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Abstract

We present a comprehensive survey of the dynamics of spin-polarized beams in high-energy
particle accelerators. A major theme of this review is to clarify the distinction between the
properties of an individual particle—a spin—and that of a beam—the polarization. We include
work from a number of institutions, including high- and medium-energy facilities, synchrotron
light sources and muon storage rings (including a proposal to measure the muon electric dipole
moment) and, briefly, linear accelerators and recirculating linacs. High-precision tests of the
Standard Model using spin-polarized beams are reviewed; also innovative studies using spin
dynamics as a tool for accelerator physics per se. We include important historical works as
well as modern developments in the field. The fundamental theory is derived in detail, starting
from the basic principles of quantum mechanics, electrodynamics and statistical mechanics, as
well as ‘accelerator physics’. The principal theoretical formulae in the field (Froissart–Stora,
Sokolov–Ternov and Derbenev–Kondratenko) are presented, with in-depth attention to the
quantum-statistical mechanics, as opposed to purely ‘accelerator physics’.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

All of the particle species commonly accelerated in modern particle accelerators have spin. This
immediately suggests the possibility of utilizing the particle spins as an additional experimental
tool. High-energy and nuclear physics using accelerators has reached a point where a very
large fraction of the experiments require polarized beams. Essentially all research electron
accelerators use polarized beams—Jefferson Lab exclusively, for a number of years now
(since 1999). At ELSA (the Electron Stretcher Accelerator facility), it is stated that polarized
electron beams will play a major role in their future research programme. Most proton (or
hadron) machines desire polarized beams—e.g. RHIC, the Relativistic Heavy Ion Collider at
BNL (Brookhaven National Laboratory). The recent successes at BNL to accelerate, store and
collide counter-rotating polarized proton beams at high energy, by using so-called ‘Siberian
Snakes’, ‘spin rotators’ and ‘partial Snakes’ mark the successful culmination of three decades
of both theoretical ideas and experimental work in the field. (Note: As of the date of writing
this paper, RHIC has accelerated polarized proton beams to 100 GeV. All the material on RHIC
in this paper will discuss only 100 GeV beams. However, the top design energy of RHIC is
250 GeV, and RHIC will undoubtedly accelerate polarized proton beams to a higher energy
in the future.) Anyone looking at the underlying physics will appreciate that this reality (the
need for polarized relativistic particle beams) is likely to remain the case for a long time, and
thus, that new generations of physicists—both accelerator builders and research users—will
need to understand these phenomena. Presently, there is no one place for a student/researcher
to obtain pertinent information. One wonders how much time and effort is lost by people
seeking such information (in many sub-fields), when in reality, the field is mature enough for
a comprehensive review. Several years ago, Courant (1990) and Shatunov (1990) wrote a pair
of back-to-back reviews on spin dynamics in high-energy accelerators, but there have been
many advances since then, e.g. the Siberian Snakes, spin rotators and partial Snakes mentioned
above. This is therefore, a propitious time to write a broad, but also detailed, survey of the
dynamics of spin-polarized beams in high-energy particle accelerators.

This paper is one of two that jointly aim to provide a comprehensive and in-depth review of
the field of polarized beams in high-energy accelerators, including important historical works,
as well as modern experiments and, also, the supporting theory and open questions in the field.
The companion paper (Mane et al 2005) will be denoted MSY1 below, the current paper
being MSY2. MSY1 reviewed the important subject of ‘Siberian Snakes’ and spin rotators.
Siberian Snakes are essential devices to enable the acceleration of spin-polarized beams to
high energies without crossing so-called depolarizing spin resonances. However, they are also
useful at lower energy facilities, and have been employed with success at the electron storage
rings AmPS and SHR, where the beam energy is less than 1 GeV. MSY1 reviewed not only
the theory of Snakes and spin rotators, but also several practical designs, e.g. solenoids and
‘full-twist helical magnetic fields’ and ‘Steffen Snakes’. MSY1 also reviewed the practical
accelerator physics experience with such devices, including the so-called ‘Snake resonances’,
which are depolarizing resonances in rings equipped with Siberian Snakes. MSY1 did not,
however, treat the important subject of ‘partial Snakes’. This is one of the topics we shall
address below.

The present paper (MSY2) is a longer paper, and will cover a broader range of topics. It
will review the fundamental theory of spin dynamics in accelerators, including the principal
formulae for both radiative and nonradiative polarization, e.g. the Froissart–Stora, Sokolov–
Ternov and Derbenev–Kondratenko formulae. Experimental work at a number of facilities
will be reviewed, including ‘case studies’ at various laboratories, to illustrate the practical
issues one encounters when working with polarized beams in actual accelerators. Important



2006 S R Mane et al

achievements using spin-polarized beams, including precision tests of the Standard Model,
will be treated. Particular attention will be paid to the fundamental physical principles of
statistical mechanics, (semiclassical) electrodynamics, dynamical systems theory as well as
so-called ‘accelerator physics’. We emphasize the distinction between a spin—a property of
an individual particle—and the polarization—a property of the entire beam.

While the aim of both MSY1 and MSY2 is to provide a broad yet comprehensive survey
of spin dynamics in accelerators, this paper is not a compilation of every paper published in
the field. In general, we try to cite significant works, and to stress positive achievements.
In some cases, we have not cited certain papers which seem to be inadequate. As stated
above, we review experimental work at several accelerator laboratories to illustrate a number
of fundamental points of spin physics. However, we are well aware that many of those points
could be made using work done at other accelerators, or by citing experiments other than
those we mention below. The Nuclotron at Dubna, for example, delivers the highest-energy
polarized deuteron beams in the world, but we do not discuss the work at the Nuclotron in
this paper. Another facility we do not discuss in detail is COSY, the COoler SYnchrotron at
Jülich. COSY accelerates beams of polarized and unpolarized protons and deuterons in the
momentum range between 300 MeV c−1 and 3650 MeV c−1 (Lorentz et al 2004). Vertically
polarized proton beams with over 80% polarization have been delivered to internal targets
and external experiments. Since 2003, polarized deuterons have also been delivered to users.
We also do not discuss the important subject of spin-polarized beams of radioactive nuclei,
e.g. 7Be or 8Li, as at CERN’s ISOLDE facility, or at ISAC at TRIUMF, etc.

Note also, that although we shall touch on various topics of particle physics throughout
this paper, our focus is on accelerator physics, not particle physics. An excellent modern
text titled ‘Spin in Particle Physics’ is by Leader (2001), which, as the title states, describes
many of the important roles that spin-polarized beams have played, and continue to play, in
high-energy physics.

We shall mainly treat only spin 1
2 particles. Almost all the particle species we shall discuss,

e.g. electrons, positrons, muons and protons, have spin 1
2 . However, there is increasing interest

at modern accelerator facilities in the availability of polarized deuteron beams. Deuterons
have spin 1, so we shall discuss the polarization of spin 1 particles, but only briefly. We shall
not discuss neutrons: as the title states, we discuss only charged particles. Although we
shall mainly treat circular accelerators (synchrotrons and storage rings), we do include two
sections at the end, on linear accelerators (at SLAC) and recirculating linacs (CEBAF). While
on the subject of linear accelerators, we mention here a significant achievement, namely, the
first measurement of the proton’s ‘weak magnetism’ obtained by the SAMPLE experiment
(Hasty et al 2000), using a longitudinally polarized electron beam from the linac at the MIT-
Bates Linear Accelerator Laboratory. This is the weak-interaction analogue of the magnetic
dipole moment. Its existence was predicted theoretically in the 1950s. A longitudinally
polarized electron beam (i.e. electrons in helicity eigenstates) was essential to perform this
measurement.

We include not only the highest energy rings such as RHIC and LEP, but also lower energy
facilities such as ELSA, IUCF, JLAB/CEBAF, KEK-PS, VEPP-2M and VEPP-4, etc. A list
of the names (acronyms) of the various machines mentioned in the text, and the institutions
where they are located, is given in table 1. Some machines, like SPEAR, DORIS or TRISTAN,
have acronyms, for historical reasons, that do not fit their actual operation; we have placed
the acronym in parentheses. (SPEAR was retrofitted to mean Stanford Positron Electron
Accelerating Ring.) For BESSY the acronym was too long and we could not find the meaning
of SATURNE. Note also that several of the machines have been decommissioned; accelerators
do not operate forever.
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Table 1. Names and locations of accelerators referenced in the text, listed alphabetically by
institution.

Institution Location Machine Acronym

ANL Argonne, IL, USA ZGS Zero Gradient Synchrotron
Berlin Berlin, Germany BESSY-I, II —
BINP Novosibirsk, Russia VEPP-(2, 2M, 3, 4) Colliding Electron–Positron Beams
BNL Upton, NY, USA AGS Alternating Gradient Synchrotron

RHIC Relativistic Heavy–Ion Collider
CERN Geneva, Switzerland LEP Large Electron–Positron Project
Cornell Ithaca, NY, USA CESR Cornell Electron Storage Ring
DESY Hamburg, Germany DORIS (Doppel Ring Speicher)

HERA Hadron–Elektron Ring Anlage
PETRA Positron–Electron Tandem Ring Accelerator

ELSA Bonn, Germany ELSA Electron Stretcher Accelerator
IUCF Bloomington, IN, USA IUCF Cooler Indiana University Cyclotron Facility Cooler
KEK Tsukuba, Japan KEK-B KEK B-Factory

KEK-PS KEK Proton Synchrotron
TRISTAN (Tri-Ring Intersecting Storage Accelerators

at Nippon)
LBNL Berkeley, CA, USA ALS Advanced Light Source
MIT-Bates Middleton, MA, USA SHR South Hall Ring
NIKHEF Amsterdam, Netherlands AmPS Amsterdam Pulse Stretcher
Orsay Gif-sur-Yvette, France ACO Anneau de Collisions d’Orsay
PSI Villigen, Switzerland SLS Swiss Light Source
Saclay Gif-sur-Yvette, France SATURNE —
SLAC Palo Alto, CA, USA PEP-2 PEP B-Factory

SLC Stanford Linear Collider
SPEAR (Stanford Positron Electron Asymmetric Rings)

TJLab Newport News, VA, USA CEBAF Continuous Electron Beam Accelerator Facility

Perhaps the greatest triumph of modern times, a success for both theory and experiment, is
the recent successful installation and commissioning of ‘Siberian Snakes’ and spin rotators at
RHIC, the Relativistic Heavy-Ion Collider at BNL. RHIC is the world’s first (and to date, only)
polarized proton collider. As of the time of writing this paper, RHIC has stored and collided
100 GeV polarized proton beams (Roser et al 2003). A schematic view of the BNL complex
showing RHIC and its injector chain is shown in figure 1. The structure of the complex
is a cascaded chain of accelerators, fairly typical for modern laboratories, and will serve as a
useful example to explain some important concepts. A polarized proton source produces a spin-
polarized beam which is injected into a linear accelerator (linac), from which the beam is then
transferred to a Booster synchrotron. The particles are then transferred to a second synchrotron,
the AGS (Alternating Gradient Synchrotron), and then to RHIC. The beam energy increases in
each machine in the chain. The AGS, which today serves as the final injector leading to RHIC,
is a venerable synchrotron in its own right. Work on polarized proton beams at the AGS has
pioneered many techniques for spin dynamics in accelerators. The AGS work on polarized
proton beams will be reviewed below. The above example of the BNL complex demonstrates
several important lessons:

• A source of polarized particles (in this case, protons) is required. The majority of charged
particle sources produce unpolarized beams. It is much more difficult to create a beam of
polarized charged particles than an unpolarized beam; the beam intensity may be lower by
a factor of 1000 or more. The available intensity of polarized beams is itself a problem,
but one which we shall not address.
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PHOBOS
BRAHMS & PP2PP (p)
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Absolute Polarimeter (H jet)

AC Dipole

Figure 1. Schematic layout of BNL complex for polarized proton operations. Courtesy of MacKay
(private communication) and BNL Collider Accelerator Department.

• The beam must be accelerated and transferred from one machine to another. There are
any number of mechanisms which can depolarize the beam along the way; much of the
text will be devoted to explaining the various sources of depolarization and the techniques
to avoid or overcome them.

• The polarization must be measured: polarimeters are required. The design and operation
of polarimeters, especially for hadrons, is also a nontrivial task. Although polarimetry is
not really within the scope of this paper, we do include a section on polarimetry because
the subject is important and cannot be ignored completely.

• Consulting figure 1, the Siberian Snakes and spin rotators are indicated in RHIC, also an
‘ac dipole’. A ‘partial Snake’ is indicated at the AGS. We shall explain all of these devices
below.

• Lastly, it must always be remembered that if the beam is lost, for whatever reason,
then there is no polarization—there is no beam! The spin dynamics always sits on top
of the orbital dynamics. The various machines must be adjusted to preserve (or optimize)
the beam intensity (in the case of colliders, the appropriate term is ‘luminosity’).
In some cases, such requirements on the machine can conflict with those to optimize
the polarization.

The above ideas give a conceptual view of the issues involved in dealing with hadron
beams. The situation is somewhat different for ultrarelativistic electron and positron beams.
Such beams emit synchrotron radiation. At the simplest level, synchrotron radiation is
a classical phenomenon, and was so discussed in the classic paper by Schwinger (1949).
However, synchrotron radiation does, after all, consist of photons, and at the higher orders
of QED perturbation theory, it was shown that photon emission couples to the electron (or
positron) spin. The emission of a photon can flip the particle spins, and because this flip takes
place in a background guiding magnetic field, the spins actually polarize spontaneously. This
phenomenon is called radiative polarization, also called the Sokolov–Ternov effect. Sokolov
and Ternov (1964) solved the electron motion in a homogeneous magnetic field, and showed
that the polarization builds up exponentially (starting from zero), according to

P(t) = PST(1 − e−t/τpol), (1.1)
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Figure 2. Schematic layout of VEPP-2M complex.

. .

Figure 3. An early observation of radiative polarization buildup in an e+e− storage ring
(VEPP-2M). The degree of polarization is denoted by ζ . From Serednyakov et al (1976). Copyright
(1976) by the American Institute of Physics.

to an asymptotic value of

PST = 8

5
√

3
� 92.376%, (1.2)

with a time constant τpol which we shall discuss shortly, below. The direction of the asymptotic
polarization is antiparallel to the guiding magnetic field for electrons, and parallel for positrons.
Hence, for ultrarelativistic e+e− beams, it is not always necessary to employ a polarized particle
source, etc: the beams can be polarized in situ. An early observation of radiative polarization
was at the VEPP-2M e+e− storage ring (Serednyakov et al 1976). A schematic layout of the
VEPP-2M complex is shown in figure 2. Note that the figure is a modern version of the ring;
not all of the hardware was in existence in the 1970s.

The exponential buildup of the polarization buildup at VEPP-2M is shown in figure 3.
The asymptotic polarization equals the theoretical maximum (P = 0.9±0.05 in figure 3). The
time constant τ is indicated as (68±10) min. Radiative polarization buildup is not necessarily a
fast process. Figure 4 shows the polarization buildup at VEPP-4. The asymptotic polarization
is 65%. Note that the beam was deliberately depolarized at the end of the graph and we shall
(later) discuss why one would wish to do this. Figure 5 is a graph of the record radiative
polarization level of 57% attained at LEP. We shall soon discuss why P < PST at most storage
rings.
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Figure 4. Measurement of the radiative beam polarization at the VEPP-4 storage ring. The vertical
axis denotes the polarimeter asymmetry.
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Figure 5. Record polarization of 57% attained at LEP. Courtesy of J Wenninger (private
communication) and CERN.

Radiative polarization is a slow process in most machines. The time constant for the
polarization buildup is strongly energy dependent: for a beam of energy E circulating in a
uniform magnetic field B, it is given by

τpol ∝ 1

B3E2
. (1.3)

Hence, in low-energy electron storage rings such as AmPS at NIKHEF or SHR at MIT-Bates,
for example, where the beam energy is less than 1 GeV, the radiative polarization buildup time
is hundreds of hours or more. A polarized electron source is required at such rings.

One of the most beautiful graphs of the measurement of the polarization in a storage
ring, is the SPEAR polarization data (Johnson et al 1983). The measurements are shown
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Figure 6. Measurement of the positron beam polarization in the SPEAR storage ring. The value
of the parameter Pmax is 92.4%. The orbital tunes (to be defined later in the text) are denoted by
νx,y,s , and the spin tune (also to be defined later) is denoted by ν. Reprinted from Johnson et al
(1983). Copyright (1983) with permission from Elsevier.

in figure 6. The positron beam polarization was measured parasitically over several shifts
during accelerator studies in single-beam (non-colliding) mode. The curve through the data
is a guide to the eye, not a theoretical calculation. The most striking feature of the SPEAR
polarization data is the appearance of several depolarizing spin resonances, labelled in figure 6.
We shall explain the notation νx,y,s , etc, later. The essential point here is that, there is more to
the polarization than just a simple exponential buildup to some asymptotic value. There can
be numerous depolarizing effects in a storage ring.

The SPEAR polarization data were fitted by four sets of authors, all using different
theoretical formalisms. We shall review the theoretical explanation of the SPEAR polarization
data in section 29. One fit to the data was by Mane (1988a) and is shown in figure 7. Evidently
there is a rich spectroscopy of spin resonances in storage rings.

Equally beautiful observations of spin resonances have been obtained at proton storage
rings. An example of synchrotron sideband resonances in proton storage rings is shown
in figure 8, displaying polarized beam data taken by the Alan Krisch group at the IUCF Cooler
Ring (see van Guilder (1993), Lee and Berglund (1996), Chu et al (1998)). Both the vertical
and radial polarization are shown; the IUCF polarimeter could measure both the vertical and
radial asymmetries. The figure shows a parent resonance and synchrotron sidebands. Note
that P0 is just an arbitrary normalization constant, hence the fact that Pv/P0 > 1 at some points
in figure 8 is not an error. A polarized particle source is required at proton rings; proton beams
emit no significant synchrotron radiation, and therefore do not polarize spontaneously.

Obviously then, spin-polarized beams in all types of accelerators are subject to
depolarizing resonances. A major theoretical problem of spin dynamics in accelerators is to
calculate the strengths of these depolarizing resonances, and to devise ways to avoid, overcome
or eliminate them, or, alternatively, to use them—more accurately, to use the spectroscopy
provided by the resonances for useful physics.
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Figure 8. Parent and synchrotron sideband resonances at the IUCF Cooler. Both the vertical and
radial polarization are shown. The curve is a theoretical fit. Reprinted with permission from Lee
and Berglund (1996). Copyright (1996) by the American Physical Society.

We classify the types of rings we shall review in the text:

• Nonradiatively polarized beams in storage rings, e.g. RHIC, IUCF Cooler, AmPS and
SHR. The above rings are, in fact, the only storage rings to be equipped with Siberian
Snakes to date. We mean here, full-strength Snakes, to avoid murky historical priority
claims. RHIC and the Cooler store(d) polarized protons and AmPS and SHR store(d)
polarized electrons. Schematic layouts of the IUCF Cooler, AmPS and SHR are shown
in figures 9, 10 and 11, respectively.

• Synchrotrons, e.g. the AGS and KEK-PS for polarized protons, and ELSA for polarized
electrons, and others to be mentioned later. The KEK-PS was historically the first
cascaded accelerator chain where polarized protons were transferred from one synchrotron
(Booster) to another (Main Ring). The acceleration of nonradiatively polarized beams
will be reviewed in section 25. Schematic layouts of the KEK-PS and ELSA facilities
are shown in figures 12 and 13, respectively. A graph of the polarization level attained
at ELSA as a function of the extracted beam energy is shown in figure 14, indicating
the progress from about 1997. The various major depolarizing resonances encountered
during the acceleration of the beam are marked in the figure. Recall from figure 6, that the
locations of the spin resonances depend on the beam energy. For nonradiatively polarized
beams, several depolarizing spin resonances are encountered during acceleration to the top
energy.
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Figure 9. Schematic of the IUCF CIS/Cooler layout. Courtesy of Friesel (private communication)
and IUCF.
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Figure 10. Schematic layout of AmPS.

• Electron (and e+e−) rings with radiatively polarized beams. This includes the proton–
lepton (p/e±) collider HERA. VEPP-2M is the lowest energy e+e− storage ring we shall
treat below. At the other extreme is LEP (at CERN), the largest accelerator ever built
(27 km circumference), and also the highest energy e+e− collider. A schematic of LEP is
shown in figure 15. Section 31 is entirely devoted to LEP.

• A somewhat fringe topic is the work with radiatively polarized beams at synchrotron light
sources. A principal goal in such rings is to maintain a very stable beam energy; for this,
an accurate relative calibration of the beam energy is required. The work at synchrotron



Spin-polarized charged particle beams 2015

Figure 11. Schematic layout of the SHR at MIT-Bates. Courtesy of MIT-Bates Linear Accelerator
Center.

light sources is reviewed in section 30. Schematic layouts of two light sources, namely, the
ALS and the SLS, are shown in figures 16 and 17, respectively.

• Muon storage rings: these are also lepton rings, but do not emit any appreciable synchrotron
radiation. Muons however, are polarized at birth via the parity-violating decay of the
pion. A schematic layout of a 50 × 50 GeV muon collider is shown in figure 18. This is
a proposed machine, a collider of the future. We shall also review the recently completed
E821 experiment at BNL to measure the anomalous magnetic moment of the muon, and
a new proposal to measure the electric dipole moment of the muon. Spin does not always
mean the magnetic dipole moment.

• We also include brief sections on linear machines, namely, the SLC (linear collider), and
CEBAF (recirculating linacs). A schematic view of the ‘polarized SLC’ is shown in
figure 19. A schematic layout of CEBAF is shown in figure 20.

Historically, research using nonradiatively polarized beams typically involved accelerating
polarized beams in synchrotrons for delivery to external fixed-target experiments, whereas
research using radiatively polarized beams employed storage rings (colliders and/or internal
targets). However, the situation is now quite different. RHIC is a polarized proton
collider. In fact, of the four storage rings which have been equipped with Siberian Snakes,
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Figure 12. Schematic layout of the KEK-PS injector and Main Ring complex. Courtesy of Sato
(private communication) and KEK.
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Figure 13. Schematic layout of the ELSA facility. Courtesy of Frommberger (private
communication) and ELSA.

to date, two of them (AmPS and SHR) stored electron beams (which were nonradiatively
polarized). Hence, we made the decision to treat, as far as possible, the basic concepts of spin
dynamics in accelerators on a unified footing, without regard as to whether the results apply to
radiative or nonradiative systems. We recognize that our decision did make the paper harder
to write, and the structure of this paper is somewhat complicated. Nevertheless, we feel it is a
worthy goal to present a unified treatment of the basic concepts in the field.
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Figure 14. Polarization at ELSA as a function of extracted beam energy. From Hoffmann (2001).
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Figure 15. Schematic layout of LEP. Courtesy of Wenninger (private communication) and CERN.

The overall structure of the text is as follows. In the next section we review the
Sokolov–Ternov formula, which gives the degree of the radiative polarization in a high-
energy e+e− storage ring. We follow with ‘chapter zero’, which is explicitly intended to
be a (relatively) nontechnical summary of the principal ‘tacit assumptions’ and ‘unstated
approximations’, etc that the experts do not bother to mention. We attempt to clarify the
foundations of the subject by a greater level of detail than seen in any other review, or textbook
in the field. We follow chapter zero with a discussion of the Hamiltonian and the classical
spin model. We present next, another major formula, namely, the Froissart–Stora formula, in
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15 metres

Figure 16. Schematic layout of the ALS. Courtesy of Byrd (private communication) and ALS.

section 6. Sections 7–10 develop foundational material, e.g. the basic notation, equations
of motion and coordinate systems, also the orbital dynamics. The next section is on
muon storage rings. Section 12 on polarimetry was originally intended to be a very brief
summary of the subject, but grew to include some very important ideas and also experiments.
Sections 14–23 return to formalism and develop the theory of the fundamental notion of
the quantization axis of the spin eigenstates (‘diagonalization of the Hamiltonian’). A great
deal of formalism will be developed in these sections, including both perturbation theory
and nonperturbative formalisms, to calculate the spin motion for off-axis trajectories. Once
again, experiments will be mixed with theory. Sections 24 and 25 describe the acceleration of
nonradiatively polarized beams to high energies in synchrotrons. Section 26 is devoted to the
BNL polarized proton complex; this is where much of the theory, some of it proposed thirty
years ago, has been vindicated with spectacular success. Sections 27–31 discuss radiative
polarization, including several high-precision measurements made using polarized beams.
Some of the best experimental work with polarized beams is contained in these sections.
Sections 32 and 33 describe linear accelerators (SLAC) and recirculating linacs (CEBAF).
The appendix contains the formal canonical transformation theory to diagonalize the spin–orbit
Hamiltonian.



Spin-polarized charged particle beams 2019

Figure 17. Schematic layout of the SLS complex. Courtesy of Leemann (private communication)
and SLS.

We employ cgs units, the same as in the classic textbook by Jackson (1998). Hence
the Lorentz force is written as E + β × B, and not E + v × B, where β = v/c.
(See (5.66) below, and also (5.64) for the magnetic dipole interaction.) Here v is the particle
velocity and c the speed of light, and E and B are the electric and magnetic fields which have
the same dimensions. We do not set h̄ and c to unity.

2. Sokolov–Ternov effect

2.1. Background

In this section, we review one of the outstanding theoretical ideas in the field, namely, the
Sokolov–Ternov effect (Sokolov and Ternov 1964). It is the spontaneous buildup of radiative
polarization in high-energy e+e− storage rings, via the emission of spin-flip synchrotron
radiation. It is the basis for a great deal of excellent experimental work, including many high-
precision tests of the Standard Model. We present this work at such an early stage deliberately,
to demonstrate that it is possible to convey fundamental ideas without heavy formalism.

Radiative electron polarization is one among those phenomena that were predicted
theoretically before being observed experimentally. The basic notion, that the photon emission
couples to the particle spin operator at the higher orders of QED perturbation theory, was first
noted by Ternov et al (1962). A quantitative solution for motion in a homogeneous field, based
on calculation using the Dirac equation, was given by Sokolov and Ternov (1964). Authors
coming after Sokolov and Ternov used semiclassical QED instead of solving the Dirac equation.
However, see also a calculation by Schwinger and Tsai (1974) using a ‘modified electron
propagator’ technique. An excellent review of the electrodynamics of spin-flip synchrotron
radiation has been given by Jackson (1976).
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Figure 18. Schematic layout of a proposed muon collider. Reprinted with permission from
Alsharo’a et al (2003). Copyright (2003) by the American Physical Society. Courtesy of Raja
(private communication) and the Muon Collider Collaboration.

2.2. Early measurements of radiative polarization

The first experimental observation of Sokolov–Ternov radiative polarization was at
ACO (Orsay Storage Ring Group 1971) and VEPP-2 (Baier 1972). Later, a higher
degree of polarization was obtained at ACO (Le Duff et al 1973) and at VEPP-2M
(Serednyakov et al 1976). A large value for the polarization of the electron and positron
beams (P � 85%) was measured in the e+e− collider SPEAR1 (Camerini et al 1975), and
shortly thereafter (P � 76%), in the upgraded machine SPEAR2 (Learned et al 1975). The
measurements in the first three cases above, employed the Touschek effect (the intrabeam
scattering of electrons, i.e. Møller scattering). The later measurements in VEPP-2M and
SPEAR1 employed the azimuthal dependence of the e+e− → µ+µ− annihilation cross-
section. The polarization measurements at SPEAR2 employed the above reaction, and in
addition, measurements of the elastic scattering reaction e+e− → e+e− (Bhabha scattering).
For electron and positron beams with polarizations P1 and P2 (transverse to the beam direction),
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the differential cross-sections in the centre-of-mass frame are (Baier 1969)

dσ

d�
(e+e− → µ+µ−) = r2

0

16γ 2
βµ {2 − β2

µ sin2 θ [1 − |P1||P2| cos(2φ)]},

dσ

d�
(e+e− → e+e−) = r2

0

16γ 2

(3 + cos2 θ

1 − cos θ

)2 {
1 +

|P1||P2| sin4 θ

(3 + cos2 θ)2
cos(2φ)

}
, (2.1)

dσ

d�
(e+e− → γ γ ) = r2

0

4γ 2(1 − β2
e cos2 θ)

{1 + cos2 θ + |P1||P2| sin2 θ cos(2φ)},
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where r0 is the classical electron radius, θ is the scattering angle, φ is the azimuthal angle around
the beam axis, with φ = 0 being parallel to the direction of the polarization, i.e. vertical, and βe

and βµ are the dimensionless velocities of the electrons and muons, respectively. (We typically
expect P1 = −P2.) We also displayed the cross-section for e+e− → γ γ . See also calculations
by Ford et al (1972) for the Touschek effect and HEP interactions in e+e− storage rings. The
above measurements served to confirm the validity of the basic Sokolov–Ternov theory and
employed standard equipment such as beam loss monitors, or else the high-energy particle
detectors themselves, as polarimeters. The more usual Compton backscattering polarimeters
were later installed in many e+e− colliders (first at SPEAR by Gustavson et al (1979)).

2.3. Basic formulae

We denote the particle charge and mass by e and m, respectively. Readers should be able to
apply the formulae to electrons or positrons, as appropriate. The particle velocity, momentum
and energy are denoted by v, p and E, respectively. The dimensionless particle velocity is
β = v/c, and the Lorentz factor is γ = (1−β2)−1/2 and E = γmc2 and p = βγmc. Sokolov
and Ternov (1964) treated a model of circular motion in a homogeneous magnetic field. The
formulae for the polarization buildup and the asymptotic polarization were given in (1.1) and
(1.2), but we repeat them here for self-containedness. For initially unpolarized particles, the
polarization builds up in the vertical direction according to

P(t) = PST (1 − e−t/τpol), (2.2)

where PST is the asymptotic (equilibrium) degree of the polarization, and τpol is the polarization
buildup time. Sokolov and Ternov (1964) obtained an equilibrium degree of polarization of

PST = 8

5
√

3
� 92.376%. (2.3)

This is frequently called the ‘Sokolov–Ternov polarization’. As can be seen from the
experimental results mentioned above, the beam polarization can, and does, approach the
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theoretical limit. For the polarization buildup time they obtained

τ−1
ST = 5

√
3

8

e2h̄γ 5

m2c2ρ3
= 5

√
3

8
cλere

γ 5

ρ3
, (2.4)

where ρ is the radius of the orbit, λe = h̄/(mc) is the electron Compton wavelength and
re = e2/(mc2) is the classical electron radius. If the bending radius ρ is not a constant, e.g. if
the ring consists of a set of circular arcs joined by straight lines, then one must replace ρ3 by

1

ρ3
→
∮

1

|ρ(θ)|3
dθ

2π
= 1

2πR

∮
1

|ρ(s)|3 ds, (2.5)

where θ is the machine azimuth, and R is the average ring radius. Here s is the arc-length
around the circumference, not to be confused with the spin s. The prescription works even
if ρ is locally negative, hence the absolute value signs on |ρ(θ)|3. For the common case of
‘isomagnetic’ fields, where ρ(θ) has the same value in all the dipole bending magnets, the
above expression simplifies to ρ−3 → (ρ2R)−1. A simple practical guide for most machines
is then

τpol(s) � 3654
(R/ρ)

[B(T)]3[E(GeV)]2
. (2.6)

To a good accuracy, 3654 s is 1 h, so we can, instead, measure τpol in hours and drop the
factor of 3654 above. We have seen that the radiative polarization buildup time can range from
several minutes to several hours in modern storage rings. Note in passing, that the equilibrium
polarization level is now

Peq = 8

5
√

3

∮
(ds/|ρ(s)|3) b · e3∮

(ds/|ρ(s)|3) , (2.7)

where b is a unit vector in the direction of the local magnetic field and e3 is a vertical unit
vector. If there are reverse bends, i.e. b · e3 = −1, the equilibrium polarization will be less
than 92.4%. If all the bends have the same sign, then Peq = PST.

In fact, one must go to O(h̄2) in the radiated power spectrum, and not merely O(h̄), to
obtain a spin-flip asymmetry. Following Sokolov and Ternov (1964), we write the classical
radiation intensity as (assuming a constant radius of curvature ρ)

W cl = 2

3

e2cγ 2

ρ2
. (2.8)

We set v = c whenever possible in the radiated intensities. The classical radiated power per
unit frequency has a broad peak at the critical frequency ωcrit = 3

2 (cγ 3/ρ) (Schwinger 1949).
Dividing the critical photon energy h̄ωcrit , by the particle energy γmc2, yields the dimensionless
parameter

ξ = 3

2

h̄γ 2

mcρ
. (2.9)

In present-day storage rings ξ is a small number, of O(10−6) or less. Then, up to terms in ξ 2,
Sokolov and Ternov obtained

W↑↑
σ = W cl

{
7

8
− ξ
(25

√
3

12
− ζ
)

+ ξ 2
(335

18
+

245
√

3

48
ζ
)

+ · · ·
}
,

W↑↓
σ = W cl ξ

2

18
,

W↑↑
π = W cl

{
1

8
− ξ

5
√

3

24
+ ξ 2 25

18
+ · · ·

}
,

W↑↓
π = W cl ξ 2 23

18

{
1 + ζ

105
√

3

184

}
.

(2.10)
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The arrows show the relative direction of the spin in the initial and final spin states. The initial
spin state is specified by ζ = ±1, if the initial spin is directed along/against the field. The
ratio of the spin-flip radiated power, to classical synchrotron radiation is

Pspin-flip

Pcl
= W↑↓

σ + W↑↓
π

W cl
= 4

3
ξ 2
(

1 ± 35
√

3

64

)
. (2.11)

Substituting numbers for a machine with the approximate dimensions of HERA, say ρ =
1000 m and E = 30 GeV, yields ξ � 9×10−7, and so the ratio of spin-flip to classical radiated
power is roughly 5 × 10−12. This exemplifies the claim that spin-flip photon emissions are
rare, compared with the emission of ordinary synchrotron radiation.

Note also, that for the non-flip terms W↑↑
σ � W↑↑

π , i.e. the radiation is emitted mainly in
the horizontal plane. It is well-known that classical synchrotron radiation is strongly linearly
polarized in the plane of the particle orbit. For the spin-flip terms, the opposite is true:
W↑↓

σ 	 W↑↓
π . The spin-flip radiation is not only weaker, but also strongly polarized along the

normal to the orbit. Note also, that W↑↑
σ and W↑↑

π depend on ζ , at order ξ , but this does not
contribute to the polarization. This is discussed in the next paragraph.

We can express the radiation intensities in terms of the spectral power density P(ω).
Specifically, for the spin-flip terms, we can write, summing over the σ and π modes,

W↑↓(ζ ) =
∫ ∞

0
P↑↓(ζ, ω) dω. (2.12)

Expressions for P↑↓(ζ, ω) are given by Jackson (1976). The number of spin-flip photons
emitted per unit frequency interval per unit time is

N ↑↓(ζ, ω) = P↑↓(ζ, ω)

h̄ω
. (2.13)

The spin-flip transition probabilities per unit time, from up to down and vice-versa, are given by

p± =
∫ ∞

0
N ↑↓(ζ = ∓1, ω) dω. (2.14)

Let us also denote the ‘up’ and ‘down’ spin populations by N+ and N−. In equilibrium, one
must have N+p− = N−p+. The equilibrium degree of polarization is

Peq = N+ − N−
N+ + N−

= p+ − p−
p+ + p−

. (2.15)

Hence, only the spin-flip amplitudes determine the equilibrium polarization level. This explains
why the nonflip radiation, given by W↑↑

σ and W↑↑
π in (2.10), does not contribute to the

equilibrium degree of polarization. Hence, it is irrelevant that W↑↑
σ and W↑↑

π depend on ζ

in (2.10). We shall see later, that the situation is more subtle than this. The so-called nonflip
radiation does matter, in two distinct ways. One mechanism is obvious: the nonflip radiation
mixes up the ‘up’ and ‘down’ spin populations among themselves, i.e. it equilibrates the orbital
phase–space distribution. The other mechanism requires a much deeper analysis of the physics.
We shall not get to it until section 27.

2.4. Spin light: observation of spin-dependent synchrotron radiation

Although the spin-dependent component of the synchrotron radiation intensity is small, it
has been observed. This phenomenon is called ‘spin light’. Experiments at the VEPP-4
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Figure 21. Measurement of the synchrotron radiation intensity as a function of the degree of the
polarization of the beam. At the points ‘a’ and ‘b’, one of the bunches was quickly depolarized.
Reprinted from Belomesthnykh et al (1984). Copyright (1984) with permission from Elsevier.

storage ring recorded the variation in the synchrotron radiation intensity with the polarization
level (Belomesthnykh et al 1984). The basic theory (and also a proposed measurement
technique) was described by Bondar and Saldin (1982). A more recent theoretical paper is by
Bordovitsyn et al (1995), where it is pointed out that the radiation from a relativistic neutron
would be pure spin light.

The spin-dependent term in the radiated intensity is of O(ξ), multiplied by the polarization
level. Note that the polarization buildup itself is proportional to the O(ξ 2) terms, but the
asymmetry in the radiated power can be observed in the O(ξ) term. The information below
is taken from Belomesthnykh et al (1984). Since ξ 	 1, a direct observation of the spin-
dependent radiated power is difficult. In the VEPP-4 experiment, two bunches of electrons (or
two positron bunches), of equal beam current, were circulated in the ring. The bunches were
injected and the beam currents equalized to one part in 103 by scraping the bunch with a higher
current. The bunches were then allowed to polarize. One bunch was selectively depolarized
and the difference in the radiated power output recorded. To increase the spin-flip power
output, a three-pole asymmetric wiggler was inserted in the ring. The wiggler had a strong
central field (short bend radius). By the 1/ρ3 dependence of the spin-flip component of the
synchrotron radiation, the spin-flip radiation from the wiggler dominated that of the rest of the
machine. The photon counts from passage through the wiggler were recorded in the detectors.
The measured quantity was (1 − Ṅ1/Ṅ2) where Ṅ1 and Ṅ2 were the counting rates of the
detector coinciding with the passage of the first (second) bunch through the wiggler central
field. After the beams had been polarized to close to the asymptotic level, one of them was
fully depolarized using a TEM wave created by a pair of vertically separated conducting plates
connected to an rf generator. The value of (1 − Ṅ1/Ṅ2) dropped in a jump-like manner when
the depolarizer was activated. After the depolarizer was switched off, the value of (1−Ṅ1/Ṅ2)

increased exponentially as the depolarized beam regained its polarization. The result is shown
in figure 21. The measurement time at each point was 60 s. The Sokolov–Ternov polarization
time was 1740 ± 20 s. The asymptotic polarization level was 0.726. Additional details, and
descriptions of other measurements, are given by Belomesthnykh et al (1984). For example,
the depolarizer was kept on for 1000 s, before allowing the bunch to repolarize. The direction
of the wiggler field was also reversed, and it was verified that the sign of the asymmetry
reversed, in concert with the direction of the wiggler central field.
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3. Chapter zero

3.1. General remarks

Often, the most important part of a scientific paper is the material not stated. ‘Page zero’
of the paper contains the fundamental mindset of the author; the unstated assumptions and
approximations, etc which determine the whole outlook of the paper. For example, what does
the author consider to be a ‘high’ energy, or a ‘short’ timescale? Unless one understands these
hidden assumptions, it is often difficult to understand properly the contents of the paper. Hence
this section is titled chapter zero. Here, we shall explicitly discuss basic material (possibly
very basic), to elucidate the foundations on which the subject of spin dynamics and polariza-
tion in accelerators rests. There are indeed many unstated assumptions in the literature, and
their origins (or justifications) are frequently forgotten, because they have become ingrained
by now.

First, a typical particle energy for us will be roughly hundreds of MeV or 1 GeV up to
tens or hundreds of GeV. For electrons, this is ultrarelativistic, while for protons, it spans
the moderately relativistic (1 GeV) to ultrarelativistic (few hundred GeV) range. A typical
accelerator has a circumference of tens to thousands of metres. The timescale for storage
of a particle beam will be seconds to several hours. There are many other length-scales
and time-scales, e.g. the timescale of the emission of a photon of synchrotron radiation,
or the height and width of a particle beam. We shall work through the various scales
below.

3.2. Basic model of orbital motion

Modern beam transport systems, i.e. accelerators, are designed to channel a set of particles—
a ‘bunch’ or a beam—along some reference trajectory, or design orbit. In a circular accelerator,
i.e. a synchrotron or a storage ring, the design orbit closes on itself: it is a loop. The design orbit
usually lies in a plane which we shall call the ‘horizontal’ plane. (In LEP the normal to the plane
of the machine was tilted by 0.8˚ to the vertical.) Dipole bending magnets (vertical magnetic
fields) are used to bend the particles in the circular portions of the reference orbit. In a real
accelerator, due to unavoidable tolerances of manufacture and alignment, etc, the actual closed
orbit is still a loop but perturbed slightly from the design orbit. The individual particles do not
all follow the closed orbit, of course. There is necessarily a spread of the particle coordinates
and momenta around the reference value. The transverse oscillations of the particles around the
closed orbit are called ‘betatron oscillations’. There are both horizontal and vertical betatron
oscillations. The betatron oscillations are focused using quadrupole magnets. A symbolic
sketch of the design orbit, imperfect closed orbit and a horizontal betatron oscillation is shown
in figure 22.

In addition to the transverse oscillations, the particles in a beam also execute longitudinal
oscillations. Such oscillations are called ‘synchrotron oscillations’. Two particles of different
energy will circulate around the circumference at different frequencies, and therefore, will
separate longitudinally. Hence, the synchrotron oscillations are (�t, �E) or (time-of-arrival,
energy offset) oscillations, where the � signifies an offset relative to the reference particle.
Longitudinal electric fields in so-called rf (radio-frequency) cavities—essentially waveguides
operating in a TM mode—are used to supply a differential push to the particles based on their
time of arrival at the cavities. The rf cavities are also used to replenish the energy loss due to
synchrotron radiation (for e+e− rings), and also, to ramp the beam energy from injection to the
top energy.
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design orbit

closed orbit (imperfect)

betatron oscillation

Figure 22. Sketch of the design orbit, imperfect closed orbit and a horizontal betatron oscillation
in a synchrotron. The amplitudes of the imperfections and oscillations are highly exaggerated.

3.3. Stern–Gerlach force

The first tacit assumption to be explicitly pointed out is that, the particle spins play no role in
the design of the orbital oscillation guiding and focusing system. Many years of experience
with subatomic beams in particle accelerators, electron microscopes, etc, demonstrate that the
optical transport and focusing of charged particle beams is wholly determined by the Lorentz
force. The force due to the spin, via the Stern–Gerlach effect (Gerlach and Stern 1922) is neg-
ligible. Beams in accelerators do not separate into spin ‘up’ and ‘down’ beamlets. For charged
particles, the Stern–Gerlach force is dominated by the Lorentz force, even for nonrelativistic
systems. See, e.g., the text by Kessler (1985) for a discussion of this point. For relativistic sys-
tems, the magnitude of the Stern–Gerlach force drops off very rapidly with increasing Lorentz
factor γ , and the Lorentz force dominates it completely, for all practical purposes in modern
accelerators. We can, therefore, validly speak of the ‘orbital motion’ without reference to the
spin, as anyone who has worked with charged particle optical systems knows. We shall neglect
the Stern–Gerlach force in this paper, unless specifically noted otherwise.

3.4. Spin precessions

Although the orbital motion does not depend on the spin, the spin motion depends crucially
on the orbital motion. For example, if two particles enter the same quadrupole magnet but
with different orbital coordinates, they will encounter different magnetic fields as they traverse
the magnet. Hence, their spins will precess around different axes, and rotate through different
angles. What this means is that, the description of the spin dynamics sits on top of a description
of the orbital motion. There is also another very important consequence. Most reviews of the
orbital motion treat the reference trajectory as a given quantity, usually denoted by ‘z = 0’
or some such. It is simply a ‘fixed point’ of map methods. The interesting physics lies in the
analysis of the off-axis trajectories, e.g. the focusing of the orbits and the correction of the
aberrations, etc. However, in the case of the spin, there is considerable interesting physics to
be had just by examining the spin precessions on the reference orbital trajectory itself. Hence,
a good deal of this paper will treat just the spin precessions on the reference orbit.
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3.5. Statistical mechanical facts

We begin with some simple, but fundamental, consequences of statistical mechanics.
To illustrate the concepts, we perform some gedanken experiments. As our candidate
accelerator, we select Enrico Fermi’s hypothetical accelerator which circumnavigates the
equator of the Earth.

The simplest typical model of a storage ring is a uniform vertical magnetic field. The
particles circulate in horizontal circles, and the particle spins precess around the vertical
axis, i.e. the direction of the magnetic field. The spin states are quantized along/against the
direction of the local magnetic field. If the particles emit synchrotron radiation and polarize
spontaneously, the equilibrium polarization points vertically, of course. Let us examine the
matter step by step, and challenge the ‘of course’.

Let us suppose our gedanken accelerator to have a uniform vertical magnetic field all
around the circumference, plus a small solenoid localized at one point in the ring. The
magnetic field integral

∫
Bsol · d� of the solenoid is just sufficient to rotate a particle spin

by 180˚ around the longitudinal (solenoidal) axis. The solenoid has no effect on the orbital
motion because v × Bsol = 0, to the leading approximation, anyway. The vertical magnetic
field is (by hypothesis), not strong enough to induce significant synchrotron radiation. Suppose
that a particle (say a proton) with spin vertically up, is injected into the ring. Because of the
solenoid, the spin direction will reverse on every pass around the ring. The direction of the
long-term equilibrium polarization in this ring is therefore not vertical.

Note that it does not matter how big the ring is—the one little solenoid affects the
polarization vector around the entire circumference. This gedanken experiment is sufficient to
dispel the notion that the direction of the polarization (or of the spin eigenstates) is determined
by the direction of the local magnetic field. The direction of the polarization is determined by
the structure of the entire accelerator. (Actually, it is more subtle than this. See below.) If the
polarization is vertical in the arcs of a storage ring, it is so by design.

Now, suppose that the accelerator magnetic field is strong enough to induce significant
synchrotron radiation, and the particle spins polarize spontaneously. We may as well say the
particles are electrons or positrons. Two important questions must be dealt with:

• how does one calculate the synchrotron radiation emitted in one magnet?
• how does one calculate the equilibrium polarization, and also the equilibrium beam

emittances?

It is crucial to realize these are two different issues, and the answers are not the same. To
calculate the synchrotron radiation emitted in a magnet, i.e. the photon emission matrix
elements, it is sufficient to know that an electron moves locally in a circular arc in a locally
uniform magnetic field. All that matters is the electron motion in the one magnet. Actually,
we need to take a convolution of the photon spectrum from one electron with the equilibrium
distribution of electrons in the beam, to get the overall photon angular distribution, etc. This
leads to the second question—what is the equilibrium electron distribution? That question
cannot be answered by examining the electron motion in only one magnet (a locally circular
arc, etc). We need to do the following:

• we express the electron motion around the reference trajectory as a sum of betatron and
synchrotron oscillations;

• we then say that the recoils from the emission of distinct photons induce ‘jumps’ in the
orbital oscillations;

• we average over the effects of the recoils, etc, to arrive at the equilibrium electron beam
distribution.
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Now the structure of the orbital oscillations (and also the spin trajectories) can only be
determined by knowing the full structure of the accelerator. A ‘bump’ in one part of the
ring will affect the motion (and the spin precession—recall the solenoid) everywhere around
the ring.

In other words, to determine a photon emission matrix element, it is sufficient to know an
electron’s motion only in the magnet where the photon is emitted, but to know the effect of that
recoil on the motion of the electron, we need to know the structure of the whole accelerator.
In terms of our gedanken accelerator, the synchrotron radiation spectrum is affected not a whit
by the presence of the solenoid, but the effect of that radiation on the equilibrium polarization
depends critically on the little solenoid. Indeed, the equilibrium polarization will be zero
because of the reversal of the spin directions by the solenoid.

Once again, this sounds obvious enough, but, really, why is it so? Suppose that a
mechanism could be found such that an electron beam could achieve equilibrium in just a
single pass through a magnet. In such a situation, the equilibrium beam distribution could be
calculated by only examining the motion of the electrons locally in that magnet. The rest of
the accelerator would not matter. The spin eigenstates would be quantized along and against
the direction of the local magnetic field. Our little solenoid in our gedanken accelerator would
not then matter.

This finally gets to the heart of the matter—the timescales of the processes involved.
A single photon emission takes place very rapidly—the standard approximation is to treat the
process as a ‘point’ photon emission. Only the local electron motion matters. The time to
equilibrate the electron beam (say τorbit and τpol for the orbit and spins, respectively) is much
longer than a pass through one magnet. In fact, it is much longer than the revolution time
around the circumference of the ring (say τrev). It is for this reason that we need to know
the structure of the entire accelerator, in order to determine the betatron oscillations and spin
trajectories, etc. This is also the reason why the magnitude of the polarization is uniform
around the ring.

It is, of course, true that one can construct combinations of magnets to rotate the direction
of the polarization locally, say, at the interaction point, from the vertical to the longitudinal
and back again. Such devices are called spin rotators, and have been successfully operated in
various machines, e.g. RHIC. However, one cannot construct (a combination of ) magnets to
locally enhance the magnitude of the polarization.

At the root of all this, we must realize that we are dealing not merely with single-particle
dynamics, but with statistical mechanics as well. This fact cannot be overemphasized. The
statistical mechanics determines how we formulate the single-particle dynamics. As noted
above, if we could introduce some new type of interaction which could equilibrate the orbital
and spin motion in a single pass through a magnet, the characterization of the Hamiltonian and
the eigenstates would change radically.

Another simple but profound fact is that the equilibration time of the orbital motion
(the so-called beam emittance) is much smaller than the equilibration time of the spins (the
polarization): τorbit 	 τpol. Hence, the orbital coordinates and momenta can be assumed to be
already in equilibrium when calculating the polarization. An electron (or positron) traverses
the orbital phase-space many times between successive spin-flip photon emissions. Hence the
polarization is uniform across the orbital phase-space. One does not have higher polarization
in the core of the beam and less in the tails. Note, however, that this may not be true for
nonradiatively polarized beams. For nonradiative systems such as proton beams, the orbital
motion is not ergodic. The spins at the core of the beam do not mix with those in the tails. For
muon beams, the muon polarization is correlated with the particle momentum. A ‘luminosity
weighted’ polarization was also required to analyse the polarized electron beam at the SLC.
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3.6. Point photon emission

We treat only incoherent synchrotron radiation in this paper. The emission of distinct photons
is assumed to be uncorrelated, and the motion of the individual particles (electrons or positrons)
is independent. Synchrotron radiation is highly peaked in the forward direction. A photon is
emitted within an angle of order 1/γ , relative to the particle velocity (or momentum) vector.
It is (almost) universal, when calculating the effects of photon emissions on the particle orbits,
to assume ‘point’ photon emission. Point photon emission implies two things:

• we consider the photon emission to be instantaneous;
• the photon direction is parallel to the particle momentum vector at the instant of emission.

The above assumptions have significant consequences. The orbital coordinates are thus
continuous at the instant of emission. Next, point photon emission implies the electron recoil
is parallel to its momentum. Hence the particle momentum is not continuous (because of the
energy lost to the photon), but, denoting the horizontal, vertical and longitudinal components
of the momentum vector by (px, py, pz), the ratios px/pz and py/pz remain unchanged across
the emission process. Denoting the horizontal and vertical slopes of the trajectory by x ′ and y ′,
respectively, we model a photon emission (for ultrarelativistic motion) by keeping the values
of x ′ and y ′ fixed and decrementing pz → pz(1 − h̄ω/E), where the photon energy is h̄ω, and
the particle energy is E. This is a very good approximation in practice.

We do not treat any other stochastic interaction in detail in this paper, e.g. beam–gas
scattering (collisions with residual molecules or ions in the beam vacuum chamber), although
such effects are potentially important in some machines. We do not treat collective effects
on the beam motion (collective instabilities, etc), even though such effects are important in
high-intensity beams.

3.7. An individual (un)polarized particle

It is possible for an individual particle to be unpolarized. The fact that a particle has a definite
value of its total spin, does not mean it has a polarization of 100%. The spin state could vary
randomly as a result of stochastic interactions, hence the polarization might be zero. In the case
of an individual particle, the polarization is defined as a time average over many observations
of its spin.

3.8. Classical versus quantum spin

Most calculations in the accelerator physics literature on polarized beams treat the spin using
a classical model of a three-component unit vector. We have already done so above. Let us
examine the matter. First, note that the particle coordinates and momenta are always treated
classically, without comment, using the Lorentz force to determine the particle motion in the
prescribed accelerator electric and magnetic fields. But we do need to comment, because we
treat the spin, and the value of h̄ is therefore significant. At the energies of typical modern-day
accelerators, the de Broglie wavelength of the particles is much smaller than the dimensions
of the magnet apertures. It is an excellent approximation to treat the orbital motion classically.
This is analogous to the case of geometric optics, where the wavelength should be much less
than the dimensions of the apertures. Furthermore, the de Broglie wavelength of the particles
is much smaller than the root mean square (rms) beam size. More accurately, the phase-space
area occupied by an individual particle is much smaller than the beam emittance. Under this
circumstance, there is negligible overlap between the particle wavefunctions, and so one can
treat the particles as distinct. There is no need for Fermi–Dirac statistics (or Bose–Einstein, for
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deuterons). The beam is ‘dilute’ as opposed to ‘degenerate’. Note also, that the interaction of
a particle with the accelerator electric and magnetic fields, even in the highest-energy present-
day accelerators, does not result in pair production. There is no need for the Dirac equation.
This is so even for photon emission at present-day accelerator energies, because the emitted
photon energy is much less than the particle energy.

The above statements are not true if an individual interaction changes the orbital motion
drastically. For example, the orbital motion cannot be treated classically to analyse e+e−

annihilation. Hence, one employs both a classical and a quantum description of the particle
motion in different parts of an accelerator, depending on circumstances.

Consider a simple model of a uniform vertical magnetic field and solve the Schrödinger
equation (or the Dirac equation for relativistic particles). The orbital eigenstates are known
as Landau levels. The nth level has a radius rn ∝ √

n, with the ground state having a typical
radius of r1 = O(1) Å. For a highly excited state with n � 1020, the orbit will have a radius of
approximately 1 m. In this circumstance, the orbital states form a continuum to a very good
approximation. One can construct localized wavepackets, which can be treated as classical
‘point’ particles. They have a well-defined energy and angular momentum to a sufficiently
good approximation, without violating the Heisenberg Uncertainty Principle. Experience
shows that the use of the semiclassical approximation to treat the orbital motion is excellent.

