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Abstract

A “weak/weaker, alternating-gradient, combined-function” (WW-AG-CF) electric
storage ring is described. It is optimized for an experiment proposed to measure the
proton electric dipole moment (EDM). The main bending field exists in the tall slender
gaps between inner and outer, vertically-plane, horizontally-curved electrodes. The
full ring consists of repetitions of such sector bends separated by drifts, correctors, RF
cavities and so on.

Between cylindrical (curved-planar) electrodes, the radial electric field dependence
is Er ∼ 1/r1+m, where the field index m is exactly m = 0. This field produces
horizontal bending as well as horizontal “geometric” focusing but, because the field
provides no vertical force, some vertical focusing has to be incorporated to prevent
particles from escaping vertically. The design described here provides this focusing by
“alternating gradient” (not quite flat) electrode contouring, with m toggling from sector
to sector, for example, between m = −0.002 and m = +0.002. Alternating focusing and
defocusing provides net focusing. But this is not “strong-focusing”. It is “weak-weaker”
focusing, just barely strong enough to keep particles captured. The resulting beam
distributions are highly asymmetric, much higher than they are wide. This matches
the good field storage ring aperture. Other than the electrode shaping (present only in
regions of almost-exactly-magic velocity), and weak, ideally zero strength correctors,
there are no quadrupoles, which is favorable for systematic error reduction.

The pure m = 0 field is also advantageous from the point of view of (complete
absence of) spin decoherence. This advantage is sacrificed by adjusting m away from
zero but, to leading order, this decoherence cancels for the proposed symmetrically
positive and negative deviations of m.

Another important consideration concerns intrabeam scattering (IBS), which is
potentially the most serious source of run-duration-limiting emittance growth. The
proposed desigh stabilizes the ring against IBS by permitting adjustment (in the lattice
design stage) for “below transition” ring operation.
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1 Introduction

Measuring the proton electric dipole moment (EDM) with best possible precision requires
an electrostatic storage ring in which 233 MeV, frozen spin polarized protons can be stored
for an hour or longer without depolarization. Initially single beams would be stored, with
run-to-run alternation of circulation directions. For ultimate reduction of systematic error,
simultaneously counter-circulating beams would be stored.

For longest spin coherence time (SCT), and to best exploit the systematic error reduction
enabled by counter-circulating beams, the focusing needs to be as weak as possible, and the
beam energy spread as small as possible. The lattice proposed here to meet these require-
ments is (to construct an acronym) of WW-AG-CF, “weak-weaker, alternating-gradient,
combined-function” type. (Not counting trim quadrupoles) there are no quadrupoles. The
entire vertical focusing is provided by alternating gradient, horizontally-curved electrodes.
Because the required vertical focusing is so weak it may be possible for the electrodes to
be completely flat vertically, with unbalanced electrical powering, along with slight vertical
element shifts providing the focusing. In any case, to the naked eye, the electrodes would
appear to be essentially flat. The horizontal bending is designed to be on a circle, or rather
circular arcs, of radius r0 = 40 m.

If the vertical field shaping is produced electrically it could provide zero quadrupole
focusing. This would allow stabilization of the vertical plane by octupole focusing. However
this possibility is not addessed in the present paper—only conventional, combined-function
focusing is considered.

To stabilize the beam against intrabeam scattering (IBS) emittance dilution it is con-
sidered essential for the lattice to run “below transition”; i.e. where the orbital period is
more influenced by change in velocity than by change in momentum. The proposed design
meets this requirement. The next section is largely devoted to demonstrating this behavior,
by first calculating the dispersion. For the ultraweak focusing that is optimal for the EDM
measuement the focusing associated with electrical (in contrast with magnetic) bending is
especially important.

The subsequent section contains lattice functions for a first-pass-optimized lattice. Fol-
lowing that is a formal treatment of betatron oscillations in an all-electric lattice. As well
as being needed for operational control of the ring, this material is intended to be applied
later to decoherence calculations that are, as yet, incomplete.

2 Orbits for “cylindrical” (Er ≈ 1/r) electric field

2.1 The pure cylindrical case

Much of this paper has been extracted from references[1],[2], and [3]. As shown in Figure 1,
in cylindrical (r, θ, y) coordinates, an electric field with index m power law dependence on
radius r for y=0 is

E(r, 0) = −E0
r1+m
0

r1+m
r̂, (1)
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and the electric potential V (r), adjusted to vanish at r = r0, is

V (r) = −E0r0
m

(
rm0
rm
− 1

)
. (2)

Strictly speaking this dependence applies only in the horizontal design plane. And yet it is
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Figure 1: The bold curve shows a proton orbit passing through a curved-planar cylindrical
electrostatic bending element. The electrode spacing is g and the design orbit is centered
between the electrodes.

vertical focusing in which we are primarily interested.
The horizontal focusing is dominated by geometric focusing which makes no contribution

to vertical focusing. We start by calculating the excess horizontal focusing caused by the tai-
loring of the power law dependence by vertical shaping of the pole pieces. For designing this
tailoring we are treating the electrodes as longitudinally straight, rather than toroidal, which
is their actual shape. Though not strictly correct, this can be a satisfactory approximation
if the sector angles are quite short. This is especially valid for horizontal focusing, because
it is primarily geometric. The total vertical focusing is equal in magnitude, but opposite in
sign, to the horizontal focusing deviation caused by the pole shaping. The vertical focusing
is therefore being calculated only approximately, but with better validity as the bend sector
lengths are reduced. Eventually the full three dimensional fields will have to be calculated
correctly.

For m=1, inverse square-law dependence, the field can be referred to as “Kepler” or as
“Coulomb”, though the treatment now has to be fully relativistic. The relativistic Kepler
problem can be solved with the same closed-form generality in the relativistic as in the
non-relativistic case; however the orbits are neither exactly elliptical, nor closed.

We are more concerned with the “cylindrical” case shown in Fig. 1; curved-planar elec-
trodes produce an electric field, for which m=0. For m = 0 there is “geometric” focusing of
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an on-momentum particle corresponding to its global circular orbit. For m positive the elec-
tric field strength decreases with increasing r, which causes an on-momentum particle with
x positive to be turned less strongly—i.e. weakening the horizontal focusing. Associated
with this there is correspondingly-weak vertical focusing. At least some vertical focusing will
be required. This can easily be provided with separated function quadrupoles, but there
is a reason it is better to provide the necessary vertical focusing by choosing m 6= 0. The
reason, as demonstrated below, is that the magic velocity condition is orders of magnitude
more accurately met in bend regions than in drift regions. Actually, rather than simple weak
focusing, it is proposed here to have “alternating gradient” focusing by alternating m < 0
and m > 0 bend sectors.

