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Abstract 
The aim of these experiments was to produce short light pulses by reducing the momentum compaction factor. These 

experiments show that the correction of the second-order term. using sextupole magnets, is essential in order to successfully 

reduce the momentum compaction by a large factor. By this technique, a factor of 100 reduction was obtained. However, 

most measurements were performed at a reduction factor of 13. Good agreement was obtained between experimental results 

and theoretical predictions. 

1. Introduction 

The natural bunch length and the synchrotron frequency 
of an electron or positron bunch in a storage ring scale 

with the square root of the momentum compaction factor 

LY. The reduction of (Y by a factor of 100 should produce 
the short natural bunch length of about IO ps (3 mm) in the 
case of Super-AC0 and 1 ps (0.3 mm) for the case of the 

SOLEIL project [I]. 
Such short bunches, if obtained at operational beam 

current, would lead to an increase in gain for free electron 

laser operation [2]. would be very useful for time resolved 

experiments, and would provide the possibility of observ- 
ing coherent radiation [3]. Nevertheless, it is well known 

that in the turbulent bunch lengthening regime, bunch 
length becomes independent of cr. However, the threshold 

of this effect depends on the impedance of the machine 
leaving open the possibility of obtaining high peak currents 

in future machines by this technique. In addition. it is 
interesting to study collective beam dynamics at low cx as 
well as to probe the high frequency machine impedance. 

When the first-order momentum compaction factor, (Y,, 
approaches zero. the second order term, cy,. becomes 
dominant and must be considered. The longitudinal mo- 

tion, which includes the momentum compaction factor in 
its equations, becomes essentially nonlinear. The longi- 
tudinal phase-space shape is then modified and the stable 
region is reduced both in energy and phase. Several 
theoretical studies have analyzed the second order particle 
dynamics in a storage ring [4-71 and first experiments to 
reduce LY have been carried out on BESSY I, and on the 
BNL UV ring [S]. They resulted in a reduction of the 
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momentum compaction by a factor of 3 and 4 respectively. 

On UVSOR, Hama et al. have succeeded in obtaining a 

reduction of a factor 100 with a stored beam current of 
0.1 mA at low LY (91. Such experiments are also in progress 

at the ESRF and ALS storage rings [ IO.1 I]. 
In this paper, we present the method used to obtain 

variable momentum compaction lattices on Super-ACO. as 
well as experimental measurements of the first ((Y, ) and the 
second (my2 ) order terms of the momentum compaction 

factor. We then describe the operational method allowing 
to set (Y> to zero and suggest an explanation for the 

evolution of the beam lifetime during these experiments, 

using energy acceptance expressions including the term (Y,. 

2. Theoretical approach 

3.1. Derivation of the momentum compaction fuctor to 
second order 

The momentum compaction factor is defined as the 
relative change of the orbit path length, Al/l,,, with respect 
to the relative particle energy deviation, Applp,,: 

&Al/l,,) 

a=m’ 
(1) 

where p,) is the momentum of the reference particle and I,, 
the length of the reference orbit. 

Simple geometric considerations lead to the following 
expression for the change in trajectory length: 
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where p,, is the radius of curvature of the reference orbit 

and x is the particle amplitude. 

By introducing the expression for the particle amplitude 

composed of betatron oscillation, orbit distortions and off 
momentum orbits: 

(3) 

we can obtain as already demonstrated in Ref. 151. the 
following expression for A//l,,: 

where 

(5b) 

and A%/% is the momentum independent term represent- 
ing lengthening effects due to betatron oscillations and 
orbit distortions. The effect of the betatron oscillations has 

been estimated by using the smooth approximation and is 

found to be small. The closed orbit length depends on the 
dipole errors and the dispersion at their position. Hence 
A’&/% varies during the reduction of (Y. The term A%‘/% 

can be cancelled by a change in the RF frequency, A&,/ 
f,, = A%/% permitting to obtain the central RF frequency 

of the ring. 

