
Split-Cylinder Resonant Electron Polarimeter

R. Talman, LEPP, Cornell University;
B. Roberts, University of New Mexico;

J. Grames, A. Hofler, R. Kazimi, M. Poelker, R. Suleiman;
Thomas Jefferson National Laboratory

September 24, 2017

Abstract

Passive (non-destructive) high analysing power polarimetry will be required for feedback sta-
bilization of frozen-spin storage rings. This is especially true for electrons. This paper proposes
such an electron polarimeter. A basic resonator cell (similar to those commonly used for NMR
detection) is a several centimeter long copper split-cylinder, with gap serving as the capacitance C
of, for example, a 1.75 GHz LC oscillator, with inductance L provided by the conducting cylinder
acting as a single turn solenoid. Eight such cells, regularly arrayed along the beam, form a meter-
long polarimeter. The magnetization of a longitudinally-polarized electron bunch passing through
the resonators coherently excites their fundamental oscillation mode and the coherently-summed
response from all resonators measures the polarization. “Background” due to direct charge exci-
tation is suppressed by arranging successive beam bunches to have alternating polarizations. This
moves the beam polarization frequency away from the direct beam charge frequency. Along with
charge-insensitive resonator design, modulation-induced sideband excitation, and synchronous
detection, the magnetization “foreground” is isolated from the background. Such extreme back-
ground rejection measures are made necessary by the large value of electron charge relative to
electron magnetic dipole moment. The same measures that suppress background can be exploited
to suppress spurious signals due to apparatus misalignment. A test of the polarimeter is proposed
using a polarized, 0.5 MeV kinetic energy, 0.5 GHz bunch frequency linac electron beam at the
Jefferson Laboratory.
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1 Introduction

A proposed experiment to measure the electron electric dipole moment (EDM) uses polarized electrons
in a storage ring in which both bending and focusing is produced by purely electric elements. The
beam polarization will be “frozen”, parallel or anti-parallel to the beam direction. Polarimetry is
required to monitor and stabilize this frozen spin operation. Acting on whatever EDM the electron
possess, the radial electric bending field tends to tip the beam polarizations up or down. It is this
tipping that is to be measured to obtain the electron EDM. Ability to perform this measurement sets
stringent requirements on the polarimetry—the measurement has to be non-destructive and have high
analysing power. This is the motivation for the present paper.

This paper is concerned only with measuring the polarization of an electron beam by measuring
the bunch magnetization resulting from the electron’s magnetic dipole moment (MDM). An apparatus
capable of this polarimetry is proposed, and a test of its polarimetry performance using a longitu-
dinally polarized 0.5 MeV kinetic energy, 500 MHz bunch frequency linac electron beam at Jefferson
Laboratory is described.

The fundamental impediment to resonant electron polarimetry comes from the smallness of the
magnetic moment divided by charge ratio of fundamental constants,

µB/c

e
= 1.930796× 10−13 m, (1)

where, except for a tiny anomalous magnetic moment correction and sign, the electron magnetic
moment is equal to the Bohr magneton µB . This ratio has the dimension of length because the Stern-
Gerlach force due to magnetic field acting on µB , is proportional to the gradient of the magnetic field.
To the extent that it is “natural” for the magnitudes of E and cB to be comparable, Stern-Gerlach
forces are weaker than electromagnetic forces by ratio (1). This adverse ratio needs to be overcome
in order for magnetization excitation to exceed direct charge excitation. Methods to do this include
charge-insensitive resonator design, shifting magnetization frequency relative to charge frequency, and
utilizing differential modulation to distinguish between charge and magnetization. “On paper” these
measures will be enough to distinguish foreground from background. But to be fully persuasive, this
will have to be confirmed by experiment.

Potentially as serious an impediment to resonant polarimetry is the smallness of the ratio of mag-
netization energy Upol. (given by Eq. (13)) relative to thermal energy kBK, where kB is Boltzmann’s
constant and K is absolute temperature. (Unlike the adverse magnetization/charge ratio) this ad-
verse thermal ratio is ameliorated by the squared number of electrons per bunch, N2

e , by a resonant
enhancement ratio, M2

r ≈ 106, by the squared number of resonating cells N2
cell, and by the resonator

frequency fc (which multiplies the resonant cavity energy by the number of cycles per second to pro-
duce the measurable signal power). As the bottom line of Table 2 shows, this proportiality to fc favors
high frequency. There is also a minor multi-resonator penalty, in that the r.m.s. thermal resonator
energy has been increased by a factor

√
Ncell.

The adverse thermal energy ratio could be ameliorated by running the resonator at cryogenic
temperature. But, for present purposes, this paper refrains from exploiting this possibility. (One of
the intended eventual applications will use resonant polarimetry to stabilize frozen spin proton storage
ring polarization control. The fact that the proton’s MDM is three orders of magnitude smaller than
the electron’s all but demands cryogenic operation for resonant proton polarimetry. Fortunately,
though, because of their greater stiffness, the number of frozen spin particles per bunch Np can be
much greater for protons than for electrons.)

With the electron beam bunching assumed to be perfectly periodic, the magnetization signal can,
at least in principle, emerge from the thermal noise floor by sychronous detection over sufficiently long
runs. According to the bandwidth-duration principle, the effective band width of a mono-frequency
input depends inversely on the run duration. As a result the total noise energy (obtained by time-
integrating the noise power) is independent of run duration. By contrast, since the magnetization
power is constant over time, its time-integrated value will eventually exceed the noise energy, causing
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the magnetization signal to emerge from the thermal noise floor. This is quantified by the botton two
rows of Table 2. One sees from these entries, though, that the expected magnetization signal is very
weak and challenging to detect. The detection time for accurate measurement of beam polarization
is likely to be measured in minutes.

2 Polarimeter design

2.1 Apparatus

The proposed resonator design, shown in Figure 1, was introduced by Hardy and Whitehead[1] for
NMR measurements, and has been used commonly for this purpose in low temperature experiments
such as reference [2].

Consider a single, longitudinally polarized bunch of electrons in a linac beam that passes through
the split-cylinder resonator. The split cylinder can be regarded as a one turn solenoid. For reasons
explained later, the bunch polarizations will toggle, bunch-to-bunch, between directly forward and
directly backward. This is achieved by having two oppositely polarized, but otherwise identical inter-
leaved beams, an A beam and a B beam, each having bunch repetition frequency f0 = 0.25 GHz (4 ns
bunch separation). The resonator harmonic number relative to f0 is an odd number in the range from
1 to 11; this immunizes the resonator from direct charge excitation. Irrespective of polarization, the
A+B-combined bunch-charge frequencies will consist only of harmonics of 2f0 = 0.5 GHz, incapable
of exciting the resonator(s).

In practice the bunches will be somewhat less than fully polarized but, for estimating the sig-
nal strength and foreground to background ratio, we assume the bunches are 100% longitudinally
polarized.
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Figure 1: Perspective view of polarized beam bunch passing through the polarimeter. Dimensions are
shown for the polarized proton bunch and the split-cylinder copper resonator, and listed in Table 1.
More refined design parameters for such a resonator are given in a paper by Hardy and Whitehead[1].
They also provide formulas for the changes in resonator parameters when the overall apparatus is
shielded from the outside world by a cylindrical conductor of radius rS—which could, for example,
be rS = 4 rc, depending on the resonator wall thickness wc. For the proposed test, using a polarized
electron beam at Jefferson Lab, the bunch will actually be substantially shorter than the cylinder
length, and have a beer can shape.
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Figure 2: End view (above) and side view (below) of two resonant split-cylinder polarimeter cells. The
cell resonant frequencies are matched to both the electron bunch passage frequency and the transit
time through individual split-cylinders. Signals from individual resonators are loop-coupled out to
coaxial cables with characteristic resistance R0. With unloaded quality factor Qun., the effective
resistance of the inductance Lc is r = ωcLc/Qun. and the optimal coupling factor is of order 1 percent.
. The natural frequency is inversely proportional to r2

cwc/gc, which makes it strongly temperature
dependent. By supporting the split cylinder by material less expansive than the outer conductor,
the gap spacing can have exaggerated denominator temperature expansion, compensating for the
numerator temperature dependence. Perhaps the frequency trimming can be incorporated through
the same elements, similarly exploiting the extreme mechanical weakness of the split cylinder?
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DE-SC0017120  8/23/2017 

Split-Cylinder Resonant Electron Polarimeter:    

An initial prototype has been constructed, and tested. 