The task is to determine general orbits, such as the bold curve in the figure. Using the
customary local Frenet (x, y) coordinates, its initial radial displacement (from the design
orbit) and its radial slope are x0 and x′0. The initial vertical slope is y′0. Any particular orbit
will also have some initial vertical displacement y0. For m=0, y0 can be set to zero without
loss of generality, since the apparatus then has vertical translational symmetry. This paper
emphasizes cases in which m is small enough for this invariance to be at least approximately
true. At some point, though, it will be necessary to accept the fact that the idealization of the
electrodes as being vertical infinite, as well as being experimentally impossible, can, without
care, lead to theoretical contradictions (for example when vertical element misalignment is
being considered)

The orbit is also influenced by the proton’s initial fractional total (mechanical plus poten-
tial) energy deviation from nominal, ∆E = E −E0. This makes, altogether, four independent
initial conditions. Unlike in a magnetic field, the magnitude of the momentum is not con-
served in the electric bends. Given initial conditions X(θ = 0) =

(
x0, x

′
0, y
′
0; ∆E0

)
, the task

is to solve for X(θ) =
(
x(θ), x′(θ), y(θ), y′(θ),∆E0

)
. Note, here, that the fourth component

does not change—with potential energy included in the definition of total energy, E is con-
served. But the mechanical energy, conveniently represented as γmpc

2, is not conserved in
general. Only the sum of mechanical and potential energy is conserved. On entering or
exiting a bending element it is necessary to account for the changes in potential energy.

The central, or design, orbit is a circle of radius r0, midway between the circular cylinder
electrodes of radii r0 ± g/2. Defining the (inward-directed) electric field on the central orbit
as (positive) E0, for the cylindrical, m = 0 case, the field is given by1

E(r, θ, y) = −E0
r0
r

r̂. (3)

The electric potential V (r), adjusted to vanish on the design orbit, is

V (r) = E0r0 ln
r

r0
= E0r0 ln r − E0r0 ln r0. (4)

1We are using r as a cylindrical coordinate, even though, as used in Eq. (3), r is more conventionally
taken to be a polar coordinate, which would make the field exactly central, irrespective of the value of m.
For y=0, polar and cylindrical coordinates are identical and, at least in an accelerator, because the ring
radius is large compared to ∆r, cylindrical and spherical r-coordinates are usually nearly indistinguishable.
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The “magic” kinematic parameters satisfy

γ0 =

√
g

g − 2
=

√
1 +

1

G
, (5)

where G is the “anomalous magnetic moment” and g = 2G + 2. (Occasionally the symbol
“a” is used instead of the symbol “G”.) For the proton EDM experiment this yields the
following kinematic quantities for frozen proton spin operation:

c = 2.99792458e8 m/s

mpc
2 = 0.93827231 GeV

G = 1.7928474

g = 2G+ 2 = 5.5856948

γ0 = 1.248107349

E = γ0mpc
2 = 1.171064565 GeV

K0 = E −mpc
2 = 0.232792255 GeV

p0c = 0.7007405278 GeV

β0 = 0.5983790721

(6)

2.2 Coordinate transformation: x→ ξ = x/r

The kinematic values just given are fixed by the “frozen-spin” requirement of the experiment.
For examples in this paper, r0 = 40.0 m. The design parameters are then related by Newton’s
centripetal force law

eE0r0

(
r0
r

)1+m

=
β0p0c

r
also
=

mpc
2

r

(
γ0 − 1

γ0

)
, (7)

where r0 is design radius and r is the radius of an arc of a circle with the same center, and
where p, v, and β are proton momentum, velocity, and v/c. These equalities are specific
to circular orbits, with γ0 applying to the design orbit. If γ0 should have the magic value
of 1.248107349 the equalities apply to frozen spin proton operation. On the design orbit
the electric potential is defined to be zero, both inside, on the circular orbit and ouside, on
the adjacent tangential field-free drifts. For the pure cylindrical case with m = 0, because
the factor r can be cancelled from all three expressions, one has the singular result that,
independent of radius, all circular orbits have the same speed. One cannot, for example,
solve Eqs. (7) to find the radius of an off-momentum circular orbit.

For approximately cylindrical electric fields with non-vanishing m-values, rather than
using transverse coordinate x = r − r0, it is convenient to introduce a variable ξ = x/r,
which satisfies the relations

ξ =
x

r
=

x

r0 + x
= 1− r0

r
, r =

r0
1− ξ . (8)
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Expressed in terms of ξ, the electric field at radius r is given by

E(ξ) = −E0 (1− ξ)1+m r̂, (9)

Consider a nearby “parallel”, circular/straight-line orbit having radius r = r0 + x inside a
bend, with tangential straight line orbits displaced by x outside. The relativistic gamma
factor on the orbit (inside) is γI , which satisfies

eE0r0 (1− ξ)m = βIpIc = mpc
2
(
γI − 1

γI

)
, (10)

On this orbit, for r 6= r0, because of the change in electric potential at the boundary, the
gamma factor outside has a different value, γO.

For m 6= 0 the orbit determination is no longer degenerate. Expressing Eq.(10) as a
quadratic equation for γI , the coefficient of the term linear in γI is −E0r0(1− ξ)m/(mpc

2/e),
and the gamma factor for a circular orbit at radius r is given by the positive root;

γI(ξ) =
E0r0(1− ξ)m

2mpc2/e
+

√(
E0r0(1− ξ)m

2mpc2/e

)2

+ 1. (11)

This function is plotted in Figure 2 for m = ±0.2. For small m the slopes dγI(ξ)/dξ
are proportional to m. By designing an “alternating gradient”, “combined function’ (AG-
CF) lattice it should be possible to arrange for the appropriately-averaged speed within
bend elements of off-momentum closed orbits to be exactly “magic”, even including end
effects. Even in the absence of synchrotron oscillation averaging, this would cancel the spin
decoherence associated with proton beam momentum spread. (The same cancelation would
applly for each of two counter-circulating beams, though lattice and injection errors can
cause their central values to deviate differently from magic.) Spin decoherence associated
with betatron oscillations needs to be discussed separately.
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Figure 2: This figure shows a “dispersion plot” of “inside” gamma value γI plotted vs ξ.
The curves intersect at the magic value γI = 1.248107. Because dγ/dβ = βγ3 is equal to
about 1.17 at the magic proton momentum, the fractional spreads in velocity, momentum,
and gamma are all comparable in value—in this case about ±2× 10−5. This figure may be
confusing, since it is rotated by 90 degrees relative to conventional dispersion plots. For this
reason one should also study the following plot, which is identical except for being rotated,
and is annotated as an aid to comprehension. Subsequent plots have the present orientation,
however.
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Figure 2: Identical “Dispersion plots”, but with the upper rotated into customary orientation
and annotated as an aid to comprehension (though momentum then decreases from left to
right). Subsequent plots will have the lower orientation.. Dependence of “inside” gamma
value γI on ξ = x/r for m = −0.2 and m = 0.2. The curves intersect at the magic value
γI = 1.248107. Because dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum,
the fractional spreads in velocity, momentum, and gamma are all comparable in value—in
this case about ±2× 10−5.