In Eq. (5), 7,) and v, are the first and the second order 
terms of the dispersion function. Their analytical expres- 

sions, given in Ref. [l2], show that v0 depends only on 

linear optics whereas 7, also depends on sextupole com- 

ponents. Eq. (5b) shows that, due to the 7,:’ contribution, 
(Y? is always positive in a linear machine. r], can be made 

positive or negative with sextupole and can compensate the 
term v,‘,‘. The value of LY, can therefore be controlled and 

set to zero, allowing for smaller values of a. 
We have calculated CQ for Super-ACO, using Eq. (5b) 

and checked that it depends linearly on sextupole strength 
at fixed LY,. 

Z.L Nonlinear longitudinal motion 

When LY, is very small, the second order term (Y? cannot 
be ignored and must be considered in the equations of 

longitudinal motion. These nonlinear equations and the 
higher order Hamiltonian are presented and discussed in 
Appendix A. They show the existence of a second zone of 
stability in addition to the well-known stable linear RF- 
bucket. 

This new stable zone is far away from the linear one and 

thus out of the energy acceptance of the vacuum chamber 
when LY? is very small (Fig. la). As la2/ increases, the two 

stable buckets approach each other and their separatrices 

merge for a critical value cylc of az (Fig. I b), see Appendix 

A: 

(6) 

where + is the bucket half height in the linear case. 

For 1~1~1 > (Y,~, the buckets change their form and the 
energy and phase acceptances are significantly reduced 

(Fig. Ic). This leads to a decrease in the Touschek and 
quantum beam lifetimes. In order to have a small value of 

cy, with a good beam lifetime, it is essential to minimize 
the value of cy2. 
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Fig. 1. Longitudinal phase space trajectories for C#J< = O.i256rad, 

a, = 0.00119. (a) (Y, = 0.004, (b) when (Y. = (Y?, = 0.01 I. cc) when 
a. >> (12L. Ly, = 0.10. 
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3. Quasi-isochronous optics calculation 

The standard lattice of Super-AC0 is a fourth order 

symmetry expanded Chasman-Green Double Bend Ach- 

romat with four families of quadrupoles and eight straight 

sections alternately with dispersion (even sections) and 

without (odd sections). Each quadrupole has extra coils 
which can be powered to produce a sextupole field. 
Therefore Super-AC0 has four families of sextupoles. The 

standard Super-AC0 lattice (E, = 37 nm . rad) does not 

permit to reach low values of cy. That is why, for these 

experiments, a large emittance detuned optics ( 120 nm 
rad) is used, giving an initial cr, of 0.015 (Fig. 2a). 

We used the four families of quadrupoles in order to 

have n,, change sign inside the bending magnets. This 
allows lower values of (Y and creates negative n,, in odd 

sections. Variable momentum compaction lattices were 

calculated keeping the betatron tunes and the betatron 

functions nearly constant. Fig. 2b shows the Super-AC0 
optical functions for a quasi-isochronous operation mode 

which corresponds to cr, = 0.00015, 100 times smaller than 

the initial value. 
Calculated linear momentum compaction factor values 

are given in Fig. 3 as a function of the dispersion value 

rl, ‘Id’ in odd straight sections. We can see that (Y, decreases 
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Fig. 2. Super-AC0 optical functions for a large emittance detuned 

optics. (a) a, =0.015, (b) a, =O.OOOlS. 
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Fig. 3. Variation of calculated (Y, versus 11, in odd straight 

sections. 

slowly from its initial value, down to (Y, = 0.005 when 

nfd’ is changed from 0 to - 1 m, then the (Y, value 

decreases very steeply and changes from (Y, -0.001 to 
cr, = 0 between - 1 SO and - 1.52 m. One should note that 

the relationship between (Y, and 7 is fairly linear, but since 
we deal with very low values of CY,, it is reasonable to plot 
them on a logarithmic scale. This gives a dramatically 

steep function which illustrates the sensitivity of a, to the 

quadrupole values. 

