

FPGA based detection of recombination rates during electron cooling

FPGA technology

- FPGAs
- Comparison of different Chip Types
- FPGA Working Principle
- FPGA Design Flow
- FPGAs at COSY
- H0 Monitoring
 - Redpitaya Development Board
 - Data-Acquisition System
- Electron-Ion-Recombination
 - Electron Cooling
 - Recombination Processes
 - Cross Section
 - Effective Temperature

FPGA = Field-programmable-Gate-Array

Integrated Circuit...

JEDI

that can be configured after manufacturing.

that is based around a matrix of configurable logic blocks.

Field-programmable

Gate-Array

FPGAs are becoming famous ...

The Rise of Programmable Network Hardware

It's becoming increasingly viable for enterprises to customize network hardware solutions.

DESIGNLINES | AI & BIG DATA DESIGNLINE

Xilinx Buys China AI Startup

DeePhi acquisition seen as talent grab

By Rick Merritt, 07.18.18 🛛 2

Microsoft's Project Brainwave brings fast-chip smarts to AI at Build conference

Microsoft promises fast and flexible FPGA chips will unlock new AI abilities for customers using its Azure cloud-computing service.

BY STEPHEN SHANKLAND | MAY 7, 2018 6:41 AM PDT

Comparison of different chip types

FORSCHUNGSZENTRUM

Example: Clustering M&Ms

K-Means Clustering

Vortrag der TU-Dresden: Leistungsvergleich von FPGA, GPU und CPU für Algorithmen zur Bildbearbeitung

Mathis Beyß

JÜLICH FORSCHUNGSZENTRUM

Vortrag der TU-Dresden: Leistungsvergleich von FPGA, GPU und CPU für Algorithmen zur Bildbearbeitung

Mathis Beyß

Comparison of different chip types

When to use FPGAs and when not?

- Parallel Processing
- Signal Processing
- Data-to-Clock-Ratios
- Deterministic I/O

- Complex Calculations
- Floating Point Math
- Sorting & Searching

https://www.viewpointusa.com/IE/ar/when-is-an-fpga-worth-it-and-when-is-it-not-when-developing-an-industrial-embedded-system-part-1/

How do they work?

Main Parts of an FPGA Chip:

- Logic Blocks:
 - Look-Up Tables (LUTs)
 - Flipflops
- Programmable Switches
- Interconnects
- Random-Access Memory (RAM)
- I/O Blocks

ÜLICH

How do they work?

Basic Working Principle:

Signals are ...

- 1) integrated via Input Blocks
- 2) routed via **Programmable Switches** to a certain Logic Block
- 3) processed in Logic Block
- 4) routed to **Ouput Block**

і і і сн

Programmable Switch Blocks

How are Programmable Switches implemented?

Each Crossbar consists of six Transistors, whose state is written to a configuration memory cell.

ii ICH

FORSCHUNGSZENTRUM

10

Look-Up Tables (LUTs) 2-Input LUT

- Every possible n-Input logic operation can be implemented within a n-Input LUT
- Modern FPGAs use blocks of 6-Input LUTs

Look-Up Tables (LUTs) 2-Input LUT

- Every possible n-Input logic operation can be implemented within a n-Input LUT
- Modern FPGAs use blocks of 6-Input LUTs

From the design to the configuration

Hardware Description Languages (HDL):

- (System-)Verilog
- VHDL

(comparable to C) (comparable to Fortran)

Meanwhile it is also possible to use standard programming languages to synthesize FPGA Designs like Python (PYNQ, MyHDL) or MATLAB (HDL Coder & Verifier)

Beam Loss & H0 Monitoring

- 9 detectors for Beam Loss Monitoring:
 - 7 along the ring
 - 2 on the extraction beam line
- 2 detectors for H0 Monitoring:
 - 1 behind the 100keV Cooler
 - 1 behind the 2MeV Cooler

IIIICH

System-on-a-Chip Approach

Scintillator Paddles

Development Board

Control System

STEMIab 125-14

Basic Specifications

- Xilinx ZYNQ 7010 SOC
 - Look-Up Tables: 17 600 •
 - Logic Cells: 28 000 ٠
 - Flip_Flops: 35 200
 - On-Chip RAM: 2.1 Mb •
- 2 ADCs •