14

outer

electrode

inner

electrode momentum
increasing

Figure 3: This plot is identical to the previous one except for being rotated by 90 degrees
into conventional orientation (except momentum increases from right to left). It shows the
dependence of ξ = x/r vs “inside” gamma value γI , for m = −0.2 and m = 0.2. Note that,
for m < 0 larger momentum causes larger radius while, for m > 0 the opposite is true. What
is striking is that the slope is opposite for m > 0 and m < 0. This is “anomalous”.
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It is important to appreciate that, from the point of view of spin decoherence, the average
particle speeds in drift sections need not be independent of momentum. This is because there
is no spin precession in drift sections, so no spin decoherence would result. Furthermore, the
ring is not necessarily “isochronous”; i.e. the mean revolution period does not need to be
independent of momentum offset. Still, the dependence of revolution period on momentum
offset can be expected to be very small, and the synchrotron oscillation frequency corre-
spondingly small, and not necessarily favorable as regards being above or below transition.
Quantifying this issue is one of the goals of the present analysis. For these reasons it is
important to calculate velocities exactly in drift sections.

A possible alternating-gradient, combined-function, AG-CF storage ring can be formed
from elements described by the fixed m-value curves shown in Figure 2, by alternating the
m-values of the bending elements making up the ring. Toward understanding such a ring,
it is instructive to apply energy conservation to match “gamma-inside” γI curves to obtain
matching γO values.

Expressed as power series in ξ, with the leading terms cancelling, the electric potential
is given by

V (r) = −E0r0
m

(
(1− ξ)m − 1

)
= E0r0

(
ξ +

1−m
2

ξ2 +
(1−m)(2−m)

6
ξ3 . . .

)
. (12)

This simplifies spectacularly for the Kepler m=1 case. But we are concerned with the small
|m| << 1 case.

As a proton orbit passes at right angles from outside to inside a bend element, its total
energy is conserved;

γO(ξ) =
EO
mpc2

=
EI
mpc2

= γI(ξ) +
E0r0
mpc2/e

(
ξ +

1−m
2

ξ2 +
(1−m)(2−m)

6
ξ3 . . .

)
. (13)

Plots of γO(ξ) for m = ±0.2 are shown in Figure 4.
Voltages supplied to the electrodes, causing the field index values to alternate between

m = −0.2 and m = +0.2, are shown schematically in Figure 5. (The semi-circular appear-
ance of this figure is only for pictorial convenience—the bend angles of individual elements
will not exceed several degrees.) The alternating m-values cancel the spin decoherence of
off-momentum particles having zero betatron excitation; i.e. each exactly following its off-
momentum closed orbit. The resulting evolution of extreme off-momentum closed orbits is
shown Figure 6.

(In practice one may accept slighty offset orbits rather than introducing the complicated
powering shown in Figure 5, and apply appropriate corrections. Whether or not this is done,
we neglect the miniscule longitudinal electric fields in drift section that the weak applied
correction voltages would cause.)
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Figure 4: “Outside” dispersion plots. Note that dispersion slopes are the same for m < 0 and
m > 0. Dependence of “outside” gamma value γO on ξ = x/r for m = −0.2 and m = 0.2.
Because dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum, the fractional
spreads in velocity, momentum, and gamma are all comparable in value—in this case about
2× 10−4. The fractional spreads are an of magnitude greater outside than inside.

2.3 Dispersion for |m| << 1, appoximately cylindrical, bends

There is a conventional accelerator physics formalism for defining off-energy equilibrium or-
bits in magnetic rings; a “dispersion function” D is defined which describes the incremental
horizontal displacement accompanying an incremental change in energy, or (more conven-
tionally) fractional momentum offset δ.

The simplest possible ring has alternating drifts and sector bends. Off-energy closed or-
bits continue to be circlular in bend regions, entering and exiting normal to the element ends.
Because of the potential energy discontinuity at the end of a bend element it is appropriate
to distinguish, by superscripts I and O, between kinematic variables respectively inside and
outside bend elements. Since their x coordinates are constant through drifts, the paths of
off-momentum closed orbits in consecutive bend elements just amount to continuation of
the circle from the previous bend. It is not necessary to distinguish between rI and rO for
off-momentum closed orbits, since r is continuous at the ends of bend elements.

If we were completely consistent in using the subscript I, as in γI , for particles inside
the element, then we could afford to (but, usually, will not) drop the O, as in just γ, outside
bend elements. The point is that being “outside” a magnet element and being “outside” an
electric element is the same thing—so conventional formalism should carry over unchanged
from magnetic to electric rings, as long as we are in free space regions (and correctly account
for orbit evolution through electric elements). One simplifying fact is that, since the potential
is zero by definition on the design orbit, then γ = γ0 on the design orbit, whether inside or
outside bend elements.

Even for a ring with no drift sections (so particles are almost always “inside”) we recom-
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m = 0.2

m = −0.2 m = −0.2

81.8 V

23.1 V

94.6 V

V=0,  r=r0

81.8 V

157,240.675 V

−157,240.675 V35.4 V 35.4 V
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−

+

−
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Figure 5: Schematic of voltages applied to inner and outer electrodes of alternating m =
−0.2 and m = 0.2 “cylindrical” electrode bending elements to produce electric fields that
exactly cancel spin decoherence among particles that are on-momentum with zero betatron
oscillation amplitudes. The electrodes are perfectly circular arcs in the horizontal, design, up-
down symmetry plane, separated by 3 cm (but slightly different above and below, depending
on the m value). Electric fields vanish in the drift sections between the bend elements, except
for tiny longitudinal fields off-axis (i.e. Ez 6= 0 for x 6= 0).

mend using γO to differentiate individual particles (for example in RF cavities) whether the
particle is inside or outside. 2

From Eq. (7), with cylindrical electrodes, m = 0, the linearized dependence of off-
momentum closed orbit displacement (circular arc) on fractional momentum offset is given
by

r =
1

eE0/c
βIpI

also
= r0 +DIδI , (14)

where DI is the “dispersion inside” and δI = (pI − p0)/p0 is the fractional momentum offset
inside. Kinematically

d(βIpI)

dpI

∣∣∣∣
r0

= β0(2− β2
0). (15)