4. Experimental measurement methods for 
determining q and a2 

The bunch length scales with the momentum compac- 

tion factor [Y according to 

(7) 

However, to obtain cy, one has to assume a value for the 
energy spread a,. We therefore choose to use the horizon- 

tal closed orbit displacement 

or preferably the synchrotron frequency 
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f, =.f,,, (9) 

whose measurement is more straightforward and more 

precise. 
Here E,, is the beam energy, h is the harmonic number, 

V,, is the RF voltage and (b, the synchronous phase. ‘7% is 
the calculated horizontal dispersion at a beam position 

monitor and $fRv/fKk is the relative change of the RF 

frequency from the central value. 
When a, and Afk,/f,,. are taken into account. Eqs. (8) 

and (9) must be recalculated. It is shown in Appendix A 
that Applp,, appearing in Eq. (8) is the value which cancels 

Al/l,, (Eq. 4). and a appearing in Eq. (9) is the derivative 
of Alli,,. 

We shall hence use 

(10) 

L =A” 
‘heV,,. cos 4, 

2 ~4, 
(II) 

Experimental values for a, and a: can thus be derived 
by measuring the synchrotron frequency or horizontal 
beam displacement as a function of RF frequency. 

The beam position is measured by monitors (BPM) 

located between the two quadrupoles of each doublet, with 
an accuracy of ? IO pm and the synchrotron frequency is 

measured by resonant excitation. 

5. Experimental results and discussion 

5.1. Measurement of‘ ff, 

The quadrupole gradients calculated for each point of 

the descent path (Fig. 3) were introduced into a control 
program. The beam was injected at the initial point (a, = 

0.015) and the momentum compaction factor was reduced 
step by step by changing the quadrupole strengths. This 
allowed us to study the effects occurring during the 

process of reducing a. The experiment was performed with 
a single bunch at the nominal energy of 800 MeV The peak 
RF cavity voltage was adjusted to 170 kV. 

The synchrotron frequency was measured for each point 
of the path. In each case, at the operating point corre- 
sponding to the calculated value of cy, = 0.003, difficulties 
occurred in terms of various instabilities. large closed orbit 

distortion, poor beam lifetime and sudden beam losses. 
Indeed, at low a, the closed orbit can undergo large 
distortions for a small deviation of the RF frequency. This 
distortion is amplified by the large value of the dispersion. 
The variation of the experimental synchrotron frequency 
values versus the square root of the calculated a, departs 
from linearity below a, = 0.003 (Fig. 4). This behaviour is 
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Fig. 4. Measured synchrotron frequency versuh calculated (Y, for 

three different sets of sextupole strengths. 

consistent with Eq. ( I I ). The curves of Fig. 4 correspond 

to three different sets of sextupole strengths. One of these 

sextupole configurations (dark circles) reduced a? to a 
near-zero value leading to a much lower synchrotron 
frequency for the same calculated cr,. At the lowest point, 
a, = 0.00015 ( 100 times smaller than the initial value) the 

single bunch current was 0.1 mA. This should correspond 

to a reduction of the natural bunch length by a factor of IO. 

Unfortunately, the short electrode we use routinely for 

bunch length measurements does not permit to measure 
lengths below 50 ps. Therefore no bunch length measure- 

ment was done for cy, smaller than 0.0036 during these 
experiments. 

Systematic measurement and control of a2 were per- 
formed for the point corresponding to a, = 0.00119. The 

synchrotron frequency was measured as a function of the 

RF frequency for different strengths of the SX4 focusing 
sextupole family. Experimental values of a, and a, were 

then deduced by fitting Eq. ( I I ). Reducing the SX4 

strength by approximately 6% from its nominal value 
brought the measured a, to nearly zero (Fig. 5). At this 

point, the measured synchrotron frequency was 4.2 kHz 
which, compared to the I.5 kHz synchrotron frequency at 
the injection point, confirms the reduction of a, by a factor 
13. The crossing point which is independent of the value of 

SX4 strength delines the central frequency af the machine. 
The variation of a, with the SX4 sextupole strength is 

linear as predicted by the calculation (Fig. 6) and the 
value of the slope is in good agreement with the calculated 
one. 

