Development of a Rogowski coil Beam Position Monitor for Electric Dipole Moment measurements at storage rings

PHD defense talk Physics Institute III B | Nuclear Physics Institute (IKP-II)

Fabian Trinkel 15th December 2017

Content

- Motivation for Electric Dipole Moment (EDM) measurements
- Spin dynamics in storage rings
- EDM measurement at the accelerator facility COSY
- Beam position measurements
 - 1. Common Beam Position Monitors (BPMs) at COSY
 - 2. Development of a Rogowski coil BPM
 - 3. Estimation of a deuteron EDM limit for a measurement at COSY
- Summary and future developments

Baryogenesis: Why does the universe contains more matter than antimatter?

Physics Institute III B

Electric Dipole Moments (EDMs) as a new source of CP violation

- $\mathcal{H} = -\vec{\mu} \cdot \vec{B} \vec{d} \cdot \vec{E}$ $P: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$ $T: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$
- Permanent EDMs of light hadrons are *T*-violating
 - **CPT** theorem \Rightarrow **CP** violation

• Standard Model expectation: $d \approx 10^{-31} \text{e} \cdot \text{cm}$ (Estimated by the neutron EDM limit)

EDM measurement at the accelerator facility COSY (COoler SYnchrotron)

COSY facts

Provides polarized protons and deuterons				
Circumference	184 m			
Momentum	3.7 GeV/c			
Intensity	10 ⁹ to 10 ¹⁰ particles			
Four experimental areas				
Beam diagnostic systems				
Spin manipulators				

Spin dynamics in storage rings

EDM measurement principle in a pure magnetic storage ring (COSY)

- EDMs introduce vertical polarization component of a horizontal polarized beam
- Measure vertical polarization

Perfect accelerator and an EDM

$$\vec{\Omega}_{\rm MDM} = \frac{q}{m\gamma} \left(\gamma G \vec{B} \right)$$

$$\vec{\Omega}_{\text{EDM}} = \frac{q\eta}{2m} \left(\vec{\beta} \times \vec{B} \right)$$

Realistic accelerator without an EDM

Scenario	<i>d</i> (e⋅cm)	Orbit RMS (mm)	$\Delta S_y/n$
Perfect accelerator with an EDM	$5 \cdot 10^{-19}$	0	$1.7 \cdot 10^{-9}$
Realistic accelerator without an EDM	0	1.3	$1.7 \cdot 10^{-9}$

Source: Simulation M. Rosenthal, 2016, PhD thesis [3], Phys. Rev. ST Accel. Beams 16, 114001 2013 [6]

Particle orbit

Common Beam Position Monitor (BPM) system at COSY

Beam position determination

$r = \frac{d}{d} \frac{U_L - U_R}{U_L - U_R}$	σ_{Pos} (μm)	Source
$x = 2 U_L + U_R$	≈ 0.2	Thermal noise
$y = \frac{d}{2} \frac{U_U - U_D}{U_U + U_D}$	≈ 10.0	Resolution
	≈ 100.0	Accuracy

Development of a Rogowski coil Beam Position Monitor

RNTH

Physics Institute III B

Voltage measurement principle with a lock-in amplifier

Development of a Rogowski coil BPM

Induced voltage calculation

Voltage ratio calculation

• Definition of the horizontal and vertical voltage ratio:

$$\frac{\Delta U_{hor}}{\Sigma U_i} = \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4} \quad \frac{\Delta U_{ver}}{\Sigma U_i} = \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

• Calculation of the horizontal and vertical voltage ratio:

$$\frac{\Delta U_{\text{hor}}}{\Sigma U_{i}} = \mathbf{c_{1}} x_{0} - \mathbf{c_{3}} \left(x_{0}^{3} - 3y_{0}^{2} x_{0} \right) + \mathbf{c_{4}} \left(x_{0}^{5} - 10y_{0}^{2} x_{0}^{3} + 5y_{0}^{4} x_{0} \right) + \mathcal{O} \left(x_{0}^{n} \cdot y_{0}^{m} \right)_{n+m \ge 6}$$

$$\frac{\Delta U_{\text{ver}}}{\Sigma U_{i}} = \mathbf{c_{1}} y_{0} - \mathbf{c_{3}} \left(y_{0}^{3} - 3x_{0}^{2} y_{0} \right) + \mathbf{c_{4}} \left(y_{0}^{5} - 10x_{0}^{2} y_{0}^{3} + 5x_{0}^{4} y_{0} \right) + \mathcal{O} \left(x_{0}^{n} \cdot y_{0}^{m} \right)_{n+m \ge 6}$$

