch method, two polarized deuteron bunches

are required, meaning that for all experiments, two bunches were circulating in COSY. The

optimization of Spin Coherence Time took five days. After that, the initial slope method was

used to determine the orientation of the Invariant Spin Axis in two consecutive maps, repeating

the experimental method from the first experimental Precursor run. The Pilot bunch method

was used for the first time during Map 3, where the relative phase was changed to observe

the sinusoidal effect on the oscillation amplitude of the vertical polarization. During Map 4

and Map 5, the relative phase was kept constant to gain statistics for the experiment. In

addition, two final maps were taken in which the 2MV solenoid was kept at two different

constant currents to benchmark models with two static solenoids in the ring. The beam time
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ended with dedicated cycles to calibrate both the Siberian snake and the 2 MV solenoid. A

summary of all maps is given in Table 7.13.

7.8. Results

A summary of all measurement results of the orientation of the Invariant Spin Axis is shown in

Figure 7.42. The first three data points show the results of the Invariant Spin Axis measured

in 2018 during the first Precursor run and the seven remaining data points were taken during

the second Precursor Run in 2021. The dotted black line separates the data sets collected in

2018 and 2021. During the first Precursor Run, only the initial slope method was used. For

the first two maps of the second Precursor Run, the initial slope method was used but for two

bunches co-rotating in the ring in preparation for the remaining maps where the Pilot bunch

method was applied. While relative phase scans were performed during the third map to prove

the method of the Pilot bunch, the relative phase was kept fixed during Map 4 and Map 5 to

collect statistics. During Map 6 and Map 7, the 2 MV solenoid in the first straight section of

COSY after injection, which is placed 8 m in front of the RF Wien filter, was used in addition

to the Siberian snake as an additional spin rotator providing a longitudinal magnetic field.

The exact meaning of the parameters summarized in Figure 7.42 is derived in section 7.6.1,

Eq. (7.56). The description of the parameters is listed in Table 7.7. The upper panels in Fig-

ure 7.42 show the orientation of the Invariant Spin Axis in the radial and longitudinal direc-

tions. The predictions of the orientation of the Invariant Spin Axis are derived in section 4.2.1.

According to the Thomas-BMT equation, the Electric Dipole Moment leads to a tilt of the

Invariant Spin Axis in the radial (x) direction, while the longitudinal component (z) remains

unaffected. Any other tilts are purely related to systematics like unwanted magnetic fields and

orbit imperfections

nx = φEDM + nsys.
x and nz = nsys.

z . (7.143)

The averaged tilts of the Invariant Spin Axis for the first Precursor experiment are given by

nPrec. 1
x,avg. = −3.6(3) mrad and nPrec. 1

z,avg. = −5.5(5) mrad, (7.144)

and for the second Precursor experiment by

nPrec. 2
x,avg. = −2.1(12) mrad and nPrec. 2

z,avg. = 3.9(6) mrad. (7.145)

A final discussion of the tilt of the Invariant Spin Axis is given in section 7.9. The use of

the Pilot bunch can be also seen in in the lower left panel in Figure 7.42. While for the

measurements using the Initial slope method the spin kick angle per turn is in the order of

approximately 2.8× 10−6 rad, the spin kick angle is reduced to roundabout 1.9× 10−6 rad. The

power on the RF Wien filter was reduced during the experiment to protect the switches in the

driving circuit which are gating the Pilot bunch. These switches were not in use during the

initial slope method. A smaller power means also less fields and hence a smaller kick angle in

the RF Wien filter according to Eq. (D.12).

The reduced chi-squared for the individual maps is shown in the lower right panel in Figure 7.42.

It has to be noted that the fit quality of the maps improved drastically from the first Precursor

experiment to the second, which can almost certainly be related to the improvements in the
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Figure 7.42.: The panels depict the fit results according to Eq. (7.56) for all measured maps
listed in Table 7.13. The upper two panels show the measured orientation of the
Invariant Spin Axis. The lower panel depicts the spin kick angle in the RF Wien
filter per turn, and the lower right panel shows the reduced chi-squared. The
dashed black line separates the dataset from 2018 from the dataset from 2021.

machine listed in section 7.7.2. However, the reduced chi-squared remains at a high level,

which means that there are still systematic effects on the buildup that are not included in

the analytical fitting procedure. Any larger systematic shifts of the map minimum can be

excluded when looking at Figure 7.43. The data shows the slope of the buildup of the vertical

polarization scaled by the revolution frequency as a function of the relative phase at a data

point close to the map minimum of Precursor 1 Map 3. The settings of the Wien filter rotation

angle and the spin flip in the Siberian snake are given by

φWF = −3.695 mrad and χSnake = −6.175 mrad. (7.146)

According to the fit, the map minimum is given by

nx = −3.15(5) mrad and nz = −6.06(3) mrad. (7.147)

As the oscillation amplitude at the map minimum is almost consistent with a zero amplitude,

the settings of the Wien filter rotation angle and the spin flip in the Siberian snake listed in

Eq. (7.146) have to align the magnetic field of the RF Wien filter with the orientation of the

Invariant Spin Axis.
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Figure 7.43.: Measurement of the resonance strength close to the map minimum. As indeed
almost a zero resonance strength is measured, no large systematic shifts of the
map minimum (and hence the Invariant Spin Axis) are expected from systematics
in the fitting procedure.

7.8.1. Event Selection Studies

An introduction to the Event Selection Studies is given in section 6.3. After selecting data

in the head and tails and the center of the distribution of the COSY phase, the resonance

strength is either determined using the Pilot bunch method or the Initial slope method for

both data sets independently. The results for the first Precursor experiment are shown in

Figure 7.44. Regarding the orientation of the Invariant Spin Axis in radial and longitudinal

directions and the reduced chi-squared, no larger effects are visible. However, the spin kick

angle in the RF Wien filter per turn is significantly reduced in the head and tails of the COSY

phase distribution compared to the data located in the center. The significantly smaller spin

kick angle is most certainly related to a larger relative phase distribution in the bunch for larger

synchrotron oscillation amplitudes. According to Eq. (7.65), the slope of the build is given for

the initial slope method by

α̇ = −2πεfCOSY cos(axz − φrel.,0). (7.148)

The Event Selection Studies presented in section 7.4.4 revealed a consistent spin tune along

the bunch. However, as the RF Wien filter is a stroboscopic device, the relative phase in the

head and tails experience a different phase relation than the particles in the bunch center. In

consequence, the relative phase is smeared out, leading to a larger width in the relative phase

distribution and hence a smaller buildup of the vertical polarization. The smeared-out phase

has no effect on the map minimum of the measured data.

The same finding can be also seen in the data taken in 2021 during the second Precursor

experiment as shown in Figure 7.45.
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Figure 7.44.: Event Selection Studies results for the data taken during the first Precursor Run.
The upper panels show the orientation of the Invariant Spin Axis in radial (left)
and longitudinal (right) directions. The lower panels depict the spin filp angle in
the RF Wien filter and the reduced chi-squared of the individual fits.
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Figure 7.45.: Event Selection Studies results for the data taken during the second Precursor
Run. The upper panels show the orientation of the Invariant Spin Axis in radial
(left) and longitudinal (right) directions. The lower panels depict the spin filp
angle in the RF Wien filter and the reduced chi-squared of the individual fits.
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7.9. Summary & Discussion

In the following section, the findings of the previous sections are again summarized and dis-

cussed. The results of the orientation of the Invariant Spin Axis at the Siberian snake, the

2 MV solenoid, and the RF Wien filter are given in Figure 7.46.

Siberian Snake 2018 2021

𝑛𝑧, Snake / mrad 0.53(2) −0.057(1)

2MV Solenoid 2018 2021

𝑛𝑧, Sol / mrad −0.0705(9)

WF 2018 2021

𝑛𝑥,WF / mrad −3.6(3) −2.1(12)

𝑛𝑧, WF / mrad −5.5(5) 3.9(6)

Figure 7.46.: Summary of the determination of the orientation of the Invariant Spin Axis at the
Siberian snake, the 2 MV solenoid and the RF Wien filter for both experimental
periods. Created by Jamal Slim/ JEDI Collaboration and adapted by this author.

The findings in the previous sections can be summarized as follows:

1. Spin tune scans presented in section 7.4.3 showed an improvement of the longitudinal

component of the Invariant Spin Axis from 5× 10−4 rad (Precursor 1) to −5× 10−5 rad

(Precursor 2). Note that from the Thomas BMT equation (4.22), no tilt of the Invariant

Spin Axis in longitudinal direction is expected in an idealized storage ring. A non-zero

tilt is directly related to unknown systematic effects in the COSY. The improvement

by an order of magnitude can be attributed to all the improvements in COSY listed in

section 7.7.2 between both experimental periods. These results are consistent with beam

and spin tracking simulations by Maximilian Vitz [104], which include all misalignments

of magnets in COSY. The spin tune scans extracted from the RF Wien filter scans are

consistent with the dedicated solenoidal calibration cycles, proving that switching on the

RF Wien filter does not change the spin tune and consequently also not the orientation

of the Invariant Spin Axis. Additionally, the Pilot bunch method wouldn’t work if the

RF Wien filter changes the spin precession frequency.

2. Mapping of the resonance strength using the RF Wien filter revealed much larger tilts in

radial and longitudinal direction of the Invariant Spin Axis as expected. Furthermore, the

sign of the longitudinal component of the Invariant Spin Axis switched between the data
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from 2018 and 2021. The switch in sign remains unexplainable. Beam and spin tracking

simulations by Maximillian Vitz that include all known sources of systematics, imperfec-

tions, and misalignments of magnetic elements can only explain tilts of the Invariant Spin

Axis in the radial and longitudinal directions along the ring no larger than 1 mrad [104].

Moreover, the effects on the Invariant Spin Axis of unwanted radial or longitudinal fields

would be measurable throughout COSY, including both solenoids. Local tilts in front

of and after the RF Wien filter can only be generated with symmetric, canceling fields

before and after, like an orbit bump. Such an orbit bump was not measured.

3. The reduced χ2 of the individual map fits are large, which means that the unsystematic

uncertainties are dominating the results. On the other side, the reduced χ2 to determine

the resonance strength for a fixed setting of the RF Wien filter rotation angle and the

spin flip in the Siberian snake are reasonable as shown in Figure 7.24. Systematic shifts

of the minimum due to systematic shifts of the resonance strength can still be excluded,

as measurements of the resonance strength at the map minimum result in no buildup of

vertical polarization, as shown in Figure 7.43. Additionally, the buildup of vertical po-

larization without the Siberian snake and/or the 2 MV solenoid is significant. Therefore,

solenoidal imperfections cannot explain the large tilts of the measurements.

4. Event Selection Studies showed no inconsistent spin rotations along the longitudinal

particle distribution in the bunch for the spin tune as well as the resonance strength

maps, as shown in section 7.4.4 and 7.8.1.

As already discussed, the Invariant Spin Axis should have no component in the longitudinal

direction around the ring, and a radial tilt would be the result of a permanent Electric Dipole

Moment. The fact that the tilts in both directions are of the same order of magnitude is a

clear hint that no Electric Dipole Moment, but unknown systematic effects, are the reason for

these large tilts. Three options are valid to explain the large tilts:

• The measured tilts are real and correctly measured at the RF Wien filter. In this case,

a systematic effect rotating the Invariant Spin Axis in the longitudinal direction before

and after or inside the RF Wien filter needs to be identified; otherwise, the tilts wouldn’t

be as small as at both solenoids, also given the fact that the RF Wien filter and the

2MV solenoid are only 8 m apart. A local, vertical orbit bump, or an effect induced by

the Wien filter while it is on, cannot be excluded at the moment. The orbit bump angle

needed corresponds to a 5 mrad tilt of the beam. In addition, the change of sign of the

longitudinal component of the Invariant Spin Axis still needs to be explained.

• Another option is that the spin tune scans with the solenoids are wrong. However,

measurements at both solenoids would need to be consistently wrong. Additionally, spin

tracking simulations by Maximilian Vitz [104] benchmarked the method.

• The tilts are caused by unknown systematic effects, meaning that the measured tilt of the

Invariant Spin Axis does not correspond to the true orientation of the Invariant Spin Axis.

Systematic effects from the fit can be excluded, as no buildup of the vertical polarization

is measured at the minimum of a map. One option is the direction of the field axis in

the Wien filter. If the magnetic field of the RF Wien filter is tilted, correction factors

have to be applied in Eq. (7.56) and (7.57). The necessary tilt needs to be in the order

of 5 mrad.
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8.1. Systematic Calculations on the Buildup of the Vertical

Polarization considering Beam and RF Wien Filter

Misalignments

These calculations are based on an internal note Analytic calculation of various tilt effects in

the WF of Volker Hejny [110].

So far, the assumption that the magnetic field and beam direction are perpendicular is used to

calculate the spin rotations in the RF Wien filter. Taking this factor into account, the Magnetic

Dipole Moment contribution of the T-BMT Equation to the motion of the spin is given by

~Ω = − q

m

[(
G+

1

γ

)
~B − γG

γ + 1
~β
(
~β · ~B

)
−
(
G+

1

γ + 1

) ~β × ~E

c

]
. (8.1)

Using the Wien filter condition
~E = −c~β × ~B, (8.2)

the last term can be written as

~β × ~E = −c~β × (~β × ~B) = −c~β
(
~β · ~B

)
+ cβ2 ~B. (8.3)

Using this relation, Eq. (8.1) can be written as

~Ω = −qB(1 +G)(1− β2)

m
[~eB + (γ − 1)~eβ (~eβ · ~eB)] . (8.4)

Evaluating Eq. (8.4), it can be directly seen that radial tilts of the beam (δ1) or the RF Wien

filter (δ2) don’t have an impact on the buildup of the vertical component

~eβ =

 sin(δ1)

0

cos(δ1)

 and ~eB =

 sin(δ2)

cos(δ2)

0

 δ1�1,δ2�1⇒ ~eβ · ~eB ≈ 0, (8.5)

ignoring all terms of second order. Reasonable estimates for beam tilts and RF Wien filter

tilts are in the order of 1 mrad, which justifies this approximation. In this case, Eq. (8.4)

corresponds to Eq. (D.12) which leads to the calculations presented in section 7.6. However,

vertical beam and RF Wien filter tilts have an impact on the buildup of the vertical polarization

component.
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The phase feedback adjusts the frequency and the relative phase of the oscillating Wien filter

fields to the spin tune

B = B0 sin
(
ωst+ φabs.