 

 

Outer cylinder ID: 2.36”,  OD: 2.64, Length: 2.8” 

Inner split ring resonator ID: .85” OD .98”, split width .062”, length: 2.13” 

Figure 3: The upper figure is a photograph of prototype split-ring resonators that has been built at
the University of New Mexico. The lower figure shows the spectral response of the resonator, showing
a resonance at 1.472 GHz, close to the design frequency. The unloaded Q-value is 800, much reduced
by radiation out the ends.
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Figure 4: Space-time plot showing entry by the front, followed by exit from the back of one bunch,
followed by the entrance and exit of the following bunch. Bunch separations and cavity length are
arranged so that cavity excitations from all four beam magnetization exitations are perfectly con-
structive. The rows ++++ and - - - - represent equal time contours of maximum or minimum VC ,
Eφ, dBz/dt, or dIC/dt, all of which are in phase. (Unlike all other figures and examples, which use
hc = 11) for this figure (to save space) the harmonic number is hc = 7.

2.2 Resonator parameters

Treated as an LC circuit, the split cylinder inductance is Lc and the gap capacity is Cc. The highly
conductive split-cylinder can be treated as a one-turn solenoid. (For symplicity, minor corrections
due to the return flux are not included in formulas given here, but are included later.) In terms of its
current I, the magnetic field B is given by

B = µ0
I

lc
, (2)

and the magnetic energy Wm can be expressed either in terms of B or I;

Wm =
1
2
B2

µ0
πr2
c lc =

1
2
LcI

2. (3)

The self-inductance is therefore

Lc = µ0
πr2
c

lc
. (4)
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The gap capacitance (with gap gc reckoned for vacuum dielectric and fringing neglected) is

Cc = ε0
wclc
gc

. (5)

Because the numerical value of Cc will be small, this formula is especially unreliable as regards its
separate dependence on wc and gc. Furthermore, for low frequencies the gap would contain dielectric
other than vacuum. Other resonator parameters, with proposed values, are given in Table 1 and, in
greater generality, in Table 2.

parameter parameter formula unit value
name symbol

cylinder length lc m 0.04733
cylinder radius rc m 0.01

gap height gc m 0.00103943
wall thickness wc m 0.002
capacitance Cc ε0

wclc
gc/εr

pF 0.47896

inductance Lc µ0
πr2c
lc

nH 7.021 3
resonant freq. fc 1/(2π

√
LcCc) GHz 2.7445

resonator wavelength λc c/fc m 0.10923
copper resistivity ρCu ohm-m 1.68e-8

skin depth δs
√
ρCu/(πfcµ0) µm 1.2452

eff. resist. Rc 2πrcρCu/(δslc) ohm 0.017911
unloaded. qual. factor Q 6760.0

effective qual. fact. Q/hc 643.65
bunch frequency fA = fB = f0 GHz 0.2495

cavity harm. number hc fc/f0 11
electron velocity ve c

√
1− (1/2)2 m/s 2.5963e8

cavity transit time ∆t lc/ve ns 0.18230
transit cycle advance ∆φc fc∆t 0.50032
entry cycle advance ∆φclb/lc 0.15011
electrons per bunch Ne 2.0013× 106

bunch length lb m 0.0142
bunch radius rb m 0.002

Table 1: Resonator and beam parameters. The capacity has been calculated using the parallel plate
formula. The true capacity will probably be somewhat greater, and the the gap gc will have to
be adjusted to tune the natural frequency. When the A and B beam bunches are symmetrically
interleaved, the bunch repetition frequency (with polarization ignored) is 2f0.

3 “Local” Lenz law (LLL) approximation

A “local” Lenz law approximation for calculating the current induced in our split cylinder by a passing
polarized beam bunch is illustrated by Figure 5. The split cylinder resonator is treated as a one turn
solenoid and, for simplicity, the electron bunch is assumed to have a beer can shape, with length lb
and radius rb. (For the proposed Jefferson Lab test this approximation is actually excellent.) The
magnetization M within length ∆z of a beam bunch (due to all electron spins in the bunch pointing,
say, forward) is ascribed to azimuthal Ampẽrian current ∆Ib = ib∆z. In other words, in the volume
within the beam bunch the magnetic field is also a perfect solenoid (with end fields being neglected).

8



For sufficiently short cylinder lengths, the bunch transit time will be shorter than the oscillation
period of the split cylinder and the presence of the gap in the cylinder produces little suppression of the
Lenz’s law current induced by the passing bunch (because the capacitance of the gap has not had time
to charge up). Define iLL to be the Lenz law current per longitudinal length. Then ∆ILL = iLL∆z is
the induced azimuthal current shown in the (inner skin depth) of the cylinder, in the “local region”
of the figure. To prevent any net flux from being present locally within the section of length ∆z, the
flux due to the induced Lenz law current must cancel the Ampère flux.

∆ z

L b

r
b

rc

lc

l
b split cylinder

"local" region

beer can shaped electron bunch

magnetization current local Lenz law current

previous bunch

Figure 5: Schematic of beer-can-shaped electron bunch entering the split-cylinder resonator, which is
longer than the bunch. Lenz’s law is applied to the local overlap region of length ∆z. Flux due to
the induced Lenz law current is assumed to exactly cancel locally the flux due to the Ampère bunch
polarization current.

The Lenz law magnetic field is BLL = µ0iLL and the magnet flux through the cylinder is

φLL = µ0πr
2
c iLL. (6)

According to Jackson’s[4] section 5.10, the magnetic field Bb within the polarized beam bunch is
equal to µ0Mb which is the magnetization (magnetic moment per unit volume) due to the polarized
electrons.

Bb = µ0MB = µ0
NeµB
πr2
b lb

, (7)

where Ne is the total number of electrons in each bunch. The flux through ring thickness ∆z of this
segment of the beam bunch is therefore

φb = Bbπr
2
b = µ0

NeµB
lb

, (8)

which is independent of bunch radius rb. Since the Lenz law and bunch fluxes have to cancel, from
Eqs. (6) and (8) we obtain

iLL = −NeµB
lb

1
πr2
c

. (9)

For a bunch that is longitudinally uniform (as we are assuming) we can simply take ∆z equal to bunch
length lb to obtain

ILL = iLLlb = −NeµB
πr2
c

∆z
lb
. (10)
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Once the bunch is fully within the cylinder, ILL “saturates” at this value.
We now make the further assumption (somewhat contradicting the figure, but consistent with the

proposed J-LAB test) that the bunch is sufficiently shorter than the cylinder (i.e. lb << lc) that the
linear build up of ILL can be ascribed to a constant applied voltage VLL required to satisfy Faraday’s
law.

For a CEBAF Ie =160µA, 0.5 GHz bunch frequency beam the number of electrons per bunch is
approximately 2× 106. Using parameters from Table 1 we obtain the maximum Lenz law current to
be

Imax
LL = −NeµB

πr2
c

(
e.g.
= −5.9078× 10−14 A

)
. (11)

There will be an equal excess charge induced on the capacitor during the bunch exit from the cylinder,
at which time the resonator phase has reversed. The total excess charge that has flowed onto the
capacitor due to the bunch passage is

Qmax.
1 ≈ Isat.

LL

lb
ve

(
e.g.
= −3.2312× 10−24 C.

)
. (12)

Depending, as it does, on the bunch charge profile, and the ratio of bunch length to cylinder length,
this result is expressed only as an approximation. The meaning of the superscript “max” is that,
if there were no further resonator excitations, the charge on the capacitor would oscillate between
−Qmax.

1 and +Qmax.
1 . All that remains to do is to confirm the perfectly-constructive, coherent build-

up indicated in Figure 4, and to calculate the factor by which this maximum capacitor charge has
increased when steady-state circuit response has been reached.

Comparison of different signal levels in a consistent way in this paper will be referenced to the
energy transferred to the capacitor during a single bunch passage through the resonator. The energy
transfer from the beam polarization signal just analysed will be designated Upol.

1 . This is the “fore-
ground” quantity that, magnified by a resonant amplitude magnification factor M2

r will provide the
actual polarization measure in the form of steady-state energy Upol. stored on the capacitor;

Upol. =
1
2
Qmax.

1
2

Cc
M2
r sinψ =

(
M2
r × 1.0899× 10−35 J

)
sinψ (13)

where, as calculated in Eq. (12), Qmax.
1 = 3.2312 × 10−24 C is the charge deposited on the resonator

capacitance during a single bunch passage of a bunch with the nominal (Ne = 2 × 106 electrons)
charge. The final sinψ factor is an arbitrary phase factor that will be explained later, in connection
with synchronous detection. This equation is boxed to emphasize the importance of Upol. both in
absolute terms and for relative comparison with “background”—another excitation source, which
causes spurious capacitor energy changes, will later also be boxed.

