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1 Permanent magnet quadrupole lenses

This note describes a beamline design for detection and measurement of the Stern-Gerlach
(SG) deflection of a suitably-polarized relativistic electric beam at CEBAF. The SG deflec-
tion occurs in the quadrupoles shown in Figure 1.
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Figure 1: Stern-Gerlach deflection occurs in the FODO section of quadrupoles shown. For
this note, numerical calculations assume quadrupoles of length lQ = 2l = 0.02 m separated
by L = 0.005 m. Entrance and exit steering to allow for quadrupole strength and positioning
errors is adjusted to cancel an overall steering error. Quadrupole strength coefficient k is
defined in the text. For a proposed test at CEBAF there would be Nc = 4 FODO cells.

The electron beam is conveyed through a beamline consisting of Nc identical cells, each
consisting of one focusing and one defocusing permanent magnet quadrupole of identical
design, with length lQ and constant magnetic field gradient ∂Bx/∂x. Spin-dependent SG
deflections occur in each of the quadrupoles, and the betatron phase advances are arranged
so that the deflections all add constructively. The total SG angular deflection is therefore
greater than each individual factor by a factor 2Nc. For an initial test described in this note
I choose Nc = 4 but, for an eventual apparatus, Nc could, be at least several times greater,
depending on tolerance issues to be discussed.

Since the design uses permanent magnets, any realization of the design is static, specific
to a particular electron beam energy. But the design scales easly to other energies and
choice of Nc. The assumed quadrupoles are patterned after permanent magnet quadrupole
described in Table III of a paper by Li and Musumeci[1] and in reference[2].
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During its brief passage through a short quadrupole, the orbit of a momentum p electron,
offset transversely by displacement x, can be taken to be circular with radius r such that
its angular deflection is θ = lQ/r. The bend radius is determined by the centripetal force
equation,

pv

r
= evB = ev

∂Bx

∂x
x (1)

Treating the quadrupole as thin, and re-arranging this equation, the integrated particle
deflection angle during passage is

θ =
lQ
r

=
clQ〈∂Bx/∂x〉x

pc/e
, (2)

where the particle momentum has been incorporated as pc/e for the convenience of evaluating
pc/e in the MKS unit of voltage. Ascribing this deflection to a quadrupole of strength (i.e.
inverse focal length) q = 1/f , the deflection angle is ±qx where

q = ±θ
x

= ± c

pc/e

[
lQ〈∂Bx/∂x〉

]
= ±Cγ(3× 108)/(0.511× 106)

[ lQ〈∂Bx/∂x〉
γe

]
. (3)

Here the electrons, with rest energy 0.511 MeV, have been assumed to be fully relativistic;
i.e. pc = Ee = γemec

2. But a coefficient Cγ ≈ 1 has been included to allow for not quite fully
relativistic beams. The lowest practical CEBAF particle kinectic energy is about 0.5 Mev,
which is not fully relativistic—rather γe ≈ 2 and v/c ≈ 0.87. We make only a 13 percent
error, worst case, by simply seting Cγ = 1, to produce

q ≈ ±587T−1m−1
[ lQ〈∂Bx/∂x〉

γe

]
. (4)

The γe factor inside the square bracket “cancels” the momentum dependence, allowing the
lens strength to be expressed as an inverse focal length. To the extent the field gradient can
be increased without limit, the lens can be treated as purely geometric (i.e. independent
of momentum) simply by increasing the lQ∂Bx/∂x proportional to γe. Though increasing
lQ also has the effect of increasing the lens inverse focal length, this (adversely) alters the
optics.

With the square bracket expressing the integrated quadrupole strength in Tesla, this
formula produces inverse focal length q in inverse meter units. For numerical examples in
this note I take lq = 0.02 m and (already achievable) field gradient ∂Bx/∂x = 500 T/m as
nominal values. Higher field gradient, ∂Bx/∂x = 1000 T/m, at shorter length, lQ = 0.01 m
is expected[3] to be achievable. This would yield the same length-strength product of 10 T,
but be more useful in the (important) sense of allowing a lens of the same strength to be
shorter relative to its focal length.