WF

)
with ωs = 2πνsfCOSY. (8.6)

Taking the in-plane precession as well as a vertical component of the spin into account, the

spin vector can be written as

~S =

 cos(α) cos(ωst)

sin(α)

cos(α) sin(ωst)

 , (8.7)

where α denotes the angle between vertical and horizontal polarization. In the case of a vertical

beam tilt (δ1) and a vertical magnetic field (δ2), the momentum vector and the magnetic field

axis vector can be written as

~eβ =

 0

sin(δ1)

cos(δ1)

 ≈
 0

δ1

1

 and ~eB =

 0

cos(δ2)

sin(δ2)

 ≈
 0

1

δ2

 . (8.8)

In this case, the Magnetic Dipole Moment contribution to the spin can be written as

~Ω = −qB(1 +G)(1− β2)

m
[~ey + γδ1~ez + (γ − 1)δ2~ez] . (8.9)

The change of the vertical component of the spin can be calculated using the cross product of

Magnetic Dipole Moment rotation and spin

dSy
dt

=
(
~Ω× ~S

)
y

(t) (8.10)

= −qB0(1 +G)(1− β2)

m
(γδ1 + (γ − 1)δ2) cos(α) cos(ωst) sin

(
ωst+ φabs.

WF

)
. (8.11)

By averaging over a full spin precession period T = 2π/ωs = 1/fs, the average net change of the

vertical polarization component can be calculated

¯dpy
dt

=
1

T

∫ T

0

dSy
dt

(t)dt (8.12)

=
ωs
2π

∫ 2π
ωs

0

dSy
dt

(t)dt (8.13)

= −qB0(1 +G)(1− β2)

2m
(γδ1 + (γ − 1)δ2) cos(α) sin

(
φabs.

WF

)
. (8.14)

While the buildup of the vertical polarization remains unchanged for radial imperfections of

the RF Wien filter or the beam, longitudinal tilts of the beam or magnetic field axis have an

impact on the buildup of the vertical component of the spin vector. In this case, the measured

longitudinal component of the Invariant Spin Axis does not correspond to the real longitudinal

component but needs to be corrected for vertical beam tilts and longitudinal RF Wien filter

misalignments

ntrue
z = nmeas.

z − (γδ1 + (γ − 1)δ2) . (8.15)
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Note that the impact of a misaligned beam is larger (γ ≈ 1.1258) than the impact of a mis-

aligned RF Wien filter (γ − 1 ≈ 0.1258). These results are benchmarked by spin tracking

simulations by Maximillian Vitz [104]. Unfortunately, there is little information available on

the beam tilts at the location of the RF Wien filter and tilts of the device itself. However,

reasonable estimates are in the order of 1 mrad and smaller for the beam tilt at the RF Wien

filter. For larger beam tilts, the device couldn’t be matched. The tilt of the device itself is

expected to be even smaller. In addition, the measured tilts of the Invariant Spin Axis in

the radial direction, which are not affected by tilts of the beam or the RF Wien filter, are in

the same order of magnitude as the measured tilts in the longitudinal direction. Therefore,

longitudinal tilts of the beam or the RF Wien filter cannot explain the measured tilts of the

Invariant Spin Axis at the location of the RF Wien filter.

The formalism described in this section can also be used to study the effects of beam oscilla-

tions on the buildup. When the RF Wien filter fields are not properly matched, they induce

beam oscillations as described in section 7.7.2.3. These oscillations can be described with an

oscillation of the beam momentum direction. The frequency of these oscillations is given by

the Wien filter frequency, which is adjusted to the spin tune

δ1(t) = δ0 sin
(
ωst+ φabs.

WF

)
. (8.16)

By inserting the oscillating beam parameter into Eq. (8.11) and integrating over a full oscilla-

tion period of the polarization, the dependence on the oscillation drops out. Therefore, these

beam oscillations don’t have a direct impact on the buildup of the vertical component of the

spin vector.

8.2. Measurement of the Solenoidal Field Directions

A possible solution for the change of sign of the Invariant Spin Axis in the longitudinal direction

(cf. section 7.8) could be the change of polarity of the power supply attached to the Siberian

snake. A switch in polarity would result in an opposite field direction and thus the Invariant

Spin Axis would rotate in the opposite direction. A switch in polarity could occur due to a

change of power supply between the two experiments. To exclude such an effect, the magnetic

field direction measured by a Hall probe, which is installed close to the Siberian snake, is

analyzed. The results are shown in Figure 8.1. The first three rows show the magnetic field

direction in the x, y, and z directions. The directions are defined by the orientation of the Hall

probe. The last row represents the applied current in amperes to the solenoid as a function of

time. The left column shows data from the first Precursor Run in 2018, and the right column

shows data from the second Precursor Run in 2021. In both examples, the snake is ramped to

positive values (5.44 A and 4 A). When ramping the snake, the magnetic field changes in both

measurement periods in the same directions, meaning that the polarity of the power supply

was not switched between the two experiments, assuming that the Hall probe was not rotated

in between. Note that the absolute magnetic field does not have to be equal as the Siberian

snake is ramped to two different values. In addition, the Hall probe is not calibrated against

a zero magnetic field, which is not important as only relative changes are relevant for this

measurement.
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Figure 8.1.: Magnetic field measurements with a Hall probe close to the Siberian snake were
conducted for two measurement periods during Precursor I and II. The Hall probe
tends toward the same values for positive snake current. Assuming that the Hall
probe was not rotated between the experiments, the polarity of the power supply
attached to the Siberian snake was not changed.

In addition, the field directions of the Siberian snake and the 2MV solenoid are also measured

with respect to the beam direction. For the measurement at the 2MV solenoid, the measure-

ment position is outside the iron, and thus the return field direction is measured. Due to

quadrupole stray fields, it was not possible to measure the field at the exit of the solenoid.

For an applied current of −20 A, the south pole points in beam direction while the north pole

points against the beam direction, and vice versa for an applied current of 20 A. At the Siberian

snake, the measurement position is directly at the beam pipe at the exit of the Siberian snake,

meaning that the actual field direction is measured. For a current of −6 A, the north pole

points in the beam direction while the south pole points against the beam direction, and vice

versa for a current of 6 A. The conclusion of these measurements is that in both solenoids, the

fields point in the same direction for positive currents and vice versa. This is important for the

spin rotation calculations in section 7.6.1.
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8.3. RF Wien Filter Field Studies

Another reason behind the significant tilt angles observed in the Invariant Spin Axis, as sum-

marized in section 7.8, could stem from unknown magnetic field components within the RF

Wien filter. In Eq. (7.56), the buildup of the vertical vector spin component is calculated

assuming precise knowledge about the orientation. However, unknown field components would

lead to a correction of the fit formula.

During the Precursor runs, the direction of the Invariant Spin Axis is determined by align-

ing the Magnetic Dipole Moment rotation axis with the magnetic field axis of the RF Wien

filter. In this setup, no spin rotation from the in-plane precession to the vertical direction is

detectable. In an ideal scenario with a Wien filter, the Magnetic Dipole Moment rotation axis

aligns with the magnetic field axis, pointing vertically. Typically, this axis is defined by the

geometric configuration and operational parameters of the Wien filter. While simulations of

the RF Wien filter fields indicate that uncertainties in field directions ( ~B and ~E) are below a

mrad [88, 111, 112], experimental confirmation during a dedicated experiment is needed.

As the RF Wien filter was still installed in COSY during the period of this thesis, a direct field

measurement was not possible. Instead, a measurement idea based on the excitation of vertical

and horizontal betatron oscillations using the RF Wien filter was developed and tested, which

will be further discussed in the upcoming sections.

8.3.1. Initial Idea of Measuring the Wien Filter Fields Orientation

In the actual Precursor experiments involving a polarized beam and a properly matched RF

Wien filter (ensuring negligible Lorentz force), the Wien filter does not influence the orbit.

However, even a slight deviation from this match would induce coherent beam oscillations

at the operational frequency of the Wien filter, typically around 871 kHz, as observed in our

measurements, which revealed oscillation amplitudes in the order of 1µm [109], which is further

discussed in section 7.7.2.3.

In this proposed approach, a different strategy by intentionally mismatching the Wien filter

fields is used. The resulting Lorentz force reveals the orientation of the combined ~B and ~E

fields by exciting the betatron frequencies. The main assumption is that the directions of the

betatron oscillation planes should be mainly defined by the alignment of the quadrupoles, which

is, after the beam-based alignment campaign, below 1 mrad. By running the RF Wien filter at

the betatron resonance of Qx or Qy (depending on the orientation of the magnetic field and the

Lorentz force), the betatron oscillation amplitudes are excited similar to a harmonic oscillator

which is excited with a sinusoidal force, leading to beam losses due to the acceptance limit of

the beam pipe of COSY. The beam excitation (and, thus, the beam loss) should be minimal

when the Lorentz force is perpendicular to the corresponding betatron plane. Therefore, the

vertical and horizontal betatron frequencies need to be well separated. By slowly rotating

the RF Wien filter (and, thus, the Lorentz force) around the beam pipe, the beam loss rate

quantity can be probed for different Lorentz force angles. In simple words, if the magnetic

field points in the vertical direction, the Lorentz force acts in the horizontal plane. As the

oscillation frequency is adjusted to the vertical betatron tune, the horizontal betatron remains

unaffected, and no resonance occurs. By rotating the RF Wien filter, the Lorentz force gains

additional vertical components which resonate with the vertical tune and excite the beam.
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As the betatron oscillation amplitudes grow over time, the beam starts to hit the beam pipe,

resulting in beam loss. Using this method, only a potential correction factor for the radial

component of the Invariant Spin Axis can be found. The longitudinal component cannot be

probed.

For probing the vertical magnetic field axis, the Wien filter frequency needs to be adjusted to

a sideband frequency of the vertical betatron tune, as in Eq. (6.55)

BWF = |B| sin
(

2πfWF + φabs.
WF

)
with fWF = fCOSY(1 + frac(Qy)), (8.17)

where frac(Qy) denotes the fractional vertical tune. This scenario is depicted in Figure 8.2.

Similarly, the horizontal betatron tune frequency can be used to probe the magnetic field

direction of the RF Wien filter. By rotating the magnetic field of the RF Wien filter into the

accelerator plane, the Lorentz force points in the vertical direction. By adjusting the oscillation

frequency to a fractional part of the horizontal betatron tune and rotating the magnetic field,

the orientation can be measured in the same way as in the vertical magnetic field case. This

scenario is shown in Figure 8.3. The magnetic field is given by

BWF = |B| sin
(

2πfWF + φabs.
WF

)
with fWF = fCOSY(1 + frac(Qx)). (8.18)

Figure 8.2.: Measuring scheme of the vertical magnetic field direction. The betatron oscillations
take place in the vertical and horizontal directions. The vertical magnetic field
oscillates with the same frequency as the vertical betatron tune. The Lorentz force
points perpendicular to the vertical magnetic field. By rotating the Wien filter, the
Lorentz force gets a vertical component which resonates with the vertical betatron
tune.

For technical and cost reasons, protons are chosen to run the experiment. The plan is to

maintain the operation of the RF Wien filter similar to that during the Precursor beam times

with polarized deuterons. Since the RF Wien filter frequency during the Precursor beam times
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Figure 8.3.: Measuring scheme of the horizontal magnetic field direction. The betatron oscil-
lations take place in the vertical and horizontal directions. The horizontal mag-
netic field oscillates with the same frequency as the horizontal betatron tune. The
Lorentz force points perpendicular to the horizontal magnetic field. By rotating
the Wien filter, the Lorentz force gets a horizontal component which resonates
with the horizontal betatron tune.

is approximately 871 kHz, the momentum of the proton beam must be adjusted to match

the betatron resonance with the RF Wien filter frequency. Assuming a tune of 0.56, the

proton beam revolution frequency is 558 kHz, with a kinetic energy of 60 MeV, and the proton

momentum at 341 MeV/c, with β = 0.346. At this proton energy, the corresponding electron

energy for electron-cooled protons is around 34 keV for the 100 kV electron cooler. Operating

at this energy automatically detunes the RF Wien filter due to different Lorentz β factors

(0.346 vs. 0.459), allowing the RF Wien filter to be operated with the same parameters as

in the Precursor runs. During all experiments, the RF Wien filter is powered at a power of

222 W.

8.3.2. Measurement of the Orientation of Betatron Planes

The main observable is the exponential loss of the number of particles when the RF Wien filter

is switched on depending on the orientation of the magnetic field direction of the RF Wien filter

with respect to the respective betatron oscillation plane. The loss of beam current is shown

in Figure 8.5. The initial beam loss comes from the orbit correction and acceleration of the

proton beam. At 45 s in the cycle, the RF Wien filter is switched on the resonance frequency

of the betatron frequency which is supposed to be analyzed resulting in an extra loss. At 80 s

in the cycle, the RF Wien filter is switched off. The beam current is saved at a rate of 10 Hz

per second and for further analysis processed into bins of one second. The fit function is given

by

Np(t > tWF) = Np(t = tWF) exp(τt) +Np(t = tWF Off). (8.19)
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The beam loss parameter is given by τ . To avoid a regression of an exponential model, the

rebinned data is logarithmized changing the exponential fit model to

ln(Np(t > tWF)) = ln
(
Np(t = tWF) exp(τt) +Np(t = tWF Off)

)
(8.20)

= τt+ ln (Np(t = tWF) ·Np(t = tWF Off)) , (8.21)

i.e., a linear model where ln (Np(t = tWF) ·Np(t = tWF Off)) denotes the offset and the beam

loss rate τ denotes the slope. In consequence, the binned beam current data needs to be

logarithmized

Np → ln(Np) and σln(Np) =
σNp
Np

. (8.22)

An example of the beam loss determined from logged binned beam current data is shown in

Figure 8.6. To guarantee a stable fitting procedure of the beam loss, the latter method is used

for data fitting.