For the spin, there is no semiclassical limit when the orbital quantum number is large.
Even at the highest energies, an electron, or a proton, etc, remains a spin 1

2 particle. There
is no continuum of spin states. The justification for the classical spin model therefore takes
a different route and will be discussed in detail in section 5. We begin with protons, or
other particles for which synchrotron radiation is negligible. The only significant interaction
the spins encounter is that with the prescribed accelerator electric or magnetic fields. The
evolution of a quantum spin state is a precession, which is continuous in time. Under these
circumstances, a classical model of the spin will suffice.

However, if the spin state changes discontinuously from an ‘up’ to a ‘down’ state, as it
can when emitting a photon, then quantum mechanics must necessarily be employed. Once
again, we are led to distinguish between the local interaction of a spin with a photon in a
single magnet, and the influence of that interaction on the motion of that spin in the rest of the
accelerator. For ultrarelativistic electrons and positrons, a classical spin model is adequate to
describe the spin motion for almost everything except the photon emissions. Spin-flip photon
emissions are rare, but when they do occur, cause the spin orientation to abruptly change from
‘up’ to ‘down’. The spin then continues along the new semiclassical orbit.

Another situation is when the particles collide with some target/obstacle in the accelerator,
e.g. molecules of residual gas in the vacuum chamber, or an internal gas jet target, etc. This
also includes intrabeam scattering, i.e. collisions of the particles in a beam with each other.
A quantum treatment of the spin is also required in any polarimetry measurement.

Nevertheless, the quantum nature of the spin does constrain the usage of the classical
spin model. For spin 1

2 particles, we cannot use the classical spin model to calculate
anything other than a vector polarization. Suppose we have a set of classical spins all aligned
vertically, with 75% up and 25% down. Now consider ‘another’ distribution of classical spin
vectors, distributed uniformly around an upright cone with an opening angle of 60˚. Quantum
mechanically, the polarization vector is vertical and the degree of the polarization is 50% in
both cases:

Pa = 0.75 − 0.25

0.75 + 0.25
= 0.5, Pb = cos 60˚ = 0.5. (3.1)

There is no additional information about the polarization, for spin 1
2 particles. From a classical

spin perspective, therefore, we must treat the above two systems as equivalent.
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Having agreed upon the use of a classical spin model, note that many authors do not
use a three-component classical unit vector s to describe the spin, but instead, prefer to use a
spinor �. The relation between s and � is s = �† σ �, also written in bracket notation as
s = 〈�|σ|�〉. Certainly, � exhibits all the ‘double-valuedness’, etc, of a quantum spinor, and
we shall see below, that the equation of motion for � bears a great formal resemblance to the
Schrödinger equation. However, � is a classical variable, defined within the framework of the
classical spin model.

3.9. Spin-flip

We use the term ‘spin-flip’ above to denote the abrupt (discontinuous) change in the spin
state which can occur when a particle emits a photon. There is no deterministic time evolution
linking the spin states before and after a spin-flip photon emission. If one runs time backwards,
the spin does not return from the ‘down’ to the ‘up’ state.

There is, however, another widely employed usage for the term ‘spin-flip’. This alternative
usage is generally employed when discussing nonradiative polarization. It simply means a
reversal of the spin direction, i.e. a 180˚ spin rotation, but not a discontinuous change of the
spin state. In this case, there is a deterministic time evolution linking the final spin state to
the initial spin state, although it may be complicated to calculate. If one runs time backwards,
the spin does return to its original state. Indeed, the classical spin model is used to describe the
spin motion throughout such a spin-flip process. We shall see the usage of the term ‘spin-flip’
when we discuss the Froissart–Stora formula (Froissart and Stora 1960) in section 6.

In fact, there are devices called ‘spin-flippers’ which have been successfully operated in
storage rings. They consist of radio-frequency magnetic fields, which rotate the spins through
180˚. Note, therefore, that the spins are not rotated through 180˚ in a single pass, but a
little at a time, over many passes around the accelerator circumference, although the overall
rotation is still fairly rapid. Note also that all of the spins in the beam are rotated. (This is
in contrast to radiative spin-flip, where only one spin in the beam changes its state, and the
spin-flips of different particles are incoherent.) It is more accurate to say that the polarization
rotates through 180˚, which is, in fact, what happens. Spin flippers are used to rapidly reverse
the polarization of a beam of, say, polarized proton beams in situ in an accelerator. This is
an important technique to reduce any systematic errors arising from the accelerator itself, in
experiments with polarized beams.

3.10. Spin eigenstates

We have seen that, to calculate the direction of the polarization, one needs to know the structure
of the accelerator around the entire circumference. Merely knowing the orbital and spin motion
in one magnet is not enough. Related to the above, we also noted an important fact which we
shall encounter repeatedly throughout this paper: the spin precession depends on the particular
orbital trajectory of the particle. The significance for spin physics is profound: it means that
the (direction of the) spin eigenstates depends on the location of the particle in the orbital
phase-space.

In other words, ‘the’ direction of the spin eigenstates is actually a vector field of spin
quantization axes, that is conventionally denoted by n. It is one of the central ideas for
the consideration of polarized particle motion in a circular machine. The idea of a vector
field of spin quantization axes was formulated in 1972–3 by Derbenev, Kondratenko and
Skrinsky. The definitive publication is by Derbenev and Kondratenko (1973). The vector
field n is a function of the orbital coordinates and momenta, and the azimuth around the
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ring circumference. To determine the direction of the polarization vector requires a phase-
space average over a cone of unit vectors. This does not contradict the earlier statement, that
there is only one polarization vector for the entire beam, e.g. in the case of radiative electron
polarization. There is, indeed, only one polarization vector, but many spin quantization axes.

This indicates, incidentally, that the direction of the equilibrium polarization vector is not
necessarily the direction of the individual spin eigenstates. One must always bear in mind
the distinction between the polarization (a property of the beam), and the spin (a property of
an individual particle). Since the polarization vector (or density matrix) belongs collectively
to the whole beam, it is not attached to any one particle, nor to any one point in the orbital
phase-space. The direction of the (equilibrium) polarization cannot, in general, coincide with
the spin quantization axis of every individual particle.

3.11. A fallacious argument

The interested reader may wish to try their hand at discerning the weak spot in the following
fallacious argument. The answer is given in the succeeding paragraph. Consider a ring
containing only magnetic fields and no electric fields. The magnetic fields are arbitrary, subject
to the proviso that they are transverse to the design orbit and symmetric about the median plane
of the accelerator. More precisely, using (x, y) transverse coordinates, the vertical component
of the magnetic field has the property By(x, y) = By(x, −y). To satisfy Maxwell’s equations,
we then also need Bx(x, y) = −Bx(x, −y), which means that Bx = 0 when y = 0. The
above restrictions on Bx and By are quite mild. It allows all standard dipole, quadrupole,
sextupole, etc, magnets. Solenoids, however, are excluded. Such an accelerator is said to have
‘midplane symmetry’ or ‘median plane symmetry’. Most modern accelerators do, in fact,
possess midplane symmetry, at least in the ideal design on paper. Here is the fallacious claim:
‘by parity invariance under a spatial reflection in the horizontal (median) plane, the direction
of the (equilibrium) polarization is vertical, hence the spins should be quantized vertically’.

What is the weak point here? Actually, the above argument does correctly point out that
the direction of the equilibrium polarization is vertical. The mistake is to then further conclude
that this fact implies that the spins should all be quantized vertically. The correct statement
is that, the above argument proves that the set of spin quantization axes is symmetrically
distributed about the vertical axis.

As a matter of fact, the above argument also proves that the orbit of the reference particle
(the design orbit) must lie in the horizontal (median) plane. Does anyone therefore conclude
that all of the particle orbits therefore lie in the horizontal plane? The correct answer is that the
set of vertical betatron oscillations is symmetrically distributed about the median plane. For
every betatron trajectory (yβ, pyβ), there is an ‘image’ orbit (−yβ, −pyβ), which also satisfies
the equations of motion.

3.12. a or G?

Everyone agrees on the notation µ for the magnetic moment (with subscripts µp, µe, etc, for
the particle species), and on the use of g for the g-factor, and (g − 2)/2 for its anomalous part
(which is also known as the magnetic moment anomaly). This harmonious state of affairs ends
there. In the electron (lepton) literature, the standard notation is a ≡ 1

2 (g − 2). One further
writes ae, aµ for electrons and muons, etc, respectively. In the proton (hadron) literature, the
notation is G ≡ 1

2 (g − 2). When discussing work on leptons, we use a, and when discussing
hadrons we use G. We employ the notation a for (g − 2)/2 in general for formulae that are
common to both particle species.
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3.13. Orbital tunes

At the simplest level, the transverse and longitudinal oscillations (betatron and synchrotron
oscillations) are modelled as simple harmonic oscillations. The Hamiltonian is expanded up
to quadratic terms in the dynamical variables (canonical coordinates and momenta). This
approximation is known as linear orbital dynamics because the equations of motion are linear
differential equations. The main point here is that the frequencies of the betatron oscillations
are conventionally expressed as ‘tunes’. The (horizontal or vertical) betatron tune is the
betatron oscillation frequency divided by the orbital revolution frequency of the reference
particle. There is, correspondingly, a synchrotron tune, which is the frequency of a synchrotron
oscillation, divided by the orbital revolution frequency of the reference particle. We shall denote
the orbital tunes by Qx , Qy and Qs (for ‘synchrotron’).

There is, correspondingly, a spin tune, usually denoted by ν or νspin. We shall discuss it
later, after we have written down precise equations of motion, etc. The alert reader may note,
that since there is a vector field of spin quantization axes, the spin tune might also be a field,
a scalar field in this case. This is correct.

3.14. Spin resonance formula

Resonances in the orbital motion occur when the tunes are not incommensurate, i.e. when an
integer linear combination of the tunes adds up to an integer

m0 + m · Q = 0. (3.2)

Here, the mj are integers, including zero. Similarly, a spin resonance occurs whenever the
spin tune equals an integer plus an integer combination of the orbital tunes, i.e.

νspin = m0 + m · Q. (3.3)

Basically, the spin precession resonates with a linear combination of orbital oscillations.
Strictly speaking, as we shall show in the formal theory below, in the above formula, νspin

should be the off-axis spin tune on a given orbital trajectory, and the orbital tunes should also
include the dependence on the particle orbit. The coefficient of the spin tune in the resonance
formula is always unity, although the orbital tunes can appear with multiple harmonics. This
is because the Hamiltonian for the spin–orbit motion is linear in the spin s. The orbital terms
can, however, appear in the Hamiltonian with multiple powers, e.g. x2, y3 or xy, etc.

In practice, a simpler and more successful usage of (3.3), is to take νspin as just νc.o., the
spin tune on the design orbit. However, there is experimental evidence of orbital tune spread in
some spin resonances, due to a distribution of the orbital amplitudes. The orbital tune spread
increases the widths of some experimentally observed spin resonances.

3.15. Coordinate systems and conventions

Unfortunately, there is a wide variety of coordinate bases and notations in the literature. There
is no standard notation in the field. Some authors use (x, y, z) or (x, y, s), where x is radial,
y is vertical and z or s is longitudinal, and increases clockwise around the circumference.
Other authors use the basis (x, s, z), so that ‘z’ refers to the vertical (here ‘s’ increases in
the counterclockwise sense). We chose the notation (e1, e2, e3), where e1 points radially
outwards, e2 points longitudinally (counterclockwise) and e3 points vertically up. A sketch of
the coordinate basis is shown in figure 23. We use this coordinate basis partly to avoid choosing
between the above notations, and also, because we want the positive sense of rotation to be
counterclockwise. However, because of the wide scope of our review, we include formulae
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Figure 23. Sketch of the coordinate basis for a planar ring and a vertical bend.

by many authors, and it is too difficult (and prone to errors), to transcribe every formula to an
(e1, e2, e3) basis. Furthermore, to do so would break contact with the original literature. When
reproducing formulae from the literature, e.g. the ‘Chao–Yokoya spin integrals’ (see (28.25)),
we explain the basis used (which is (x, y, z) in the case of (28.25)). The reader is strongly
advised to always consult the original literature to obtain the definitive formulae, and to verify
the notations and coordinate conventions used. In general, we use the notation ‘x’ for the
radial motion, ‘y’ for the vertical motion and either ‘z’ or ‘s’ for the longitudinal motion.

Note that we denoted the tunes by Qx,y,s . Many authors denote the orbital tunes by the
notation νx,y,z or νx,z,s (see figure 6) or Qx,y,z, etc. All authors, fortunately, denote the spin tune
simply by ν, without a subscript, although we shall sometimes write νspin to avoid ambiguity.

In addition to the orbital rotations, it is even more important for this review that the positive
sense of a spin rotation be counterclockwise. The Pauli matrix e−iψσ·e/2 denotes a right-handed
(counterclockwise) rotation through an angle ψ around the unit vector (spin rotation axis) e.
Successive rotations are carried out by multiplying from the left:

|� ′〉 = · · · e−iψ ′′σ·e′′/2e−iψ ′σ·e′/2e−iψσ·e/2|�〉. (3.4)

To take a concrete example, let the spinor |�〉 be defined such that

〈�|σ|�〉 = e1, (3.5)

then the spinor

|�〉 = e−iψσ3/2|�〉 (3.6)

(we have chosen e = e3) yields the vector

〈�|σ|�〉 = e1 cos ψ + e2 sin ψ. (3.7)

We shall make heavy use of Pauli matrix algebra in this paper.

3.16. Electrons and protons: E versus p

As is evident by now, much of the dichotomy in the spin physics literature is between ‘electron’
polarization and ‘proton’ polarization, but it is really more accurate to say that the distinction
lies between ultrarelativistic, radiative polarization and nonradiative polarization. There are
machines, such as the muon storage ring at BNL, to measure the anomalous magnetic moment
of the muon, which are leptonic but nonradiative systems.

However, in this section we shall consider another distinction, namely, ultrarelativistic
versus non-ultrarelativistic systems. We pointed out above that the longitudinal orbital
oscillations are energy oscillations. It is more usual to employ the relative energy offset�E/E0,
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where E0 is the energy of the reference particle, than to use the energy offset �E itself.
However, in proton (or hadron) accelerators, it is more common to use the longitudinal
momentum offset �p/p0, where p0 is the longitudinal momentum of the reference particle.
The relation between the two variables is

�E

E0
= β2 �p

p0
, (3.8)

where β = v/c is the dimensionless longitudinal speed of the particle. For ultrarelativistic
particles, β � 1, and the distinction is not important. However, in many proton accelerators,
the value of β is significantly less than unity, and the distinction does matter.

The distincton between �E/E0 and �p/p0 is important because of concepts such as
the chromaticity. It is conventional in the literature on hadron accelerators, to define the
chromaticities via

Qx = Qx0 + ξx

�p

p0
, Qy = Qy0 + ξy

�p

p0
. (3.9)

The corresponding formulae for electrons usually employ �E/E0, which is the limiting case
for β → 1. We shall employ the definition (3.9) in this paper. Note that there is also another
definition of chromaticity in the literature, which is basically, ξj /Qj (j = x, y). We shall not
employ this alternative definition.

3.17. Emittances

Up to now the discussion of the orbital motion has been for individual orbits. We now
briefly discuss the statistical distribution of the particles. For simplicity, consider linear orbital
dynamics. The particles in the beam have a statistical distribution of oscillation amplitudes
and phases. The average value of the phase-space area occupied by the beam is (π times) the
horizontal or vertical beam ‘emittance’. We generally assume a uniform distribution over the
orbital phases. The above emittances pertain to the transverse oscillations. There is also a
longitudinal emittance.

For an ultrarelativistic electron or positron beam, radiating significant synchrotron
radiation, the orbital oscillations mix up ergodically in the orbital phase-space and the beam
settles down, in equilibrium, to a self-consistent statistical distribution of values for the orbital
amplitudes. For less relativistic electron/positron beams, or for proton beams, the statistical
distribution depends on the beam profile at injection. When a beam is first injected into an
accelerator, it may not be exactly matched to the design orbit of the machine, and there may
be transient motions of the beam centroid, i.e. coherent betatron oscillations. Our interest in
this paper is principally after such transients have died out, i.e. the steady-state or long-term
values of the beam emittances.

We remark in passing, that it is tacitly assumed that the emittance, after multiplying by
mc to fix the dimensions, is very much greater than h̄. It is also assumed that the uncertainty
in the phase-space location of an individual particle is much greater than h̄. This is necessary
to justify a classical treatment of the orbital motion.

4. Hamiltonian

4.1. QED and accelerator Hamiltonians

It is usual to simply write down an ‘accelerator Hamiltonian’, but we wish to examine in more
detail the approximations involved in deriving it. We saw above, that it is adequate to treat
the orbital and spin motions classically, except for spin-flip photon emissions. Hence, it is
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necessary to treat the spin as a quantum operator sop, if radiative photon emission is being
considered.

We treat only spin 1
2 particles below. Hence, the Hamiltonian is linear in the spin operator:

any product of spin 1
2 operators is a linear combination of the unit operator and spin 1

2 operators.
We can, therefore, write the Hamiltonian in the form

H = A (q, p, h̄) + B(q, p, h̄) · sop. (4.1)

Here q and p are the canonical coordinates and momenta, respectively. The independent
variable is time. The functions A and B contain arbitrary powers of h̄. We now treat h̄ as
an infinitesimal quantity, and retain terms only up to the first order in h̄. Then, A and B
are independent of h̄. This leads to the usual semiclassical electrodynamic expression for the
Hamiltonian

H =
[(

p − e

c
A
)2

c2 + m2c4
]1/2

+ eV + Ω · sop. (4.2)

The notation is fairly standard, e.g. A and V are the electromagnetic vector and scalar
potentials, respectively, etc. To treat radiative photon emission, we separate A, etc, into
external (accelerator) and radiation (photon) fields,

A = Aext + Arad, V = Vext + Vrad, Ω = Ωext + Ωrad. (4.3)

Treating the radiation fields as a perturbation, which is standard, we can write

H =
[(

p − e

c
Aext

)2
c2 + m2c4

]1/2
+ eVext + Ωext · s + e

(
Vrad − v

c
· Arad

)
+ Ωrad · s. (4.4)

This Hamiltonian can be used to derive spin-flip photon emission matrix elements, etc. The
recoils due to photon emissions can then be used to calculate changes to the synchrotron and
betatron oscillations and spin trajectories, etc.

To calculate the structure of those synchrotron and betatron trajectories, we solve for
the motion in the prescribed accelerator magnetic and electric fields. It is conventional to
employ the arc-length as the independent variable for this purpose. The new Hamiltonian is
the negative of the longitudinal momentum: H ′ = −plong, where

plong = e

c
Along +

[ 1

c2
(H − eV − Ω · sop)

2 − m2c2 −
(

p⊥ − e

c
A⊥
)2]1/2

. (4.5)

We again appeal to the properties of spin 1
2 operators and write this as a linear expression

in sop. We also switch the independent variable from the arc-length to the azimuth θ (which
just implies scaling H ′ by the average machine radius R, i.e. H = RH ′),

H = A ′(q, p, h̄) + B′(q, p, h̄) · s. (4.6)

To avoid too many symbols, we still denote the conjugate coordinates and momenta by q
and p, but they are different from the variables in (4.1). We again retain terms only to first
order in h̄. Then A ′ and B′ are independent of h̄. This yields the conventional ‘accelerator
physics’ form of the Hamiltonian

H = Horb(q, p) + W(q, p) · s. (4.7)

This Hamiltonian describes spin precession in prescribed external fields in the accelerator.
Hence, we can now treat s as a classical spin vector, with suitably defined Poisson brackets,
etc. We also make further approximations, e.g. to expand the orbital motion around the closed
orbit, etc, but such details do not matter here. Also, H depends explicitly on the azimuth θ .

The accelerator Hamiltonian H cannot be quantized. This is because, to quantize the
system, the commutators of a pair of canonically conjugate variables q and p, must satisfy
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the relation [q, p] = ih̄, and the eigenstates of q and p, say |q ′〉 and |p′〉, respectively,
must satisfy relations like 〈q ′|p′〉 = eiq ′p′/h̄. This requires the eigenvalues q ′ and p′ to
span the interval (−∞, ∞). However, the energy variable H is bounded from below.
All of the quantum mechanical (photon emission) calculations must therefore be performed
using the Hamiltonian H in (4.4). The results of those calculations (recoils, spin-flips, etc)
must then be applied to the orbital and spin trajectories derived from the Hamiltonian H in
(4.7). In other words, there is no single Hamiltonian which does the whole job of calculating
semiclassical QED and the accelerator physics betatron oscillations, etc. We are reminded
once again that there is a distinction between calculating an individual photon emission
matrix element (or cross-section), and the influence of that photon emission on the particle
motion.

4.2. Hamiltonian dynamics, perturbations and stochastic interactions

We shall mainly formulate the motion of the orbital and spin motion using the Hamiltonian
formalism which is an elegant method. However, it is important to realize that many of the
significant theoretical developments in the field were accomplished using other methods.

The characterization of the particle motion via action-angle variables is particularly useful
for statistical mechanics, because the actions are, by construction, dynamical invariants of
the (unperturbed) motion. The stochastic interactions perturb the values of the actions,
i.e. they induce transitions in the values of the actions. This is a particularly elegant way
to encapsulate the effects of the stochastic interactions on the orbital motion. In equilibrium,
the beam is uniformly distributed over the values of the angles. The beam phase-space density
is a function of the actions only. It is, in fact, almost indispensable to employ phase-space to
specify the distribution function of a beam of particles.

Very similar concepts also apply to the spin motion. For the spin, one must find a
quantization axis such that states quantized along that axis are ‘stationary states’ of the system.
The spin projection along the quantization axis is the spin action variable. The phase of the
spin precession around that axis is the conjugate angle variable. In terms of a classical spin
model, one must find an axis (we obviously do not call it a ‘quantization’ axis) such that the
spin projection along that axis is a dynamical invariant. In plain language, we must diagonalize
the Hamiltonian, not only for the orbit, but also for the spin!

For nonradiative systems, where there are no such stochastic interactions, the use of action-
angles (including spin action-angle variables) is still useful if the beams are circulated at a fixed
energy for a long time, i.e. in storage rings. The use of dynamical invariants is simply the best
way to characterize the long-term phase-space distribution of a beam. The use of action-angles
is less useful (useless?) for ‘rapid-cycling’ machines where a beam is ejected after only a short
stay in the accelerator.

We have already alluded to the perturbation theory above. We should be careful to
recognize that there are multiple perturbation expansions going on, however. We begin with
the orbital motion. By hypothesis, the particles execute bounded oscillations around a central
orbit (the closed orbit). We stated above that these oscillations are characterized in terms of
action-angle variables. However, despite its formal elegance, the determination of the actions
and angles is usually a formidable task. Hence the actions and angles are usually calculated
via perturbation theory, in powers of the amplitude of the orbit. (There are actually three
amplitudes: two for the transverse oscillations and one for the longitudinal oscillations.) The
‘true’ actions and angles are therefore known only approximately. On top of this, the stochastic
interactions are another perturbation. In the case of quantum electrodynamics, the perturbation
parameter is the electromagnetic fine-structure constant.
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5. Classical spin model

5.1. General remarks

The subsections below are written, more or less, independently. Hence some equations are
repeated several times, for self-containedness of the individual subsections. Furthermore, we
present derivations of some of the fundamental equations from multiple points of view, and
therefore, we deliberately rewrite the equations from scratch, to make the point that they do
not depend on earlier material.

5.2. Quantum mechanical foundations: Ehrenfest’s theorem

Ehrenfest’s theorem (Ehrenfest 1927) is a fundamental theorem of quantum mechanics, which
is directly relevant to the foundations of much of the work in this paper. Through most parts of
this paper we shall work with classical variables and we shall employ carets to denote quantum
operators below. Ehrenfest’s theorem (actually, a generalization of his original theorem) gives
the equation of motion for the expectation value 〈Â〉 = 〈ψ |Â|ψ〉 of a quantum operator Â,
for a system in a state |ψ〉. The resulting equation of motion describes the time evolution of
c-number variables, not q-number operators. The generalized form of Ehrenfest’s theorem
states that

d〈Â〉
dt

=
〈∂Â

∂t

〉
+

1

ih̄
〈[Â, Ĥ ]〉. (5.1)

Here Ĥ is the Hamiltonian operator. Ehrenfest’s theorem is valid in both, the Schrödinger
and Heisenberg pictures of quantum mechanics. We begin with the Heisenberg picture. The
Heisenberg equation of motion for Â is

dÂ

dt
= ∂Â

∂t
+

1

ih̄
[Â, Ĥ ]. (5.2)

Since the bracket states do not vary with time in the Heisenberg picture, we take the expectation
value of the above equation over the state |ψ〉, and (5.1) follows immediately.

We now employ the Schrödinger picture. To avoid proliferation of notation, we do not
use separate symbols for Schrödinger variables. The Schrödinger equation for a quantum state
|ψ(t)〉 is

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉. (5.3)

Then

d

dt
〈ψ |Â|ψ〉 =

(
∂

∂t
〈ψ |
)

Â|ψ〉 + 〈ψ |∂Â

∂t
|ψ〉 + 〈ψ |Â

(
∂

∂t
|ψ〉
)

= − 1

ih̄
(〈ψ |Ĥ †)Â|ψ〉 + 〈ψ |∂Â

∂t
|ψ〉 +

1

ih̄
〈ψ |Â (Ĥ |ψ〉)

=
〈∂Â

∂t

〉
+

1

ih̄
〈[Â, Ĥ ]〉, (5.4)

which proves the theorem. Note that it is essential to the proof that the Hamiltonian be a
Hermitian (self-adjoint) operator. In the Heisenberg picture, it is necessary for the Hamiltonian
to be Hermitian, in order to yield a self-consistent equation of motion for A†.
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5.3. Classical spin model

Let us apply Ehrenfest’s theorem to the case of the spin operator Â = ŝ. There is then no
partial derivative ∂Â/∂t term. We begin with a magnetic dipole Hamiltonian

Ĥ = −µ̂ · B̂ = Ω̂ · ŝ. (5.5)

Here B̂ is the magnetic field (in principle, also an operator) and Ω̂ is the spin precession vector
operator. We do not assume ŝ is a spin 1

2 operator. The commutator is

[ŝ, Ĥ ] = [ŝ, Ω̂ · ŝ] = ih̄ Ω̂ × ŝ. (5.6)

Substitution into (5.1) yields
d

dt
〈ŝ〉 = 〈Ω̂ × ŝ〉. (5.7)

If Ω̂ is a constant, say Ω̂ = � e where e is a fixed unit vector, we can simplify the above to
d

dt
〈ŝ〉 = �e × 〈ŝ〉. (5.8)

This is just the equation of motion for a rigid-body spin precession. The solution, starting
from t = 0, is

〈ŝ〉t = e · 〈ŝ〉0 e + sin(�t) e × 〈ŝ〉0 − cos(�t) e × (e × 〈ŝ〉0). (5.9)

This is simply a rotation through an angle �t around the axis e. Hence, the evolution of the spin
state of a quantum system can be equivalently parametrized by the precession of a classical
spin vector 〈ŝ〉. If the spin precession vector (operator) Ω̂ depends on the orbital dynamical
variables x̂ and p̂ (quantum operators), then the equation of motion (5.7) reads

d

dt
〈ŝ〉 = 〈Ω̂(x̂, p̂) × ŝ〉. (5.10)

Since Ω̂ is also a quantum operator, we cannot move it out of the expectation value so easily.
To the extent that Ω̂ does not depend on ŝ, we can write

d

dt
〈ŝ〉 = 〈Ω̂〉 × 〈ŝ〉, (5.11)

where the expectations are over the orbital and spin states, respectively. This is still an equation
of motion for a rigid-body spin rotation of a classical spin vector, under the action of a c-number
spin precession vector 〈Ω̂〉, which is an expectation over the orbital quantum state of the system.

However, (5.11) is still not useful as it stands. The expectation value 〈Ω̂〉 is not simple to
calculate, in general. We need an auxiliary condition, a very important one that will underlie all
of the work in this paper, namely, the semiclassical approximation. We shall approximate that,

〈Ω̂(x̂, p̂)〉 � Ω(〈x̂〉, 〈p̂〉). (5.12)

Here 〈x̂〉 and 〈 p̂〉 are the c-number expectation values of the position and momentum operators,
and can be visualized as specifiying a classical orbital trajectory. We can write, dropping the
carets for the classical variables,

x ≡ 〈x̂〉, p ≡ 〈 p̂〉, s ≡ 〈ŝ〉. (5.13)

For the semiclassical approximation, we write Ωsc ≡ Ω(x, p), from which it follows that
ds
dt

� Ωsc × s. (5.14)

Hence we have ‘proved’ that the evolution of the spin motion of a quantum system can
be described instead by the precession of a classical spin vector s, under the action of a
semiclassical spin precession vector Ωsc. This is true in the semiclassical approximation, even
if the spin precession vector depends on the orbital motion. Below, we shall examine the
loopholes in the above proof.
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5.4. Semiclassical approximation

Ehrenfest’s theorem is a general result of quantum mechanics, for a system in an arbitrary
quantum state |ψ〉. The semiclassical approximation is not part of Ehrenfest’s theorem.
However, we do need the semiclassical approximation to proceed further with the analysis
of spin dynamics in particle accelerators. Let us examine the validity of the semiclassical
approximation.

It helps to illustrate the basic concepts, using the more familiar examples of Ehrenfest’s
thorem, i.e. the position and momentum operators. For a Hamiltonian

Ĥ = p̂2

2m
+ V (x̂), (5.15)

Ehrenfest’s theorem states, as one can easily derive, that

d〈x̂〉
dt

= 〈 p̂〉
m

,
d〈 p̂〉

dt
= −〈∇x̂V (x̂)〉. (5.16)

These are the usual Newtonian velocity and force laws, which are frequently combined into
the second-order differential equation

m
d2〈x̂〉
dt2

= −〈∇x̂V (x̂)〉. (5.17)

Strictly speaking, Ehrenfest derived his theorem for the evolution of 〈x̂〉 and 〈 p̂〉 as in (5.16)
and/or (5.17). Its use for the expectation value of the spin operator was first remarked upon by
Bloch (1946). An excellent discussion of the classical spin model was given by Ford and Hirt
(1961), in a regrettably unpublished report. In modern usage, Ehrenfest’s theorem is easily
seen to apply to the evolution of the expectation value of any quantum operator.

Let us solve the equations of motion explicitly for the case of a one-dimensional harmonic
oscillator

Ĥ = p̂2

2m
+

1

2
mω2x̂2. (5.18)

Then,

d〈x̂〉
dt

= 〈p̂〉
m

,
d〈p̂〉

dt
= −mω2〈x̂〉, (5.19)

which leads to the familiar simple harmonic equation

d2〈x̂〉
dt2

+ ω2〈x̂〉 = 0. (5.20)

This has the solution,

〈x̂〉t = 〈x̂〉0 cos(ωt) +
〈p̂〉0

mω
sin(ωt), (5.21)

which is the familiar classical solution of a simple harmonic oscillator. So far so good. Let us
now calculate the classical expectation value of the energy. We obtain

E = 〈Ĥ 〉 = 〈p̂2〉
2m

+
1

2
mω2〈x̂2〉. (5.22)

We need the values of 〈x̂2〉 and 〈p̂2〉, but we only have solutions for 〈x̂〉 and 〈p̂〉. We invoke
the semiclassical approximation, for the first time in the analysis of the harmonic oscillator, to
write 〈x̂2〉 � 〈x̂〉2 and 〈p̂2〉 � 〈p̂〉2, to obtain the semiclassical value

Esc � 〈p̂〉2

2m
+

1

2
mω2〈x̂〉2. (5.23)
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We now select the quantum state |ψ〉 to be the nth energy eigenstate |n〉, for which we know
En = (n + 1

2 )h̄ω. For this quantum state, we also know that 〈x̂〉 = 〈p̂〉 = 0. Then Esc = 0.
The semiclassical approximation has badly gone wrong. Perhaps the reader was expecting to
see an expression for the energy but lacking the zero-point term. Instead we obtain nothing
at all.

This simple example illustrates a fundamental limitation of the semiclassical
approximation: a semiclassical description of the orbital trajectory is only valid if the spread in
the coordinates and momenta is negligible. Introduce the standard deviations σ 2

x = 〈x̂2〉−〈x̂〉2

and σ 2
p = 〈p̂2〉 − 〈p̂〉2. For a semiclassical description of the orbit to be valid, we require

σx 	 |〈x̂〉|, and also σp 	 |〈p̂〉|. The quantum uncertainty in the orbital trajectory must be
small. Usually, we tacitly assume this to be the case, because we take the orbital coordinates
and momenta to be of ‘O(1)’, while the standard deviations are relatively of O(h̄). To the
extent that σx and σp are negligible, we can then approximate, for any function f ,

〈f̂ (x, p)〉 � f (〈x̂〉, 〈 p̂〉), (5.24)

and write

fsc ≡ f (x, p) = f (〈x̂〉, 〈 p̂〉). (5.25)

This may or may not be justified, depending on circumstances. In the case of a harmonic
oscillator, we need the system to be in a superposition of states such that, averaged over time,
σx 	 |〈x̂〉| and σp 	 |〈p̂〉|. A pure energy eigenstate, no matter how highly excited, does not
meet this criterion.

On the other hand, a highly localized wavepacket, which is, of course, then not an energy
eigenstate, can fulfil the semiclassical constraints. This localized wavepacket is then a ‘point’
particle, and evolves according to a (semi)classical equation of motion. If the wavepacket
is composed of eigenstates of highly excited energy levels, the uncertainty in the energy
is negligible relative to the average energy, and we can speak of a definite (semiclassical)
energy, too.

Throughout this paper, we must interpret terms like ‘position’, ‘momentum’, ‘energy’ and
‘angular momentum’ in the semiclassical sense. In chapter zero, we discussed the model of
a quantum particle in a uniform magnetic field (Landau levels, etc). We pointed out, that for
very highly excited energy levels, we could construct a localized wavepacket and consider the
position, momentum, energy and angular momentum to have definite values, without violating
Heisenberg’s Uncertainty Principle. When such a particle circulates in the static electric and
magnetic fields of an accelerator, a semiclassical approximation of the orbit is valid. When
two such particles collide head on and annihilate each other, as in e+e− storage rings, the
semiclassical approximation is not valid at the instant of collision.

5.5. Failure of the classical spin model

As we pointed out in chapter zero, we cannot construct semiclassical wavepackets for a spin 1
2 .

There is no limiting case where the spin states form a continuum. Nevertheless, we have seen
from above, that the evolution of the spin state of a quantum system can be described by the
precession of a classical spin vector. However, this cannot always be true.

The classical spin model fails when the spin evolution is not deterministic. The most
important example for us is, when an electron emits a photon of synchrotron radiation.
Recall the full semiclassical QED Hamiltonian for motion in the prescribed external accelerator
and the photon radiation fields, in (4.4). The term prescribed ‘external’ accelerator fields
includes the radio-frequency electromagnetic fields in the accelerating (and/or longitudinally
focusing) cavities in the accelerator, whose frequency may be 500 MHz or more. A classical
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spin model will satisfactorily describe the evolution of a spin under the influence of the external
accelerator fields, but will not describe the evolution of the spin operator (or spin wavefunction)
in an interaction with the radiation electromagnetic fields.

Basically, the classical spin model will fail if an individual interaction can change the
spin state from ‘up’ to ‘down’ in an infinitesimal time interval, along some suitably defined
quantization axis. Note that this has nothing to do with the semiclassical treatment of the orbit:
Ehrenfest’s theorem fails in this case. In terms of the Schrödinger picture, the wavefunction
changes discontinuously, and in a nondeterministic manner. The emission of a photon of spin-
flip radiation can do this. The action of a time-independent (or slowly varying) accelerator
magnetic field (or even a 500 MHz radio-frequency electric field) does not.

The classical spin model also fails in polarimetry measurements. Even for a polarized
proton, where photon emission is not relevant, a classical treatment of the spin motion cannot
be used to analyse the response of a polarimeter. A hadronic polarimeter requires the proton to
interact with some target via a spin-dependent reaction. The left–right or up–down asymmetry
in the scattering cross-section is measured. The spin must be treated quantum mechanically.

Hence, the failure of the classical spin model is more tied to the failure of Ehrenfest’s
theorem, than to the breakdown of the semiclassical approximation, although they do tend to
go together.

5.6. Spinor representation

We now take the classical spin model as given. The spin equation of motion is
ds
dt

= Ω × s, (5.26)

where all the variables are classical dynamical variables, and the orbital motion is treated
semiclassically. All carets, subscripts, etc, have been dropped. The above equation of motion
can be derived from the semiclassical Hamiltonian

H = Ω · s. (5.27)

The Poisson brackets for the components of the classical spin vector are defined by analogy
with the quantum theory:

{si, sj } =
∑

k

εijk sk, (5.28)

where the braces denote a Poisson bracket, and εijk is the isotropic totally antisymmetric tensor.
The equation of motion for a classical dynamical variable, in this case s, is

ds
dt

= {s, H }. (5.29)

Use of (5.28) leads to (5.26).
It is more common in accelerator physics to take the independent variable to be the arc-

length s along the reference orbit, or the generalized azimuth θ , given by θ = 2πs/C, where
the ring circumference is C. We write the spin precession equation, using the independent
variable θ , as

ds
dθ

= W × s. (5.30)

We employ W to distinguish the spin precession vector from Ω, which has different dimensions.
It is, moreover, a common practice in the literature to represent a classical spin not by a vector s,
but via a spinor �. The relationship between s and � is

s = �†σ�, (5.31)
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where σ is a vector of Pauli matrices. Hence, there is not a one-to-one relationship between
s and �: the same vector s results if one multiplies � by an arbitrary overall phase factor. The
spinor � is complex, and hence has four independent parameters (two real and two imaginary
parts). The irrelevance of a global phase factor removes one degree of freedom, hence, � has
only three degrees of freedom. The normalization to unity, for both s and �, removes another
degree of freedom from both. The equation of motion for � is

d�

dθ
= −iH�, (5.32)

with the Hamiltonian

H = 1
2 W · σ. (5.33)

Equation (5.32) bears a formal resemblance to the Schrödinger equation, and the Hamiltonian
in (5.33) bears a striking formal resemblance to that for a spin 1

2 particle, with h̄ = 1 in both
cases. All the standard mathematical manipulations of Pauli matrix and spinor algebra will
work for �. Nevertheless, it is important to recognize that � does not necessarily describe
a spin 1

2 particle. The spinor � is defined via the classical spin s, in (5.31). The equation of
motion (5.32) does not refer to quantized operators.

5.7. Normalization

Since (5.26) is homogeneous in s, we typically normalize it to unity: s · s = 1. However, there
are hidden subtleties in doing so. Let us begin with spin 1

2 , and consider an arbitrary spin state
|ψ〉 = a| ↑〉 + b| ↓〉, where |a|2 + |b|2 = 1. Then, denoting the coordinate basis vectors by e1,
e2 and e3, respectively,

〈ψ |ŝ|ψ〉 = h̄

2
〈ψ |σ|ψ〉 = h̄

2
[(a∗b + ab∗)e1 + i(a∗b − ab∗)e2 + (aa∗ − bb∗)e3]. (5.34)

Then, for arbitrary a and b,

|〈ψ |ŝ|ψ〉|2 = h̄2

4
(aa∗ + bb∗)2 = h̄2

4
. (5.35)

Hence, if we normalize the classical spin vector via

scl = 2

h̄
〈ψ |ŝ|ψ〉, (5.36)

we obtain a unit vector: |scl|2 = 1. So far so good.
Normalization problems arise for higher spins. For spin 1, there are three spin states along

any quantization axis. Let us employ the standard choice of eigenstates of ŝ3, with eigenvalues
of 1, 0 and −1, and denote the states by |1〉, |0〉 and |−1〉, respectively. Then, for any eigenstate
|m〉 of ŝ3, we have

〈m|ŝ1|m〉 = 0, 〈m|ŝ2|m〉 = 0, 〈m|ŝ3|m〉 = mh̄. (5.37)

We now select the spin state to be |ψ〉 = |0〉. This leads to the most unfortunate conclusion

〈ψ |ŝ1|ψ〉 = 〈ψ |ŝ2|ψ〉 = 〈ψ |ŝ3|ψ〉 = 0. (5.38)

The classical spin vector vanishes completely. There is no way to normalize this vector to
unity. In more generality, if we select an arbitrary spin state |ψ〉 = a+|1〉 + a0|0〉 + a−| − 1〉
with |a+|2 + |a0|2 + |a−|2 = 1, we find that, rather than always being unity, the normalization
can take any fixed value from 0 to 1:

|〈ψ |ŝ|ψ〉|2
h̄2 ∈ [0, 1]. (5.39)
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The length of an individual classical spin vector is fixed (for fixed a+, a0 and a−), but different
classical spin vectors have different lengths, in general. Similar normalization problems arise
for spin 3

2 particles, etc.

5.8. Polarization and spin

The polarization vector is defined as the statistical average of an ensemble of classical spin
vectors

P = 〈s〉. (5.40)

Note that it is possible for an individual particle to be unpolarized: the ensemble in this case
consists of a single particle, and the polarization is defined via a time-average over many
observations of the spin

P = s̄. (5.41)

In both cases, one has |P| � 1, if the classical spin vectors are normalized to unity. If the
ergodic hypothesis is applicable, as it is in the case of radiative polarization via the emission
of photons of synchrotron radiation, then the two definitions yield the same answer.

However, we are moving too quickly. We need to analyse the classical spin model in
more detail. The classical spin vector is an expectation value of the quantum spin operator
for a particle in a state |ψ〉. Hence it cannot be determined by an individual observation
of the quantum spin operator. Because the classical spin vector is an average, all of its
three components can be specified simultaneously. (This of course cannot be done in an
individual observation of a quantum spin.) However, we usually think of the average of
several measurements (of the spin operator) as a polarization, not a spin. We need to reconcile
these statements and clarify the definition of the polarization. To do so, we need to examine
pure states and statistical mixtures.

5.9. Pure states and statistical mixtures

The information about a quantum statistical ensemble is specified by a density matrix ρ.
Strictly speaking, the concept of a density matrix applies to any quantum statistical ensemble,
not just the spin and polarization. We write

ρ =
∑

i

wi |ψi〉〈ψi |, (5.42)

where the |ψi〉 are a complete orthonormal set of states (a basis set). The weights wi are
nonnegative real numbers which sum to unity; by convention, the trace of the density matrix
is normalized to unity and evidently, 0 � wi � 1. A pure state is defined as a statistical
system which can be specified by a single wavefunction. The density matrix of a pure state
has the form

ρ = |ψ〉〈ψ |, (5.43)

i.e. one of the wi equals unity, and all the others vanish. The expectation of any operator A is
given by taking the trace of the product of A with the density matrix:

〈A〉 = Tr{ρA} =
∑

i

wi〈ψi |A|ψi〉. (5.44)

In particular, for the spin operator, the polarization vector is given by

P = Tr{ρ ŝ} =
∑

i

wi〈ψi |ŝ|ψi〉. (5.45)
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It is immediately obvious that the polarization vector is therefore a weighted sum of classical
spin vectors

P =
∑

i

wisi (5.46)

and this is what we mean by the statement P = 〈s〉 in (5.40). It is also clear that the classical
spin vector s is, by construction, the expectation of the spin operator for a system in a pure state.
We have seen previously in (5.11), that a classical spin precesses without change of magnitude.
However, 〈Ω〉i need not be the same for all the classical spins si , and the magnitude of the
polarization vector may not, therefore, be preserved with time.

Ehrenfest’s theorem applies only to systems in pure states. The expectation value in the
theorem explicitly assumes the existence of a wavefunction, not a statistical mixture.

If the spins are unpolarized, then all the weights wi are equal, say, to w. Then

ρ = w
∑

i

|ψi〉〈ψi |. (5.47)

Since, by definition, the states |ψi〉 are a complete orthonormal set (a basis), we invoke the
completeness theorem∑

i

|ψi〉〈ψi | = I, (5.48)

where I is the identity operator, to deduce ρ = w I, i.e. the density matrix of an unpolarized
system is simply a unit matrix, normalized to a unit trace. For particles of spin s, there are
2s + 1 states, hence

ρ = I

2s + 1
. (5.49)

For a system of spin 1
2 particles, the density matrix is a 2 × 2 Hermitian matrix, and is

related to the polarization vector P via

ρ = 1
2 (1 + P · σ). (5.50)

However, there are subtleties to this. Since we deal with particle beams, the particles are not
all located at the same space–time point. The states |ψi〉 in the density matrix ρ are not only
spin states, but carry an orbital dependence also. It is more accurate to write (for spin 1

2 , and
setting z = (x, p) for brevity)

ρ = w+(z)|�+(z)〉〈�+(z)| + w−(z)|�−(z)〉〈�−(z)|, (5.51)

where |�+(z)〉 and |�−(z)〉 are spin states quantized ‘up’ and ‘down’, respectively, in a small
phase-space volume element at the orbital point z. The trace of ρ is an integral over the
phase-space z. We can extract a purely orbital component w(z) and write

ρ = w(z){ u+(z)|�+(z)〉〈�+(z)| + u−(z)|�−(z)〉〈�−(z)|}, (5.52)

where the factorization is such that u+(z)+u−(z) = 1. Here w(z) is obviously the unpolarized
purely orbital phase-space density, and the term in brackets is a polarization density, or intrinsic
angular momentum density per particle per unit volume of phase-space. This is truly the full
mathematical physics expression for the polarization. In section 27, we shall briefly describe
how the above expression has been used in a Fokker–Planck type equation for the spin–orbit
evolution of a beam.

Most of the time, we shall work with the expression P = 〈s〉, where we recognize now,
that the angular brackets denote an integral over the orbital phase-space as well as a sum over
the weights of the up and down spin states at each phase-space point. In other words, there are
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actually two statistical averages: an outer average over the orbital motion, and an inner average
over the spin distribution at a particular value of z.

The polarization is a property of the entire beam; it is not attached to an individual particle,
nor to a specific point in phase-space (such as the closed orbit). It is one density matrix, or
one vector (for spin 1

2 ), and is a collective property of the entire statistical ensemble.
As if the above is not enough, the direction of the quantization axis of the spin states need

not be same at every phase-space point z: the quantization axis of |�±(z)〉 depends on z. This
may sound like unnecessarily heavy formalism, but it is a fact of the utmost significance, as
we shall see in great detail in section 27.

The consequences of the above statements are most easily seen by deriving an equation
of motion for the polarization. Consider that

dP
dt

=?
∑

i

wiΩi × si =?Ω ×
∑

i

wisi = Ω × P. (5.53)

Is the above derivation valid? It may be, depending on circumstances, but it is wrong in general.
There are two reasons for this:

• the spin precession vector Ω is not always the same for all the particles: there is a distinction
between Ω and Ωi ;

• the weights wi need not be constant: dwi/dt �= 0.

Unless Ω is the same for all the particles (as in a uniform B field), and the statistical weights
are constant, the polarization does not precess like a rigid-body rotation. This fact is known in
MRI work, where a magnetic field gradient is applied across the body, and the spin precession
frequency is therefore correlated with the location of the spin in the body. There is a gradient
of precession frequencies for the individual spins.

5.10. Tensor polarization

There is increasing interest in the acceleration of polarized spin 1 particles, such as deuterons.
An extremely readable account of polarization for spin 1, and of Cartesian and spherical tensors
is given by Karpius (2003). We do not use the classical spin model below. For spin 1, the
polarization density matrix is a 3 × 3 matrix. It can be written in the form

ρij = 1

3
δij +

∑
k

εijkPk + Pij . (5.54)

The quantity Pk is a polarization vector. The quantity Pij is a symmetric traceless tensor,
and describes the ‘tensor polarization’ of the ensemble. The above tensor polarization is in a
Cartesian basis. It is also common practice to describe both the vector and tensor polarizations
using spherical tensors. Because of the non-commutativity of the angular momentum operators,
spherical tensors are related to, but not exactly the same as, spherical harmonics. We consider
Cartesian and spherical bases below. For greater readability, we shall denote the quantum
spin operator by S, where the spin value is S, so S2 = S(S + 1)h̄2. Next, the angle brackets
below denote an average over an arbitrary statistical mixture of states. To avoid unnecessarily
cumbersome notation, we shall assume that the spin states are all quantized along the same
axis, independent of the orbital phase-space location z.

We begin with the Cartesian basis. The components of the polarization vector and tensor
are given by

Pi = 1

Sh̄
〈Si〉, Pij = 3/2〈SiSj + SjSi 〉 − S2δij

S(2S − 1)h̄2 . (5.55)
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We do not claim that 〈Si〉 can be normalized to h̄ or unity, etc, even for a pure state. The
polarization tensor is indeed traceless:

∑
i SiSi = S2, hence

∑
i Pii = 0. For an unpolarized

beam, 〈Si〉 = 0 and 〈SiSj 〉 = (1/3)S2δij , and so the polarization vector and tensor both vanish.
For spin 1,

Pi = 1

h̄
〈Si〉, Pij = 3

2h̄2 〈SiSj + SjSi〉 − 2δij . (5.56)

The use of spherical harmonics is an elegant alternative parametrization. The spherical tensors
up to rank 2, with statistical averages, are given by (see Karpius (2003)),

T00 = 1,

T10 =
√

3

2

〈S3〉
h̄

,

T1±1 = ∓
√

3

2

〈S1 ± iS2〉
h̄

,

T20 = 1√
2

〈3S2
3 − 2〉
h̄2 ,

T2±1 = ∓
√

3

2

〈(S1 ± iS2)S3 + S3(S1 ± iS2)〉
h̄2 ,

T2±2 =
√

3

2

〈(S1 ± iS2)
2〉

h̄2 .

(5.57)

These expressions correct misprints of normalization by Lee (1997). Suppose that a spin 1
particle is in a pure state |1〉 quantized along polar angles (θ, φ). Then,

|1〉θ,φ = e−iφ cos2 θ

2
|1〉 +

√
2 cos

θ

2
sin

θ

2
|0〉 + eiφ sin2 θ

2
| − 1〉. (5.58)

Clearly,

P3 = cos4 θ

2
− sin4 θ

2
= cos θ,

P33 = 3

(
cos4 θ

2
+ sin4 θ

2

)
− 2 = 1

2
(3 cos2 θ − 1).

(5.59)

The values of P3 and P33 thus transform exactly like spherical harmonics of rank 1 and 2,
respectively.

Let us consider the expressions for P3 and P33 in terms of the fractional populations of
the states. For spin 1

2 , the fractional populations are N± with an obvious notation. Then,

P3 = N+ − N−. (5.60)

For spin 1, we can write (N+, N0, N−). Then P3 = N+ − N− as before, but note that now,
N+ + N0 + N− = 1, so N+ + N− < 1 in general. As for the tensor polarization,

P33 = 3(N+ + N−) − 2(N+ + N0 + N−) = 1 − 3N0. (5.61)

For both spin 1
2 and 1, the bounds on the vector polarization are

− 1 � P3 � 1, (5.62)

while for spin 1, the bounds on the tensor polarization component P33 are

− 2 � P33 � 1. (5.63)
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The foregoing remarks also demonstrate, that for spin 1
2 only, the vector polarization of a pure

state is ±100% (either N+ = 1 or N− = 1). However for spin 1, the vector polarization can
be 100%, 0 or −100%, according as N+ = 1, N0 = 1 or N− = 1.

Equations of motion to track the spherical tensor polarization components
(T2, T1, . . . , T−2) through an accelerator, for arbitrary initial conditions, were presented by
Huang et al (1993). The equations track the evolution of the tensor components directly.
Naturally, such tracking equations assume that the spin precession vector is the same for all
the particles.

5.11. Spin precession equation

We have gone through a good deal of formal theory above. Here, we start from scratch and
take the semiclassical approximation and the classical spin model as given a priori. Although
we wrote formal expressions for the spin precession equation above, we did not specify the
form of the spin precession vector in terms of laboratory electric and magnetic fields. We shall
do so here. As stated in the introduction, we employ cgs units. For a nonrelativistic spin, the
Hamiltonian is

H = −µ · B = − ge

2mc
s · B. (5.64)

Here µ is the particle magnetic moment, B is the external magnetic field, g is the g-factor, e

and m are the particle charge and mass, respectively, s is the spin vector and c is, of course,
the speed of light. The spin precession equation is

ds
dt

= µ × B = − ge

2mc
B × s. (5.65)

There are several ways to generalize this to the relativistic case. They all, of course, lead to
the same answer, but some derivations are more transparent than others. We shall present two
derivations, the first based on Lorentz transforms, and later, a derivation based exclusively on
four-vectors.

We follow the relativistic generalization of the spin precession equation given by Shatunov
(2001) using Lorentz transformations. This derivation follows the approach of Thomas (1927).
We follow a particle with relativistic velocity v moving under the actions of laboratory frame
electric and magnetic fields E and B, respectively, along a trajectory determined by the Lorentz
force equation, with β = v/c

dp
dt

= e (E + β × B). (5.66)

(Recall that we employ cgs units so E and B have the same dimensions.) From the above
equation we deduce that

dβ

dt
= e

mcγ
(E − E · ββ + β × B). (5.67)

The reader should refer to figure 24. In addition to the laboratory frame ‘L’, we also define
two other frames: the particle rest-frame ‘C’, and an inertial frame ‘I ’ moving with the particle
velocity vt=0. The coordinate origins of both the frames C and I coincide with the lab frame
L at t = 0. We need to be more careful when specifying the frames I and C, to render them
well-defined. We define that the Lorentz transformation from the lab frame L, to the frames
I and C at t = 0 be accomplished by a single boost, with a Lorentz factor γ = 1/

√
1 − v2/c2.

The spin s is defined with this choice for the ‘rest-frame’ C. It is otherwise possible to define
another rest-frame C ′, defined as follows. We boost from L, to an intermediate frame F , using
a boost with a velocity v1 which is arbitrary, and then perform a second boost with a velocity v2,
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Figure 24. Coordinate systems and inertial frames for spin and orbital motion.

such that under the combined Lorentz boosts L(v2)L(v1), the final particle velocity is zero:
this is the frame C ′. However C ′ does not coincide with C. This arises from the structure of the
Lorentz group. The (homogeneous) Lorentz group has six generators: three rotations and three
boosts, along the x, y and z axes, say. The rotations by themselves form a noncommuting
subgroup SO(3), i.e. a combination of two rotations is also a rotation. However, the boosts do
not form a subgroup. A combination of two non-parallel Lorentz boosts is, in general, a single
boost plus a spatial rotation. (This spatial rotation is the Thomas precession.) The ‘rest-frame’
spin s is not well-defined unless we insist that the Lorentz transformation from the lab frame
to the particle rest frame be accomplished by a single boost.