Differentiating Eq. (14),

dr

dpI

∣∣∣∣
r0

=
1

eE0/c
β0(2− β2

0)
also
= DI 1

p0

. (16)

From this we obtain the dispersion inside;

DI = r0(2− β2
0). (17)

2These issues are not entirely academic, since the closest thing to a “nominal” EDM lattice assumes
cylindrical electrodes, which give precisely the logarithmic potential behavior and large values of dispersion
under discussion. Injection into such a lattice may present problems. To avoid mismatch it seems as if
the injected proton beam must have energy and transverse displacement correlated exactly as required
by the dispersion function. It seems unavoidable that finite energy spread at fixed displacement (“slice
emittance” would be the phrase used for beams in bunch compressors) will lead to magnified horizontal
betatron oscillations. i.e. horizontal emittance growth after filamentation. This will place a premium on
achieving extremely small energy spread, perhaps by pre-cooling of some kind.
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Figure 6: Dependence of deviation from “magic” ∆γ(s) = γ(s)− γ0 on longitudinal position
s, for off-momentum closed orbits (circular arcs within bends) just touching inner or outer
electrodes at x = ±0.015 m. The right hand tic labels express (approximately) the same
quantities as ∆γ(s)mpc

2/e mechanical energy offset values. The horizontal axis is artificial
and the drift lengths arbitrary—later the drift lengths will be adjusted for below transition
operation. There is no MDM spin precession in drifts and MDM spin precession in m =
0.2 and m = −0.2 exactly cancel (or could be tuned to cancel spin precession including
contributions from fringe field regions.

For some purposes, especially for analysing injection and extraction, as well as synchrotron
oscillations, it is the external dispersion DO that is needed. One has

DOδO = DIδI . (18)

This equality follows from the fact that, for circular orbits, the radial component r = r0 + x
is conserved at bend entrances and exits. Knowing DI , we therefore need only calculate the
ratio δO/δI .

Inside and outside gamma values are related by

γI = γO − eE0x

mpc2
, (19)

reflecting the loss of kinetic energy in “climbing” from zero potential energy outside to a
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higher potential energy inside. Expressed in terms of fractional momentum offset,

γO =

√
p2

0(1 + δO)2c2 +m2
pc

4

mpc2
≈ γ0

√
1 +

2p2
0c

2δO

γ2
0m

2
pc

4
≈ γ0 +

γ0p
2
0c

2δO

γ2
0m

2
pc

4

= γ0 + γ0β
2
0δ
O, yielding (20)

δO =
γO − γ0

γ0β2
0

. (21)

From the final equation we obtain
dδO

dγO
=

1

γ0β2
0

. (22)

(At the magic proton velocity, γ0β
2
0 = 1.25× 0.62 = 0.45, implying δO = 2.22 ∆γO.)

Corresponding relations apply inside. Substitution into Eq.(18) and then (17) produces

DO = DI δ
I

δO
=
(
r0(2− β2

0)
) γI − γ0

γO − γ0

. (23)

Figures 2 and 4 have shown that, depending on the sign of m, it is not unusual for the
“inside” and “outside” dispersions to have opposite sign. For positive m the slopes in
Figures 2 and 4 are opposite, which seems counter-intuitive—for positive dispersion (which
is normal) further out orbits have larger momentum. Positive m behaviour can therefore be
referred to as “anomalous”—farther out orbits have smaller momentum. This reversal at
m = 0 provides justification for having referred to the perfect cylindrical electrode case as
“singular”. Though Eq. (23) has been derived assuming m = 0, one sees from Figure 6 that
the outside dispersion DO varies just enough through drift sections to match the different
DI values in adjacent bends. One therefore expects the dispersion in a lattice for which m
alternates, say between −0.2 and 0.2, will be midway between the the extreme curves shown
in Figure 6.

Furthermore, from Figure 6 one sees, for small m values, that |DI | << |DO|. This is a
highly beneficial feature in that it allows an injected beam with (relatively) large momentum
spread to match ultra-small momentum spread within electric bend elements (which is the
only place where spin precession occurs).

This feature can be exploited to reduce spin decoherence greatly. In fact, as indicated
in the caption to Figure 6, by alternating the sign of m, the decoherence of off-momentum
(but betatron-free) orbits can be exactly cancelled, even without the benefit of synchrotron
oscillation averaging.

For a ring with total length of all drift sections short compared to 2πr0, because the
velocities within bends are so accurately equal, the dominant time slippage per revolution
comes from the increase in radius with increasing momentum offset δ. In this sense the ring
would be said to be operating “above transition”. For electrode gap half-spacing g/2

say
=

0.015 m the orbit circumferences range from 2π(r0 − g/2) to 2π(r0 + g/2), so the range of
excess circumferences is ±πg ≈ ±0.05 m. “Fixing” this will be important, because “below
transition” operation is required (to stabilize intrabeam scattering).
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Revolution period of off-energy orbits. In a ring consisting only of repetitions of
alternating circular arcs and drifts, the revolution period of off-energy closed orbits around
the ring can be calculated easily. The sum of the arc lengths is 2π(r0 + x0) and all velocities
within bend elements are identical; β0c. Let LD,tot. stand for the sum of the lengths of the
drift sections. The outside speed is given by

βO(δO) =

√
1− 1

γO0
2
(δO)

=

√
1− 1

(γ0 + γ0β2
0δ
O)2

. (24)

(Neglecting fringe field effects) this is valid even if accuracy higher than linear in x0 is
required. The total revolution period is then

cT (δO) =
2π(r0 +DOδO)

β0

+
LD,tot.

βO(δO)
. (25)

To limit beam growth due to intrabeam scattering (IBS) it is necessary to run “below
transition”. This can be accomplished by indreasing the total drift length LD,tot. to exceed a
minimum value Ltrans.

D for which the off-energy revolution period is independent of (outside)
momentum. Differentiating Eq. (25) and using Eq. (22), the condition to satisfy this is

2πDO

β0

=
Ltrans.
D

βO2

dβO

dδO
=
Ltrans.
D

βO2

dβO

dγO
dγO

dδO
=

β0γ
2
0

βO3γO3 L
trans.
D . (26)

For frozen proton spin parameters the result is

Ltrans.
D = 2πDO β0γ0 ≈ 2πD0. (27)

Since the “inside” momentum offset is so tricky andm-dependent, it seems advisable to define
dispersion always with respect to “outside” momentum offset and, therefore, to suppress the
“O” superscript, for example in graphs of lattice functions plotted below.