•

- Sample Rate:
- Resolution: •

ÜLICH

- Voltage range:
- 125 MS/s
- 14 bit
 - ±1V (LV), ±20V (HV)

Analog-to-Digital-Conversion

ÜLICH

Signal Preparation

18

Signal Processing

IÜLICH

Basic working principle

- Superposition with quasi-monoenergetic dense electron beam with the same velocity
- Coulomb Scattering leads to a momentum transfer
- Thermal energy loss in the co-moving electron beam

$$\frac{E_i}{E_e} = \frac{m_i}{m_e}$$

 \rightarrow 100 keV electron beam cools 1837 MeV proton beam

Magnetic Field

 $k_B T_\perp \approx 0.1 \ eV$

 $k_B T_{||} \approx 1 meV$

Cool Electron Beam

20

Hot Ion Beam

Recombination Processes

Radiative Recombination:

$$p^+ + e^- \rightarrow H^0 + hv$$

Typical recombination rate is on the order of several *kHz*

How to calculate the recombination rate?

Calculating the Recombination Rate

lons occupied by e-beam

$$R = \gamma^{-1} \overline{\eta_L N_p} \underline{n_e \alpha_{RR}} \quad \text{with } \alpha_{RR} = \langle v\sigma(E) \rangle$$
recombination
rate per lon

- η_L fraction of beam occupied by e-beam
- N_p number of protons in the beam
- n_e electron density in e-cooler
- α_{RR} recombination coefficient
- *v* relative velocity
- $\sigma(E)$ cross-section

A. Wolf et Al.: Recombination in Electron Coolers

Kramers formula for radiative recombination

$$\sigma_n(E) = \frac{32\pi}{3\sqrt{3}} \alpha^3 a_B^2 \frac{q^4 R_\infty^2}{nE(q^2 R_\infty + n^2 E)}$$

- α fine structure constant
- *n* Rydberg level
- *q* ion charge
- a_B Bohr radius
- R_{∞} Rydberg energy
- *E* electron energy in ion resting frame

H. A. Kramers: On the theory of X-ray absorption and of the continuous X-ray spectrum

A. Wolf et Al.: Recombination in Electron Coolers

A. Wolf et Al.: Recombination in Electron Coolers

Calculation of the Recombination Coefficient

$$\alpha_{RR} = \langle v\sigma_{tot}(E) \rangle = \frac{\int_0^\infty dv \ v^2 \sigma_{tot}(E) f(E)}{\int_0^\infty dv \ v f(E)}$$

with the "flattened" Maxwell distribution:

$$f(E) = \frac{m_E}{2\pi k_B T} \cdot e^{-\frac{E}{k_B T}} \delta(V_{||})$$

$$\alpha_{RR} = 3.02 \cdot 10^{-13} \frac{cm^3}{s} q^2 \sqrt{\frac{eV}{k_B T}} \left[ln \left(11.32 \cdot q \sqrt{\frac{eV}{k_B T}} \right) + 0.14 \cdot \sqrt[3]{\frac{k_B T}{q^2 eV}} \right]$$

M. Bell and J. S. Bell: Capture of Cooling Electrons by cool Protons

Calculation of the effective temperature from Recombination Rates

$$\alpha_{RR} \approx 7.88 \ (k_B T)^{-0.675} 10^{-13} \frac{cm^3}{s}$$
 good approximation for $k_B T < 3 \ eV$

Stop cooling, when recombination rate reaches his maximum.

 \rightarrow No more cooling, only beam loss

H. Poth et al.: First Results of Electron Cooling Experiments at LEAR

- FPGAs are configurable Integrated Circuits.
- They can be used for real-time signal processing.
- They are used at COSY for rate counting and charge integration.
- Electrons and ions can recombine during cooling.
- One can derive a theoretical formula for the recombination rate.
- One can use the recombination rate to gain insight into the cooling process

28

Thank you for your attention!