To find the RF Wien filter frequency, the vertical and horizontal betatron tune is constantly

measured at the following BPMs: 10, 20, and 22, which are marked in Figure 5.4. In Figure 8.4,

an example of a tune measurement is shown at BPM 22 at 43 s in the cycle. The two panels

show the frequency spectra for the horizontal and vertical tunes along with a Gaussian fit, to

determine the value of the horizontal and vertical betatron tunes. The fit is performed during

the measurement and saved to the COSY archiver. For a succesful measurement, the vertical

and horizontal betatron tunes need to be well separated of the orientation of the RF Wien

filter minimizing the beam loss rate.
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Figure 8.4.: Example of tune measurements of the horizontal (left) and vertical (right) betatron
tune at BPM 22 at 43 s in the cycle. The Fourier spectra are fitted using a Gaussian
model to determine the horizontal and vertical tunes.

In Figure 8.7, the first measurement of the experimental method is shown. During this mea-

surement, the magnetic field points in the horizontal direction, and the Wien filter frequency is

adjusted to the horizontal betatron tune. The scenario corresponds to the sketch in Figure 8.3.

A Wien filter rotation angle of 0 mrad as shown in Figure 8.7 points into the accelerator surface.

By rotating the RF Wien filter out of the accelerator plane, the beam loss rate τ varies in a

parabola. For each rotation angle of the RF Wien filter, the beam loss rate is measured three

times. The data points show the average calculated from the single measurement cycles. For
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the measurements, the RF Wien filter direction was previously calibrated with respect to the

COSY plane as described in section 7.5.. The uncertainty of the RF Wien filter rotation angle

is given by σφWF = 0.24 mrad. The minimum beam loss rate is achieved at an RF Wien filter

rotation angle of

φWF
min. = (−5.9± 0.5) mrad, (8.23)

for the Wien filter in MDM (=horizontal magnetic field) mode.

In Figure 8.8, the measurement with the magnetic field pointing perpendicular to the acceler-

ator plane is shown. A Wien filter rotation angle of 0 mrad corresponds to a vertical magnetic

field, which is the configuration of the RF Wien filter during the Precursor experiments. By

rotating the vertical magnetic field, the beam loss rate was minimized at an angle of

φWF
min. = (45.2± 3.7) mrad (8.24)

for the Wien filter in EDM (=vertical magnetic field) mode. However, a minimum beam loss at

such a large angle is nowhere close to what is expected from this measurement. Especially given,

that the measurement of the Invariant Spin Axis during the Precursor runs shows no angles

larger than 3 mrad is not possible. The source of this measurement result is most certainly a

tilt of the betatron oscillation plane in the vertical direction, which contradicts the alignment

precision which was achieved during the Beam-based alignment experiments. The results are

further discussed in the following sections in which further systematic sources are studied.

0 20 40 60 80 100
Time in Cycle / s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u

m
b

er
of

P
ar

ti
cl

es
N
p

×109

Raw data

τ = −0.0194± 0.0005 1
s

RF Wien Filter On

Rebinned Data

Figure 8.5.: The number of particles in the proton beam as a function of time in the cycle.
The initial loss at the beginning of the cycle results from orbit correction and
acceleration. At 45 seconds into the cycle, the RF Wien filter is switched on, and
the exponential decrease of beam current starts. The beam loss rate depends on the
magnetic field direction inside the RF Wien filter with respect to the corresponding
betatron plane.
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Figure 8.6.: Same as in Figure 8.5, but the beam current is logarithmized, resulting in a linear
decrease of the beam current as a function of time. The lower panel shows the
residuals of the linear fit as a function of time.

8.3.3. Scraper Studies

The method of exciting the betatron oscillations, which results in beam loss due to the accep-

tance limit of the beam pipe, relies on the geometrical acceptance of COSY. Using so-called

beam scrapers, the acceptance limit of COSY is changed to rule out acceptance limit problems

that might affect the result of the parabola minima seen in Figures 8.7 and 8.8. Using beam

scrapers, the acceptance of COSY is reduced to ±15 mm. The result with the magnetic field of

the RF Wien filter pointing in the vertical direction is shown in Figure 8.9. Due to the geomet-

rical acceptance reduction, the beam loss rate is much higher compared to the measurements

shown in the previous section. The parabola minimum is given by (42.6± 7.4) mrad, which

matches with the previous result of (45.2± 3.7) mrad. Therefore, a geometrical limit of the

acceptance of COSY cannot explain this large angle.

8.3.4. Measurement with Orbit Bumps in the First Arc after Injection

For further studies of the minimum beam loss rate as a function of the RF Wien filter rotation

angle, the beam orbit is distorted in the first arc after injection using the following steerers:

MSH9, MSH11, MSH13, and MSH17. The target of the orbit bump is the quadrupole QU4.

The shift in orbit is shown in Figure 8.10. By changing the orbit, the betatron tunes are slightly

changed. For a bump of −7.5 mm, the horizontal tune (Qx = 3.6298(14)) matched the vertical

tune (Qy = 3.6382(60)), meaning that no measurement is possible as both betatron planes are

excited by the RF Wien filter.

The RF Wien filter rotation angle at which the beam loss rate is minimized as a function of

the orbit shifts is shown in Figure 8.11. All measurements are taken with a vertical magnetic
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Figure 8.7.: The beam loss rate as a function of the RF Wien filter rotation angle. The magnetic
field of the RF Wien filter points into the accelerator plane at an angle of 0 mrad (cf.
Figure 8.3). The minimum beam loss rate occurs at an angle of (−5.9± 0.5) mrad.

field. A small dependence of a shift in the minimum rotation angle can be seen for large bump

sizes. Further discussion is provided in the following chapter, where bumps at the location of

the RF Wien filter are also presented.

8.3.5. Measurement with Orbit Bumps at the RF Wien Filter

Using the following steerers: SH43, SH01, SH05, SH07, SV02, SWBLW1, SV06, and SV08,

orbit bumps are also applied at the location of the RF Wien filter. Parallel orbit bumps in the

horizontal direction (cf. Figure E.1) and vertical direction (cf. Figure E.2), as well as angular

bumps in the horizontal direction (cf. Figure 8.12) and vertical direction (cf. Figure E.3), are

applied to study the effects in the minimum beam loss rate when rotating the magnetic field

of the RF Wien filter. Since the applied orbit bumps are much smaller than the orbit bumps

in the arc, the betatron tunes only change slightly. The vertical and horizontal betatron tunes

are given by

Qy = 3.6201(12) and Qx = 3.5460(09). (8.25)

The RF Wien filter frequency is given by 870 227 Hz. All measurements are taken with a

vertical magnetic field.

The RF Wien filter rotation angle for which the beam loss parameter is minimized as a function

of the applied beam bumps is shown in Figure 8.13. Even though the orbit changes are relatively

small, the effects on the beam loss rate minimum are drastic. The strongest dependence is seen

when changing the horizontal beam tilt angle at the location of the RF Wien filter. Changes

in the beam tilt angle of 2 mrad lead to a change of the minimum angle of 150 mrad. Also,
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Figure 8.8.: The beam loss rate as a function of the RF Wien filter rotation angle. The magnetic
field of the RF Wien filter points perpendicular to the accelerator plane at an angle
of 0 mrad (cf. Figure 8.2). The minimum beam loss rate occurs at an angle of
(45.2± 3.7) mrad.

horizontal orbit bumps lead to a change of the beam loss rate minimum Wien filter rotation

angle. Vertical orbit bumps don’t have an effect.

At the moment, it is not clear where the strong behavior comes from. As can be seen in the

orbit change plots (cf. Figure E.1 - E.3), the orbit bumps are not clean orbit bumps at the

location of the RF Wien filter but also affect the orbit before and after the RF Wien filter. On

the other hand, problems with the RF Wien filter field direction cannot be excluded. Extensive

beam simulations, which are not part of this work, could help resolve the problem of the strong

dependence of the shifts in the minimum of the beam loss parameter as a function of the Wien

filter rotation angle.

158



8.3. RF WIEN FILTER FIELD STUDIES

10 20 30 40 50 60
Wien filter rotation angle / mrad

−0.0375

−0.0350

−0.0325

−0.0300

−0.0275

−0.0250

−0.0225

−0.0200

−0.0175

B
ea

m
lo

ss
ra

te
τ

/
1 s

φWF
min. = 42.6± 7.4 mrad

Figure 8.9.: The beam loss rate as a function of the Wien filter rotation angle is shown. The
beam pipe acceptance is reduced to ±15 mm by using beam scrapers. The magnetic
field of the RF Wien filter points perpendicular to the accelerator plane at an angle
of 0 mrad (cf. Figure 8.2). The minimum beam loss rate occurs at an angle of
(42.6± 7.4) mrad.
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Figure 8.10.: Horizontal orbit bumps in the first arc after injection are used to systematically
study the effect on the betatron plane minimum. The bump target is Quadrupole
QU4, using the following steerers: MSH9, MSH11, MSH13 and MSH17.
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Figure 8.11.: The RF Wien filter rotation angle at which the beam loss rate is minimized as a
function of the orbit bump in the first arc at the quadrupole QU4 is shown. A
small dependence appears for increasing bump size.
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Figure 8.12.: Horizontal orbit bump angles at the RF Wien filter using the following steerers:
SH43, SH01, SH05, and SH07.
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Figure 8.13.: Dependence of the minimum of the beam loss rate parameter as a function of the
RF Wien filter rotation angle for different orbit bumps at the location of the RF
Wien filter. The strong dependence for horizontal orbit shifts and angles remains
unclear and could either come from the orbit deviations or unknown RF Wien
filter field components.
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9. Results

Extensive beam and spin tracking simulations, which include misalignments of magnets and

the settings of all relevant devices for the experiments described in this thesis, have shown that

the longitudinal and radial components of the Invariant Spin Axis in COSY cannot be larger

than 1 mrad [104]. Given that the longitudinal tilt of the Invariant Spin Axis at the 2MV

solenoid, located 8 m in front of the RF Wien filter, is well below a tenth of a mrad, it can be

assumed that the large longitudinal tilts, which are on the order of a few mrad, are dominated

by systematic errors. Consequently, this also affects the results of the radial component.

As shown in Eq. (7.46), using the RF Wien filter, the angle between the Invariant Spin Axis

and the magnetic field axis of the RF Wien filter is measured. Unfortunately, no experimental

data is available on the direction of the magnetic field in the RF Wien filter. Only simulations

have been performed, indicating that the possible relative field errors in the perpendicular

direction are in the range of 1× 10−3 with respect to the full field integral [90]. Consequently,

this relative field uncertainty corresponds to a systematic error of 1 mrad for the direction of

the magnetic field in the longitudinal direction. However, these simulations correspond to the

case with installed ferrites, which were not used in the actual experiment. Further simulations

without the ferrite cage were not possible during the course of these studies.

Due to the shutdown of COSY in October 2023, it was not possible to perform additional

studies of the RF Wien filter, such as conducting the experiment with the ferrite cage, which

was initially intended to be installed at the RF Wien filter. Simulations have shown that

the ferrite cage significantly impacts the homogeneity of the magnetic field in the RF Wien

filter [88].

Assuming that the tilts of the Invariant Spin Axis are dominated by systematic effects of the

RF Wien filter, the measured tilt can be used to determine the first direct limit of the deuteron

Electric Dipole Moment. The measured tilt, and consequently the systematic uncertainty of

the measured tilts in radial and longitudinal direction, is given by

nz,avg. =̂ σnz,sys. =̂ σnx,sys. = −0.0055 rad. (9.1)

Using Eq. (4.41) and the values given in Table 7.1, the dimensionless η factor can be calculated

as

ηEDM =
2φEDMG

β
⇒ |ηEDM| < 0.0067 (95 % C.L.). (9.2)

From the dimensionless ηEDM factor, a first limit of the deuteron Electric Dipole Moment is

determined using Eq. (2.13)

dd = ηEDM
q~

2mc
⇒ |dd| < 2.2× 10−16 e · cm (95 % C.L.). (9.3)
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Without further studies, it is not possible to reduce the systematic error (O(1 mrad)) to

the same order of magnitude as the statistical uncertainty of the individual measurements

(O(0.1 mrad)) by further investigating systematic uncertainties of the magnetic field direction

of the RF Wien filter.

It is worth noting that the precision is still remarkable, given the fact that 30 years ago, nobody

planned to do precision experiments at COSY, such as the measurement of the Electric Dipole

Moment of the deuteron. Especially, when comparing these results with the latest upper limits

of the muon Electric Dipole Moment measured by the g−2 collaboration [15]

|dµ| < 1.9× 10−19 e · cm (95 % C.L.), (9.4)

which use a dedicated muon storage ring for precision experiments.

In addition, further systematic uncertainties can be reduced using counter and counterclockwise

beams in dedicated proton and deuteron Electric Dipole Moment storage rings as described in

section 10.2.
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10. Outlook

The following sections describe alternative methods for measuring the Electric Dipole Moment

of charged elementary particles. In section 10.1, a method based on static Wien filters is

discussed, which can be applied in any magnetic ring providing polarized beams. In section

10.2, a new generation of storage rings dedicated to measurements of Electric Dipole Moments

of charged elementary particles is presented. These rings are designed to minimize the influ-

ence of the Magnetic Dipole Moment on spin motion, thus being sensitive only to changes in

polarization due to the Electric Dipole Moment.

10.1. Determination of the Electric Dipole Moment using Static

Solenoids

The radial component of the Invariant Spin Axis can also be measured using a static Wien

filter as described in section C.1. By providing a radial magnetic field, the scalar product of

the Invariant Spin Axis and the magnetic field of the solenoid, as described in Eq. (7.18), gives

the radial component of the Invariant Spin Axis. To avoid orbit distortions, the magnetic field

needs to be compensated by an electric field to cancel out the Lorentz force. In this case, the

Wien filter can be operated statically. By changing the magnetic field, the spin tune changes

as a function of the magnetic field, similar to the data shown in Figure 7.12.

By providing a static magnetic field, the field components can be measured using Hall probes to

determine unwanted magnetic field components. Additionally, a static Wien filter does not need

to be rotated around the beam pipe to measure the radial component of the Invariant Spin Axis.

The measurement period would be on the order of an hour, compared to the measurements

using the RF Wien filter, which takes approximately a day. However, a downside is that

only the radial component can be measured, not both the radial and longitudinal components

simultaneously.