2.3.1 Vertical motion

The formalism so far has ignored vertical motion. For our favored, |m| << 1, cylindrical
electrode case, this an excellent, but not perfect, approximation. There are two reasons
why it is so good. With cylindrical electrodes there is weak vertical field so the vertical
component of momentum is approximately conserved. Also, for the proton EDM experiment,
the vertical beta function is huge (certainly greater than 100 m) and the vertical emittance
is tiny, εy ≈ 0.0001 m. A typical vertical angle is therefore

√
10−6 = 1 mr, which makes the

proton vertical speed nonrelativistic. The only change in vertical velocity is due to a change
in the relativistic mass (which is essentially constant). It therefore provides an excellent
approximation to use

y = y0 + y′0s, (28)

to model the vertical motion within individual elements. The vertical motion has a corre-
pondingly negligible effect on the horizontal motion.

With the m value alternating between successive bend elements, one can take advantage
of combined function (CF) alternating gradient (AG) vertical focusing. This is certainly
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not “strong focusing” however. As usual with AG focusing, the alternation between weak
focusing and weak defocusing can provide very weak net focusing.

One can inquire also as to the effect of vertical motion on synchrotron oscillations. The
vertical tune is expected to be very small, let us say Qy < 0.01, meaning the nominal
vertical betatron wavelength is greater than 100 × 2πr0. The maximum vertical amplitude
range is unlikely to exceed ±5 cm. For r0=40 m ring radius the maximum vertical orbit
angle is therefore about θmax

y ≈ ymaxQy/r0 and the maximum excess circumference per turn
is roughly πr0θ

2
y = πymax2Q2

y/r0 = 2 × 10−8 m. This clearly has only a very small effect on
synchrotron oscillations.

3 Exploiting the field index hypersensitivity

The basic, pure cylindrical electric field dependence was given in Eq. (1), which is copied here
with minor variations, to allow for the possibility of having alternating gradient focusing;

E−(r) = E−(r0 + x) = −(1 +m1)E0

(
r0
r

)1+m2

r̂,

E+(r) = E+(r0 + x) = −(1−m2)E0

(
r0
r

)1−m1

r̂. (29)

The slightly different forms, with subscrips ±, designate vertically focusing and defocusing
sectors. The different initial factors cause the on-axis electric fields to differ, but only slightly.
It has to be realized that these are conjectured electric potential dependencies. Electrode
shapes producing these dependencies have not actually been demonstrated.

By tilting previously-plane electrodes one can surely produce vertical electric fields and,
presumeably therefore, quadrupole-like deflections close to the beam axis. By contouring
the electrode shapes, the electrodes may be “saddle-shaped” with opposite sign curvature
(i.e. inverse bend radius), or toroidal, with same-sign curvatures, or tall (but truncated)
parallel ruled surfaces with zero vertical curvature. In all cases, for finite electrode heights,
the fields will deviate strongly away from ideal dependence as position y approaches the top
or bottom edges of the electrodes.

Returning to the Eq. (29) idealizations, the field shapes can be ascribed to distant point
charges, with the field indices having tiny magnitude, |m1| << 1 and |m2| << 1, With both
m1 and m2, say, positive, electric field E− can be thought of as the field of a fractionally
stronger line charge fractionally more distant; inversely, E+ can be though of as due to a
fractionally weaker, but closer, line charge. (Unless m2 = −m1) on the circle for which
r = r0 the electric fields are not quite equal. Sign reversal can be visualized as charge sign
reversal or of reflecting the horizontal charge position.

This means that, since the electric fields are, in fact, due to the electric potential difference
between inner cylindrical electrode of radius r0− g/2 and outer electrode of radius r0− g/2,
the potential differences in the two cases will have to be (slightly) different. The on-axis
fields could, instead, be made unequal by making the gaps slightly different in the two cases
by altering the the electrode spacing. Using the coordinate ξ = x/r introduced in Eq. (8),
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and copying from Eq. (12),

V−(r) = (1 +m1)E0r0

(
ξ +

1 +m2

2
ξ2 +

(1 +m2)(2 +m2)

6
ξ3 . . .

)
,

V+(r) = (1−m2)E0r0

(
ξ +

1−m1

2
ξ2 +

(1−m1)(2−m1)

6
ξ3 . . .

)
. (30)

By arranging for m1 and m2 to be equal, we will have succeeded in shaping the electrodes
to perturb the horizontal focusing oppositely in adjacent bending sectors. But, as explained
previously, because the total vertical focusing is equal (but opposite) to the horizontal focus-
ing deviation, this means we will have also arranged for alternating gradient vertical focusing.
Since we need only tiny vertical focusing, the corresponding change in horizontal focusing
will be unimportant.

It is important that the electric potential functions given in Eqs. (30) vanish on-axis,
where ξ = 0. But we also have to be sure that the definition of ξ varies smoothly across
boundaries between bending sectors.

We now return to an earlier (cryptic) comment that the electrodes can be parallel, with
zero vertical curvature, but not be vertically infinite. With infinite vertical electrodes the
electric field would have to vanish and, by symmetry, there could be no vertical focusing,
which would contradict Eqs. (30). Of course the electrodes cannot, in fact, be vertically
infinite. They can therefore be relatively displaced vertically. Then, if displaced alternatively
up and down, and powered alternatively as well, there would be vertical electric fields in
the drift regions, the up-down symmetry is destroyed, and almost perfectly flat, parallel
electrodes may be satisfactory.

This discussion has been academic, in the sense that it is only for convenience that one
strives to retain electrode shapes that are perfectly plane vertically. In fact, in the next
section indicate, by shaping the upper and lower pole edges the good-field volume can be
increased appreciably.

It is quite inconvenient, but not fundamentally important, to have the design radius r0
being different in radially-focusing and radially-defocusing sectors, or to have the angular
advances per sector be different. For this paper I assume that |m1| and |m2| are small
enough for these variations to be neglected. I therefore assume the design radii and the
on-axis electric fields can be treated as identical, except for alternating vertical focusing.