Except for the back voltage due to charge accumulating on the capacitor, Imax
LL is the constant

current that would flow in the inductance while a single bunch remains within the cylinder. But,
because the resonator natural frequency is so high, it has not been quite legitimate to neglect the
back voltage. As Figure 4 indicates, by the time the bunch exits the cylinder, the capacitor voltage is
supposed to be just reversed. The transit time is

∆t =
lc
ve

e.g.
=

0.04733
2.596× 108

= 0.1823 ns, (14)

for which the transit cycle advance is fc∆t = 0.5. As a result the (now reversed sign) Lenz law
e.m.f. during the exit doubles the amount of charge that, in effect, has been allowed to bypass the
inductance, to appear on the capacitor.

In a lumped constant circuit model Qmax.
1 is the (maximum during resonant cycle) excess charge

on the capacitor due to the passage of a single bunch. Without subsequent bunch passages this
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maximum charge would decay exponentially with time constant 2Q/ωc, where Q is the resonator
“quality factor”, and ωc is the natural frequency of the resonator.

As Figure 4 also indicates, the parameters have been adjusted so that all bunch entrances and
exits contribute constructively to Qmax.. On subsequent bunch passages there will already be current
flowing due to previous bunch passages. Eventually a steady state will be achieved, in which the
resonator energy gained during each bunch passage exactly cancels the ohmic energy lost during the
interval between bunch passages.

4 Foreground magnetization excitation calculation

When a longitudinally polarized bunch enters the conducting cylinder its magnetization tries to change
the flux linking the cylinder. By Lenz’s law this change in flux is opposed by azimuthal current flowing
in the cylinder. After many cycles a steady state is established in which the induced response each
cycle just matches the resistive decay of the resonator.

In any case the Lenz law current is present only while the bunch is passing through the cylinder. It
is a quite good approximation to treat the applied voltage as having a two square “top hat” shapes, one
sign at entry, the opposite sign at exit. For the circuit to respond to beam magnetization, but not to
the charge itself, the bunch magnetizations alternate, pulse-to-pulse. This is accomplished by merging
a longitudinally polarized “A” beam with an oppositely-polarized and half-period-time-displaced, but
otherwise identical “B” beam. Correspondingly, the resonator is tuned to an odd harmonic of the
combined A+B beam frequency divided by 2.

The effect of the pulse-to-pulse alternation of the polarization is the reduce the (current-weighted)
polarization frequency from 0.5 GHz to 0.25 GHz. Odd harmonics of 0.25 GHz that are excited by the
beam polarization will therefore be isolated in the frequency domain from direct charge excitation at
harmonics of 0.5 GHz.

In actual practice, as well as having alternating polarization, the A and B bunch charges will not
be exactly equal, which will cause some direct charge excitation to leak into odd harmonics. However
this spurious signal will also be reduced by careful alignment and positioning of the polarimeter
configuration to take advantage of its symmetry. Further selectivity enabled by modulation will be
described later.

In a MAPLE program used to calculate the response, the excitation is modeled using a “piecewise
defined” train of pulses. The bipolar pulses modeling entry to and exit from the resonator are obtained
as the difference between two “top hat” pulse trains, one slightly displaced from the other in time.
Here is a fragment of this code:

TopHatAltWave0 := t-> piecewise(
0<t and t< 0+1., 1,

1*h_c<t and t< 1*h_c+1, -1,
2*h_c<t and t< 2*h_c+1, 1,
3*h_c<t and t< 3*h_c+1, -1,
4*h_c<t and t< 4*h_c+1, 1,

.................
53*h_c<t and t< 53*h_c+1, -1,
54*h_c<t and t< 54*h_c+1, 1,
55*h_c<t and t< 55*h_c+1, -1,
56*h_c<t and t< 56*h_c+1, 1, 0):

.................
TopHatAltWaveDiff := t-> TopHatAltWave0(t) - TopHatAltWave0p3(t):

The last line shows the subtraction of a wave displaced by 0.3 time units (the earlier excerpt show a
few lines) from an identical, but undisplaced train.
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In this form the bipolar pulse separations are 1 unit and the bunch-to-bunch separations are 11
units. (The choice of 11 is based on the tentatively adopted harmonic number hc = 11, which is the
ratio between resonator frequency and (same polarity) bunch frequency.) Two short sections of the
top hat pulse train are shown in Figure 6.

The bunch train (as modeled in the program) terminates after, for example, Q = 1000 pulses,
(where Q is the resonator quality factor) by which time a steady state has almost been achieved.
This enables the complete analysis, including transients, to be performed by Laplace transformation.
But, to satisfy Laplace transform requirements, the excitation has to terminate at finite time. An
alternate approach, that would suppress transients and keep only the steady-state response, would be
to represent the bunch train by a Fourier series and to use the complex impedance formalism.

As explained in a later figure caption, in order to reduce the computation time (and avoid saturating
the figure data sets) the circuit resistance has been artificially increased by a factor of about 10,
rc → 10rc. This only affects the figures. The actual excitation is obtained from the analytic formulas
described next.

Figure 6: Pulsed excitation voltage pulses caused by successive polarized bunch passages through the
resonator. A few initial pulses are shown on the left, some later pulses are shown on the right. The
units of the horizontal time scale are such that, during one unit along the horizontal time axis, the
natural resonator oscillation phase advances by π. The second pulse starts exactly at 1 in these units,
because the resonator length lc has been arranged so that this time interval is also equal to the bunch
transit time through the split-ring. Also, hc=11 units of horizontal scale advance corresponds to a
phase advance of π at the fA = fB = f0 = 0.2495 GHz “same-polarization repetition frequency”. In
other words, 1 unit corresponds almost exactly to 2/11 ns time duration and is a phase advance of π
at the hcf0 polarization repetition frequency and 2π at the 2hcf0 charge repetition frequency.

Lumped constant representation of the split-cylinder resonator as a parallel resonant circuit is
shown in Figure 7. The resistor symbol is lower case r as mnemonic reminder that we are dealing
with a circuit for which inductance L and capacitance C are dominant. The resistor r is taken in
series with the inductance under the assumtion that the resistance of the inductance dominates all
other circuit losses (including, for example, dielectric losses).

The element impedances are given in the figure. The exitation caused by polarized beam passing
through the split-cylinder is represented by Lenz law voltage source V̄LL, which is the alternating
bunch train already described. Voltage division in this series resonant circuit produces capacitor
voltage transform V̄C(s);

V̄C(s) =
1/(Cs)

1/(Cs) + r + Ls
V̄LL(s) =

V̄LL(s)
1 + rs+ CLs2

. (15)

For excitation voltage VLL(t) as shown in Figure 6, MAPLE has been used to determine the Laplace
transform V̄LL(s) for substitution into this equation, to obtain V̄C(s). Input pulses and equilibrium
response, obtained using MAPLE to invert the transform are plotted in Figure 8. The capacitor
voltage VC(t) is plotted in Figures 9 and 10.
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This comparison shows that the response is very nearly in phase with the excitation.

Q
C

−Q
C

sC
1

I

V
C

V
LL

r sL

Figure 7: Circuit model for excitation voltage division between capacitance C and inductance L of
the resonant LC. The overhead bars on the Ī V̄ symbols indicate they represent Laplace-transformed
circuit variables.

Figure 8: Alternating polarization excitation pulses superimposed on resonator response amplitude
and plotted against time. Bunch separations are 2 ns, bunch sepraration between same polarization
pulses is 4 ns. The vertical scale can represent VC , Eφ, dBz/dt, or dIC/dt, all of which are in phase.

5 Background resonator excitation by bunch charge

The alternating polarization of successive bunches moves the polarimeter resonant frequency away
from harmonics of the bunch frequency. But the A and B bunch currents will not be exactly equal,
causing the beam charge to have a residual component with frequency equal to the natural resonator
frequency and capable of producing resonant build-up.

The electromagnetic fields of the split-cylinder resonator are quite simple. The magnetic field
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Figure 9: Accumulating capacitor voltage response VC while the first five linac bunches pass the
resonator. The accumulation factor relative to a single passage, is plotted.

shape, even at microwave frequency, is very nearly the same as the low frequency shape given by
magnetostatics—uniform Bz in the interior, with return flux outside the cylinder.

(After almost instantaneous re-establishment of steady state) the current distribution induced by
bunch magnetization is purely solenoidal; and the vector potential from a purely solenoidal current
distribution is also purely solenoidal. It follows also[5] that, even for a time-varying solenoidal field, the
electric field is purely radial—the only non-vanishing electric field component is the radial component
Er, present as a consequence of Faraday’s law. In the fringe field region there is also a non-zero radial
magnetic field component Br. But, by symmetry (with effect of sliced cylinder neglected) Bφ = 0
everywhere.