Limited only by the maximum achievable permanent magnetic field gradient, even with
careful element alignment and coherent multiplication of the displacement by the number
of quadrupoles in the beamline, the Stern-Gerlach deflection can be expected to be only
comparable in magnitude with deflection caused by misaligned quadrupoles. As explained
in previous reports, this spurious excitation will be suppressed by the interleaving of opposite-
polarization A and B beams. This has the effect of shifting the spectral frequency of the
SG deflection to one half the spectral frequency of the spurious deflection, allowing the
contributions to be separated in a frequency-sensitive BPM.
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2 Beamline optics

Currently the upstream beam phase space ellipse is not well known. I tentatively assume,
for both planes,

ε =
1.0× 10−6 m

γe
,

σ0 =
50µm
√
γ
e

,

β0 =
σ2

ε
, α0 = 0, ψ0 = 0. (5)

Figure 2 shows that, after passage through a region with Stern-Gerlach deflecting quadrupoles,
the beta functions in both planes expand through a drift space, as if from a point source,
from a low beta waist to a downstream collimating lens that produces a more or less parallel
beam.

Optical properties of the proposed beamline are shown in the following figures. To amplify
the SG deflection the beam line needs to be as long as possible. This length is limited,
however, by the requirement that the r.m.s. beam size remain small compared to the vacuum
chamber radius. Since adiabatic dampling causes the beam emittances to shrink proportional
to γe (for fixed q) this produces a γ

1/2
e SG enhancement factor with increasing γe. This benefit

“saturates” however, when the quadrupole strength required to produce the necessary focal
length is no longer physically achievable. This limitation is expressed analytically below.

Nc = 4 cells for the FODO section are shown in Figure 2, but Nc could be increased with
little effect on the matching. Nc is limited, however, by the fact that the same optics that
magnifies the SG deflection also magnifies the sensitivity to transverse beam displacement
injection error. (Operating on “integer resonance” only a finite number of cells can be
tolerated.)

With the help of trim quadrupole at londitudinal coordinate s = 0.4 m, a solenoid at
the beamline entry focuses the beam onto the SG section. Upstream optics is not shown.
This optics amounts to injection into a periodic FODO lattice of arbitrary length. As shown
in Figure 3, there are half quadrupoles at entrance and exit, but this is only for matching
convenience in this note. To avoid the need for half quadrupoles, Injection into a section of
eight full-length alternating-gradient could be matched satisfactorily. From the point of
view of Stern-Gerlach deflection each quadrupole acts as a thin element described completely
by an inverse focal length q, precisely defined only for a thin element. But, from the point of
view of orbit dynamics each quadrupole in the FODO section is a thick elements, with the
orbit satisfying different differential equations in focusing and defocusing elements. Even so,
the inverse focal length q defined in Eq. (4) provides the q-value needed to calculate the SG
deflection.

Within the ELEGANT program, the focal lengths of the individual quadrupoles in the
FODO line tuned for π phase advance per half cell are

q = klQ = 68.1 m−1. (6)

The corresponding focal length is f = 0.0147 m, which is about 0.3 times the full cell length,
as seems roughly appropriate. Substitution of this q value and lQ = 0.02 m into Eq. (4) and
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Figure 2: Beta functions for a full Stern-Gerlach detection beamline. SG displacements
are measured at the end of the beam line. The length of the beamline is limited by the
requirement that the rms beam size is conservatively smaller than the vacuum chamber
radius. At low beam energy the drift length following the SG deflection may therefore need to
be shorter than indicated. An SG-detecting BPM, located at variable distance Ldrift beyond
the collimating lens at s = 1.72 m, is not shown. With the optics shown, Ldrift ≤ 6.5 m.

rearranging produces

lQ〈∂Bx/∂x〉 =
68.1 m−1

587T−1m−1
γe, or

〈∂Bx

∂x

〉
=

68.1 m−1

0.02 m× 587T−1m−1
γe = 5.80 T/m γe. (7)

If the practical limit for ∂Bx/∂x is 500 T/m, then the apparatus being described could act
as a Stern-Gerlach polarimeter up to γe = 86, or electron energy of 43 MeV.
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Figure 3: Optics in the periodic, SG deflection, multiple cell FODO lattice. The full
quadrupole lengths are lQ = 2l = 0.02 m and the quad separation distances are L = 0.005 m.
So the full cell length is Lcell = 0.05 m.