At an infinitesimal time t = dt later, the particle will rotate through an angle

dα = β × dβ

β2
= β × β̇

β2
dt. (5.68)

This is a kinematic effect. For motion in prescribed external electric and magnetic fields,
we have

β × β̇

β2
= − e

mcγ

[
B⊥ − β × E

β2

]
. (5.69)

We write

B‖ = B · ββ

β2
, B⊥ = B − B⊥ = β × (B × β)

β2
, (5.70)

to denote the components of the magnetic field parallel and perpendicular to the velocity v,
respectively. Under a Lorentz boost, with the relativistic factor γ from the lab frame to the
moving frames at t = 0, we find

BC = γ [B⊥ − β × E] + B‖. (5.71)

The spin changes in the proper time interval dτ = dt/γ according to (5.65), by

(ds)I = − ge

mc
BC × s dτ. (5.72)

To find the change in the rest frame, we have to note that the ‘C’ frame itself rotates relative
to the inertial frame, through an angle dφ. Subtracting this rotation we get,

ds = (ds)I − dφ × s. (5.73)

The angle dφ can be found as follows. First, at time dt the ‘old’ rest frame (at t = 0) is
oriented at an angle −dα relative to the new velocity v + dv. Second, in the moving inertial
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Table 2. Magnetic moment anomalies of particles referenced in this paper. The value for the muon
is taken from Bennett et al (2004). The mass in MeV and the energy spacing of imperfection
resonances is also shown.

Anomaly Mass �E = mc2/a

Symbol a = 1
2 (g − 2) Accuracy (MeV) (MeV)

e± 1.159 652 1859 × 10−3 ±3.8 × 10−12 510.9989 × 10−3 440.65
µ± 1.165 9208 × 10−3 ±6.0 × 10−7 105.658 90 622.24
p 1.792 847 351 ±2.8 × 10−8 938.272 523.34
d −0.142 9878 ±5.0 × 10−7 1875.613 13 117.30

frame, both these directions are rotating (same as the ‘new’ velocity) γ times faster than in the
laboratory frame. Hence,

dφ = γ dα − dα = (γ − 1)dα. (5.74)

Thus, we obtain

ds =
[
− e

mcγ
BC × s − γ − 1

β2
(β × β̇) × s

]
dt. (5.75)

We can write this in the form:
ds
dt

= Ω × s. (5.76)

The spin precession vector Ω is given by

Ω = −µ · BC

γ
+ ωT, (5.77)

where the Thomas precession vector ωT is given by

ωT = −γ − 1

β2
β × β̇ = − γ 2

γ + 1
β × β̇. (5.78)

In terms of a Hamiltonian, we have

H = −µ · BC

γ
+ ωT · s. (5.79)

The spin precession vector, or the Hamiltonian, contains two terms. The first is a magnetic
dipole interaction with the rest-frame magnetic field, time-dilated by a factor γ , and the second
is Thomas precession (Thomas 1927) due to the relativistic kinematics. Note that the Thomas
precession term is independent of the electric and magnetic fields. It would exist even if the
acceleration v̇ were due to gravitation or other non-electromagnetic causes. It is only that
in the cases of interest to us, the acceleration is also electromagnetic in origin, given by the
Lorentz force.

We note in passing, that the above form of the Hamiltonian is valid also for neutral particles
possessing a magnetic moment, e.g. neutrons. One works directly with the magnetic moment µ
and does not introduce an electric charge, etc. (However, one can use g in conjunction
with a Bohr magneton or a nuclear magneton.) For charged particles, by substitution of
the expressions for the various terms, we obtain

Ω = − e

mc

[(
a +

1

γ

)
B⊥ +

1 + a

γ
B‖ −

(
a +

1

γ + 1

)
β × E

]
. (5.80)

Here, we have decomposed g into a sum of ‘normal’ and ‘anomalous’ parts, namely, g =
2(1+a), where a is called the magnetic moment anomaly. The values of the magnetic moment
anomalies of the various particles we treat in this review are shown in table 2. The table also
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shows the particle mass and the energy spacing of the so-called ‘imperfection resonances’ (to
be defined later in this paper).

We have expressed the fields in terms of components parallel and perpendicular to the
velocity vector. This is a very useful form and we shall make heavy use of it below. An
equivalent expression that is also commonly used, and which does not decompose the fields
into components, is

Ω = − e

mc

[(
a +

1

γ

)
B − aγ

γ + 1
β · Bβ −

(
a +

1

γ + 1

)
β × E

]
. (5.81)

Before proceeding further, we analyse some of the salient features of the above expressions.

(a) The first and most important point to note is that s is expressed in the rest frame,
whereas E and B are the fields in the laboratory frame. This is a deliberate choice. The spin
is an intrinsic property of the particle, and is only truly meaningful in the particle rest frame.

(b) The anomalous part of the magnetic moment couples differently to the electric and
magnetic fields than do the other terms. This is a fact of utmost significance, and underlies
almost all of the spin manipulations we treat in this paper. This lack of symmetry in the
coupling is due to the fact that the anomalous magnetic moment couples only to the rest-frame
magnetic field (see (5.79)). The contribution of the normal magnetic dipole moment is mixed
with the contribution from the Thomas precession.

(c) Wien filter: an important special case is that of a uniform magnetic field and an
orthogonal electric field, such that the Lorentz force vanishes: E + β × B = 0. For simplicity,
suppose that (E, B, β) form an orthogonal triad: the velocity is orthogonal to both the electric
and magnetic fields. Then the acceleration of the particle vanishes: β̇ = 0, and so the Thomas
precession vanishes: the particle travels in a straight line, so all the Lorentz boosts commute.
The Hamiltonian and spin precession vector are then, simply

H = −µ · BC

γ
, Ω = − ge

mc
(B − β × E ) = − ge

γ 2mc
B. (5.82)

Hence, the orbit moves in a straight line, but the spin precesses around the magnetic field.
Such a device is called a Wien filter, and can be used to rotate the spin relative to the particle
momentum. The effectiveness of a Wien filter falls off rapidly with energy because of the
factor of γ 2 in the denominator. It is also astigmatic because it focuses the orbital motion, but
in only one plane.

(d) From (5.80), we see that for longitudinal and transverse magnetic fields of equal
magnitude, the ratio of the effect on the spin precession due to the transverse and longitudinal
magnetic fields is (aγ + 1)/(a + 1). The value of aγ greatly exceeds unity at the operating
energies of most modern high-energy particle accelerators. Even in accelerators of a few GeV
energy, aγ � 2–5, while aγ � 62.5 in HERA at 27.5 GeV, and Gγ � 200 in RHIC at
100 GeV. Recall, that for protons it is conventional to write G = (g − 2)/2. Hence, transverse
magnetic fields have a greater effect on the spin precession than do longitudinal magnetic
fields. The ratio increases proportionately with energy.

(e) In the important case of a uniform vertical magnetic field with no electric field, the
orbital revolution frequency for horizontal circular motion is

ωrev = − e

γmc
B, (5.83)

whereas the spin precession frequency is

Ω = − e

mc

(
a +

1

γ

)
B = (aγ + 1) ωrev. (5.84)
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The ratio of the spin precession frequency to the orbital revolution frequency is called the spin
tune (we shall make this expression more precise later, for motion on off-axis trajectories).
For a planar ring, the value of the spin tune is

νspin = aγ. (5.85)

We subtract unity because in the ‘accelerator frame’, the spin precession is measured relative to
the orbit, hence νspin = (� − ωrev)/ωrev. Equation (5.85) is, simultaneously, the simplest and
most important equation in all of the spin manipulations we shall encounter. Its consequences
are profound, and will be seen throughout this paper. We note for future reference, that setting
�(aγ ) = 1, i.e. �E = mc2/a, we have (see table 2)

(�E)e � 440.65 MeV, (�E)p � 523.34 MeV. (5.86)

Hence, aγ or Gγ increases by one unit for an increase in the beam energy of 0.44 GeV
(electrons), or 0.523 GeV (protons). The condition aγ � 1, or Gγ � 1 is therefore
satisfied by most accelerators, though not all. AmPS, SHR and VEPP-2M operate(d) at around
aγ = 1–2 and the IUCF Cooler ran at Gγ � 2. LEP operated at aγ = 100–200, while RHIC
at top energy will operate at Gγ � 450.

5.12. Resonant depolarization

We interrupt the order of presentation to describe a very important experimental technique.
We shall present the derivation of the spin precession using a covariant formulation later.
First, however, we now have enough information to understand the supremely important
experimental technique of resonant depolarization. The use of resonant depolarizers (and also
spin-flippers, to be discussed in section 6), helps to exclude systematic errors from experiments
with polarized beams. Resonant depolarization also furnishes the most accurate method of
calibrating the beam energy in storage rings, and has been utilized with success at many
accelerators (see section 30 for precision tests of the Standard Model, etc). These possibilities
for resonant depolarization were recognized very early at BINP in 1968, with the development
of rf depolarizers (see Baier (1972)).

The basic idea of resonant depolarization is as follows. We saw above, that in a planar
ring the value of the spin tune is νspin = aγ . Since the values of ae+ and ae− are known to great
accuracy, by measuring the spin tune, one can deduce the value of γ to a high precision. From
a knowledge of the electron mass, one can then calibrate the beam energy to high accuracy.

As a matter of fact, the value of the proton magnetic moment anomaly (or that of many
other hadrons) is also known to considerable precision. Hence, resonant depolarization also
works in hadron storage rings. The machine must, however, be a storage ring (where the beam
energy is fixed), and not a synchrotron, where the beam energy is changing rapidly, because
otherwise the value of aγ is not constant.

Whether for leptons or hadrons, a radio-frequency magnetic field is applied in the
horizontal plane to kick the spins. The kick frequency is aliased with a multiple of the orbital
revolution frequency fc. The frequency for the kicks to act coherently on the spins is one of
the two possibilities,

f +
rf = (aγ − k) fc, f −

rf = (k − aγ ) fc, (5.87)

where k is an integer. Although the kick to a spin on an individual pass around the ring is small,
when the kicker frequency is close to the resonant frequency (after including aliasing with the
revolution frequency), the kicks add up coherently, and the cumulative effect of the kicks is to
tilt the spins strongly away from the vertical. The spins decohere, leading to depolarization.
We shall treat decoherence mechanisms quantitatively in section 21. The frequency of the
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kicker frf is swept across the resonant value, and the centre of the dip in the polarization is
identified. This can generally be done with great accuracy. Note, that if the beam has an
rms energy spread σE , then this results in a spread of spin tunes σν = σE/(mc2/a). However,
in the experiment, we measure the spin tune averaged over time (all phases of the synchrotron
oscillations) hence, the final accuracy is much higher than the momentum-induced spread of
the spin tune. The kicker field can be either longitudinal, i.e. an rf solenoid, or transverse, i.e.
a magnetic dipole rf kicker. Both air-core and ferrite-core kickers have been used. It is not
always necessary to build a special device; for example, it is possible to feed a high-frequency
sinusiodal signal from a signal generator into a stripline kicker normally used for other purposes
(betatron tune measurements). The precise engineering details do not matter to the principle
of operation.

Complications can arise from the synchrotron oscillations. From (3.3), there can be
multiple ‘synchrotron sideband’ resonances, so that depolarization can occur at any of the
frequencies

f +
rf = (aγ − k − mQs) fc, f −

rf = (k + mQs − aγ ) fc, (5.88)

where m is an integer. One must therefore be careful to verify that the depolarization is due to
the central resonance m = 0. This can be done by varying the synchrotron tune: the frequency
of the resonance should not change. Such complications were already known in the early work
on resonant depolarization: Serednyakov et al (1976) employed a depolarizer and observed
depolarization from the parent, and m = ±1 synchrotron sideband resonances at VEPP-2M.
See figure 61 later in this paper, for a graph of frequency sweeps and depolarization from the
parent resonance and m = −1 synchrotron sideband at the SLS. Additional discussions of
the complications from synchrotron sidebands will be presented in section 6. Synchrotron
sideband resonances will be studied in detail in section 20.

Note that nonplanarities, e.g. the presence of longitudinal magnetic fields, can induce
systematic errors in the energy calibration measurement. For example, most high energy e+e−

colliders are equipped with detector solenoids. The solenoid magnetic fields must either be
compensated or switched off.

5.13. Spin precession equation: covariant derivation

Bargmann et al’s (1959) covariant formulation is the better-known derivation of the spin
precession equation. We denote four-vectors by uppercase letters below. Our metric is
gµν = diag(1, −1, −1, −1), i.e. a timelike separation is positive. Our derivation follows
Bargmann et al (1959). It is first necessary to generalize the spin s which is defined only
in the particle rest frame. We denote the lab frame by K , and an ‘instantaneous rest frame’,
i.e. an inertial reference frame instantaneously comoving with the particle, by K ′. We seek
a four-vector S = (S0, S) in the lab frame which reduces to (0, s) in the instantaneous rest
frame. The velocity four-vector U = γ (c, v) equals (c, 0) in the rest frame. The vanishing of
the time component of S in the instantaneous rest frame is therefore guaranteed by imposing
the covariant constraint

U · S = 0. (5.89)

In the inertial frame K , the time component of the spin four-vector is therefore, not independent,
but is related to the space components via U · S = cS0 − v · S = 0, or

S0 = β · S. (5.90)

We know that the nonrelativistic spin precession equation is
ds
dt

= ge

2mc
s × B′, (5.91)
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where the prime denotes evaluation in the rest frame. The time derivative of the spin four-
vector must generalize to dS/dτ , where τ is the particle’s proper time. We demand that the
relativistic equation also be linear in the spin four-vector Sα , and the external fields, specified
by the electromagnetic four-tensor Fαβ , given by

F =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 . (5.92)

We also note that although S0 vanishes in the instantaneous rest frame, the derivative dS0/dτ

need not vanish. In fact, from (5.90) one has, in the instantaneous rest frame,

dS0

dτ
= S · dβ

dτ
. (5.93)

The relativistic generalization of (5.91) and (5.93) is

dS

dτ
= ge

2mc
[F · S + (S · F · U)U ] −

(
dU

dτ
· S

)
U. (5.94)

This is a covariant equation by construction, and one can verify that it reduces to the desired
result (5.91) by evaluation in the instantaneous rest frame.

If the external electric and magnetic fields E and B are spatially homogeneous (or if
Stern–Gerlach forces like ∇(µ · B) can be neglected) then one can prove that

dU

dτ
= e

mc
F · U. (5.95)

Then one obtains the BMT equation (for the four-vector S),

dS

dτ
= e

mc

[g

2
F · S +

(g

2
− 1

)
(S · F · U)U

]
. (5.96)

One can derive that the relation between S and s is

s = S − γ

γ + 1
β · Sβ (5.97)

and the inverse

S = s +
γ 2

γ + 1
β · sβ, S0 = γβ · s. (5.98)

The relativistic spin precession equation for s is

ds
dt

= − e

mc

[(
a +

1

γ

)
B − aγ

γ + 1
β · Bβ −

(
a +

1

γ + 1

)
β × E

]
× s, (5.99)

in agreement with (5.76) and (5.81).
We make some observations on both the Thomas and BMT derivations.

• Although we did not say so in the previous derivation using Lorentz transforms, but in
order to carry through the derivation as presented, the electric and magnetic fields must
be spatially homogeneous. At the very least, as pointed out above, Stern–Gerlach type
gradient forces must be negligible. Otherwise, the acceleration (or change to the orbital
trajectory) is not correctly given by the above equations. We tacitly assumed in the Lorentz
boosts, etc, that the orbit was not affected by the spin. In practice, the spin precession
equation works well in the external electric and magnetic fields encountered in typical
modern day accelerators. The spatial variation of the magnetic field in a quadrupole, for
example, is not sufficiently steep to invalidate the equation.
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• We shall later use this same spin precession equation (or the corresponding Hamiltonian)
to calculate the spin-flip photon emission probabilities per unit time, in the semiclassical
approximation. The electric and magnetic fields will be photon radiation fields. They can
hardly be considered either spatially or temporally homogeneous, yet we shall correctly
reproduce the results of calculations based on the Dirac equation for radiative polarization
in a planar ring (the Sokolov–Ternov formula). Hence, the equation does work over a
large domain of field configurations, provided only that the spin motion does not react
back on the orbit.

We close this section with a few remarks on work by other authors. The following
statements are by no means intended to be a comprehensive historical review. The BMT
derivation of the spin precession equation is by far the most popular, and the equation is most
commonly referred to in the literature as the ‘BMT equation’. We shall call it the Thomas–BMT
equation in this paper. Certainly, the kinematical term in the spin precession is universally
acknowledged as ‘Thomas precession’. Thomas (1927) himself pointed out, in a note added
in the proof of his paper, that shortly after submission of his paper, a similar equation and
kinematical conditions were published by Frenkel (1926), who analysed the Zeeman effect
and multiplet structure in atoms. Frenkel represented the spin by an antisymmetric four-tensor
Sαβ , where S00, S0β and Sα0 vanish in the rest frame. The above mentioned authors all derived
a classical spin precession equation valid for arbitrary values of the quantum spin operator.
However, special cases have been treated by a number of other authors. Equations for spin
1
2 were considered by Tolhoek and Groot (1951), Mendlowitz and Case (1955a, 1955b) and
Carrassi (1958). The problem was also studied by Kramers (1958), who showed that for a
particular choice of the equation of motion, one is led to conclude that the gyromagnetic ratio
for a classical particle is the same as the Dirac value for an electron, i.e. g = 2. This is a
curious conclusion which is now known to be erroneous. Weak points in Kramers’ arguments
were pointed out by Bargmann et al (1959). The use of a four-vector to represent the intrinsic
angular momentum, or polarization, was first introduced by Michel and Wightman (1955).
An excellent overview of the classical spin precession equation, mentioning the connection to
Ehrenfest’s theorem, is given by Ford and Hirt (1961). Their report is regrettably unpublished.
They show that the two formalisms based on the use of an antisymmetric four-tensor and a four-
vector representation of the spin, are equivalent. Fort and Hirt also derive a covariant classical
equation of motion including a possible nonzero electric dipole moment (EDM). We shall
study briefly the EDMs later in this paper; the relevant equation of motion will be presented
there. As we have already stated, the above spin precession equation was derived under the
assumption that derivatives of the fields are negligible. Good (1961) derived a classical spin
precession including also first-order field gradients (spatial derivatives) in the external electric
and magnetic fields. (It is assumed that terms of second degree are negligible.) The equation
was motivated by the analysis of a composite particle, specifically, a nucleus in its ground
state. Good showed that the electric quadrupole moment must also be taken into account.
The internal variables of the composite particle are eliminated, leading to coupled differential
equations for the position, and intrinsic angular momentum of the composite particle.

5.14. Precession of the longitudinal spin component

Of particular interest is the equation of motion for the precession of the longitudinal spin
component s‖ = s · β̂. From standard relativity theory and the Lorentz equation,

dβ̂

dt
= − e

mcβγ
β̂ × (β̂ × E − β B). (5.100)
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Then

d(s · β̂)

dt
= ds

dt
· β̂ + s · dβ̂

dt

= (Ω × s) · β̂ − e

mcβγ
[β̂ × ( β̂ × E − β B)] · s

≡ Ωlong · (s × β̂). (5.101)

Some algebra yields

Ωlong = − e

mc

[
a B −

(
a − 1

β2γ 2

)
β × E

]
. (5.102)

The precession frequency of the longitudinal spin component is |Ωlong|. Equation (5.102) has
important consequences for the operation of experiments to measure the anomalous magnetic
moment of muons, as will be reviewed in section 11.

6. Froissart–Stora formula

6.1. General remarks

By ‘nonradiative polarization’, we mean the acceleration and storage of spin-polarized charged
particle beams which do not emit sufficient synchrotron radiation to polarize the beam
spontaneously. Muon storage rings are a special case of nonradiative polarization where,
additionally, the particles also decay in flight. They will be treated separately. Here we
assume that the particles are stable.

Radiative polarization places great restrictions on the accelerator: not even all electron
and positron storage rings qualify, because the polarization buildup time may be much longer
than the beam storage time. Nonradiative polarization, by contrast, includes a much greater
variety of particle species and experimental usage. RHIC, for example, operates as a polarized
proton collider. The ZGS delivered (polarized and unpolarized) proton and deuteron beams
to external beamlines for fixed-target experiments. ELSA delivers polarized electron beams
to external targets. AmPS and SHR circulate(d) nonradiatively polarized electron beams for
use with internal targets. SATURNE-II accelerated polarized protons, deuterons and 6Li. The
list goes on. The majority of the particle beams which fall into the category of nonradiatively
polarized beams are, however, polarized protons.

Broadly speaking, the subject of nonradiative polarization divides into two areas:
acceleration of a spin-polarized beam from low to high energy in an accelerator, and long-
term storage of a nonradiatively polarized beam. The two topics are not mutually exclusive,
as acceleration of a spin-polarized beam from low to high energy may first be required before
the beam is stored at the final top energy, e.g. at RHIC. This section treats the first of the above
two topics, namely, acceleration (which means ‘increase of energy’, as opposed to its true
meaning as a rate of change of a velocity vector). ‘Acceleration’ can also mean deceleration.
The literature on the subject was historically motivated by the acceleration of polarized proton
beams, hence, we mainly write G = (g − 2)/2 below.

6.2. Basic formalism

We treat only rings whose design is planar. The actual closed orbit will contain imperfections,
and will not be planar, but the ideal paper-design machine will have no spin rotators, etc. The
reason for this is simple: the majority of accelerators are planar, and the research developed
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accordingly. We discuss later, the application of some of these ideas to a ring with one or a
pair of Snakes.

Since the ring is assumed planar by design, the particle spins precess around the vertical
axis for orbital motion on the ideal design orbit, i.e. in the absence of any perturbing terms.
The principal perturbation to the spin precession comes from horizontal magnetic fields, due
to the off-axis orbital motion. We employ the classical spin model throughout the calculations
below. The polarization vector P is obtained by averaging over all the particle spins s, i.e.
P = 〈s〉. In keeping with the standard practice in the field, we shall employ the spinor
representation, where s = 〈�| σ |�〉, and σ is a vector of Pauli matrices. The independent
variable is θ , the generalized azimuth around the ring. Dropping the bracket notation, the
equation of motion for � is

d�

dθ
= − i

2
W · σ � = −i H �, (6.1)

where W is the spin precession vector, and where we have employed a Hamiltonian H = 1
2 W·σ.

We now divide W into unperturbed and perturbation terms W = W0 + w, where W0 describes
motion on the design orbit, and w consists of the (horizontal) perturbing fields. We know that
for a planar ring W0 = ν0 e3 where ν0 = Gγ0, where γ0 is the Lorentz factor of the reference
particle. We discuss the perturbation w later. To begin with, we neglect the energy spread of
the beam, so all the particles precess around the vertical axis at the same rate ν0. Since the
beam is being accelerated, the energy of the reference particle increases with θ . We assume
that the rate of increase of the beam energy is uniform. Hence ν0 is not constant, but rather

dν0

dθ
= α, (6.2)

where α is constant, i.e. independent of θ and also of the particle oscillation amplitude, etc.
It should not be confused with the electromagnetic fine-structure constant, because there is no
quantum electrodynamic perturbation theory below. Hence,

ν0 = ν00 + αθ, (6.3)

where ν00 is a constant which will be specified when solving the model below. We can then
write H = H0 + H1, where

H0 = 1
2 W0 · σ = 1

2 ν0 σ3, H1 = 1
2 w · σ = 1

2 (w1σ1 + w2σ2), (6.4)

where w1 = w · e1 and w2 = w · e2. Hence,

d�

dθ
= − i

2

(
ν0 w1 − iw2

w1 + iw2 −ν0

)
�. (6.5)

The next step is to transform to the ‘interaction picture’ by defining a new spinor,

�I = ei
∫ θ

0 H0 dθ ′
� = e(i/2)[ν00θ+(1/2)αθ2]σ3 �. (6.6)

Substituting into (6.5), the equation of motion for �I has only off-diagonal terms. Defining

m21 = (w1 + iw2) e−i[ν00θ+(1/2)αθ2], (6.7)

yields

d�I

dθ
= − i

2

(
0 m∗

21

m21 0

)
�I. (6.8)

The standard next step is to expand w1 + iw2 in Fourier harmonics.



Spin-polarized charged particle beams 2059

6.3. Froissart–Stora formula

Froissart and Stora (1960) found the exact analytical solution for the depolarization of a spin-
polarized beam caused by the crossing of a single resonance driving term, i.e. only one Fourier
harmonic in the perturbing Hamiltonian. Effectively, the Froissart–Stora formula assumes that
the depolarizing resonances are narrow and well-separated. Hence the beam crosses only one
resonance at a time. This approximation is not always true in practice, and much effort has
been expended on finding theoretical formulae to do a better job.

By hypothesis, the beam is initially fully polarized along the vertical axis:
Pi = P(−∞) = 1. The accelerator energy increases at a steady rate, and the spins of the
particles are tilted away from the vertical by the horizontal perturbing fields. Far from
resonance, on the other side, the spins again precess around the vertical axis. We seek the
final asymptotic polarization:

Pf = P(∞) = 〈s3〉θ→∞. (6.9)

The average is over the particles in the beam. Hence, starting from s3(θ → −∞) = 1, we
wish to evaluate s3(θ → ∞). Now the transformation to the interaction picture does not affect
the vertical component of s:

s3 = 〈� | σ3 | �〉 = 〈�I | σ3 | �I〉. (6.10)

Hence, we can obtain s3, thence 〈s3〉, i.e. Pf , directly from the spinor �I. We can, thus, work
exclusively with the interaction picture.

The perturbation contains only one Fourier harmonic:

w1 + iw2 = ε eiφ, (6.11)

where ε is the magnitude of the resonance driving term (assumed invariant), and the rate of
change of the phase φ is

dφ

dθ
= Q, (6.12)

i.e. φ = φ0 + Qθ , where Q is also a fixed parameter, basically the dimensionless precession
frequency of the perturbing term. Evidently φ0 is an initial phase. The beam could, of course,
have a spread of values for both ε, Q and especially φ0. These are again complications which
will be ignored below. Proceeding with the solution,

m21 = ε eiφ0 e−i[ν00θ+(1/2)αθ2] eiQθ . (6.13)

We set the constant ν00 = Q in the above expression, i.e. we choose the origin of θ to be at
the point of crossing the resonant tune. Then,

m21 = ε eiφ0 e−iαθ2/2. (6.14)

Define ε̄ = ε eiφ0 , then,

d�I

dθ
= − i

2

(
0 ε̄∗ eiαθ2/2

ε̄ e−iαθ2/2 0

)
�I. (6.15)

Froissart and Stora succeeded in solving this equation for �I. Write

�I =
(

�+

�−

)
(6.16)

with the normalization |�+|2 + |�−|2 = 1. This yields a pair of coupled ordinary differential
equations, namely,

d�+

dθ
= − i

2
ε̄∗ eiαθ2/2 �−,

d�−
dθ

= − i

2
ε̄ e−iαθ2/2 �+. (6.17)
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Eliminating �+ yields

d2�−
dθ2

+ iαθ
d�−
dθ

+
ε2

4
�− = 0. (6.18)

We now change variables to z = −iαθ2/2. This yields the equation,

z2 d2�−
dz2

+
(
z − 1

2

)d�−
dz

− i
ε2

8α
�− = 0. (6.19)

This equation can be solved in terms of confluent hypergeometric functions using the initial
conditions,

�−(−∞) = 0,∣∣∣∣d�

dθ

∣∣∣∣
θ→−∞

= ε̄

2
|�+(−∞)| = ε̄

2
.

(6.20)

We shall omit the messy algebra. The asymptotic polarization, starting from
Pi = P(−∞) = 1, is Pf = 1 − 2|�−(∞)|2 = 2|�+(∞)|2 − 1. The answer is known as
the Froissart–Stora formula:

Pf

Pi
= 2 e−πε2/(2|α|) − 1. (6.21)

We have generalized in order to treat an initial polarization of less than 100%. The Froissart–
Stora formula is an elegant, succinct expression. All the details of the accelerator structure are
encapsulated in the parameter ε. The formula was motivated by the acceleration of polarized
proton beams in the 3 GeV SATURNE proton synchrotron at Saclay. This was a weak-focusing
synchrotron, later rebuilt as a strong-focusing synchrotron SATURNE-II, functional until 1997.
The formula has been used with great success as a theoretical tool to aid in the design of
resonance correction schemes, for the acceleration of beams of spin-polarized protons in a
number of synchrotrons.

A graph of the ratio Pf/Pi as a function of
√

ε2/α is shown in figure 25. The same figure
also shows a plot of the tensor polarization P33f/P33i (for spin 1 particles). We shall discuss
tensor polarization later in this paper.

Equation (6.21) is unchanged under a sign reversal ε → −ε. This is intuitively obvious,
because a resonance strength of ε or −ε is basically the same thing. Similarly it is clear that
the asymptotic polarization does not depend on the direction in which the resonance is crossed,
hence Pf/Pi depends on |α|. It is also intuitively obvious that the values of Qy and φ0 do not
appear in the Froissart–Stora formula.

We analyse two important special cases. For ε2/α 	 1, i.e. small ε or large α (weak
resonance strength or rapid passage across the resonance), there is negligible depolarization,
as should be obvious:

Pf

Pi
� 1 − πε2

|α| . (6.22)

The other extreme case is the ‘adiabatic condition’ or the ‘adiabatic limit’ given by ε2/|α| � 1,
i.e. a strong resonance or very slow (adiabatic) passage across the resonance. There is, again,
negligible depolarization, but almost total reversal of the polarization:

Pf

Pi
� −1. (6.23)

This phenomenon is called ‘adiabatic spin-flip’. It is arguably a misnomer, since all the spins
in the beam precess smoothly, over a long time interval. This is in contrast to an abrupt change
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Figure 25. Ratio of the final to initial vector polarization Pf/Pi, and tensor polarization P33f/P33i

as a function of
√

ε2/α, where ε is the resonance strength, and α is the crossing speed.

of the spin state of an individual spin from up to down, induced by a single event, such as a
photon emission.

The concept of adiabatic spin-flip is of the utmost significance. In general, it is difficult and
tedious to adjust the accelerator to correct (eliminate) the strength of a resonance driving term.
However, it is relatively much easier to increase its magnitude. In fact, the modern practice at
many accelerators is to deliberately induce a resonance driving term that is so strong that the
beam crosses the resonance with reversal of the polarization, but no decrease of magnitude.
We shall see examples of such work later in this paper. See especially the work with partial
Snakes in section 26.

6.4. Resonant spin-flip

The fact that the polarization direction will reverse, with negligible depolarization, when
ε2/|α| � 1, furnishes the basis for the operation of a spin-flipper. Recall, when discussing
resonant depolarization earlier in this paper, we pointed out that a radio-frequency horizontal
perturbing field could be employed to depolarize the spins by tuning the kicker frequency
to a resonant value (see (5.87)). In fact, a radio-frequency horizontal perturbing field can
also be used to flip the spins without depolarization, by sweeping the kicker frequency across
the resonant value while satisfying the adiabtic condition ε2/|α| � 1. This requires either:
(i) a slow passage across the resonant frequency, which may be undesirable because other
effects may have time to interfere with the polarization; or (ii) a relatively strong rf kicker field.
This means that a transverse magnetic field is preferable at high energies, but both longitudinal
and transverse magnetic fields have been used successfully in practice. The overall procedure
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is called resonant spin-flip. An early demonstration of a spin-flipper was given by Polunin and
Shatunov (1982). In more modern work, a spin-flip efficiency in excess of 99.9% was reported
by Leonova et al (2004).

Resonant spin-flip aids greatly in eliminating systematic errors in experiments with
polarized beams. The directions of the spins are reversed in situ in an accelerator, while
the ‘background’ accelerator parameters remain unchanged. Batches of spins of opposite
orientations of the polarization (but the same magnitude of polarization) are delivered to the
experimental target. Typically, the spin direction can be reversed many times during a single
experimental run. Resonant spin-flip is a standard experimental technique in experiments
using both polarized proton (hadron) and electron beams. It is also a useful idea to selectively
depolarize some of the bunches in a storage ring, to compare the data from polarized and
unpolarized beams under identical machine conditions. Once again, this aids in reducing the
systematic errors in an experiment with polarized beams.

6.5. Beyond the Froissart–Stora formula

The Froissart–Stora formula explicitly treats only one resonance driving term. It is a good
approximation when the individual resonances are narrow and do not overlap, so that successive
resonances can be crossed in isolation. Much effort has been expended to generalize beyond
the Froissart–Stora formula, but there is no convincing formula. Part of the problem is that the
situation rapidly fragments into numerous special cases. We consider a few important cases
below.

The first important situation is when two resonances overlap, typically an imperfection
and an intrinsic resonance. For example, there is overlap at the AGS between the k = 51
imperfection resonance and the intrinsic resonance 60 − Qy , because Qy � 8.75. (See
calculations by Courant and Ruth (1980).) Overlapping resonances are usually treated via
numerical simulations. Lee (1997) presents several studies of the problem. Derbenev and
Kondratenko (1971) have also studied the problem.

Another very important case is that of synchrotron oscillations. Since the spin tune in a
planar ring is proportional to the energy, νspin = aγ = aγ0(1+�E/E0), the energy oscillations
may, in fact, cause some particles to cross a resonance line multiple times. This problem is
especially troublesome during slow passage across a resonance; the synchrotron oscillations
spoil the adiabatic condition and lead to depolarization. The effects of synchrotron oscillations
on resonance crossing were observed at VEPP-2M in the work with partial Snakes to cross
the aγ = 1 resonance (Derbenev et al 1977). Complications from synchrotron oscillations
were also observed at SATURNE-II to cross the Gγ = 2 resonance (Aniel et al 1985).
VEPP-2M accelerated polarized e+e− beams and SATURNE-II accelerated polarized proton
beams. The VEPP-2M work will be reviewed in section 24, and the SATURNE-II work will be
reviewed in section 25. The effects of synchrotron oscillations have, by now, been observed at
several synchrotrons. Yokoya (1983c) studied the effects of the synchrotron oscillations in the
limit of adiabatic passage across a resonance. The asymptotic polarization is parametrized via
Pf = −1+�P . Basically, there are two contributions to �P . The first is because of the energy
oscillations due to the synchrotron oscillations. The second, for electron beams, is from the
synchrotron radiation, which also causes the particle energy and betatron oscillations to diffuse
in the orbital phase-space. This leads to a ‘spin diffusion’ for the particle spins. We summarize
the principal results. We write �P = �P1 + �P2 for the contributions from the synchrotron
oscillations and spin diffusion, respectively. For brevity, we also define b = ε/

√
α. It is

assumed that b � 1. The expression for �P1, after averaging over the phases and amplitudes
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of the synchrotron oscillations, is

�P = πν0

2α

σ 2
E

E2
0

G
(Qs√

α

)
. (6.24)

Here, σ 2
E/E2

0 is the mean square relative energy spread and G(ω) is a Fourier transform of a
Green function (‘response’ function). The expression for G(ω) is given by a contour integral.
The contribution from the spin diffusion term is

�P2 = 11

18

τrev

τST

ν2
0

α3/2
K(b), (6.25)

where τrev is the revolution period, and τST is the Sokolov–Ternov polarization buildup time
in a planar ring. Here, K(b) is not a modified Bessel function, but is given by

K(b) =
∫ ∞

1/b

dω

ω2
|G(ω)|2. (6.26)

For b � 1, Yokoya shows that a very good approximation is

K(b) � 1

4b
. (6.27)

Using this approximation, we deduce

�P2 � 11

72

τrev

τST

ν2
0

αε
. (6.28)

Calculations based on Yokoya’s work have been employed to aid design studies for the
acceleration of polarized electron beams at ELSA (Steier and Husmann 1998).

Finally, we describe an interesting empirical generalization of the Froissart–Stora formula
based on the studies of resonant spin-flipping of polarized proton beams at the IUCF Cooler.
Blinov et al (2000) write

Pf

Pi

∣∣∣∣
emp

= (1 + η) e−πε2/(2α) − η, (6.29)

where 0 � η � 1. Then, for small ε2/α, we have negligible depolarization Pf/Pi � 1, while
at the opposite extreme, we have partial polarization reversal: Pf/Pi � −η. The value of η is,
effectively, a measure of the ‘efficiency’ of adiabatic spin-flip. The Froissart–Stora formula
corresponds to η = 1. In practice, the above empirical formula has been tested only for values
of η close to unity; it is not known if the expression continues to be valid for small η.

7. Equations of motion in accelerator coordinates

7.1. Coordinate systems

We denote the basis vectors by {e1, e2, e3}. Here e1 points radially outwards, e2 is longitudinal
and counterclockwise and e3 points vertically upwards. Suppose the radius of curvature of the
reference orbit is ρ, which is assumed to lie (locally, anyway) in the horizontal plane. The
derivatives of the basis vectors are

de1

ds
= e2

ρ
,

de2

ds
= −e1

ρ
,

de3

ds
= 0. (7.1)
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7.2. Orbital equation of motion

The particle location is

r = (ρ + x) e1 + y e3. (7.2)

After a small increment in the arc-length δs, the new location is

r + δr � (ρ + x + δx)

(
e1 +

δs

ρ
e2

)
+ (y + δy) e3. (7.3)

Hence,

δr = δx e1 + (ρ + x)
δs

ρ
e2 + δy e3. (7.4)

The derivative with respect to the arc-length is

dr
ds

= dx

ds
e1 +

(
1 +

x

ρ

)
e2 +

dy

ds
e3 = x ′ e1 +

(
1 +

x

ρ

)
e2 + y ′ e3, (7.5)

where x ′ ≡ dx/ds and y ′ ≡ dy/ds. The velocity is

v = dr
dt

= ds

dt

dr
ds

. (7.6)

From the expression for δr we see that,

v = ds

dt

√(
1 +

x

ρ

)2
+ x ′ 2 + y ′ 2. (7.7)

The value of v is a constant for motion in pure magnetic fields. For brevity, we write vs = ds/dt

below. If we retain only terms up to the first order in the derivatives we obtain, after some
algebra,

v � v

1 + x/ρ

dr
ds

� v(x ′ e1 + e2 + y ′ e3) (7.8)

and

dv

dt
� v2

(
1 − x

ρ

)[(
x ′′ − 1

ρ

)
e1 +

x ′

ρ
e2 + y ′′e3

]
. (7.9)

This can be substituted in the Lorentz equation (5.66) to obtain the equation of motion for the
particle orbit in the accelerator coordinate system. We get,

γmv2
(

1 − x

ρ

)[(
x ′′ − 1

ρ

)
e1 +

x ′

ρ
e2 + y ′′e3

]
= ev

c
( x ′ e1 + e2 + y ′ e3 )(Bxe1 + Bse2 + Bye3).

(7.10)

It is common practice to define a symbol ‘Bρ’ given by p/e = γmv/e = −Bρ/c (the minus
sign is due to our choice of coordinate system). Then,

−Bρ
(

1 − x

ρ

)(
x ′′ − 1

ρ

)
= By − Bsy

′,

−Bρ
(

1 − x

ρ

)x ′

ρ
= Bxy

′ − Byx
′,

−Bρ
(

1 − x

ρ

)
y ′′ = Bsx

′ − Bx.

(7.11)
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7.3. Spin equation of motion

Next, we treat the spin precession equation. Recall that ds/dt = Ω × s, and now,
ds
dt

= ds

dt

ds
ds

� v

1 + x/ρ

ds
ds

. (7.12)

We write,

s = s1e1 + s2e2 + s3e3. (7.13)

Hence,
ds
ds

=
(ds1

ds
− s2

ρ

)
e1 +

(ds2

ds
+

s1

ρ

)
e2 +

ds3

ds
e3. (7.14)

Setting Ω̄ = Ω/v, the equations of motion for the individual components are,
ds1

ds
=
(

1 +
x

ρ

)
(Ω̄ × s) · e1 +

s2

ρ
,

ds2

ds
=
(

1 +
x

ρ

)
(Ω̄ × s) · e2 − s1

ρ
,

ds3

ds
=
(

1 +
x

ρ

)
(Ω̄ × s) · e3,

(7.15)

which we can write more compactly in the form
ds
ds

=
[ (

1 +
x

ρ

)
Ω̄ − e3

ρ

]
× s. (7.16)

In accelerator coordinates, the spin precession equation has either of the equivalent forms,
ds
ds

= Ws × s,
ds
dθ

= RWs × s ≡ W × s, (7.17)

where

Ws = − e

pc

(
1 +

x

ρ

)[
(aγ + 1)B⊥ + (1 + a)B‖ −

(
aγ +

γ

γ + 1

)
β × E

]
− e3

ρ

= − e

pc

(
1 +

x

ρ

)[
(aγ + 1)B − aγ 2

γ + 1
β · Bβ −

(
aγ +

γ

γ + 1

)
β × E

]
− e3

ρ
. (7.18)

Let us set aside the term in the electric field in Ws and focus our attention on the terms in the
magnetic field. Call the resulting vector W̃s . Then,

W̃s = − e

pc

(
1 +

x

ρ

){
(aγ + 1)(Bxe1 + Bse2 + Bye3)

− aγ 2

γ + 1

v2

c2

Bxx
′ + Bs(1 + x/ρ) + Byy

′

(1 + x/ρ)2 + x ′ 2 + y ′ 2

[
x ′e1 +

(
1 +

x

ρ

)
e2 + y ′e3

]}
− e3

ρ
. (7.19)

This is obviously messy. Most authors approximate the expression for Ω̃ to the first order in
the derivatives much earlier than this. However, we display the higher order terms explicitly,
basically for reference, just to note their form and existence. Having done so, we now drop all
terms in x ′2 and x ′y ′, etc. We also use the result

a
γ 2

γ + 1

v2

c2
= a

γ 2 − 1

γ + 1
= a(γ − 1), (7.20)

to obtain

W̃s � − e

pc

{(
1 +

x

ρ

)
[(aγ + 1)(Bxe1 + Bye3) + (a + 1)Bse2]

−a(γ − 1)[Bsx
′e1 + (Bxx

′ + Byy
′)e2 + Bsy

′e3]
}

− e3

ρ
. (7.21)
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Recall the symbol Bρ, and with obvious notation write Bρ0 for the value on the reference
orbit, i.e. p0/e = −Bρ0/c, where p0 is the momentum of the reference particle. Then
p/e = −(Bρ0/c)(1 + �p/p0). Set δ = �p/p0 for brevity. We also use W rather than Ws .
Then, writing W̃ to denote the term in W without the electric field,

W̃ � R

Bρ0(1 + δ)

{(
1 +

x

ρ

)
[(aγ + 1)(Bxe1 + Bye3) + (a + 1)Bse2]

− a(γ − 1)[Bsx
′e1 + (Bxx

′ + Byy
′)e2 + Bsy

′e3]
}

− R

ρ
e3. (7.22)

Most terms in the above expression actually vanish in standard beamline elements. Such
expressions will be given below.

7.4. Dipoles and steering correctors

We shall describe expressions for the spin precession vector W in various standard beamline
elements below, but here, we make a simple but important observation pertaining to the
curvature of the reference orbit, i.e. the term in (R/ρ)e3 in W. In their passage through
a dipole magnet (horizontal bend), not only the spin precesses, but the reference orbit also
curves. Hence, the net spin precession angle is reduced. Consider motion on the reference
orbit through a pure vertical dipole field, so (e/p)(B⊥/c) = −e3/ρ. On the reference orbit
x = 0 and also B‖ = 0. Then,

Wdipole = (aγ0 + 1)
R

ρ
e3 − R

ρ
e3 = aγ0

R

ρ
e3. (7.23)

The orbital bend angle is θb = Ldipole/ρ, and so the spin precession angle through the dipole,
relative to the reference orbit, is

ψdipole = aγ0 θb. (7.24)

However, suppose now that the dipole is a steering corrector magnet, with a bend angle θc and
a length Lc. Even though a steering corrector is a dipole magnetic field, the reference orbit
through it is a straight line: it does not bend. The coordinate basis vectors e1,2,3, do not rotate
during passage through the corrector, and so ρ−1 = 0. Then eB⊥/(pc) = −(θc/Lc)e3, and
so now,

Wcorr = (aγ0 + 1)
R

Lc
θc e3. (7.25)

Integrating over the length of the corrector, the spin rotation angle, again relative to the reference
orbit, is

ψcorr = (aγ0 + 1)θc. (7.26)

The coefficient is aγ0 + 1, not aγ . The same remarks apply to the passage of a spin through a
vertical bend/corrector.

7.5. Spin precession vector in standard beamline elements

7.5.1. Multipole expansion. For static magnetic fields in two dimensions (transverse to the
reference axis, assumed straight), one can express the magnetic field as a curl of a vector
potential A = As(x, y)ŝ, where we shall write x̂ = e1, ŝ = e2 and ŷ = e3 to conform to more
common practice. One can expand the potential in a Fourier series

As =
∞∑

n=1

rn

n
[−an sin(nφ) + bn cos(nφ)], (7.27)
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where r =
√

x2 + y2 and φ = tan−1(y/x) are polar coordinates. There is no need for a
constant n = 0 term. (The indices for the harmonics follow the European convention, as
opposed to the American convention of writing an sin((n + 1)φ) etc, and starting the indices
from n = 0.) The terms in cos(nφ) are called normal multipoles and the terms in sin(nφ)

are called skew multipoles. The word ‘normal’ is universally omitted. The magnetic fields in
regular multipoles (quadrupole, sextupole, etc) are

Bquad = b2 [xŷ + yx̂] = ∂By

∂x
[xŷ + yx̂],

Bsext = b3 [(x2 − y2)x̂ + 2xyŷ] = 1

2

∂2By

∂x2
[(x2 − y2)x̂ + 2xyŷ],

... (7.28)

and in skew multipoles (skew quadrupole, skew sextupole, etc), they are

Bskew quad = a2 [xx̂ − yŷ] = ∂Bx

∂x
[xx̂ − yŷ],

Bskew sext = a3 [2xyx̂ + (x2 − y2)ŷ] = 1

2

∂2Bx

∂x2
[2xyx̂ + (x2 − y2)ŷ],

... (7.29)

The polynomials in x and y are simply the real and imaginary parts of (x+iy)n for n = 1, 2, . . ..
A skew quadrupole is that which is rotated through 45˚ around the longitudinal axis, while a
skew sextupole is that rotated through 30˚ around the longitudinal axis, etc.

The magnetic fields in a horizontal and a vertical dipole are Bh-dipole = By ŷ, Bv-dipole =
Bx x̂. The reference axis curves in a dipole (counterclockwise for positive By or Bx , for an
electron), so the simple Fourier series is only approximate. There are higher order corrections
of O(h−1) to the above fields. The leading order correction is typically a sextupole term.
A combined function magnet has both a dipole and quadrupole field. The magnetic field in a
solenoid is parallel to the reference axis, and does not fit into the multipole classification. All
the above statements ignore the fringe fields at the magnet entrance and exit. Fringe fields are
not treated in this paper.

7.5.2. Horizontal dipoles. We treat only sector dipoles, with pole faces normal to the design
orbit. Consider a vertical dipole field B = Bye3, which we express in the slightly curious
form, By = Bρ0/ρx . Here, ρx is the bending radius of the dipole. Since there is no electric
field, we can drop the tilde. Then,

W = R

ρx(1 + δ)

{(
1 +

x

ρx

)
(aγ + 1)e3 − a(γ − 1) y ′e2

}
− R

ρx

e3. (7.30)

We have seen that on the reference orbit the value is

W0 = R

ρx

aγ0 e3. (7.31)

For off-axis motion, use the notation w to denote the off-axis component of W: this will
be standard practice throughout this paper. Decompose w into horizontal betatron, vertical
betatron and synchrotron terms via

w = wxβ
+ wyβ

+ wδ. (7.32)

First, consider a horizontal betatron oscillation and set x = xβ , etc. Then

wxβ
= R (aγ0 + 1)

xβ

ρ2
x

e3. (7.33)
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For the vertical betatron oscillation, set y ′ = y ′
β . Then

wyβ
= −R a(γ0 − 1)

y ′
β

ρx

e2. (7.34)

Normally, we think that a horizontally bending dipole rotates only around the vertical axis, but
there is a small component of rotation along the reference orbit e2, because the spin precession
term Ω‖ is directed along the velocity, not the reference orbit. The synchrotron oscillations
are the most complicated. We not only set δ �= 0, but we also set xδ = Dxδ and y ′ = D′

yδ.
Furthermore, γ = γ0(1 + β2

0δ). Then,

wδ = R
{[

(aγ0 + 1)
Dx

ρ2
x

−
( a

γ0
+ 1
) 1

ρx

]
e3 − a(γ0 − 1)

D′
y

ρx

e2

}
δ. (7.35)

For ultrarelativistic motion (electron or positron storage rings) where γ � 1, it is usual to
employ δγ /γ0 and to write,

wδ = R
{[

(aγ0 + 1)
Dx

ρ2
x

− 1

ρx

]
e3 − aγ0

D′
y

ρx

e2

}δγ

γ0
. (7.36)

7.5.3. Vertical dipoles. We again treat only sector dipoles, with pole faces normal to the
design orbit. The positive sense of rotation is counterclockwise around the outward radial unit
vector e1. We have not really treated vertical bends in detail above, but the reader should be
able to fill in the details. The bending radius is ρy . Then,

W0 = R

ρy

aγ0 e1,

wxβ
= −R a(γ0 − 1)

x ′
β

ρy

e2,

wyβ
= −R (aγ0 + 1)

yβ

ρ2
y

e1,

wδ = −R
{[

(aγ0 + 1)
Dy

ρ2
y

+
( a

γ0
+ 1
) 1

ρy

]
e1 + a(γ0 − 1)

D′
x

ρy

e2

}
δ.

(7.37)

7.5.4. Solenoid. A solenoid is the other standard beamline element where there is nonzero
spin precession on the reference orbit, which in a solenoid, coincides with the solenoid axis.
We consider only the main body of a solenoid, so B = Bsole2, whence

W � R
Bsol

Bρ0

1

1 + δ
{(a + 1)e2 − a(γ − 1) ( x ′e1 + y ′e3)}. (7.38)

We neglect the betatron oscillations and treat only off-axis motion due to the synchrotron
oscillations; even then, we shall assume that the horizontal and vertical dispersions (specifically
D′

x and D′
y) vanish. Then

W0 = R(a + 1)
Bsol

Bρ0
e2, wδ = −R(a + 1)

Bsol

Bρ0
δ e2. (7.39)

It is common to employ p/e, rather than Bρ/c, in which case the spin rotation angle integrated
over the solenoid length Lsol is

ψspin = −(a + 1)
e

p

(BL)sol

c
. (7.40)
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Written in this way it is immediately obvious that ψ ∝ 1/p, i.e. the spin rotation angle is simply
inversely proportional to the momentum. This is a particularly clear example of ‘chromatic
aberration’ for the spin motion. The spins of particles with different momenta are rotated
through different angles.

7.5.5. Quadrupole. There is no spin precession on-axis: W0 = 0. The field in a quadrupole
can be written as

Bquad = B ′(ye1 + xe3), (7.41)

where B ′ = ∂B/∂x is the quadrupole field gradient. Then,

w � R
B ′

Bρ0

1

1 + δ
{(aγ + 1)(ye1 + xe3) − a(γ − 1) (yx ′ + xy ′) e2}. (7.42)

This must be simplified to linear order in the orbital variables. Evidently,

wxβ
= R(aγ + 1)

B ′

Bρ0
xβ e3,

wyβ
= R(aγ + 1)

B ′

Bρ0
yβ e1,

wδ = R(aγ + 1)
B ′

Bρ0
(Dye1 + Dxe3) δ.

(7.43)

7.5.6. Skew quadrupole. The field in a skew quadrupole can be written as

Bsq = B ′ (xe1 − ye3), (7.44)

where B ′ = ∂B/∂x is the skew quadrupole field gradient. Again W0 = 0 and now,

w � R
B ′

Bρ0

1

1 + δ
{(aγ + 1)(xe1 − ye3) − a(γ − 1) (xx ′ − yy ′)e2}. (7.45)

Hence,

wxβ
= R(aγ + 1)

B ′

Bρ0
xβe1,

wyβ
= −R(aγ + 1)

B ′

Bρ0
yβe3,

wδ = R(aγ + 1)
B ′

Bρ0
(Dxe1 − Dye3) δ.

(7.46)

7.5.7. Sextupole. The field in a sextupole can be written as

Bsext = 1
2B ′′ [(x2 − y2)e1 + 2xye3], (7.47)

where B ′′ = ∂2B/∂x2. The contribution of a sextupole to the spin precession necessarily
contains a term of at least quadratic order in the orbital variables. Nevertheless, even if only
linear dynamics are used to describe the orbital motion, one can still obtain terms such as

w � R(aγ + 1)
1

2

B ′′

Bρ0
[(x2

β − y2
β)e1 + 2xβyβe3], (7.48)

which are derived from the linear orbital dynamics. In practice, the major contribution of
sextupoles to the spin motion arises from the fact that, in general, the imperfect closed orbit
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passes off-centre through the sextupoles; the sextupoles therefore act effectively like (weak)
quadrupoles. Hence, instead of xβ , we write xc.o. + xβ , so

x2
β − y2

β → 2(xc.o.xβ − yc.o.yβ), xβyβ → xc.o.yβ + yc.o.xβ (7.49)

and we obtain an expression like

w � R(aγ + 1)
B ′′

Bρ0
[(xc.o.xβ − yc.o.yβ)e1 + (xc.o.yβ + xβyc.o.)e3]. (7.50)

A more important contribution of the sextupoles is via the chromaticity; the momentum offset
of a particle changes its betatron tune. The induced tunespread affects the widths of the spin
resonances.

7.5.8. Higher multipoles. This simply becomes tedious. It will be left as an exercise for
the reader. As a general rule, most accelerators are equipped with dipoles, quadrupoles and
sextupoles; not many have higher order multipoles. Even the use of skew quadrupoles is
limited; they are only employed in special circumstances.

8. Single particle dynamics

8.1. General remarks

We mainly treat only linear orbital dynamics. The effects of the coupling of nonlinear
orbital dynamics to the spin motion are at best poorly understood, except in very specific
circumstances. Linear orbital dynamics means, of course, that the orbital equations of motion
are approximated by linear differential equations, or, equivalently, the Hamiltonian of the
orbital motion contains only terms up to quadratic order in the orbital dynamical variables.
Edwards and Syphers (1993) give a good introduction to the orbital dynamics (but do not
discuss spin).