10.2. Staged Storage Ring Approach

In principle, the search for Electric Dipole Moments of charged elementary particles in storage

rings can be carried out using two distinct methods. The first method described in this thesis

is the resonant method using the RF Wien filter. A second method, called the frozen spin

method, is based on canceling all effects from the Magnetic Dipole Moment. By setting the

contributions to the spin motion of the magnetic dipole to zero, the spin motion is only sensitive

to the Electric Dipole Moment. For completeness, the Thomas-BMT equation is given again,
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as in section 4.2, which describes the spin motion of a particle propagating in external magnetic
~B and electric ~E fields

d~S

dt
= ~ΩMDM × ~S + ~ΩEDM × ~S, (10.1)

~ΩMDM = − q

m

[(
G+

1

γ

)
~B − Gγ

γ + 1

(
~β · ~B

)
~β −

(
G+

1

γ + 1

)
~β ×

~E

c

]
, (10.2)

~ΩEDM = − q

mc

ηEDM

2

[
~E − γ

γ + 1

(
~β · ~E

)
~β + c~β × ~B

]
. (10.3)

In this equation, ~S denotes the spin vector in the particle rest frame, t denotes the time in the

laboratory system, ~β denotes the velocity with respect to the speed of light, and γ denotes the

Lorentz factor. The dimensionless quantities G and η are linked to the magnetic moment ~µ

and Electric Dipole Moment ~d

~µ = g
q~
2m

~S = (1 +G)
q~
m
~S and ~d = ηEDM

q~
2mc

~S. (10.4)

Assuming only vertical magnetic fields and radial electric fields which are perpendicular to

the beam momentum vector (~β · ~B = ~β · ~E = 0), the Thomas-BMT equation can be further

simplified to

d~S

dt
=
(
~ΩMDM + ~ΩEDM

)
× ~S, (10.5)

~ΩMDM = − q

m

[(
G+

1

γ

)
~B −

(
G+

1

γ + 1

)
~β ×

~E

c

]
, (10.6)

~ΩEDM = − q

mc

ηEDM

2

[
~E + c~β × ~B

]
. (10.7)

As already introduced in section 4.2.1, due to the Magnetic Dipole Moment component, the

polarization of the particles oscillates in the plane of the storage ring relative to the beam path.

This rotation can be suppressed by matching the contribution of the Magnetic Dipole moment

to the equation of motion, ΩMDM, to the cyclotron frequency

~Ωrev = − q

γm

(
~B −

~β × ~E

β2c

)
. (10.8)

When the rotation of the polarization due to the Magnetic Dipole Moment component matches

with the revolution frequency
(
~Ωrev = ~ΩMDM

)
, the so-called frozen spin condition is fulfilled,

which means that the polarization vector is fixed with respect to the momentum vector. The

frozen spin condition can be written as

~ΩMDM − ~Ωrev = − q

m

[
G~B −

(
G− 1

γ2 − 1

) ~β × ~E

c

]
!

= 0. (10.9)
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Note that in a pure magnetic ring ( ~E = 0), the frozen spin condition can not be reached as

the magnetic fields, the anomalous gyromagnetic g-factor G and the Lorentz factor can not be

zero

G~Bγ
!

= 0 E. (10.10)

In principle, there are two ways to reach the frozen spin condition. In an all-electric ring

without any magnetic fields, the frozen spin condition can be further reduced to

~ΩMDM − ~Ωrev =
q

m

(
G− 1

γ2 − 1

) ~β × ~E

c

!
= 0. (10.11)

The frozen spin condition is fulfilled, when

G− 1

γ2 − 1

!
= 0 ⇒ pmagic =

mc√
G
. (10.12)

The particles’ momentum fulfilling the frozen spin condition in an all-electric ring is called

magic momentum. In the case of protons, the magic momentum is given by 0.7 GeV/c. Note

that this method only works for particle species which have a positive anomalous magnetic

moment G.

When studying the Electric Dipole Moment of particles with a negative anomalous magnetic

moment G, a second option for the frozen spin condition can be chosen. By choosing the

strength of the vertical magnetic field as

B = E · β
2γ2G− 1

cβγ2G
, (10.13)

for each chosen energy, there exists a set of vertical magnetic and radial electric field strengths

such that the frozen spin condition (cf. Eq. (10.9)) holds.

An additional requirement for the next generation of storage rings for an Electric Dipole Mo-

ment measurement is clockwise and counter-clockwise circulating beams. Systematic contri-

butions resulting from imperfections in the magnetic field and misalignments of the device

cause a tilt of the Invariant Spin Axis. Consequently, these factors can introduce a vertical

polarization buildup unrelated to the Electric Dipole Moment. Specifically, unwanted radial

magnetic fields, interacting with the Magnetic Dipole Moment, contribute to the buildup of the

vertical polarization component. To solve this issue, measurements employing both clockwise

and counter-clockwise beams within the same storage ring are planned. In an all-electric ring

with pure electric fields, both beams would follow the same closed orbit. However, the impact

of radial magnetic fields differs for clockwise and counter-clockwise beams. As a result, these

fields induce a splitting of the vertical orbit for both beams, which can be detected using beam

position monitors.

10.2.1. Prototype EDM Ring

Discussions within the CPEDM [113] collaboration led to the conclusion that before building

the final all-electric ring dedicated to the measurement of the proton Electric Dipole Moment,

a smaller ring, also called a prototype ring, shall be built. It is supposed to be a small and

cost-effective ring design (circumference ≈ 100 m). The prototype Electric Dipole Moment ring
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would operate in two stages. In the first stage, it would run as an all-electric ring with a proton

kinetic energy of T = 30 MeV. The main goals of this stage of the ring are gaining experience

in operating a large-scale high-electric-field electrostatic storage ring and demonstrating the

ability to produce and manipulate two polarized beams, each with an intensity of 109 parti-

cles, simultaneously countercirculating in the same ring. During the second stage, the bends

encompass an additional magnetic component, and the kinetic energy is increased to 45 MeV

for the frozen-spin condition. This stage allows for the proof of concept of the frozen-spin

method. Note that this mode allows only one beam in the accelerator at a time. However,

it is still possible to flip the magnetic field after each fill and do another cycle with a beam

circulating in the opposite direction to cancel out systematic errors. In such a ring, the first

direct proton Electric Dipole Moment measurement could be carried out [86]. A possible layout

of the prototype ring is shown in Figure 10.1.

Figure 10.1.: The basic concept of the prototype ring involves eight dual superimposed bends,
each incorporating both electric and magnetic elements, along with two families
of quadrupoles denoted as F (focusing) and D (defocusing). The overall circum-
ference of the prototype ring is approximately 100 m. Taken from [86].

10.2.2. Final Proton EDM Storage Ring

After gaining experience from the prototype EDM ring, the final dedicated proton Electric

Dipole Moment machine is planned with a circumference of approximately 600 m. The ring

accelerates protons to the magic momentum and features only electric bending elements.

The anticipated sensitivity for the proton Electric Dipole Moment limit is in the order of

1× 10−29 e · cm. Two counter-rotating beams of protons are simultaneously circulating in the

ring. The most important characteristics of the prototype and all-electric Electric Dipole Mo-

ment storage rings and accelerators are summarized in Table 10.1 [86].
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Table 10.1.: Parameters of the storage rings of the three staged approach of measuring EDMs
of charged elementary particles.

COSY Prototype Ring Final ring

mode resonant (RF Wien filter) frozen spin frozen spin
particle deuteron proton proton
circumference / m 184 ∼ 100 ∼ 600
bending elements magnetic magnetic / electric electric
bending radius / m 7 ∼ 8.86 50
bending field 1.7 T 7 MV/m + 30 mT 8 MV/m
# beams 1 2 or 1 2
E / MeV 2111 30 or 45 1175
p / MeV/c 970 239 or 294 700.7 (magic)
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11. Summary

The Electric Dipole Moment remains a topic of high interest in the experimental physics com-

munity, as it could help answer the unexplained matter-antimatter asymmetry and contribute

to understanding the existence of our universe. Even though many scientists and various col-

laborations are improving their statistical and systematic sensitivities, no finite experimental

signature of an Electric Dipole Moment has been measured so far.

This thesis outlines the first direct measurement of the deuteron Electric Dipole Moment.

The goal of the experiment is to measure the influence of the Electric Dipole Moment on the

polarization of a deuteron beam rotating in a storage ring. A measurement of the orientation

of the so-called Invariant Spin Axis results in the first direct measurement of the deuteron

Electric Dipole Moment.

In November 2018 and March 2021, two experimental runs, called Precursor Run 1 and Pre-

cursor Run 2, were conducted by the JEDI collaboration at the Cooler Synchrotron COSY at

Forschungszentrum Jülich to measure the orientation of the Invariant Spin Axis by mapping

the buildup of the vertical polarization induced by the RF Wien filter. The RF Wien filter-

induced buildup is directly proportional to the cross product of the Invariant Spin Axis and

the magnetic field axis of the RF Wien filter.

To probe the Invariant Spin Axis, the RF Wien filter is rotated around the beam pipe, which

changes the direction of the magnetic field axis in the positive and negative radial directions.

In addition, a Siberian snake is installed in the opposite straight section, which is used to

change the orientation of the Invariant Spin Axis in the longitudinal direction at the location

of the RF Wien filter. The rotation angle of the RF Wien filter and the rotation angle of the

Invariant Spin Axis in the Siberian snake that lead to a zero buildup of the vertical polarization

correspond to the orientation of the Invariant Spin Axis at the location of the RF Wien filter.

The averaged tilts of the Invariant Spin Axis for the first Precursor experiment are given by

nPrec. 1
x,avg. = −3.6(3) mrad and nPrec. 1

z,avg. = −5.5(5) mrad, (11.1)

and for the second Precursor experiment by

nPrec. 2
x,avg. = −2.1(12) mrad and nPrec. 2

z,avg. = 3.9(6) mrad. (11.2)

During the last few years, extensive spin and beam tracking simulations have been performed

to study both beam and spin dynamics in the ring. Assuming that the simulated data are still

in reasonable agreement with measured observables like orbit and steerer settings from the real

experiment, no larger tilts than 1 mrad in radial and longitudinal directions of the Invariant

Spin Axis could be found. In most simulations, the tilts were even smaller.

Many improvements in COSY between both experiments have been performed to further reduce

the systematic errors. Physical misalignments of the magnets in COSY have been measured and
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corrected by moving the magnets. In addition, the beam-based alignment helped to calibrate

the position of beam position monitors with respect to the measured quadrupole positions.

Lastly, the matching of the electromagnetic fields in the RF Wien filter has been improved by

implementing a new online monitoring system. Even though this improvement led to much

better experimental conditions, the apparent tilts of the Invariant Spin Axis remained in the

same order of magnitude. The only striking difference is the sign change of nz from the run in

2018 to the run in 2021, which remains unexplainable.

To determine the orientation of the Invariant Spin Axis, a least-squares fit is performed to the

buildup rate of the vertical polarization. The quality of these fits is rather poor and is a strong

indicator that systematic effects are not included in the fit. However, the buildup rate was also

measured very close to the point where no buildup is expected, which means that the measured

Invariant Spin Axis corresponds to the settings of the RF Wien filter and the Siberian snake

where indeed no buildup is measured. This is a strong indicator that the method itself works.

The results of the large tilts of the Invariant Spin Axis are also contradicting measurements

of the Invariant Spin Axis at other locations in COSY. Static solenoids offer the possibility to

measure the longitudinal direction of the Invariant Spin Axis at the location of the solenoids.

In total, two solenoids have been used to perform these measurements, namely the Siberian

snake and the 2 MV solenoid. The main results are given by

nSnake
z = 0.53(2) mrad, (11.3)

for the first Precursor Run and

nSnake
z = −0.057(1) mrad and n2MV Sol.

z = −0.0705(9) mrad, (11.4)

for the second Precursor Run. These tilts are drastically smaller than the tilts of the Invariant

Spin Axis at the location of the RF Wien filter. In addition, the tilt angle is reduced by an order

of magnitude, which is most likely related to the improvements of the storage ring between

both experimental periods. This is a remarkable result as in an ideal machine no tilts of the

Invariant Spin Axis are expected in longitudinal direction.

In principle, multiple scenarios could explain these results:

Unwanted additional longitudinal fields do not affect the orbit, as they are parallel to the

beam momentum vector. However, like artificial solenoids, unwanted longitudinal fields lead

to extra rotations of the Invariant Spin Axis in the longitudinal direction. These tilts would

be of the same order of magnitude all around the ring and, consequently, at the position of the

RF Wien filter, the Siberian snake, and the 2 MV solenoid, contradicting the measurement of

the longitudinal component at those devices. There is the possibility of two counteracting and

compensating longitudinal fields before and after the RF Wien filter, which lead to large tilts

in the longitudinal direction. However, given the magnetic design of COSY, this scenario is

highly unlikely.

It can be shown that beam tilts and tilts of the RF Wien filter have an influence on the

apparent measured longitudinal component of the Invariant Spin Axis at the location of the RF

Wien filter, while the radial component remains unaffected (assuming a homogeneous field).

Unfortunately, there is no beam position measurement available at the location of the RF

Wien filter, and a tilt angle of the device itself is also unknown. However, a large contribution
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of the effects on the measured Invariant Spin Axis can most certainly still be excluded, as

otherwise, the tilts of the Invariant Spin Axis in both directions wouldn’t be in the same order

of magnitude.

A final possibility is tilts of the magnetic field axis inside the RF Wien filter itself. During the

experiment, a full knowledge of the magnetic field axis of the RF Wien filter is assumed. How-

ever, there is no experimental data available to underline these assumptions, as the Wien filter

field cannot be easily measured. There are simulations available which test the relative field

errors with respect to geometrical misalignments of the RF Wien filter. The simulation led to

a systematic uncertainty of the tilt of the magnetic field in the longitudinal direction of 1 mrad.

However, initially, the RF Wien filter was planned with an additional ferrite cage around the

device which further stabilizes the homogeneity of the magnetic field. These simulations were

done with the ferrites, which were never used in the real experiment. To understand the mea-

sured tilts of the Invariant Spin Axis at the location of the RF wien filter, the misalignment of

the magnetic field have to be in the order of several millirad.