Figure 4: The quadrupole at s = 1.72 m (at a distance Lcoll. = 0.8 m from the center of the
FODO lattice) is needed to restrict the growth of the defocussed transverse coordinate. But
it also has the beneficial effect of magnifying the SG deflection. At low electron energy the
beam emittance may limit the exit drift length to be shorter than shown to prevent beam
loss before the beam passes through the BPM’s.
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Figure 5: Phase advances ψx and ψy through a lattice with Nc = 8 cells. Since 25/8 = 3.125,
one sees that the phase advances per half cell are quite close to the value of 180 degrees, the
maximum value that could be stable for arbitrarily large value of Nc. It is also the value for
which all SG deflections superimpose constructively.
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3 Analytic lattice model

The permanent magnet FODO lattice can be described analytically in closed form, following
Steffen[4]. According to his Eqs. (1-15a) and (1-16a), the transfer matrices through uniform
focusing and defocusing quadrupoles are given, respectively by(

y
y′

)
l

=

(
sinφ sinφ/

√
k

−
√
k sinφ cosφ

)
0

(
y
y′

)
0

= M+

(
y
y′

)
0(

y
y′

)
l

=

(
coshφ sinhφ/

√
k√

k sinhφ coshφ

)
0

(
y
y′

)
0

= M−
(
y
y′

)
0

(8)

where

k =
1

pc/e

∂cBx

∂x
, and φ = l

√
k > 0. (9)

According to Steffen’s Eq. (4-35), the transfer matrix through a half period is(
a b
c d

)
(10)

where

a = cosφ coshφ+ sinφ sinhφ+
L

l
φ cosφ sinhφ,

b =
l

φ

(
cosφ sinhφ+ sinφ coshφ+

L

l
φ cosφ coshφ

)
,

c =
φ

l

(
cosφ sinhφ− sinφ coshφ− L

l
φ sinφ sinhφ

)
,

d = cosφ coshφ− sinφ sinhφ− L

l
φ cosφ sinhφ. (11)

To produce constructive interference at every quad location the phase advance per half
cell has to be π. Our parameter values, to produce 180 degree phase advance per half
cell, are l = 0.01, L = 0.005, and φ = 3.141592654. This produces a = −29.73267065,
b = −0.09472054548, c = −3628.143470, d = −11.59195327. Other parameter values are
tanh(π) = 0.9962720762, determinant=1.0000002, a/d = 2.564940520. Other than the phase
advance, which has been imposed “by hand”, using ELEGANT, it is not clear at this time
that these values agree with the preceeding curves, all of which were obtained by empirical
fitting with ELEGANT.

4 Stern-Gerlach displacement

The magnetic field and Lorentz force vectors, in an “erect” quadrupole are indicated by solid
arrows in Figure 6. The corresponding Stern-Gerlach force vectors, for beam polarized along
the y-axis, are indicated by hollow arrows. The SG deflection in this case is horizontal, as
the calculation on the right shows. The other calculation shows that horizontal polarization
causes vertical SG deflection. In general, the SG deflection is at right angles to the beam
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Figure 6: Magnetic field and Lorentz force vectors in an “erect” quadrupole are indicated by
solid arrows. The corresponding Stern-Gerlach force vectors, for beam polarized along the
y-axis, are indicated by hollow arrows.

polarization, irrespective of the quadrupole orientation. The ratio of Stern-Gerlach force to
electromagnetic force is determined by a ratio of coupling constants:

µB/c

e
= 1.930796× 10−13 m, (12)

where, except for anomalous magnetic moment and sign, Bohr magneton µB is the electron
magnetic moment. The Stern-Gerlach deflection in a quadrupole is strictly proportional to
the inverse focal lengths of the quadrupole;