As a cylindrical waveguide open at both ends, the cylinder can also resonate at frequencies above
waveguide cut-off. But, with cylinder radius rc only 1 cm, all such resonances can be neglected—their
frequencies are well above the highest value of fc under consideration.

To calculate the interaction of the charged bunch with the resonator we therefore need only consider
the Bz, Br and Er components. Furthermore, even the Bz and Br components can be neglected—they
deflect the bunch but, to first approximation, as shown below, they cause no energy transfer between
bunch and resonator. For these reasons we can treat the orbits through the resonator as curvature-free
straight lines.

To estimate the importance of direct charge, background exitation we can assume steady-state
resonator response at the level calculated for the foreground bunch magnetization response, and
calculate the additional transient excitation of the resonator due to the Faraday’s law electric field
acting on the bunch charge. Eq. (12) gives the maximum charge on the capacitor after a single bunch
passage to be Qmax

1 = 3.231×10−24 C, which builds up by a factor of Q/hc = 730 to a saturation level
of Qsat.

C = 2.080× 10−21 C. From this value, and the “impedance ratio”, Zc =
√
Lc/Cc = 121.08 ohm,

the saturated inductance current can be calculated;

Isat.
L =

V sat.
C

Zc
= 3.587× 10−11 A. (16)

The corresponding maximum magnetic field is solenoidal, with value

Bsat.
c = 0.9522× 10−15 T. (17)

This is a very small magnetic field, but it is oscillating at very high, 2.74 GHz frequency, and with
essentially perfect regularity. By conventional spectral analysis, this makes the induced magnetic field
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Figure 10: Relative resonator response to a train of beam pulse that terminates after about 110 ns.
(The Laplace transform formalism requires the time duration of the excitation to be finite.) After this
time the resonator rings down at roughly the same rate as the build-up. With just one exceptions
the circuit parameters are those given in Table 1. The exception is that the resistance for the plot
is r = 10rc. The true response build up would be greater by a factor of 10, over a 10 times longer
build-up time.

measureably large. Here, though, the task is to calculate the work done on a bunch caused by the
corresponding Faraday’s law electric field along with cavity misalignment.

At DC there would be no work done by such a magnetic field on a charged particle. But we
are dealing with a time varying magnetic field. In fact, the time variation has been intentionally
arranged to reverse the magnetic field during the transit time through the split-cylinder. Like the
magnetization response, any energy transfers from particle to resonator have the potential for either
adding constructively or destructively.

The thin gap in the cylinder is essential for enabling high Q resonance but, otherwise, its presence
does not significantly influence excitation on short time scales. This has already been exhibited in
the calculation of resonant excitation by beam magnetization, and the same simplification applies for
direct charge sources. The validity of neglecting the gaps is enhanced by arranging them symmetrically,
as shown in Figure 12.

5.1 Off-axis, parallel particle incidence

Consider a beam bunch approaching the solenoid parallel to the cylinder axis (continuing to treat the
gap thickness gc as negligible). There is no significant energy transfer from beam to resonator occurring
inside the resonator cylinder—magnetic fields do not change particle energy and the Faraday’s law
electric field Er is transverse and does no work. We need, though, to calculate particle energy changes
induced in the fringe field regions. The longitudinal magnetic field can be expressed as B(z)ẑ where
B(z) varies from B(z−) = 0 well before entry to B(z+) = B0, well inside the cylinder. The full
magnetic field, in linearized approximation, is

B =
−dB(z)/dz

2

∣∣∣∣
on−axis

(xx̂ + yŷ) +B(z)ẑ, (18)

where B(z) is a function varying over a short z-interval, from a constant value of 0 outside to a value
of B0 inside. The ∇ ·B = 0 vanishing divergence condition can be seen to be satisfied. The function
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dBz/dz is strongly peaked at the solenoid entrance and exit, and can be approximated by the sum of
two δ-functions. As a result

Bx(z) = By(z) = −1
2
dBz
dz
≈ −B0

2

(
δ(z + lc/2)− δ(z − lc/2)

)
, (19)

where B0 is the constant, longitudinal, magnetic field inside the cylinder. An electron initially traveling
in the horizontal y = 0 design plane, along a line at constant x = ∆x, impulsively acquires an azimuthal
(vertical) velocity ∆vy at the entrance satisfying

meγe∆vy =
∫ −lc+/2
−lc−/2

eveẑ×Bx(z)x̂
∣∣∣∣
y

dt =
∫ −lc+/2
−lc−/2

B0

2
δ(z + lc/2) d(vet) =

eB0

2
. (20)

This agrees with Kumar’s Eq. (5)[6]. Solving this equation for ∆vy with resonant split-ring resonator
parameters, the vertical angle ∆θy is given by

∆θy =
∆vy
ve

=
cBsat.

c

2βeγemec2/e
∆x

=
(3× 108)(10−15)

(2)(0.866)(2)(0.511× 106)
∆x

= 1.7× 10−13 ∆x. (21)

This radial deflection initiates a helical motion, but the particle stays in the cylinder only for a time
of duration lc/ve, which is not long enough for any significnt motion other than in the y-direction to
develop.

The extreme smallness of the coeficient in Eq. (21) is due to the extremely weak induced magnetic
field factor. One sees that the work on any particle entering the solenoid parallel to the cylinder
axis, can be neglected, irrespective of its transverse position. The value of ∆θy given by Eq. (21)
can be compared with the same angle ∆θy, arising from equipment misalignment errors. Inescapable
misalignment errors will inevitably cause angular orbit error much greater than the value given in
Eq. (21).

5.2 Canted particle incidence

Resonator excitation resulting from non-zero angle of approach (to be referred to here as “cant angles”)
is considered in this section. As in the treatment so far, except for the small cant angle under
discussion, the orbital azimuth can be taken to be horizontal without essential loss of generality,
because of azimuthal symmetry.

Due to resonator misalignment or beam steering errors the beam centroid may enter the split-
cylinder with canted angle, not parallel to the cylinder axis. Without loss of generality we can assume
this angle is, say, vertical, ∆θy. The analysis in the previous section has shown that we can neglect
any impulsive azimuthal velocity change occurring in the end field region. If the horizontal entry
displacement ∆x is zero, there will be no solenoidal transverse component of velocity and no work
will be done. So we also assume ∆x > 0.1

1Representing the entire bunch as if it is all situated at its centroid is tantamount to neglecting the transverse extent
of the bunch and assuming the bunch radius is less than its displacement from the origin. Technically, this assumption
becomes invalid once the bunch displacement is less than the bunch radius, which will always be the case once the line is
properly tuned up. But the approximation actually remains good even in this limit, especially with the beer-can bunch
shape. The displaced bunch can be replaced by a perfectly centered circular distribution (which does no work) plus two
“lunes” (i.e. new-moon-shaped crescents) one with positive charge density, one negative. The fraction of total charge
in each lune is approximately ∆x/rc. Representing each lune by a point at x = rc magnifies the work by a factor of
roughly 0.5rc/∆x, compared to its being located at x = ∆x. The work done on the two lunes is twice the work on the
positive density one. All of this is equivalent to pretending rc << ∆x, in spite of the fact that rc is actually greater
than ∆x.
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For symplicity we also suppose the orbit is aimed vertically to cross the horizontal design plane
y = 0 at the longitudinal z = 0 center of the resonator at time t = 0. The equation of the orbit path
through the resonator is then

x = ∆x,
y = −∆θyz = −∆θyvet, (22)

where ve is the particle’s (almost exactly longitudinal) velocity. Meanwhile, using Faraday’s law, the
solenoidal magnetic field, magnetic flux ϕ through a centered circle of radius ∆x and the corresponding
e.m.f. are given by

Bz = Bsat.
c sin(ωct+ ψ),

ϕ = π∆x2Bsat.
c sin(ωct+ ψ),

e.m.f. = −dϕ
dt

= −π∆x2Bsat.
c ωc cos(ωct+ ψ) (23)

where, for example, ωc corresponds to the hcf0 = 2.7 GHz frequency with which the resonator is
oscillating and ψ is a possible phase shift of the particle bunch arrival time relative to the resonator
phase. The time dependence of Bz has been expressed as sin(ωct + ψ) (rather than cosine) because
Bz is “in quadrature” (when one is zero, the other is maximum or minimum) with, for example, Vc,
which can be seen in Figure 8 to be sine-like at the time origin. (More on the phase issue later.) The
beam bunch is subject to a Faraday’s law electric force given by

Fy = NeeEφ = Nee
e.m.f.
2π∆x

= −1
2
Nee∆xBsat.

c ωc cos(ωct+ ψ). (24)

(With the vertical motion being non-relativistic) the work done on the bunch during vertical displace-
ment ve∆θydt is dWm.a. = Fyve∆θydt and the total work done during a single bunch passage is given
by

Wm.a.
1 = −1

2
Neeωc
ωc

ve∆θy∆xBsat.
c

∫ π/2

−π/2

(
cosωct cosψ − sinωct sinψ

)
d(ωct). (25)

The integral evaluates to 2 sinψ and, instead of canceling out the ratio ωc/ωc, it can be replaced
by 2f0/2f0 to permit the factor Nee2f0 to be replaced by the proposed average injection line beam
current of 160µA. The current imbalance can then be expressed as a fractional deviation ∆Iave/Iave

since, with perfect tuning, the operative frequency component of beam current will vanish.