8.2. Transverse dynamics

The orbital dynamics basically subdivide into transverse and longitudinal dynamics. The
transverse oscillations are called (horizontal and vertical) betatron oscillations, and the
longitudinal ones are called synchrotron oscillations. In the approximation of linear orbital
dynamics, the horizontal betatron oscillations are solutions of the pseudoharmonic differential
equation, known as Hill’s equation,

x ′′ + Gx(s) x = 0, (8.1)

where the focusing function Gx depends on the arc-length s, and is related to the magnetic
fields in the dipoles and quadrupoles via

Gx = 1

ρ2
x

+
1

Bρ0

∂By

∂x
. (8.2)

The function Gx is periodic around the ring: Gx(s + C) = Gx(s), where C is the ring
circumference. The above equation can be solved using a WKB (Wentzel–Kramers–Brillouin)
approximation. The standard parametrization of a horizontal betatron oscillation is

xβ(θ) =
√

2Ixβx(θ) cos(ψx(θ) + φx0). (8.3)

Note that we shall switch between the use of the arc-length s, and the azimuth θ without change
of notation since θ = s/R, simply a proportionality. Here Ix and φx0 are independent of the



Spin-polarized charged particle beams 2071

azimuth θ . Obviously, φx0 is an initial phase, while the value of Ix sets the amplitude of the
motion. The function βx is called the (horizontal) beta function and depends on the azimuth θ .
The beta function sets an envelope for the amplitude of the orbital oscillation and is periodic
around the ring: βx(θ + 2π) = βx(θ). Its value is determined by the focusing structure of
the accelerator lattice (the dipoles and quadrupoles). The function ψx is called the betatron
phase, and gives the rate of phase advance of the betatron oscillation around the accelerator.
It is related to the beta function via

ψx(s) =
∫ s

0

ds ′

βx(s ′)
. (8.4)

Unlike the beta function, the betatron phase is not periodic around the ring. Instead, it undergoes
a phase advance, given by

ψx(θ + 2π) = ψx(θ) + 2πQx. (8.5)

Here, Qx is called the (horizontal betatron) tune. The betatron tune is a dimensionless
oscillation frequency: it is the betatron frequency (in Hz, say) divided by the revolution
frequency around the ring.

In addition to the beta function, there are two other periodic functions α and γ , given by
αx = − 1

2 dβx/ds and γx = (1 + α2
x)/βx , so βxγx − α2

x = 1. Writing µx = 2πQx for the
one-turn betatron phase advance, the one-turn map of the betatron motion around the ring is
given by the matrix

Mxβ
=
(

cos µx + βx sin µx αx sin µx

−γx sin µx cos µx − βx sin µx

)
. (8.6)

It is easily verified that the determinant of this matrix is unity. The trio (αx, βx, γx) are called
Twiss parameters or Courant–Snyder parameters. Generally, since the orbital equation of
motion is linear, the mapping of a betatron oscillation from any initial azimuth θi to a final
azimuth θf is given by a 2 × 2 matrix. The one-turn matrix is the important special case where
θf = θi + 2π . One can easily show that the quantity

Ax ≡ γxx
2
β + 2αxxβx ′

β + βxx
′2
β (8.7)

is an invariant of the motion. It is called the Courant–Snyder invariant (Courant and Snyder
1958). In terms of our parametrization for xβ above, Ax = 2Ix . If we take a snapshot of
the betatron motion at a fixed azimuth θ∗ on successive turns around the accelerator (called a
Poincaré section), the points in (xβ, x ′

β) space will map out an ellipse whose area is πAx or
2πIx .

In a beam of particles circulating in an accelerator, there will be a statistical distribution of
the values of Ix . It is reasonable, in most cases, to assume the beam has no coherent betatron
motion, i.e. 〈xβ〉 = 〈x ′

β〉 = 0. We define the emittance of the beam εx via

εx = 〈Ax〉. (8.8)

It is important to be clear about our use of the term ‘emittance’. Some authors use the term
emittance for an individual particle but we do not. We define the emittance as a statistical
average property of the entire beam. The invariant associated with an individual trajectory is
Ax , the average over all trajectories is εx .

Analogously to the horizontal betatron oscillations, there are also vertical betatron
oscillations. The equation of motion is

y ′′ + Gy(s) y = 0, (8.9)

where the focusing function of the vertical oscillations is

Gy = 1

ρ2
y

− 1

Bρ0

∂By

∂x
. (8.10)
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The curvature term ρ−2
y is zero in a planar ring since all the bending occurs only in the horizontal

plane. Most accelerators are planar by design. The vertical quad gradient term has the opposite
sign to that in Gx . The parametrization of a vertical betatron oscillation is obviously

yβ(θ) = √2Iyβy(θ) cos(ψy(θ) + φy0), (8.11)

where all the symbols are defined by analogy with the horizontal betatron oscillations, so the
vertical betatron phase is related to the vertical beta function via

ψy(s) =
∫ s

0

ds ′

βy(s ′)
, (8.12)

and the vertical betatron tune is given by

ψy(θ + 2π) = ψy(θ) + 2πQy. (8.13)

There is, correspondingly, a one-turn map for the vertical betatron motion, and a vertical
betatron Courant–Snyder invariant

Ay ≡ γyy
2
β + 2αyyβy ′

β + βyy
′2
β = 2Iy, (8.14)

and an rms vertical betatron emittance

εy = 〈Wy〉. (8.15)

8.3. Closed-orbit imperfections

We have tacitly assumed above that the closed orbit coincides with the design orbit. In a real
accelerator, the magnets may be misaligned for a variety of reasons, including field and gradient
errors, also tilts and rolls of the magnets, settling due to ground motion, etc. In principle, the
betatron oscillations, and other functions to be described below, should be referenced to the
imperfect closed orbit. We shall not consider the matter in detail here.

8.4. Transverse coupling

In most accelerators, the horizontal and vertical oscillations are uncoupled, and so one can
speak of the horizontal and vertical betatron oscillations separately. It is also possible, within
the framework of linear orbital dynamics, for the horizontal and vertical orbital oscillations to
be coupled. The one-turn map must be parametrized by a full 4 × 4 matrix instead of a pair
of decoupled 2 × 2 matrices. The normal modes (‘Floquet modes’) are more complicated.
A parametrization of the 4 × 4 matrix, to handle transverse coupling in the linear dynamical
approximation, has been given by Edwards and Teng (1973). In general, we shall treat
uncoupled orbital oscillations.

8.5. Canonical variables, phase-space and normalized emittance

The variables x ′ = dx/ds and y ′ = dy/ds are not conjugate to x and y, respectively, and so
(x, x ′) and (y, y ′) are not pairs of canonical variables. For motion with horizontal bending,

x ′ = px

ps

(
1 +

x

ρ

)
, y ′ = py

ps

(
1 +

x

ρ

)
. (8.16)

The difference between ps and p0 is small, where p0 is the longitudinal momentum of the
reference particle. In the approximation of linear orbital dynamics, we can further neglect the
products xpx and xpy , so

x ′ � px

p0
, y ′ � py

p0
. (8.17)
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Now p0 is a fixed quantity, while px and py are conjugate to x and y, respectively. Then,
(x, px/p0) constitutes a phase-space, as does (y, py/p0). For full generality, to include
coupling, one should write (x, px/p0, y, py/p0). Many modern accelerator computer codes,
to integrate the orbital equations of motion do, in fact, use the variables (x, px/p0) and
(y, py/p0). In the linear dynamical approximation, they coincide with (x, x ′) and (y, y ′).
However, (x, px/p0) and (y, py/p0) remain canonical when treating higher order terms in the
motion, whereas (x, x ′) and (y, y ′) do not. We shall require canonical variables throughout
most of this paper, to correctly set up the theory of the spin dynamics. Hence, we shall work
with the variables (x, px/p0) and (y, py/p0).

Our first example of the use of the variables (x, px/p0) and (y, py/p0) is to analyse the
concept of the normalized emittance. The statement that p0 is a fixed quantity is only true if the
beam is not accelerated; otherwise the value of p0 does change. If the beam is accelerated, i.e.
the reference energy and momentum are varied, the emittances εx and εy , as defined above, are
not Lorentz invariants. Instead, one must scale them by β0γ0, where the reference momentum
is p0 = mcβ0γ0, i.e. one effectively uses the variables (x, px/(mc)) and (y, py/(mc)). The
normalized emittances εN

x,y are defined via

εN
x = β0γ0 εx, εN

y = β0γ0 εy. (8.18)

The normalized emittances are Lorentz invariants under boosts along the beam direction p0. The
emittances of hadron beams are almost always specified in terms of normalized emittances.
This is not true for electron beams, because the synchrotron radiation (recoils from the photon
emissions) acts as a stochastic mechanism which randomizes the particle motion and causes
the beam to settle down to a self-consistent equilibrium value, which is not invariant under
Lorentz boosts.

8.6. Action-angle variables

When the orbital motion is parametrized in terms of a phase-space, i.e. (x, px/p0) and
(y, py/p0), the invariants Ix and Iy acquire a new and important significance. They are
the action variables of the motion. An orbital trajectory can be specified using action-angle
variables, namely, (Ix, φx) and (Iy, φy). Here φx and φy are the horizontal and vertical angle
variables, respectively. We shall treat the horizontal motion for definiteness. The actions are
invariant along a trajectory, but the angles increase according to

dφj

dθ
= Qj (j = x, y), (8.19)

so the solution along a trajectory is φj = Qjθ + φj0. Still treating linear orbital dynamics, the
parametrization of a betatron oscillation is

xβ(θ) ≡
√

2Ixβx(θ) cos(φx + �x(θ)),

yβ(θ) ≡ √2Iyβy(θ) cos(φy + �y(θ)),
(8.20)

where �j(θ) = ψj(θ) − Qjθ (j = x, y) is periodic in θ . There are several important points
to note about action-angle variables:

• The use of action-angle variables is not restricted to linear orbital dynamics; it applies in
full generality to nonlinear dynamical systems.

• The action-angle variables (Ix, φx) are dynamical variables in the Hamiltonian sense, as
are (x, px). One can parametrize the orbital phase-space using (Ix, φx) rather than (x, px),
for example. The betatron phase ψx is not a dynamical variable.
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• The actions index a particular trajectory, and the angles parametrize the motion along that
trajectory. The set of all trajectories for fixed I = I∗ is called an invariant torus. The set
of invariant torii are said to foliate the phase-space. Invariant torii never intersect.

• Action-angle variables only exist if the phase-space manifold is compact. We are therefore
making a tacit assumption here, that the orbital oscillations are bounded. Indeed, if the
orbital motion is unbounded, the beam will simply be lost from the machine. To yield
interesting physics, the accelerator must be set up so that the orbits are stable and bounded.
Even then, the existence of action-angle variables is not guaranteed. We are therefore
making some restrictive assumptions on the orbital motion.

• The use of action-angle variables is, in most cases, the most elegant way to formulate
the statistical mechanics of the system. In equilibrium, the particle distribution has a
uniform distribution over the values of the angles. The equilibrium particle distribution
is, therefore, a function of the actions only.

8.7. Formal definition of the orbital tunes

The more formally correct definition of an orbital tune is that, it is the secular rate of phase
advance of the orbital angle variable. By ‘secular’ we mean that the rate of orbital phase
advance does not average to zero over a full oscillation period of φ. (This definition must
be made more precise when there are multiple angle variables with different, and usually
incommensurate, oscillation periods. Consult a textbook on higher classical dynamics.)
Equation (8.19) should be considered as the formal definition of the orbital tune. If a system
is fully integrable and the motion is expressible in action-angle form, then the diagonalized
Hamiltonian is a function of only the actions:

H = H (I ). (8.21)

Hamilton’s equations then read
dφj

dθ
= ∂H

∂Ij

,
dIj

dθ
= −∂H

∂φj

= 0. (8.22)

The Ij are invariants, which is expressed by the fact that the φj do not appear in H . The
angles are so-called ignorable coordinates. Since the tune is Qj = dφj/dθ by definition, we
see that

Qj = ∂H

∂Ij

. (8.23)

In the linear dynamical case, the Hamiltonian is simply H = Q · I. The spin tune will later
be defined as the secular rate of the spin phase advance, when action-angles for the spin are
introduced.

8.8. Synchrotron oscillations and longitudinal phase-space

In addition to the transverse oscillations, i.e. width and height, a bunch of particles in an
accelerator also has a length, i.e. a longitudinal extent. Consider a simple model of horizontal
circular motion in a uniform vertical magnetic field B. Equating the centripetal acceleration
(force) to the Lorentz force,

mγ
v2

r
= e

v

c
B, (8.24)

one obtains for the angular velocity ω = v/r , that

ω = eB

mcγ
. (8.25)
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The revolution frequency decreases with the energy. Hence, if a beam of particles with an
energy spread circulates in an accelerator—and any beam in a real accelerator will inevitably
have an energy spread—the particles will separate longitudinally.

Longitudinal focusing of the orbital motion in particle accelerators is achieved via the use
of radio-frequency longitudinal electric fields (TM modes in waveguides called rf cavities) to
push the particles longitudinally. As noted in chapter zero, the rf cavities actually perform three,
not necessarily mutually exclusive, functions. They supply a differential longitudinal push to
the particles based on their time of arrival (at the cavities) relative to the reference particle
(also known as the synchronous particle). For electron and positron rings, the rf cavities also
replenish the energy lost to synchrotron radiation. For synchrotrons of all types, the rf cavities
are also used to do work on the particles to ramp up the beam energy (‘acceleration’) from
injection to the top energy.

There is naturally a longitudinal phase-space. There are two sets of variables one can use to
parametrize the longitudinal oscillations. One set is the longitudinal offset, and the longitudinal
momentum offset, relative to the reference particle, i.e. (z, �ps). The other is a time-of-arrival
and energy offset relative to the reference particle, i.e. (τ, �E). One can multiply τ by the
speed of light to obtain a length cτ . In practice, one employs the relative momentum or energy
offset �p/p0 or �E/E0. A longitudinal oscillation can be parametrized via

�p

p0
=
√

2Iz cos φz, (8.26)

where (Iz, φz) are the longitudinal action-angle variables. There is also obviously a longitudinal
emittance εz. The longitudinal emittance is measured in units of electronvolt-second, if one
employs (z, �ps), or (τ, �E) without dividing by p0 or E0, as the case may be.

8.9. Dispersion

Return to the model of horizontal circular motion in a uniform vertical magnetic field B.
Solve (8.24) as follows: pc = eBr . Hence, to the first order in small quantities (for fixed B)
�p/p = �r/r . If a particle has a momentum offset �p relative to the reference particle,
its orbital radius is slightly larger. The basic idea is the same for more complicated magnetic
focusing structures. If a particle has a relative momentum offset �p/p0, we write the horizontal
motion as a sum of betatron and ‘dispersion’ terms

x = xβ + xδ. (8.27)

This decomposition, of course, assumes linear orbital dynamics. We also write

xδ = Dx

�p

p0
. (8.28)

The function Dx is called the (horizontal) dispersion function. Hence, the total horizontal
motion in a beam has contributions from both the betatron oscillations and the momentum
spread. When averaging over the particle distribution, if there are no coherent betatron or
energy oscillations, then

〈x〉 = 〈xβ〉 + 〈xδ〉 = 0 (8.29)

and the second moment (rms beam width) is

〈x2〉 = 〈(xβ + xδ)
2〉 = 〈x2

β〉 + 2〈xβxδ〉 + 〈x2
δ 〉 = βx〈Ix〉 + D2

x〈Iz〉. (8.30)

The two contributions are usually of comparable magnitude. It is assumed that there is no
correlation between the betatron and the synchrotron oscillations, so 〈xβxδ〉 = 0.
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There is, correspondingly, a vertical dispersion function Dy , where

y = yβ + yδ, yδ = Dy

�p

p0
. (8.31)

In a planar ring, the vertical dispersion is zero. If a ring contains vertical bending, or if there
are imperfections or misalignments in the ring, then the vertical dispersion will be nonzero,
but small. The equations satisfied by the horizontal and vertical dispersions are

D′′
x + Gx(s)Dx = 1

ρx

, D′′
y + Gy(s)Dy = − 1

ρy

. (8.32)

In a planar ring, ρ−1
y = 0 everywhere, hence in the ideal design, Dy = 0.

8.10. Momentum compaction factor

We saw that both the revolution frequency around the ring and also the orbit radius vary with
the fractional momentum offset of a particle. Let us formalize this relationship. First, from
ω = v/r we have, to the first order in small quantities,

�ω

ω
= �v

v
− �r

r
. (8.33)

From the elementary relativity theory

�v

v
= 1

γ 2

�p

p
. (8.34)

What about the relation of �r/r to �p/p? We define the momentum compaction factor αc via

�C

C
= �r

r
= αc

�p

p
. (8.35)

Then, for either the revolution frequency f , or the angular frequency ω,

�f

f
= �ω

ω
=
( 1

γ 2
− αc

)�p

p
. (8.36)

It is easily worked out that αc = 1 for motion in a uniform vertical magnetic field. In general,
α 	 1, for example, αc � 1.86 × 10−4 at LEP. The momentum compaction factor is related
to the (horizontal) dispersion via

αc =
〈Dx

ρx

〉
= 1

C

∮
Dx

ρx

ds. (8.37)

At higher orders, one expands in a series

�f

f
= 1

γ 2

�p

p
− αc1

�p

p
− αc2

(�p

p

)2
+ · · · . (8.38)

Basically, there are two competing contributions to the fractional change in the revolution
frequency �f/f . The first is that particles with higher momentum have a higher speed, and
hence, a higher revolution frequency. The second is that particles with higher momentum
travel in orbits of larger radius, and hence a lower revolution frequency. Equation (8.36)
describes the competition between these two effects. In ultrarelativistic rings, we can neglect
γ −2, and furthermore, approximate �p/p � �E/E, so that it is typical to write

�f

f
= −αc

�E

E
. (8.39)

This is done, for example, by Sands (1970).
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8.11. Chromaticity

The values of the betatron tunes can be affected by higher-order nonlinear terms in the orbital
focusing, but a more important contribution is, in fact, from the momentum offset. The focusing
by a quadrupole is slightly weaker for higher momentum particles. Hence, the betatron tunes
depend on the fractional momentum offset �p/p0. The (horizontal and vertical) chromaticity
ξx and ξy , respectively, is defined to the first order in small quantities via

Qx = Qx0 + ξx

�p

p0
, Qy = Qy0 + ξy

�p

p0
. (8.40)

Sextupole magnets can affect the value of the chromaticity. Chromaticity control is, in fact, one
of the principal uses of sextupole magnets in modern accelerators. To do this, the dispersion
must be nonzero at the location of a sextupole.

The chromaticity will provide us with one of the clearest examples of the effects on
nonlinear orbital dynamics on the spin/polarization in experimental work at the KEK-PS, to
be reviewed later in this paper.

9. Orbital beam emittances

9.1. General remarks

In the previous section we mainly discussed the orbital motion of individual particles, although
we did mention the Courant–Snyder invariant and the orbital emittances. Here, we discuss
the determination of the orbital beam emittances. We shall mainly review the statistical
mechanics of the effects of the synchrotron radiation on the orbital motion. The treatment
will be regrettably brief. We also include only a very short discussion of nonradiative beams.

Holt (1984) presents an excellent exposition on equilibration via stochastic fluctuations
and damping mechanisms in the context of electron and stochastic cooling. Jowett (1987) gives
an excellent lecture on the statistical mechanics of electron storage rings. (The above authors
do not discuss spin.) Jowett reminds the reader of the important fact that, the term ‘statistical
mechanics’ is not synonymous with ‘thermodynamic equilibrium’. Instead, an electron beam
in a storage ring receives energy from rf cavities and emits photons, leading to overall energy
loss and ‘random walks’ in response to the recoils from the photon emissions, etc, ultimately
establishing a nonthermal steady-state phase-space distribution for the electrons.

9.2. Nonradiative beams

The emittance of a nonradiative beam, i.e. not emitting synchrotron radiation (i.e. a hadron
beam or a muon beam), is generally determined at injection into a machine. Consequently, the
emittance is really determined at the source where the particles are created. In most modern
accelerator complexes, the beam is then transported to the final accelerator via a cascaded chain
of intermediate ‘booster’ accelerators. During the transport process, the normalized beam
emittances remain invariant. By Liouville’s theorem, the beam emittance remains invariant
during storage of the beam, as long as the beam is acted upon only by Hamiltonian forces.
This is an approximation which is violated in several ways.

The beam emittances may increase for various reasons (‘beam blowup’) during the
transport process. One obvious process is that the optics of one machine (the beta functions
and dispersion, etc) may not be matched to the next. Other sources of emittance blowup are
intrabeam scattering, because the particles all have the same sign of charge and hence, repel
one another, and also, beam–gas scattering with residual gas molecules or ions in the beam
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vacuum chamber. Such processes also apply to electron beams. We shall not discuss these
mechanisms in detail. These are non-Hamiltonian processes in the sense that they are random
stochastic interactions.

There are also two important mechanisms which are used to decrease the emittances
of nonradiative beams. The process of emittance reduction is called cooling. The two
mechanisms are called stochastic cooling and electron cooling. They are important in many
modern accelerator complexes. We briefly discuss electron cooling below.

The original idea of electron cooling was invented by Budker (1967) as a method to cool
antiproton beams, because the production of antiprotons, by scattering high-energy protons
onto a target, produces an antiproton beam with a very large emittance. Gersh Budker was the
pioneer of many innovative accelerator physics ideas. The Budker Institute of Nuclear Physics
(BINP) at Novosibirsk is named after him. Electron cooling also works for beams of protons
and heavy ions, and is used today for that purpose. Basically, proton beams are ‘hot’ in the
sense that they have a large transverse momentum and a large transverse emittance. To cool
the proton beam, i.e. to reduce its transverse emittance, a ‘cool’ beam of electrons, with the
same longitudinal velocity as the protons, but a much lower transverse momentum, is injected
collinearly with the protons in a straight section of the ring. The electron beam is matched to
the proton beam width and height. The basic idea is that of mixing a hot and a cold gas—the
gas molecules collide (via Coulomb scattering) and the hot gas (in this case, the protons) cools
down, and the cold gas (the electrons) heats up. The electrons are dumped at the end of the
straight section. A fresh batch of electrons is injected into the ring on the next pass of the
protons around the ring. In this way, the proton beam emittance is reduced.

The Coulomb potential is spin-independent, so the electron cooling process per se has little
effect on the proton spins. However, the presence of a (strong) solenoid in the ring (especially
if not fully compensated) can cause a possibly significant spin rotation. In fact, the overall
combination of the toroidal magnetic field and the vertical steering magnets in the electron
cooling section of the IUCF Cooler did lead to a significant (and initially unsuspected) spin
rotation in that ring. This caused a systematic error in the measurement of the spin tune at the
IUCF Cooler. The matter is reviewed in MSY1.

9.3. Synchrotron radiation formulae

The emission of photons induces recoils in the particle motion. This is a stochastic randomizing
mechanism which mixes up the particles in the orbital phase-space, and leads to a self-consistent
equilibrium emittance. The problem of radiative equilibrium is viewed in this review as an
application of fundamental statistical mechanical principles to the motion of particle beams in
accelerators.

We treat only the simplest case of synchrotron radiation in dipole magnets, i.e. the particle
motion is locally a circular arc of radius ρ in a locally uniform magnetic field B. The basic
formulae for classical synchrotron radiation were worked out in Schwinger’s (1949) classic
paper. We use formulae which are expressed in forms more directly suitable for ‘accelerator
coordinates’ from sources such as Sands (1970) below. The classical synchrotron radiation
power output, for motion at energy E in a circular arc of radius ρ, is

Pγ = 2

3

e2c

ρ2
β4γ 4 = 2

3

e2cβ4

(mc2)4

E4

ρ2
, (9.1)

where all the symbols have their usual meanings. The spectral density of the synchrotron
radiation (the radiated power per unit frequency interval) is, say, P(ω), where

Pγ =
∫ ∞

0
P(ω) dω. (9.2)
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One can write

P(ω) = 9
√

3

8π

Pγ

ωc

ω

ωc

∫ ∞

ω/ωc

K5/3(x) dx, (9.3)

where K5/3 is a modifed Bessel function of the second kind. The radiated power spectrum per
unit frequency exhibits a broad maximum around a ‘critical frequency’ ωc, given by

ωc = 3

2
ωrevγ

3 = 3

2

cγ 3

ρ
, (9.4)

where ω = c/ρ is the revolution frequency for ultrarelativistic motion. It was pointed out
in section 2, in connection with the Sokolov–Ternov work, that the perturbation expansion
parameter for calculating the synchrotron radiation power spectrum is

ξ = h̄ωc

E
= 3

2

h̄

mcρ
γ 2 = 3

2

λc

ρ
γ 2. (9.5)

Here, λc is the Compton wavelength. In present-day storage rings ξ 	 1, i.e. a typical photon
takes away only a small fraction of the electron energy. In the ‘quantum regime’ ξ � 1, and a
semiclassical approximation cannot be used.

The number of photons in the frequency interval (ω, ω + dω) is n(ω) = P(ω)/(h̄ω),
hence, the total rate of emission of photons is

N =
∫ ∞

0
P(ω)

dω

h̄ω
= 15

√
3

8

Pγ

uc
, (9.6)

where the critical energy is uc = h̄ωc. The mean photon energy is

〈u〉 = 1

N

∫ ∞

0
un(u) du = Pγ

N
= 8

15
√

3
uc, (9.7)

writing u = h̄ω and n(u)du for P(ω) dω/(h̄ω). Also relevant is the mean square photon
energy, which is 〈u2〉 = (11/27) u2

c and the product

N 〈u2〉 =
∫ ∞

0
u2n(u) du = 55

24
√

3
uc Pγ . (9.8)

Since the emission of a photon, of course, reduces the electron energy, it is quite common to
denote the relative energy change by δγ /γ = −h̄ω/E. The average time rate of change of
the second moment (δγ /γ )2, is given by

d(δγ /γ )2

dt
= N

〈 u2

E2

〉
= 55

24
√

3

e2h̄γ 5

m2c2

1

|ρ|3 . (9.9)

It is also standard to express the above formulae in terms of the so-called quantum constant,
which is proportional (and very nearly equal) to the electron Compton wavelength

Cq = 55

32
√

3

h̄

mc
� 0.992

h̄

mc
= 3.84 × 10−13 m. (9.10)

9.4. Beam parameters for radiative equilibrium

The next step is to calculate the contribution of the fluctuation terms, and to take suitable
statistical averages over the photon emissions, to derive the equilibrium beam width, energy
spread, etc in a synchrotron or storage ring. We merely state the results. Consult Sands (1970)
for the detailed derivations. The equilibrium relative energy spread is given by

σ 2
ε = σ 2

E

E2
0

= 〈Iz〉 = Cq

Js

∮
(1/|ρx |3) ds∮
(1/ρ2

x ) ds
γ 2

0 . (9.11)
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Here, Cq is the quantum constant and Js is a so-called ‘partition number’. The rms absolute
energy spread σE is therefore proportional to the square of the beam energy. As for the bunch
length (time-of-arrival),

στ = α

ωs
σε, (9.12)

where α is the momentum compaction factor, and ωs is the synchrotron oscillation frequency.
The expression for the equilibrium horizontal betatron actions is

〈Ix〉 = Cq

Jx

∮
(1/|ρx |3) H D

x ds∮
(1/ρ2

x ) ds
γ 2

0 . (9.13)

Here, Jx is another partition number and

H D
x ≡ γxD

2
x + 2αxDxD

′
x + βxD

′2
x . (9.14)

It is analogous to the Courant–Snyder invariant with Dx and D′
x substituted for xβ and x ′

β ,
respectively; however H D

x is not an invariant. The mean-square horizontal betatron beam size
is given by

σ 2
xβ(θ) = βx(θ)〈Ix〉 (9.15)

and the overall total mean-square beam size is

σ 2
x = βx〈Ix〉 + D2

xσ
2
ε . (9.16)

The average beam size varies with the azimuth. Typically, the value of βx is minimized and
Dx is made to vanish at the interaction points of a collider (both electron and hadron), so as to
increase the beam luminosity.

Note that both 〈Ix〉 and σ 2
ε are proportional to E2

0 , so the two contributions to the beam size
scale identically with the beam energy, and are of comparable magnitude at any beam energy.
Since 〈Ix〉 ∝ E2

0 , etc, one does not define a normalized emittance for a beam in radiative
equilibrium.

Multiplying by p0 = mcβ0γ0 gives the corresponding average value in the (x, px) phase-
space, which is

p0〈Ix〉 = h̄
55

32
√

3

1

Jx

∮
(1/|ρx |3) H D

x ds∮
(1/ρ2

x ) ds
γ 3

0 . (9.17)

Roughly taking ρx as uniform and estimating H D
x � ρ, and approximating Jx � 1 and

55/(32
√

3) � 1, yields p0〈Ix〉 � h̄ γ 3
0 . This number is far in excess of h̄ in present-day

storage rings.
The equilibrium value for the vertical betatron actions would depend on the quantity

H D
y ≡ γyD

2
y + 2αyDyD

′
y + βyD

′2
y . (9.18)

There is an obvious difficulty with the above expression, which is that Dy = D′
y = 0 in a

perfectly aligned planar ring. Hence, H D
y = 0, and so 〈Iy〉 = 0: the vertical beam size would

vanish. In practice, the vertical beam size is not zero, but it is small. Most e+e− beams in
high-energy accelerators are ‘flat beams’, which is another way of saying that 〈Ix〉 � 〈Iy〉,
possibly 〈Ix〉 � 100〈Iy〉. Note the following important points:

• The nonzero value of the vertical betatron emittance results from such things as
misalignments and imperfections in the machine, including (small) transversex–y betatron
coupling, which causes the vertical betatron oscillations to couple into the horizontal plane.
Hence, the value of the vertical betatron emittance is determined by machine imperfections.
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• In some machines such as modern synchrotron light sources, a certain amount of betatron
coupling is deliberately induced to increase the vertical emittance. This is because the
particle density is otherwise so high that the rate of beam loss from intrabeam scattering
becomes too high, and the beam lifetime is unacceptably reduced.

• Another factor, which is not important for real machines but is, nevertheless, a valid
theoretical point, is that the direction of an emitted photon is not exactly parallel to the
particle momentum. The photon does carry away a small transverse momentum, and this
does make a small, but nonzero, contribution to 〈Iy〉. The influence of such vertical recoils
on the electron spins was studied by Bell and Leinaas (1987) for a model weak-focusing
ring. The Bell–Leinaas work is reviewed in section 27.12.

The orbital damping time constants are typically a few milliseconds (in rings with bending
radii of a few metres, and energies of a few GeV), up to a few seconds in a very large high-
energy ring like LEP. A reasonable order-of-magnitude estimate is 1–100 ms. The polarization
buildup time constant, by contrast, can be several hours. Hence, the orbital beam distribution
can be considered to be already in equilibrium when deriving the formula for the equilibrium
radiative polarization of the spins.

10. Maps and other basic concepts of spin dynamics

10.1. Maps and Poincaré sections

Obviously, the transformation of a spin vector from an initial azimuth θi to a final azimuth
θf is a rotation. If we employ a spinor (vector) representation, the map of the spin motion is
an element of the Lie group SU(2) or SO(3), respectively. Frequently, the map of greatest
interest is the one-turn map (OTM) around the ring circumference. The starting and ending
azimuths are the same: θf = θi + 2π . The one-turn map, say MOTM, is, in general, a function of
θi, and also of the initial orbital phase-space point zi, where we employ z to collectively denote
all the orbital dynamical variables. Instead of solving differential equations for the orbital and
spin motion continuously around the ring, we examine it on successive passes around the ring,
at a fixed azimuth, say θ∗. This technique of analysing the motion is called a Poincaré section.
Note that a map is more general than a Poincaré section. A map can apply to a single-pass
system, such as a linear accelerator. A Poincaré section is a specialized use of maps, for
systems with a period in the motion (2π in the aximuth θ in our case).

An important special case is the spin map for particle motion on the closed orbit, i.e.
z = 0. Note that for the orbital motion this is trivial; the orbital map is just the identity, but
for the spin, the map is a nontrivial rotation even on the closed orbit. Let us employ the spinor
representation. One can parametrize the one-turn map on the closed orbit via

M(θ∗, θ∗ + 2π) = e−iπνc.o.σ·n0 . (10.1)

The vector n0 is the spin rotation axis of the one-turn spin map at the azimuth θ∗. We shall
discuss the other parameter, νc.o, shortly. The vector n0(θ) is the solution of the spin motion on
the closed orbit which repeats after one turn, and therefore, repeats after every turn. In general,
the long-term polarization of the beam points along n0. This is actually not strictly true, one
must solve for the spin motion on all the off-axis orbital trajectories and take a statistical average,
and it is possible that the answer might not point along n0. Mane (2003b) has given an example
of a model accelerator, where the average spin direction does not point along n0. However,
for all practical purposes, we may take n0(θ) to be the long-term polarization direction, also
called the ‘stable polarization direction’, at the azimuth θ .
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The other parameter, νc.o., is the spin tune on the closed orbit. In general, on any orbital
trajectory, the spin tune is defined as the secular rate of the spin phase advance per turn,
around the ring circumference. This is completely analogous to the orbital motion, where the
orbital tunes are defined as the secular rates of the phase advances of the orbital oscillation
modes. However, in the case of the spin motion, there is a rate of spin phase advance even on
the closed orbit z = 0. The spin phase advance over one turn around the closed orbit, is the
spin rotation angle of the one-turn map, and the closed orbit spin tune is this angle divided
by 2π . We shall generally drop the subscript on νc.o., and just write ν. The reader should be
able to deduce from the context whether ν refers to the closed orbit, or to an off-axis orbital
trajectory.

10.2. Uniqueness of solutions

Note that the solution pair (−n0, −νc.o.) would yield exactly the same one-turn map for the
spin motion. This is also true for off-axis trajectories, as long as the trajectory is not on a spin–
orbit resonance. However, for the spin tune, a Poincaré section cannot, in general, distinguish
between ν and 1 − ν. We drop the subscript on νc.o. because the preceding statement applies
to all orbits, not just the closed orbit. A Poincaré section also cannot yield the integer part of
the spin tune. Hence, there is considerable ambiguity in deciding what ‘the’ value of the spin
tune is. Only the fractional part [ν] can be meaningfully defined, and even then, there are two
possibilities, namely, [ν] and 1 − [ν].

10.3. Design and closed orbit

We now address an important issue which is frequently not addressed clearly in the literature,
causing different authors to use the same notation and terminology to mean different things.
We need to distinguish between the closed orbit and the design orbit of a ring. The design orbit
is a theoretical construct, for a paper design of a machine where all the magnets are perfectly
aligned. In a real accelerator, due to inevitable tolerances of manufacture and surveying, etc,
the closed orbit will differ from the design orbit by small imperfections. Most theoretical
treatments of map techniques, etc, assume that the orbital motion due to the imperfections has
already been solved, and so the phase-space point z = 0 refers to the imperfect closed orbit,
not the design orbit. Otherwise, when treating simple model systems, e.g. in textbooks, the
imperfections are taken as zero. If the origin of the map were not referred to the imperfect
closed orbit, then there would be two perturbation expansions to deal with simultaneously,
namely, powers of the amplitude of the imperfections, as well as powers of the amplitudes of
the orbital oscillations.

As we shall see below, some of the depolarizing spin resonances are driven by closed
orbit imperfections, and others by the orbital oscillations, and some by a combination of both.
Hence, the imperfections are frequently not negligible when treating the spin motion. In
writing the one-turn spin map above, our use of n0 and νc.o. refers to the imperfect closed orbit.
We shall describe several formalisms below, to calculate the spin quantization axis n and the
spin tune ν, as functions of the orbital phase-space variables. In all of those formalisms, it
will be assumed that the point z = 0 refers to the imperfect closed orbit, and the spin motion
on the imperfect closed orbit has already been solved, before proceeding to z �= 0. We shall
see one example later in this paper, of a so-called ‘hybrid spin resonance’, where the spin
precessions resonate with a combination of both the orbital oscillations and the closed orbit
imperfections.
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10.4. Spin tune for a planar ring

We now write down and solve the equation of motion on the design orbit of a planar ring with
a uniform bending radius, so R = ρ and x = 0, etc. We have discussed this problem on more
than one occasion already. Then, (e/p)(B⊥/c) = −e3/ρ and R = ρ and so

W = R (aγ0 + 1)
e3

ρ
− R

ρ
e3 = aγ e3, (10.2)

where γ0 is the Lorentz factor of the reference particle. The spin precession equation in the
accelerator coordinates is thus

ds
dθ

= aγ0 e3 × s. (10.3)

The value of the spin tune is ν0 = aγ0. The above conclusion holds for any planar ring, e.g.
with reverse bends, as long as the overall orbital bend angle is 360˚ (i.e. no figure of eight
machines). The solution for n0 is clearly n0 = e3. The expression for the spin tune in a planar
ring is so important that we denote it by the special symbol ν0.

The spin tune in a perfectly aligned planar ring is proportional to the average beam
energy. The consequences of this simple fact are profound. It implies (among other things)
that, if a spin-polarized beam is injected into an accelerator at a low energy and accelerated
to a high energy, the spins will cross resonances whenever the value of ν0 equals an integer
(see (3.3), with ν0 = m0). Such resonances will occur at regular energy intervals, spaced by
�(aγ ) = 1, i.e. �E = mc2/a. We saw earlier that this implies that a resonance is crossed for
every 440.65 MeV increase in the beam energy for electrons, while for protons, a resonance
is crossed every 523.34 MeV. (There are also other resonances, of course, whose locations
depend on the values of the orbital tunes.)

10.5. Resonance crossing in a planar ring

Almost all synchrotrons are ‘fast-cycling’, which means that the rate of beam energy increase
is fairly rapid, and the beam is not stored at the top energy flattop for very long. Instead, it
is delivered to an external beamline, and a fresh batch of particles is injected and accelerated.
Under such circumstances, there is usually sufficient time for a coherence to develop between
the spin precession and only the first-order combinations of the orbital oscillations. The
resonance spectrum for acceleration in a planar synchrotron is given by

ν0 = m0 ± mxQx ± myQy (mx,y ∈ {0, 1}, |mx | + |my | = 1). (10.4)

In addition to the above, the synchrotron oscillations (energy oscillations) are also important.
This is because ν = aγ , and since the value of γ has a spread (energy spread of the beam),
the spin tunes also have a spread of values.

In the present subsection, we shall treat only rings where the unperturbed spin direction
(direction of n0) is vertical in the arcs. There are important modifications to the statements
below if n0 is not vertical, as can happen in a ring with one or more partial Snakes. Since we
have have not discussed (partial) Snakes yet, we shall revisit this topic in section 13.4, after
we have introduced the concept of partial Snakes. However, to understand why partial Snakes
are useful, we must first understand the simpler case of rings without such devices.

If, then, the spins precess around the vertical axis on the design orbit, the contribution
of additional vertical magnetic fields from perturbations does not change the spin precession
axis, and thus, does not decohere the spins (thereby depolarizing the beam). Hence, at the
leading order, the leading sources of depolarizing perturbations are due to horizontal magnetic
fields. The horizontal magnetic fields can arise from either of two sources: motion on the
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vertical component of the imperfect closed orbit, caused by magnet errors or misalignments,
and from the vertical component of the orbital oscillations. The latter can be due to the vertical
betatron oscillations, or to coupling between the horizontal and vertical orbital motion, so that
the horizontal betatron oscillations couple into the vertical plane.

We speak of the vertical component of the orbital motion, because the principal source
of the perturbations is from the orbital motion through the quadrupoles, and the quadrupole
magnetic field is Bquad ∝ ye1 + xe3. Hence, the vertical orbital motion induces horizontal (in
fact radial) perturbations in the spin precession vector W.

The resonances where the spins couple to the perturbations from an imperfect closed
orbit are called, not surprisingly, ‘imperfection’ resonances. The resonances where the spins
couple to the betatron oscillations are called ‘intrinsic’ resonances, because they exist even in
a machine without misalignments, and are intrinsic to the accelerator.

The horizontal betatron oscillations can also drive depolarizing spin resonances, but in
a planar ring as we have defined it here, such resonances typically arise via coupling of the
transverse (x, y) orbital motion, so that the horizontal betatron oscillations can drive radial
perturbing terms in the spin precession vector. Intrinsic resonances driven by the horizontal
betatron oscillations are frequently called ‘coupling’ resonances for this reason. However,
we shall see in section 13.4, that in a ring equipped with one or more partial Snakes, the
horizontal betatron oscillations can drive intrinsic resonances even if there is no transverse
x–y coupling in the ring.

In the acceleration of polarized proton beams in the AGS for injection into RHIC, the spin
tune crosses a total of 42 imperfection resonances, 4 strong and 3 weak intrinsic resonances
(due to the vertical betatron oscillations) and 4 coupling resonances.

10.6. Resonances for stored beams

In a storage ring, where the particles circulate at a fixed energy for long periods, higher-order
resonances can also be important. For example, numerous higher-order spin resonances are
visible in the SPEAR polarization data shown in figure 6. Note also, in that figure, that the
horizontal betatron spin resonance is wider than the vertical betatron spin resonance.

10.7. Symplecticity and unitarity

10.7.1. Phase-space flows. For a dynamical system whose equations of motion are derived
from a Hamiltonian, the phase-space trajectories (q(t), p(t)) lie on a so-called symplectic
manifold. Two good and reasonably modern texts on the subject are by José and Saletan
(1998) and Goldstein et al (2002). Basically, the values of Poisson brackets are preserved
on a symplectic manifold. The transformation of the phase-space variables, from an initial
azimuth θi, to a final azimuth θf , is then canonical, as required by Hamilton’s equations. In
the simplest case of only one coordinate and conjugate momentum, the symplectic condition
implies that the phase-space area of an infinitesimal phase-space element (dq, dp) is preserved
along a trajectory. In higher dimensions, the symplectic conditions are more restrictive than
just simple area (or volume) preservation.

For the spin motion, the corresponding concept is unitarity. Essentially, unitarity means
the length of a (classical) spin vector does not change during the evolution of the system. The
most general spin transformation is a change of direction (rotation).

10.7.2. Symplectic matrices. Consider the important special case of linear orbital dynamics.
The origin is at the closed orbit. The mapping of the phase-space flows of a linear dynamical
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Hamiltonian system is described by a symplectic matrix. Recall that a square matrix M is
called orthogonal, if it satisfies the condition MTIM = I , where I is the unit matrix and MT

is the transpose of M . We usually write this more simply as MTM = I . A symplectic matrix
is defined analogously. A symplectic matrix is always even-dimensional, say 2n, because it
describes n coordinates and n conjugate momenta. Define the (2n) × (2n) skew-symmetric
matrix

J =
(

0 I

−I 0

)
. (10.5)

Then M is a symplectic matrix if it satisfies the condition

MTJM = J. (10.6)

A symplectic matrix has unit determinant. In addition, for stable particle motion, the
eigenvalues of a symplectic matrix must lie on the unit circle. Hence, they must come in
complex conjugate pairs, e±iµ, where µ is real. For our purposes, we parametrize the orbital
motion as a 6-dimensional column vector

X =




x

px/p0

y

py/p0

z

δ




, (10.7)

where δ = �p/p0 is the relative momentum offset (and p0 is the momentum of the reference
particle). Here, we group the coordinates and momenta in pairs. We redefine the skew-
symmetric J in 2 × 2 blocks via

J =




0 1
−1 0

0 1
−1 0

0 1
−1 0




, (10.8)

where blanks denote zeros in the above matrix. Then, an orbital mapping M(θi, θf), in the
approximation of linear dynamics, is described by a symplectic matrix with the above definition
of J .

Much of the formalism below, for the use of eigenvectors of symplectic matrices for use
in accelerator dynamics, was developed by Chao (1979). The map of principal interest to us
is the one-turn map Motm = M(θi, θi + 2π). We parametrize the orbital motion using the
6-dimensional eigenvectors of the one-turn map Ej with corresponding eigenvalues eiµj :

MotmEj = eiµj Ej . (10.9)

The eigenvalues come in complex conjugate pairs, j = ±1, ±2, ±3, where µ−j = −µj ,
j = 1, 2, 3. Note that E−j = E∗

j . It is easily seen that if the horizontal, vertical and
longitudinal motions are uncoupled, that µ1 = 2πQx , µ2 = 2πQy and µ3 = 2πQs , where
Qx,y,s are the horizontal betatron, vertical betatron and synchrotron tunes, respectively. The
symplectic eigenvector formalism can accomodate coupling between the orbital planes without
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any change of notation. The orthonormality relation between the eigenvectors is

E
†
j JEj = i j > 0,

E
†
j JEj = −i j < 0,

E
†
j JEk = 0 j �= k.

(10.10)

We can then decompose the column vector X into a sum of eigenvectors X = ∑
j aj Ej . In

the absence of coherent orbital motion, i.e. 〈a±j 〉 = 0, the statistical average values of the
second moments 〈|a±j |2〉 are proportional to 〈Ij 〉.

Of particular interest, is the case where the orbit is perturbed by the emission of a photon of
synchrotron radiation. This occurs only for ultrarelativistic motion, hence we may approximate
δ = �γ/γ0. In the approximation of point photon emission, the difference δX = Xf − Xi

between the initial and final orbital motion is zero except for the final component δ, i.e.

δX � − h̄ωph

E




0
0
0
0
0
1




. (10.11)

In the case of nonlinear orbital dynamics, δX would depend on the initial phase-space point
Xi, but for linear dynamics, it does not. This has led some authors to commit the mistake of
oversimplifying by saying ‘without loss of generality, we can assume Xi = 0 before a photon
emission’. This is not so; a particle can be anywhere in the phase-space just prior to a photon
emission, not necessarily on the closed orbit. It is a subtle but important point. With an obvious
notation, we can define a partial derivative

γ
∂X

∂γ
=




0
0
0
0
0
1




, (10.12)

and write

δX � − h̄ωph

E

(
γ

∂X

∂γ

)
. (10.13)

We decompose γ (∂X/∂γ ) into eigenvectors. This will be important below. Using the
orthonormality relations, the answer is

γ
∂X

∂γ
=
∑

j

γ
∂aj

∂γ
Ej , (10.14)

where

γ
∂aj

∂γ
= −iE∗

5j j > 0,

γ
∂aj

∂γ
= iE∗

5j j < 0.

(10.15)
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10.7.3. Lie algebraic formalism. The use of Lie algebra for accelerator physics was pioneered
by Dragt (see, e.g., Dragt and Finn (1976)). The Poisson brackets of two operators f and g

are denoted by {f, g} =: f : g. We seek the phase-space variables z at time t , starting from
z0 at t = 0. The equation of motion for the map M is

dM

dt
= M : −H(z0) : . (10.16)

The formal solution is

M = exp(t : −H(z0) :). (10.17)

An operator of the form exp(: f :) is called a Lie transformation. The exponential is defined
by its power series expansion

exp(: f :) ≡
∞∑

j=0

: f :j

j !
. (10.18)

Here the powers mean the following, when acting on a function g(z)

: f :0 g = g, : f :2 g = {f, {f, g}}, (10.19)

etc. For brevity, we drop explicit mention of t and z0 in (10.17) and write just e−:H :. In practice,
H(z) is usually expressed as a power series in z. Then e−:H : can be decomposed into the form

e−:H : = · · · e−:H3:e−:H2:e−:H1:, (10.20)

where Hj contains terms of order zj . For practical usage, the series is truncated at some suitable
order. The term H1 causes a closed orbit distortion, and the term H2 determines the linear
orbital dynamics. By a suitable redefinition of the location of the origin, we can ‘complete the
square’ and eliminate the linear terms in H1, so it is conventional to express (10.20) starting
from H2. We concatenate the Lie transformations of all the beamline elements from θ = 0 to
2π , and decompose the map into a product to obtain

z̄ = · · · e−:H3:e−:H2:e−:H1:z = e−:H :z. (10.21)

The convergence of the resulting series in z is not guaranteed.
Dragt and Finn (1976) treated only the orbital motion, but even though the spin variables

do not come in canonically conjugate pairs (because there are three of them), the Lie algebraic
formalism is affected not in the least. The extension to include spin was published by Yokoya
(1987). We follow Yokoya (1987) below. We write the Hamiltonian in a beamline element in
the form

H = Horb(z) + W(z) · s. (10.22)

We denote the spin precession vector by W. Then,

z̄i = e−:Horb+W·s:zi, s̄i = e−:Horb+W·s:si . (10.23)

As we have already stated, we neglect the effect of the spin on the orbit, so one can simplify

z̄i = e−:Horb:zi, s̄i = e−:Horb+W·s:si . (10.24)

Expanding the solution for s̄i , the first term is si , and the second is W × s because : s : and
Horb commute. At the next order one has

{W · s, W × s} = W × (W × s) +
∑

j

sj {Wj, W} × s. (10.25)
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The second term on the rhs will be ignored because it is proportional to O(h̄2). Hence, Planck’s
constant does lurk in the background, in the classical spin model. The Lie transformation for
the one-turn spin–orbit map T can be expressed as

T = · · · e−:W3·s:e−:W2·s:e−:W1·s:e−:W0·s: · · · e−:H3:e−:H2:e−:H1:. (10.26)

Note that the orbital part starts from H1 (the closed orbit distortions, which can be removed
by a change of origin), but the spin terms start with W0 · s. This is simply an expression of the
fact that there is a nontrivial spin rotation on the accelerator closed orbit. We shall develop the
Lie algebra formalism later in this review.

10.7.4. Symplectic and unitary integrators. Generally it is essential to preserve the
symplecticity of the motion during numerical integration of the equations of motion. At
the simplest level, a violation of symplecticity will lead to nonconservation of probability in
the phase-space. Note that it is, in general, impossible to create an integrator which is both
symplectic and conservative. Generally, a symplectic integrator conserves the energy of a
‘nearby’ Hamiltonian which is close, in some sense, to the original Hamiltonian.

Consider a mapping for a timestep t , say M(t). An nth order symplectic integrator is
defined to be a symplectic approximation to M(t), say Tn(t), which equals M(t) up to error
terms of O(tn+1), i.e.

Tn(t) = M(t) + O(tn+1) ≡ exp(t : −H : +tn+1Rn), (10.27)

where Rn is a remainder term whose detailed form is not important. Ruth (1983) derived
an example of a fourth order symplectic integrator. Forest (1992) has given examples of
symplectic integrators up to n = 6. In a beautiful paper, Yoshida (1990) showed how to
construct higher even-order symplectic integrators starting from only a second-order symmetric
symplectic integrator T2(t), such as the symmetric integrator that we presented above. It is
essential that the integrator must be symmetric, i.e. one must have

T2n(−t)T2n(t) = 1 (10.28)

exactly, not merely to some degree of approximation. Given T2n(t), Yoshida defined

T2n+2(t) = T2n(at)T2n(bt)T2n(at), (10.29)

subject to the conditions

2a + b = 1, 2a2n+1 + b2n+1 = 0. (10.30)

This has the solutions

a = 1

2 − 21/(2n+1)
, b = − 21/(2n+1)

2 − 21/(2n+1)
. (10.31)

Then T2n+2(t) is a symmetric symplectic integrator of order 2n + 2. A significant feature
of the above symplectic integrators is that the value of b is negative. It can be shown that,
beyond the second order, an explicit symplectic integrator must necessarily contain negative
intermediate timesteps.

Mane (1993) extended Yoshida’s procedure to include the spin. In the case of spin, the
map is unitary. The spin equation of motion can be expressed in the form

ds
dt

= W(z) × s =: −W · s : s, (10.32)

where the Poisson brackets of the spin variables are

{si, sj } =: si : sj =
∑

k

εijksk. (10.33)
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Given an orbital second order symmetric symplectic integrator, one can construct two possible
symmetric second order spin–orbit integrators, namely

Sa
2 = exp

(
t

2
: −W · s :

)
T2(t) exp

(
t

2
: −W · s :

)
,

Sb
2 = T2

(
t

2

)
exp(t : −W · s :) T2

(
t

2

)
.

(10.34)

Yoshida’s procedure can be used to build up higher order spin–orbit integrators. The integrator
Sb

2 is precisely the case of k = 2 by Balandin and Golubeva (1993). Their integrator has been
coded in a programme VasiLIE (Balandin and Golubeva 1992). The above authors have written
a detailed paper on the use of Hamiltonian methods for nonradiative, spin 1

2 beam dynamics
(Balandin and Golubeva 1997).

Other second-order symmetric symplectic–unitary spin–orbit integrators are possible. Let
us add a spin term to the Hamiltonian:

H = T ( p) + V (q) + W(q, p) · s. (10.35)

The integration scheme is now

S2 =




qi+1/2 = qi +
ε

2
∇pT ( pi ),

pi+1/2 = pi − ε

2
∇qV (qi+1/2),

si+1 = eε:−W(qi+(1/2),pi+1/2)·si : si ,

pi+1 = pi+1/2 − ε

2
∇qV (qi+1/2),

qi+1 = qi+1/2 +
ε

2
∇pT ( pi+1).

(10.36)

The spin tracking code SPINK, used for studies at RHIC (Luccio et al 1999), employs an
integrator of the form S2 above, i.e. the full spin rotation is applied in the middle of a beamline
element, as a ‘kick’ to the spin, while the kick to the orbit is split into two equal pieces. Note,
however, that SPINK was developed independently of Mane’s work.

11. Muon storage rings

11.1. General remarks

One can proceed with yet more theory, but we now have enough material to examine in depth
the spin dynamics of a real storage ring, i.e. experimental work in full, not merely isolated
illustrations of specific points of theory. Curiously enough, our first detailed description of
actual rings, as opposed to formal theory, is for neither electrons nor protons, but instead, for
muon storage rings. These are nonradiative leptonic systems. The absence of synchrotron
radiation simplifies the accelerator dynamics. We consider three examples below. The first is
an actual ring, built at BNL to measure the anomalous magnetic moment of the muon to high
precision (experiment E821). The purpose of the ring was, therefore, explicitly to carefully
analyse the spin precessions of the particles. The experiment has recently been completed,
and the results are of great interest to the scientific community because they reveal a slight
discrepancy between theory and experiment. Already, mistakes have been found in earlier
theoretical work, in reanalysis of calculations motivated by the new experimental results. The
second muon storage ring is a high-energy (50 × 50 GeV) µ+µ− collider. Our analysis will
be much more cursory, and mainly limited to a brief statement of the physics goals of such
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a machine, and the use of spin dynamics to calibrate the beam energy of the ring. The third
muon storage ring is also a proposed machine, once again, to perform a high-precision test of
the Standard Model. The goal is to measure the muon electric dipole moment.

11.2. BNL muon g − 2 ring

11.2.1. Background. One of the most important applications of spin dynamics in accelerators
(or otherwise), is to perform precision tests of the Standard Model. Many experiments have
been performed over the years to measure the anomalous magnetic moments of the leptons: the
electron, positron and the positive and negative muons. The anomalous magnetic moments of
the electron and positron are essentially pure QED effects. Because of its higher mass, however,
the muon has stronger non-QED couplings, hence the value of the anomalous magnetic moment
of the muon contains significant additional contributions from the strong and weak interactions.
There is also the possibility of contributions from physics beyond the Standard Model. In
general, the sensitivity of the magnetic moment anomaly to couplings to other particles goes
as the square of the mass, so

�a

a
∝ m2

M2
, (11.1)

where m is the lepton mass and M is the mass scale of ‘new physics’. Since mµ/me � 206, it
follows that the magnetic moment anomaly of the muon is roughly 40 000 times more sensitive
to contributions from new physics.