The compensation of (Y: at this point of the path allowed 
us to store 5 mA in a single bunch with corrected 
chromaticities and beam lifetime longer than IO h. No 
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Fig. 5. Variation of the synchrotron frequency versus RF fre- 

quency for different sets of sextupoles for (Y, = 0.00119. 

bunch length measurements were performed for this 
particular value of cy,. The turbulent bunch lengthening 

model predicts no effect of CY, on bunch length above the 

threshold. Experimental measurements at LY, = 0.015 and 
(Y, = 0.0036 shown in Fig. 7 are compatible with this 

theory. 

8 1 “1 ! 

4 
& . ,f 0 

..4 

.* 

5 /b 0 

0 

a, = 0.0150 0 

a, = 0.0036 0 

o,....,....,....,....,.... 
0 2 5 8 10 

$ (W 

Fig. 7. Bunch lengthening for different values of cy,. 

6. Energy acceptance and beam lifetime 

As discussed in Appendix A. when Icx~I>> crZc, the 
bucket is asymmetric in energy. The energy and phase 

acceptances in this case are reduced. The bucket height has 

been calculated as a function of cy2 and A&,/f,, (see 

Appendix B) as being: 

5.3. Values of a, and LU, deduced from orbit variations 

The orbit variations were also measured as a function of 

4f,, at (Y, = 0.00119, using a set of sextupole strengths 

corresponding to cyz = -0.18 (measured by fitting Eq. ( I I ) 
at the same point). Fig. 8 shows the variation of Apply,, 

deduced from the measurements of AX (average value over 
the I6 BPMs) as a function of Af,,. The experimental 

points are in good agreement with Eq. (10) calculated for 
LY, = 0.001 I9 and LY, = -0.18. 

(12) 

One can notice that when the term (4aZ/af)(Af,,lfR,) 

approaches unity, the value of S tends toward zero and the 
beam lifetime is then significantly reduced. 

When cr, is negative (which was usually the case during 
this experiment) a reduction of S is expected when Af,,/ 

f KF is negative. This has been confirmed during these 

experiments, where a severe decrease in beam lifetime was 
always observed when both Af,,/f,, and cyZ were nega- 

Fig. 6. Variation of a2 versus sextupole strength SX4 for cy, = 

0.00119. 
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Fig. 8. Variation of Aplp,, versus RF frequency for a, = 0.001 19 
and (Y, = -0.18. 
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tive. On the other hand, the measured lifetime was much 

better when the product crZ(A&/fRF) is negative. 
When (Y, is reduced, the sensitivity to the closed orbit 

errors is enhanced, and it becomes difficult to control the 
sign of the trajectory length deviation. It is then essential to 

be able to control (Ye using sextupoles. This. added to the 
chromaticity control necessitates at least three sextupole 

families, 

7. Conclusion 

We have succeeded in reducing cy, by a factor of 100 by 

both changing the dispersion function in the bending 

magnets and compensating the second-order momentum 
compaction factor (Ye. Systematic measurements were 
performed at (Y, = 0.00119 which represents a reduction by 

a factor of 13. The term (Ye was successfully set to zero 

with corrected closed orbit and the two transverse 
chromaticities compensated simultaneously. In this case 

we could store a single bunch of 5 mA with greater than 
IO h lifetime. The measured synchrotron frequency con- 

firmed this reduction of LY,. 
The bunch length was measured at two values of cr,. 

respectively 0.015 and 0.0036 and shows that bunch 

shortening is only clear at very low current. 
In addition, experiments with negative momentum com- 

paction factor are currently being performed in order to 
test the predictions of beam stability with natural 

chromaticities and the variations of bunch length and 
energy spread versus bunch current. 
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Appendix A. Non-linear synchrotron motion 

deviation Aplp,. wRF is the angular frequency of the RF 

cavity, V,, is the RF peak voltage, E,, is the particle energy 

and T, the revolution period, ‘p, and cp are respectively the 

phases of the reference and the arbitrary particles. 
These equations can be derived from the Hamiltonian: 

X(recs. cp) = -tiJ LB@) - S(“(co)l , 

where 

- ev,, 
Y(P)=~~ (coscp-cosp,+(p-q,)sincp,). 