Wm.a.
1 =

(
∆Iave

2f0
veB

sat.
c

1
rc

)(
∆θy∆x

)
sinψ′ =

(
4.5× 10−20 J/m

)(∆Iave

Iave
|ρ|∆θ⊥

)
sinψ′. (26)

In the final equation the factor ∆θy∆x has been replaced by |ρ|∆θ⊥, where (temporarily) expressing
|ρ| reduntantly as absolute value is only to emphasize that cylindrical coordinate radius coordinate ρ,
is positive by convention, and has replaced ∆x. Also θ⊥ has replaced ∆θy. Note, though, that the
expression is “quadratically small” in that, except for misalignment errors, ρ and ∆θ⊥ would each
vanish separately.

These calculations have exploited azimuthal symmetry (which, strictly speaking, is valid only to
the extent it is valid to neglect the azimuthal location of the gap for time durations short enough
for the gap capacitance to be treated as a short circuit). The validity of this approximation, with
multiple resonant cells, depends on the gap azimuthal locations averaging to zero. This means there
have to be at least two resonant cells, for example as shown in Figure 11.

The arbitrary phase-dependent factor sinψ′ in Eq. (26) is like the sinψ factor introduced earlier
in Eq. (13). Until now, ψ and ψ′ have been independent parameters. If and when a relation between

17



ψ and ψ′ has been obtained this will no longer be true. Also the negative sign in Eq. (26) has been
recognized as an arbitrary phase factor and dropped.

Like Eq. (13), Eq. (26) is boxed to emphasize the importance of comparing “background” Wm.a.
1

with “foreground” Upol.. The superscript on Wm.a.
1 is an abbreviation for “misalignment”. With

perfect, time-independent positioning of the resonator, Wm.a.
1 would vanish, but this would clearly be

unrealistic in general.
The presence of phase factors in the boxed equations makes is advisable to investigate whether

phase sensitive detection can be used as an aid in distinguishing foreground from background. It will
be important to analyse whether ψ and ψ′ can be chosen to be the same (meaning the background
and foreground are “in phase”, or differ by an odd multiple of π/2, in which case, except for arbitrary
sign, foreground and background would be “in quadrature”.

6 Synchronous signal processing

6.1 Coherent summation of resonator outputs

Because the magnetization-induced resonator excitation is so weak it will be advantageous to be able
to coherently add the excitation amplitudes from more that one, for example, let us say, Nd = 4 or
8 separate transducers. This permits the restoration of azimuthal symmetry to the polarimeter, by
symmetrizing the cylinder slice orientations. With the separate resonator signals coherently summed,
there is a single polarimeter output signal to deal with, which contains both foreground and back-
ground contributions.

The alternating polarization of successive bunches has already provided one stage of background
rejection by “eliminating” the beam current frequency content at all odd harmonics of f0, while
assuring that the magnetization spectrum consists of all harmonics of f0 and, in particular, the
background-free odd harmonics.

A schematic physical representation of the proposed apparatus is shown in Figure 11. Readout
circuitry is shown in Figure 12. The apparatus has been designed both for signal magnification and for
enhanced foreground/background separation. Signals are combined without reflection in the combiner.
(Direct connection of the resonator outputs to a common transmission line would load the resonators
unacceptably.) Optimally designed loop coupling limits the loading by inductively coupling out the
optimal amount of energy from the resonators. As indicated in Figure 2, the effective “turns ratio”
of this coupling is proportional to the fraction of the return flux (which is equal to the flux through
the cylinder) that is intercepted by the inductive loop. This fraction depends on the characteristic
impedance of the transmission line. The purpose is to present adequately high impedances to the
resonators, but with output impedance matched to the transmission line impedance. A lumped-
constant circuit calculation will be provided shortly.
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Figure 11: Sketch showing beam bunches passing through multiple resonators. With cylinder gaps
up or down, the horizontal beam position (but not slope) sensitivity vanishes by symmetry. With
gaps arranged down-up-up-down, the vertical position (but not slope) sensitivity also vanishes. Cable
lengths are arranged so that beam bunch current (not polarization) signals exactly cancel. To the
extent the bunch polarization alternation is imperfect, the resonators will still therefore give non-
zero direct charge response for canted-bunch trajectories through the resonators. This response will
be supressed by a combination of (i) steering beam parallel to (average) resonator axis, (ii) beam
centering and (iii) differential modulation to separate foreground and background signal frequencies.
Most of these measures also tend to cancel errors due to imperfect internal resonator positioning.
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Figure 12: Circuit diagram for a circuit that coherently sums the signal amplitudes from four po-
larimeter cells. (For hc =7, 9, or 11, there will actually be eight cells, as appropriate for a roughly
meter-long polarimeter.) Excitation by passing beam bunches is represented by inductive coupling,
with the coupling ratio set for maximum power extraction. The resonant frequency for each cell
might be set, for example, to fc = 1.7465 GHz (lower by the factor 7/11 than the frequency assumed
in previous graphs). Ideally, with perfect alignment, tune-up, and electronic processing, foreground
excitation will appear at the YE (“Yes it is magnetic-induced”) output, and background excitation
will appear at the NE (“No it is electric-induced”) output. The external coherent signal processing
functionality to achieve this separation is indicated schematically by the box labelled “demodulation
and integration”. The demodulation function is to separate foreground from background, both of
which have to compete with thermal noise. The integration function is to suppress thermal noise.
Over sufficiently long runs, synchronous detection and processing can, in principle, accomplish both
purposes, so that the foreground excitation appears at YE and the background at NM . For set-up test
purposes the B beam could be turned off, leaving only the A beam (unpolarized, for example). This
excitation would exactly mimic ideally-tuned-up foreground, and should produce output appearing at
YM .
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6.2 Why synchronous detection? Why helicity matters?

Previous sections have validated ignoring the angular deflection of the particle orbits caused by the
resonator magnetic field on the particle itself—though actually following a very slightly helical orbit,
each particle, and therefore also the bunch centroid, can be treated as following a straight line through
the split-cylinder. However angular deviations from zero due to element misalignment cannot be
neglected. The sign of the instantaneous work being done on a particle by the resonator boils down
to the question of whether the dot product of the Faraday’s law electric field vector with the particle’s
velocity vector is positive or negative. (Because the Faraday’s law electric field vector is exactly
azimuthal) this boils down to whether the “effective helicity” of the particle (or bunch centroid) is
positive or negative. Here “effective helicity” is an ad hoc (temporary) property describing whether
the particle trajectory is related to the resonator axis as a left-hand or a right-hand screw. (If, viewed
with particle approaching, the particle line is sloping up as it misses the resonator axis on the right,
then the particle advance is like that of a right-hand screw, etc.)

A possible background suppression mechanism relates to the phase-dependent factors appearing
in boxed Eqs. (13) and (26). These sinψ and sinψ′ factors have been referred to as “random phase
factors”. Especially at GHz frequencies, it is hard even to define such phase angles. It is only rarely
possible to measure such phases in practice. As a practical matter, it is only easy to measure the phase
difference ∆ψ between two sinusoidally-varying amplitudes being measured at the same location.

As it happens, our apparatus, which responds synchronously to foreground (magnetization-excitation)
and background (charge-excitation) is one such instance. This detection sensitivity would not be es-
sential under perfect beam conditions, in which the charge excitation is limited to even harmonics of
f0, and the resonator is tuned to an odd harmonic of f0. Rather, we are concerned with improperly
balanced A and B bunches which leads to charge excitation at odd harmonics of f0—in particular the
odd harmonic to which the resonator is tuned.