The first theoretical calculation of the anomalous magnetic moment of the electron was
by Schwinger (1948), who found

aSchwinger = α

2π
, (11.2)

where α is the electromagnetic fine-structure constant. This is usually called the Schwinger
term. Schwinger’s result applies to any Dirac particle; it is also the leading order contribution to
the anomalous magnetic moment of the muon. At higher orders, nonelectromagnetic (weak and
hadronic) processes also contribute measurably to aµ. Since perturbative QCD calculations are
difficult, the relevant hadronic cross-sections are measured experimentally, in an e+e− collider,
and the results are used to estimate the hadronic contribution to aµ. Such measurements were
carried out at the VEPP-2M collider as a contrbution to the muon g − 2 determination. See,
for example, Akhmetshin et al (2002).

Muons are not stable particles, hence they cannot be stored in modified Penning traps.
Their rest frame decay lifetime is approximately 2.2 µs. All experiments to measure the
µ± anomalous magnetic moments have circulated muons in a magnetic field, to measure the
spin precession frequency. In fact, prior to the modern Penning trap work for electrons (e.g.
see Dehmelt (1986)), the previous best measurements of the e+ and e− anomalous magnetic
moments also circulated electrons and positrons in a magnetic field. The review by Rich
and Wesley (1972) describes this earlier work on electrons and positrons, including early
experiments on the lepton g factors.

An experiment has recently been concluded at BNL to measure the anomalous magnetic
moment of the positive and negative muons. The experiment consisted of a custom-built
storage ring, with an extremely homogeneous, uniform magnetic field, specifically designed to
circulate muons (Danby et al 2001). It was an improved version of an earlier CERN experiment
which also consisted of a custom-built muon storage ring (Bailey et al 1979, Combley 1981).
The value of the magnetic moment anomaly of the positive muon is (Bennett et al 2002)

aµ+ = 0.001 165 9204(7)(5) (0.7 ppm), (11.3)
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where the first error is statistical, and the second is systematic. A recently announced value
for the negative muon is (Bennett et al 2004)

aµ− = 0.001 165 9214(8)(3) (0.7 ppm), (11.4)

giving a world average value of

aµ(exp) = 0.001 165 9208(6) (0.5 ppm). (11.5)

Roberts (2004) gives an up-to-date review of the lepton (magnetic and electric) dipole moments.
Our main interest here is the spin dynamics involved in the operation of the BNL

experiment. It was, arguably, the closest approximation of a real machine to the theoretically
ideal model of a pure vertical magnetic field. It was a nonradiative system, thereby avoiding
the complications of synchrotron radiation. It operated at an energy (actually, Lorentz factor)
called the ‘magic gamma’ which is an interesting feature described briefly earlier. It was also
a superconducting magnet, although that is not relevant to this paper. We shall examine the
spin dynamics issues of the BNL experiment below.

To date, there have been three high-precision experiments at CERN to measure the
anomalous magnetic moment of the muon (Charpak et al 1961, Bailey et al 1972, 1979). An
experiment was also performed at Berkeley by Henry et al (1969). The Berkeley experiment
precessed the muon spins in a solenoid, similar to the electron g−2 experiments, and measured
aµ to an accuracy of ±5.7%. All the other experiments have used dipole magnetic fields. The
first CERN experiment circulated muons inside a 6 m long bending magnet. The second and
third CERN experiments as well as the BNL experiment operated storage rings custom-built
to circulate muons to measure aµ. Both the third CERN experiment and the BNL experiment
operated at the ‘magic gamma’. A recent detailed review of all the muon g − 2 experiments
is given by Farley and Semertzidis (2004). Their review quotes heavily from an earlier review
by Farley and Picasso (1990).

11.2.2. Spin precession. The basic spin precession equations were written earlier in this paper,
but we repeat the relevant equations to keep the discussion self-contained. To avoid needless
complications, we assume here that the momentum and spin vectors lie in the horizontal
plane, and are hence orthogonal to the magnetic field, which is vertical. The orbital revolution
frequency (cyclotron frequency) in a uniform vertical magnetic field B, for a particle of mass
m and charge e, is given by solving the equation

dp
dt

= e β × B. (11.6)

The cyclotron (angular) frequency vector is

Ωc = − e

mcγ
B. (11.7)

The spin precession (angular) frequency is given by the equation

ds
dt

= − e

mc

(
a +

1

γ

)
B × s (11.8)

and is

Ωs = − e

mc

(
a +

1

γ

)
B. (11.9)

The precession frequency of the spin, in a frame rotating with the orbit, is the difference

Ωdiff = Ωs − Ωc = −a
e

mc
B. (11.10)
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In particular, this is the spin precession frequency of the longitudinal spin component
s‖ ≡ s · β̂β̂. Significantly, �diff is proportional to a itself. Hence, there is no need to measure
two large quantities �s and �c individually, and to subtract them to determine the value of a.
A measurement of the precession frequency of the longitudinal spin component yields the
value of a directly. This is the basis of the experiment to measure the muon anomalous
magnetic moment. Note that the fact that the longitudinal polarization remains constant if
g = 2 exactly, was known a long time ago, even before the publication of the spin precession
equation by Bargmann et al (1959) (although not before the work of Thomas (1927)). It was
noted in the 1957 parity violation experiment by Garwin et al (1957). Of course the goal
of their experiment, which measured the spin precession of stopped muons, was to prove the
nonconservation of parity in the weak interactions, a major crisis of physics in 1957, and not
to measure the anomalous magnetic moment of the muon. As a subsidiary finding of their
experiment, they reported that gµ+ = 2.00 ± 0.10, and, with limited accuracy, that gµ− = gµ+ .

The fundamental challenge of the BNL experiment then, was to measure ω‖ very
accurately. The magnetic field B had to be made as homogeneous as possible, and its value
had to be accurately measured. In the BNL experiment, this meant calibrating the value of
B to one part in 107. The magnetic field was calibrated using NMR probes to measure the
proton spin precession frequency, ωp, in the magnetic field. The result was converted to
the muon spin precession frequency (for muons at rest) ωµ = geB/(2mc) using the ratio
λ = ωµ/ωp = µµ/µp, where µµ and µp are the magnetic moments of the muon and proton,
respectively. The value of λ is known to 28 ppb from the hyperfine structure of muonium
(Particle Data Book, Eidelman et al (2004)), namely, λ = 3.183 345 118(89). Muonium is a
bound state of a positive muon and an electron, a ‘leptonic atom’. It should not be confused
with a ‘muonic atom’ which is the bound state of a proton and a negative muon.

Most accelerators consist of lumped elements, but this was not possible for the muon g−2
ring. A uniform magnetic field implies continuous coverage around the circumference. Hence,
the particles entered the storage volume through the fringe field of the main magnet via an
‘inflector’ channel (superconducting magnet) which nulled the local field, but without leaking
flux into the storage region. Consequently, there was no phase-space matching of the incoming
beam to the storage ring optics. The mismatch of the inflector and storage ring acceptances
reduced the injection efficiency of the incoming muon beam to about 8.3%. A good, albeit
brief, summary of the accelerator physics of the muon g − 2 ring is given by Roberts (2002).

As the muons circulate in the ring, they decay into electrons (for µ−) or into positrons
(for µ+), plus neutrinos. It is a three-body decay, hence, the decay electrons have an angular
and energy distribution. For brevity, we shall omit saying ‘electrons or positrons’. The angular
distribution of the decay electrons in the muon rest frame (centre-of-mass of the decay products)
is (Barr et al 1989)

d2N

dx d cos θ
= N [x2(3 − 2x) − P̂ x2(1 − 2x) cos θ ]. (11.11)

Here, N denotes the number of muon decays, x is the ratio of the electron energy Ee to its
maximum possible energy (�mµc2/2), θ is the angle of the electron in the muon rest frame
with respect to the direction v̂ of the muon in the lab frame and P̂ is the product of the muon
charge (in units of the positron charge) and the v̂ component of the muon polarization. From
the above, one can deduce that the count rate at a detector, for electrons or positrons with
energies greater than a threshold E in the lab frame, varies like (Bennett et al 2002)

N(t) = N0(E) e−t/(γ τ)[1 + A(E) cos(ωa t + ψ0(E))], (11.12)

where N0 is a normalization constant, A an asymmetry parameter and ψ0 an initial phase. The
above is a sinusoidal function with an exponential decay envelope. By fitting to the above
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profile, one can extract the value of ωa . It is tacitly assumed above, that ψ0 is the same for
all the particles, and depends only on the threshold energy E. Note that if ψ0 were uniformly
distributed over the interval [0, 2π ], then the asymmetry term would average to zero and it
would not be possible to determine ωa from N(t). The incoming muon beam must, therefore,
be polarized.

11.2.3. Orbital focusing. A uniform vertical magnetic field is not sufficient, on its own, to
store particles, since it does not constrain the vertical velocity components of the particles.
Vertical focusing of the particle orbits is required. Normally, quadrupole magnets are employed
to accomplish the task. This cannot be done in the present case, because the magnetic field
must be homogeneous, and cannot contain a quadrupole component. Hence electric fields
were used to focus the particles, via electrostatic quadrupoles. When an electric field E is
present, the equation for Ωlong acquires some extra terms:

Ωlong = − e

mc

[
aB −

(
a − 1

β2γ 2

)
β × E

]
. (11.13)

As we saw earlier, this expression is valid in general, for arbitrary B and E, but it applies only to
the precession of the longitudinal spin component, hence, the notation Ωlong. This expression
leads to a significant conclusion: if the value of the particle energy is chosen such that γ = γ∗,
where

a − 1

β2∗γ 2∗
= 0, (11.14)

then the electric field will have no effect on Ωlong. The value γ∗ is called the ‘magic’ gamma.
Its value is γ∗ � 29.3 for muons. Since the muon lifetime in its rest frame is approximately
2.2 µs, the time-dilated lifetime of the stored muon beam was approximately 64.4 µs. Since
the value of aµ is already known approximately from previous experiments, we can solve the
above equation to deduce that the value of the ‘magic’ muon momentum is

p∗ = mcβ∗γ∗ = mc√
aµ

� 3.094 GeV c−1. (11.15)

The above value was thus chosen to be the design momentum of the ring. For off-momentum
particles, the contribution of the electric field to Ωlong was less than one part in a million
(Semertzidis et al 2003). The strength of the magnetic field in the ring was B � 1.45 T,
leading to an orbit radius of R0 = 7112 mm (Danby et al 2001).

However, the quadrupoles could not span the entire circumference of the ring, because
space must be available to inject the particles, etc. Hence, there was some azimuthal
nonuniformity in the focusing, i.e. βx,y depended on θ , also the dispersion Dx . To minimize
such dependence on θ , the quadrupoles were arranged so as to have four-fold superperiodicity
around the ring. Then(βmax

x

βmin
x

)1/2
� 1.04,

(βmax
y

βmin
y

)1/2
� 1.03. (11.16)

Hence the horizontal and vertical beam sizes were almost uniform around the ring. The fiducial
volume of the beam was a circle of 45 mm radius around the central (design) orbit. Apertures
were placed to constrain the maximum beam width and height to this limit. An excellent
description of the design and operation of the BNL muon storage ring quadrupoles is given
by Semertzidis et al (2003), which gives the actual values of the betatron tunes used in the
operation of the ring, the strengths of the higher order multipoles, and a listing of the principal
orbital resonances

There was no longitudinal focusing in the ring. The injected beam, therefore, decohered
longitudinally during storage. This did not compromise the accuracy of the experiment.
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11.2.4. Particle injection. In the earlier CERN muon storage ring, and also in the early
experimental runs of the BNL muon storage ring, pions were injected into the ring. The
principal decay mode of a charged pion is into a muon and (anti)neutrino, via the decay
reactions π+ → µ+ + νµ and π− → µ− + ν̄µ, with a mean lifetime of 2.6033 × 10−8 s in
the pion rest frame. Other decay modes have negligible branching ratios. For a ring radius of
R0 = 7112 mm, the pions travelled approximately halfway around the ring before decaying
into muons. The muons were, therefore, born in situ in the ring. Note that because the above
pion decay is a two-body decay, the muon is produced with a definite helicity. However, note
also, that in the pion rest frame, the direction of the emitted muon is isotropic. Thus, although
every individual muon in the beam was born with the same helicity, the muon beam as a whole
was unpolarized.

However, the motion of the muons is not ergodic. The muon spin and momentum are
correlated. Boosting from the pion rest frame to the lab (storage ring) frame, the muons that
are emitted in the forward direction will have the highest longitudinal momentum, and will be
longitudinally polarized. The experiment was configured so that only those muons for which
|s‖| > 0.95 were accepted by the storage ring aperture. The fiducial volume of the ring was a
circle of radius 45 mm around the beam axis. Setting xδ = 45 mm and Dx = R0/Q

2
x , where

Qx � 0.93, gives a maximum momentum acceptance for the ring of (�p/p∗)max � 0.005.
The momentum of the injected pions was chosen such that only those muons with the highest
longitudinal momentum fell into this acceptance. The emittance of the secondary muon beam
far exceeded the acceptance of the ring. The vast majority of the decay muons was lost. For
all practical purposes, the phase-space density of the stored muon beam was uniform across
the acceptance of the ring.

The other scenario from which the bulk of the experimental data was derived, was to inject
muons into the ring. A beam of pions decayed in a transfer line upstream of the ring, and a
spin-polarized muon beam was injected into the ring. The earlier CERN experiments used only
pion injection. The muons entered the BNL ring in the horizontal plane at an angle to the ring’s
design orbit. (A few unwanted pions also managed to enter the ring.) A horizontal kicker was
installed in the ring, to kick the muon beam onto the closed orbit. The kicker was a dynamic
device to place the muons onto the closed orbit (or approximately so). More details on the
kicker are given by Efstathiadis et al (2003). To properly align the centroid of the muon beam
onto the closed orbit, one must set both 〈x〉 and 〈px〉 to zero, where the angle brackets denote
an average over the injected muons. Since there was only enough space for one kicker, it was
placed roughly one quarter of a betatron oscillation downstream of the inflector, i.e. where 〈x〉
crossed zero. The kicker was configured to render 〈x ′〉 = 0. Since the horizontal betatron tune
was approximately unity, the kicker was placed roughly one-quarter of the circumference of
the ring downstream from the inflector. Even so, it was not possible to set 〈x〉 and 〈x ′〉 exactly
to zero. Hence, the injected muon beam had a residual coherent betatron oscillation (denoted
‘CBO’ by the E821 collaboration). Such a coherent betatron oscillation did not exist in the
pion injection scenario, where the beam is uniformly distributed across the orbital phase-space.

In the muon injection scenario, the phase-space density of the injected beam was not
uniform across the acceptance of the ring. Since the motion of the muons is not ergodic, the
muons do not spread out in the orbital phase-space. Nonlinear terms in the betatron motion can
potentially decohere the beam in the betatron phase-space, but the quadrupoles were designed
to minimize the magnitudes of such nonlinear terms (Semertzidis et al 2003). Hence, the
coherent betatron oscillation persisted during the beam storage time.

The presence of a coherent betatron oscillation meant that the ‘average’ direction of motion
of the muon beam did not coincide with the design axis of the storage ring. However, the beam
energy had been configured to lie at the ‘magic gamma’ so that the effect of the electric fields
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on the beam cancel out between Ωs and Ωc (recall (11.13)), so the effect on the longitudinal
spin component was minimized. Nevertheless, the coherent betatron oscillation had to be
accounted for in the fits of the experimental data. The detailed theory and measurements of
the coherent betatron oscillation are given by Orlov et al (2002).

In addition to the centroid, the injected beam also has an emittance, and the tails of the
beam distribution were too large to fit into the acceptance of the ring. The beam had to be
‘scraped’ to eliminate these tails. Otherwise, for example, the particles in the tails would enter
regions where the magnetic field was not of sufficient quality, and would spoil the measurement.
Beam scraping was also required in the pion injection scenario.

11.2.5. Further remarks. Notice how we switched from the quantum to the classical spin
model and back again without missing a beat. We employed quantum mechanics to quantify
the muon spin orientation, in the birth of a muon from pion decay via the weak interaction. We
seamlessly switched over to a classical spin model to calculate the subsequent precession of
the muon spin in the magnetic field (and electric field—the magic gamma) of the storage ring.
The above details are never discussed in the particle physics literature, but they are significant
to us because the equations of motion such as (11.6) and (11.8) were derived in a fixed inertial
reference frame, not in the accelerator frame. Usually, in accelerator physics, we derive the
equations of motion in the accelerator reference frame, and we then speak of the ‘spin tune’,
in addition to the orbital (betatron) tunes. We have seen that for spin precession along the
design orbit of a planar ring, the value of the spin tune is νspin = aγ . Although we mentioned
the orbital betatron tunes, we always worked with the spin precession frequency. We never
mentioned the spin tune in the context of the muon spin precession. Had the experiment
measured the spin tune, i.e. the value of aγ , it would then be necessary to divide by γ , i.e. a
number not very accurately known.

The E821 experiment achieved an overall accuracy of 0.54 ppm for aµ, of which 0.46 ppm
was the statistical error. One can, therefore, likely do better with a larger sample of muons. It
has recently been proposed to extend the experiment using various enhancements, to achieve an
accuracy of 0.2 ppm (proposal P969), with a statistical error of 0.14 ppm and a systematic error
of 0.1 ppm. The proposal has received scientific approval and is awaiting funding approval
(as of mid-2005). To attain the improved accuracy would require a factor of ten larger muon
sample. A factor of five is expected to be achieved by a combination of factors, including
a higher proton beam intensity in the AGS and more numerous and stronger quadrupoles in
the pion decay channel. In addition, data taking would begin sooner by eliminating the pion
flash. This would be done by using the backward decay muons, so the pion momentum would
be 5.32 GeV c−1 (recall the muon magic momentum is 3.094 GeV c−1). With such a large
difference in momentum, no pions would make it past the final bend magnet in the injection
beamline and the inflector, thereby eliminating the pion flash. Ideas are also proposed to
reduce or eliminate the coherent betatron oscillation. The detector electronics would also
require improvement.

11.3. Muon collider

As stated above, the muon collider is a proposed idea, not an actual machine. See Alsharo’a
et al (2003) for a report on the design. A schematic layout of the muon collider complex was
shown in figure 18. The physics motivation for such a machine is partly due to the exciting
recent results establishing the existence of neutrino oscillations, as well as the desire to probe
physics at higher energy scales, e.g. to search for the Higgs particle, or physics beyond the
Standard Model. (The concept of a muon collider automatically carries with it the concept of a
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Table 3. Basic parameters of a muon collider. Reprinted with permission from Raja and Tollestrup
(1998). Copyright (1998) by the American Physical Society.

Parameter Value

Muon energy 50 GeV
γ 473.22
Spin precession in one turn 3.4667 rad
Magnetic field 4.0 T
Radius of ring 41.666 666 m
Beam circulation time 0.873 27 × 10−3 s
Dilated muon lifetime 0.103 97 × 10−2 s
Turn by turn decay constant 0.8399 × 10−3

neutrino factory.) Electron–positron colliders emit copious synchrotron radiation and become
prohibitively expensive to operate, and are also very large in circumference. A µ+µ− collider
offers the promise of a more compact lepton collider with the reach to probe new physics. The
idea of a muon collider is, in fact, not new; it was originally suggested by Budker (1970), one
of Budker’s many contributions to accelerator physics (electron cooling was another one).

The basic problem with muons, of course, is that they decay, with a rest-frame lifetime
of 2.2 µs, so they must be accelerated to high energy rapidly, to time-dilate their lifetime.
The muon beam emittance must also be reduced so as to achieve a reasonable luminosity for
particle physics experiments. These are serious technical challenges, and some very innovative
ideas have been developed to address them. However, as appealing as all of the above work
is, it does not directly pertain to the spin dynamics in storage rings. We only note one aspect
of the design, which is, to employ the muon spin precession to calibrate the energy of the
muon storage ring. A detailed analysis of the issues involved is given by Raja and Tollestrup
(1998). Essentially, the procedure is the reverse of that employed in the BNL or CERN muon
g −2 rings: the decay electrons are measured, thereby yielding a value for the frequency of the
muon spin precession. We use (11.6) and (11.8) in reverse: we measure the orbital revolution
frequency ωc and the spin precession frequency ωs, and divide to obtain (for horizontal motion
in a planar ring with no electric field) ωs/ωc = aγ + 1. Given an accurate value for aµ (from
the muon g − 2 experiment), one uses the above equation to deduce the value of γ , thence the
muon beam energy. The basic parameters of relevance to us are tabulated in table 3.

Most of the analysis by Raja and Tollestrup (1998) is devoted to the statistical and
systematic errors in determining the value of ωs. We omit the particle physics issues such as
detecting the electrons and understanding the backgrounds, detector efficiencies, etc. We focus
our attention more on the accelerator physics issues. First, note that there are no resonance
crossing issues in a muon collider. Unlike an electron synchrotron, where the value of the
spin tune equals an integer every 440 MeV (equate �E = mec

2/a), for muons, the value of
aµγ equals unity for γ = 1/aµ � 857.691, corresponding to a muon energy of 90.622 GeV,
using (11.5) for aµ (see table 2). Hence, a (50 × 50) GeV collider will not cross any such
depolarizing spin resonances. Depolarizing resonances due to betatron oscillations can be
avoided by designing the machine lattice appropriately.

Note that the muon collider does not operate at the ‘magic gamma’, but it also does not
employ electrostatic quadrupole focusing, because electrostatic quadrupoles cannot generate
a sufficiently strong focusing gradient at the design energy of a muon collider. The electric
fields in the ring will be for longitudinal focusing (and also acceleration to high energy), and
so, to the leading order, the cross product vanishes: β×E = 0. Furthermore, the electric fields
will be localized to only a few rf cavities in the ring. Hence, any systematic errors from the
electric fields will likely be negligible. A potentially more serious concern is that the focusing
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of the betatron orbits will necessarily be accomplished using magnetic quadrupoles. This
means that the magnetic field in the ring will be vertical only on the design orbit. The principal
perturbations to the spin precession arise from radial magnetic fields, because such fields tilt
the spins away from the vertical, and are the principal source of perturbations to the spin
motion. The effect is proportional to the amplitude of the vertical closed orbit imperfections.
The effects were analysed (for LEP, but applicable more generally to other rings) by Assmann
and Koutchouk (1994) (see also Arnaudon et al (1995b)). There is both a net spin tune shift
and a spread in the value of the spin tune. The average spin tune shift is

〈δν〉 = cot(πν0)

8π
ν2

0 [nQ(KlQ)2σ 2
y + nCVσ 2

θ CV]. (11.17)

Here, ν0 = aγ , nQ is the number of quadrupoles, with integrated gradient KlQ, σy the
rms vertical misalignment spread of the closed orbit at the quadrupoles, nCV the number
of vertical correction dipoles and σθ CV the rms bend angle in the vertical correctors. The spin
tune spread is given by

σδν = 〈δν〉
cos(πν0)

. (11.18)

The numerical values for the muon collider have been analysed by Raja and Tollestrup (1998),
and are negligible. For conservative parameter values, the results are that, the spin tuneshift
corresponds to an energy calibration shift of (mµc2/aµ)〈δν〉 � −0.24 keV and the spin
tunespread corresponds to an energy calibration spread of (mµc2/aµ)σδν � 1.46 keV, both
of which are negligible. The smallness of these numbers is because: (i) they depend on ν2

0 ,
and the value of ν0 is 206 times smaller for muons than for electrons (although the beam
energy is approximately 50 GeV in both LEP and the muon collider); and (ii) there are fewer
quadrupoles in the muon collider because of the shorter circumference.

Another source of concern is the presence of longitudinal magnetic fields from solenoids
in the experimental detectors of the muon collider. If a solenoid rotates the spins around the
longitudinal axis through an angle ψsol, then the spin rotation matrix around the ring is given by

M = e−iπν0σ3 e−iψsolσ2/2. (11.19)

We equate this to the standard parametrization M = e−iπνcoσ·n0 , where νco is the closed-orbit
spin tune. Writing νco = ν0 + δν, we take the trace of the two expressions for M to obtain

cos(π(ν0 + δν)) = cos(πν0) cos
ψsol

2
. (11.20)

Parameter values of a solenoid field of 1.5 T, and a solenoid length of 6 m are assumed, yielding
(at a beam energy of 50 GeV) a spin tune shift of δν = −1.901 × 10−5, or a fractional spin
tune shift of δν/ν = −3.45 × 10−5, or a shift in energy calibration of −1.72 MeV. The effect
here, is bigger than an electron ring such as LEP because of the fact that the spin tune ν0 being
smaller by a factor of 206 works against the muon collider, in this case. The spin tuneshift
cannot be neglected in this case. The most effective solution for a muon collider, is to place
‘anti-solenoids’ of reverse polarity on either side of the main detector solenoid, to cancel out
the overall spin precession.

It remains to be seen if the proposal will be funded. A µ+µ− collider will provide
an exceptionally clean probe of physics at the high-energy frontier, free of many of the
backgrounds found in hadron colliders.

11.4. Muon electric dipole moment

It should be noted that spin dynamics does not exclusively mean magnetic dipole moments.
It is also possible for an elementary particle to possess an electric dipole moment (EDM).
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For a nonrelativistic particle, the Hamiltonian is given by a straightforward analogy with the
magnetic dipole term:

H = −(d · E + µ · B) = −(dE + µB) · s
|s| , (11.21)

where d and µ are the electric and magnetic dipole moments, respectively. Note that an
EDM for an elementary particle, if it exists, must be parallel to the magnetic dipole moment.
Basically, the angular momentum of any internal charge distribution would cause the EDM to
average to zero except along the direction of the particle spin. Furthermore, if a nonzero EDM
were to exist not parallel to the magnetic dipole moment, it would supply a new quantum
number to the particle. The degeneracy of the ground state of an electron in a hydrogen
atom would then be four, not two, for example. The absence of such extra degeneracies is
experimental evidence that the EDM is parallel to the magnetic dipole moment.

The search for nonzero EDMs began with the seminal paper of Purcell and Ramsey (1950).
Because the electric field is a polar vector, whereas the magnetic field and the spin are axial
vectors, the existence of a permanent EDM for a fundamental particle violates both parity
(P) and time-reversal (T) symmetries. Nowadays, using CPT invariance, we usually write CP
violation, rather than T violation. Nevertheless, they pointed out that the issue should really be
settled by experiments. Today, we know that both P and CP are violated in the Standard Model,
hence the theoretical arguments have been invalidated. Nevertheless, no nonzero EDMs have
been found. The Standard Model is unusual in that it allows for CP violation, via a CP-violating
phase in the Cabibbo–Kobayashi–Maskawa matrix, but at the same time, predicts only small
values for any EDMs of fundamental particles. Many theories of CP violation also imply
large EDMs, and have been ruled out by experiments (see the review by Ramsey (1982)).
Measurements of electric dipole moments, or bounds on their values, therefore, place stringent
constraints on theoretical extensions beyond the Standard Model.

If there is an EDM of magnitude d = ηeh̄/(4mc), in addition to the magnetic dipole
moment µ = geh̄/(4mc), the spin-dependent part of the Hamiltonian becomes

H = − ge

2mc

B′

γ
· s − ηe

2mc

E′

γ
· s + ωT · s

= −
{ ge

2mc

[B‖
γ

+ B⊥ − β × E
]

+
ηe

2mc

[E‖
γ

+ E⊥ + β × B
]

+
γ 2

γ + 1
(β × β̇)

}
· s,

(11.22)

where B′ and E′ are the rest-frame magnetic and electric fields, respectively, and ωT is the
Thomas precession vector. We have seen previously how the terms in the magnetic moment
and the Thomas precession combine to yield Ωlong for the precession of the longitudinal spin
component. Now, there are some extra terms, namely

Ωlong = − e

mc

[
aB −

(
a − 1

β2γ 2

)
β × E +

η

2
(E + β × B)

]
, (11.23)

where, just like B‖, the terms in E‖ do not contribute. There is an extra contribution to the spin
precession vector of

Ωe = −η

2

e

mc
(E + β × B). (11.24)

This combination of electric and magnetic fields is the same as that in the Lorentz force.
The third CERN experiment to measure the muon g−2, also performed a side experiment

to search for a muon EDM, obtaining a limit of |dµ| < (3.7 ± 3.4) × 10−19 e—(cm)
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(Bailey et al 1978). This value corresponds to |ωe/ωa| < 10−2. (The current best limit
for the electron EDM is |de| < 1.6 × 10−27 e—(cm) (Regan et al 2002).) A proposal to
perform a new experiment to measure the muon EDM, using a new storage ring, has recently
been put forth (Farley et al 2004).

12. Polarimetry

12.1. General remarks

The subject of polarimetry is vast, and lies outside the domain of ‘spin dynamics’ proper.
However, we can hardly ignore the matter, since the results of the experiments described
in this paper have to be measured somehow. Muon rings have inbuilt polarimeters, via the
energy spectrum of the electrons in the muon decay. For other types of accelerators, explicit
polarimeters are required. We shall present only a brief description of a few selected methods
of polarimetry. We treat only vector polarization below. The polarization along a certain
direction is given by

P = N↑ − N↓
N↑ + N↓

, (12.1)

where N↑ and N↓ are the number of particles, with spins parallel and antiparallel to the chosen
direction, respectively. Typically one selects some spin-dependent reaction (or interaction),
and what one obtains is

P = 1

A

n↑ − n↓
n↑ + n↓

, (12.2)

where n↑ and n↓ are the number of scattered particles, properly normalized, with the beam
polarization up or down, respectively. This method assumes that one can reverse the beam
polarization without any other changes to the environment. The quantity A is called the
‘analysing power’ of the reaction, and relates the measured asymmetry to the true polarization.
It is a number between −1 and 1. (Recall that the polarization itself can lie between −1 and 1.
It is also possible for the analysing power to be negative.) Similarly, an apparatus which can
measure the number of scattered particles nL and nR, to the right and left, respectively, can
also determine the degree of vertical beam polarization. (It is then not necessary to reverse
the beam polarization.) This is an independent type of measurement, and one can obtain P by
substituting nL,R instead, into (12.2). One can also combine both methods to reduce systematic
errors and potential dependences on geometrical effects:

P = 1

A

√
nL↑nR↓ − √

nL↓nR↑√
nL↑nR↓ +

√
nL↓nR↑

. (12.3)

The associated statistical error in the polarization measurement depends on both the analysing
power A, and the total number of events n, where n = n↑ + n↓ or n = nL + nR, or a sum of all
four if a combined measurement is performed. The statistical error is

�P = 1

A
√

n
. (12.4)

Hence one tries to optimize the value of A2n. The number of data events required increases
quadratically as the analysing power decreases.

The subject of polarimetry broadly divides into lepton (electron and positron) and hadron
polarimetry. Lepton polarimetry is greatly aided by the fact that spin-dependent QED
reactions, which are calculable to high accuracy, are available for use, e.g. the Compton
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scattering of polarized electrons against circularly polarized photons. Note that by ‘lepton
polarimetry’, we mean only electrons and positrons, not muons. The paper on electron
polarimetry by Tolhoek (1956) is nearly 50 years old now but is still a classic in the field. Two
excellent relatively modern papers are by Sinclair (1998) on electron (positron) polarimetry,
and Makdisi (1998) on proton polarimetry. Grames et al (2004) has a recent comparison
of the analysing powers of five different electron polarimeters, of four different types. The
comparison was possible because at the Thomas Jefferson Laboratory, the CEBAF facility
can deliver a beam of the same polarization to all the polarimeters simultaneously. Hadron
polarimetry is handicapped by the lack of suitable accurately calculable spin-dependent
reactions. The cross-sections for QED processes such as Compton scattering are simply too
small to be practical. Basically, one determines the analysing power of a polarimeter by using
a beam of known polarization to calibrate the asymmetry. The polarimeter is then used to
measure the polarization of a beam in an accelerator. Hadron polarimetry is, therefore, much
more phenomenological. We confine our review of hadron polarimetry to proton polarimetry
at RHIC.

As a general comment on experiments with polarized beams, it is very useful to selectively
depolarize some of the particle bunches in a ring and/or to reverse the direction of the
polarization during the course of an experiment. This aids greatly in reducing systematic
errors in an experiment. For example, in the 2003 polarized proton run at RHIC, the bunch
polarizations in the two RHIC rings had a pattern of (+ + −−) in one ring, and (+ − +−) in the
other ring. This ensured that all four helicity combinations were delivered to the experiments
under identical machine conditions during a single RHIC run. Another possibility that is used
in practice, is to reverse the polarization direction of successive bunches from the polarized
particle source, possibly using a pseudorandom number generator to avoid any correlations of
the polarization direction with the machine’s operational periodicities. Another idea that has
been employed in e+e− rings with radiatively polarized beams, is to let the bunches polarize,
then depolarize (some of) the bunches during storage, and compare the results for polarized
and unpolarized particle bunches under the same machine conditions. It is also possible to let
a bunch polarize, take measurements, depolarize it, make more measurements with the same
bunch, then let it repolarize, etc. It is also possible to reverse the polarization direction of a
particle bunch during storage—this can, and has been done for both polarized hadron (proton
and deuteron) beams and polarized electron and positron beams.

12.2. Lepton polarimetry

12.2.1. Touschek effect: Møller scattering. The earliest observations of polarization in
electron storage rings were made using large-angle intrabeam scattering (known as the
Touschek effect), at ACO (Orsay Storage Ring Group 1971) and VEPP-2 (Baier 1972).
The actual collision process is Møller scattering (elastic electron–electron scattering). The
scattering cross-section is spin-dependent, hence the particle loss rate depends on the beam
polarization. In modern synchrotron light sources, the electron beam emittances are so small
(especially the vertical emittance), and the particle density so high, that the beam lifetime
(particle loss rate) is dominated by large-angle intrabeam scattering. In fact, at the ALS, the
vertical emittance is deliberately increased by inducing transverse x–y coupling, to reduce
the Touschek effect, and thereby, increase the beam lifetime (Byrd 2004).

Ford and Mullin (1957, 1958) give a calculation of the particle loss rate for one-
dimensional transverse betatron oscillations. In practice, cases are possible where the
vertical rms divergence σy ′ may not be negligible relative to the radial rms divergence σx ′ .
A calculation treating two-dimensional transverse betatron oscillations was published by
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Serednyakov et al (1976). This work had some errors of algebra; the corrected formula was
published soon after by Baier et al (1978). The full formula is complicated, and depends on
the beam divergences, machine acceptance, momentum cutoff for ‘large angle’ scattering, etc.
The essential feature is that, the particle loss rate is linear in P 2:

Ṅ = − N2c√
2V γ 2σx ′σy ′

(a + bP 2). (12.5)

Here N is the total number of particles in the beam, V the volume of the beam and a and b are
suitably defined functions. What really matters is that, the loss rate is a linear function of P 2.
Note that b < 0, so a higher polarization means a smaller particle loss rate. The contribution
of the polarization to the number of elastic scatterings per unit time can be conveniently
characterized by the ratio

� = �maxP
2 = Ṅ0 − ṄP

Ṅ0
, (12.6)

where Ṅ0 and ṄP are the scattering rates for unpolarized and polarized beams, respectively.
The overall particle loss rate is lower if the beam is polarized (recall b < 0). Hence,

measurements of the particle loss rate, especially, changes in the relative loss rate, can serve
as a quick and efficient method of measuring relative changes in the beam polarization level.
The sign of the polarization cannot be determined by this method, but is not required for beam
energy calibration measurements, in any case. The analysing power is not particularly relevant.
Changes in the particle loss rate, as the frequency of an rf kicker is swept across a depolarizing
resonance line, are immediately visible. Depending on the parameters of the setup, the beam
may or may not suffer total depolarization during such a frequency sweep. If it does, then one
must wait for the synchrotron radiation to build up the polarization again. Frequently, all that
is required, is to detect a measureable change in the Touschek loss rate, not to depolarize the
beam completely.

Note, that because the Touschek effect depends on two-body scattering, the lifetime does
not follow a simple exponential law. Instead, the exponential ‘lifetime’ is given by

τ−1
ts = − 1

N

dN

dt
∝ N. (12.7)

Hence, one defines and measures a ‘normalized’ lifetime, given by

τ−1
N = − 1

N2

dN

dt
= 1

Nτts
= const, (12.8)

where ‘const’ actually depends on the momentum acceptance of the ring and the beam
divergences, etc, and also the polarization, as is evident from (12.5), hence, in actuality

τ−1
N ∝ a + bP 2. (12.9)

A large loss of polarization, i.e. a sharp increase in the normalized loss rate, is observed if
resonant depolarization is used, and the kicker frequency matches the spin resonance frequency
(aliased with the revolution frequency). An example of such a procedure is shown in figure 26.
The frequency at which the count rate increases suddenly is clearly identifiable. This procedure
was carried out as part of a high-precision experiment to determine the masses of the J/ψ and
ψ ′ vector mesons. Precision measurements using polarized beams will be reviewed in more
detail in section 30.

Since the normalized lifetime depends on the degree of the polarization via P 2, it is
technically insensitive to the sign of the polarization. In practice, however, it may be possible
to determine also the sign of P , because we know that for radiatively polarized beams,
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Figure 26. Step increase in Touschek normalized counting rate due to resonant depolarization of
the beam.

z

Figure 27. Touschek normalized counting rate for a polarized beam after a spin-flip.

the polarization builds up to an asymptotic level, starting from any arbitrary initial value. The
direction of the asymptotic Sokolov–Ternov polarization (sign of asymptotic value of P ) is
calculable. Hence, if the polarization time constant τ is not too large, one can observe τ−1

N
change with time as the polarization builds up. One can use the rate of change, coupled with
a knowledge of the asymptotic Sokolov–Ternov polarization, to determine the sign of P .

A beautiful illustration of the above idea, from studies at VEPP-2M, is given by Polunin
and Shatunov (1982). A graph of the normalized loss rate as a function of time is shown in
figure 27. The beam in the VEPP-2M storage ring was first allowed to polarize for about 1.5 h, to
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reach its asymptotic level. As can be seen in figure 27, the normalized loss rate was initially
not changing with time. The polarization direction was then rapidly reversed by a spin-flipper.
The study by Polunin and Shatunov (1982) was, in fact, an early demonstration of the spin-
flipper concept (see section 6). Since the normalized Touschek loss rate depends on P 2,
immediately after the spin-flip, nothing happened to the normalized loss rate. The evolution
of the polarization, taking t = 0 as the instant of spin-flip, was

P(t) = P∞(1 − 2e−t/τ ), (12.10)

where P∞ is the asymptotic polarization level. Hence, the polarization increased from
−P∞ to P∞, which meant that its magnitude initially decreased, then crossed zero and
subsequently increased. The loss rate, therefore, initially increased as the beam depolarized.
After the polarization crossed zero, the normalized loss rate decreased, as the magnitude of
the polarization began to increase. Note that the time to depolarize fully (to reach P = 0 from
−P∞) was 0.7τ , but the time to repolarize (to reach P∞ from 0) was longer, about 1.8τ . This is
obvious from the slope of an exponential curve, but should be verified by the reader. The rate of
change of the normalized loss rate can, therefore, serve to indicate the sign of the polarization.
Eventually, the beam repolarized to its initial value, after about 2.5τ , as indicated in the figure.
The beam was then immediately and fully depolarized using resonant depolarization, and the
loss rate immediately increased, in a step, to its maximum (P = 0) value. Overall, figure 27 is
a striking demonstration of the polarization dependence of the Touschek effect, coupled with
the spin-flipper concept.

For the Touschek lifetime technique to work, it is necessary that the particle loss rate be
dominated by the intrabeam scattering. Other sources of particle loss are, for example, elastic
collisions against residual gas molecules in the beam vacuum chamber (beam–gas scattering)
and bremsstrahlung on nuclei. These are single particle processes and follow an exponential
law. A lucid analysis is given by Streun (2001). The contributions from elastic (beam–gas)
scattering, bremsstrahlung and the Touschek effect add up, giving a total loss rate of

1

τ
= 1

τel
+

1

τbs
+

1

τts
(12.11)

with an obvious notation. The dominance of τ−1
ts must be verified on a case-by-case basis

at each accelerator. Streun presents experimental evidence that τ−1
ts ∝ Isb (the single bunch

current) at the SLS.

12.2.2. Compton backscattering. The most common technique to measure the polarization
of high-energy e± beams is that of Compton backscattering. A beam of circularly polarized
laser photons is shot at the electron (or positron) beam, and the backscattered photons are
detected. Compton backscattering was first employed at SPEAR2 (Gustavson et al 1979).
(Note that radiative polarization per se was first observed at SPEAR1 by Camerini et al (1975),
but this earlier work did not employ Compton backscattering.) Compton backscattering
polarimeters have since been operated in almost all major high-energy e+e− colliders. A
nonexhaustive listing is VEPP-4 (Artamonov et al 1982), DORIS (Barber et al 1983a),
PETRA (Barber et al 1983b), CESR (MacKay et al 1984), TRISTAN (Nakajima et al 1991)
and LEP (Badier et al 1991b). A schematic of a Compton backscattering polarimeter setup
(the LEP polarimeter) is shown in figure 28. In all of the above rings, the e± beams were
polarized vertically, i.e. transverse to the particle momentum. HERA is equipped with both
transverse (Barber et al 1990) and longitudinal (Beckmann et al 2002) Compton backscattering
polarimeters. A longitudinal Compton backscattering polarimeter was employed at AmPS
(Passchier et al 1998), and now at SHR (Franklin 2000, Franklin et al 2003). A Compton
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Figure 28. Schematic of the LEP polarimeter. Courtesy of Wenninger (private communication)
and CERN.

backscattering transverse polarimeter has also been employed at the BESSY I synchrotron light
source (Klein et al 1997, 1998). The SLC employed a longitudinal Compton backscattering
polarimeter (Shapiro et al 1993, Woods et al 1997). A unique feature was that it detected the
scattered electrons, not the photons, although other detectors were later installed to also detect
the photons (Berridge et al 1999).

A laser Compton backscattering polarimeter can be constructed to operate in either ‘single-
photon’ mode or ‘multiphoton’ mode. The single-photon mode uses a laser of relatively low
peak power and a high repetition rate. There is a maximum of one backscattered photon per
interaction of the laser pulse and the electron beam. The multiphoton mode uses a laser of
higher peak power, and there are multiple backscattered photons per interaction. Both types
of polarimeters have been successfully operated.

When an electron is vertically polarized and the incident photon is circularly polarized,
the backscattering Compton cross-section is asymmetric above and below the median plane.
The maximum asymmetry occurs when the incident photon energy equals the electron rest
energy mec

2 in the electron rest frame. We can define an asymmetry

AL =
(N+ − N−

N+ + N−

)
L
, (12.12)

where N± are the photon counts above and below the median plane, respectively. We
correspondingly define an asymmetry AR for right-handed incident photons, and define the
overall asymmetry as A = (AR − AL)/2. The asymmetry A is free of most systematic errors,
and is proportional to the electron polarization P. The analysing power is a few per cent for
electron beam energies of a few GeV. To avoid systematic errors, it is essential that the incident
photon beam have a very high degree of circular polarization. The presence of linear photon
polarization can generate a false asymmetry.

To measure the longitudinal beam polarization using Compton backscattering, we measure
the energy distribution of the backscattered photons. Suppose a photon with circular
polarization ξ2, and energy Eλ, is incident upon an electron with polarization Pe and energy Ee.
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If the polarization lies in the horizontal plane, it will rotate around the vertical axis around
the ring circumference, and so the polarization vector will not, in general, be longitudinal at
the photon–electron interaction point. This is the case in SHR at MIT-Bates, where there is a
dipole with an orbital bend angle of 22.5˚ between the polarimeter location and the BLAST
detector. Since the polarization must be longitudinal at the BLAST detector, the angle between
the polarization vector and the longitudinal direction depends on the beam energy. (At the
SHR, the value of aγ varies from less than 1 to approximately 2.3.) Suppose the longitudinal
component of the polarization vector is P2e2. Then the Compton backscattering differential
cross-section can be expressed as (here Eγ is the energy of the backscattered photon)

dσ

dEγ

= dσ0

dEγ

[1 + ξ2P2α2(Eγ )], (12.13)

where α2 is a function of Ee and Eλ. Here dσ0/dEγ is the cross-section for unpolarized
electrons and photons, and ξ2 = ±1 is the photon helicity. For a given value of Eλ and Ee, we
can define an asymmetry via

Along = NR(Eγ ) − NL(Eγ )

NR(Eγ ) + NL(Eγ )
= �ξ2 P2 α2(Eγ ), (12.14)

where NL,R(Eγ ) are the photon counts for left-handed and right-handed incident circularly
polarized photons, and �ξ2 is one-half the difference between the two photon polarization
states, so �ξ2 = −1 for ξ2 = 1 and −1. The analysing power is again small, a few per cent,
for beam energies of a few GeV or less than a GeV.

In both cases of Compton backscattering measurements of the transverse and longitudinal
beam polarization, the technique is fast, and results of a few per cent accuracy can be obtained
in a few seconds. The method is nondestructive to the electron or positron beam. Actually, the
electron or positron struck by a photon is lost from the beam, but this is a very small percentage
of the number of particles in the beam. Note that the above statement implicitly assumes that
the polarization is uniform across the beam; else we would not obtain an accurate sampling
of the polarization. The polarization can be monitored continuously, which is especially
important in situations where the polarization cannot be assumed to remain constant over the
lifetime of the stored beam.

However, a Compton backscattering polarimeter takes a fair amount of setup and
maintenance. It takes careful effort to deliver a high degree of circular photon polarization
at the photon–electron interaction point. The laser and electron beams are not automatically
guaranteed to collide—the position of the electron beam can fluctuate and must be monitored,
possibly requiring a feedback loop. Hot spots can develop when the laser beam is reflected off
mirrors or in prisms, using total internal reflection.

12.2.3. Helical undulator. This is really an innovative accelerator physics experiment to
measure the polarization of colliding e+e− beams. A helical undulator was placed at one of the
e+e− interaction points of the VEPP-2M ring (Vorobyov et al 1986, Kezerashvili et al 1992).
VEPP-2M is an e+e− collider with a beam energy of 180–700 MeV (0.36–1.4 GeV centre-of-
mass energy). A schematic layout of the VEPP-2M ring and preaccelerator complex was shown
in figure 2. The electrons (positrons) emitted circularly polarized photons upon passage through
the undulator, which then impinged on the oppositely moving positron (electron) beam. The
degree of circular photon polarization was essentially 100% (Stokes parameter of ξ2 = ±1).
Hence, the e− and e+ beams themselves generated the circularly polarized photons for use in
Compton backscattering. This yielded a Compton backscattering polarimeter for both beams
together. The more usual laser Compton backscattering setup only measures the polarization
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Figure 29. Schematic of helical undulator at VEPP-2M. Reprinted from Kezerashvili et al (1992).
Copyright (1992) with permission from Elsevier.

×

Figure 30. Simultaneous resonant depolarization of the e+e− beams at VEPP-2M. Reprinted from
Kezerashvili et al (1992). Copyright (1992) with permission from Elsevier.

of one of the two beams circulating in the storage ring. A schematic figure of the setup is shown
in figure 29. The measured polarization degree of the beams was (Kezerashvili et al 1992)

P = 0.83 ± 0.07 ± 0.08, (12.15)

where the first error is statistical and the second is systematic. The beams had equal degree of
polarization. The experiment also demonstrated simultaneous resonant depolarization of the
e+ and e− beams, as shown in figure 30. In this case, the polarizations of the two beams were
measured using the asymmetries of the backscattered photon distributions. Hence, the plotted
variable has the opposite sign for the two beams. This is, as opposed to what one would obtain
from a Touschek normalized count rate.

The undulator design is significant, because it foreshadowed the later design of helical
magnetic fields for the Siberian Snakes and spin rotators at RHIC. The superconducting
undulator was made up of two halves, one on either side of the e+e− interaction point. Each
half consisted of four full helix periods (four full 360˚ twists of the helical magnetic field).
The helical-field Snake and spin rotator design is reviewed in detail in MSY1.
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12.3. Hadron polarimetry: proton polarimetry at RHIC

12.3.1. General remarks. Polarimetry for polarized hadron beams is more difficult than for
lepton beams, because the cross-sections of QED processes such as Compton backscattering are
too small and, therefore, cannot be used. One must rely on hadronic interactions, for which
there are no theoretically calculable asymmetries. The analysing power of the polarimeter
must, therefore, be determined phenomenologically. Consult the review by Makdisi (1998).
A list of reactions which have been employed for proton polarimetry, the kinematic regions
where they are useful, and the analysing powers, is given by Roser (2002).

We consider only the polarimeters employed at RHIC. An overview of polarized proton
polarimetry in the BNL complex, from the injector linac through to RHIC, is given by Spinka
(2003). There are two types of devices in RHIC, a fast relative polarimeter (pC CNI polarimeter)
based on proton–carbon elastic scattering in the Coulomb nuclear interference (CNI) region,
and an absolute polarimeter using elastic proton–proton scattering, also in the CNI region. The
successful commissioning of the RHIC CNI polarimeter is described by Huang et al (2001).
The design of the absolute pp polarimeter is described by Bravar (2003). It was installed
in RHIC in Spring 2004. The results of commissioning tests should be available soon, but
unfortunately, not in time for this review. An idea for absolute calibration of the pC polarimeter,
by circulating a beam of carbon nuclei in RHIC, is described by Igo and Tanihata (2003).

12.3.2. Absolute pp polarimeter. The absolute polarimeter consists of a hydrogen gas jet that
is squirted across the path of the circulating proton beam. Most of the information below is
taken from Bravar (2003). The chosen reaction is elastic pp scattering at very small momentum
transfer t , in the CNI region 0.001 < |t | < 0.02 (GeV c−1)2. Here t is a Mandelstam variable.
We explain the concept of Coulomb nuclear interference more fully (but still briefly) in the
description of the pC CNI polarimeter below. One contribution to the left–right asymmetry
for elastic pp scattering cross-section, with one proton transversely polarized relative to the
incident momentum direction, arises from the interference of the (real) electromagnetic spin-
flip amplitude, due to the anomalous magnetic moment of the proton, with the (pure imaginary)
hadronic spin-nonflip amplitude. This effect is, in fact, fully calculable within QED. However,
there is also a contribution to the asymmetry from the (real) hadronic spin-flip amplitude. This
is a nonperturbative QCD effect and is not presently calculable. The analysing power of the
elastic pp reaction reaches a maximum in the CNI region of about A � 0.045 (Buttimore et al
1999). The precision of the present knowledge of the analysing power is, however, not
adequate for RHIC; a new measurement will be required. The pp polarimeter was installed
and commissioned in 2004, thereby allowing an absolute calibration of the RHIC polarization
at the flattop of 100 GeV. Unfortunately the information of the analysing power will not be
available in time for this review.

A self-calibration technique can be performed with the polarimeter, at any beam energy,
and free of theoretical assumptions. The idea goes as follows. The transverse spin asymmetry
of elastic pp scattering of a polarized beam on an unpolarized target is equal in magnitude,
but opposite in sign, to the transverse spin asymmetry of an unpolarized beam incident on a
polarized target, in the same kinematical region (same value of momentum transfer t). Hence,
at first, a gas jet of known degree of polarization is injected across the path of an unpolarized
proton beam. The asymmetry in the differential cross-section is recorded; this yields the
analysing power. Next, an unpolarized gas jet is injected across the path of a circulating
polarized proton beam (of unknown degree of polarization). The asymmetry in the elastic pp

differential scattering cross-section is compared to the (negative of the) previously measured
analysing power; this yields the degree of polarization of the circulating beam.
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Unfortunately, the luminosity of the polarized gas jet target is too low to offer a fast
measurement of the polarization; data must be accumulated over 24 h to obtain sufficient
statistics for a measurement. However, because of the low density of the gas jet, it can be
operated continuously without disrupting the emittance of the circulating beam, or reducing
the beam lifetime.

12.3.3. CNI polarimeter. A significant experimental challenge for proton polarimetry is that
suitable hadronic interactions for polarized proton beams with energies above about 30 GeV
are difficult to find. We have seen that elastic pp scattering can be used, but is slow. One
candidate reaction with suitable properties is the elastic scattering of polarized protons against
carbon nuclei, in the Coulomb nuclear interference (CNI) region. The CNI polarimeter is the
‘workhorse’ polarimeter in RHIC. For scattering very close to the forward direction, i.e. very
small values of |t |, the interaction is dominated by the Coulomb potential, which is a QED
effect, and is calculable (and spin-independent). At larger scattering angles, the Coulomb and
hadronic (nuclear) forces overlap, leading to maximal interference. At large scattering angles
(large |t |), the hadronic interaction dominates and the cross-section falls off exponentially
with |t |. The CNI region is the interval of intermediate scattering angles where a maximal
asymmetry in the elastic scattering cross-section can be observed. A study of the pC analysing
power at the AGS is reported by Tojo et al (2002), who state that the hadronic spin-flip term
is not negligible.

The scheme is to place a thin carbon filament in the path of the beam, and to measure the
proton–carbon scattering cross-section. The carbon filament can be swung in and out of the
path of the beam in RHIC. The final proton travels very close to the forward direction. To detect
it would require placing detectors so close to the beam, that it would constrict the accelerator
beam pipe unacceptably. Hence, the scattered protons are not detected and only the scattered
carbon nuclei are detected. The kinetic energy of a scattered carbon nucleus is very low and
hence, easily stopped, in particular if the carbon filament itself is too thick. In the RHIC CNI
polarimeter, the filament is only about 100 atoms thick. In the events of interest, the carbon
nuclei are scattered through about 90˚ to the beam direction. A pair of detectors located at either
side of the filament (i.e. not the main experimental detectors of RHIC), measure the left–right
asymmetry of the scattered carbon nuclei. This yields a measure of the vertical polarization
of the proton beam. At RHIC, it is also important to measure the horizontal polarization
component, so there are also two pairs of detectors at ±45˚ relative to the horizontal plane.
These detectors measure the radial component of the polarization.

The CNI polarimeter is fast, and gives results in a few minutes. Its analysing power cannot
be determined by a self-calibration method like the elastic pp polarimeter. Up to 2003 the
analysing power of the CNI polarimeter had only been calibrated at the RHIC injection energy
of 24 GeV (Spinka 2003). With the installation of the pp gas jet polarimeter in 2004, the CNI
polarimeters could be calibrated at 100 GeV. However, even without an absolute calibration,
the CNI polarimeter can be used to determine relative changes in the proton beam polarization
during a store. The measurement technique is destructive to the carbon filaments, which are
only about 100 atoms thick, and so cannot be left in place during the whole beam storage
period. The polarization is measured as needed, every few hours.

