Spin wheel - a new method of suppression of spin decoherence in the EDM storage rings

I.Koop, BINP, Novosibirsk, Russia

Outline

- Introduction. What is EDM? Some numbers.
- Frozen spin method (Yannis Semertzidis, BNL)
- All electric storage ring. Magic gamma: $\gamma = \sqrt{\mu/\mu'} = \sqrt{(1+a)/a} > 1$ $a_e = 0.00116$, $a_p = 1.793$, $a_{H3} = 7.937$, $a_{C13} = 0.51$ - is OK! $a_d = -0.143$, $a_{He3} = -4.191$ - to freeze need magnetic field too!
- Synchrotron oscillations in all electric storage ring. Monochromatization effect.
- Use counter rotating beam as co-magnetometer. SQUID-based pickups (Dave Kawall).
- "Spin wheel" method to increase SCT.
- Asymmetric energy EDM collider.
- Conclusion and discussion.

What is EDM? Some numbers.

- Natural magnetic moment units Nuclear and Bohr magnetons: $\mu_N = e\hbar/2m_pc = e \cdot \lambda_p/2 = 3.152 \cdot 10^{-14} MeV/T = 1.05 \cdot 10^{-14} e \cdot cm$ $\mu_B = e\hbar/2m_ec = e \cdot \lambda_e/2 = 5.788 \cdot 10^{-11} MeV/T = 1.93 \cdot 10^{-11} e \cdot cm$
- Proton magnet moment: $\mu_p = (1 + a)\mu_N = 2.793\mu_N \rightarrow a = 1.793$
- Proton EDM (goal): $d_p = \eta \mu_N = 10^{-29} e \cdot cm \rightarrow \eta = 10^{-15}$!!!
- Magnetic and EDM precessions: $\hbar \omega_m = \mu_p B$ $\hbar \omega_{EDM} = d_p E$
- pEDM relative precession frequency: $\gamma = 1.25$, $\beta = 0.6$ $\nu_{pEDM} = \frac{\omega_{pEDM}}{\omega_0} = \eta\gamma\beta \approx 10^{-15}$
- Magnetic moment frequency in the magnetic field: $v_m = \gamma a > 1.793$
- Electrons in all electric ring: $\gamma = 30$, a = 0.00116 $\nu_m = \gamma a = 0.0342$ – less sensitive to stray magnetic field! $d_e = 10^{-29}e \cdot cm$ $\eta = 0.5 \cdot 10^{-18}$ $\nu_{eEDM} = \eta\gamma\beta = 1.5 \cdot 10^{-17}$

FZ-Juelich, IKP, 11 Dec. 2012

F.Rathmann: Direct EDM search for charged hadrons at COSY

All electric EDM storage ring.

• Radial electric field:

$$E = 10 \frac{MV}{m} = 334 Gs$$
 $E = E_0 \frac{r_0}{r}$ or $E = E_0 \left(\frac{r_0}{r}\right)^{1+m}$

• Circular orbit r = const:

$$\left|\frac{d\vec{p}}{dt}\right| = p\omega \equiv p\frac{v}{r} = -eE_0\frac{r_0}{r} \quad \rightarrow \quad pv \equiv p_0v_0 = -eE_0r_0$$

- All circular orbits have the same momentum!!! (For field index m=0)
- Horizontal betatron motion: is conserved the sum of the potential U(r) and the kinetic T(p) energies, but U(r) and T(p) oscillate:

H = U(r) + T(p) = const

• Synchrotron (RF) motion: T(p) = const, but H and U(r) are oscillating

Electric sector bend + drift. Dispersion.

Acceleration/deceleration by the longitudinal component of the edge electric field:

$$\Delta H = \Delta T < 0$$

$$\Delta H = \Delta T < 0$$

$$T = T_0$$

$$D_x = r_0$$
s and, hence,
ions! Strong
dynamic aperture
h zero dispersion.
$$\Delta H < 0 \quad \Delta H > 0$$

For
$$E = E_0 \frac{r_0}{r}$$
 $\mathbf{x} = r_0 \frac{\Delta H}{H} \rightarrow D_x = r_0$

RF changes the kinetic energy in drifts and, hence, excites the horizontal betatron oscillations! Strong synchro-betatron coupling. It reduces dynamic aperture

It is desirable to place RF in a drift with zero dispersion.

For complete spin/orbit description see: S.R.Mane, NIMA-D-12-00433

FZ-Juelich, IKP, 11 Dec. 2012

 $\Delta H = 0$

Orbital and spin motions. Basic formulae.