Most accelerator beam position or beam current monitors are not capable of resolving quadrature
components separately (for example because no absolute phase reference signal is available). But
within the telecommunications field it is standard practice to resolve quadrature components. This
does, however, require phase sensitive detection, which requires, in turn, a very stable trigger pulse
train synchronized with the beam pulse arrival times. Such a stable reference frequency source will
be available at the CEBAF injection line. This should make synchronous detection possible.

Figure 12 indicates this functionality schematically. By design the foreground magnetization-
induced signal would appear at the YM (“yes, it is magnetic”) terminal, and the background charge-
induced signal would appear at the NE (“no, it is electric”) terminal. This will eventually be the case,
but not without substantial further discussion, and signal processing refinement.

To analyse this issue one can consider the most extreme possible example of sub-harmonic beam
current frequency leakage from 2f0 to f0. Let us suppose one or the other of the A and B beams is
turned completely off, without affecting the other. On paper, this can be done exactly; we idealize by
assuming it has been done to very high precision in the real world. Then the beam current frequency
spectrum is purely sub-harmonic, at frequency f0 and all of its harmonics—including, for example, the
resonator natural frequency. In this configuration the background charge excitation caused by, say,
the A beam, closely mimics the excitation of perfectly balanced, interleaved, opposite-polarization,
A and B beams. Consider the passage through the resonator of such a beam bunch, and compare
magnetization and charge excitation.

For the beam magnetization excitation to be maximal, the capacitor voltage VC is zero as the
bunch enters the cylinder (see Figure 8) and zero again as it leaves. At these points the inductor
current is maximum. As the bunch passes the center point there will have been a 90 degree phase
shift, and the inductor current will vanish. But the time rate of change of the inductor current, and
therefore also the Faraday electric field, will be maximal.

The instantaneous coupling of bunch charge to resonator is proportional to the Faraday electric
field. Under the same conditions as in the previous paragraph, at the same central instant, the charge
coupling between bunch and resonator will also be maximal. Furthermore, since the energy transfer

21



does not change sign during passage through the cavity, the total work done in transit is maximal.
The conclusion to be drawn from the previous two paragraphs is that any non-zero-helicity charge

coupling to the cavity is in-phase with the magnetization signal.
(Superficially) this seems unfortunate, in that it indicates that the dominant background error

signal will show up at the YM output terminal, even though its source is the result of equipment
misalignment rather than beam magnetization. This means that, for self-consistency, the phase factors
in the boxed formulas have to be the same. That is, ψ = ψ′ in the boxed equations. This means that,
even with synchronous detection, the signal appearing at the YM terminal in Figure 12 still contains
background contamination. Formally, this also means that we may as well set sinψ = sinψ′ = 1,
since we are unable to exploit the possible difference of ψ and ψ′. The parenthetic “superficially” at
the beginning of this paragraph will be justified in the next section, when parameter modulation is
discussed as a way of separating foreground from background.

Digression: Our effort to measure the magnetization state of particle bunches is greatly simplified
by the fact that the bunches contain 2 × 106 particles, passing at high and regular GHz repetition
rate. Even with such large charge, it is difficult for the resonator magnetization excitation to be visible
above the thermal noise floor. Our theoretical estimates so far make it clearly impossible to detect
the excitation of any macroscopic resonator by the passage of a single electron. But, if the resonator
were a single atom or molecule, it would presumeably be possible for the interaction to be influenced
by the electron’s helicity state. Of course this situation can only be analysed quantum mechanically.
But, from the present classical treatment, it should not be surprising for the excitation to depend
significantly on the electron helicity. This is the basis for the left-right scattering asymmetry of Mott-
scattering polarimetry[8]. Regrettably, even apart from its destructive nature, the analyzing power of
this form of polarimetry is woefully too weak for our beam polarization feedback goal.

7 Modulation-induced, foreground/background separation

So far we have only seen that our background and foreground signals are in-phase, not in quadra-
ture. So synchronous detection cannot, as yet, enable the separation of background from foreground.
Nevertheless, we continue to investigate ways in which synchronous detection can be exploited.

Based on our new emphasis of “effective helicity”, in order to better analyse background rejection,
we refer again to Eq. (26). Though it is not conventional terminology, for mnemonic purposes, the
quantity ρ∆θ⊥ is being referred to as “effective helicity”. (Recall that other angular misalignment,
∆θ‖, parallel to the positional offset, causes no resonator excitation.) When the centroid is very nearly
aligned, the effective helicity has been nulled very nearly to zero, but of one sign or the other. From
this condition, the tiniest of steering changes causes the effective helicity to reverse, which causes the
sign of the excitation to reverse. One wants to exploit this feature for tuning purposes.

Consider the following trigonometric identity, which is applicable to a situation in which a “carrier”
signal of frequency ω is amplitude-modulated at frequency Ω:

sinωt sin Ωt =
1
2

(
cos(ω − Ω)t− cos(ω + Ω)t

)
. (27)

For our purposes, ω is a very high frequency, of order GHz, and Ω is a very low frequency, in the
1 Hz to 1 KHz range. One sees that the right hand side of the equation contains two, equal amplitude
“side-bands”, oscillating at frequencies ω±Ω, shifted just slightly from ω. Viewed for a brief interval
of time during which Ωt can be approximated as a constant phase shift, the sideband oscillations are
“in quadrature” (and therefore separable) from the central frequency oscillation at frequency ω. But,
as time evolves, the sideband phases shift relative to the central line and, over times longer than 2π/Ω,
the side bands drift in and out of quadrature with respect to the central line.

Both frequencies, ω and Ω and both absolute phases, are under our external control, and they are
synchronous wiith the linac bunch structure. With synchronous electronics capable of demodulating
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the response by distinguishing background from foreground by frequency separation (and indicated
by a box in Figure 12) we need only find ways to introduce differential modulation that modulates
the foreground, but not the background, or vice-versa. Both possibilities are easily achieved.

The CEBAF operations group has already achieved low frequency modulation of the A and B
bunch polarizations, without significantly altering the beam currents or other beam properties. For run
durations of, say, one second, and perfectly stable bunch repetition frequency, a modulation frequency
Ωpol. as small as ten Hertz will shift the foreground magnetization excitation to two measureably-
distinct sideband signals, without affecting the charge frequency spectrum. Viewed on a spectrum
analyzer, the center line would be due to the electric excitation, and the sidebands would be due to
the magnetic excitation.

It is also possible to modulate the charge excitation without modulating the magnetization ex-
citation. This was the motivation for emphasizing the “effective helicity” of the charge excitation.
During set-up one will have reduced the effective helicity to best possible precision by careful beam
steering. From this condition, by intentionally shaking the beam transversely at a “low” frequency
Ωsteer, one will be modulating the background without modulating the foreground. In this case the
central frequency will be magnetic and the side bands electric.

The latter, beam shaking, option may actually be the more powerful modulation procedure.
Though polarization modulation is limited to the KHz range, beam shaking (through the extremely
small angular range required) can be performed at high frequencies, in the MHz range. This would
make it possible to modulate the frequency through a range large compared to the resonator band-
width (which is given, for example, in Table 2) yet affecting the magnetization excitation hardly at
all. This could be regarded as simply “sweeping away” the background excitation, by moving it out-
side the polarimeter-sensitivity frequency band. Basically the background charge excitation frequency
would be changing too quickly for the resonators to “keep up”. This could reduce the background
amplitude by a factor almost as great as the effective quality factor Q/hc (also given in Table 2).

8 Circuit analysis

Forward and reverse impedance models for a single resonator are shown in Figure 13. It is assumed that
each resonator will have a dedicated coaxial output connection. The coherent amplitude summing
will be performed in the combiner shown in Figure 12. The circuit model follows Section 7.6 of
the article by R. Berenger, contained in Montgomery, Dicke, and Purcell[7]. The output coupling
is represented by a transformer with primary inductance Lc, secondary inductance LL and mutual
inductance M . Following Berenger, this transformer coupling is modeled by the T section shown.
Approximate formulas for the circuit parameters are

LL = µ0rL ln(8rL/aL − 1.75) ≈ 1.021µ0rL,

Lc = µ0
πr2
c

lcAcorr.