12.3.4. Further remarks. Both the gas jet and CNI polarimeters only measure the transverse
components of the polarization, i.e. vertical and/or radial. To measure the longitudinal
polarization in a RHIC arc, two polarimeters are required at different azimuthal locations.
The value of the radial polarization is measured at both polarimeters, and the longitudinal
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polarization is calculated by solving a matrix equation. We are tacitly assuming that the spins
rotate around a vertical axis between the two polarimeters, which is the case in the RHIC arcs.
To verify that the polarization is longitudinal at the STAR and PHENIX detectors at RHIC,
the CNI polarimeter measures the degree of the vertical polarization in a RHIC arc, while
the detectors are equipped with local polarimeters which verify that the transverse asymmetry
in the polarized pp cross-section is zero. The combination of both sets of measurements
establishes the degree of polarization in the ring, and that it is longitudinal at the detectors.
The use of particle detectors as polarimeters has a long history. Recall that in e+e− colliders,
the particle detectors were used as polarimeters for some of the early observations of radiative
polarization.

13. Siberian Snakes and spin rotators

13.1. General remarks

The companion paper MSY1 reviewed Siberian Snakes and spin rotators in detail. Specifically,
we presented the theoretical definitions of such devices: why they were necessary/useful in
accelerators, and also, several explicit designs of Snakes and rotators. This paper, therefore,
presents only a very brief summary.

A Siberian Snake is theoretically defined as a device which rotates the particle spin through
180˚ around an axis in the horizontal plane, while leaving the orbital motion unaffected.
The original idea was proposed nearly thirty years by Derbenev and Kondratenko (1976).
Mathematically, a Siberian Snake is usually modelled as a δ-function point object, which
rotates a spin through 180˚, but is an identity map for the orbital motion.

A solenoid with the appropriate field integral can function as a Siberian Snake. This is/was
the case at the IUCF Cooler, AmPS and SHR. At AmPS and SHR, the Snake consists of two
solenoids in series. At RHIC the Snakes are built using transverse fields. The field pattern in
each RHIC Snake consists of four full-twist helical magnetic fields. The RHIC Snakes and
spin rotators are described by Alekseev et al (2003). They employ a design by the VEPP-2M
design team from BINP (see, e.g., Ptitsyn and Shatunov (1995), (1997)). The designs are
reviewed in detail in MSY1.

A spin rotator is an insertion device which rotates the spin direction without perturbing
the orbital motion. Spin rotators were also reviewed in MSY1. They are of interest, because
most particle physics experiments require longitudinal polarization at the interaction point,
whereas the polarization is vertical in the arcs. In general, a pair of spin rotators is required,
one to rotate the spins from the vertical to the longitudinal (upstream of the interaction point),
and another to restore the spins to the vertical downstream of the interaction point. There are
some caveats to the above statements which will be described in the next paragraph, and are
reviewed in detail in MSY1. Spin rotators have been successfully operated at RHIC and HERA.
The RHIC spin rotators employ four full-twist helical magnets (see the statements about the
RHIC Snakes above). The HERA spin rotator employs interleaved transverse (horizontal and
vertical) dipole fields, the so-called ‘Buon–Steffen minirotator’ (Buon and Steffen 1986).

It is not strictly true that a spin rotator rotates a spin from the vertical to the longitudinal
(or vice-versa), or that there is no bending of the design orbit. At RHIC, there is a horizontal
bend of ±3.675 mrad between a spin rotator and the collision point. Since the spin precession
angle through a horizontal bend is energy dependent, a RHIC spin rotator must actually rotate
the spins from the vertical to an energy-dependent direction in the horizontal plane, to attain
longitudinal polarization at the collision point (and vice-versa downstream of the interaction
point). In the case of HERA, the minirotator design contains an overall horizontal bend of the
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design orbit, so the HERA lepton ring geometry changes depending on the energy of the lepton
ring. The minirotator magnets are moved and locked into place. (A RHIC spin rotator does not
impart an overall bend to the design orbit, so the RHIC geometry does not vary with energy.)
However, a HERA minirotator does rotate the spins from the vertical to the longitudinal and
vice-versa.

A ‘partial Snake’ is one whose spin rotation angle is less than 180˚. MSY1 reviewed only
full-strength Snakes. The partial Snake strength is usually expressed as a percentage, e.g. a 5%
partial Snake is one whose spin rotation angle is 0.05 × 180˚ = 9˚. This paper will review
the usefulness of partial Snakes, and their use for the correction of depolarizing resonances.
Obviously, a solenoid can function as a partial Snake, and was so employed at VEPP-2M, and
later at the AGS. Other designs using transverse fields will be reviewed below.

13.2. One-turn spin rotation matrix

Let the spin rotation axis of a Siberian Snake be at an angle ξ relative to e1. The overall
spin rotation can be decomposed into a 180˚ rotation around the radial axis e1, followed by a
rotation through an angle 2ξ around the vertical axis e3:

MSnake = e−iπσ·(e1 cos ξ+e2 sin ξ)/2

= −i(σ1 cos ξ + σ2 sin ξ) = e−iξσ3 (−iσ1) = (−iσ1) eiξσ3 . (13.1)

The last line shows that we can also rotate clockwise through 2ξ around the vertical, and then,
by 180˚ around the radial axis. We can call ξ the ‘Snake axis angle’, although this is not
standard terminology. For a partial Snake, with a spin rotation angle λsπ , the spin rotation
matrix is

Mpartial = e−iλsπσ·(e1 cos ξ+e2 sin ξ)/2 = cos
λsπ

2
− i sin

λsπ

2
e−iξσ3 σ1. (13.2)

For a partial Snake, one tacitly assumes that 0 � λs � 1.
We calculate the one-turn spin rotation matrix for a ring with one Snake. We place the

origin at the point diametrically opposite the Snake. The spin rotation angle in an arc is written
as πν0, where ν0 = aγ or ν0 = Gγ . The spin rotation matrix of an arc is

Marc = e−iπν0σ3/2, (13.3)

hence, the overall one-turn spin rotation matrix on the design orbit is

Mring = Marc MSnake Marc

= e−iπν0σ3/2 e−iξσ3 (−iσ1) e−iπν0σ3/2

= e−iξσ3(−iσ1). (13.4)

We equate this to the closed-orbit spin tune and spin rotation axis via

Mring ≡ e−iπνc.o.σ·n0 . (13.5)

Hence, we deduce that the value of the spin tune on the design orbit is simply

νc.o. = 1
2 . (13.6)

The vector n0 is the spin rotation axis, and is also the direction of the stable long-term
polarization. We deduce that the spin rotation axis (polarization direction) at the origin is
parallel to the spin rotation axis of the Snake, namely

n0 = e1 cos ξ + e2 sin ξ. (13.7)

Hence, the use of a Siberian Snake in a ring makes the value of the spin tune independent of
the beam energy. In addition, the stable polarization direction lies in the horizontal plane all
around the circumference.
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We now calculate the one-turn spin rotation matrix for a planar ring equipped with two
Siberian Snakes. The Snakes are placed at diametrically opposite points of the ring, say, at
θ = 0 and θ = π . The Snake spin rotation axes are also orthogonal: say at ξ and ξ + π/2
(both axes lie in the horizontal plane). The Snake spin rotation matrices are

Ms1 = e−iξσ3(−iσ1), Ms2 = e−iξσ3(−iσ2). (13.8)

We place the origin just after the exit of the first Snake. The one-turn spin rotation matrix is

M2 Snakes = Ms1 Marc Ms2 Marc

= e−iξσ3 (−iσ1) e−iπν0σ3/2e−iξσ3 (−iσ2) e−iπν0σ3/2

= −iσ3

= e−iπσ3/2. (13.9)

This is a spin rotation of 180˚ around the vertical axis. Hence, once again, the value of the
spin tune is

νc.o. = 1
2 , (13.10)

independent of the beam energy. The spin rotation axis is given by

n0 =
{

e3 for θ ∈ (0, π),

−e3 for θ ∈ (π, 2π).
(13.11)

The stable polarization direction is vertically up in one arc of the ring, and vertically down in
the other arc.

The fact that the value of the spin tune is independent of the beam energy means that a
polarized beam can be accelerated to arbitrarily high energies without crossing any depolarizing
resonances. However, as explained in MSY1, depolarizing resonances can, and do, exist in
rings with Siberian Snakes. They are called ‘Snake resonances’. As explained in MSY1, Snake
resonances actually play a useful beam physics role at RHIC, to help calibrate the currents in
the RHIC Snake magnets.

13.3. Partial Snakes

Up to 2003, all rings which employed partial Snakes used only one partial Snake, which was a
solenoid in all cases. A partial Snake with transverse magnetic fields (a variable-pitch helical
field design) was operated at the AGS during the 2004 polarized proton run at BNL (Huang et al
2003b). The design of Snakes using helical fields was reviewed in MSY1.

We calculate the one-turn spin rotation matrix for a planar ring with one solenoidal Snake,
of fractional strength λ. We place the origin just before the Snake. The one-turn spin rotation
matrix is

M = e−iπν0σ3 e−iπλσ2/2

= cos(πν0) cos
πλ

2
+ iσ1 sin(πν0) sin

πλ

2

− iσ2 cos(πν0) sin
πλ

2
− iσ3 sin(πν0) cos

πλ

2
. (13.12)

Equating this to e−iπνc.o.σ·n0 yields

cos(πνc.o.) = cos(πν0) cos
πλ

2
(13.13)
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for the spin tune. The components of n0 are given by

n1 = − sin(πν0) sin(πλ/2)

sin(πνc.o.)
,

n2 = cos(πν0) sin(πλ/2)

sin(πνc.o.)
,

n3 = sin(πν0) cos(πλ/2)

sin(πνc.o.)
.

(13.14)

One can, therefore, deduce the value of λ from (13.13). The magnitude of the horizontal
component of n0 is n⊥ = sin(πλ/2)/ sin(πνc.o.). If the value of ν0 is close to an integer, and
|λ| 	 1, then cos(πνc.o.) � 1, and also sin(πν0) � 0, in which case n3 	 1 and n⊥ � 1, i.e.
the polarization can be strongly tilted away from the vertical.

A demonstration of the above tilt of the polarization direction was one of the first spin
dynamics studies performed at the IUCF Cooler (Krisch et al 1989). The polarimeter in
the IUCF Cooler could measure only the radial and vertical polarization components, i.e. the
transverse polarization. The beam energy was held fixed (i.e. fixed ν0), and the partial Snake
strength λ, was varied. According to theory, the radial polarization should be an odd function
of λ and hence, change sign across λ = 0, while the vertical polarization component should
be an even function of λ, and display a maximum at λ = 0. Let us define φ via

n3 = cos φ, n⊥ = sin φ. (13.15)

Hence, φ is related to the partial Snake strength λ via

tan φ = tan(πλ/2)

sin(πν0)
. (13.16)

A vertically polarized beam (say, with polarization P0) was injected into the IUCF Cooler.
The projection of the initial polarization along n0 is P0 cos φ. The long-term polarization, at
an azimuth θ around the ring, where the partial Snake is at θ = π , and using subscripts (r, l, v)
for (radial, longitudinal, vertical), was then

Pr = −P0 sin(ν0θ) sin φ, Pl = P0 cos(ν0θ) sin φ, Pv = P0 cos2 φ. (13.17)

The polarimeter was located at θ = 2π/3. Note that we are equating the polarization to
the components of n0. This is permissible, since the experiment was simply measuring the
spin precession, and not any depolarizing resonances. A graph of the vertical and radial
polarization for 120 MeV polarized protons is shown in figure 31. The curve is a theoretical
fit given by (13.17).

Figure 32 shows a graph of the radial and vertical polarization at the IUCF Cooler with
synchrotron sideband resonances on either side of the central peak of Pv, also in the graph of
the radial component Pr. These sidebands represent true depolarization: both Pr and Pv vanish
together. Section 20 reviews synchrotron sideband resonances.

13.4. Intrinsic resonances driven by horizontal betatron oscillations

We remarked earlier in section 10.5, that the principal intrinsic resonances in a planar ring are
driven by the vertical betatron resonances, and that intrinsic resonances driven by the horizontal
betatron resonances typically arise due to transverse betatron coupling. This is because the
unperturbed spin direction (direction of n0) is usually vertical in the arcs of a planar ring.

The above statements must be modified for rings with partial Snakes, because in such
rings, n0 usually has a radial component. (One can define such rings to be ‘nonplanar’ but
that is beside the point.) For example, the AGS has been equipped for several years with a
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Figure 31. Graphs of the vertical and radial polarization components in the IUCF Cooler as a
function of the integrated field in the compensating solenoids, at a kinetic energy of 120 MeV.
The solid curves are a theoretical fit. Reprinted with permission from Lee and Berglund (1996).
Copyright (1996) by the American Physical Society.

Figure 32. Graphs of the vertical and radial polarization components in the IUCF Cooler as a
function of the integrated field in the compensating solenoids, at a kinetic energy of 104.5 MeV.
Synchrotron sideband resonances are also visible. The solid curves are a theoretical fit. Reprinted
with permission from Lee and Berglund (1996). Copyright (1996) by the American Physical
Society.

solenoid partial Snake (Huang et al 1994), and now contains two partial Snakes (the second
partial Snake is a helical-field device, see Huang et al (2003b) for details). The horizontal
betatron oscillations drive variations in the vertical component of the spin precession vector,
which perturb (and decohere) the radial components of the particle spins. Such intrinsic spin
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resonances driven by the horizontal betatron oscillations can exist even if there is no x–y

betatron coupling in the ring.

13.5. Siberian Snakes in very high-energy electron rings

In this subsection, we consider (pairs of) Siberian Snakes in very high energy e+e− storage
rings. At first blush, this seems like a peculiar idea. The polarization direction would reverse
in each arc, for a ring equipped with a pair of Siberian Snakes (or several pairs of Snakes).
Hence the Snakes would kill the radiative polarization. Nevertheless, the idea to insert pairs of
Snakes in very high-energy e+e− storage rings—we are talking here of several hundred GeV,
much beyond the highest LEP beam energy of about 100 GeV—was proposed by no less than
the masters in the field, Derbenev and Kondratenko (1978).

Basically, in three papers Derbenev et al (1979a, 1979b, 1982) explored the idea of
polarizing the beam in situ at high energy, by using circularly polarized electromagnetic
waves. The basic idea is that the (circularly polarized) photons are used to selectively knock
out electrons in one of the two (vertically polarized) spin states. To obtain sufficiently hard
photons, one might even consider a free-electron laser as the photon source, or for super-
high energy rings, to use the coherent synchrotron radiation from the oppositely circulating
beam (the positron beam) as the source of photons, by passing the positrons through a helical
undulator, just prior to an e+e− interaction point.

14. Vector field of spin quantization axes

14.1. Quantum theory

It will clarify matters if we begin with the quantum theory. The Heisenberg equation of motion
for an arbitrary operator A (for arbitrary) is

ih̄
dA

dt
= [A, H ] + ih̄

∂A

∂t
. (14.1)

Our interest is in dynamical variables, which are those operators whose dynamics is generated
solely by the Hamiltonian. A variable such as A = at +bt2, with no connection to the dynamics
of the system, is of no interest. A dynamical variable D has no explicit time dependence
(∂D/∂t = 0), and its Heisenberg equation of motion is

ih̄
dD

dt
= [D, H ]. (14.2)

This is the equation of motion for all standard textbook variables such as r, p, L = r × p, J,
etc, and in particular, s. We are further interested in invariants of the motion I (more formally,
first integrals of the motion), which are dynamical variables that are furthermore constant in
time:

dI

dt
= ∂I

∂t
= 0, (14.3)

from which it follows, from the Heisenberg equation of motion, that I commutes with the
Hamiltonian [I, H ] = 0. This is why quantum mechanics textbooks place such emphasis
on finding a complete set of commuting observables: the sought-for operators are dynamical
invariants, and the corresponding eigenstates are, thus, stationary states of the system.

The three components of a quantum spin operator do not commute, so only one of them
will, in general, commute with the Hamiltonian (unless the Hamiltonian is spin-independent,
in which case, there will be no polarization). We seek a quantization axis, call it n, such that
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the spin projection s · n—we are treating s as a quantum operator here—will be a dynamical
invariant. This requires two conditions:

∂

∂t
s · n = 0,

d

dt
s · n = 0. (14.4)

From these, it will follow that s ·n commutes with the Hamiltonian: [s ·n, H ] = 0. We already
know that s is a dynamical variable: ∂s/∂t = 0. Hence, it is merely necessary to demand that
n also be explicitly time-independent:

∂n
∂t

= 0, (14.5)

which means that n is a function of the coordinates and momenta only: n = n(q, p). As for
the second condition, we know that

ds
dt

= Ω × s. (14.6)

This is an equation for a quantum operator s. Up to now, all of our manipulations have been
exact, even if formal. This is where the semiclassical approximation enters. We demand that
n also satisfy the equation

dn
dt

= Ω × n. (14.7)

Here, n is a classical variable, not a quantum operator, but in the semiclassical approximation,
the orbital motion is not quantized. More rigorously, we should write

dn
dt

= 〈Ω〉 × n, (14.8)

where 〈Ω〉 denotes the classical expectation value of the quantum operator Ω. Then,

d

dt
s · n = ds

dt
· n + s · dn

dt
= (Ω × s) · n + s · (〈Ω〉 × n) � 0. (14.9)

In the semiclassical approximation, the difference between the terms is of a higher order in h̄,
and can be neglected.

Hence, overall, the axis n that we seek is not a fixed axis, but is a dynamical
variable, a function of the orbital phase-space variables q and p (treated in the semiclassical
approximation). It is, moreover, an explicitly time-independent solution of the spin precession
equation. In appendix A, it will be shown that the solution for n is unique, provided that the
orbit does not lie on a spin resonance.

Note in passing, that the above procedure is a general prescription to diagonalize the spin
motion of any semiclassical quantum system. At no time did we ever say that the Hamiltonian
was that for a particle accelerator.

Consider a uniform magnetic field, say B = B ẑ. Then H = −µ · B = −geB/(2mc)s · ẑ.
In that case, we simply set n to the direction of the magnetic field: n = ẑ, in which case,
trivially ∂n/∂t = 0, and also

dn
dt

= · · · ẑ × n = 0, (14.10)

this being the well-known fact that, for a uniform field, the spin component quantized along
the direction of the field commutes with the Hamiltonian.
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14.2. Classical mechanics

We now express the above ideas using classical mechanics. We also employ map techniques;
this is not strictly necessary, but is, by far, the most elegant formulation. The evolution of the
spin, starting from an initial azimuth θ∗, to that one turn later θ∗ + 2π , is given by a one-turn
map M(z; θ∗). On the closed orbit (z = 0), we have called the solution n0, which is a function
only of θ∗. Now select some initial phase-space point, say, zi, and suppose that after one turn,
it maps to zf , in general, a different point (the special case z = 0 is a fixed point). Then n(z; θ)

is defined in the following way. First, on any orbital trajectory, n satisfies the spin precession
equation

dn
dθ

= W(z; θ) × n. (14.11)

Next, we want the vector n(zi; θ∗), after integrating to (zf , θ∗ +2π), to equal the vector n(zf; θ∗)
at the original azimuth θ∗ (because θ∗ and θ∗+2π denote the same phase-space). This condition
makes n a vector field over the orbital phase-space. The more formal statement is that, if the
one-turn orbital map is M , then

M n(z; θ∗) = n(M z; θ∗). (14.12)

The formal canonical transformation theory to diagonalize the spin–orbit Hamiltonian
will be presented in appendix A. Note that the concept of spin eigenstates is useful only if
the beam is stored at constant energy for many turns, i.e. a storage ring. If the beam is being
accelerated to high energy, as in a synchrotron, then the phase-spaces at θ∗ and θ∗ + 2π are not
identical, and one cannot meaningfully define n. One can, however, still define the solution
n0 on the closed orbit.

We return to stored beams. It is most convenient, for the formal theory, to characterize the
orbital motion using action-angle variables (I, φ). The actions are invariant along an orbital
trajectory. By definition the points φj and φj + 2π represent the same phase-space point, for
j = 1, 2, 3. Then, the above constraints imply that n satisfies the relations,

n(I, φ1, φ2, φ3; θ) = n(I, φ1 + 2π, φ2, φ3; θ)

= n(I, φ1, φ2 + 2π, φ3; θ)

= n(I, φ1, φ2, φ3 + 2π; θ)

= n(I, φ1, φ2, φ3; θ + 2π). (14.13)

15. Formal solution for the spin quantization axis

We shall present some useful and important basic results about the effects of perturbations
to the spin motion in the next section. First, we derive a solution for the spin quantization
axis, n. This section will present two formal solutions, both of which are useful as starting
points for perturbation theory later in this paper. As we have already done, we decompose the
spin precession vector W into a closed-orbit and off-axis terms: W = W0 + w. In keeping with
the remarks earlier about the distinction between the closed orbit and design orbit, it may be
necessary occasionally to write W00 to denote a vector on the design orbit. In general, W0 will
denote the spin precession vector on the imperfect closed orbit.

We already know that the solution on the closed orbit is n0 (by definition):
dn0

dθ
= W0 × n0 (15.1)

and n0 is periodic around the ring:

n0(θ + 2π) = n0(θ). (15.2)
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The spin tune on the closed orbit is denoted by νc.o., as already stated. Since the spin precession
equation is three-dimensional, there are two other linearly independent solutions on the closed
orbit. Let us denote them by l0 and m0, with obvious notation. Hence,

dl0
dθ

= W0 × l0,
dm0

dθ
= W0 × m0. (15.3)

A convenient vector to use in calculations is

k0 ≡ l0 + im0. (15.4)

It is straightforward to show, not just on the closed orbit but on any orbit, that the angle between
any pair of solutions s1 and s2 of the spin precession is invariant:

d

dθ
s1 · s2 = ds1

dθ
· s2 + s1 · ds2

dθ
= (W × s1) · s2 + s1 · (W × s2) = 0. (15.5)

Hence, if s1 · s2 = 0, then they will remain orthogonal. Specifically, on the closed orbit, we
can therefore choose (l0, m0, n0) to be an orthonormal triad.

Note that l0 and m0 are not periodic around the ring. Since the spin rotation angle after
one turn (on the closed orbit) is by definition, µ0 ≡ 2πνc.o., we have(

l0
m0

)
θ+2π

=
(

cos µ0 sin µ0

− sin µ0 cos µ0

)(
l0

m0

)
θ

. (15.6)

In general, the value of νc.o. is not an integer, e.g. for a planar ring it is νc.o. = aγ . A convenient
way of stating the periodicities is also,

k0(θ + 2π) = e−i2πνc.o.k0(θ). (15.7)

We then express n, off the closed orbit, using l0, m0 and n0 as a basis, i.e.

n = n1l0 + n2m0 + n3n0. (15.8)

Clearly, on the closed orbit n1 = n2 = 0 and n3 = 1. For brevity, define w1 = w · l0,
w2 = w · m0 and w3 = w · n0. The equations of motion for the components (n1, n2, n3) are

d

dθ


n1

n2

n3


 =


 0 −w3 w2

w3 0 −w1

−w2 w1 0




n1

n2

n3


 = −i(w · J )


n1

n2

n3


 , (15.9)

where J is a vector of spin 1 angular momentum matrices. The formal solution for the
components is then,

n1

n2

n3


 = T

{
exp

(
−i
∫ θ

−∞
w · J dθ ′

)}0
0
1


 , (15.10)

where ‘T’ denotes a θ -ordered product of operators. A θ -ordered product of two noncommuting
operators A(θ1) and B(θ2), is defined such that the operator at a higher value of θ is always
placed on the left:

T{A(θ1)B(θ2)} =
{
A(θ1)B(θ2) if θ1 > θ2,

B(θ2)A(θ1) if θ2 > θ1.
(15.11)

The expression is not well-defined for θ1 = θ2. The θ -ordering concept generalizes in the
obvious way, to products of more than two noncommuting operators.

Equation (15.10) is in a Cartesian basis, which is not the most convenient for manipulating
angular momentum matrices. Later in this paper, we shall express the θ -ordered exponential
using spherical harmonics.
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Another very important idea is to note, that since n is a unit vector, it really has only two
independent degrees of freedom. Hence, it can be parametrized by a complex variable ζ via

n =
√

1 − |ζ |2 n0 + �(ζk∗
0). (15.12)

Obviously, ζ = 0 on the closed orbit. The equation of motion for ζ is

dζ

dθ
= − iw · k0

√
1 − |ζ |2 + iw · n0 ζ. (15.13)

The solution for ζ , no matter how approximate, always yields a unit vector for n, but
unfortunately, the equation is nonlinear. In practice, (15.13) is too difficult to solve to arbitrary
orders. It is truncated to either first-order perturbation theory,

dζ

dθ
� −iw · k0, (15.14)

or approximated to include only a subset of the higher-order terms:

dζ

dθ
� −iw · k0 + iw · n0 ζ. (15.15)

These approximations can yield solutions such that, sometimes |ζ | > 1. The solution is
then no longer unitary. Both (15.14) and (15.15) are very important. To first order, the
solution for ζ is,

ζ � −i
∫ θ

−∞
w · k0 dθ ′. (15.16)

To go beyond first order, the most common approximation is to neglect the term in |ζ |2 in
the square root (see (15.15)). The differential equation for ζ is then again linear, and can be
formally solved in closed form. The solution is

ζ � −ie−iχ(θ)

∫ θ

−∞
eiχ(θ ′) ω · k0 dθ ′, (15.17)

where

χ(θ) = −
∫ θ

−∞
w · n0 dθ ′. (15.18)

The above approximate solutions for ζ will be heavily used in this paper.

16. Single resonance model

16.1. General remarks

In general, the theoretical analysis of the spin dynamics in accelerators can take one of two
paths. One is to develop sophisticated numerical formalisms and computer programs to solve
the spin precession equation. Such programs are essential to design modern high-energy
accelerators with complicated structures. Nevertheless, the programs are complicated. The
alternative path is to develop (very) simple models of accelerators which are analytically
tractable. The behaviour of the spin and the polarization in such models can be calculated
exactly. Frequently, such models can provide useful estimates even for complicated machines.
The single resonance model (SRM) is the most important nontrivial exactly solvable model.

In the single resonance model, only one term is retained in the perturbing term of the
spin precession vector w. With only one Fourier harmonic in w, the model has only one spin
resonance, hence its name. Despite its simplicity, or more likely, because of it, the SRM is
an important pedagogical model, and underlies much of the analytical work on spin dynamics
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Figure 33. Schematic of spin precession vector for the single resonance model in the lab and
rotating frames.

in accelerators. In MSY1, we reviewed the solution of the single resonance model with one,
or a pair, of Siberian Snake(s), in terms of so-called ‘sine-Bessel’ functions. Models based
on the single resonance model have historically played an important role in many theoretical
analyses of the spin dynamics in accelerators.

The single resonance model is clearly related to the Froissart–Stora formula. The model
for the spin precession vector is the same. However, in the SRM we assume the beam
energy is fixed, and the problem is to determine the quantization axis of the spin eigenstates.
The formulation of the single resonance model in terms of an action-angle formalism, and the
recognition that the solution for the spin rotation axis is an example of the n axis, was pointed
out by Mane (1988b). Many others have since elaborated on the model, e.g. see the review of
the SRM by Vogt (2000).

16.2. Notation and basic formalism

The spin precession vector of the single resonance model is

WSRM = ν0 e3 + ε(e1 cos φ + e2 sin φ). (16.1)

The motion on the design orbit is a spin precession around the vertical, while the perturbing
term, proportional to ε, lies in the horizontal plane. The choice of terminology is perhaps
slightly unfortunate, because the solution below is nonperturbative, and is valid for arbitrary ε.
Nevertheless, the tacit assumption is that ε = 0 on the design orbit. Here, ε is called the
‘resonance strength’ for reasons that become clear, below. Also, φ is a phase, which evolves
according to

dφ

dθ
= Q. (16.2)

We can write φ = Qθ +φ0. If the resonance driving term is due to a vertical betatron oscillation,
then Q is the vertical betatron tune (plus or minus an integer), while if w is due to a vertical
closed orbit imperfection, then the value of Q is an integer. The formalism below is the
same either way; it is only that in the case of a betatron oscillation, there will be a statistical
distribution of values of φ0, and also, a statistical distribution of the values of ε.

A simple way to solve for the spin motion is to transform to a frame rotating around e3

at tune Q. The basic vectors in the lab frame and the rotating frame are shown in figure 33.
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In the rotating frame the spin precession vector is

W′
SRM = (ν0 − Q)e3 + ε (e1 cos(φ − Qθ) + e2 sin(φ − Qθ)), (16.3)

where we use a prime to denote quantities in the rotating frame. Note that W′
SRM is a fixed

vector because dW′
SRM/dθ = 0. Then the spin s′ rotates around W′

SRM,

ds′

dθ
= W′

SRM × s′. (16.4)

Since W′
SRM is a fixed vector, the solution for n′ is simply a unit vector in the direction of W′

SRM,

n′ = W′
SRM

|W′
SRM| , (16.5)

while the spin tune is just the magnitude of W′
SRM,

ν ′ = |W′
SRM|. (16.6)

Now, define the vector Ω and its magnitude �:

Ω = (ν0 − Q) e3 + ε(e1 cos φ + e2 sin φ), � =
√

(ν0 − Q)2 + ε2. (16.7)

We take the positive root for �. Note that Ω as defined in (16.7) should not be confused with
the previous usage of Ω to denote the spin precession vector using the time t as the independent
variable. In the original reference frame, one possible solution for n and ν is

n = Ω
�

, ν = � + Q = Q +
√

(ν0 − Q)2 + ε2. (16.8)

The expressions for both n3 and ν are continuous functions of ν0, for fixed Q and ε. The graph
for ν, as a function of ν0 − Q for fixed ε, is a hyperbola.

The above solutions are correct but have some curious (but not erroneous) properties.
Consider the limiting behaviour as ε → 0, for fixed ν0 − Q �= 0. Then |ν0 − Q| � |ε|, for
sufficiently small |ε|, so � � |ν0 − Q|. If ν0 − Q > 0, we have,

n � n3, ν � ν0. (16.9)

This is the expected closed-orbit behaviour for ε → 0. However, if ν0 − Q < 0, then

n � −e3, ν � 2Q − ν0. (16.10)

Exactly at ν0 = Q, we cannot have |ν0 − Q| � |ε|. In this case � = ε (assuming ε > 0).
Then,

n = e1 cos φ + e2 sin φ, ν = Q + ε. (16.11)

However, we would like n to always point up when ε → 0 for ν0−Q �= 0, and correspondingly,
for the spin tune to reduce to the closed-orbit value ν0, i.e. to the expressions in (16.9). An
alternative solution for n and ν is

nSRM = sν0−Q

Ω
�

,

νSRM = Q + sν0−Q � = Q + sν0−Q

√
(ν0 − Q)2 + ε2.

(16.12)

Here, sx is the sign function, and equals ±1 according to x > 0 or x < 0, respectively. Exactly
at ν0 = Q, we can accept either sign in (16.12). The expressions in (16.12) are our official
solutions for n and ν for the SRM below, which explains the suffix ‘SRM’ on the solutions.
They reduce to the desired solutions n → e3 and ν → ν0 when ε → 0, for any ν0 − Q �= 0.
Exactly at ν0 = Q, we have

nSRM = ±(e1 cos φ + e2 sin φ), νSRM = Q ± ε. (16.13)
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Figure 34. Graphs of the spin tune (actually ν − Q), and the vertical component n3, as a function
of ν0 − Q, for the single resonance model. The dashed line is the closed-orbit solution, i.e. ν0.
There is a jump in the graph of the spin tune.

If ν − Q → 0+ through positive values, then we obtain the solutions with the plus sign, while
if ν0 − Q → 0− through negative values, then we obtain the solutions with the minus sign.
Hence, both nSRM and νSRM are discontinuous at the tune line ν0 = Q.

We stated that when ε = 0, the solution is n = e3, and obviously the direction of n
approaches the horizontal plane for |ε| � |ν0 − Q|. Basically, n starts off vertical on the
design orbit and tilts towards the horizontal as the magnitude of the driving term increases.
However, consider what happens when ν0 = Q. In that case, n is horizontal for all ε �= 0 (see
(16.13)). The spin tilts into the horizontal plane as soon as ε is even infinitesimally nonzero.
This is characteristic of a resonance: extreme variation of the direction of the spin eigenstates
in response to small changes in the model parameters. We graph the value of ν − Q and the
vertical component n3 as a function of ν0 − Q, for the expressions in (16.12). The graph is
shown in figure 34.

16.3. Adiabatic spin-flip

Consider what happens if the beam energy (value of ν0) is increased adiabatically from far
below Q, to far above Q. Since we are treating an adiabatic variation of the parameter ν0, the
relevant solution for n is given by (16.8). Evidently, n starts vertically up (say) and evolves
smoothly, and ends up pointing vertically down. The value of s ·n = 1 is an adiabatic invariant,
so if s · n = 1 initially, it will remain so during acceleration. The spin follows n, and ends up
pointing downwards. This is the adiabatic spin-flip of the the Froissart–Stora formula. If the
acceleration is not adiabatic, the value of s ·n will not remain invariant, and depolarization can
result.

16.4. Spin tune jump

An alternative idea which has been suggested to identify the locations and widths of
depolarizing spin resonances, is to search for jumps in the value of the spin tune, as in (16.12).
This idea is explored by Vogt (2000), for example. As displayed in figure 34, the graph for the
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spin tune does, indeed, exhibit a jump at the location of the resonance ν0 = Q. Furthermore,
the magnitude of the jump is 2ε, as indicated in the figure.

This is an elegant idea, but it does have its limitations. Even using the single resonance
model, though, we have seen from (16.8) and (16.12), that there is more than one possible
solution for the spin tune, and not all the solutions have jumps, e.g. the expression in (16.8) is
continuous. Evidently, we must select the solution for the spin tune ν, which reduces to the
closed-orbit value νc.o., as the resonance strength ε goes to zero. It may not always be clear
what this solution is for a more complicated model, e.g. with multiple resonance driving terms,
and also, especially, if one is performing a purely numerical calculation for the spin tune. Other
pitfalls are that the location of the spin tune jump may not be exactly at the location of the
resonance. In addition, the spin tune may not suffer a jump at all across a depolarizing spin
resonance, e.g. for the single resonance model with a single Snake, or a pair of diametrically
opposed orthogonal Snakes, as was shown in MSY1.

17. SMILE

17.1. Solution for the vector field of spin quantization axes

The SMILE algorithm (Mane 1987b) was, historically, the first general formalism for the spin
quantization axes, which treated all the orbital oscillation modes to arbitrary orders. Other
formalisms had been published earlier, but they all treated only a subset of the betatron and
synchrotron oscillations, or were restricted to low orders of perturbation theory (typically first
order). We review the SMILE formalism briefly below.

We summarize a few basic definitions. We decompose the spin precession vector W into
a closed orbit and off-axis terms: W = W0 + w. The spin tune on the closed orbit is denoted
by νc.o.. We denote the solutions for the spin motion on the closed orbit by l0, m0 and n0,
where the one-turn periodicities of the vectors are

n0(θ + 2π) = n0(θ), (l0 ± im0)θ+2π = e−i2πνc.o. (l0 ± im0)θ . (17.1)

We then express n, off the closed orbit, using l0, m0 and n0 as a basis, i.e.

n = n1l0 + n2m0 + n3n0. (17.2)

Clearly, on the closed orbit n1 = n2 = 0 and n3 = 1. For brevity, define w1 = w · l0,
w2 = w · m0 and w3 = w · n0. The formal solution for n1, n2 and n3 was given in (15.10). It is
more elegant to make use of angular momentum theory and to employ spherical harmonics.
Define

V±1 = ∓n1 ± in2√
2

, V0 = n3. (17.3)

Also define w± = w1 ± iw2. Define a vector of spin 1 angular momentum matrices J:

J3 =

1 0 0

0 0 0
0 0 −1


 , J+ =


0

√
2 0

0 0
√

2
0 0 0


 , J− =




0 0 0√
2 0 0

0
√

2 0


 .

(17.4)

Then,

w · J = w3J3 + 1
2 (w+J− + w−J+). (17.5)
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The equation of motion for (V1, V0, V−1) is

d

dθ


 V1

V0

V−1


 = i (w · J )T


 V1

V0

V−1


 , (17.6)

where T denotes a transpose. Here,

(w · J )T =


 w3 w+/

√
2 0

w−/
√

2 0 w+/
√

2

0 w−/
√

2 −w3


 . (17.7)

The solution with the appropriate periodicities, and which reduces to V±1 = 0 and V0 = 1
when w = 0, is

V1

V0

V−1


 = T

{
exp

(
i
∫ θ

−∞
(w · J )Tdθ ′

)}0
1
0


 . (17.8)

Here, ‘T’ denotes a θ -ordered product of operators. To evaluate the θ -ordered product, one
expands the exponential in a power series, and evaluates the integrals term by term:
V1

V0

V−1


=

{
1 + i

∫ θ

−∞
(w · J )T dθ ′ −

∫ θ

−∞

∫ θ ′

−∞
(w(θ ′) · J )T (w(θ ′′) · J )T dθ ′dθ ′′ + · · ·

}0
1
0


 .

(17.9)

The operators are always placed in descending order of θ ′, θ ′′, etc, as we read from left to right.
Note that V−1 = −V ∗

1 , hence it is only necessary to solve for V1 and V0. This is the SMILE

solution for n. It is a perturbative algorithm, in powers of the orbital oscillation amplitudes.
The convergence of the series is not guaranteed.

Let us discuss the lower limit of integration of −∞ briefly. It has the same origin as
the lower limit of −∞ in the integrals in (15.16)–(15.18). Basically, it is a formal device to
satisfy the periodicity conditions on n listed in (14.13). The SMILE integrals can be rendered
well-defined by the use of a convergence factor, or by analysing the structure of the integrals
analytically, as will be done below.

In practice, SMILE was actually implemented (in a computer programme) only for linear
orbital dynamics, i.e. w is linear in the orbital modes. As one can see, the above formal series
applies to any expression for w, but in normal parlance, SMILE is taken to imply linear orbital
dynamics. The algorithm goes further, to explain how to evaluate the integrals numerically.

With the restriction to linear orbital dynamics, one can express the orbital motion as a linear
combination of six-dimensional eigenvectors X = ∑

j ajEj . Similarly, one can decompose
w into an eigenvector sum,

w =
∑

j

aj wj , (17.10)

where wj is the spin–orbit coupling due to the eigenvector Ej . One then has wj (θ + 2π) =
ei2πQj wj (θ), or

wj+(θ + 2π) = ei2π(Qj −νc.o.)wj+(θ),

wj−(θ + 2π) = ei2π(Qj +νc.o.)wj−(θ),

wj3(θ + 2π) = ei2πQj wj3(θ).

(17.11)
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17.2. First order solution

The zeroth-order solutions for V1 and V0 are V
(0)

0 = 1 and V
(0)
±1 = 0, by definition. The

first-order solutions for V1 and V0, say V
(1)

1 and V
(1)

0 , are given by integrating

d

dθ


V

(1)
1

V
(1)

0

V
(1)
−1


 = i (w · J )T


0

1
0


 . (17.12)

The solution is

V
(1)

0 = 0, V
(1)
±1 = i√

2

∫ θ

−∞
w± dθ ′. (17.13)

The above expressions express the well-known fact that the leading-order perturbations to the
spin motion are driven by terms orthogonal to n0. Hence, there is no first-order contribution
to V0. This fact was already implicit in the formulation of the single resonance model: the
resonance driving term (the perturbation w) was assumed to lie in the horizontal plane, i.e.
orthogonal to n0.

In a ring with a single Siberian Snake, n0 lies in the horizontal plane. In such a case,
the leading order perturbations in w have components in both the horizontal and vertical
directions.

At higher orders, both terms parallel and orthogonal to n0 (in the off-axis spin precession
vector w) will contribute to the solution for n. The terms in w parallel to n0 are, in fact, usually
the most important ones at higher orders, e.g. for synchrotron sideband resonances.

As we have pointed out, it is only necessary to solve for V1, and not both V±1. We can
decompose the solution for V1 into a sum of eigenvector terms:

V
(1)

1 = i√
2

∑
j

aj

∫ θ

−∞
wj+ dθ ′ ≡

∑
j

aj V
j

1 , (17.14)

with obvious notation. Then,

V
j

1 (θ + 2π) = ei2π(Qj −νc.o.)V
j

1 (θ). (17.15)

This can be used to express the solution for V
j

1 in a compact form suitable for numerical
evaluation:

V
j

1 (θ) = i√
2

∫ θ

−∞
wj+ dθ ′ = 1

ei2π(Qj −νc.o.) − 1

i√
2

∫ θ+2π

θ

wj+ dθ ′. (17.16)

Hence, the value of V
j

1 (θ) is obtained by an integral around the circumference, based at θ ,
multiplied by a so-called ‘resonance denominator’. The resonance denominator vanishes when
νc.o. = Qj + k, where k is an integer: this is a first-order spin resonance. For future reference,
the one-turn integrals around the ring are known as (first-order) ‘spin integrals’.

17.3. Higher-order spin integrals

At the second order, a sample term, say the expression for V1, is

V
(2)

1 = − 1√
2

∫ θ

−∞

∫ θ ′

−∞
w3(θ

′)w+(θ
′′) dθ ′ dθ ′′. (17.17)
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This can be decomposed into a double sum over the orbital modes,

V
(2)

1 = − 1√
2

∑
j1,j2

aj1aj2

∫ θ

−∞

∫ θ ′

−∞
wj1 3(θ

′)wj2 +(θ
′′) dθ ′ dθ ′′

= i
∑
j1,j2

aj1aj2

∫ θ

−∞
wj1 3(θ

′)V j2
1 (θ ′) dθ ′

≡
∑
j1,j2

aj1aj2V
j1j2

1 . (17.18)

This can further be telescoped into a set of one-turn integrals with resonance denominators:

V
j1j2

1 = i

ei2π(Qj1 +Qj2 −νc.o.) − 1

∫ θ+2π

θ

wj1 3(θ
′)V j2

1 (θ ′) dθ ′. (17.19)

(Of course, V
j2

1 contains a first-order resonance denominator already.) The new resonance
denominator diverges at the second-order resonance

νc.o. = Qj1 + Qj2 + k. (17.20)

The above expression is significant, because it depends only on the sum Qj1 + Qj2 , and not on
the order of terms: the integral V

j2j1
1 has the same resonance denominator.

This is a significant finding. The terms V
j1j2

1 and V
j2j1

1 need not be stored separately.
Similar statements apply to the terms in V0 and V−1. Overall, this means that the number of
terms to store only increases polynomially, not exponentially, with the order of perturbation
theory.

Further details of the formalism, to keep track of all the higher-order terms, are given
by Mane (1987b), with important additional refinements by Mane (1992b). Furthermore, it
is obvious from (17.9), that the calculation of the higher-order integrals can be formulated
recursively.

17.4. Higher-order versus nonlinear spin resonances

The SMILE solution for n, using only linear orbital dynamics, demonstrates an important point
about the higher-order spin resonances: all of the higher-order resonances can, in principle, be
driven by purely linear orbital dynamics. This clarified a fallacy in the literature pertaining
to that point: many authors called the first-order spin resonances ‘linear’ resonances, and the
higher-order ones ‘nonlinear’ resonances, with the tacit (or sometimes explicit) claim that
nonlinear orbital dynamics was required to explain the ‘nonlinear’ resonances. SMILE showed
that this is not so: the linear orbital dynamics can do it all. In fact, nonlinear orbital dynamics can
drive even the first-order resonances. It is more common now, to classify the spin resonances
as ‘first-order’ and ‘higher-order’.

17.5. Quadrupoles versus higher multipoles

The SMILE algorithm also shows why quadrupoles are the dominant sources of the perturbations
to the spin motion when compared with the higher-order multipoles such as sextupoles, etc.
Consider a second-order spin resonance of the form ν = Qx + Qy + k. Such a resonance can
be driven, in first-order perturbation theory, by a sextupole via the xy term in the sextupole
field. The relevant first-order integral is

V sext
1 ∼

∫ θ

−∞
w+(θ

′) dθ ′. (17.21)
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The quadrupoles can also drive such a resonance, but only at the second order of perturbation
theory via an integral such as,

V
quad

1 ∼
∫ θ

−∞
w3(θ

′)
∫ θ ′

−∞
w+(θ

′′) dθ ′ dθ ′′. (17.22)

From the expressions for w+ and w0 in a quadrupole and a sextupole, the magnitudes of the
driving terms are roughly,

wsext
+ ∝ (aγ + 1) xy,

w
quad
+ ∝ (aγ + 1) y,

w
quad
0 ∝ (aγ + 1) x.

(17.23)

Let Nquad and Nsext be the numbers of quadrupoles and sextupoles in the ring. Glossing over
the detailed structure of the integrands (the accelerator lattice), it follows that the magnitudes
of the quadrupole and sextupole contributions are

V
quad

1 ∝ (aγ + 1)2 Nquad xy, V sext
1 ∝ (aγ + 1) Nsextxy. (17.24)

Hence, even though the quadrupoles contribute at only the second order of perturbation theory,
their contribution is of O((aγ +1)2), whereas the sextupole contribution is only to the first power
O((aγ + 1)). For aγ � 1, e.g. aγ > 100 at both RHIC and LEP, the quadrupoles dominate
completely. Even in lower energy rings, e.g. aγ � 1–5, in machines such as VEPP-2M,
SHR or the IUCF Cooler, the number of sextupoles is relatively small, hence, barring some
feature of the accelerator lattice, the contribution of sextupoles to the resonance driving terms
is dominated by the quadrupoles. The situation is even more extreme for octupoles, where the
ratio is

V
quad

1 ∝ (aγ + 1)3 Nquad, V oct
1 ∝ (aγ + 1) Noct. (17.25)

Indeed, many accelerators are not even equipped with octupoles, so Noct = 0. Similar
arguments apply to higher multipoles such as decapoles. Hence, the driving terms of the
spin resonances are typically dominated by the quadrupoles (plus a smaller contribution from
the dipoles) in all the accelerators of interest in this paper. Solenoids and Snakes may also
contribute.

The sextupoles can, however, exert an influence on the spin resonances indirectly, via the
chromaticity; this is really the major mechanism whereby sextupoles influence the spin motion.
In other words, the sextupoles affect the spin dynamics, not so much via the amplitudes of the
driving terms (the orbital actions), but rather via the tunes (the orbital angle variables). We
shall see some examples of the effects of the chromaticity on the spin motion later in this paper.

17.6. Concluding remarks

SMILE was the first formalism to treat all the orbital oscillations systematically, to all orders.
It demonstrated that the calculation of the higher-order terms was a problem of polynomial,
not exponential, complexity. Note that because n is a unit vector, it has only two independent
degrees of freedom, but SMILE treats all three components of n on an equal footing. This leads
to a linear matrix equation for V1, V0 and V−1 (note that w is assumed to be already known as a
function of θ ). However, the resulting solution is not guaranteed to be unitary: if the θ -ordered
exponential is truncated at any finite order of perturbation theory, the resulting approximate
solution is, in general, not a unit vector. Many earlier formalisms to solve for n made use of
unitarity to parametrize n, using a complex variable ζ as in (15.12). This leads to a nonlinear
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equation of motion (15.13) which is difficult to solve to arbitrary orders. Other formalisms,
such as SLIM (Chao 1981), treated only first-order perturbation theory.

Yokoya (1987) published a formalism using Lie algebra, which treated all the orbital
modes to all orders (via perturbation theory in powers of |w|), preserved unitarity, and included
nonlinear orbital dynamics in principle. The Lie algebra formalism was also derived by
Eidelman and Yakimenko (1994, 1995), and coded into a programme SpinLIE (Eidelman and
Yakimenko 1993). Yokoya later developed the nonperturbative algorithms (and coded into
programs) SODOM (Yokoya 1992) and SODOM2 (Yokoya 1999), which will be reviewed in
section 23.

18. Convergence of perturbation theory

A general analysis of the convergence of perturbation theory is difficult, if not impossible. We
treat only the single resonance model. Consider the solution for (n · n0)

2, i.e. n2
3, in the SRM.

The solution is

n2
3 = (ν0 − Q)2

(ν0 − Q)2 + ε2
. (18.1)

The notation has been defined previously. The perturbative expansion in powers of ε is

V 2
0 = 1 − ε2

(ν0 − Q)2
+

ε4

(ν0 − Q)4
− ε6

(ν0 − Q)6
+ · · · . (18.2)

This is what SMILE would yield. The series converges if |ε| < |ν0 − Q|, i.e. the ‘distance’ to
the resonance.

The convergence of a Taylor series expansion in powers of the orbital amplitudes was
investigated further by other authors, e.g. see Hoffstaetter et al (1999) or Vogt (2000). When
there are multiple resonance driving terms, the convergence is dominated by the nearest strong
resonance. Suppose this resonance is at a tune ν∗, and its resonance strength is ε∗, then a
Taylor series expansion in powers of the orbital amplitudes around the closed orbit is ‘useful’
if |ε∗/(νc.o. − ν∗)| < 1. By ‘useful’, we mean there may be weaker higher-order resonances
in the vicinity, so that the resonance denominators in the perturbation series will, eventually,
encounter a ‘small denominator’ division by a small quantity, but the corresponding numerator
may be so small as to render the divergence harmless.

Let us average the solution for n2
3 for the SRM over the phase-space. We employ a Gaussian

distribution in the orbital phase-space. Let us write 〈ε2〉 = σ 2. For a Gaussian beam,

〈ε2n〉 = n! σ 2n. (18.3)

Hence,

〈n2
3〉pert = 1 − σ 2

(ν0 − Q)2
+ 2!

σ 4

(ν0 − Q)4
− 3!

σ 6

(ν0 − Q)6
+ · · · . (18.4)

The average of the exact solution is

〈n2
3〉exact =

∫ ∞

0

(ν0 − Q)2

(ν0 − Q)2 + ε2
2ε e−ε2/σ 2 dε

σ 2
. (18.5)

Defining t = ε2/σ 2 and x = (ν0 − Q)2/σ 2, the above integral is

I(x) = x

∫ ∞

0

e−t

t + x
dt = xex

∫ ∞

x

e−t

t
dt. (18.6)

This is related to standard mathematical integrals. The en-integrals are defined via

En(x) =
∫ ∞

1

e−xt

tn
dt, (18.7)
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while the exponential integral is defined as

Ei(x) = −
∫ ∞

−x

e−t

t
dt. (18.8)

The overall minus sign and the integration limit of −x are historical. One sees that,

E1(x) = −Ei(−x) =
∫ ∞

x

e−t

t
dt. (18.9)

Hence, I(x) = xex E1(x). We follow Bleistein and Handelsman (1986) below. The
exponential integral is difficult to expand in a power series. It has a logarithmic singularity at
x = 0, hence it cannot be Taylor expanded around x = 0. In our case, we wish to expand in
powers of σ 2/(ν0 − Q)2, i.e. in powers of 1/x around 1/x = 0. The answer is, as in the SMILE

solution,

I(x) =
∞∑

k=0

(−1)k
k!

xk
. (18.10)

The radius of convergence of this series, in powers of 1/x, is zero: the ratio of the (k + 1)th
term to the kth term is

lim
k→∞

ak+1

ak

= − lim
k→∞

k + 1

x
→ ∞, (18.11)

which diverges for any fixed 1/x �= 0. It is well-known that the above power series expansion
for the exponential integral, or, in our case, for I(x), is an asymptotic series. It converges
for terms up to k � k∗, where k∗x � 1, and then the addition of more terms causes the sum
to diverge. Hence, even if the SMILE perturbation series converges, i.e. |ε/(ν0 − Q)| < 1,
a term-by-term average followed by a sum over the terms yields only an asymptotic series.

Let us briefly analyse the problem using Lie algebra. We shall not spell out the full details
of Yokoya’s (1987) formalism. All that matters here is that, to the first order in ε, the solution
for n is given by

nLie,1 = e3 cos χ1 + sin χ1(e1 cos φ + e2 sin φ ), (18.12)

where

χ1 =
∣∣∣∣−i
∫ θ

−∞
w+ dθ ′

∣∣∣∣ =
∣∣∣∣ ε

ν0 − Q
ei(φ−ν0θ)

∣∣∣∣ = ε

ν0 − Q
. (18.13)

This evidently agrees with the Taylor series solution to the first and second orders in ε. Note
that the solution, though approximate, is exactly unitary:

|nLie,1|2 = 1, (18.14)

even though χ1 diverges at a resonance. Although χ1 is only of the first power in ε, and the
solution for n is technically accurate only to O(ε2), the actual expression for nLie,1 contains
all powers of ε. Once again, let us examine the expression for (n · n0)

2. The answer is

(nLie,1 · n0)
2 = cos2 χ1 = 1 − χ2

1 +
χ4

1

3
+ · · · , (18.15)

as compared to the exact result,

(n · n0)
2 = 1 − χ2

1 + χ4
1 + · · · (18.16)

so, although the value of cos2 χ1 is guaranteed to lie between 0 and 1 for any value of χ ,
the solution is approximate and differs from the exact answer at O(ε4). The average over the
orbital distribution is given by

〈(nLie,1 · n0)
2〉 =

∫ ∞

0
cos2 χ1 2ε e−ε2/σ 2 dε

σ 2
. (18.17)
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This is a finite integral, basically a Fresnel-type integral. If one calculates the solution to higher
orders, the higher-order solution will have the symbolic form,

nLie = e3 cos χ + sin χ(e1 cos φ + e2 sin φ ), (18.18)

where χ = χ1 + χ3 + χ5 + · · ·, and χk ∝ εk , and we know from the exact solution that only
the odd powers will appear. The solution for nLie is always unitary, even if the sum for χ is
truncated at any finite order.

Hence, the inclusion of higher-order terms causes the expression for nLie to change in a
way that cannot be expressed as a simple addition to a lower-order solution. For example, the
integral in (18.17) must be reworked as each new order in the Lie series is calculated. This
is both a strength and a weakness of the Lie algebraic formalism: the perturbative solution is
always unitary, but the inclusion of high-order terms requires previously calculated expressions
(e.g. statistical averages) to be recalculated.

The above analyses highlight some of the strengths, and also the limitations of various
perturbation series. A formalism such as SMILE, which treats all three components of n as
independent variables on an equal footing, can be formulated recursively to arbitrary orders.
However, the resulting approximate solution is not exactly unitary, the perturbation series may
not converge, and a term-by-term statistical average over the orbital phase-space may yield an
asymptotic series, even for such a simple case as the single resonance model.

The use of formalisms which preserve the unitarity of n exactly, all suffer from the problem
that they cannot be coded recursively; this means that solving to high orders is difficult. The
statistical averages over the orbital phase-space are also not simple to calculate, in general.

19. First-order perturbations to the spin precession

19.1. General remarks

We now examine the off-axis spin precessions. Naturally, the subject of the off-axis spin
motion covers many topics, so in this section, we shall treat only the first-order perturbations.
The principal aim of this section is to introduce some simple notions, which form the basis for
many of the underlying approximations when treating more complicated systems. This is one
of those sections where it is necessary to carefully distinguish between the spin basis vectors
referenced to the design orbit and the imperfect closed orbit. By default, the spin basis vectors
in the section will be referenced to the imperfect closed orbit. We shall try to write the basic
formulae in a general notation which does not require one to break down the equations into
special cases prematurely.