• Calculation of the sensitivities:
$$(R = 40.000 \text{ mm and } a = 5.075 \text{ mm})$$

 $c_1 = \frac{2}{\pi\sqrt{R^2 - a^2}} = 16.0 \cdot 10^{-3} \frac{1}{\text{mm}}$
 $c_3 = \frac{a^2 R}{3\pi (R^2 - a^2)^{5/2} (R - \sqrt{R^2 - a^2})} = 3.4353 \cdot 10^{-6} \frac{1}{\text{mm}^3}$
 $c_4 = \frac{a^2 R (4R^2 + 3a^2)}{20\pi (R^2 - a^2)^{9/2} (R - \sqrt{R^2 - a^2})} = 1.3451 \cdot 10^{-9} \frac{1}{\text{mm}^5}$

Development of a calibration method

• Definition of a minimization function (6 free parameters):

$$\chi^{2} = \frac{\chi^{2}_{R_{1}}}{\sigma^{2}_{R_{1,meas}}} + \frac{\chi^{2}_{R_{2}}}{\sigma^{2}_{R_{2,meas}}} + \frac{\chi^{2}_{R_{3}}}{\sigma^{2}_{R_{3,meas}}} + \frac{\chi^{2}_{R_{4}}}{\sigma^{2}_{R_{4,meas}}} \qquad \chi^{2}_{R_{i}} = \left(\frac{U_{i,meas}}{\Sigma U_{i,meas}} - \frac{U_{i,model}}{\Sigma U_{i,model}}\right)^{2}$$

Laboratory measurements with the Rogowski coil BPM

measurements

Range

-5 mm to 5 mm

Laboratory measurements with the Rogowski coil BPM

<i>x_{off}</i> (mm)	<i>y_{off}</i> (mm)	φ (°)	$rac{1}{\Sigma g_i}$ (%)	<u><i>g</i></u> ₂ Σg _i (%)	<u><i>g</i>₃</u> Σg _i (%)	<u><i>g</i></u> ₄ Σg _i (%)
3.4	3.3	-0.40	20.9	28.3	28.7	22.1

- Accuracy: $\approx 150 \ \mu m$
- Caused by the asymmetry of the coil
- This effect is not considered in the calibration algorithm
- Resolution: $\approx 1.25 \ \mu m$
- The theoretical resolution limit is reached

Beam position measurements with a Rogowski coil BPM at COSY

Beam position measurements with a Rogowski coil BPM in COSY

Beam position measurements with a Rogowski coil BPM in COSY

Beam position measurements with a Rogowski coil BPM in COSY

Deuteron EDM limits for the precursor experiments at COSY

• A relative beam position measurement would reduce the $\sigma_{\rm EDM,sys,orbit}$ in magnitudes

Summary

Future Rogowski coil developments

Backup

- Misaligned magnets lead to
- polarization build up
- orbit distortion
- Correct orbit to minimize polarization build up

Systematic Effects II

Definition of accuracy and resolution

Institute III B

Voltage measurement principle with a lock-in amplifier

$$V_{\text{sig}}(t) = A_{sig} \cos(\omega_{\text{sig}}t) \qquad V_{\text{ref}}(t) = A_{\text{ref}} \cos(\omega_{\text{ref}}t)$$

$$V_{\text{mod}}(t) = V_{\text{sig}}(t) \cdot V_{\text{ref}}(t)$$

$$= A_{\text{sig}} \cos(\omega_{\text{sig}}t) \cdot A_{\text{ref}} \cos(\omega_{\text{ref}}t)$$

$$= \underbrace{A_{\text{mod}}}_{\frac{1}{2}A_{\text{sig}}A_{\text{ref}}} \left[\cos(t(\underbrace{\omega_{\text{sig}} - \omega_{\text{ref}}}_{\omega_{-}})) + \cos(t(\underbrace{\omega_{\text{sig}} + \omega_{\text{ref}}}_{\omega_{+}})) \right] \qquad \omega_{\text{sig}} \approx \omega_{\text{ref}}$$