0 0 

In the usual approximation ((Y, = 0). there are two fixed 

points corresponding to dtpldt =0 and dSldt =O. The 
fixed point located at (cp = p5, 6 = 0) is stable and the fixed 

point located at (cp = r - ‘p,, 8 = 0) is unstable. when 

(Y, > 0. Around the stable point, the synchrotron frequency 
is: 

.f, =Lv ( heV,, cos 4, I” ,,2 

27% > 
ff 

In the present case (cu, # 0 and A%/% f 0) the require- 

ments dpldt = 0 and dSldt = 0, give two stable fixed 
points and two unstable fixed ones (Fig. I. cf. Section 2.2). 
The stable fixed points are (in the case cr, > 0): 

(‘F, = cp,. 6, = 6,) and (Vb=r-G?,S,=S,), 

and the unstable fixed points are: 

((pB=m-VJ,.&=S,) and (PC = ‘p,. 6, = &), 

where S, and S, are the solutions of the quadratic equation 
(dSldt = 0). LY& + a,6 + A%l% = 0: 

There are now two stable zones and according to LY* and 
A%/% values, the synchrotron diagram presents three 
different aspects (Fig. 1, cf. Section 2.2). The synchrotron 

frequency is the same as before, with (Y = 8(AI/l,)/&Y = 
cr, + 2~~~8, or taking into account the value of 6: 

The synchrotron motion equations to second-order can 
be written as: 

da eh, 
dt EJ,, 

[sin cp - sin cp,] , 

(Y, and cr2 are respectively the first and second-order 

momentum compaction factors, A%/%’ is the momentum 
independent term (cf. Section 2.1), S is the energy 

and 

L =f,,, 
d 

heV,, cos C& 

2 .RE, 

FOT A%/‘% = 0, one obtains for 8, the linear result 
(8, = 8, = S, = 0) and -(Y, /ffZ for 8,. When A%l% # 0, 
the locations of the fixed points depend on orbit distortions 
and the amplitude of betatron oscillations. In addition, one 
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can see a significant reduction in the energy and phase 

acceptances, due to LY? and A%?/% contributions. 
Fig. lb (cf. Section 2.2) represents the transition be- 

tween the two cases (Iazl << Ia, 1 and Iazl >> la,l) when 

the separatrices of the buckets merge and share their 
unstable fixed points. The Hamiltonian for these fixed 
points are then equal and one can derive the critical value 

for ~y2 corresponding to the trans’tion by putting: 

&,(a - cp.3 6,) = T&P,, 6,) 1 

which gives after neglecting in this case the term A%/%: 

The critical value for (Y? is then: 

where we can identify the expression of the bucket half 

height in the linear case: 

giving the following simple expression of a2,: 

Appendix B. Bucket height when Ia21 >> a;, 

When lczzl is greater than cu,,, the bucket is asymmetric 

in energy, and there is no simple definition of the energy 
acceptance. Therefore, we shall rather speak of the total 

bucket height (Fig. Ic, cf. Section 2.2). 
The extreme points 6 and 8, have the same value of the 

Hamiltonian (cf. Appendix A), and are related by: 

taking into account the requirement: 

(where the relation A%'/% = AfR,/fR, is used) one can 
obtain the following equation: 

( s+2s. 
(6 - 8,)’ : + cy2 + 

> 
=O. 

Two of the three solutions of this equation are the same 
and represent the momentum at the fixed point C. 

The third solution which represents the ordinate of the 
other extreme point is obtained by setting: 

:+cr, 
8 +26 
J=(), 

3 

We can then deduce the maximum height of the bucket 

which is equal to: 
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