19.2. Spin basis vectors

Recall the spin basis {l0, m0, n0}, which are the solutions for the spin motion on the closed
orbit, and also recall k0 = l0 +im0. In a perfectly aligned planar ring, without Snakes, W0 ‖ e3,
say W0 = W0e3, and n0 = e3 is everywhere vertical. For brevity define

ψ0 =
∫ θ

0
W0(θ

′) dθ ′. (19.1)

Then, ψ0(θ + 2π) − ψ0(θ) = 2πνc.o.. Then one can write,

l0 = cos ψ0 e1 + sin ψ0 e2,

m0 = − sin ψ0 e1 + cos ψ0 e2,

k0 = (e1 + ie2) e−iψ0 .

(19.2)
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The above vectors obviously lie in the horizontal plane. In the simplest case, we can just set
W0 = ν0, a constant, in which case ψ0 = ν0θ , which is what we did in the idealized models
earlier in this paper. For a ring with two diametrically opposite Snakes, we have to apply the
above expressions in each arc, with suitable matching conditions across the Snakes.

For a perfectly aligned planar ring with one Snake, n0 precesses in the horizontal plane,
all around the ring. The only example of a single Snake that we shall treat is a solenoid. Let
the Snake be located at θ = π , diametrically opposite to the origin. Then,

n0 = − sin ψ0 e1 + cos ψ0 e2, θ ∈ (−π, π), (19.3)

with a discontinuity in n across the Snake for a pointlike solenoid spin rotation. The spin tune
is νc.o. = 1

2 . The other two spin basis vectors can be chosen to be, for −π < θ < π ,

l0 = e3, m0 = cos ψ0 e1 + sin ψ0 e2, (19.4)

with l0(θ + 2π) = −l0(θ) and m0(θ + 2π) = −m0(θ) on successive turns. In this model, the
vector k0 has nonzero components along all three axes.

19.3. Resonance driving terms: Fourier harmonics

We now derive expressions for the driving strengths of the first-order resonances. It is simplest
to work with the parametrization of n using a complex variable ζ (see (15.12)). To first order,
the solution for ζ is (see (15.16))

ζ � −i
∫ θ

−∞
w · k0 dθ ′. (19.5)

The problem, therefore, reduces to identifying the components of w parallel to k0. In a perfectly
aligned planar ring with no Snakes, only the horizontal components of w will contribute. In a
ring with a single Snake, all three components of w will contribute, even if the ring is perfectly
aligned.

To proceed further, we expand w · k0 in Fourier harmonics. This is not strictly necessary,
but is by far the clearest exposition of the underlying physics. Because of the generality of our
formalism, we can treat both planar rings, and rings with a single Snake on the same footing.
Also, because of the generality of our formalism, we can treat closed-orbit imperfections
using the same formalism. For now, we say that w is due to some orbital mode wj , where
j = ±1, ±2, ±3 and Q−j = −Qj . The ‘mode’ can be extended to include closed-orbit
imperfections, which we can absorb into our notation by writing j = 0, in which case the
‘tune’ Qj is just unity. If w is due to closed-orbit imperfections, then the vectors n0 and k0

are of course referenced to the ideal design orbit. We then write, with a fairly self-explanatory
notation,

wj · k0 =
∑

k

wjk ei(φj +kθ−νc.o.θ). (19.6)

The full expression is just a sum over j :

w · k0 =
∑

j

∑
k

wjk ei(φj +kθ−νc.o.θ), (19.7)

where the sum over j could be over all six orbital oscillation modes and the closed-orbit
imperfections. To avoid unnecessary clutter, we shall just treat one value of j at a time, below.

Strictly speaking, the concept of a Fourier series applies to a function f (θ) which is
periodic in θ , namely, f (θ + 2π) = f (θ). However the integrand wj · k0 is not periodic in θ .
In general, one has

wj · k0(θ + 2π) = ei2π(Qj −νc.o.) wj · k0(θ). (19.8)
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Consequently, we define a periodic function f (θ) via

f (θ) = e−i(φj −νc.o.θ) wj · k0. (19.9)

This periodic function is expanded in Fourier harmonics. The exponential e−i(φj −νc.o.θ) is then
brought over to the other side; this is how we obtain the Fourier sum in (19.6).

The solution for ζ is, assuming the validity of interchanging sums and integrals, etc,

ζj = − i
∫ θ

−∞
w · k0 dθ ′

= − i
∑

k

wjk

∫ θ

−∞
ei(φ′

j +kθ ′−νc.o.θ
′) dθ ′

=
∑

k

wjk

νc.o. − Qj − k
ei(φj +kθ−νc.o.θ). (19.10)

We remark in passing on a subtle point when evaluating integrals such as the above. The
argument is presented by Yokoya (1983a). The exponent φ′

j is actually a dynamical variable
(not explicitly a function of θ ′), whereas the integral is over θ ′. The integral is properly
evaluated using the following trick: by the definition of action-angle variables, φ − Qθ is
independent of θ , hence

φ′ = φ − Qθ + Qθ ′. (19.11)

We can pull φ − Qθ out of the integral, to obtain an expression of the form

I =
∫ θ

−∞
eiφ′

g(θ ′) dθ ′ = ei(φ−Qθ)

∫ θ

−∞
eiQθ ′

g(θ ′) dθ ′, (19.12)

where g is some function of θ ′. The integrand is now purely a function of θ ′. The above
technique will be used without comment throughout this paper, when evaluating integrals over
dynamical variables.

19.4. Planar rings

19.4.1. General remarks. By a planar ring we mean one with no Siberian Snakes. The spin
basis vectors, n0 and k0, are here referenced to the ideal design orbit, i.e. n0 = e3, etc (see
(19.2)). Then w contains two terms: one from the closed orbit imperfections, and another from
the orbital oscillations. Symbolically, with obvious notation,

w = wc.o. + wosc. (19.13)

We shall treat the closed-orbit imperfections first, then the orbital oscillations.

19.4.2. Closed-orbit imperfections. Evidently, by a ‘planar’ ring we really mean a ring whose
design is planar. Consider the terms in w which pertain to the perturbations due to motion
on the imperfect closed orbit. As already noted, k0 lies in the horizontal plane, and only the
horizontal components of w will, therefore, contribute. The most important contributions to w
come from horizontal dipoles and quadrupoles, in fact, mainly the quadrupoles in high-energy
accelerators, recall the statements in section 7. There could also be a contribution to w from
solenoids, which we shall discuss below. In dipoles and quadrupoles, w is linear in the orbital
motion. For example, in a quadrupole (see (7.42))

wquad = R(aγ + 1)
B ′

Bρ0
(ye1 + xe3). (19.14)
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For a horizontal dipole, from (7.33) and (7.34), dropping the subscript for the betatron motion,

whbend = R
[
(aγ0 + 1)

x

ρ2
x

e3 − a(γ0 − 1)
y ′

ρx

e2

]
. (19.15)

Hence, it is the vertical component of the imperfect closed orbit which contributes to the first-
order perturbation to the spin precession. The vertical component includes both y and y ′ terms
from the quads and dipoles, respectively. The contribution from the quadrupoles is usually
much larger, especially in large rings, where the bend radius ρx is large.

If the ring contains solenoids, then w · k0 could contain both x ′ and y ′ terms, i.e. a
contribution from the horizontal orbital motion. However, solenoids generate transverse x–y

coupling, and so the ring is then not ‘planar’, by our definition here. For the vast majority of
accelerators, the vertical component of the closed-orbit imperfections dominates the first-order
perturbation to the spin precession.

19.4.3. Orbital oscillations. It is still the case that the value of w is dominated by the
horizontal dipoles and the quadrupoles. The quadrupole contribution is

wquad = R(aγ + 1)
B ′

Bρ0
(yβe1 + xβe3). (19.16)

The horizontal dipole contribution is ((7.33) ff)

whbend = R (aγ0 + 1)
xβ

ρ2
x

e3 − R a(γ0 − 1)
y ′

β

ρx

e2

+R
{[

(aγ0 + 1)
Dx

ρ2
x

−
(

a

γ0
+ 1

)
1

ρx

]
e3 − a(γ0 − 1)

D′
y

ρx

e2

}
δ. (19.17)

Since the vertical dispersion vanishes in a perfectly aligned planar ring, Dy = D′
y = 0, once

again, the only terms which contribute to w · k0 are from the vertical orbital motion, i.e. the
vertical betatron oscillations.

The dominant contribution to w ·k0 is from the vertical betatron oscillations. The presence
of transverse x–y coupling can cause the horizontal betatron oscillations to also contribute,
but this is typically a weaker effect. Furthermore, if the closed orbit imperfections (or magnet
misalignments) are sufficiently large to tip n0 substantially away from the vertical, then, the
horizontal betatron oscillations can also drive spin resonances. A resonance of this type is
called a ‘hybrid resonance’, because it involves a combination of intrinsic and imperfection
resonance driving terms. A hybrid resonance has been observed at the AGS, and will be
reviewed in section 22.4.

19.5. Planar electron accelerators

We have made some tacit assumptions in the preceding subsections, which are false for
ultrarelativistic electron accelerators. This is because the synchrotron radiation has a profound
effect on the perturbations to the spin. In this subsection, the vectors n0 and k0 are referenced
to the imperfect closed orbit. Hence, k0 is no longer exactly horizontal, and n0 is no longer
exactly vertical, although close. The contribution to w is still, principally, from the horizontal
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dipoles and the quadrupoles. It is still the case that,

wquad = R(aγ + 1)
B ′

Bρ0
(yβe1 + xβe3),

whbend = R (aγ0 + 1)
xβ

ρ2
x

e3 − R a(γ0 − 1)
y ′

β

ρx

e2

+R
{[

(aγ0 + 1)
Dx

ρ2
x

−
( a

γ0
+ 1
) 1

ρx

]
e3 − a(γ0 − 1)

D′
y

ρx

e2

}
δ.

(19.18)

The fundamental point to note for electron accelerators is that the vertical betatron emittance
vanishes in a perfectly aligned planar ring because the vertical dispersion vanishes: Dy =
D′

y = 0. Hence, in a perfectly aligned planar ring where k0 is horizontal, all of the terms
in w · k0 vanish: there are no perturbations to the spin motion in a perfectly aligned electron
accelerator.

When the ring is not perfectly aligned, i.e. there are closed-orbit imperfections, the analysis
for the closed-orbit imperfections is the same as before, i.e. the vertical component of the
closed-orbit imperfections dominates. As for the orbital oscillations, the vertical emittance is
not exactly zero, although small. Hence, the contributions of the horizontal betatron, vertical
betatron and synchrotron oscillations can all be of comparable magnitude.

19.6. Nonplanar accelerators

We treat only a ring with a single Siberian Snake (solenoid). We know that in such a ring, the
vector k0 has nonzero components along all three axes. Furthermore, because the spin tune is
1
2 , k0 simply reverses sign at every turn. Under these conditions, the closed orbit imperfections
contribute negligibly to w · k0. The closed orbit imperfections repeat every turn, hence in the
integral

∫ θ

−∞ w · k0, dθ ′, the integral sums to zero every two turns. The integral, therefore,
never builds up coherently to achieve a spin resonance. We are, of course, assuming that the
magnitudes of the resonance driving terms are small, because if |wjk| is large, then there could
be a serious perturbation to the spin even under nonresonant conditions. In fact, we shall
encounter precisely this circumstance, when we examine work with partial Siberian Snakes,
later in this paper.

We now assume that the ring is perfectly aligned. Evidently, all the horizontal betatron,
vertical betatron and synchrotron oscillation modes can contribute to w·k0. The contribution to
w ·k0 from the solenoid cannot be neglected. Recall we pointed out earlier that the spin rotation
angle in a solenoid is inversely proportional to the momentum (see (7.40)). From (7.39),

wsol = −R(a + 1)
Bsol

Bρ0
δ e2, (19.19)

where we have retained only the terms in the momentum offset (synchrotron oscillations).
In the case of electron rings, the vertical betatron emittance may or may not be much smaller

than the horizontal betatron emittance, depending on the compensation of the x–y coupling
induced by the solenoid. In any case, the other orbital oscillation modes can contribute to w·k0.

19.7. Planar ring with two Snakes

The only ring with two Snakes, to date, is RHIC. Once again, the spin tune is 1
2 if the Snakes are

at full strength, so the closed orbit imperfections contribute negligibly. Their main effect is to
cause the horizontal betatron oscillations to couple into the vertical plane, and vice versa, etc.
In a perfectly aligned storage ring with two orthogonal Snakes, the vertical betatron oscillations
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will generate the principal contribution to w · k0. In practice, RHIC has observed depolarizing
spin resonances from both the vertical betatron and the horizontal betatron oscillations (Ptitsyn
et al 2003, 2004, Ranjbar et al 2003). Closed orbit imperfections do influence the spin
resonance structure at RHIC.

19.8. Resonance structure of w · n0

Although the function w · n0 does not contribute to the first-order solution for n, it does
contribute importantly at higher orders. Hence, it makes sense to discuss the resonance
structure of w · n0, alongside with that of w · k0. It is also relevant to consider the integral (see
(15.18))

χ = −
∫ θ

−∞
w · n0 dθ ′. (19.20)

First, note that n0 is periodic in θ , hence the Fourier sum is of the form

wj · n0 =
∑

k

w′
jk ei(φj +kθ). (19.21)

Obviously, we begin with a planar ring. We also begin with a perfectly aligned planar ring,
so n0 is vertical. The principal sources for w are, of course, the dipoles and the quadrupoles.
We now find that it is the horizontal components of the closed-orbit imperfections, and the
horizontal betatron oscillations and the synchrotron oscillations, which contribute to w · n0.
The vertical betatron oscillations couple to w · n0 only when the ring has imperfections, or
when there is transverse x–y betatron coupling, so that the resonance driving terms from the
vertical betatron oscillations couple into the vertical direction. This is the exact opposite pattern
that we obtained for w · k0. We note for future reference that the most important contribution
to w · n0 is usually that from the synchrotron oscillations.

Next, we treat nonplanar rings, i.e. rings with a single (solenoid) Siberian Snake. Here,
n0 precesses in the horizontal plane in the arc, and, in general, n0 has a nonzero longitudinal
component in the solenoid (Snake). Because the Snake is a solenoid, there will necessarily
be some transverse x–y betatron coupling, but we assume this is fully compensated by skew
quadrupoles, etc, outside the ‘Snake system’. However, there will be nonzero betatron coupling
inside the Snake system. Since n0 precesses in the horizontal plane in the arc, the horizontal
betatron oscillations do not couple to n0 there. However, the horizontal betatron oscillations
do couple to n0 in the Snake system. The vertical betatron oscillations couple to n0 in the arc.
The synchrotron oscillations do not couple to n0 in the arc, unless the vertical dispersion is
nonzero in the arc. We have noted that w is longitudinal in the solenoid, for an off-momentum
particle (see (7.39) and also above). Since n0 has a nonzero longitudinal component in the
solenoid, the synchrotron oscillations couple to n0 in the solenoid.

The AmPS and SHR both had full-strength solenoid Siberian Snakes, and the x–y

coupling was fully compensated outside the Snake system (by a set of quadrupoles and skew
quadrupoles). The AmPS and SHR Snake designs and compensation schemes were reviewed
in MSY1. The AGS was equipped with a 5% solenoid partial Snake, but the x–y coupling
was too large to be compensated by the skew quadrupoles in the AGS. A major motivation to
install a transverse-field (helical field) partial Snake in the AGS (Huang et al 2003b), was to
reduce the x–y coupling. The AGS work with partial Snakes will be reviewed in section 26.

19.9. Scaling with energy

Note that, except for solenoids and some small terms from the dipoles, the first-order
perturbation terms in the off-axis spin precession vector w are all proportional to aγ + 1.
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The contributions to w are dominated by the quadrupoles. Other things being equal, at
high energies where aγ � 1, the magnitudes of the perturbations, therefore, increase
proportionately with the beam energy. Note in practice, that the ‘other things’ are not equal.
In e+e− rings, the beam emittances, for example, also increase with energy, which only makes
matters worse. Nevertheless, it is true to say the strengths of the depolarizing resonances are
stronger in higher energy rings, which is a serious problem for the attainment of a high degree
of polarization at high energies.

The energy scaling laws will be derived in more detail later in this paper, when treating
radiative and nonradiative systems separately. Furthermore, the above scaling is based on the
first-order terms only. Evidently, if the first-order terms are not small, then perturbation theory
will not be valid, and the higher-order terms will play a significant role. This is correct. We
shall develop the formalism to treat the higher-order terms later in this paper.

20. Synchrotron sideband spin resonances

20.1. General remarks

By far the most important of the higher-order spin resonances are due to the synchrotron
oscillations. We have noted that early work on resonant depolarization by Serednyakov et al
(1976) observed synchrotron sideband resonances. Shatunov (1969) had earlier observed
depolarization at VEPP-2, which was explained as being from synchrotron sidebands, but the
work was regrettably unpublished. See Khoze (1971) for a graph of polarization calculations
at VEPP-2 (figure 56), later in this paper. The principal formulae for synchrotron sideband
resonances were presented by Derbenev et al (1979c). This is not to say that the results
were not known earlier, but the above paper was an easily accessible English-language paper.
A detailed derivation based on Hamiltonian dynamics was given by Yokoya (1983a). The
material below follows Yokoya’s paper closely.

20.2. Summary of basic formulae

Recall from section 19, that the off-axis spin precession vector was expanded in Fourier
harmonics via (see (19.6))

wj · k0 =
∑

k

wjk ei(φj +kθ−νc.o.θ). (20.1)

Parametrizing n by a complex variable ζ via (see (15.12)),

n =
√

1 − |ζ |2 n0 + �(ζk∗
0), (20.2)

the solution for ζ (for the mode j ) is (see (19.10))

ζj = −i
∑

k

wjk

∫ θ

−∞
ei(φ′

j +kθ ′−νc.o.θ
′) dθ ′. (20.3)

The value of the integral is

ζj =
∑

k

wjk

νc.o. − Qj − k
ei(φj +kθ−νc.o.θ). (20.4)

We shall now extend the solution to higher orders, by neglecting |ζ | in the square root in
(15.13). This yields a linear differential equation (see (15.15)):

dζ

dθ
� −iw · k0 + iw · n0 ζ. (20.5)
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The formal solution is (see (15.17)):

ζ � −ie−iχ(θ)

∫ θ

−∞
eiχ(θ ′) ω · k0 dθ ′, (20.6)

where (see (15.18))

χ(θ) = −
∫ θ

−∞
w · n0 dθ ′. (20.7)

We have already expanded w · k0 in Fourier harmonics earlier and obtained the first-order
solution. Now we employ the Fourier harmonics of w · n0 to analyse the higher orders. We
can write, for an arbitrary mode j ,

χj = −
∫ θ

−∞
wj · n0 dθ ′ = − 1

ei2πQj − 1

∫ θ+2π

θ

wj · n0 dθ ′. (20.8)

In general, the betatron tunes greatly exceed unity, Qx,y � 1, i.e. the betatron oscillations
complete many periods in one circumference. In that circumstance, the one-turn integral in
(20.8) averages closely to zero. On the other hand, the synchrotron tune is much less than
unity, Qs 	 1 in most rings. Hence, for synchrotron oscillations, the one-turn integral in
(20.8) does not average to zero.

Note that the first-order term arising from w · k0, could itself be from a synchrotron
oscillation. To avoid complications, we shall first consider the case where the first-order term
in w · k0 is from a betatron oscillation. We shall treat the case of the synchrotron oscillation
modifications to a parent first-order synchrotron resonance, afterwards.

Before proceeding further, note that a weak point of the above solution for ζ is that it
diverges at a resonance, whereas, we know that one must have |ζ | � 1. An alternative method
of treating the synchrotron sideband resonances is to employ the single resonance model to
solve for the parent resonance, and then to perform additional rotations of the reference frames
to incorporate the effects of the synchrotron oscillations (effectively a different formulation of
perturbation theory). This formulation does, of course, presuppose isolated parent resonances
from the outset, but it also has the merit that the solutions for the spin vector are always finite.
This point of view is explored by Lee and Berglund (1996) and Lee (1997).

20.3. Planar ring: tune modulation

There is a very simple way to derive the contribution of the synchrotron oscillations in a planar
ring, which is sufficiently accurate for most practical purposes. In (20.3), note that the spin
tune is given by νc.o. = ν0 = aγ0. We now introduce an energy offset into γ , i.e. we write

ν = ν0

(
1 +

�E

E

)
= ν0

(
1 + β2

0
�p

p

)
. (20.9)

We next say that the value of �p/p oscillates: this is a synchrotron oscillation. We write

�p

p
=
√

2Iz cos φz. (20.10)

Then,

ν = ν0 + ν0β
2
0

√
2Iz cos φz. (20.11)

Applying the appropriate conditions for a solution for n, the phase in the exponent is

νc.o.θ → ν0θ + u
√

2Iz sin φz, (20.12)
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where

u = aγ0β
2
0

Qs

. (20.13)

Then, treating only one Fourier harmonic wjk ,

ζjk = − iwjk

∫ θ

−∞
ei(φ′

j +kθ ′−ν0θ
′−u

√
2Iz sin φ′

z) dθ ′. (20.14)

As stated above, we first consider the case where mode j is a betatron oscillation, not a
synchrotron oscillation. To evaluate the integral, we employ the following Bessel function
identity

eir sin φ =
∞∑

m=−∞
Jm(r) eimφ, (20.15)

where Jm is a Bessel function. Hence,

ζjk = −iwjk

∑
m

Jm(u
√

2Iz)

∫ θ

−∞
ei(φ′

j +kθ ′−ν0θ
′) e−imφ′

z dθ ′. (20.16)

The same trick employed to treat φ′
j is played with φ′

z, to obtain the solution

ζjk = wjk

∑
m

Jm(u
√

2Iz)
ei(φj −mφz+kθ−ν0θ)

ν0 − k − Qj + mQs

. (20.17)

Each parent first-order resonance is surrounded by a set of satellite resonances, equally spaced
at the synchrotron tune. These satellite resonances are called synchrotron sideband resonances.
The strength of a synchrotron sideband is equal to that of the parent, multiplied by a Bessel
function. The interpretation of the resonances as satellites, or sidebands, of a parent resonance
is reasonable, because the synchrotron tune is small (recall Qs 	 1), so the sidebands are
clustered around a central resonance, which is usually the strongest.

20.4. Formal Hamiltonian dynamics

We follow Yokoya (1983a). We assume the ring contains no Snakes or spin rotators. Using
(20.8) and (20.10), and writing wδ = ws (�p/p) for the synchrotron oscillation term, we
obtain (dropping any subscript on χ )

χ = −uδ

√
2Iz sin(φz + vδ), (20.18)

where

uδeivδθ = ie−iQsθ

ei2πQs − 1

∫ θ+2π

θ

ws · n0 eiQsθ
′
dθ ′. (20.19)

In the limit Qs → 0, vδ vanishes and, approximately

uδ = 1

2πQs

∫ θ+2π

θ

ws · n0 dθ ′. (20.20)

From (7.35), the value of wδ · n0 in a perfectly aligned planar ring is

ws · n0 = R
[
(aγ0 + 1)GxDx −

(
a

γ0
+ 1

)
1

ρx

]
, (20.21)

where recall Gx(s) is the focusing function (see (8.2)) in the quadrupoles and horizontal
dipoles,

Gx = 1

ρ2
x

+
1

Bρ0

∂By

∂x
. (20.22)
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Using the differential equation for the horizontal dispersion (see (8.32)),

D′′
x + Gx(s)Dx = 1

ρx

. (20.23)

We can equivalently write

ws · n0 = R
[
− (aγ0 + 1) D′′

x +
(
aγ0 − a

γ0

) 1

ρx

]
= R

[
−(aγ0 + 1)D′′

x +
aγ0β

2
0

ρx

]
. (20.24)

Substituting into (20.20), the integral of D′′
x over a full circumference vanishes, while

R
∮

ρ−1
x dθ ′ = 2π by definition, so

uδ = 1

2πQs

∫ θ+2π

θ

ws · n0 dθ ′ = aγ0β
2
0

Qs

. (20.25)

This coincides with the tune modulation expression derived in (20.13). We shall write uδ in
the argument of the Bessel functions from now on.

Hence, the tune modulation argument yields the correct result for Qs 	 1 (technically,
in the limit Qs → 0). In practice, the extra level of detail offered by the formal Hamiltonian
theory is not important, and the tune modulation derivation is adequate for practical purposes.

The quantity that actually appears in the final polarization formulae is the mean-square
u2

δ (σp/p0)
2, generally called the ‘tune modulation index’ (see below for a more general

definition). Its value can become very large in very high-energy e+e− storage rings,
u2

δ (σp/p0)
2 � 1, leading to serious depolarization. Yokoya (1983b) suggests some ideas,

modifying the ring lattice using vertical bends, to cause the contribution of the D′′
x term to not

vanish in uδ , and thereby reduce the value of the tune modulation index. However, such ideas
have never been implemented in practice.

There is, however, a significant difference between the tune modulation solution for ζjk

(see (20.17)), and the solution from Hamiltonian dynamics, which is

ζjk = e−iχ(θ) wjk

∑
m

Jm(u
√

2Iz)
ei(φj −mφz+kθ−ν0θ)

ν0 − k − Qj + mQs

, (20.26)

i.e. there is an extra factor of e−iχ(θ). If, therefore, we calculate the average of ζjk over φz, then
the tune modulation solution in (20.17) vanishes except for the parent term (m = 0), whereas,
the expression in (20.26) does not vanish:

〈ζjk〉 =
〈

e−iχ(θ) wjk

∑
m

Jm(u
√

2Iz)
ei(φj −mφz+kθ−ν0θ)

ν0 − k − Qj + mQs

〉

= wjk

〈∑
mn

Jm(u
√

2Iz)Jn(u
√

2Iz)e
i(n−m)φz

ei(φj +kθ−ν0θ)

ν0 − k − Qj + mQs

〉

= wjk

∑
m

J 2
m(u
√

2Iz)
ei(φj +kθ−ν0θ)

ν0 − k − Qj + mQs

. (20.27)

There are contributions from all the synchrotron sidebands. This is a subtlety not yielded by
the tune modulation derivation. Obviously, the tune modulation and Hamiltonian dynamics
formalisms yield the same result for 〈|ζjk|2〉, since the factor of e−iχ(θ) cancels out.

20.5. Planar ring: parent synchrotron resonance

Suppose now, that the first-order term is itself due to a synchroton oscillation. We employ the
tune modulation derivation. Then, we need to evaluate an integral of the form

ζs = −i
∫ θ

−∞
wδ · k0 e−iuδ

√
2Iz sin φ′

z dθ ′, (20.28)
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where

wδ · k0 ∝ �p

p
=
√

2Iz cos φz. (20.29)

We can express the integral in the following form, retaining only one Fourier harmonic k in
the first order term:

ζsk = −iwsk

√
2Iz

∫ θ

−∞
ei(k−ν0)θ

′
e−iuδ

√
2Iz sin φ′

z cos φ′
z dθ ′. (20.30)

To separate the wheat from the chaff, what really matters is the term exp{−iuδ

√
2Iz sin φz} cos φz.

To process this term, we employ the Bessel function identity

eir sin φ cos φ = 1

r

∞∑
m=−∞

mJm(r) eimφ, (20.31)

which can be obtained by differentiating the previous identity in (20.15) with respect to φ.
Then,

ζsk = − i
wsk

uδ

∞∑
m=−∞

mJm(uδ

√
2Iz)

∫ θ

−∞
ei(kθ ′−ν0θ

′−mφ′
z) dθ ′

= wsk

uδ

∞∑
m=−∞

mJm(uδ

√
2Iz)

ei(kθ−ν0θ−mφz)

ν0 − k + mQs

. (20.32)

The difference between a parent synchrotron and a parent betatron spin resonance is that,
the first-order synchrotron resonances come in pairs, basically ν = k ± Qs . Hence, the
locations of the synchrotron sidebands of the ν = k + Qs spin resonance coincide with those
of the ν = k − Qs spin resonance. It is therefore not valid to treat the parent resonances
in isolation. Thus, the derivation of the synchrotron sideband resonance strengths proceeds
somewhat differently. Ultimately, however, the resonance strengths still depend on the Bessel
functions Jm, with argument uδ

√
2Iz.

20.6. Chromaticity tune modulation

Let us return to the case of a parent first-order betatron resonance and examine the exponent
in more detail. Treating a horizontal betatron parent resonance, the exponent is basically
φx − aγ0θ . We applied the tune modulation argument to say aγ0 → aγ0(1 + �E/E).
However, note that the betatron tune Qx is also modulated by the synchrotron oscillations,
via the chromaticity. Hence, the exponent should really be modified as follows:

Qx − aγ0 → Qx0 + ξx

�p

p
− aγ0

(
1 +

�E

E

)
= Qx0 − aγ0 + (ξx − aγ0β

2
0 )

�p

p
. (20.33)

Using �p/p = √
2Iz cos φz, etc the exponent is modified according to

φx − aγ0θ → φx0 − aγ0θ + (ξx − aγ0β
2
0 )

√
2Iz

Qs

sin φz. (20.34)

A similar derivation applies to the sidebands of the vertical betatron resonances. The argument
of the Bessel functions is thus modified to

uδ → aγ0β
2
0 − ξx,y

Qs

. (20.35)

This is the first explicit example of nonlinear orbital dynamics that we have encountered in the
spin dynamics of polarized beams in particle accelerators.
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The value of the chromaticity can be adjusted by tuning the sextupoles. If it is set such that

ξx,y − aγ0β
2
0 = 0, (20.36)

then the synchrotron oscillations will modulate the spin tune and the betatron oscillations
identically and there will be no net effect on the spin precession. The two tune modulations
cancel and the synchrotron sideband resonances vanish. However, for the stability of a storage
ring, the chromaticity needs to be positive above transition and negative below transition, so
that the above idea may not always be workable.

The above cancellation of the orbit and spin tune modulations was first pointed out by
Hiramatsu et al (1989) who performed an actual experiment to verify the above cancellation
at the KEK-PS Booster ring. Mane (1990) independently derived the same cancellation, but
his work was purely theoretical. We shall review the excellent work on spin polarized beams
at the KEK-PS complex in section 25.

There are also resonances where the exponent is −φx,y − ν0θ . For these resonances, the
tune modulation yields

uδ → aγ0β
2
0 + ξx,y

Qs

. (20.37)

Since aγ0β
2
0 > 0 if a > 0 (true for electrons and protons) then the chromaticity must

be negative to cancel the tune modulation. Hence, there is no single setting of the
orbital chromaticities which cancels the tune modulation of all of the parent resonances
simultaneously.

20.7. Spin chromaticity

The only nonplanar model we shall treat is a planar ring with a single solenoidal Siberian
Snake. The basic formulae for the synchrotron tune modulation in such a ring were derived
by Phelps and Anferov (1998). We report on it below. It is simplest to derive the basic result
in the following way. Let the fractional Snake strength be λ, where λ = 1 corresponds to a
full-strength Snake. On the design orbit, the one-turn spin map is

M = e−iπν0σ3 e−iλπσ2/2, (20.38)

and the spin tune is given by equating this matrix to e−iπνc.o.σ·n0 . Taking the trace yields

cos(πνc.o.) = cos(πν0) cos

(
λπ

2

)
. (20.39)

Recall that for a solenoid, the spin rotation angle, say ψsol, is inversely proportional to the
momentum, so

λ = −e(1 + a)

pc

∫
Bsol d�. (20.40)

The solenoid field and length are, of course, independent of the particle momentum. Hence,
for a particle with a small relative momentum offset �p/p, there are two modifications to
the one-turn spin precession angle. One is from the arc, namely, aγ = aγ0(1 + �E/E) with
�E/E = β2

0�p/p, as we have already seen. The other is from the solenoid:

λ = λ0

1 + �p/p
� −λ0

�p

p
. (20.41)

Hence, for small δ = �p/p,

cos(πν) = cos(πν0(1 + β2
0δ)) cos

λ0π

2(1 + δ)
. (20.42)
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Note that this argument applies only if the relative momentum offset �p/p is static, i.e. in the
limit of vanishing synchrotron tune Qs → 0. The spin tune for an off-axis trajectory is, not
otherwise, given by the trace of a one-turn map. As we saw above, in connection with the
formal Hamiltonian theory, the tune modulation approximation works in the limit Qs → 0.
The tune modulation approximation is adequate for present-day accelerators.

This line of reasoning is also called an adiabatic approximation because we can visualize
the change in the accelerator as slow, i.e. an adiabatic change to the particle momentum (or
energy).

We can express the basic idea in the form of a spin chromaticity ξspin

ν = νc.o. + ξspin
�p

p
(20.43)

or

ξspin = ∂ν

∂δ
. (20.44)

The spin tune is also defined for off-axis trajectories, so that the above definition is somewhat
restricted; it pertains only to a relative momentum offset from the design orbit. We can either
differentiate the expression for ν or expand to small quantities in δ. Let the change in the spin
tune be �ν. Then to first order in small quantities,

sin(πνc.o.) �ν = −
[
−ν0β

2
0 sin(πν0) cos

(λ0π

2

)
+

λ0

2
cos(πν0) sin

(λ0π

2

)]
δ. (20.45)

Then
∂ν

∂δ
= 1

sin(πνc.o.)

[
ν0β

2
0 sin(πν0) cos

(λ0π

2

)
− λ0

2
cos(πν0) sin

(λ0π

2

)]
. (20.46)

Another way to derive this is
∂ν

∂δ
=
[ ∂ν

∂νarc

∂νarc

∂δ
+

∂ν

∂λ

∂λ

∂δ

]
c.o.

, (20.47)

which leads to the same result. Equations (20.46) and (20.47) were derived by Phelps and
Anferov (1998). The first contribution to ∂ν/∂δ comes from the arc via the direct dependence
of the spin precession on the momentum. The second contribution to ∂ν/∂δ comes from
the dependence of the spin precession on the solenoid field. This term would change for a
different design of the partial Snake. (For example, the RHIC helical field Snakes are energy
independent.) Neglecting any tune modulation contribution from the betatron oscillations, etc,
the solution for ζ is still

ζjk = −iwjk

∫ θ

−∞
ei(φ′

j +kθ ′−νc.o.θ
′−uδ

√
2Iz sin φ′

z) dθ ′, (20.48)

where now

uδ = ξspin

Qs

= 1

Qs

∂ν

∂δ
. (20.49)

Each parent resonance is surrounded by a set of synchrotron sidebands given by Bessel
functions with arguments uδ

√
2Iz with a more general value for uδ . The derivation proceeds

exactly along the same lines as before:

ζjk = wjk

∑
m

Jm(uδ

√
2Iz)

ei(φj −mφz+kθ−νc.o.θ)

νc.o. − k − Qj + mQs

. (20.50)

The details of the accelerator structure are buried in the value of the Fourier coefficient wjk .
The pattern for the synchrotron sidebands is formally exactly the same with just a simple
generalization of the definition of uδ .
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For a full-strength Snake, i.e. λ = 1, the design-orbit spin tune is νc.o. = 1
2 and so

∂ν

∂δ
= −1

2
cos(πν0). (20.51)

The entire contribution to the spin chromaticity comes from the solenoid. We pointed out
earlier, when discussing the structure of w · n0, that for a ring with a full-strength Snake the
synchrotron oscillations would not couple to n0 in the arc.

We now derive the spin chromaticity using the Hamiltonian dynamics formalism.
The claim is

uδ = 1

2πQs

∫ θ+2π

θ

ws · n0 dθ ′. (20.52)

We treat only a full-strength Snake because it is, otherwise, tedious to work out the expression
for n0 all around the ring. We know that ws is vertical in the arc, hence ws · n0 = 0 in the arc.
In the solenoid we have from above

ws = −λπ δp(θ − θsol) e2, (20.53)

where now λ = 1. We have previously seen that for a ring with a single full-strength solenoid
Snake, n0 · e2 = cos(πν0) in the solenoid. Hence,

uδ = − 1

2πQs

λπ cos(πν0) = − 1

2Qs

cos(πν0) = − 1

Qs

∂ν

∂δ
, (20.54)

which is precisely the desired result. The Hamiltonian theory gives the answer, but the adiabatic
tune modulation approximation is easier to apply; it gives us the answer for a partial solenoid
Snake of arbitrary strength with relatively little effort.

20.8. Statistical averages

We only average over the synchrotron oscillations below; this brings out the essential physics of
what we wish to discuss. It merely complicates matters to average over the betatron oscillations
as well; the resulting formulae have too many different emittances. The averages will be over
ζ and |ζ |2 obviously. We need the two formulae

〈Jm(uδ

√
2Iz)〉 =

∫ ∞

0

dIz

〈Iz〉 e−Iz/〈Iz〉 Jm(uδ

√
2Iz) = e−σ 2/2Im(σ 2),

〈J 2
m(uδ

√
2Iz)〉 = · · · = e−σ 2

Im(σ 2),

(20.55)

where Im is a modified Bessel function and

σ = uδ

√
〈Iz〉 = 1

Qs

∂ν

∂δ

σp

p
. (20.56)

It is more common to write this in terms of a derivative with respect to the energy offset �γ/γ

and the relative energy spread,

σ = 1

Qs

γ
∂ν

∂γ

σE

E
. (20.57)

The derivative γ (∂ν/∂γ ) is simply the change �ν for a small relative energy offset �γ/γ

rather than a relative momentum offset. The quantity

x = σ 2 (20.58)

is called the tune modulation index. There is no standard notation; the simplest is to just
write x.
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Let us average over |ζ |2 which is typically more relevant for physics. For a betatron parent
resonance, the average of |ζ |2 as given by (20.17), with a generalized definition of uδ , is

〈|ζjk|2〉 = 〈|wjk|2〉
∑
m

e−σ 2
Im(σ 2)

(νc.o. − k − Qj + mQs)2
. (20.59)

For a parent synchrotron resonance, the average over ζ also vanishes, though in a different
way. The average over the synchrotron oscillation phase kills all the terms in (20.32), except
the m = 0 term, because 〈eimφz〉 = 1 for m = 0 and zero otherwise. However, the m = 0 term
is mJm = 0 for m = 0. Hence, 〈ζsk〉 = 0. From (20.32) the average over |ζ |2 is

〈|ζsk|2〉 = |wsk|2
u2

δ

∞∑
m=−∞

m2e−σ 2
Im(σ 2)

(νc.o. − k + mQs)2
. (20.60)

20.9. Correlated and uncorrelated resonance crossings

Despite the calculations of the statistical averages above, we are far from done with the
statistical mechanics. As should be evident by now, we must investigate the fundamental
assumptions under which the above results were derived.

First, there is a tacit assumption in the above derivations that the particles complete
many synchrotron oscillation periods (in principle infinite) as they circulate around the ring.
Although we did make the approximation Qs → 0 in some parts of our calculation above,
this was a mathematical approximation to simplify certain formulae. It was always assumed
that the particles would complete many synchrotron periods when circulating around the ring.

This assumption may not be true. It is possible, at least for proton accelerators, for the rf
cavities to be switched off in which case there is no longitudinal focusing and Qs = 0. There
should then be no synchrotron sidebands. We begin with the sidebands of a betatron parent
term. In the relation

ν = νc.o. + ξspin
�p

p
, (20.61)

it is not valid to substitute �p/p = √
2Iz cos φz etc. For simplicity, let us employ the relative

energy offset below

ν = νc.o. + γ
∂ν

∂γ

�γ

γ
= νc.o. + �ν (20.62)

by a slight overuse of the notation �ν. Then (20.14) should instead be (we generalize to
nonplanar rings):

ζjk = −iwjk

∫ θ

−∞
ei(φ′

j +kθ ′−(νc.o.+�ν)θ ′) dθ ′ = wjk

ei(φj +kθ−(νc.o.+�ν)θ)

νc.o. + �ν − k − Qj

. (20.63)

The value of �ν is a statistical variable because the beam has an energy spread. Hence, instead
of a set of synchrotron sideband resonances, there is only one resonance line at the central
(parent) location, but the line is broadened. The exact vanishing of the denominator takes place
not at one value of νc.o. but over a spread of values. There is, effectively, a spin tunespread.

For a parent synchrotron oscillation, i.e. a pair of first-order resonances centred on
ν = k ± Qs , the resonance at the integer ν = k is broadened by the spin tunespread. The spin
tunespread is particularly simple to calculate for a planar ring:

ν = ν0

(
1 +

�E

E

)
. (20.64)
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Hence, the rms spin tunespread is proportional to the rms relative energy spread:

σν = ν0
σE

E
. (20.65)

Let us return to the case of a nonzero synchrotron tune. To begin with, treat a planar ring.
By virtue of the synchrotron oscillations, the energy (momentum) of the particle—hence,
in a planar ring, the spin tune—oscillates up and down as the particle circulates around the
ring. The spin tune, therefore, sweeps across the various synchrotron sideband resonance lines
rather than remaining fixed at a particular value. The crossings of the value of the spin tune
across a particular sideband m = m∗ (i.e. ν = νparent + m∗Qs) may or may not be correlated.
Successive passages across a resonance are said to be correlated (Derbenev et al 1979c) if

(aγ0)
2

Q2
s

(σE

E

)2
	 Qs. (20.66)

In more generality, we would write

1

Q2
s

(
γ

∂ν

∂γ

)2(σE

E

)2
	 Qs. (20.67)

The lhs is the tune modulation index, so we can also write

σ 2 	 Qs. (20.68)

Basically, the lhs is the width of a sideband resonance and the resonance crossings are correlated
if this width is much less than the sideband resonance spacing, which is the synchrotron tune Qs .
The mental picture is that if the crossings of a particular resonance line m = m∗ are uncorrelated
then the depolarization is not tied to that resonance line. In this case, the resonances are broad
and overlap significantly—there are no well-discernible individual sideband resonances. When
the spin tune crossings (successive passages across a particular resonance line m = m∗) are
correlated, then a resonance develops only in the narrow vicinity of that line. The mental
picture is that the individual sidebands are well-separated distinct resonances.

The criterion for correlated resonance crossings is quite restrictive. Synchrotron sideband
resonances are visible in the SPEAR polarization data in figure 6. The value of the tune
modulation index was σ 2 � 0.03 for the SPEAR data but the value of the synchrotron tune
was roughly Qs � 0.04. Hence, the criterion for correlated crossings is on the threshold of
being satisfied.

20.10. Experimental data

As pointed out above, synchrotron sideband resonances are visible in the SPEAR polarization
data, as shown in figure 6. However, the SPEAR data are an example of a radiatively polarized
beam, and additional formalism developed so far beyond that is required to calculate those
resonances.

Synchrotron sideband resonances along the lines we have described have been observed
in proton storage rings, i.e. nonradiatively polarized beams. All the measurements we report
below were made at the IUCF Cooler ring. The measurements of synchrotron sideband
resonances are some of the most beautiful data taken in the IUCF spin dynamics studies.
Measurements of the synchrotron sideband resonances at the IUCF Cooler were made both
with and without a (solenoid) Siberian Snake. A superconducting solenoid was used to achieve
a full-strength Snake. For partial Snake experiments a weaker warm solenoid was used.

A graph of synchrotron sidebands measured at the IUCF Cooler is displayed in figure 35.
The resonances were induced via resonant depolarization by stepping the frequency of an rf
solenoid magnet. A 4% partial Snake was used in the study. The plotted quantity was the total
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Figure 35. Synchrotron sideband resonances at the IUCF Cooler, with theoretical fit. From Mane
(1992a).

transverse polarization (P 2
v +P 2

r )1/2 (vertical and radial polarization components) as a function
of the rf solenoid frequency. Two narrow synchrotron sideband resonances are clearly visible,
one on either side of the central parent resonance. The data were reported by Anferov et al
(1992) and fitted theoretically by Mane (1992a). The value of the tune modulation index was
σ 2 � 0.1.

Next we consider the synchrotron sidebands for a vertically polarized beam in the IUCF
Cooler (no Snakes). Synchrotron sideband resonances were observed at the IUCF Cooler by
Goodwin et al (1990). Lee and Berglund (1996) studied the problem of synchrotron sideband
resonances theoretically. Their calculation took into account the presence of a systematic error
(shift in the value of the spin tune) in the Cooler. The combination of the toroidal magnetic
field and the vertical steering magnets in the electron cooling section of the IUCF Cooler
netted to an overall spin rotation around the vertical axis, yielding a shift in the value of the
spin tune (Pollock 1991). (See MSY1 for a detailed review of this effect.) Since the existence
of such a systematic error was not suspected in 1990, the values of the relevant experimental
parameters were not recorded in the measurements. Lee and Berglund used the data to retrofit
the systematic error to the spin tune and deduced a shift of δν � 0.0035. The value they
obtained for the tune modulation index was σ 2 � 0.1, the same value obtained above by Mane
(1992a). This is to be expected, since the beam energy and energy spread were about the same
in both experiments, and a 4% partial Snake would not affect the spin chromaticity much.

Many more examples of synchrotron sideband resonances were obtained in the spin
dynamics studies at the IUCF Cooler. Chu et al (1998) reported the observation of unexpectedly
wide synchrotron sideband resonances, wider than would be expected from the theory we have
developed above. In addition to the central resonance and the two synchrotron sidebands,
the studies also observed narrow resonances very close to the parent resonance. The weak
resonances were tentatively identified by the authors as being due to additional weak rf beam
structure at f ∗ = 1080 Hz. The 1080 Hz harmonic was later found in the IUCF Cooler rf
spectrum. This clearly shows that the theory we have presented above is only a simple linear
dynamical theory with a simple model for the synchrotron oscillations. Modern experiments
are capable of resolving more detailed structures than present day theory can explain. The
large width of the sideband resonances is tentatively explained by the experimenters in
the following way. Earlier studies at the IUCF Cooler used single-turn injection, but the
measurements by Chu et al (1998) were made using multiturn injection with so-called rf
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stacking in the longitudinal phase-space. In the latter case, the beam filled a much larger
fraction of the rf buckets: at high beam intensities the IUCF Cooler ring was found to have
a large synchrotron frequency spread (Nagaitsev 1997). The theory we have presented does
not treat nonlinear dynamical synchrotron oscillations with a synchrotron tunespread. Once
again, further theoretical work is required on the subject.

Finally, measurements of synchrotron sideband resonances with a (nearly) full-strength
Siberian Snake were also made at the IUCF Cooler (Blinov et al 1999). The resonances
were induced again using an rf solenoid. Note that resonant depolarization and resonant spin-
flipping can work not only in planar rings but also in rings equipped with Snakes. With a
nearly full strength Siberian Snake (superconducting solenoid), the spin tune was almost, but
not exactly, 1

2 . The Snake strength was λ = 1 + �λ with �λ = (1.996 ± 0.004)%. Hence,
λ > 1 and νspin > 1

2 . The two possible locations for the central resonance were (fc is the
revolution frequency)

f −
r = fc(2 − νspin), f +

r = fc(1 + νspin). (20.69)

Measurements of the synchrotron sidebands were made at the higher of the two frequencies,
namely, f +

r .

21. Decoherence and spin tunespread

21.1. General remarks

Most of the theory, so far, has focused on the long-term polarization. It is worthwhile to
digress briefly to also consider the spin components orthogonal to the direction of the long-term
polarization or for practical calculations to n0. In particular, how rapidly do such orthogonal
spin components decohere or perhaps are there circumstances where they do not decohere?
We treat various models of increasing sophistication below.

21.2. Static energy spread

Consider a planar ring, so ν = aγ , and write

ν = ν0

(
1 +

�E

E

)
. (21.1)

We assume �E/E is static and not a synchrotron oscillation. The spin components in the
horizontal plane, therefore, spread out in proportion to �E/E,

S⊥ ∼ eiν0θ eiν0(�E/E)θ . (21.2)

Let the spin precession angle of the spins be �N after N turns. The rms spread in the directions
of the spins, say σ�N

, is given by

σ�N
= 2π N ν0

σE

E
. (21.3)

The decoherence time is given by ��N ≈ 2π , so

Ndecoh = 1

ν0

E

σE

. (21.4)

A typical value for σE/E is 10−4–10−3. Let us estimate σE/E � 5 × 10−4. Let us estimate
ν0 � 10 (the values in modern rings go from 1–100). Then

Ndecoh ≈ 200. (21.5)
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The circulation period for a ring of 300 m circumference is τc = C/c � 10−6 s. Then the
decoherence time is

τdecoh = Ndecoh τc � 200 µs. (21.6)

So the orthogonal spin components do, in fact, decohere rapidly. However, the model treated
�E/E as static and not a synchrotron oscillation.

21.3. Synchrotron oscillations

Next, we say that �E/E oscillates and averages to zero (synchrotron oscillation). Hence,
taking into account the synchrotron oscillations we write with a fairly obvious notation

�E

E
=
√

2Iz cos φz, φz = Qsθ + φz0, (21.7)

and the rate of spin phase advance as

ν = ν0 + γ
∂ν

∂γ

√
2Iz cos φz, (21.8)

so the spin phase is∫ θ

ν dθ ′ = ν0θ + uδ

√
2Iz sin φz. (21.9)

Then

S⊥ ∼ eiν0θ eiuδ

√
2Iz sin φz = eiν0θ

∞∑
m=−∞

eimφz Jm

(
uδ

√
2Iz

)
, (21.10)

using the Bessel function identity (20.15). Averaging uniformly over the initial synchrotron
phase φz, only the m = 0 term survives:

〈S⊥〉φz
= eiν0θ

〈
J0
(
uδ

√
2Iz

)〉
. (21.11)

Now average over the amplitudes using a Gaussian distribution. The integral over the Bessel
function was stated earlier, so

〈S⊥〉 = eiν0θ e−σ 2/2 I0(σ
2), (21.12)

where recall

σ 2 = 1

Q2
s

(
γ

∂ν

∂γ

)2 σ 2
E

E2
. (21.13)

In this model, the spin spread actually approaches an equilibrium angle given by

|〈S⊥〉| = e−σ 2/2 I0(σ
2). (21.14)

The same conclusion based on work using a Fokker–Planck equation for the evolution of the
spin–orbit distribution, was reported by Heinemann (1997) who obtained in terms of the above
notation,

|〈S⊥〉|H = e−σ 2/2. (21.15)

The modified Bessel function was not obtained. The use of a Fokker–Planck equation is
so complicated that one is usually forced to make simplifying approximations in the beam
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distribution, leading to Gaussian expressions. Numerical estimates for a planar HERA-like
ring (no spin rotators) indicate that

σE

E
≈ 5 × 10−4,

aγ0 ≈ 102,

Qs ≈ 0.05,

σ 2 ≈ 25 × 10−8 104

25 × 10−4
≈ 1.

(21.16)

Hence, σ 2 is of order unity and so the synchrotron oscillations cannot be neglected.

21.4. Betatron oscillations

Next, we consider the effects of betatron oscillations. We treat a planar ring. The horizontal
betatron oscillations cause the spins to see an additional vertical magnetic field

n0 · ωβ ∝ (1 + aγ0) Ax cos φx ≈ aγ0 Ax cos φx. (21.17)

We approximate aγ0 � 1 for simplicity. We are also neglecting many features of the betatron
oscillations and treating the beta function as uniform around the circumference and so we
neglect the betatron phase. Next φx = Qxθ + φx0. Then the vertical component of the spin
precession vector is

Wy = ν0 + aγ0 Ax cos φx. (21.18)

The spin phase is now

νθ = ν0θ + aγ0
Ax

Qx

sin φx. (21.19)

This is very similar to the synchrotron oscillation model so we simply repeat the calculations.
We get

S⊥ ∼ eiν0θ eiaγ0(Ax/Qx) sin φx = eiν0θ

∞∑
m=−∞

eimφx Jm

(aγ0Ax

Qx

)
. (21.20)

Average uniformly over the initial phase φx0:

〈S⊥〉 = eiν0θ J0

(aγ0Ax

Qx

)
. (21.21)

Average over the amplitudes (Gaussian distribution):

|〈S⊥〉| = e−σ 2
x /2I0(σ

2
x ). (21.22)

Here

σ 2
x = 〈Ix〉 (aγ0)

2

Q2
x

. (21.23)

A simple numerical estimate for a high-energy ring is 〈Ix〉 � 10−8 and Qx � 100, which
leads to

σ 2
x � 10−8 104

104
= 10−8 	 1. (21.24)

Changing the parameter values by a factor of 2 (or perhaps even 10) does not alter the fact that
σ 2

x 	 1. Hence, the spin spread (decoherence) caused by the horizontal betatron oscillations
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is negligible. Note that we have neglected the quadrupole focusing gradient in the expression
for n0 · ωβ above. It contributes to σ 2

x but does not change the fact that σ 2
x 	 1. Hence, the

betatron oscillations induce negligible decoherence. The particles complete many betatron
periods in one pass around the ring and the effect of the betatron oscillations on the spin phase
averages very nearly to zero.

21.5. Synchrotron oscillations without stochastic fluctuations

There are some hidden assumptions in the second model above. Recall the synchrotron
oscillations

�E

E
= Az cos φz, φz = Qsθ + φz0. (21.25)

We said the rate of spin phase advance is

ν = ν0(1 + Az cos φz). (21.26)

Let us be more careful to integrate to obtain the spin phase. What really happens is∫ θ

0
ν dθ ′ = ν0

∫ θ

0
(1 + Az cos φz) dθ ′ = ν0θ +

Az

Qs

(sin φz − sin φz0). (21.27)

We neglected the initial phase previously, but we must be more careful. When stochastic
fluctuations and damping are present, then the beam settles down to a self-consistent
equilibrium distribution which is independent of the initial conditions. Then we can neglect
the initial term sin φz0. Then we get the previous expression

νθ → ν0θ +
Az

Qs

sin φz. (21.28)

We did this without justification above but now we say so explicitly. One must stress the
importance of understanding the underlying asumptions, especially the statistical mechanics,
in all these calculations. When there are no stochastic fluctuations, then

S⊥ = eiν0θ eiν0 (Az/Qs) sin φz e−iν0 (Az/Qs) sin φz0

= eiν0θ

∞∑
m=−∞

eimφz Jm

(Azν0

Qs

) ∞∑
m′=−∞

e−im′φz0 Jm′
(Azν0

Qs

)
. (21.29)

It is still justified to uniformly average over the initial synchrotron phase φz0. The diagonal
terms m = m′ survive the average, so

〈S⊥〉φz0 = eiν0θ

∞∑
m=−∞

eimQsθ J 2
m

(Azν0

Qs

)
. (21.30)

This is not the same as (21.10). It is an explicit function of θ . It obviously beats with a
frequency Qs , i.e. the spins recohere every synchrotron period (when eiQsθ = 1). We can
further average over the amplitudes using a Gaussian distribution. The integral over the Bessel
function was also given earlier. Then

〈S⊥〉 = eiν0θ

∞∑
m=−∞

eimQsθ e−σ 2
Im(σ 2). (21.31)

We do not offer numerical estimates here. Readers should be able to make their own numerical
estimates of the relevant parameters and sum the modified Bessel functions, if desired.
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21.6. Vertically polarized beam and single Snake

In all of the above models, we assumed a fully polarized beam was injected orthogonal to n0.
Akchurin et al (1992) injected a vertically polarized beam into the IUCF Cooler with a full-
strength Snake. Since the spin tune is 1

2 , in the absence of decoherence, the polarization
should return to its original value after every two turns. The detector was gated to measure the
scattering asymmetry every second turn. The authors reported that the vertical polarization
did survive for the storage time of about 10 s. Synchrotron sidebands could also be observed.