Given these facts, the most likely scenario is that the results of the tilts of the Invariant Spin

Axis at the location of the RF Wien filter are dominated by systematic errors. Therefore,

these measured tilts are assumed to be purely systematic, which leads to a first limit of the

permanent deuteron Electric Dipole Moment of

|dd| < 2.2× 10−16 e · cm (95 % C.L.). (11.5)
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A. Physical Offsets of the Beam Position
Monitors

Using the Beam-Based Alignment method, the physical alignment of the BPMs with respect

to the magnetic center of the quadrupoles was determined between Precursor 1 & 2. To

compare both orbits, the values have to be subtracted from the Precursor 1 data as shown in

Figure 7.38.

Table A.1.: BPM offsets determined during the Beam-Based alignment [69].
BPM Name Horizontal Offset (mm) Vertical Offset (mm)

1 1.127 -0.754
2 0.690 0.736
3 0.213 3.839
4 -0.259 2.526
6 1.033 3.642
7 1.915 1.077
8 3.699 2.217
9 2.357 0.165
10 0.457 1.303
11 1.532 -0.795
12 5.764 0.337
13 1.865 1.914
14 1.662 -0.258
15 1.750 0.320
16 2.096 -1.555
17 1.254 0.837
18 4.444 1.178
19 1.551 3.570

ecolgun 2.0 -1.3
ecolcol 1.0 -0.7

20 2.470 0.016
anke2 1.233 0.175

21 0.982 1.468
22 1.907 0.540
23 -2.050 -0.477
24 0.738 0.667
25 -20.203 -
26 1.468 -0.849
27 2.170 -0.161
28 2.282 -2.622
29 3.671 -2.435
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B. Constraints on the Cycle Selection for the
Measurements of the Invariant Spin Axis

B.1. Steerer Setting Margins for the Deuteron EDM Precursor

experiments

Stable conditions throughout the experiment are essential for accurately determining the In-

variant Spin Axis. The steerers, used to correct the orbit to closely match the design orbit,

are connected to power supplies that occasionally fail to ramp the steerer magnets properly.

For both experiments, the range of acceptable readbacks for each steerer magnet power supply

is determined by analyzing the distribution of steerer currents for each cycle. The ranges are

listed in Table B.1 and B.2.

Table B.1.: Steerer Boundaries for the two experiments. The values are given in % where 100 %
stands for a maximum deflection angle of 15 mrad.

Precursor 1 Precursor 2
Steerer Name Lower Bound Upper Bound Lower Bound Upper Bound

SV02 −5.7336 −5.7261 2.57 2.61
SVBLW1 −0.5694 −0.5668 −1.05 −1.02
SVBLW4 −0.0495 −0.0455 1.39 1.415

SV06 −0.6575 −0.6477 1.525 1.55
SV08 5.3075 5.3263 −0.405 −0.395
SV10 0.5569 0.5634 −0.37 −0.34
SV12 0.2085 0.2264 −0.565 −0.535
SV14 −0.1948 −0.1759 0.93 0.97
SV16 No Value No Value 1.74 1.79
SV18 1.4919 1.5004 −0.85 −0.825
SV20 12.1769 12.1825 −0.59 −0.575
SV22 −9.3632 −9.3453 0.475 0.49
SV24 20.2 20.5 0.19 0.215

SV100KEVGUN 11.8676 11.8747 9.3 9.45
SV100KEVCOL 14.8500 14.8567 8.7 8.85

SV26 18.0127 18.0207 1.82 1.87
SV28 1.2385 1.2471 0.37 0.38
SV30 2.7274 2.7391 −0.6 −0.56
SV32 −0.3647 −0.3545 −0.555 −0.535
SV34 No Value No Value −1.6 −1.54
SV36 0.9457 1.0116 −2.9 −2.65
SV38 −3.7251 −3.7198 1.45 1.48

179



APPENDIX B. CONSTRAINTS ON THE CYCLE SELECTION FOR THE
MEASUREMENTS OF THE INVARIANT SPIN AXIS

Table B.2.: Steerer Boundaries for the two experiments. The values are given in % where 100 %
stands for a maximum deflection angle of 15 mrad.

Precursor 1 Precursor 2
Steerer Name Lower Bound Upper Bound Lower Bound Upper Bound

SH41 3.8765 3.8955 4.190 4.197
SH43 No Value No Value 2.8425 2.8452
SH01 −2.2445 −2.2308 5.0 5.055

SHBLW2 2.3719 2.3847 −2.7 −2.6
SHBLW3 −0.0479 −0.0420 1.69 1.715

SH05 2.3457 2.3687 −0.55 −0.53
SH07 3.4304 3.4538 2.78 2.84
SH09 1.0801 1.0970 −1.56 −1.51
SH11 11.4863 11.4908 1.92 1.97
SH13 4.1188 4.1256 3.0 3.04
SH17 0.0088 0.0398 −11.3 −10.9
SH19 15.1994 15.2199 5.8 5.9
SH21 5.8829 5.9244 −1.4 −1.3
SH23 8.1248 8.1297 −6.18 −6.02

SH100KEVGUN 2.9204 2.9377 5.0 5.1
SH100KEVCOL 2.9340 2.9472 8.9 9.25

SHBLWD1 0.3568 0.3762 13.2 13.5
SHBLWD3 −0.4005 −0.3811 −6.65 −6.45

SH27 0.0411 0.0765 −5.2 −4.9
SH29 −4.0646 −4.0408 −0.2 −0.19
SH31 1.9332 1.9532 1.24 1.27
SH33 2.4276 2.4453 −5.25 −5.1
SH35 3.5447 3.5631 2.725 2.765
SH37 4.6282 4.6458 −0.245 −0.235
SH39 1.5454 1.5636 0.935 0.955

B.2. BPM Value Margins for the Deuteron EDM Precursor

experiments

In addition to the steerer values, the orbit is continuously monitored through Beam Position

Monitor readings, which are stored in the local COSY Archiver. If a BPM reading falls outside

a predefined margin, the cycle is discarded. The ranges are determined by analyzing the

distribution of the measured beam position for all cycles during the experiment. The accepted

range for each beam position monitor in the horizontal and vertical direction is listed in Tables

B.3 and B.4. If no value is available, the readings were not successfully saved to the archiver

or the Beam Position Monitor didn’t work.
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B.2. BPM VALUE MARGINS FOR THE DEUTERON EDM PRECURSOR
EXPERIMENTS

Table B.3.: Margins of the accepted range for each Beam Position Monitor measuring the hor-
izontal beam position are given below. All values are in mm.

Precursor 1 Precursor 2
BPM Name Lower Bound Upper Bound Lower Bound Upper Bound

bpmx01 −3.597 −3.397 −0.061 0.139
bpmx02 −0.105 0.095 −0.070 0.130

ecbpmx113 0.105 0.305 −0.551 −0.351
ecbpmx114 −1.391 −1.191 0.618 0.818

bpmx51 −0.833 −0.633 No Value No Value
bpmx52 No Value No Value No Value No Value
bpmx06 No Value No Value 0.201 0.401
bpmx07 0.541 0.741 −0.325 −0.125
bpmx08 No Value No Value −0.065 0.135
bpmx09 −0.106 0.094 −0.206 −0.006
bpmx10 −1.048 −0.848 −0.200 0.000
bpmx11 0.734 0.934 0.010 0.210
bpmx12 −0.684 −0.484 −0.048 0.152
bpmx13 0.699 0.899 −0.068 0.132
bpmx14 0.399 0.599 −0.230 −0.030
bpmx15 −0.028 0.172 −0.034 0.166
bpmx16 −0.434 −0.234 −0.483 −0.283
bpmx17 −0.221 −0.021 −0.460 −0.260
bpmx18 0.402 0.602 0.342 0.542
bpmx19 −0.998 −0.798 0.580 0.780
becx01 0.738 0.938 −0.461 −0.261
becx02 −0.345 −0.145 −0.589 −0.389
bpmx20 −1.429 −1.229 0.479 0.679
banx01 0.666 0.866 No Value No Value
banx02 No Value No Value 0.072 0.272
bpmx21 −0.593 −0.393 0.017 0.217
bpmx22 −0.139 0.061 −0.280 −0.080
bpmx23 −1.384 −1.184 −0.411 −0.211
bpmx24 0.879 1.079 0.138 0.338
bpmx25 −0.725 −0.525 0.069 0.269
bpmx26 1.405 1.605 −0.972 −0.772
bpmx27 0.544 0.744 0.740 0.940
bpmx28 0.416 0.616 −0.785 −0.585
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APPENDIX B. CONSTRAINTS ON THE CYCLE SELECTION FOR THE
MEASUREMENTS OF THE INVARIANT SPIN AXIS

Table B.4.: Margins of the accepted range for each Beam Position Monitor measuring the ver-
tical beam position are given below. All values are in mm.

Precursor 1 Precursor 2
BPM Name Lower Bound Upper Bound Lower Bound Upper Bound

bpmy01 −0.846 −0.646 1.590 1.790
bpmy02 7.852 8.052 1.295 1.495

ecbpmy113 No Value No Value No Value No Value
ecbpmy114 No Value No Value No Value No Value

bpmy51 No Value No Value No Value No Value
bpmy52 No Value No Value No Value No Value
bpmy06 −0.628 −0.428 −3.834 −3.634
bpmy07 No Value No Value −2.039 −1.839
bpmy08 −3.440 −3.240 −0.790 −0.590
bpmy09 −1.616 −1.416 −0.681 −0.481
bpmy10 −0.518 −0.318 −0.317 −0.117
bpmy11 −1.109 −0.909 0.269 0.469
bpmy12 −5.070 −4.870 −0.374 −0.174
bpmy13 No Value No Value −0.401 −0.201
bpmy14 −3.289 −3.089 0.180 0.380
bpmy15 −0.538 −0.338 −0.318 −0.118
bpmy16 −2.665 −2.465 −0.132 0.068
bpmy17 −2.168 −1.968 0.033 0.233
bpmy18 −4.147 −3.947 −4.161 −3.961
bpmy19 −1.975 −1.775 −4.550 −4.350
becy01 −0.273 −0.073 −4.770 −4.570
becy02 −0.836 −0.636 −4.066 −3.866
bpmy20 −2.254 −2.054 0.195 0.395
bany01 No Value No Value No Value No Value
bany02 −1.249 −1.049 −0.032 0.168
bpmy21 1.748 1.948 −0.693 −0.493
bpmy22 −1.047 −0.847 −0.917 −0.717
bpmy23 0.373 0.573 −0.667 −0.467
bpmy24 0.033 0.233 −1.015 −0.815
bpmy26 No Value No Value 0.178 0.378
bpmy27 −1.914 −1.714 0.688 0.888
bpmy28 −2.210 −2.010 2.322 2.522
bpmy29 −2.149 −1.949 −0.301 −0.101
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C. Additional Material on the Determination
of the Invariant Spin Axis using Static
Solenoids

C.1. Description of the Spin Motion in a Static Solenoid Providing

a Magnetic Field Pointing in Beam Direction

The analytical work from Eq. (C.4) to (C.19) is based on Spin tune mapping as a novel tool

to probe the spin dynamics in storage rings [103].

For the derivation of the dependencies of the change of spin tune as a function of the solenoidal

fields of the Siberian snake and the 2 MV cooler solenoid with respect to the longitudinal

components of the Invariant Spin Axis at the two solenoids, the following identities are used.

• For ~a = a~n with |~n| = 1, the matrix exponential of the Pauli matrices can be written as

eia(~n~σ) = I cos(a) + i (~n · ~σ) sin(a) or (C.1)

e−ia(~n~σ) = I cos(a)− i (~n · ~σ) sin(a), (C.2)

where I denotes the unity matrix. This identity can be proven by expanding the Taylor

polynomial of the exponential and using (~n · ~σ)2p = I for p ∈ N.

• The relation to dot and cross product of the Pauli matrices with two arbitrary vector

operators ~a and ~b is also called Dirac’s relation and is given by

(~σ · ~a)
(
~σ ·~b

)
=
(
~a ·~b

)
I + i~σ ·

(
~a×~b

)
. (C.3)

The standard spinor formalism describes the motion of the spin with one-turn spin rotation

matrices. For simplicity, the calculations are given only for a single solenoid. The calculations

of the change in spin tune as a function of two solenoids in COSY are only outlined. The

one-turn spin rotation matrix for a magnetic ring (vertical dipole fields) is given by [114]

tRing = e−iπν
0
s~σ·~n = cos

(
πν0

s

)
I − i (~σ · ~n) sin

(
πν0

s

)
, (C.4)

where ν0
s denotes the unperturbed spin tune, ~σ denotes a vector containing the Pauli matrices

~σT = [σ1, σ2, σ3], (C.5)

and ~n is the unit vector around which the spins are precessing, i.e., the Invariant Spin Axis.
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APPENDIX C. ADDITIONAL MATERIAL ON THE DETERMINATION OF THE
INVARIANT SPIN AXIS USING STATIC SOLENOIDS

By adding a solenoid into a ring, the spins experience an additional, artificial spin rotation.

The spin transfer matrix of a solenoid can be written as

tX = e−i
χX
2
~σ·~k = cos

(χX
2

)
I − i

(
~σ · ~k

)
sin
(χX

2

)
, (C.6)

where X represents either the Siberian snake or the 2 MV solenoid, χ represents the spin

rotation angle in the solenoid, and ~k represents the spin rotation axis. To describe the full

spin motion, the total spin transfer matrix needs to be calculated, which is the product of the

contribution to the spin of the ring and the additional solenoid

T = tRingtX

= cos
(
πν0

s

)
cos
(χX

2

)
I − i

(
~σ · ~k

)
sin
(χX

2

)
cos
(
πν0

s

)
− i (~σ · ~n) sin

(
πν0

s

)
cos
(χX

2

)
− (~σ · ~n)

(
~σ · ~k

)
sin
(
πν0

s

)
sin
(χX

2

)
Eq. (C.3)

= cos
(
πν0

s

)
cos
(χX

2

)
I −

(
~n · ~k

)
I sin

(
πν0

s

)
sin
(χX

2

)
− i~σ ·

[
(~n× ~k) sin

(
πν0

s

)
sin
(χX

2

)
+ ~k sin

(χX
2

)
cos
(
πν0

s

)
+ ~n sin

(
ν0
s

)
cos
(χX

2

)]
!

= cos(πνs(χX))I − i (~σ · ~n(χX)) sin(πνs(χX)).