M =
AL
A2

Lc,

Cc = determined by required resonant frequenccy ω0, (28)

where the ratio of probe radius rL to probe wire radius, rL/aL, has been taken to be 10. The correction
factor Acorr. = 1 + A1/A2 corrects the split-cylinder inductance for the reluctance in the flux return
path[1]. A1 is the cross sectional area of the inner conducting tube, A2 is the cross sectional area
outside the inner tube and inside the outer. Though the applicable circuit parameters are given
approximately by the simplified formulas given in earlier sections, the effective parameter values
acquire correction factors to account for various effects. This is especially true for the split-cylinder
capacity value Cc, which is especially sensitive because the gap width gc is so small. The factor Acorr.

corrects the inductance for the reluctance of the flux return path. The effect of this correction is to
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Figure 13: Forward (a) and reverse (b) impedance models for the loaded circuit. Primed quantities
r′c and L′C can simply replace rc and LC to convert the unloaded model into the loaded model.
With optimal output matching, r′c = 2rc; signal power estimates in Table 2 assume this optimal
impedance matching. The reverse impedance is Zrev

e.g.
≈ j 203 Ω. This is not large enough to permit

any connection to the output (other than the impedance R0 coax) without seriously mismatching the
signal processing circuitry.

decrease the inductance, which increases the natural frequency. The effective parameter values are
also influenced by the resonator loading caused by the output transmission line connection, as shown
in the figure.

The desired resonant frequency is given by ωc = 1/
√
L′cCc where L′c is given in the figure. This

makes it necessary to trim the capacitance Cc to give the required resonant frequency fc. (A scheme
for doing this has not yet been chosen.) For these reasons the gap capacitance parameters gc and wc
given in parameter tables are somewhat unreliable; but the values for Cc itself should be more or less
accurate.

9 Frequency choice considerations

The choice of harmonic number hc, and therefore also of the resonator frequency has been left am-
biguous so far. The section investigates this choice. The choice is strongly influenced by the possiblity
of increasing the signal strength by combining the signals from multiple resonators. The feasibility
of doing this depends very much on the choice of resonator frequency. Especially at very low elec-
tron energies, the overall length of available beamline real estate restricts the length of apparatus
that can be inserted in the beam line. This consideration greatly favors high frequencies, such as
the fc = 2.7445 GHz resonator frequency emphasized in the paper so far. (Higher frequencies, with
hc > 11, have been avoided for technical reasons, such as amplifier and bunch length limitations.)

Because the individual resonators are so short, especially at the highest frequency, it will be prac-
tical to line up several identical resonators, for example Ncells = 8, appropriately spaced, and let the
beam pass through them in sequence. Assuming the resonators are physically identical, and identi-
cally aligned, their RF exitations will be identical. Added with perfectly constructive interference, the
signal power would be increased by a factor N2

cells = 64. As well as improving the signal relative to
thermal noise, a big signal amplitude increase like this also reduces the importance of extraneous noise
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sources. Possible noise reduction measures that exploit the combination of equal signal amplitudes
yet random thermal noise amplitudes have been thought of but not been seriously investigated.

Early sections of this paper have mainly taken hc = 11 as the choice of harmonic number. To
diccuss the choice of frequency, parameters for other harmonic number choices, hc = 3, 5, 7, 9, 11 are
given in Table 2. This provides resonator frequency choices from fc = 0.74485 MHz, to 2.7445 MHz.
For any particular choice of frequency, the first parameter to be fixed is lc, to match the transit time
to the appropriate π phase advance. With cylinder radius rc held constant, the inductance Lc is fixed,
leaving the capacitance-sensitive parameters wc and gc as the only remaining free variables. (In fact
even the presence of ring wall thicknes wc is artificial, in that using the parallel-plate capacitance
formula is not at all accurate.) Except for this capacitance choice, fixing hc essentially fixes all
resonator parameters. With multiple resonators, the drift lengths scale proportionally. Even this
requirement is not perfectly strict, since deviations could be compensated for by external cable lengths.
(If the signals were summed by injecting them onto a single transmission line, external compensation
could not be performed. But, in any case, as shown in Section 8, impedance reasons mike it impractical
to combine signals directly onto a common transmission line.)

The highest frequency case, hc = 11, is optimal from some points of view, and especially for
multiple resonator signal addition. With Ncells = 8 the overall length would be Ltot. = 2Ncellslc = 16×
0.04733 = 0.76 m. Highest frequency can also be seen to be best for maximum resonator quality factor
Q. However the “effective Q” = Q/hc slightly favors low frequency. What causes this dependence is
that the foreground power signal is proportional to (Q/hc)2,

A parameter that is potentially important is the bandwidth fc/Q. In order for the gain of separate
resonators to be the same it is important for their variation of natural frequencies to be negligible.
Their spread of natural frequencies must be much smaller than this bandwidth.

It is not necessary, however, for modulation frequencies to be larger than fc/Q (which would
typically be hard to achieve). Side-band frequency shifts caused by modulation only need to be
significantly larger than is implied by the fractional r.m.s. spread of beam bunch arrival times,
(which we continue to take to be zero). The bandwidth implied by the bandwidth times run-duration
uncertainty product for a one second (or longer) run permits the effective detector band width to be
as small as 1 Hertz (or smaller). The fact that fc/Q decreases with decreasing frequency is therefore
not very important. To permit deferring the choice of harmonic number, parameters for all practical
frequency choices are given in Table 2.

(These considerations would be different for polarized proton polarimetry, because of the much
longer bunch lengths, and therefore greater resonator length, and lower frequency. Because of the
frozen spin constraint, protons would have kinetic energy 234 Mev, and be much stiffer than the
0.5 MeV electrons considered in this paper, and also much more intense. In spite of these favorable
considerations, achieving satisfactory resonant polarimetry for protons will probably require cryogenic
resonators.)

10 Misalignment compensation budget

Of the two fundamental impediments to detecting the resonant beam magnetization signal, the one
concerning isolation of signals from thermal noise is covered by the bottom two rows of Table 2. High
frequency (hc = 7, 9, or 11) options are all favorable from the point of view of visibility relative
to the thermal noise floor. The present section concentrates on the other fundamental impediment:
the further suppression of charge-induced resonant background response, which could, otherwise,
overwhelm the magnitization-induced foreground response.

Quantitative (boxed) formulas have been derived for both foreground, Eq. (13) and background
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parameter symbol unit
harmonic numb. hc GHz 3 5 7 9 11
A,B bunch freq. f0 GHz 0.2495 0.2495 0.2495 0.2495 0.2495
resonant freq. f0 GHz 0.7485 1.2475 1.7465 2.2455 2.7445

dielectric polyeth. polyeth. vacuum vacuum vacuum
rel. diel. const. εr 2.30 2.30 1.00 1.00 1.00
numb. cells/m Ncell ≈ /m 4 4 8 8 8

band width fc/Q kHz 286 277 309 351 388
quality factor Q 2.61e+03 4.51e+03 5.65e+03 6.40e+03 7.08e+03

effective qual. fact. Mr = Q/hc 8.72e+02 9.01e+02 8.07e+02 7.12e+02 6.44e+02
cyl. length lc cm 17.35 10.41 7.44 5.78 4.733
cyl. radius rc cm 1.0 1.0 1.0 1.0 1.000
gap height gc mm 1.305 2.021 0.709 1.171 1.750

wall thickness wc mm 10.0 5.0 2.0 2.0 2.0
capacitance Cc pF 27.076 5.245 1.859 0.874 0.479
inductance Lc nF 1670 3.10 4.47 5.74 7.02
skin depth δs µm 2.384 1.847 1.561 1.377 1.245

effective resistance Rc mΩ 2.55 5.49 9.09 13.26 17.91
cav. trans. time ∆t ns 0.668 0.401 0.286 0.223 0.182
entry cycle adv. ∆tfclb/lc 0.041 0.068 0.096 0.123 0.150

single pass energy U1,max J 1.9e-37 1.0e-36 2.8e-36 6.0e-36 1.1e-35
sat. cap. volt. VC,sat V 1.0e-10 5.6e-10 1.4e-09 2.6e-09 4.3e-09

sat. cap. charge QC,sat C 2.8e-21 2.9e-21 2.6e-21 2.3e-21 2.1e-21
sat. ind. curr. IL,sat A 1.3e-11 2.3e-11 2.9e-11 3.2e-11 3.6e-11
signal power Psig W 4.39e-22 4.03e-21 5.11e-20 1.09e-19 2.0e-19

therm. noise floor @1s Pnoise W 4.05e-21 4.05e-21 5.72e-21 5.72e-21 5.72e-21
signal/noise at 1 s log10(Psig/Pnoise ) db -9.65 -0.01 9.51 12.78 15.40

signal/noise at 100 s ” + 20 db 10.35 19.99 29.51 32.78 35.40

Table 2: Parameters for split-cylinder polarimeter with candidate resonant frequencies less than 3 GHz
(i.e. odd harmonic numbers hc ≤ 11), but with hc = 1 (with sapphire dielectric) excluded as being
inconveniently long. The cylinder length lc is fixed by the cavity transit time condition, and the
cylinder radius rc = 1 cm is arbitrarily held constant. The capacitance-determining parameters gc
and wc have been varied from the hc = 11 case analysed so far, and are not necessarily at all optimal,
especially at the low frequency hc = 3 extreme. The capacitance Cc itself should be roughly valid
though. The bottom two rows neglect all noise sources other than thermal, as well as possible phase
noise effects. With intentional phase modulation, the entries in these rows can be less optimistic than
shown, but not more.