Bρ

= pc/Ze	$\vec{\Omega}_V = -rac{Ze}{\gamma mc}$	$\frac{1}{C}\left(\vec{B} - \frac{\vec{\beta} \times \vec{E}}{\beta^2}\right)$
= pc/Ze	$\vec{\Omega}_V = -\frac{Ze}{\gamma mc}$	$\frac{1}{c}\left(\vec{B}-\frac{\beta\times L}{\beta^2}\right)$

$$(\Omega_V)_y = -\frac{c}{B\rho} \left(B_y + \frac{E_x}{\beta} \right) = \frac{\beta c}{r}$$

$$(\Omega_m - \Omega_V)_y =$$

= $-\frac{\gamma c}{B\rho} \left(aB_y - \left(\frac{1}{\gamma^2 \beta^2} - a\right) \beta E_x \right) \to 0$

$$(\Omega_V)_x = -\frac{c}{B\rho} \left(B_x - \frac{E_y}{\beta} \right) = 0!$$

$$(\Omega_m - \Omega_V)_x =$$

$$= -\frac{\gamma c}{B\rho} \left(aB_x + \left(\frac{1}{\gamma^2 \beta^2} - a\right) \beta E_y \right) =$$

$$= -\frac{cB_x}{B\rho} \frac{1+a}{\gamma}$$

$$(\Omega_{EDM})_x = -\eta \frac{1}{B\rho} (E_x + \beta B_y)$$

$$\rightarrow (\Omega_{EDM})_x = -\eta \frac{E_x}{B\rho} \frac{1+a}{\gamma a}$$

FZ-Juelich, IKP, 11 Dec. 2012

Idea of the "Spin Wheel" approach

- Let introduce the background precession around the X-axis, which is, say, 10 times larger than the spread of spin tunes (averaged over the phases of all three types of oscillations).
- Now injected spins, being aligned vertically or longitudinally, will rotate coherently around the X-axis in the vertical plane with the about 20 times less dispersed frequencies.
- In this respect there is a full analogy with the spin echo technique.
- The needed precession frequency Ω_X could be achieved by excitation of very small radial magnetic field B_X which, of course, is accompanied by vertical component of the electric field E_Y=β B_X.
- The radial magnetic field will split orbits vertically for CW and CCW beams. SQUID based BPMs will detect this splitting at picometer level.
- EDM signal, in this method, is in fact asymmetry of the precession frequency measured for positive and negative orbit splitting.

A "spin wheel" approach

 $\Omega_y = \left\langle (\Omega_m - \Omega_V)_y \right\rangle = c1 \cdot a_x^2 + c2 \cdot a_y^2 + c3 \cdot (\Delta p/p)^2$

FZ-Juelich, IKP, 11 Dec. 2012

Numerical example

 $f_0 \simeq 10^6 \text{ Hz}$ - revolution frequency

$$\Delta p / p \simeq 2.5 \cdot 10^{-4} \rightarrow f_y / f_0 \simeq 10^{-8} \rightarrow f_y = .01 \,\mathrm{Hz}$$

$$f_x = .1 \,\mathrm{Hz}$$
 $f = \sqrt{f_x^2 + f_y^2} \simeq f_x + \frac{f_y^2}{2f_x}$

 $\Delta f = f_y \frac{f_y}{2f_x} = 10^{-2} \frac{10^{-2}}{2 \cdot 0.1} = 0.5 \cdot 10^{-3} \text{ Hz} \quad \text{-frequency spread}$

SCT= $(\Delta f)^{-1}$ =2000 s! instead of 100 s in case of $f_x = 0$ FZ-Juelich, IKP, 11 Dec. 2012

Second (CCW) beam as co-magnetometer

Radial electric field: Ex=100 (kV/cm)=0.033333 (T)

β1, proton	β2, proton	ρ (m)	B(T)	Ε(Τ)/β1	β2/β1
0.302846	-0.181708	6.248995	0.045666	0.110066	-0.6
0.400031	-0.266687	12.529028	0.025705	0.083326	-0.666666
0.474505	-0.355879	19.897105	0.014544	0.070248	-0.75
0.598379	-0.598379	41.960283	0	0.055705	-1.0

β1, He3	β2, He3	ρ (m)	B(T)	E(T)/β1	β2/β1
0.230633	-0.307511	10.7507	-0.040335	0.144528	-1.333333

β1, H2	β2, proton	ρ (m)	B(T)	Ε(Τ)/β1	β2/β1
0.29695	0.395932	-3.171489	-0.725713	0.112251	1.33333
0.460592	0.57574	-9.5	-0.414107	0.07237	1.25

Conclusion

- The strong enough driving field (Ω_X=10⁸·Ω_{EDM}=10⁻⁷·Ω₀), directed along the X-axis, prolongs SCT by one order of magnitude, at least (by factor 20 in our numerical example).
- At first glance idea of spin wheel looks promising!