(C.7)

In the last step, the fact that the resulting matrix needs to be again a one-turn spin transfer

matrix is used, with νs(χX) describing the modified spin tune and ~n(χX) describing the orien-

tation of the Invariant Spin Axis as a function of the spin rotation angle of the solenoid. By

comparing the real and imaginary components in Eq. (C.7), the change of the Invariant Spin

Axis and spin tune can be written as

~n(χX) =
1

sin(πνs(χX))
·
[(
~n× ~k

)
sin
(
πν0

s

)
sin
(χX

2

)
+~k sin

(χX
2

)
cos
(
πν0

s

)
+ ~n sin

(
ν0
s

)
cos
(χX

2

)]
,

(C.8)

and

cos
(
πνs(χX)

)
= cos

(
πν0

s

)
cos
(χX

2

)
−
(
~n · ~k

)
sin
(
πν0

s

)
sin
(χX

2

)
. (C.9)

A direct formula for the absolute change of spin tune ∆νs = νs(χX) − ν0
s can be found by

evaluating

cos(πνs(χX))− cos
(
πν0

s

)
= cos

(
π(ν0

s + ∆νs)
)
− cos

(
πν0

s

)
(C.10)

= cos
(
πν0

s

)
cos(π∆νs)− sin(πνs) sin(π∆νs)− cos

(
πν0

s

)
(C.11)

∆νs�1≈ −π∆νs sin(πνs). (C.12)
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C.2. EVENT SELECTION STUDIES FOR THE DETERMINATION OF THE
LONGITUDINAL COMPONENT OF THE INVARIANT SPIN AXIS DURING THE

FIRST PRECURSOR RUN.

The largest absolute changes of spin tune are in the order of 1× 10−5 (cf. section 7.4.3), which

justifies the approximation. Rearranging leads to

∆νs = −cos(πνs(χX))− cos
(
πν0

s

)
π sin(ν0

s )
(C.13)

= − 1

π

[
cot
(
πν0

s

) (
cos
(χX

2

)
− 1
)
−
(
~n · ~k

)
sin
(χX

2

)]
. (C.14)

During the second Precursor run, experiments were done using two solenoids at the same time.

The derivation of the spin tune change as a function of two solenoids ramping at the same

time is very similar to the case using only a single solenoid but rather lengthy. Therefore the

derivation is only outlined. The one-turn rotation matrix consists of two rotation matrices due

to the arcs and two rotation matrixes for the solenoids

T = tArc 1tSnaketArc 2t2MV Sol.. (C.15)

The individual matrices are given by

tArc 1 = tArc 2 = e−i
πν0s
2
~σ·~n = cos

(
πν0

s

2

)
I − i (~σ · ~n) sin

(
πν0

s

2

)
, (C.16)

tSnake = e−i
χSnake

2
~σ·~kSnake = cos

(χSnake

2

)
I − i

(
~σ · ~kSnake

)
sin
(χSnake

2

)
, (C.17)

t2MV Sol. = e−i
χ2MV Sol.

2
~σ·~k2MV Sol. = cos

(χ2MV Sol.

2

)
I − i

(
~σ · ~k2MV Sol.

)
sin
(χ2MV Sol.

2

)
. (C.18)

By following the same steps as in the case for a single solenoid, the change of spin tune as a

function of two solenoids is given by

∆νs(χSnake, χ2MV Sol.) =
1

−π sin(πν0
s )
×[

cos
(
πν0

s

) (
cos
(χSnake

2

)
cos
(χ2MV Sol.

2

)
− 1
)

− sin
(χSnake

2

)
sin
(χ2MV Sol.

2

)
−
(
~n · ~k2MV Sol.

)
sin
(
πν0

s

)
sin
(χSnake

2

)
cos
(χ2MV Sol.

2

)
−
(
~n · ~kSnake

)
sin
(
πν0

s

)
sin
(χ2MV Sol.

2

)
cos
(χSnake

2

)]
+ ∆νs,0.

(C.19)

C.2. Event Selection Studies for the Determination of the

Longitudinal Component of the Invariant Spin Axis during the

First Precursor Run.

Event Selection Studies are performed to validate a coherent change of the spin tune when

ramping solenoids in COSY within the bunch. At the polarimeter, the particles within the

bunch scatter on a carbon target into the four quadrants. From the timing signals of the single

events, a longitudinal beam profile measurement can be analyzed, which scales with the true
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APPENDIX C. ADDITIONAL MATERIAL ON THE DETERMINATION OF THE
INVARIANT SPIN AXIS USING STATIC SOLENOIDS

longitudinal bunch shape, which is, to a good approximation, given by a Gaussian function, as

only the particles with the largest betatron amplitude scatter with the carbon target.

The events within the bunch distribution are pre-selected from the center and the head and

tail of the Gaussian and analyzed separately to determine the calibration factor for converting

the current of the power supply of the Siberian snake into a spin flip angle and the longitudinal

component of the Invariant Spin Axis at the Siberian snake. As shown in Figure C.1, the

results within the bunch are comparable. More information about the Event Selection Studies

is given in section 6.3. The methodology of fitting the events is explained in section 7.4.2.
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Figure C.1.: Event Selection Studies for the determination of the longitudinal component of
the Invariant Spin Axis during the first Precursor run.
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D. Additional Material on the Determination
of the Invariant Spin Axis using the RF
Wien Filter

D.1. Description of the Spin Motion in an RF Wien Filter

The following derivations of the spin dynamics in an RF Wien filter are based on the internal

note Spin motion in an rf Wien filter by Volker Hejny [105].

The following equations are used to extract the so-called resonance strength from data and

describe the relative phase between Wien filter frequency and spin tune and the opening angle

between the vertical polarization and the in-plane polarization plane as a function of time (or

turn number). Once the resonance strength is known, the orientation of the invariant spin axis

~n can be determined.

The coordinate system is chosen to be in a reference frame with respect to the Invariant Spin

Axis ~n at the location of the RF Wien filter

~ey = ~n, ~ex = ~n× ~β, and ~ez = ~ex × ~ey. (D.1)

The coordinate system is illustrated in Figure D.1 together with the orientation of the magnetic

field of the RF Wien filter.

e⃗z = e⃗x × e⃗y

e⃗x = n⃗× β⃗

e⃗y = n⃗

m⃗

axz

ay

Figure D.1.: Coordinate system for the description of the magnetic field axis of the Wien filter
~m with respect to the coordinate system defined in Eq. (D.1).
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APPENDIX D. ADDITIONAL MATERIAL ON THE DETERMINATION OF THE
INVARIANT SPIN AXIS USING THE RF WIEN FILTER

The spin vector at the location of the RF Wien filter is defined with respect to the out-of-plane

angle α (the angle between vertical and horizontal polarization plane) and the spin precession

angle ωs = 2πνsfCOSY in the accelerator plane (x− z)

~S =

 cos(α) sin(ωst)

sin(α)

cos(α) cos(ωst)

 . (D.2)

When the measurement time begins (t = tWF), the spin points along ~ez without loss of gen-

erality. In addition, the spin might have a vertical component when the rotation of the initial

vertically polarized beam is not fully rotated into the accelerator plane using the RF solenoid.

In this coordinate system, the magnetic field axis of the RF Wien filter is given by

~m =

 − sin(ay) cos(axz)

cos(ay)

sin(ay) sin(axz)

 . (D.3)

The parameter ay describes the angle between the magnetic field of the RF Wien filter and the

Invariant Spin Axis (cf. Figure D.1)

sin(ay) = |~n× ~m|. (D.4)

The angle ay is later on replaced by the resonance strength defined in Eq. (7.35). The parameter

axz describes the orientation of the magnetic field of the RF Wien filter in the x− z plane with

respect to ~ex.

The spin kick angle in the RF Wien filter ψ0 can be calculated by evaluating the Thomas

BMT equation. The RF Wien filter is EDM transparent which can be shown by evaluating

the precession component due to the EDM in the Thomas-BMT equation (4.22)

~ΩEDM = − q

mc

ηEDM

2

[
~E − γ

γ + 1

(
~β · ~E

)
~β + c~β × ~B

]
. (D.5)

Using the fact, that the beam enters the RF Wien filter perpendicular to the electric field

(~β · ~E = 0) and the Lorentz force condition

~E = −c~β × ~B, (D.6)

the contribution due to the EDM becomes zero

~ΩEDM = 0. (D.7)

The only contribution is a result from the Magnetic Dipole Moment contribution

~ΩMDM = − q

m

[(
G+

1

γ

)
~B − Gγ

γ + 1

(
~β · ~B

)
~β −

(
G+

1

γ + 1

)
~β ×

~E

c

]
. (D.8)
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D.1. DESCRIPTION OF THE SPIN MOTION IN AN RF WIEN FILTER

The magnetic field axis (~m)
~B = B~m (D.9)

describes the axis around which the spins experience an additional spin rotation. Assuming

that ~m ⊥ ~β leads to
~β · ~B = 0 and ~β ×

(
~β × ~B

)
= −β2B~m, (D.10)

and, using again the Lorentz force condition, consequently to

~ΩMDM = − q

m

[(
G+

1

γ

)
+

(
G+

1

γ + 1

)
β2

]
B~m. (D.11)

Using β2 = 1 − 1/γ2 and integrating the magnetic field along the length of the RF Wien filter

leads to

~ΩMDM = −q(1 +G)(1− β2)

βm

∫
Bdl · ~m = ψ0 ~m. (D.12)

The amplitudes of the magnetic (and electric) fields in the RF Wien filter are oscillating. The

oscillation frequency and phase are controlled by the phase feedback described in section 6.7

to fulfill the resonance condition

ωWF = 2πkfCOSY + ωs, k ∈ Z. (D.13)

The rotation angle as a function of time, can therefore be written as

ψ(t) = ψ0 cos(ωWFt− φrel.), (D.14)

where φrel. denotes the relative phase dependence between the Wien filter frequency and the

spin precession frequency. Since the RF Wien filter is located at a distinct location in the

ring and COSY is operated using a bunched beam, the spin is rotated at distinct times t =
n/fCOSY, with n ∈ N

cos(ωWF − φrel.)→ cos

(
2πkn+ ωs ·

n

fCOSY
− φrel.

)
(D.15)

= cos

(
ωs ·

n

fCOSY
− φrel.

)
= cos(ωst− φrel.). (D.16)

In general, the rotation matrix around an axis ~nT = (nx, ny, nz) with |~n| = 1 around an angle

α is given by

R(~n, α) =

 cos(α) + n2
x(1 − cos(α)) nxny(1 − cos(α)) − nz sin(α) nxnz(1 − cos(α)) + ny sin(α)

nynx(1 − cos(α)) + nz sin(α) cos(α) + n2
y(1 − cos(α)) nynz(1 − cos(α)) − nx sin(α)

nznx(1 − cos(α)) − ny sin(α) nzny(1 − cos(α)) + nx sin(α) cos(α) + n2
z(1 − cos(α))

 .

(D.17)

Assuming that the spin rotations are small ψ(t) � 1 (ψ0 ≈ 1× 10−6 rad), the one-turn spin

transfer matrix for the RF Wien filter is given by

R
(
~m,ψ(t)

)
= ψ(t)

 1 sin(axz) sin(ay) cos(ay)

sin(axz) sin(ay) 1 − cos(axz) sin(ay)

cos(ay) cos(axz) sin(ay) 1

 . (D.18)
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The one-turn spin rotation matrix allows to calculate the orientation of the spin vector based

on the information of the spin vector in the previous turn

Sn+1 = R
(
~m,ψ(t)

)
Sn. (D.19)

The change of the spin vector can be calculated by evaluating

∆~S = (R− I) · ~S (D.20)

= ψ0 cos
(
ωst− φrel.

) cos(α) cos(ay) cos(ωst) + sin(α) sin(axz) sin(ay)

− cos(α) sin(ay)(cos(axz) cos(ωst) + sin(axz) sin(ωst))

sin(α) sin(ay) cos(axz)− cos(α) cos(ay) sin(ωst)

 . (D.21)

The buildup of the vertical polarization along the Invariant Spin Axis is given by

∆py = ∆~Sy. (D.22)

The induced phase shift within the x− z plane can be calculated using

∆φrel. =
∆~Sx cos(ωst)−∆~Sz sin(ωst)

cos(α)
(D.23)

= ψ0 cos(ωst− φrel.)
(

cos(ay)− sin(ay) sin(ωst− axz) tan(α)
)
. (D.24)

By averaging over a full spin precession period T = 2π/ωs = 1/fs, the average net change per

turn of the vertical polarization component (∆py → dpy/dn) and the phase shift of the relative

phase (∆φrel. → dφrel./dn) can be calculated via

dφrel.

dn
=

1

T

∫ T

0
∆φrel.dt =

ωs
2π

∫ 2π
ωs

0
∆φrel.dt =

ψ0

2
sin(ay) sin(axz − φrel.) tan(α), (D.25)

dpy
dn

=
1

T

∫ T

0
∆pydt =

ωs
2π

∫ 2π
ωs

0
∆pydt = −ψ0

2
sin(ay) cos(axz − φrel.) cos(α). (D.26)

Using the following geometrical identity

dpy
dn

= cos(α)
dα

dn
, (D.27)

and the relation between time, beam revolution frequency, and turn number

fCOSY · t = n, (D.28)

the final set of coupled differential is given by

1

fCOSY

dφrel.

dt
=

dφrel.

dn
=
ψ0

2
sin(ay) sin(axz − φrel.) tan(α), (D.29)

1

fCOSY

dα

dt
=

dα

dn
= −ψ0

2
sin(ay) cos(axz − φrel.). (D.30)
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Using the definition of the resonance strength as described in Eq. (7.35), these formulas can

be written as

dφrel.

dn
= 2πε sin(axz − φrel.) tan(α), (D.31)

dα

dn
= −2πε cos(axz − φrel.), (D.32)

or
dφrel.

dt
= 2πεfCOSY sin(axz − φrel.) tan(α),

dα

dt
= −2πεfCOSY cos(axz − φrel.).