Eq. (26), excitation. Dividing these equations produces

Wm.a.
1

Upol.
Sm.a. Spol. =

(
4.5× 10−20 J/m

)(
|ρ|∆θ⊥ ∆Iave

Iave

)
(
M2
r × 1.0899× 10−35 J

) Sm.a. Spol. ≈ 1010
(
|ρ|∆θ⊥

∆Iave

Iave

)
Sm.a. Spol.

(29)
where M2

r resonant enhancement factors are given in Table 2, and have all been roughly approximated
by 5× 105 in this equation. The final factor Sm.a. Spol. has been included to incorporate background
rejection factors enabled by differential modulation of one or the other of the beam polarization and
the beam angle of incidence on the polarimeter.

The huge 1010 numerical factor, can be understood as coming, primarily, from the ratio of fun-
damental constants given in Eq. (1). Any accurate measurement of beam polarization has to rely on
this huge factor being overcome. The five factors available to do this appear in the final expression in
Eq. (29).

The first of these factors refers to beam centroid offset (measured in meters) at the polarimeter
and the second to beam centroid angular offset at the resonator. The third factor quantifies the extent
to which the A and B beams are exactly the same, except for opposite polarization. In all three of
these cases background rejection comes in two steps, the first of which is precision alignment and the
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second is operational improvement. It is pretty clear that operational improvement will be needed,
but careful initial alignement will help to make the operational refinement more sensitive.

Estimated values for initial set-up specifications, and expected operational improvement factors
are given in Table 3. The initial set-up specifications are quite conservative, but there may not be
much point in obsessive improvement of initial positioning and alignment since, without operational
improvement, the setup conditions, however careful, are unlikely to provide sufficient background
suppression.

Accepting the analysis implied by Table 3, along with the thermal noise reduction described earlier,
there is ample background background rejection to provide an accurate polarization measurement in
minute-long runs.

Though the table entries are fairly conservative, and the predicted background rejection unnec-
essarily high, the following reservation has to be made. It is not obvious that the factors given in
the table are sufficiently independent of each other, or can all be implemented simultaneously. This
analysis has therefore only shown resonant polarimetry to be promising and worth pursuing. Actual
success will depend on experimental verification.

misalignment misalignment installation operational background
factor specification improvement reduction

formula factor factor

beam position
√
σ2
x + σ2

y < 0.001 m /102 1e-5

beam slope
√
σ2
x′ + σ2

y′ < 0.001 /10 1e-4
beam imbalance ∆Iave/Iave < 0.01 /10 1e-3

polarization modulation Spol. /10 1e-1
slope modulation Sm.a. /10 1e-1

background fraction 1010 Sm.a. Spol.Wm.a.
1 /Upol. 1e-4

Table 3: Accumulated background suppression factors from Eq. (29). |ρ| =
√
σ2
x + σ2

y; ∆θ⊥ =√
σ2
x′ + σ2

y′ . Beam position and slope operational improvement factors rely on beam steering of
unpolarized beam to null the responses. Beam imbalance improvement relies on downstream nulling
of A and B beam currents and on nulling the sub-harmonic leakage in an external beam charge
detector. Modulation background suppression factors are guesses that are pessimistic in magnitude,
but optimist in the sense that simulataneous modulation of two beam parameters may be impractical.
For successful polarization the accumulated factor has to overcome the 1010 background advantage
factor in the Eq. (29) coefficient that is included in the bottom line.
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11 Recapitulation and conclusions

For resonator parameters shown in Table 1, the maximum charge Qsat.
1 residing on the resonator

capacitor, after a bunch has made a single passage, has been given in Eq. (12). Figure 9 shows
the capacitor charge building up constructively over a few early excitation pulses. The synchronism
has been arranged so that every entrance and exit Lenz law excitation is constructive, and the VC
excitation accumulates up to the steady state shown in Figure 10,

Multiplying the VC response shown in this figure by 10 (to correct for the actual circuit resistance
rc having been artificially increased by a factor of 10 to reduce the computation time) the capacitor
build-up factor when steady state has been reached is approximately 600. (As expected) this is less
than the resonator Q value of 6760 by a factor more or less equal to the hc = 11 resonator harmonic
number. (We refer to Q/hc as “effective quality factor”, to make allowance for the fact that the
quality factor measures damping once per cycle, while the excitation occurs only once per hc cycles.)
Incorporating this factor, the capacitor voltage settles to a steady state value of Qeff.Q

sat.
1 , and the

saturation level capacitor voltage is V sat.
C = (Q/hc)Qsat.

1 /Cc. Accepting the multi-element polarimeter
circuitry described in Section 7 as valid in every respect, the voltage at the receiver will be increased
by a factor equal to the number of pick-ups, which we have here taken to be Nd = 8. The saturation
level excitation voltage will then be

V rcvr.
C =

Nd(Q/hc)Qsat.
1

Cc
= 3.238× 10−8 V. (30)

From Table 2, for a data collection interval of one second, this signal can be expected to be 15.4 db
above the thermal noise floor. At that level, even if background and foreground signals are comparable
in magnitude, subsequent operational tuning mechanisms have been described for the further isolation
of the foreground magnetization signal. This is the basis for our confidence that resonant polarimetry
for electrons will be practical.

The same table shows that, as well as for hc = 11, polarimeter performance could also be satis-
factory at frequencies corresponding to harmonic numbers hc = 7 or hc = 9. The choice among these
three candidates will be governed by construction and data processing considerations.

In conclusion, I correlate the present proposal with similar previous proposals. There has been
a considerable history, and much controversy concerning the feasiblity of resonant polarimetry. This
form of polarimetry was first proposed by Derbenev[9] in 1993, and revived by Conte and others[10]
in 2000. At that time a test was proposed at the MIT Bates Lab[11].

Analysis using careful relativistic transformation to a reference frame in which the particle motion
is non-relativistic, was performed by Tschalaer at that time, and later, in more detail, in 2008[13],
and again in 2015[12]. Tschalaer’s results showed that the previous proposals had overestimated the
resonant excitation by (at least) one power of the (large) relativistic factor γ. Perhaps for this reason,
the test proposed at the MIT Bates lab was not seriously pursued, or at least not reported in detail.

To avoid serious conceptual difficulty concerning Lorentz transformation, the present proposal has
made no explicit use of special relativity. Rather it has taken a purely Maxwellian approach that uses
a Faraday’s law formulation in which the resonator excitation is calculated by the straightforward
application of Lenz’s law.

For our proposed J-lab test of resonant polarimetry, mindful of Tschalaer’s results, we have chosen
γ = 2, which is the lowest value of γ that can be provided by the CEBAF injector at a convenient
location along the beam line. At this γ-value the electron velocity is 0.866 c, which is to say “almost
fully relativistic”. It is clear from the Lenz’s law derivation that (except, possibly, for thirteen percent)
the same excitation will apply for all larger values of γ. In this respect the result is consistent with
Tschalaer—certainly it does not contradict his claim that there is no effect that increases proportional
to γ.

As far as I am concerned this lays to rest a decades old controversy concerning the γ-dependence of
cavity excitation by a passing bunch of polarized particles. Like Tschalaer, this paper has shown that,
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once the particles have become fully relativistic, there is no further γ-dependence of the resonator
excitation.

But this is not the main content of the present paper. Rather, what has been demonstrated is
the design of a non-destructive resonant electron polarimeter capable of measuring the polarization
state of a relativistic electron beam non-destructively, and with high accuracy. To be fully persuasive,
however, actual experimental verification is necessary. Such a test at Jefferson lab is under active
planning.

This paper has profited greatly from regular conferences with my colleagues planning for a Jef-
ferson Lab test: Joe Grames, Alicia Hofler, Reza Kazimi, Matt Poelker, and Riad Suleiman, and,
especially concerning polarimeter design, Brock Roberts. I have also profited from numerous theoret-
ical discussions with Saul Teukolsky, Eanna Flanagan, Bob Meller, Alex Chao, Yunhai Cai, Gennady
Stupakov, and Wolfgang Hillert.
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