$$V_{\text{mod}}(t) = \frac{1}{2}A_{sig}A_{ref}$$

6

Physics Institute III B

Voltage measurement principle with a lock-in amplifier

Theoretical calculations for the Rogowski coil BPM

Magnetic field:

$$B_{e_{\varphi}} = \frac{\mu_0 I_0}{2\pi} \frac{1}{r} \underbrace{\frac{1 - \frac{r_0}{r} \cos(\varphi - \varphi_0)}{1 + \left(\frac{r_0}{r}\right)^2 - 2\frac{r_0}{r} \cos(\varphi - \varphi_0)}}_{:=A \text{ with } u = \frac{r_0}{r} \text{ and } \Delta \varphi = \varphi - \varphi_0}$$

Taylor expansion series:

$$B_{e_{\varphi}} = \frac{\mu_0 I_0}{2\pi} \frac{1}{r} \left[\frac{dA}{du^0} \Big|_{u=0} + \frac{dA}{du^1} \Big|_{u=0} (u) + \frac{1}{2} (u)^2 \frac{d^2 A}{du^2} \Big|_{u=0} + \frac{1}{6} (u)^3 \frac{d^3 A}{du^3} \Big|_{u=0} + \frac{1}{24} (u)^4 \frac{d^4 A}{du^4} \Big|_{u=0} + \frac{1}{120} (u)^5 \frac{d^5 A}{du^5} \Big|_{u=0} + \mathcal{O} \left((u)^6 \right) \right]$$

Induced voltage for N windings:

$$U_{\text{ind}} = -N \frac{d\Phi}{dt}$$
$$= \frac{-N}{(\varphi_2 - \varphi_1)} \frac{dI_0}{dt} \int_{\varphi_1}^{\varphi_2} \int_{-a}^{a} \int_{R-\sqrt{a^2 - z^2}}^{R+\sqrt{a^2 - z^2}} B(r, \varphi) dr dz d\varphi.$$

Theoretical calculations for the Rogowski coil BPM

Induced voltage for segment 1:

$$\begin{split} \mathbf{U}_{1} &= \frac{N_{1/4,1}\mu_{0}}{\pi} \frac{dI}{dt} \left[\pi \left(R - \sqrt{R^{2} - a^{2}} \right) + (x_{0} + y_{0}) \frac{2 \left(R - \sqrt{R^{2} - a^{2}} \right)}{\sqrt{R^{2} - a^{2}}} \\ &+ 2x_{0}y_{0} \frac{a^{2}}{(R^{2} - a^{2})^{3/2}} + \left(-x_{0}^{3} - y_{0}^{3} + 3y_{0}x_{0}^{2} + 3x_{0}y_{0}^{2} \right) \frac{a^{2}R}{3(R^{2} - a^{2})^{5/2}} \\ &+ \left(x_{0}^{5} + y_{0}^{5} - 10x_{0}^{3}y_{0}^{2} - 10y_{0}^{3}x_{0}^{2} + 5y_{0}^{4}x_{0} + 5x_{0}^{4}y_{0} \right) \frac{a^{2}R \left(4R^{2} + 3a^{2}\right)}{20(R^{2} - a^{2})^{9/2}} \right] \\ \frac{\Delta \mathbf{U}_{\text{hor}}}{\Sigma \mathbf{U}_{i}} &= \frac{\left(\mathbf{U}_{1} + \mathbf{U}_{2} \right) - \left(\mathbf{U}_{3} + \mathbf{U}_{4} \right)}{\mathbf{U}_{1} + \mathbf{U}_{2} + \mathbf{U}_{3} + \mathbf{U}_{4}} \quad \frac{\Delta \mathbf{U}_{\text{ver}}}{\Sigma \mathbf{U}_{i}} &= \frac{\left(\mathbf{U}_{1} + \mathbf{U}_{4} \right) - \left(\mathbf{U}_{2} + \mathbf{U}_{3} \right)}{\mathbf{U}_{1} + \mathbf{U}_{2} + \mathbf{U}_{3} + \mathbf{U}_{4}} \\ \frac{\Delta \mathbf{U}_{\text{hor}}}{\Sigma \mathbf{U}_{i}} &= c_{1}x_{0} - c_{2} \left(x_{0}^{3} - 3y_{0}^{2}x_{0} \right) + c_{3} \left(x_{0}^{5} - 10y_{0}^{2}x_{0}^{3} + 5y_{0}^{4}x_{0} \right) + \mathcal{O} \left(x_{0}^{n} \cdot y_{0}^{m} \right)_{n,m \geq 6} \\ \frac{\Delta \mathbf{U}_{\text{ver}}}{\Sigma \mathbf{U}_{i}} &= c_{1}y_{0} - c_{2} \left(y_{0}^{3} - 3x_{0}^{2}y_{0} \right) + c_{3} \left(y_{0}^{5} - 10x_{0}^{2}y_{0}^{3} + 5x_{0}^{4}y_{0} \right) + \mathcal{O} \left(x_{0}^{n} \cdot y_{0}^{m} \right)_{n,m \geq 6} \end{split}$$