(D.33)

(D.34)

D.2. Resonance Strengths for the EDM Precursor Experiments

In the following section, the resonance strength for all measurements (Precursor 1 & 2) of the

orientation of the Invariant Spin Axis in longitudinal and radial directions at the location of

the RF Wien filter is shown. The data for the first Precursor Run is shown in Figures 7.24,

D.2, and D.3. Each panel depicts the measured slope scaled by the revolution frequency as a

function of the relative phase between the spin tune and Wien filter frequency at a fixed setting

for the Wien filter rotation angle and the spin flip in the Siberian snake, which is shown in the

title of each panel. According to Eq. (7.67), the resonance strength is given by the amplitude

of the sinusoidal dependence of the slope as a function of relative phase. The same method

was used during the second Precursor Run. This data is depicted in Figures D.4 to D.7. Note

that in preparation for the Pilot Bunch method, two bunches were co-circulating in COSY.

The RF Wien filter acts on both bunches during the Initial Slope method, which means that

both bunches are analyzed independently.

The individual Maps in which the resonance strength is plotted against the Wien filter rotation

angle and the spin flip angle in the Siberian snake are shown for the first Precursor Run in

Figure D.8 and for Precursor 2 in Figure D.9 for the Maps using the Initial slope method and

in Figure D.10 for the Pilot bunch method. By performing a least squares fit according to

Eq. (7.56), the orientation of the Invariant Spin Axis can be determined. The results for all

individual Maps are summarized in Section 7.8.

The methods describing the determination of the orientation of the Invariant Spin Axis are

described in Section 7.6. A summary of the measurement campaigns is given in Table 7.13.
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APPENDIX D. ADDITIONAL MATERIAL ON THE DETERMINATION OF THE
INVARIANT SPIN AXIS USING THE RF WIEN FILTER
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D.3. ANALYSIS OF THE OFF-RESONANCE BEHAVIOUR OF THE PHASE
FEEDBACK

D.3. Analysis of the Off-Resonance Behaviour of the Phase

Feedback

As described in Section 7.6.3.1, statistical fluctuations of the phase feedback only allow for

approximate matching of the Wien filter frequency to the spin tune. These effects are accounted

for in Eq. (7.110). Using Eq. (7.115), the phase matching can be studied. The results are

shown in Figure D.11 for the individual maps using the Pilot Bunch.
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Figure D.11.: Histogram of the off-resonance parameter (Eq. 7.115) for all measured Maps
using the Pilot bunch method.
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E. Additional Material on the RF Wien Filter
Field Studies

E.1. Measurements with Orbit Bumps at the location of the RF

Wien Filter

During the systematic studies orbit variations are performed to study the effect on the beam

loss minima as a function of different RF Wien filter rotation angles. The results are presented

in section 8.3.5. Horizontal (cf. Figure E.1) and vertical (cf. Figure E.2) orbit bumps as well

as vertical beam angles (cf. Figure E.3) at the target location of the RF Wien filter were

measured.
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Figure E.1.: Horizontal orbit bumps at the RF Wien filter using the following steerers: SH43,
SH01, SH05, and SH07.
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Figure E.2.: Vertical orbit bumps at the RF Wien filter using the following steerers: SV02,
SWBLW1, SV06, and SV08.
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Figure E.3.: Vertical orbit bump angles at the RF Wien filter using the following steerers:
SV02, SWBLW1, SV06, and SV08.
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doi:10.18154/RWTH-2018-229484. Veröffentlicht auf dem Publikationsserver der RWTH

210

https://doi.org/10.1134/S1063779614010201
https://doi.org/10.1088/0034-4885/54/7/001
https://doi.org/10.1088/0034-4885/54/7/001
https://doi.org/http://dx.doi.org/10.17877/DE290R-238
https://doi.org/10.1016/S0168-9002(99)01128-6
https://doi.org/10.18429/JACoW-IBIC2015-TUPB017
https://doi.org/10.18429/JACoW-IBIC2015-TUPB017
https://doi.org/10.18429/JACoW-IBIC2015-TUPB015
https://doi.org/10.18429/JACoW-IBIC2015-TUPB015
https://doi.org/10.1103/PhysRevLett.100.054801
https://doi.org/10.23731/CYRM-2021-003
https://doi.org/10.1016/0029-554X(60)90033-1
https://doi.org/10.1016/0029-554X(60)90033-1
https://doi.org/10.18154/RWTH-2018-229484


Bibliography

Aachen University. - Ausgezeichnet mit der Borchers-Plakette und dem Friedrich-

Wilhelm-Preis 2019.; Dissertation, Rheinisch-Westfälische Technische Hochschule

Aachen, 2018.

[89] J. Slim et al. “Pilot bunch and co-magnetometry of polarized particles stored in a ring”.

ArXiv preprint arXiv:2309.06561 (2023).

[90] J. Slim et al. “Polynomial Chaos Expansion method as a tool to evaluate

and quantify field homogeneities of a novel waveguide RF Wien filter”. Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment, 859, 52 (2017). ISSN 0168-9002.

doi:https://doi.org/10.1016/j.nima.2017.03.040.

[91] V. Kamerdzhiev et al. “Commissioning of the 2MeV Electron Cooler for COSY / HESR”.

In IPAC2012 - Proceedings, p. 379. New Orleans, Louisiana, USA (2012).

[92] “WASA-at-COSY”. https://collaborations.fz-juelich.de/ikp/wasa/. Accessed

on May 21, 2024.

[93] T. Saito et al. “The WASA-FRS project at GSI and its perspective”.

Nuclear Instruments and Methods in Physics Research Section B: Beam In-

teractions with Materials and Atoms, 542, 22 (2023). ISSN 0168-583X.

doi:https://doi.org/10.1016/j.nimb.2023.05.042.

[94] F. Müller et al. “A new beam polarimeter at COSY to search for electric dipole moments

of charged particles”. Journal of Instrumentation, 15(12), P12005–P12005 (2020). ISSN

1748-0221. doi:10.1088/1748-0221/15/12/p12005.

[95] R. Brun and F. Rademakers. “ROOT — An object oriented data analysis frame-

work”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, 389(1), 81 (1997). ISSN 0168-

9002. doi:https://doi.org/10.1016/S0168-9002(97)00048-X. New Computing Techniques

in Physics Research V.

[96] “EPICS Homepage”. https://epics-controls.org/. Accessed on October 29, 2023.

[97] “atan2”. http://en.cppreference.com/mwiki/index.php?title=cpp/numeric/

math/atan2&oldid=79630. Online, accessed January 9, 2024.

[98] D. Eversmann, J. Pretz, and M. Rosenthal. “Amplitude estimation of a sine function

based on confidence intervals and Bayes’ theorem”. Journal of Instrumentation, 11(05),

P05003 (2016). doi:10.1088/1748-0221/11/05/P05003.

[99] N. Hempelmann et al. “Phase Locking the Spin Precession in a Storage Ring”. Phys.

Rev. Lett., 119, 014801 (2017). doi:10.1103/PhysRevLett.119.014801.

[100] N. Hempelmann et al. “Phase measurement for driven spin oscilla-

tions in a storage ring”. Phys. Rev. Accel. Beams, 21, 042002 (2018).

doi:10.1103/PhysRevAccelBeams.21.042002.

211

https://doi.org/https://doi.org/10.1016/j.nima.2017.03.040
https://collaborations.fz-juelich.de/ikp/wasa/
https://doi.org/https://doi.org/10.1016/j.nimb.2023.05.042
https://doi.org/10.1088/1748-0221/15/12/p12005
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://epics-controls.org/
http://en.cppreference.com/mwiki/index.php?title=cpp/numeric/math/atan2&oldid=79630
http://en.cppreference.com/mwiki/index.php?title=cpp/numeric/math/atan2&oldid=79630
https://doi.org/10.1088/1748-0221/11/05/P05003
https://doi.org/10.1103/PhysRevLett.119.014801
https://doi.org/10.1103/PhysRevAccelBeams.21.042002


Bibliography

[101] S. Karanth et al. “Influence of electron cooling on the polarization lifetime of a hor-

izontally polarized storage ring beam”. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

987, 164797 (2021). ISSN 0168-9002. doi:https://doi.org/10.1016/j.nima.2020.164797.

[102] M. Beyss. Detection and Analysis of Recombination Rates during Electron Cooling at

COSY. Master’s thesis, RWTH Aachen University (2019).

[103] A. Saleev et al. “Spin tune mapping as a novel tool to probe the spin

dynamics in storage rings”. Phys. Rev. Accel. Beams, 20, 072801 (2017).

doi:10.1103/PhysRevAccelBeams.20.072801.

[104] M. Vitz. Investigation of Systematic Effects and Uncertainties involved in the Determi-

nation of the Invariant Spin Axis in a storage ring for an EDM Measurement. Ph.D.

thesis, RWTH Aachen University (2024). Unpublished.

[105] V. Hejny. “Spin motion in an rf Wien filter” (2019). Internal document, JEDI collabo-

ration.

[106] N. Hempelmann. Polarization Measurement and Manipulation for Electric Dipole Mo-

ment Measurements in Storage Rings. Ph.D. thesis, RWTH Aachen University (2018).

doi:10.18154/RWTH-2018-221496.

[107] N. N. Nikolaev et al. “Spin decoherence and off-resonance behavior of radiofrequency-

driven spin rotations in storage rings”. arXiv preprint arXiv:2309.05080 (2023).

[108] T. Wagner. Beam-based alignment at the Cooler Synchrotron COSY for an Electric

Dipole Moment measurement of charged particles. Ph.D. thesis, RWTH Aachen Univer-

sity (2021). doi:10.18154/RWTH-2021-08453.

[109] J. Slim et al. “First detection of collective oscillations of a stored deuteron beam with

an amplitude close to the quantum limit”. Phys. Rev. Accel. Beams, 24, 124601 (2021).

doi:10.1103/PhysRevAccelBeams.24.124601.

[110] V. Hejny. “Analytic calculation of various tilt effects in the WF” (2024). Internal docu-

ment, JEDI collaboration.

[111] J. Slim et al. “Electromagnetic Simulation and Design of a Novel Waveguide RF

Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons”.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment, 828, 116 (2016). ISSN 0168-9002.

doi:https://doi.org/10.1016/j.nima.2016.05.012.

[112] J. Slim et al. “The driving circuit of the waveguide RF Wien filter for the deuteron EDM

precursor experiment at COSY”. Journal of Instrumentation, 15(03), P03021 (2020).

doi:10.1088/1748-0221/15/03/P03021.

[113] A. Lehrach, S. Martin, and R. Talman. “Design of a Prototype EDM Storage Ring”.

PoS, SPIN2018, 144 (2019). doi:10.22323/1.346.0144.

[114] V. H. Ranjbar et al. “Spin coupling resonance and suppression in the AGS”. Phys. Rev.

ST Accel. Beams, 7, 051001 (2004). doi:10.1103/PhysRevSTAB.7.051001.

212

https://doi.org/https://doi.org/10.1016/j.nima.2020.164797
https://doi.org/10.1103/PhysRevAccelBeams.20.072801
https://doi.org/10.18154/RWTH-2018-221496
https://doi.org/10.18154/RWTH-2021-08453
https://doi.org/10.1103/PhysRevAccelBeams.24.124601
https://doi.org/https://doi.org/10.1016/j.nima.2016.05.012
https://doi.org/10.1088/1748-0221/15/03/P03021
https://doi.org/10.22323/1.346.0144
https://doi.org/10.1103/PhysRevSTAB.7.051001


List of Figures

2.1. Parity and time reversal transformation of a particle in an electromagnetic field 9

2.2. History of neutron and proton Electric Dipole Moment measurements . . . . . 11

2.3. Existing Electric Dipole Moment limits of elementary particles . . . . . . . . . 12

3.1. Co-moving curvilinear cartesian coordinate system for beam dynamics . . . . . 14

3.2. Functionality of quadrupole magnets . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3. Transverse motion of a particle beam . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. Phase Space ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5. Functionality of sextupole magnets . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6. Vertical spin component buildup |∆Sy| a function of averaged orbit deviations . 23

4.1. Configurations of the spin quantum number m for spin-1 and spin-1/2 particles 25

4.2. Effect of the EDM on the spin motion of a particle beam in a magnetic storage

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3. Example of an axion scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4. Exclusion plot of the ALP-induced oscillating EDM for the 90 % confidence level

sensitivity in an axion mass range from 4.95 to 5.02 neV/c2 . . . . . . . . . . . 34

4.5. Coordinate system of the spin vector and the direction of flight for polarimetry 35

5.1. Overview of the accelerator facility COSY . . . . . . . . . . . . . . . . . . . . . 38

5.2. Overview of the particle sources in COSY . . . . . . . . . . . . . . . . . . . . . 39

5.3. Overview of the particle source for polarized hydrogen and deuterium ions in

COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4. Floorplan of COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5. Schematic view of the 100 kV cooler . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6. Froissart Stora scan to flip the vertically polarized beam into the accelerator

plane using the RF solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7. Simulation of the Lorentz force inside the RF Wien filter . . . . . . . . . . . . . 47

5.8. RF Wien filter in COSY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.9. RF Wien filter plates in COSY . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.10. Superconducting Siberian snake in COSY . . . . . . . . . . . . . . . . . . . . . 50

5.11. Beam loss due to the extraction on the carbon target of the polarimeter . . . . 51

5.12. Schematic of the WASA forward detector . . . . . . . . . . . . . . . . . . . . . 52

5.13. Schematic of the Jedi Polarimeter JePo. . . . . . . . . . . . . . . . . . . . . . . 53

6.1. Illustration of the four distinct quadrants of the Jedi polarimeter JePo . . . . . 57

6.2. Example of the number of events measured using the 4 quadrants of the WASA

polarimeter throughout a cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3. COSY Phase φCOSY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4. Event Selection Precursor I and II . . . . . . . . . . . . . . . . . . . . . . . . . 59

213



List of Figures

6.5. Optimal split for Event Selection Studies . . . . . . . . . . . . . . . . . . . . . . 60

6.6. Bunch selection studies for two bunches . . . . . . . . . . . . . . . . . . . . . . 60

6.7. Example of the left-right asymmetry (Vertical polarization) . . . . . . . . . . . 62

6.8. Correction of the left-right asymmetry of an unpolarized cycle . . . . . . . . . . 63

6.9. Correction of the left-right asymmetry of a polarized cycle . . . . . . . . . . . . 64

6.10. Spin Phase Advance in the up and down detector for two different fixed spin tunes 65

6.11. Example of the up-down asymmetry . . . . . . . . . . . . . . . . . . . . . . . . 66

6.12. Spin tune phase shift illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.13. Calculated spin tune for different spin tune phases. . . . . . . . . . . . . . . . . 70

