

Simulation studies for the proposed MTT system at CMS

EDM student's seminar

Paul Maanen

3. Physikalisches Institut B 30.11.2012

Outline

- LHC & CMS
- Motivation for MTT
- Concept & Design
- Implementation into CMSSW
- Studies with the new detector
- Conclusion & Outlook

Large Hadron Collider

- Design cms energy:14 TeV
- Design luminosity: L=10³⁴ cm⁻²s⁻¹
- Circumference: 26.7 km

III. Physikalisches Institut B

Compact Muon Solenoid

- Multi purpose
 Detector
- Cylindrical Design
- Diameter: 15 m
- Length: 21 m
- Weight: 12.5 kt

Compact Muon Solenoid

- Multi purpose Detector
- Cylindrical Design
- Diameter: 15 m
- Length: 21 m
- Weight: 12.5 kt

Upgrade plans

- Only luminosity upgrade extends physics reach significantly
- High Luminosity HL-LHC era after LS3, from 2020 onwards

III. Physikalisches Institut B

The trigger rate problem

- Current CMS L1 trigger:
 - → 100 kHz maximum rate
 - → 3.2 µs latency
 - → 10 kHz single-µ-Rate
 - Goal for HL-LHC :
 - → keep µ-triggerrate about constant
 - Problem:
 - p_t cut has insufficient rejection power
 - \rightarrow increase p_t resolution

III. Physikalisches Institut B

The trigger rate problem

- The solution:
 - → Use tracker info in L1
 - » Bandwidth?
 - » Latency?
 - Partial readout possible? (but how?)

Concept

- New detector layer just before innermost muon chamber
- Fast muon tag defines region of interest
- Tracker is readout in ROI

Concept

- New detector layer just before innermost muon chamber
- Fast muon tag defines region of interest
- Tracker is readout in ROI
- Tracker information is matched to muon candidates in DT/RPC

Concept

- New detector layer just before innermost muon chamber
- Fast muon tag defines region of interest
- Tracker is readout in ROI
- Tracker information is matched to muon candidates in DT/RPC
- Additional benefit: Ghost-busting capabilites

Concept

Requirements for Muon Track fast Tag

- → fast (25ns bunchspacing)
- → thin (< 1cm space)
- → affordable (300 m² to cover)
- → insensitive to magnetic fields

Concept

Requirements for Muon Track fast Tag

- → fast (25ns bunchspacing)
- \rightarrow thin (< 1cm space)
- \rightarrow affordable (300 m² to cover)
- \rightarrow insensitive to magnetic fields

- Possible realization:
 - Scintillating tiles read out by Silicon PM

Open Questions

- What is the **optimal granularity** of MTT?
- How good is the stability against noise?
- How can MTT interact with a tracker trigger?
- ???

Open Questions

- What is the **optimal granularity** of MTT?
- How good is the stability against noise?
- How can MTT interact with a tracker trigger?

- We can not answer these questions from prototyping alone, so we need **detailled Simulations**.
- To answer the "big picture" questions, MTT has to be implemented in the official framework called CMSSW.
- Challenge: Far more complicated than Geant4 standalone....

CMSSW simulation in a nutshell

Physics generation

Event generation

- Variety of physics generators (pythia, herwig, whizard, etc.) available
- Generator information stored in HepMC format and send to detector simulation
- Ready to use out-of-the-box

Detector simulation

Detector simulation

- Detector simulation is done via Geant4 interface
 - → allows access to Geant4 objects at any stage
 - → uses XML-based Detector Description machinery, configurable at run time via a hierarchy of XML files
- converts DD solids and materials to Geant4 counterparts

Detector simulation

THAACHEN

III. Physikalisches Institut B

- Need to:
 - Transform the concept into a concrete design
 - → Implement materials, shapes and positions in XML code
 - → Define active materials
 - Write custom XML parser to provide the user with an easy to use geometry model at runtime (access to detector dimensions, coordinate transformations, etc.)
 - Crosschecks of the Geometry are also needed...

/

22

Geometry implementation

Some visual crosschecks....

III. Physikalisches Institut B

23

Geometry implementation

Some visual crosschecks....

Detector response simulation

Detector response simulation

- Detector response in CMSSW is only parametrized
 - Need dedicated simulation and hardware studies
 - Implemented trivial model & data format
 - → List of hit tiles
 - \rightarrow 100% efficiency, no timing, no energy information

Studies with simulated hits

- Is discrimination between muons and backgrounds possible?
 - Set up Simulation:
 - \rightarrow Choose geometry with 2 strips, 10 tiles as first approach
 - → Signal: Muon gun plus pile up
- Look at deposited energy as discriminating observable..

Studies with simulated hits

- Energy distributions are nicely separated.
- Cut should be possible.

III. Physikalisches Institut B

ΝΤΗΔΔΛΗΕΝ

BMBF FSP-CM

III. Physikalisches Institut B

Studies with simulated hits

- Optimal cut value ca. 2 MeV
- May achieve >90% muon selection efficiency at 90% background reduction.

- Long Barrel design: Completely pixelated tracker (cf. CMS DN2012/003)
- Capable of self-triggering
- Produces L1 tracks with rough estimate of vertex, momentum

III. Physikalisches Institut B

Studies with L1Tracks

- Extrapolate L1Tracks fullfilling p_t and acceptance requirements linearly to MTT
- Search for digitized hit in matched tile and its neighbours
- If hit is found and satisfies energy cut, we have found a muon candidate

Studies with L1Tracks-Efficiencies

- Same Geometry as before
- Muon gun without pileup
- Steep turn on curves
- Efficiency rather low

Studies with L1Tracks-Efficiencies

Ψ

efficiency vs.n 0.9 秋秋概 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 <u>|-</u> -1.5 -1 -0.5 0 0.5 1.5 true n

III. Physikalisches Institut B

- Cracks in Φ and η lower eff.
 Significantly
- Better coverage preferable

Conclusions & Outlook

- MTT has been implemented into CMSSW as new detector.
 - → Design of a new subdetector hierarchy
 - → Geometry description & materials implemented
 - → Detector numbering scheme defined
 - → Trivial response simulation implemented
 - A flexible simulation framework has been created for design & performance studies.
 - → Can now start optimising...
 - Done some preliminary studies.
 - → Discrimination of signal and background is in principle possible
 - → Matching with L1Tracks possible, but needs optimisation

Conclusions & Outlook

Next Steps:

- → parametrize response of tiles with Geant4 simulations or hardware studies
- → implement a model for neutron background & electronics noise
- → consider additional geometries
- → further explore the interaction of MTT with other proposed upgrades

Thanks for your Attention!

40

Simulation Studies for the proposed MTT-System at CMS Paul Maanen | 3. physikalisches Institut B | 30.11.2012

Germany

Germany

43

44