3.1 Electrode shape plots

The paper contains discussion of “nearly flat” field shaping near the origin by altering the
electrode shape. In any case this electrode shaping is likely to be dwarfed by the electrode
shaping used to maximize the good field volume. This is illustrated in Figures 7 and 8. The
electrode surfaces are perfect planes from y=-50 mm to +50 mm, separated by 30 mm. With
end bulbs included the electrodes extend from y=-56.8 mm to +56.8 mm. Figure 8 shows
that the good field region runs from y=-42 mm to +42 mm. So, with bulb correction, the
good field height is reduced at each end (from the bulb-extended length) by an amount equal
to half the electrode separation.
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Figure 7: Electrode edge shaping to maximize uniform field volume.
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Figure 8: Plot of bulb-corrected field uniformity on the left, uncorrected on the right.
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4 Lattice Functions

4.1 Parameter table

Table 1: Parameters for WW-AG-CF proton EDM lattice

parameter symbol unit value
arcs 2

cells/arc Ncell 20
bend radius r0 m 40.0
drift length LD m 4.0

circumference C m 411.327
field index m ±0.002

horizontal beta βx m 40
vertical beta βy m 1620

(outside) dispersion DO
x m 24

horizontal tune Qx 1.640
vertical tune Qy 0.04045

number of protons Np 2× 1010

95% horz. emittance εx µm 3
95% vert. emittance εy µm 1

(outside) mom. spread ∆pO/p0 ±2× 10−4

(inside) mom. spread ∆pI/p0 ±2× 10−7

4.2 Ultraweak vertical focusing adjustment

From here on ultraweak vertical focusing will be assumed. Previous plots have assumed
m = ±0.2. From here on we assume m = ±0.002. Figure 9 can be compared to Figure 2 to
see the greatly compressed range of “inside” γI that results from the reduction from m = 0.2
to m = 0.002. Since the only significant spin precession occurs in regions where the “inside”
γI values are appropriate, this yields a huge reduction in spin decoherence.

On the other hand, the change from m = 0.2 to m = 0.002 has a much smaller effect on
“outside” γO, as can be seen by comparing Figures 4 and 10.

4.3 Twiss function plots

Lattice functions based on the previous and subsequent formalism are plotted in Figures 11
through 16. Phase advances for both planes are plotted at all 1680 element index locations
in Figure 17.
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Figure 9: Dependence of “inside” gamma value γI on ξ = x/r form = −0.002 andm = 0.002.
The curves intersect at the magic value γI = 1.248107349. Because dγ/dβ = βγ3 is equal to
about 1.17 at the magic proton momentum, the fractional spreads in velocity, momentum,
and gamma are all comparable in value—in this case about ±3 × 10−7—a gloriously small
range.

Figure 10: Dependence of “outside” gamma value γO on ξ = x/r for m = −0.002 and
m = 0.002. Because dγ/dβ = βγ3 is equal to about 1.17 at the magic proton momentum,
the fractional spreads in velocity, momentum, and gamma are all comparable in value—in
this case about ±2×10−4. The fractional spreads are about three orders of magnitude greater
outside than inside.

20



Figure 11: Horizontal beta function βx(s), plotted for two adjacent cells.

Figure 12: Vertical beta function βy(s), plotted for two adjacent cells. For this case the
total circumference is 411.3 m and the total drift length is 160.0 m. Extended decimal places
exhibit the extreme uniformity.
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Figure 13: Horizontal beta function βx(s), plotted for full ring. For this case the total
circumference is 411.3 m and the total drift length is LD=160.0 m. Since this total drift
length exceeds Ltrans.

D as given by Eq. (27), the ring will be “below transition”, as regards
synchrotron oscillations.

Figure 14: Vertical beta function βy(s), plotted for full ring. For this case the total cir-
cumference is 411.3 m and the total drift length is LD=160.0 m. Since this total drift length
exceeds Ltrans.

D as given by Eq. (27), the ring will be “below transition”, as regards synchrotron
oscillations.
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Figure 15: Outside dispersion function DO(s), plotted for full ring. For this case the total
circumference is 411.3 m and the total drift length is 160.0 m. Extended decimal places
exhibit the extreme uniformity.

Figure 16: Outside dispersion function slope DO(s)
′
, plotted for full ring. For this case the

total circumference is 411.3 m and the total drift length is 160.0 m.
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Figure 17: Transverse tune advances. The full lattice tunes are Qx = 1.640 and Qy =
0.04046. Evn smaller horizontal tune (for improved self-magnetometry) can be provided by
trim quadrupoles. If possible, rather than by vertical electrode-contouring, the vertical field
contouring will be provided electrically, and be consistent with zero quadrupole focusing,
but withoctupole focusing for net vertical stability.
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5 Analytic betatron oscillation description

This final section provides analytic formalas for horizontal optical functions in a lattice with
constant m-value. As argued previously, because the vertical focusing is assumed to be so
weak, its effect on horizontal motion is being neglected. Since the alterating gradient vertical
focusing is being treated as constant vertical focusing, the field index m will be very different
from the ±m alternating gradient field indices appearing in earlier sections.

For the lattice dependencies shown in the previous section, and Figure 17 in particular,
the value of m has to be chosen to match the vertical tune value Qy = 0.04046 given in that
figure. In practice one will try to reduce Qy from this value, even knowing that the vertical
beta function will increase proportionally from the already-large value shown in Figure 14.

5.1 Differential equation “cylindrical” m=0 case

The momentum vector components are defined by

p = prr̂ + pθθ̂ + pyŷ =
mpṙ√

1− v2/c2
r̂ +

mprθ̇√
1− v2/c2

θ̂ +
mpẏ√

1− v2/c2
ŷ. (31)

(Except for possible end effects) the electric force alters only the radial momentum compo-
nent

dpr
dt

= −eE0
r0
r
. (32)

It is important to exploit the (approximate) invariance of the system to translation along
the y-axis, which causes py to be conserved, and to rotation around the central axis, which
causes Ly, the vertical component of angular momentum, to be conserved. For a particle in
the horizontal plane containing the origin the angular momentum vector is

L = r× p = − mprẏ√
1− v2/c2

θ̂ +
mpr

2θ̇√
1− v2/c2

ŷ = Lθθ̂ + Lyŷ. (33)

The design orbit angular momentum is

L0c/e = r0p0c/e
e.g.
= 28.0 GV-m. (34)

We seek the orbit differential equation giving dependent variable r as a function of indepen-
dent variable θ. The (conserved) total proton energy E is the sum of the mechanical energy
and the potential energy

E =
√
p2
rc

2 + p2
θc

2 + p2
yc

2 +m2
pc

4 + eV (r). (35)

Squaring this equation yields(E − eV (r)
)2

= p2
rc

2 + p2
θc

2 + p2
yc

2 +m2
pc

4. (36)

The terms on the right hand side of this equation can be expressed in terms of r, dr/dθ, and
conserved quantities. From Eqs. (31) and (33),

pθ =
Ly
r
. (37)
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pr can be expressed similarly using Eq. (11);

pr
pθ

=
ṙ

rθ̇
=

1

r

dr

dθ
, and hence pr =

Ly
r2

dr

dθ
. (38)

Making these substitutions yields

(E − eV (r)
)2

=

(
Lyc

r2

dr

dθ

)2

+
L2
yc

2

r2
+ p2

yc
2 +m2

pc
4, (39)

as the first order differential equation for orbits within bend elements.