6.14. Up-down asymmetry phase correction . . . . . . . . . . . . . . . . . . . . . . . 71

6.15. Up-down asymmetry correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.16. Phase feedback schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.17. Example of the change of the initial spin tune over the experimental period of

two days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.18. RF Wien filter phase feedback signal flow. . . . . . . . . . . . . . . . . . . . . . 76

6.19. Schematic of the phase feedback action . . . . . . . . . . . . . . . . . . . . . . . 78

6.20. Main principle of the RF Wien filter frequency generator . . . . . . . . . . . . . 79

6.21. Phase feedback acting on real data . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.22. Summary of a typical cycle for the determination of the Invariant Spin Axis. . 81

7.1. Spin Coherence Time measurements . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2. Sextupole scan for Spin Coherence Time optimization . . . . . . . . . . . . . . 88

7.3. Dependence of the Spin Coherence Time as a function of the Siberian snake

current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4. Schematic of the extraction line for the recombined particles in the 100 kV cooler. 90

7.5. Recombined beam profiles as a function of time. . . . . . . . . . . . . . . . . . 90

7.6. Example of vertical and horizontal recombined beam profiles at fixed timestamp 91

7.7. Horizontal and vertical beam profile width as a function of time . . . . . . . . . 92

7.8. Initial scan of the spin tune jump for two different solenoid settings . . . . . . . 95

7.9. Histograms of the initial guesses of (νInit.
s,0 , νMod.

s,0 ) to determine the z component

of the Invariant Spin Axis at the location of the solenoids in COSY . . . . . . . 96

7.10. Spin tune phase determined from the initial guesses of the initial and modified

spin tune determined from Figure 7.9a and 7.9b. . . . . . . . . . . . . . . . . . 97

7.11. Initial spin tune distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.12. Precursor 1: Siberian snake calibration measurement and determining the z

component of the Invariant Spin Axis at the location of the Siberian snake . . . 99

7.13. Precursor 2: Siberian snake and 2 MV solenoid calibration measurement . . . . 99

7.14. Spin tune jump as a function of the Siberian snake current and the RF Wien

filter rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.15. Consistency check of nSnake
z among all measured maps used for determining the

Invariant Spin Axis with the RF Wien filter . . . . . . . . . . . . . . . . . . . . 102

7.16. Event Selection Studies for the determination of the longitudinal component of

the Invariant Spin Axis at the Siberian snake and the 2MV solenoid for the

second Precursor run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.17. Coordinate system for the determination of the Invariant Spin Axis using the

RF Wien filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

214



List of Figures

7.18. Determination of the fit range for the linear buildup when using the initial slope

method to determine the resonance strength . . . . . . . . . . . . . . . . . . . . 110

7.19. Initial slope versus relative phase as a function of time in the cycle . . . . . . . 111

7.20. Determination of the resonance strength using the initial slope method . . . . . 112

7.21. Effects of the spin decoherence on the vertical polarization buildup . . . . . . . 113

7.22. Combined fit of the angle between vertical and horizontal polarization and the

total polarization to determine the initial slope of the buildup of the vertical

polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.23. Comparison of a simple linear fit of the buildup of the polarization versus a

model taking depolarizing effects into account. . . . . . . . . . . . . . . . . . . 117

7.24. Resonance Strengths for Precursor 1 Map 1 . . . . . . . . . . . . . . . . . . . . 118

7.25. Results of the orientation of the Invariant Spin Axis of Precursor 1 Map 2 . . . 119

7.26. Averaged initial spin tune for Precursor 1 Map 2 . . . . . . . . . . . . . . . . . 120

7.27. Schematic of the Pilot bunch method . . . . . . . . . . . . . . . . . . . . . . . . 121

7.28. Oscillation of the vertical polarization of the signal bunch while using the Pilot

bunch method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.29. Coordinate system for the Pilot bunch method. . . . . . . . . . . . . . . . . . . 123

7.30. Simultaneous fit of the left-right asymmetry (left) and the up-down asymmetry

(right) for determining the detuned resonance strength. . . . . . . . . . . . . . 125

7.31. Accuracy of the phase feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.32. Example of a simulated cycle for Monte Carlo studies for the Pilot bunch method.127

7.34. Measurement of the resonance strength for eight consecutive cycles using the

Pilot bunch method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.35. Determination of the orientation of the Invariant Spin Axis for the fifth map

during the second Precursor run. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.36. Histogram of the initial spin tune for Precursor 2 Map 5. . . . . . . . . . . . . 131

7.37. Comparison of the distance between the data points of the resonance strength

shows that if the distance is larger, the statistical uncertainty on the map mini-

mum decreases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.38. Comparison of the vertical and horizontal orbit before and after the beam-based

alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.39. Steerer values during the first and second Precursor run. . . . . . . . . . . . . . 135

7.40. Fourier Amplitudes of the event rates measured at the RF Wien filter frequency

(= spin tune) measured individually at the detector quadrants . . . . . . . . . 138

7.41. Beam oscillation amplitude comparison for Precursor 1 and 2 . . . . . . . . . . 139

7.42. Results of the orientation of the Invariant Spin Axis measured using the RF

Wien filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.43. Resonance strength close to the map minimum to exclude systematic errors in

the fitting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.44. Event Selection Studies for the determination of the Invariant Spin Axis at the

RF Wien filter for Precursor 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.45. Event Selection Studies for the determination of the Invariant Spin Axis at the

RF Wien filter for Precursor 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.46. Summary of the results of the Invariant Spin Axis measured at the Siberian

Snake, the 2 MV solenoid and the RF Wien filter. . . . . . . . . . . . . . . . . 145

215



List of Figures

8.1. Magnetic field measurements with a hall probe close to the Siberian snake . . . 150

8.2. Schematic of measuring the vertical magnetic field direction of the RF Wien filter152

8.3. Schematic of measuring the horizontal magnetic field direction of the RF Wien

filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.4. Betatron tune measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5. Example of rebinned beam current . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.6. Example of rebinned beam current along with a fit to determine the beam loss

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.7. Measurement of the Wien filter fields with a horizontal magnetic field . . . . . 157

8.8. Measurement of the Wien filter fields with a vertical magnetic field . . . . . . . 158

8.9. Measurement of the Wien filter fields with a horizontal magnetic field using

scrapers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.10. Horizontal orbit bump angles at quadrupole QU4 . . . . . . . . . . . . . . . . . 159

8.11. RF Wien filter rotation angle for which the beam loss rate is minimized as a

function of parallel orbit bumps in the first arc at the quadrupole QU4. . . . . 160

8.12. Horizontal orbit bump angles at the RF Wien filter . . . . . . . . . . . . . . . . 160

8.13. Beam loss rate Wien filter rotation angle as a function of applied bumps at the

RF Wien filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.1. Basic concept of the prototype EDM ring . . . . . . . . . . . . . . . . . . . . . 168

C.1. Event Selection Studies for the determination of the longitudinal component of

the Invariant Spin Axis during the first Precursor run. . . . . . . . . . . . . . . 186

D.1. Coordinate system for the determination of the Invariant Spin Axis using the

RF Wien filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

D.2. Resonance strengths for the second Map measured during the first Precursor

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D.3. Resonance strengths for the third Map measured during the first Precursor period.193

D.4. Resonance strengths for the first Map and first bunch measured during the

second Precursor period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

D.5. Resonance strengths for the first Map and second bunch measured during the

second Precursor period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.6. Resonance strengths for the second Map and first bunch measured during the

second Precursor period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.7. Resonance strengths for the second Map and second bunch measured during the

second Precursor period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.8. Resonance strengths for all measured Maps during Precursor 1. The plane illus-

trates the fit according to Eq. (7.57). The lower panel depict the residuals. . . 198

D.9. Resonance strengths for all measured Maps using the initial slope method during

Precursor 2. The plane illustrates the fit according to Eq. (7.57). The lower

panel depict the residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.10.Resonance strengths for all measured Maps using the Pilot bunch method during

Precursor 2. The plane illustrates the fit according to Eq. (7.57). The lower

panel depict the residuals. During Map 6 & 7, the 2 MV solenoid is used in

addition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

216



List of Figures

D.11.Histogram of the off-resonance parameter (Eq. 7.115) for all measured Maps

using the Pilot bunch method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

E.1. Horizontal orbit bumps at the RF Wien filter . . . . . . . . . . . . . . . . . . . 203

E.2. Vertical orbit bumps at the RF Wien filter . . . . . . . . . . . . . . . . . . . . 204

E.3. Vertical orbit bump angles at the RF Wien filter . . . . . . . . . . . . . . . . . 204

217





List of Tables

2.1. Magnetic properties of the proton and the deuteron . . . . . . . . . . . . . . . 8

2.2. Summary of recent Electric Dipole Moment limits . . . . . . . . . . . . . . . . 12

7.1. Beam parameters used during both experiments Precursor 1 (2018) & 2 (2021) 83

7.2. Frequencies of the RF solenoid to rotate the vertical polarization of the particle

beam into the horizontal accelerator plane. . . . . . . . . . . . . . . . . . . . . 84

7.3. Timings of the individual measurement steps for the determination of the In-

variant Spin Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4. Description of the variables and fit parameters of the equation describing the

change of spin tune as a function of solenoidal magnetic fields to determine the

z component of the Invariant Spin Axis . . . . . . . . . . . . . . . . . . . . . . 95

7.5. Summary of the results from the measurements of the longitudinal component

of the Invariant Spin Axis at the Siberian snake and the 2 MV solenoid. . . . . 100

7.6. Alignment angles of the RF Wien filter with respect to the COSY plane for

Precursor 1 & 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7. Description of the variables and fit parameters to determine the Invariant Spin

Axis using the RF Wien filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.8. Fit parameters to describe the buildup of the vertical polarization using the

Initial slope method taking Spin Decoherence Effects into account. . . . . . . . 115

7.9. Input parameters and fit results for the Monte Carlo data and regression shown

in Figure 7.32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.10. Comparison of the statistical uncertainty of the map minimum for different step

sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.11. Vertical and horizontal orbit RMS values of the orbit during the first and second

Precursor runs. The beam-based alignment and the alignment of quadrupoles

greatly improved the orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.12. The change of the root mean square (RMS) of the orbit in both the horizontal

and vertical directions is observed before and after switching on the Siberian

snake to 15 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.13. Precursor 1 & 2: Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.1. Parameters of the storage rings of the three staged approach of measuring EDMs

of charged elementary particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1. BPM offsets determined during the Beam-Based alignment. . . . . . . . . . . . 177

B.1. Steerer Boundaries for the two experiments. The values are given in % where

100 % stands for a maximum deflection angle of 15 mrad. . . . . . . . . . . . . . 179

B.2. Steerer Boundaries for the two experiments. The values are given in % where

100 % stands for a maximum deflection angle of 15 mrad. . . . . . . . . . . . . . 180

219



List of Tables

B.3. Margins of the accepted range for each Beam Position Monitor measuring the

horizontal beam position are given below. All values are in mm. . . . . . . . . 181

B.4. Margins of the accepted range for each Beam Position Monitor measuring the

vertical beam position are given below. All values are in mm. . . . . . . . . . . 182

220



Acknowledgments

To conclude this thesis, I want to thank everyone who contributed. I am deeply grateful to Prof.

Dr. Jörg Pretz for offering me the possibility of joining the JEDI collaboration. His guidance

and patience contributed mainly to the success of this thesis. Within the JEDI collaboration,

he creates a pleasant, creative, and productive working atmosphere, not only as a band leader

of the Christmas band but also as a supervisor for many adolescent scientists. Many thanks

also go to Dr. Ralf Gebel for supporting the scientific work of JEDI at COSY and my work. I

also want to thank Prof. Dr. Achim Stahl for agreeing to be my second supervisor.

A big thank you goes to all members of the JEDI collaboration. Organizing, planning, and

executing two beam times during difficult times like COVID and understaffed was certainly

a challenge with little sleep. Especially, I want to thank Dr. Alexander Nass, Dr. Frank

Rathmann, Dr. Jamal Slim, Dr. Volker Hejny, Dr. Vera Shmakova, and Dr. Tim Wagner and

the rest of the collaboration for helping during beam times at impossible times during the day

and night. I also want to thank the COSY staff for preparing the polarized deuteron beam and

unpolarized proton beam and providing fantastic beam conditions.

As part of a small collaboration, I was trusted with a lot of responsibility. In addition, being

able to participate in international conferences all over the world is an experience I will never

forget and for which I am always grateful.

A special thank you goes to Dr. Volker Hejny, head of the analysis group. Without his vast

knowledge and his ability to explain the unexplainable, this thesis would have never been

possible.

Dr. Alexander Nass organizes guided tours around COSY for professionals and non-professionals.

He trusted me many times in helping him with these tours which I truly enjoyed as a welcome

distraction from my daily PhD work.

I can’t forget to mention my coworkers, namely, Dr. Vera Poncza, Dr. Tim Wagner, Dr. Jan

Hetzel, Awal Awal, Daoning Gu, Maximilian Vitz, Valentin Tempel, Michael Margos, Saad

Siddique, and Rahul Shankar. In recent years, I have convinced myself that PhDs are indeed

stressful. You have made this time less stressful for me during many coffee and cake breaks.

I wish all of you—from the bottom of my heart—only the very best for your professional and

personal future.

During this PhD, I was able to live in Vancouver and work at TRIUMF as part of a three-

month-long internship, which was, without doubt, the most intense and beautiful time of my

life so far. Living abroad and the experiences in Canada have shaped me positively in many

ways for which I’ll be forever grateful. I owe my deepest gratitude to Prof. Dr. Jörg Pretz,

Dr. Ralf Gebel, Prof. Dr. Oliver Kester, and Dr. Wojciech Fedorko for making this experience

possible. During this time, I met the most sincere people. I’ll be always thankful to Aurora,

David, Krystell, and Wen for being part of this journey, inspiring conversations, and fantastic

encounters.

221



Acknowledgments

It’s no secret that studying physics is not always the easiest thing to do. I want to thank Max,

Niklas, and Yannic for making even the hard times enjoyable. Because of you, my Curve Fever

skills are outstanding.
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Ausnahme solcher Zitate.

5. Alle wesentlichen Quellen von Unterstützung wurden benannt.
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