∆θSGy =
µ∗x
ecβ

qx, and ∆θSGy =
µ∗y
ecβ

qy. (13)

The magnetic moments µ∗x and µ∗y differ from the Bohr magnetron µB only by sin θ and cos θ
factors respectively As already stated the electron velocity is being set exactly to c. The SG
deflection at fixed magnet excitation is then proportional to 1/γ. Yet, superficially, these
formulas show no explicit dependence on γ. This is only because the angular deflections
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are expressed in terms of quadrupole inverse focal lengths. For a given quadrupole at fixed
quadrupole excitation, the inverse focal length scales as 1/γ. Expressing the SG deflection
in terms of inverse focal lengths therefore has the effect of “hiding” the 1/γ Stern-Gerlach
deflection dependence, which comes from the beam stiffness.

For a single quadrupole, the Stern-Gerlach-induced angular deflection is

∆θSG = (1.93× 10−13 m) q. (14)

The transverse displacement ∆xj at downstream location “j” caused by angular displacement
∆θx,i at upstream location “i” is given by

∆x,j = qx (1.93× 10−13 m)
√
βx,jβx,i sin(ψx,j − ψx,i). (15)

where ψx,j−ψx,i is the horizontal betatron phase advance from “i” to “j”. Rather than using
this formula to determine the transverse deflection, it is simpler to note that the deflected
orbit itself has no knowledge of beta functions, and use linear transfer matrix evolution;(

∆xSG
·

)
=

(
1 Ldrift

0 1

)(
1 0

1.49 1

)(
1 Lcoll

0 1

)(
0

∆θSG

)
, (16)

where the lengths Ldrift and Lcoll have been defined in preceeding figure captions, and the
collimating quadrupole strength is 1.49 /m. Completing the matrix multiplication yields

∆xSG = (0.8 + 2.19Ldrift)∆θSG. (17)

Combining this equation with Eq. (6), and including a factor 2Nc = 8, to account for
constructive interference from the multiple quadrupoles, the horizontal SG displacement is
given by

∆xSG = ±2Nc (1.93× 10−13 m) × 68.1 m−1(0.8 m + 2.19Ldrift) = 1.59× 10−9 m. (18)

The ± factor has the effect of doubling the SG displacement to 3.2 nm, because the BPM,
which is tuned to half the bunch passage frequency, responds constructively to the oppositely
polarized A and B beam bunches. We have gone to a huge effort to produced a 3.2 nm
betatron deflection but, as discussed in previous notes, this should be measureably large
enough to make Stern-Gerlach transverse electron polarimetry practical.

The Stern-Gerlach energy dependence has been much discussed in the past. The im-
portance of the transverse beam size has not previously, as far as I know, been properly
appreciated in those discussions. Expressing the quadrupole strength as an inverse focal
length, as we have done, has had the effect of making the SG deflection independent of
γ—this is just because the magnetic field has scaled proportional to γ. Once this scaling
becomes impossible, the SG signal might seem to fall proportional to γ.

Even this conclusion is arguable, however. Actually the scaling is a bit more complicated.
Even with the magnetic field gradient limited, the SG quadrupole lengths can be increased
to preserve the optics described in this note, though with a longer FODO section.

As mentioned earlier the allowable drift length Ldrift has been taken to be 6.5 m. But
this length is, itself, a function of γe since the beam emittances are proportional to 1/γe. So
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the actual scaling with energy is such that the maximum achievable Stern-Gerlach deflection
increases as

√
γ until the gradient can no longer be increased, and falls as 1/

√
γ as the

electron energy is increased from there.
There is also a vertical SG deflection ∆ySG, but this is being neglected because it is

demagnified by the optics.
As far as the proof-of-principle test at CEBAF, the most convenient energy depends

more on real estate considerations for availabe test areas than on the SG energy dependence.
Discussions so far have assumed γe = 2, 500 KeV electron kinetic energy, but this is for
reasons of economy and accessibility, not because the SG signal is strongest at low energy.
From Eq. (7), for the geometric parameters assumed in this not, the magnetic field gradient
for γe = 2 would be 12 T/m, far less than the maximum possible.
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