Theoretical calculations for the Rogowski coil BPM

Calculation of the voltage ratios for the orbit bump measurements

Horizontal:

$$\Delta \frac{\Delta U_{\text{hor}}}{\Sigma U_{\text{i}}} = \frac{\Delta U_{\text{hor,bump}}}{\Sigma U_{\text{i}}} - \frac{\Delta U_{\text{hor,initial}}}{\Sigma U_{\text{i}}}$$
$$= c_1 \cdot \underbrace{(x_2 - x_1)}_{\text{const} \cdot \Delta I} = a_1 \cdot \Delta I$$

Theoretical:

$$\frac{\Delta \mathbf{U}_{\mathrm{hor}}}{\Sigma \mathbf{U}_{\mathrm{i}}} = c_1 x_0$$

Takes the first order of x_0 for the horizontal voltage ratio into account

Vertical:

$$\Delta \frac{\Delta U_{\text{ver}}}{\Sigma U_{i}} = \frac{\Delta U_{\text{ver,bump}}}{\Sigma U_{i}} - \frac{\Delta U_{\text{ver,initial}}}{\Sigma U_{i}}$$
$$= \underbrace{a_{1,2} - a_{1,1}}_{b_{1}} + a_{2} \underbrace{(x_{2} - x_{1})}_{\Delta I} \underbrace{(x_{2} + x_{1})}_{I_{0} + \Delta I}$$
$$= b_{1} + b_{2} \cdot \Delta I + b_{3} \cdot \Delta I^{2}$$

$$\frac{\Delta U_{\text{ver}}}{\Sigma U_{\text{i}}} = c_1 y_0 - c_3 (y_0^3 - 3x_0^2 y_0)$$
$$= a_1 + a_2 x_0^2$$

Takes the first x_0 for the vertical voltage ratio into account

Orbit bump

Horizontal orbit bumps with steerer value of 0%

Orbit bump: Comparison of initial and final orbit

Backup 12

Voltage noise calculations

Thermal noise:

 $\mathbf{U} = \sqrt{4k_{\mathrm{B}}TR\Delta f}$

Calculation of the thermal noise for the different devices with a bandwidth of $\Delta f = 6.81$ Hz

Device	Т (К)	σ_{U} (nV)
Lock-in amplifier	293.15	13.05
Low-noise preamplifier	293.15	2.00
Quartered segment	293.15	1.14
Cooled quartered segment	77.15	0.22
Quartered segment amplified	293.15	10.34
Cooled quartered segment amplified	77.15	2.07

Voltage noise calculations

Two different signal chains:

- 1. quartered segment
- 2. quartered segment + low-noise preamplifier

Readout of the signal chain is an uncooled lock-in amplifier

$$\sigma_{\rm U_{total}} = \sqrt{\sum_{\rm i} \sigma_{\rm U}^2}$$

Signal chain	T (K) for quartered segment	$\sigma_{\mathrm{U,total}}$ (nV)	σ_x (μ m)
1	293.15	13.10	1.07
2	293.15	16.77	1.35
1	77.15	13.05	1.05
2	77.15	13.36	1.08

• Cooling only the signal chain lead not to a major increase of resolution because the dominant noise source is the lock-in amplifier itself