5.2 Small deviation from the pure cylindrical case

The m = 0 case is singular and, as shown above, leads to a logarithmic potential. To
produce weak vertical focusing the radial electric field has to fall off as 1/r1+m, where 0 < m.
This deviation from the pure cylindrical case, and the fact that the logarithmic potential is
inconvenient, suggests that we proceed with a small m approximation, which becomes exact
in the m=0 limit. The electric field and electric potential for y=0 are given by Eqs. (1) and
(2). The independent (longitudinal) coordinate s is to be replaced by the angular coordinate,

θ =
s

r0
. (40)

We change the dependent variable from x(s) = r− r0 (with independendent variable s) to a
(dimensionless) dependent variable ξ(θ) (with independendent variable θ) producing

x′ ≡ dx

ds
, and ξ′ ≡ dξ

dθ
(41)

The present discussion is limited to planar orbits, in which case the definition of x by
r = r0 + x is the conventional Frenet accelerator definition. Note that ξ is proportional to
x for small x. For mnemonic purposes one can think of ξ (in linearized approximation) as
the customary accelerator radial variable x, but measured in units of bend radius r0. For a
“large” displacement, say x=1 cm, at 40 m ring radius, the value of ξ is 2.5× 10−4.

For r taken to be a polar (rather than cylindrical) coordinate these definitions are not
quite exact but realistic vertical amplitudes will usually be small enough that the effect on
x of projection onto the horizontal plane can be neglected. The substitution

1

r
=

1− ξ
r0

, (42)

which motivates this change of variables, will be prominent in subsequent formulas. Inverse
relations are

x =
r0ξ

1− ξ , and x′ =
r0dξ/ds

(1− ξ)2
=

ξ′

(1− ξ)2
. (43)

Expressed as power series in ξ, with the leading terms cancelling, the electric potential is
given by Eq. (12). We are primarily interested in the small m case. In this approximation
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Eq. (39) becomes(
E − eE0r0

(
ξ +

1−m
2

ξ2+
(1−m)(2−m)

6
ξ3
))2

=
L2
yc

2

r2
0

ξ′2 +
L2
yc

2

r2
0

(1− ξ)2 + p2
yc

2 +m2
pc

4. (44)

More terms in the power series expansion could be retained easily, but the term proportional
to ξ2 can be expected to dominate any nonlinearity-driven spin decoherence. By retaining
just this term, without assuming |m| << 1, the Kepler case can also be covered. Expanding
the left hand side,

E2 − 2EeE0r0ξ−EeE0r0(1−m)ξ2 − EeE0r0(1−m)(2−m)ξ3 + e2E2
0r

2
0ξ

2 + e2E2
0r

2
0(1−m)ξ3

=
L2
yc

2

r2
0

ξ′2 +
L2
yc

2

r2
0

(1− ξ)2 + p2
yc

2 +m2
pc

4. (45)

which retains terms up to ξ3, while retaining the validity of the equation for m=1. Differ-
entiating this equation with respect to θ, dividing through by ξ′, dropping nonlinear terms,
and re-arranging the equation, produces

ξ′′ = 1− eE0r
3
0E

L2
yc

2
− ξ − eE0r

3
0E

L2
yc

2
(1−m)ξ +

e2E2
0r

4
0

L2
yc

2
ξ. (46)

This is the equation for offset simple harmonic motion.
As contrasted with E0 and r0, which are true constants, E and Ly are only constants

of the motion, close to but not in general equal to E0 and Ly0. Also, neglecting to include
a term proportional to p′y is fully justified only for m = 0. Nevertheless, for simplicity, to
apply linearization, we can neglect these refinements. Noting that eE0r

3
0E0 ≈ (Lyc)

2 and
eE0r

2
0/(Lyc) ≈ β, Eq. (46) then becomes

ξ′′ = 1− 1−
(

1 + (1−m)− β2
)
ξ = −

(
1−m+

1

γ2

)
ξ (47)

This is the linearized equation of motion for on-momentum particles. A more general lin-
earized equation, applicable off-momentum, is obtained using

eE0r
3
0E

L2
yc

2
=
L2

0

L2
y

E
E0 , and

e2E2
0r

4
0

L2
yc

2
= β2 L

2
0

L2
y

. (48)

This yields

ξ′′ = 1− L2
0

L2
y

E
E0 −

(
L2

0

L2
y

E
E0 (1−m) + 1− β2 L

2
0

L2
y

)
ξ. (49)
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6 Horizontal betatron oscillations

Restoring the leading nonlinear term, and grouping terms appropriately, the orbit equation
can be abbreviated as

d2ξ

dθ2
= −Q2(ξ − ξco) +

3

2
β2 L

2
0

L2
y

(1−m)ξ2, (50)

where

Q2 = 1 +
L2

0

L2
y

E
E0 (1−m)− β2 L

2
0

L2
y

and ξco =
1− L2

0

L2
y

E
E0

Q2
. (51)

After this abbreviation the equation has been reduced to simple harmonic motion, offset
relative to equilibrium point ξco, which is the ξ-value for which the linearized r.h.s. vanishes.

Some special case horizontal tune values for a homogeneous, weak-focusing, all-electric
storage ring, with central (not necessarily magic) γ-value γ0, are

Qm=1
x0 =

1

γ0

, Qm=0
x0 =

√
1 +

1

γ2
0

, Q
|m|<<1
x0 ≈ Qm=0

x0 − m/2

Qm=0
x0

(52)

When tracking particle orbits in a computer program it is important to realize that the
parameters in Eq. (51) need to be worked out on a particle-by-particle basis. The coeffi-
cients Q and ξco, though approximately the same for all particles, depends on the dynamic
variables E , Ly, and β, which depend on the coordinates of the particle being tracked. This
complication is too tedious for analytic formulation.

It is noteworthy that the nonlinear term vanishes in the Kepler, m=1 case. In this case
the motion is said to be “integrable” and the motion remains (offset-) sinusoidal even for
arbitrarily large amplitudes.

