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Brief reminder
T-BMT equation

A spin vector placed into a magnetic field is subject to precession
described by the T-BMT equation (rest frame):

ds
dt

= s × (ΩMDM + ΩEDM) , (1a)

where MDM and EDM angular velocities ΩMDM and ΩEDM
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Brief reminder
Frozen Spin condition

From eq. (1b) one can observe that the direction of the spin vector
can be fixed relative to the momentum vector, i.e., ΩMDM = 0.
This is called the Frozen Spin condition.
Why is it important?

I In a storage ring, of necessity, ΩMDM ⊥ ΩEDM

I Hence, the measured net angular velocity

ω ∝
√

Ω2
MDM + Ω2

EDM ≈ ΩMDM +
Ω2

EDM
2ΩMDM

(EDM is a

second-order effect)

I When the FS condition is fulfilled, the only remaining (if any)
ΩMDM ‖ ΩEDM

I Meaning that the EDM-related spin precession frequency shift
becomes a first-order effect



Brief reminder
Spin tune and Invariant spin axis

The standard formalism operates with spin tune νs and invariant
spin axis n̄, determining the one-turn spin transfer matrix

tR = exp (−iπνsσ · n̄) = cosπνs − i(σ · n̄) sinπνs .

They relate to the spin precession angular velocity as in

Ωs = 2πfs n̄ = 2πfRνs n̄.

The invariant spin axis (a.k.a. the spin precession axis) is called
such because this is the only direction in which the polarization of
a beam survives.



Teaser

I Vertical plane flat bunch

I Perfect FS lattice, only Y-family sextupoles optimized.



Origins of decoherence
Phase stability principle

I In a lattice utilizing an RF
cavity, particles travel in
bunches

I Therefore, the Phase
Stability Principle demands
that a particle with a longer
orbit should have a higher
equilibrium-level energy,
so that it doesn’t fall from
the bunch



An actual bunch
COSY Infinity 3rd order Taylor model



Spin tune decoherence

I Orbit lengthening occurs as a result of:
I Betatron motion:

(
∆L
L

)
β

= π
2L [εxQx + εyQy ]

I Initial momentum deviation:
(

∆L
L

)
α

= α0δ + α1δ
2 + . . .

I Causes an equilibrium-level momentum shift ∆δeq

I The particle’s Lorentz factor after accounting for the orbit
lengthening effects: γeff = γ0 + β2

0γ0∆δeq

I Spin tune is proportional to the particle’s Lorentz factor:
νs = γG

I Spin tune dispersion in a particle bunch is one mechanism of
depolarization (spin tune decoherence)



Unoptimized imperfect lattice



Decoherence measure



Optimized imperfect lattice



Sextupole decoherence suppression theory

A sextupole of strength

Ssext =
1

Bρ

∂2By

∂x2
,

has a two-fold effect on decoherence:

I Momentum compaction factor effect: ∆α1,sext = −Ssext D3
0

L

I Orbit length effect:
(

∆L
L

)
sext

= ∓Ssext D0βx,yεx,y

L

Where
D(s, δ) = D0(s) + D1(s)δ

is the dispersion function



Decoherence suppression theory
Sextupole placement

Sextupoles are placed in the maxima of the βx (s), βy (s), or D0(s)
functions, depending on the plane in which we want to suppress

decoherence (X-, Y-, and D-family sextupoles)



Simulation setup: the beam

I Vertical plane flat, normally-distributed beam of 30 particles:
y ∼ N(y0, 0.1) mm

I y0 ∈ [−1,+1] mm (10 beams)

I Initial spin vector S(t = 0) = (0, 0, 1)

I Kinetic energy 270.0092 MeV (strict FS)



The lattice

I Imperfect Frozen Spin lattice

I E+B elements tilted about
the optic axis by
α ∼ N(0, 5 · 10−4) rad

I Y-family sextupole gradient
GSY ∈ GSY0± 5 · 10−3,
GSY0 = −2.5 · 10−3 is the
optimal setting for the
perfect lattice



Tracking parameters and written data

I Tracking for 1.2 · 106 turns (approx. 1.2 sec); data written
every 800 turns

I Normal Form-computed (COSY Infinity procedure TSS) spin
tune and invariant spin axis: (νs , n̄x , n̄y , n̄z )

I Spin components (SX ,SY , SZ )

I Phase space components (X ,A,Y ,B,T ,D)



Computed data

I Polarization P =
∑

i S i

|
∑

i S i |
I Model f (t; a, f , φ) = a · sin(2π · f · t + φ)

I Fitted parameters: (â, f̂ , φ̂)





Spin precession axis effect

Figure 3: SPA component n̄y as a function of the vertical particle offset,
sextupole gradient value.



SPA: zoom

Figure 4: Zoom of Figure 3. SPA component n̄y (as well as n̄x ) is a
parabola in the neighborhood of the reference orbit at the optimal GSY
value, unlike νs , which is linear.



Spin tune effect

Figure 5: Spin tune νs Taylor expansion contains a linear term insensitive
to sextupole optimization.



Frequency estimate effect

Fitted data: Polarization.

Figure 6: Frequency estimate for the optimal sextupole gradient (orange)
and the values at the ends of the searched range.



Frequency estimate: zoom

Figure 7: Zoom of Figure 6. Frequency estimate depends on the offset
value linearly, like νs , and unlike n̄y .



Individual particle ST+SPA structure

Figure 8: SPA component n̄y for particles with offsets: [1.02749,
1.02937, 1.02840] mm. We observe small-amplitude rapid oscillations
about an average level. This average level changes parabolically with the
vertical offset (Figures 11 and 12 below). The rapid oscillations are due
to betatron motion (Figures 9, and 10).



Invariant spin axis
Unoptimized lattice

Figure 9: Sextupole fields are turned off



Invariant spin axis
Optimized lattice

Figure 10: Sextupole fields are turned on



Figure 11: Mean level of spin tune as a function of beam offset



Figure 12: Mean SPA and ST levels versus each other. Observe a strong
correlation.



Frequency estimate offset dependence

Fitted data: spin.

Figure 13: f̂ as a function of the initial vertical offset.



Spin tune dependence

Figure 14: f̂ as a function of the mean spin tune level.



Figure 15: f̂ as a function of the absolute value of the initial vertical
offset.



Thank you!