6.0.1 Tracking the full transverse oscillation amplitude

For propagating ∆ξ = ξ−ξco, one introduces cosine-like trajectory Cξ(θ) satisfying Cξ(0) = 1,
C ′ξ(0) = 0 and sine-like trajectory Sξ(θ) satisfying Sξ(0) = 0, S ′ξ(0) = 1. They are given by

Cξ(θ) = cos(Qθ)

C ′ξ(θ) = −Q sin(Qθ)

Sξ(θ) =
sin(Qθ)

Q

S ′ξ(θ) = cos(Qθ), (53)

where Q, as given by Eq. (52) depends on m. For our lattice in which m alternates between
equal but opposite values of m, both small compared to 1, Q will be nearly independent of
m for evolution over large arcs of the ring.

For describing evolution of (ξ, ξ′) from its initial values (ξin, ξ
′
in) at θ = 0 to its values at

θ one can use the “transfer matrix” defined by

Mξ (θ) =

(
Cξ(θ) Sξ(θ)
C ′ξ(θ) S ′ξ(θ)

)
, (54)
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to give (
ξ(θ)
ξ′(θ)

)
=

(
ξco
ξ′co

)
+ Mξ(θ)

(
ξin − ξco
ξ′in − ξ′co

)
. (55)

or

ξ(θ) = ξco + Cξ(θ)(ξin − ξco) + Sξ(θ)(ξ
′
in − ξ′co),

ξ′(θ) = ξ′co + C ′ξ(θ)(ξin − ξco) + S ′ξ(θ)(ξ
′
in − ξ′co). (56)

Initial conditions (ξin, ξ
′
in) can be expressed in terms of initial x conditions;

ξin =
xin

r0 + xin

, ξ′in =
r2
0x
′
in

(r0 + xin)2
. (57)

Substitution from Eqs. (57) into Eqs. (56) gives a description of the evolution of (ξ(θ), ξ′(θ)),
from initial conditions (xin, x

′
in).

For the proton EDM experiment the value of radius r0 will be, say, 40 m. An initial
value xin = 1 m would be unrealistically large. It is better therefore to use centimeter units.
Then r0 = 4000 cm. With the gap width being 3 cm, a typical amplitude is 1 in these
units, and (allowing for radial offset due to momentum) a maximal surviving amplitude is
about 1 in these units. Even at this amplitude the nonlinear correction, for example in the
denominators of Eq. (57), is only 1 part in 4000.

6.0.2 Chromaticity

For betatron oscillations relative to off-energy closed orbits it is appropriate to evaluate Q
from Eq. (51). We have that, for circular orbits in the 1/r field, mechanical parameters
within bends, such as γI are constant and hence cannot be used to label different circular
orbits. But, as long as the closed orbits are circles they can be labeled by x or by γO. On
these circles, assuming m = 0,

L0

Ly,c.o.
=

r0p0

(r0 +DOδ)p0

r0p0 ≈ 1− DO

r0
δ. (58)

In the definition of angular momentum as momentum times radius, the radius has gone
from r0 to r0 + x0 but the momentum has not changed. The energy ratio can be similarly
expressed,

E0|xco=x0

E0 = 1 +
eE0x0

E0 ≈ 1 +
∆γO

γ0

≈ 1 + β2
0

x0

r0
. (59)

Substituting these expressions into Q2, as given by Eq. (51), one obtains the dependence of
tune on fractional momentum offset;

Q2 = 1 +
(

1− 2
DO

r0
δ
)(

1 + β2
0

D0

r0
δ
)

(1−m)− β2
(

1− 2
DO

r0
δ
)
. (60)

The full expression is left unsimplified as a reminder of the source of the expression.
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6.0.3 Fast/slow, betatron/synchrotron separation

One treatment of Eq. (51) is to evaluate Q2 and ξco on the design orbit and to treat them
as being the same for all particles. To incorporate energy variation Q2 and ξco are treated
as functions of the energy offset or, more conventionally, as functions of the fractional mo-
mentum offset δO.

In magnetic ring this produces the standard, linearized, description of the motion as
being the sum of a rapidly varying betatron part and a slowly varying synchrotron part.
This separation is not very well motivated for electric lattices, since the mechanical energy
of each particle varies on the betatron oscillation time scale. This invalidates the conventional
betatron/synchrotron separation paradigm, at least superficially.

The general solution of Eq. (50) can be written as the sum of a general solution of the
homogeneous part and a specific solution of the inhomogeneous part, where the term Q2ξco
on the r.h.s. is the inhomogenous term.

In spite of the locally varying speed, the homogeneous solution can be referred to as
“betatron oscillation”. It can also be referred to as “fast” oscillation (in spite of the fact
that, for the proton EDM experiment, the betatron tune will be not much greater than 1,
which would usually be reqarded as a very low tune. The inhomogeneous solution can be
referred to as “synchrotron oscillation”, which may also be referred to as “slow” oscillation,
even though this is appropriate only outside bend elements.

6.0.4 Kinematic variables within electric bend elements

The electric field and electric potential are given by Eqs. (9) and (12);

E(ξ) = −E0 (1− ξ)1+m r̂,

V (ξ) = E0r0

(
ξ +

1−m
2

ξ2 +
(1−m)(2−m)

6
ξ3 . . .

)
. (61)

The latter equation, along with Eq. (56), permits the potential energy to be expressed in
terms of θ and initial conditions, to determine the electric potential at all points on a particle
orbit;.

V (θ) = E0r0

(
ξco + (ξin− ξco) cosQθ+

ξ′in
Q

sinQθ+
1−m

2
ξ2 +

(1−m)(2−m)

6
ξ3 . . .

)
. (62)

where the betatron oscillation substitution has been made for ξ has been made only for the
linear term, but should be made also for ξ2 and ξ3. Though not exhibited notationally, Q
depends on m, as given by Eq. (51).

Then γ(θ) is obtained from

γ(θ) =
E

mpc2
− E0r0
mpc2/e

×

×
(
ξco + (ξin − ξco) cosQθ +

ξ′in
Q

sinQθ +
1−m

2
ξ2 +

(1−m)(2−m)

6
ξ3 . . .

)
. (63)
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From this formula one can obtain β(θ) using β(θ) =
√

1− 1/γ2(θ). From the y-component
of Eq. (33) we also have, for motion in the horizontal plane,

dθ

dt
=
−Ly
mpr2γ

. (64)

Note that, with right-handed Frenet coordinates, and clockwise orbit (which we are now
assuming) Ly is negative. This accounts for the negative sign in Eq. (64). The right hand
side of this equation can now be expressed in terms of θ, invariants and initial conditions.

Note that the sign of θ and the sign of Ly are correlated in Eq. (64). The negative sign
(−Ly) is specific to clockwise orbits, with θ increasing along the orbit. This sign ambiguity
causes the tracked time of flight variable ct to also be ambiguous. The appropriate RF phase
is then, similarly, ambiguous.
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