21.7. Nonlinear dynamical spin tunespread

In all of the above models, we expanded the change to the spin tune only to the first order in
the relative energy offset �E/E and we treated the synchrotron oscillations using only linear
orbital dynamics.

In a detailed theoretical analysis, backed by experimental studies to confirm the
calculations, the change to the spin precession frequency was calculated to the second order
(�E/E)2. This is another example of the contribution of nonlinear orbital dynamics to the spin
motion. The initial theory and experiments were reported by Lysenko et al (1986). Further
theory and experiments were presented by Koop et al (1989). We use material from both the
sources below. The authors treat only planar rings and ultrarelativistic particles, i.e. electrons
and positrons. Consider first that the spin precession frequency (not tune) is

� = (1 + aγ ) ω, (21.32)

where ω is the revolution frequency around the ring. For a particle with energy E = E0 +�E,
where E0 is the reference energy, the revolution frequency is

ω = ω0

[
1 − α1

�E

E0
− α2

(�E

E0

)2
+ · · ·

]
. (21.33)

Terms beyond the second order will be neglected below. Here α1,2 are the first and second
order momentum compaction factors. The spin precession frequency is then written as an
offset from the spin precession frequency �0 of the reference particle via � = �0 +��. Then

� = (1 + aγ0) ω �
[
1 + aγ0 + aγ0

�E

E0

][
1 − α1

�E

E0
− α2

(�E

E0

)2]
ω0. (21.34)

Expanding to the second order,

�� = ω0

{
[aγ0 − (1 + aγ0)α1]

�E

E0
− [(1 + aγ0)α2 + aγ0α1]

(�E

E0

)2}
. (21.35)

The rest of the calculations are somewhat involved, for example, one must express the
horizontal motion up to second order via

x = xβ + Dx1
�E

E0
+ Dx2

(�E

E0

)2
. (21.36)

The final result is (assuming α1 � α2) (Lysenko et al 1986)

〈��〉 = ν0ω0

2α1

[
〈Ix〉〈B ′′Dx1βx〉 +

(σE

E0

)2
〈B ′′D3

x1〉
]
, (21.37)

where B ′′ = ∂2By/∂x2 is the sextupole field gradient. The analysis by Koop et al (1989)
calculated terms beyond those in (21.37), but for strong-focusing rings, the extra terms are
very small. In practice, in strong-focusing rings the first of the terms in (21.37) is much more
important than the second. Writing the formula in terms of the horizontal chromaticity,

〈��〉 � ω0
ν0〈Ix〉
2α1

ξx. (21.38)

The value of 〈��〉 is minimized when the horizontal chromaticity ξx vanishes.
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Figure 36. Spin tunespread of the electron beam at VEPP-2M as a function of the horizontal
chromaticity. From Koop et al (1989). Copyright (1989) by the American Institute of Physics.

An experiment to test the above theory was performed at VEPP-2M (Koop et al 1989). The
spin tunespread 〈��〉 was measured from the residual polarization after the adiabatic (i.e. slow)
crossing of the resonance line ν = 2, for various settings of the sextupole strengths. We have not
yet discussed the acceleration of spin-polarized beams across depolarizing resonances, for that
the reader must consult section 24. The beam was polarized radiatively in situ to P � 80%
by the synchrotron radiation; for a review of the theory of radiative polarization, including
depolarizing effects, the reader must consult section 27. In any case, the results are plotted in
figure 36. The horizontal axis is the chromaticity, written using the notation ξx = γ (∂νx/∂γ ).
On the vertical axis is plotted the value of σε/ω0, where ωε =

√
〈��2〉. Evidently the value of

ωε reaches a minimum (not exactly zero) at vanishing horizontal chromaticity γ (∂νx/∂γ ) = 0.

22. Higher order resonances

22.1. General remarks

The title of this section is somewhat unfortunate because we have already discussed the most
important higher-order spin resonances, namely, the synchrotron sideband resonances, in an
earlier section. Here we shall discuss the higher orders of perturbation theory, where the higher-
order terms are not due to synchrotron oscillations. In general, the resonances described below
are weak. However, they have been observed experimentally.

One of the resonances below will be that of a parent vertical betatron intrinsic resonance
coupled with a horizontal closed-orbit imperfection. Hence, the first-order term is driven by
a vertical betatron oscillation and the higher-order contribution is driven by the horizontal
(not vertical) closed-orbit imperfection. However, the final resonance occurs at a spin tune
of ν = k ± Qy , which is conventionally designated as a first-order resonance. In this case,
it is crucial to realize that the spin basis vectors are referenced to the design orbit and the
‘second-order’ perturbation theory is a joint perturbation expansion in both the closed-orbit
imperfections and the orbital oscillations simultaneously. It is important to clearly recognize
the perturbation expansion parameter(s) of every calculation.

22.2. Basic formulae

The notation will follow that in section 20. Once again we parametrize n via (15.12)

n =
√

1 − |ζ |2 n0 + �(ζk∗
0). (22.1)
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The solution for ζ to the level of approximation required here is (see (15.17))

ζ � −ie−iχ(θ)

∫ θ

−∞
eiχ(θ ′) ω · k0 dθ ′, (22.2)

where once again (see (15.18))

χ(θ) = −
∫ θ

−∞
w · n0 dθ ′. (22.3)

To the second order, the Taylor series approximations for ζ are

ζ (1) = −i
∫ θ

−∞
ω · k0 dθ ′,

ζ (2) =
∫ θ

−∞
dθ ′ ω · n0(θ

′)
∫ θ ′

−∞
dθ ′′ ω · k0(θ

′′) = i
∫ θ

−∞
dθ ′ ω · n0(θ

′) ζ (1)(θ ′).

(22.4)

We have already explained how at the second order, the integral yields terms which diverge at
the second order spin resonances ν = k ± Qx ± Qy , or ν = k ± 2Qx,y , etc. Since the higher-
order betatron resonances are weak, there is reason to believe that a Taylor series calculation
will yield a satisfactory approximation for the strengths of such resonances.

It is also possible for sextupoles to contribute to the second order resonances via the term
w · k0 in ζ (1), though such contributions are weak in general. It was explained earlier that at
high energies, where aγ � 1, the contribution of the quadrupoles completely dominates that
of the sextupoles and other higher-order multipoles. The presence, or absence, of Siberian
Snakes or spin rotators in the ring does not affect these observations.

22.3. Second order betatron spin resonance

A second order betatron spin resonance was observed in studies at the IUCF Cooler
(Ohmori et al 1995). The measurements were part of the series of excellent studies of
spin dynamics with polarized proton beams at the IUCF Cooler. Note that higher order spin
resonances had been observed earlier at other rings such as SPEAR (Johnson et al 1983), e.g.
see figure 6, but always under uncontrolled machine conditions. The work by Ohmori et al
(1995) was the first direct observation of a second order (or higher order) betatron spin
resonance with controlled accelerator parameters. During studies of the intrinsic resonance
ν = 7 − Qy with a 20% partial Siberian Snake, a second and narrow resonance was observed.
Its location was consistent with the assignment ν = 1 + Qy − Qx . This was confirmed by
changing the value of the horizontal betatron tune without altering the value of the vertical
betatron tune. The location (and width) of the vertical betatron intrinsic resonance ν = 7−Qy

did not change, but the location of the narrow resonance shifted exactly as expected from the
above assignment.

22.4. Hybrid spin resonance

During the acceleration of polarized proton beams at the AGS, a resonance was observed
which was due to the joint influence of the vertical betatron oscillations and the horizontal
closed-orbit imperfections (Bai et al 2000). The authors termed it a ‘hybrid resonance’. The
spin basis vectors n0 and k0 are referenced to the design orbit, since we are now treating a
joint perturbation of closed orbit imperfections and betatron orbital oscillations. The study by
Bai et al (2000) also employed a 5% partial Snake (solenoid) in the ring, but this does not
seriously affect the analysis below. It is adequate to take n0 to be vertical (the AGS is planar).
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The first-order parent resonance is due to the vertical betatron oscillations; there is no need to
comment on the matter further. The quantity of interest is χ , i.e. the integrand w · n0. Since n0

is vertical, it is the horizontal orbital motion which contributes to w · n0. We can write, with
obvious notation,

x = xc.o. + xβ + Dx

�p

p0
. (22.5)

The term of interest here is the first, namely, the horizontal closed-orbit distortions. We
decompose xc.o. into Fourier harmonics

xc.o. =
∑
m

x̂m cos(mθ + κm), (22.6)

where κm is some phase and the x̂m are the Fourier harmonic amplitudes. In general, the
harmonic with the largest magnitude is given by the value of m closest to the horizontal
betatron tune. The tunes were Qx � 8.755 and Qy � 8.700 at the AGS. Hence, the principal
harmonic was given by m∗ = 9. Let us, therefore, retain only the largest Fourier harmonic
in xc.o.:

xc.o. � x̂m∗ cos(m∗θ + κm∗). (22.7)

Then we can also Fourier decompose

w · n0 =
∑
m

ŵm cos(mθ + vm), (22.8)

where the vm are phases and the ŵm are the amplitudes. We retain only the principal Fourier
harmonic:

w · n0 � ŵm∗ cos(m∗θ + vm∗). (22.9)

Then

χ � −
∫ θ

−∞
ŵm∗ cos(m∗θ ′ + vm∗) dθ ′ = − ŵm∗

m∗
sin(m∗θ + vm∗). (22.10)

This again leads to a Bessel-function comb of sidebands, this time of the form

ζjk � wjk

∑
m

Jm

(
ŵm∗

m∗

)
ei(φj −m(m∗θ+vm∗ )+kθ−ν0θ)

ν0 − k − Qj + mm∗
, (22.11)

where Qj = ±Qy in the present case. The strength of the higher-order resonance is
proportional to that of the parent resonance and the function Jm(ŵm∗/m∗).

The parent resonance was Gγ = 60 − Qy � 51.3. The vertical chromaticity was set to
zero by using the ring sextupoles, so as to obtain an accurate value for the vertical betatron tune,
free of uncertainties due to the momentum spread of the beam. Because of the narrowness of the
resonance width it was important to measure the value of the vertical betatron tune accurately
and to identify the location of the polarization loss precisely. The horizontal chromaticity was
not set to zero, in fact, it was about ξx � −22.0. A precise value for the horizontal betatron tune
was less critical since the Fourier harmonic of the horizontal closed-orbit distortion was known
to be m∗ = 9. The higher-order resonance was observed at Gγ � 42.3, which corresponds to
the m = 1 sideband:

Gγ = 60 − Qy − m∗ = 60 − 8.700 − 9 � 42.3. (22.12)

Since Jm(z) ∝ zm for small values of |z| and m = 1 in this case, the higher-order resonance
width should be proportional to the parent resonance width and also the first power of the
amplitude of the Fourier harmonic of the horizontal closed-orbit distortion x̂m∗ . The study
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verified that this was so. A 9θ Fourier harmonic of the horizontal closed orbit was deliberately
induced by using a set of 32 corrector dipoles, suitably phased, to generate (cos(9θ), sin(9θ))

terms in the horizontal closed orbit. In this way, the value of x̂m∗ was varied under controlled
conditions. It was also noted by Bai et al (2000) that the sextupoles can contribute to the
strength of this resonance, though the contribution is likely to be negligible. This was confirmed
by noting that the resonance strength did not change for different settings of the sextupole
currents. Bai et al (2000) calculated the resonance strength using a model of the AGS lattice
with the corrector dipoles set to zero. Denoting the resonance strength by ε, the results are

εth = (6.02 ± 1.17) × 10−4, εex = (5.70 ± 0.87) × 10−4, (22.13)

which is a good match to the data.

23. Nonperturbative algorithms for the vector field of spin quantization axes

23.1. General remarks

We shall now describe three state-of-the-art nonperturbative formalisms and also one
nonperturbative numerical algorithm to calculate the vector field of spin quantization axes. All
of the formalisms employ map methods. The analytical formalisms in order of presentation
below are MILES (Mane 2003a), SODOM2 (Yokoya 1999) and SODOM (Yokoya 1992). The
purely numerical algorithm is called stroboscopic averaging (Heinemann and Hoffstätter 1996).
It is coded into the programme SPRINT. Modern versions of SPRINT now also include the
SODOM2 algorithm.

SODOM was used to aid in the analysis of depolarizing spin resonances at LEP
(Assmann et al 1994a). SODOM2 and SPRINT have been used for design work for Siberian
Snakes at HERA. MILES was used to derive the exact analytical solution for the single resonance
model with one Siberian Snake and a pair of diametrically opposed Siberian Snakes (the ‘sine-
Bessel functions’). The solutions were displayed in MSY1.

23.2. MILES

The name MILES (Mane 2003a) is simply an anagram of the name of the earlier formalism
SMILE by Mane (1987b). There is, otherwise, no connection between the two formalisms. The
fact that n is a vector field over the orbital phase-space means that its transformation is given by

σ · n(zf) = M σ · n(zi) M−1, (23.1)

where z denotes a point in the orbital phase-space and we have used the spin 1
2 representation

of SU(2) for the matrices. Here

σ · n =
(

n3 n1 − in2

n1 + in2 −n3

)
. (23.2)

We shall employ the definitions n± = n1 ± in2 below. It is simplest to employ the action-
angle representation for the orbital motion. Let the orbital angles at the base azimuth θ∗ be
φ∗. Let the one turn orbital phase advances be denoted by µ = 2πQ. The orbital tunes Q
could depend on the orbital actions—we allow nonlinear dynamics and aberrations, etc. The
one-turn mapping for the orbital motion is then

(I∗, φ∗) �→ (I∗, φ∗ + µ). (23.3)

The mapping for n is then

σ · n(φ∗ + µ) = Mσ · n(φ∗ + µ)M−1, (23.4)
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dropping explicit mention of the actions, which are held at fixed values, and also of the base
azimuth θ∗. The above relation provides a complete, nonperturbative technique to calculate
the vector field of spin quantization axes n. An arbitrary SU(2) matrix M can be parametrized
as follows:

M =
(

f −g∗

g f ∗

)
, (23.5)

where ff ∗ + gg∗ = 1. In terms of f and g, we deduce that
n3(φ∗ + µ) = (ff ∗ − gg∗)n3(φ∗) − f ∗g∗n+(φ∗) − fgn−(φ∗),

n+(φ∗ + µ) = 2f ∗gn3(φ∗) + f ∗ 2n+(φ∗) − g2n−(φ∗).
(23.6)

We now expand f and g, and also n3 and n±, as Fourier series in φ∗ and equate terms. This
is the MILES algorithm. It is nonperturbative and treats nonlinear orbital dynamics.

The above procedure yields the solution at one azimuth θ∗. The solution at other points
in the ring can be obtained by particle tracking.

23.3. SODOM2

In the SODOM2 (Yokoya 1999) algorithm the spin is represented by a spinor. The one-turn
map equation for a spinor ψ representing n is

Mψ(φ∗) = e−iv(φ∗)/2ψ(φ∗ + µ). (23.7)

Here v is a periodic function of φ∗, i.e. v(φ∗ + 2π) = v(φ∗). Once again the values of the
orbital actions are held fixed and we do not mention them nor the base azimuth θ∗. We find
another function u(φ∗), also periodic in φ∗, such that

v(φ∗) + u(φ∗ + µ) − u(φ∗) = µs, (23.8)

where µs is independent of φ∗ and θ∗, and depends, therefore, only on the actions I. Then we
define a new spinor

� = eiu(φ∗)/2 ψ. (23.9)

Then

M�(φ∗) = e−iµs/2�(φ∗ + µ). (23.10)

We now expand M (actually the functions f and g, see the MILES algorithm above) and � as
Fourier series in φ∗, namely,

M =
∑

m

Mm eim·φ∗ , � =
∑

m

�m eim·φ∗ . (23.11)

Then (23.10) can be re-expressed as

e−im·µ ∑
m′

Mm−m′ �m′ = e−iµs/2 �m. (23.12)

This can be visualized as an infinite-dimensional matrix eigenvalue problem for e−iµs/2. The
eigenvector elements are the Fourier harmonics �m. The solution for n is

n = �†σ� (23.13)

and is the same for all the eigenvector solutions of (23.12). The spin tune is given by
ν = µs/(2π). The solutions for the spin tune are not unique up to µs �→ µs + m · µ, or
ν �→ ν + m · Q. However, this is a known ambiguity in the formal canonical transformation
theory and not a flaw in the SODOM2 formalism.

In practice, the matrix M must be truncated to a finite number of Fourier harmonics, which
generates some numerical error in the solution, and the eigenvalue calculation must also be
performed numerically. The bulk of the computation time is spent, not surprisingly, in the
eigenvalue/eigenvector solver.



2156 S R Mane et al

23.4. SODOM

SODOM (Yokoya 1992, 1993) means Spin Orbit Dynamics from the One-turn Map. Recall
that the one-turn map equation for a spinor ψ representing n is

Mψ(φ∗) = e−iv(φ∗)/2ψ(φ∗ + µ), (23.14)

where v is a periodic function of φ∗. One expresses the spinor via the parametrization

ψ(φ∗) = 1√
1 + |ζ |2

(
1
ζ

)
. (23.15)

Recall also the parametrization for the map

M =
(

f −g∗

g f ∗

)
, (23.16)

where ff ∗ + gg∗ = 1. This notation is different from that employed by Yokoya (1992), but is
used here for uniformity of presentation with MILES, etc. Then

f − g∗ζ(φ∗) = e−iv/2
[ 1 + |ζ(φ∗)|2

1 + |ζ(φ∗ + µ)|2
]1/2

,

g + f ∗ζ(φ∗) = e−iv/2 ζ(φ∗ + µ)
[ 1 + |ζ(φ∗)|2

1 + |ζ(φ∗ + µ)|2
]1/2

.

(23.17)

Cross-multiplying and rearranging terms yields

g + f ∗ζ(φ∗) − f ζ(φ∗ + µ) + g∗ζ(φ∗)ζ(φ∗ + µ) = 0. (23.18)

This is a nonlinear equation to be solved for ζ . We expand f , g and ζ in Fourier harmonics in
φ∗ and solve for the Fourier coefficients of ζ .

Notice that v has dropped out of the final equation. SODOM does not calculate the spin
tune. Both MILES and SODOM yield only the vector n (or a spinor equivalent). SODOM2
yields in addition the spin tune ν. This has both advantages and disadvantages: there is more
output of information, but it also means that two distinct calculations are linked together.
It may be easier to solve only for n without the encumbrance of a spin tune calculation.

23.5. Stroboscopic averaging

Stroboscopic averaging (Heinemann and Hoffstätter 1996) is an elegant numerical technique
to calculate n. It has been implemented in the programme SPRINT. The key idea is this: we
know that on any trajectory in the orbital phase-space, the vector n(z; θ) is the quantization
axis for the stationary spin states. Hence, in the long term, only the component s · n of any
spin vector s on that trajectory will survive; the components of s orthogonal to n will average
to zero. This, of course, presumes that the orbit is not on a spin resonance.

We, therefore, determine n in the following way. We first select a base azimuth θ∗. We
parametrize the orbital motion using action-angle variables (I, φ∗) as already described above.
We, of course, hold the actions I at fixed values and do not mention them explicitly below.
We then launch a particle at the point (φ∗ − jµ, θ∗ − 2πj) with the spin sj oriented along
n0 and track for j turns. The particle will end up at the phase-space point (φ∗, θ∗) for any j .
We perform this procedure for N spins, setting j = 1, 2, . . . , N , i.e. one particle is tracked
for one turn, another is tracked for two turns, the next for three turns, etc. It is possible
with some caching of information to make the computational complexity O(N) not O(N2).
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At the end, we will have a set of N spins sj , j = 1, 2, . . . , N , all at the location (φ∗, θ∗).
We now average the spins to obtain

s̄ ≡ 1

N

N∑
j=1

sj . (23.19)

The key idea here is that the (unknown) components orthogonal to n will average to zero for
sufficiently large N . However, the (also unknown) components sj ·n will be invariant during the
tracking and will sum up to a nonzero average value. Hence, for sufficiently large N and if the
average converges then s̄ ‖ n. The term ‘stroboscopic’ arises from the Poincaré sections in the
tracking: we observe the spins only at discrete intervals, and not continuously. In common
with MILES and SODOM, stroboscopic averaging yields only the quantization axis n and not
the spin tune.

Note that the sum might not converge if n0 ⊥ n or the convergence may be poor, if the
orbit is close to a resonance. The choice of launching the spins pointing along n0 is merely
a simple convention and a good choice if the orbit is far from resonance in which case most
likely one has n � n0. However, another initial vector could be used.

23.6. Summary

All of the above nonperturbative formalisms are map-based techniques, i.e. they all use Poincaré
sections. They all yield the solution for n at a fixed pre-determined azimuth θ∗. The solution
for the n at other azimuths is obtained by tracking around the ring. The formalisms all assume
the orbital motion is expressed in terms of action-angle variables. SODOM, SODOM2 and
MILES were formulated as analytical algorithms which can be coded into computer programs.
Stroboscopic averaging was conceived from the outset as a numerical algorithm based on
particle tracking.

SODOM, SODOM2 and MILES all yield n(I, φ∗) or a spinor over a whole invariant torus,
i.e. all values of φ∗. Stroboscopic averaging, by contrast, yields the value for n at only one value
of φ∗. To obtain n over a whole invariant torus, one must repeat the stroboscopic averaging at
multiple values of φ∗ over the surface of the torus. If we track N particles and want information
at M values of φ∗, the computational complexity is O(MN). Nevertheless, stroboscopic
averaging is a fast and efficient technique. The algorithm is simple to understand and easy to
programme. The description by Heinemann and Hoffstätter (1996) is particularly lucid.

Notice, especially, that all of the algorithms are formulated at a high level. We described
four state-of-the-art formalisms to calculate n, and did not even write down any detailed
expressions for the spin precession vector in individual beamline elements, such as a dipole
or quadrupole. However, the very fact that the formalisms are nonperturbative also means
that they do not immediately reveal important features, such as the importance of synchroton
sideband resonances.

24. Acceleration of nonradiatively polarized beams I

24.1. Basic formalism

In this section, we shall review the practical usage of the Froissart–Stora formula. We begin
with a planar ring. The particle spins precess around the vertical axis for orbital motion on
the ideal design orbit, i.e. in the absence of any perturbing terms. Some of the material below
has been presented earlier; here we recapitulate and elaborate. The principal perturbation to
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the spin precession comes from horizontal magnetic fields due to motion off the design orbit.
These perturbations can be due to either of two sources:

• The actual closed orbit is imperfect due to misalignment errors of the actual magnets. The
imperfect closed orbit is the same for all the particles in the beam, so there is no average over
the orbital phase-space. At the leading order, it is only the vertical component of the closed
orbit imperfections which drives the depolarizing resonances. Depolarizing resonances
arising from an imperfect (vertical component of the) closed orbit are, therefore, called
‘imperfection resonances’.

• The particles execute betatron oscillations and traverse off-axis magnetic fields. These
can be due to the vertical betatron oscillations or by transverse coupling effects causing the
horizontal betatron oscillations to have a vertical component. Both of these are ‘intrinsic
resonances’ because the betatron oscillations are intrinsic to a machine and even exist
in a perfectly aligned ring. However, the resonances driven by the horizontal betatron
oscillations are known as ‘coupling resonances’. They are relatively weaker and less
common than the resonances driven by the vertical betatron oscillations. Here we consider
only the resonances due to the vertical betatron oscillations which exist and can be strong
in all the synchrotrons. Hence, the term ‘intrinsic resonances’ will refer only to the vertical
betatron oscillations below. For both the intrinsic and coupling resonances, a statistical
average over the particle distribution is required.

The standard theoretical formalisms also expand the orbital motion to only the first order
in the orbital amplitude (first order in the vertical closed orbit imperfections or first order in
the vertical betatron amplitude). However, the effects of the synchrotron oscillations (energy
oscillations) can also be significant, because the spin tune is proportional to a particle’s energy.
Evidence of the influence of synchrotron oscillations has been observed.

Before proceeding further, recall the statements earlier about the use of n0 to denote the
spin precession axis on the closed orbit versus the design orbit. We see from above that we shall
be dealing with closed orbit imperfections for some of the resonances. Throughout this section,
therefore, the spin basis vectors and spin tune are referenced to the design orbit. However, we
shall continue to use n0 below, to maintain contact with the literature. In all of the calculations
below, we shall deal with either an intrinsic resonance or an imperfection resonance, but not
both simultaneously.

We employ the classical spin model throughout the calculations below. In a facility such
as ELSA, which accelerates polarized electron beams, the particles emit synchrotron radiation
throughout the acceleration process. However, there is negligible spin-flip radiation and so a
classical treatment of the spin is permissible. For an accelerated spin-polarized electron beam,
we may consider the orbital beam emittances to be in quasi-equilibrium at each energy because
the orbital damping time is short.

To simplify the exposition, we consider only the perturbation terms due to motion in the
quadrupoles of the accelerator. This is, generally, the major contribution to the resonance
driving terms. The magnetic field in a quadrupole is

Bquad = B ′(ye1 + xe3), (24.1)

where B ′ = ∂B/∂x is the gradient of the quadrupole magnetic field. Then the perturbation w
has the form

w = − e

pc
(Gγ + 1)B ′(θ) y(θ) e1. (24.2)

There can also be perturbation terms proportional to y ′ and terms parallel to e2 which we do not
treat here. Courant and Ruth (1980) offer a detailed discussion of the perturbations. We begin
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with the imperfection resonances. Then y = yc.o. and is periodic in θ by the definition of a
closed orbit:

yc.o.(θ + 2π) = yc.o.(θ). (24.3)

Obviously B ′(θ) is periodic in θ . Hence, w is also periodic in θ and can be Fourier expanded
as follows:

w1 + iw2 =
∞∑

k=−∞
εk eikθ . (24.4)

The Fourier harmonics εk are known as the imperfection resonance strengths. Note that they
are complex, in general. Their magnitudes are proportional to the amplitude of the closed orbit
imperfection.

If y is due to a vertical betatron oscillation, it is not periodic in θ but has the form, as we
have seen earlier,

yβ = √2Iyβy cos(φy − Qyθ + ψy(θ)), (24.5)

where

φy = Qyθ + φy0. (24.6)

Recall that ψy is a (vertical) betatron phase. In this circumstance, we can expand as follows

w1 + iw2 =
∞∑

k=−∞
(ε+

k eiφy + ε−
k e−iφy ) eikθ . (24.7)

The Fourier harmonics ε±
k are called the intrinsic resonance strengths. They are also complex

and their amplitudes are proportional to the vertical betatron amplitude. If the ring has a
superperiodicity P , all the Fourier harmonics in (24.7) vanish except those for which k is a
multiple of P . We can re-express the sum as

w1 + iw2 =
∞∑

k=−∞
(ε+

kP eiφy + ε−
kP e−iφy ) eikP θ . (24.8)

For example, P = 12 for the AGS and 2 for ELSA. The superperiodicity of RHIC (without
Snakes) is P = 3. In the case of an imperfect closed orbit there is no such symmetry by the
nature of imperfections. All integer values of k are allowed. The spectrum of the imperfection
and intrinsic resonances is

Gγ = k, Gγ = kP ± Qy, (24.9)

respectively, where in both cases k is an integer. Since we have seen that the value of
Gγ0 increases as the beam is accelerated, this means that the particles cross one resonance
after another during the acceleration process, i.e. the Froissart–Stora formula comes into
play. In addition to the imperfection resonances, the beam must also cross the intrinsic
resonances. A high superperiodicity therefore reduces the number of intrinsic resonances,
but in practice there may be other, more important, considerations which constrain the design
of the accelerator.

Additional sources which can contribute to the resonance driving terms in a planar ring,
merely change the detailed expressions for the Fourier harmonics εk or ε±

kP , e.g. see Courant
and Ruth (1980). However, the formal structure of the Fourier spectrum is unchanged. If the
ring contains transverse x–y betatron coupling, then there are additional resonances driven by
the horizontal betatron oscillations. These can be dealt with by an extension of the present
formalism.
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Formally, we can think of the imperfection terms as a special case of the intrinsic, by setting
P = 1, φy = 0 and ε−

kP = 0 (and the amplitudes of the εk do not have a statistical distribution).
Hence, we employ (24.8) in (6.7), and do not subdivide into special cases. However, note,
that this is contrary to the standard practice, which does fragment the calculation into special
cases. We prefer to keep the formula unified for as long as possible. Then

m21 = e−i[ν00θ+(1/2)αθ2]
∞∑

k=−∞
(ε+

kP eiφy + ε−
kP e−iφy ) eikP θ . (24.10)

Each Fourier harmonic will drive a depolarizing resonance, unless the Fourier coefficient
vanishes.

24.2. DEPOL

Courant wrote the programme DEPOL to calculate the imperfection and intrinsic resonance
strengths (Courant and Ruth 1980). We review the formalism briefly. Let K denote the spin
resonance tune (K = k for an imperfection resonance or K = kP ± Qy for an intrinsic
resonance). Then DEPOL calculates the integral

εK = 1

2π

∮
ζ(s)

ρ(s)
eiKθ(s) ds, (24.11)

where

ζ(s) = −(Gγ + 1)(ρy ′′ + iy ′) + iρ(G + 1)(y/ρ)′. (24.12)

In the case of no betatron coupling, y ′′ satisfies Hill’s equation and the integral can be
evaluated in closed form for motion through dipoles and quadrupoles; this was done in the
original DEPOL programme. The programme was extended to treat x–y betatron coupling
(Ranjbar et al 2001) because of the need to treat the coupling induced by a solenoid partial
Snake at the AGS, and also for the analysis of RHIC without Snakes. Since for an intrinsic
resonance the value of K is not an integer, the value of εK is obtained by integrating over
several turns:

εK � 1

2πN

∫ NC

0

ζ(s)

ρ(s)
eiKθ(s) ds, (24.13)

where the value of N is a user-settable parameter. In principle one takes the limit N → ∞.
More recently, it has been recognized (Ranjbar et al 2002a) that one can express the resonance
strengths for an intrinsic resonance using the type of Fourier analysis presented in (24.7). It is
then only necessary to evaluate single-turn integrals around the circumference.

Notice that the integral in DEPOL (see (24.11)) is basically the same as that in the
algorithms to calculate the spin quantization axis n. It has historically been the case that the
literature on radiative and nonradiative polarization have developed more or less separately,
with different notations and terminologies for essentially the same concepts. It is also only
fair to point out that DEPOL (written in 1980) preceded the publicly available formalisms for
n reviewed earlier.

24.3. Statistical averages

If the resonance driving term is from a closed orbit imperfection, then ε will have the same
value for all the particles. For an intrinsic resonance the value of ε varies with the betatron
oscillation amplitude.

ε2 = ε2
rms

Iy

Irms
, (24.14)
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where Irms is the root-mean-square vertical betatron action (i.e. the vertical betatron
unnormalized emittance). Froissart and Stora (1960) showed that for a Gaussian beam
distribution 〈

Pf

Pi

〉
= 1 − (πε2

rms/α)

1 + (πε2
rms/α)

. (24.15)

However, a simpler approximation which is often used, is to employ an ‘effective’ resonance
strength which is given by using the 95% beam emittance value in (6.21) instead. Basically,
ε2

95% = 6ε2
rms and so〈

Pf

Pi

〉
� 2 e−πε2

95%/(2α) − 1. (24.16)

There is some merit to this simpler approach. The majority of the applications of these formulae
is to polarized proton (or other hadron) beams. It is important to realize that the motion of
polarized protons is not ergodic. The use of a Gaussian beam distribution is an idealization.

24.4. Scaling laws

It is a good approximation to say that the resonance driving terms are principally caused by
the vertical orbital motion in the quadrupoles. Roughly speaking, then, for an imperfection
resonance

ε
imp
k � −(Gγ0 + 1)

∮
eB ′(θ)

p0
yc.o.(θ)e−ikθ dθ

2π
, (24.17)

where B ′ = ∂B/∂x and p0 is the momentum of the reference particle. The value of the
integrand is independent of the beam energy, to a good approximation. Hence, for Gγ0 � 1,
the magnitude of the strength of an imperfection resonance is proportional to the beam energy

|εimp
k | ∝ γ0. (24.18)

For an intrinsic resonance of the form Gγ0 = kP ± Qy , the corresponding expression is,
K = kP ± Qy ,

εint
k � − (Gγ0 + 1)

∮
eB ′(θ)

p0
yβ(θ)e−iKθ dθ

2π

� − (Gγ0 + 1)

∮
eB ′(θ)

p0

√
2βyIye±iψy(θ) + φy0 e−iKθ dθ

2π
. (24.19)

For a particle at the rms betatron amplitude, using the normalized emittance (recall εNy =
β0γ0εy), we have

εint
k � (Gγ0 + 1)

√
εNy

β0γ0

∮
eB ′(θ)

p0

√
βy e±iψy(θ) + φy0 e−iKθ dθ

2π
. (24.20)

The integrand is again approximately independent of the beam energy. Hence, for Gγ � 1
and β0 � 1, the magnitude of the strength of an intrinsic resonance scales as the square root
of the beam energy:

|εint
k | ∝ √

γ0. (24.21)

The use of the normalized emittance for the beam size is, of course, meant for nonradiative
systems. For polarized electron beams accelerated in synchrotrons to energies of a few
GeV, the radiation damping time of the beam emittances is a few milliseconds, so the
orbital beam emittances are in radiative equilibrium during acceleration. For electron beams,
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the (unnormalized) emittances scale with the energy, εx,y,s ∝ E2. Hence, for electron rings in
radiative (orbital) equilibrium,

|εint
k | ∝ γ 2

0 . (24.22)

Hence, for an electron synchrotron, the magnitudes of the intrinsic resonances scale more
rapidly with energy than the magnitudes of the imperfection resonances.

The above scaling laws apply to separated function accelerators, where the bending and
focusing take place in distinct magnets. It has been noted by Anferov (1999) that a different
scaling law can be obtained for accelerators which use combined-function magnets, where an
individual magnet contains both a dipole and a quadrupole field. The strength of the intrinsic
resonances can scale as 1/

√
γ rather than

√
γ . This is basically because the tilts induced

by the radial quadrupole fields rapidly average to a small value, because of the simultaneous
precession around the vertical dipole field. However, this cancellation requires a specific
design of the accelerator.

In general, the number of intrinsic resonances encountered during the acceleration
of a polarized beam is fewer than the number of the imperfection resonances, especially
for machines with a high superperiodicity, e.g. P = 12 at the AGS. In proton (hadron)
synchrotrons, the intrinsic resonances are usually stronger than the imperfection resonances.
This is to be expected since the imperfection resonances are, by definition, caused by random
small misalignments of the magnets, and are zero by design. The intrinsic resonances exist even
in a perfectly aligned machine, and their strengths depend on the vertical betatron emittance,
which may be large, depending on the properties of the polarized beam source. By contrast,
in an electron synchrotron, the value of the vertical emittance is self-consistently determined,
and is proportional to the vertical dispersion. Furthermore, the vertical dispersion is zero in a
perfectly aligned planar ring. In a real ring, the vertical dispersion arises from misalignments,
or from deliberately induced transverse x–y coupling. Hence, in an electron synchrotron, the
magnitudes of the driving terms of both the imperfection and intrinsic depolarizing resonances
are proportional to the misalignments.

A graph of the magnitudes of the strengths of the intrinsic resonances for a RHIC lattice
without Snakes is shown in figure 37. A normalized vertical emittance of 10π mm mrad was
assumed. A RHIC lattice with β∗ = 10 m at the interaction points was used in the calculations.
Notice that the

√
γ scaling of the intrinsic resonance strengths with the beam energy is only

approximately satisfied. Many other factors, such as the detailed structure of the accelerator
lattice, also contribute to the values of the spin integrals. The scaling law should thus be taken
as a rough guide. In particular, there are peaks in figure 37—certain resonances are clearly
much stronger than the rest. The locations of the strongest intrinsic resonances are given by

Gγ = kP ± Qy � mPM ± QB, (24.23)

where k and m are integers, P = 3 is the superperiodicity of RHIC, M = 27 is the
number of effective FODO cells per superperiod (including ‘dispersion suppressors’) and
2πQB = 2π(Qy − 12) is the accumulated betatron phase advance of all the FODO cells
which contain bending dipoles. The locations of the three strongest intrinsic resonances are
given by

Gγ =



3 × 81 + (Qy − 12) (γ = 145),

5 × 81 − (Qy − 12) (γ = 216),

5 × 81 + (Qy − 12) (γ = 235).

(24.24)

For the imperfection resonances, the strengths must be estimated using a model of closed-
orbit imperfections. A graph of the estimated magnitudes of the imperfection resonance
strengths for the above RHIC lattice without Snakes is shown in figure 38, with application
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Figure 37. Intrinsic resonance strengths in a RHIC lattice without Snakes, for a 95% normalized
vertical emittance of 10π mm mrad. Reprinted from Alekseev et al (2003). Copyright (2003) with
permission from Elsevier.

of a simulated orbit correction scheme. The initial imperfections were calculated using an
uncorrected closed orbit from a random sample of magnet misalignments with an rms spread
of ±0.5 mm, dipole roll angles with a spread of ±1 mrad, dipole field errors of ±5 × 10−4 and
position monitor errors of ±0.5 mm. Present alignment data from RHIC show that the above
tolerances are all met or exceeded. After the use of a simulated closed-orbit correction scheme,
the vertical closed orbit was corrected to 0.155 mm (rms). The resulting imperfection resonance
strengths are displayed in figure 38. The envelope bounding the strengths of the imperfection
resonances is roughly linear with the beam energy, as expected from the scaling law, and is
given by

εimp = 0.25
γ

250
σy, (24.25)

where σy is the rms value of the residual closed orbit amplitude in mm. The imperfection
resonance strengths, after closed orbit correction, do not exceed 0.04 at any RHIC energy.

24.5. Resonance correction/jumping

Many ideas have been devised to correct (eliminate) the resonance driving terms. We begin with
the imperfection resonances. One idea, which is desirable for many reasons having nothing
to do with the spin, is to improve the survey and positioning of all the beamline elements, to
reduce the closed orbit imperfections. In addition to surveys, the technique of beam-based
alignment (BBA) is also employed, where beam position monitors (BPMs) are used to obtain
feedback on the beam centroid as it traverses the ring, and this information is used to help with
the correction of the closed orbit imperfections. In addition to the above techniques (which are
independent of whether the beams are polarized or not), additional orbit corrections are also
performed to eliminate specific resonance driving terms. This technique is called ‘harmonic
orbit correction’.
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Figure 38. Estimated imperfection resonance strengths in a RHIC lattice without Snakes, with
application of a simulated orbit correction scheme. Reprinted from Alekseev et al (2003).
Copyright (2003) with permission from Elsevier.

For harmonic orbit correction, a set of corrector dipoles are placed around the ring. They
are powered so as to generate a Fourier harmonic εc

k (c for ‘correction’) of a controlled
magnitude and phase. Recall that the imperfection resonance strength εk is complex, and
has both a real and imaginary part; both must be corrected to eliminate the resonance. A set
of 95 corrector dipoles was employed at the AGS to generate the required Fourier harmonics
(Khiari et al 1989). Harmonic orbit correction is applied to one resonance at a time. In
other words, it is a dynamic procedure. We do not attempt to correct all of the harmonics εk

simultaneously, only the one currently being crossed. The beam is extracted at an energy just
below the imperfection resonance, and its polarization is measured. Subsequent proton beams
are accelerated across the imperfection resonance, and the corrector settings are empirically
adjusted to minimize the depolarization. The optimal corrector settings are then saved. The
entire procedure is repeated for the next imperfection resonance. As one can imagine, this is
a tedious effort. A total of 39 imperfection resonances in the AGS had to be crossed in this
way, to accelerate the polarized proton beam to 22 GeV c−1.

The strengths of the fields in the corrector dipoles, for harmonic orbit correction, are
usually too small to have a noticeable impact on the beam emittances. The correction of the
spin resonances is at a level too small to be detected in the orbital motion. The sensitivity of
the spin to the machine parameters, especially for Gγ � 1, is much greater than that
of the orbital motion. To implement harmonic orbit correction in practice, in the first run
of the accelerator, a ‘table’ of corrector settings is determined empirically, by correcting the
imperfection resonances one at a time. These settings are then saved and used for the rest
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Figure 39. Symbolic plot of tune jumps across the resonances k ± Gγ = Qy .

of the running time of the accelerator, on the assumption that the machine parameters do not
change. Periodically, the settings may be reviewed and updated. The settings must obviously
be reset if the machine is shut down for maintenance and then restarted.

It is fairly clear that harmonic orbit correction is an arduous, time-consuming task, and
becomes impractical as one pushes to higher energies, e.g. at RHIC. It is relatively much
simpler to increase the resonance strength. This is not as foolish as it sounds; it is in
fact a very clever idea. The imperfection resonance strengths are deliberately increased to
the point where adiabatic spin-flip can be performed at every imperfection resonance. The
polarization direction reverses without decrease of magnitude. One, then simply accelerates
without correction of the resonances; the polarization merely reverses across each imperfection
resonance, which does not matter. This is the essence of the idea behind a partial Siberian
Snake, and is the method of choice today for polarized proton acceleration at the AGS. We shall
review the partial Snake idea below.

As for the intrinsic resonances, if they are sufficiently weak then no correction is necessary,
one accelerates across the resonance sufficiently rapidly, so that ε2/α 	 1. However, in
many cases the strengths of the intrinsic resonances are too large for the resonances to be
crossed sufficiently rapidly. Recall, also, that the ‘strength’ of an intrinsic resonance is a
statistical average; the tails of the beam will experience stronger fields and may suffer greater
depolarization. One can try the opposite idea, namely, adiabatic spin-flip. This runs into
the difficulty that it is not so simple to ensure that ε2/α � 1 for particles in the core
of the beam, where ε → 0. However, there is also an alternative idea that is commonly
used, namely, to circumvent the intrinsic resonances by employing the so-called ‘tune jump’
quadrupoles. A current is rapidly pulsed through a set of quadrupoles (typically air-core rather
than ferrite quadrupoles, to enable fast response), to change the vertical betatron tune. Hence,
as the spin tune approaches the resonant value during the energy ramp, the value of the vertical
betatron tune is changed rapidly (‘tune jump’) and the value of the spin tune (i.e. Gγ ) is
suddenly on the other side of the resonance. Hence the spin tune, in principle, never equals the
intrinsic resonance tune. A symbolic graph of the variation of the spin tune and the betatron
tune during a tune jump is indicated in figure 39.

The tune jump technique was pioneered, successfully, at the ZGS (Khoe et al 1975).
The tune jump technique has since been employed in almost every synchrotron, where
nonradiatively polarized beams (electrons and hadrons) have been accelerated. However,
a rapid change of the vertical betatron tune is not an adiabatic process. The tune jump technique
results in an increase of the normalized vertical betatron emittance, for polarized hadron
beams.
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An alternative idea to cross the resonances, by jumping the spin tune using a spin tune
shifter, was proposed by Golubeva et al (1994). In principle, the idea would apply to both
imperfection and intrinsic resonances. The proposed scheme employed a sequence of radial
and longitudinal spin rotations:

– 1
2 V–L–(−V)–(–L)– 1

2 V–.

In the linear dynamical approximation, the orbital deflection cancels internally, and the design
does not induce coupling of the horizontal and vertical betatron oscillations. The spin rotation
matrix is

M = e−iφxσ1/4eiφzσ2/2eiφxσ1/2e−iφzσ2/2e−iφxσ1/4

= 1 − 2 sin2 φx

2
sin2 φz

2
− iσ1 sin φx sin2 φz

2
+ iσ3 sin

φx

2
sin φz. (24.26)

Using the small angle approximation φx 	 1, φz 	 1 yields

M � 1 − φ2
xφ

2
z

8
+ iσ3

φxφz

2
, (24.27)

which is a spin rotation around the vertical and a spin tuneshift of

�ν � φxφz

2π
. (24.28)

One can hold the longitudinal fields fixed and pulse the radial fields. However, this idea has
never been used in practice.

One can also increase the strength of an intrinsic resonance, and employ adiabatic spin-
flip. An innovative idea, which has been successfully employed at the AGS, is to deliberately
induce a large-amplitude coherent betatron oscillation, using an rf dipole (Bai et al 1998).
As opposed to our earlier comments that adiabatic spin-flip is problematic because ε → 0 in
the core of the beam, in a coherent betatron oscillation all the particles share a common, large
value of ε. The amplitude of the coherent betatron oscillation is relaxed to zero after crossing
the intrinsic resonance. This is the modern method of choice to cross intrinsic resonances at
the AGS. We shall review this elegant idea when presenting the modern work on polarized
beam acceleration in the AGS in section 26.

The above techniques are clearly not mutually exclusive. Different techniques are
employed for the various resonances one encounters during the acceleration process. Whether
or not one can make |ε|2/α 	 1 depends, for example, on the maximum value of α that the rf
system can deliver.

Obviously, the number of resonances to be crossed depends on the difference between
the initial low energy and the final top energy. For a machine such as RHIC, where polarized
protons have been accelerated to a momentum of 100 GeV c−1 and the top momentum is
250 GeV c−1, the number of resonances to be crossed makes the above ideas impractical.
The companion paper MSY1 reviewed the clever idea of Siberian Snakes to render the spin
tune independent of the beam energy. This allows one to accelerate polarized beams to high
energies without crossing any depolarizing resonances. For now, we confine our attention
to the resonance crossing techniques. Problems arise if two resonances overlap, and cannot
be crossed individually. Also, sometimes the available rf power is insufficient to accelerate
quickly enough across a resonance. We consider a few theoretical ideas to deal with these
issues below.

24.6. Resonant spin-flip in nonplanar rings

Note that for resonant spin-flip to work, it is not necessary for the ring to be planar. For
example, the ring can contain Siberian Snakes. Spin flipping has been accomplished with
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beams of polarized protons at the IUCF Cooler in the presence of a nearly full-strength Siberian
Snake. Early work employed an rf solenoid spin flipper, achieving a spin-flip efficiency of
(97 ± 1)% (Blinov et al 1998). An rf dipole kicker was used in later work, initially achieving
a spin-flip efficiency of (86.5 ± 0.5)% (Blinov et al 2000), which later improved to 99.6%
(Blinov et al 2002) and more recently to 99.9% (Morozov et al 2003a).

RHIC is also equipped with an rf dipole, but it has not been used much. Some limited
studies to use the rf dipole as a spin-flipper were reported by Bai et al (2002). The rf dipole
is located at a point in RHIC where the stored polarization direction is vertical. (See figure 1,
where the device is labelled ‘ac dipole’.) The spin-flipper is in a region common to both RHIC
rings, but can be configured to flip the spins in the two beams independently. We have seen
that for a ring with two Snakes the spin tune is 1

2 . Basically, the spin tune in one ring is moved
slightly away from 1

2 , and the spin-flipper is made to resonate with the spins in that beam
only. The spins in the other beam merely experience non-resonant high-frequency kicks. The
spin-flip efficiency reported was 66%, but this is still preliminary work.

Spin-polarized deuteron beams have also been circulated in the IUCF Cooler, where the
first resonant spin-flipping of a vertically polarized deuteron beam was reported (Morozov et al
2003b), achieving a spin-flip efficiency of (94.2 ± 0.3)%. The spins were flipped using an rf
solenoid.

Resonant spin-flipping has also been performed using a beam of polarized electrons, at
the SHR at MIT-Bates, with an efficiency of (94.5 ± 2.5)% (Morozov et al 2001). This work
employed an air-core rf dipole. The spins were horizontally polarized, because the SHR is
equipped with one Siberian Snake, consisting of two solenoids in series. It is expected that
the use of more powerful ferrite core rf dipole kickers will improve the spin-flip efficiency.

Resonant spin-flipping in a ring with one Snake is particularly interesting, since the design
polarization lies in the horizontal plane. Basically, the Froissart–Stora formula was derived
on the assumption that the asymptotic polarization direction (far from resonance) is vertical,
and that the resonance driving term lies in the horizontal plane, i.e. orthogonal to the direction
of the asymptotic polarization. For a ring with one Snake, the asymptotic polarization direction
and the perturbing resonance driving term both lie in the horizontal plane. Nevertheless, with
some caveats, the Froissart–Stora formula is still applicable.

The basic theory of resonant spin-flipping in a ring with a single approximately full-
strength Snake was presented by Koop and Shatunov (1995). Recall that the frequency of the
spin flipper frf can be tuned to either f +

rf = fc(ν −1) or the mirror frequency f −
rf = fc(1− ν),

where, for simplicity, we treat only the fractional part of the spin tune in the above expressions.
The first caveat is that for spin-flip to work it is necessary for the adiabatic condition to be
satisfied, namely, ε2/|α| � 1. However, in a ring with a full-strength Snake, ν = 1

2 and
the resonant frequency and its mirror coincide. The adiabatic condition cannot be maintained
for both resonance driving terms simultaneously. Hence, one employs a nearly full-strength
Siberian Snake, so that the spin tune is not exactly 1

2 , so that the resonant frequency is separated
from its mirror. Recall in section 20, when citing the measurements of synchrotron sidebands
in a ring with a single Snake, it was stated that the measurements were made with a nearly
full-strength Siberian Snake.

The next caveat is that, for resonant spin-flip to work, what is really required is that the rf
perturbing field have a component orthogonal to the direction of the asymptotic polarization.
Obviously, the two types of kickers used in practice provide either radial or longitudinal kicks.
For either a radial or a longitudinal rf kicker, we decompose the kick into components parallel
and perpendicular to the stable spin direction (i.e. n0) at the location of the kicker. The
component orthogonal to n0 will accomplish the spin-flip. The Froissart–Stora formula is
therefore applicable, except that instead of |ε|2, the amplitude square of the resonance driving
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strength should be the orthogonal component

|ε × n0|2 = ε · ε∗ − (ε · n0) (ε∗ · n0). (24.29)

The Froissart–Stora formula is modified to
Pf

Pi
= 2 e−π |ε×n0|2/(2|α|) − 1. (24.30)

Of course, the kicks do have a time varying component, parallel to the stable spin direction
n0, which will necessarily have an effect close to the moment of resonance passage. However,
as evidenced from the work by Blinov et al (2002) and Morozov et al (2003a) this is not
significant, and one can achieve a spin-flip efficiency in excess of 99%. The Froissart–Stora
formula was so employed for work at the IUCF Cooler by Blinov et al (1998, 2000, 2002)
and Morozov et al (2003a) and at SHR by Morozov et al (2001), in all cases to analyse the
performances of spin-flippers.

24.7. Spin response function

It is possible for a spin-flipper to excite orbital oscillations, e.g. vertical betatron oscillations
in a planar ring, and the perturbing fields induced by those oscillations then tip the spins,
leading to decoherence. This is an indirect coupling of the spin-flipper to the spins. The
overall function which relates the rotation of a spin to the field of the rf kicker is called the spin
response function. The basic theory was worked out by Kondratenko (1982) in the same paper
which showed that a helical wiggler could act as a Snake. Under suitable circumstances, when
the rf kicker frequency is close to the vertical betatron frequency (or some multiple thereof),
the indirect coupling can greatly enhance the effect of an rf kicker on the spins.

The indirect term in the spin response function is, however, a double-edged sword.
In the initial attempts to employ a spin-flipper to induce resonant depolarization at LEP
(Arnaudon et al 1992), it was found that the rf kicker could indeed excite the vertical betatron
oscillations, but this caused large fluctuations in the electron beam position, distorting the
readings at the polarimeter. The excitation of the vertical betatron oscillations can, therefore,
have unwanted side-effects.

24.8. Ergodicity

For a polarized proton beam, the orbital motion is not ergodic. Hence, if two resonances are
crossed in succession (and one or both are intrinsic resonances, with a distribution of particle
amplitudes), it is possible in some cases for the polarization to increase upon crossing the
second resonance. We believe that cases where the polarization was partially restored after
passage through a second resonance have been observed, although we cite no examples.

24.9. Partial Snakes

24.9.1. General remarks. The companion paper MSY1 reviewed full-strength Snakes.
However, partial Snakes are also useful devices. Consider a solenoid in a synchrotron,
with a spin rotation angle of λsπ , where 0 < λs < 1. The solenoid is effectively a
δ-function longitudinal spin rotator, because its length is very short, when compared with
the circumference of the synchrotron. Its spin precession vector is

Wsol ≡ Wsol e2 = λsπ δp(θ − θs) e2, (24.31)

where θs is the azimuthal location of the solenoid and δp is the periodic δ-function. We have
stated all of the above, earlier in this paper, but here we consider the specific application of these
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ideas to the acceleration of nonradiatively polarized beams—this was in fact the motivation to
use partial Snakes in accelerators in the first place. Decomposing Wsol into Fourier harmonics
yields

Wsol = λs

2

∞∑
k=−∞

eik(θ−θs). (24.32)

This is, effectively, a sum of imperfection resonance driving terms, all with the same
imperfection resonance strength λs/2, at every integer k. Adding this to the imperfection
resonance strengths already present in the machine, the Froissart–Stora formula for crossing
the resonance line Gγ = k becomes

Pf

Pi
= 2 exp

{
− π

2α

∣∣∣λs

2
e−ikθs + εk

∣∣∣2}− 1, (24.33)

where εk is the (complex) strength of the imperfection resonance due to the rest of the machine.
Recall, α is the rate of increase of Gγ per turn. Roser (1989) showed that if

λs � 2|εk| +

√
8α

π
(24.34)

then there would be a reversal of the polarization with negligible loss of polarization.
The implications of this observation are profound: it is not necessary to employ

complicated resonance correction and crossing schemes; one just installs a partial Snake and
accelerates without correction. Of course, the intrinsic resonances must still be corrected.
A partial Snake does not generate Fourier harmonics at the frequencies (tunes) of the intrinsic
resonances.

The above example of a solenoid partial Snake is a working, practical idea, but not the only
possibility. A helical field (transverse field) partial Snake was recently installed and operated
at the AGS in spring 2004.

24.9.2. Resonance correction at VEPP-2M. Historically, the initial recognition of the partial
Snake idea, and experimental usage thereof, was made in 1976 at VEPP-2M (Derbenev et al
1977). VEPP-2M is an e+e− collider with an operating beam energy of 180–700 MeV. The
partial Snake strength was about 5%. The imperfection resonance in question was at aγ = 1
(E = 440 MeV). The Novosibirsk team demonstrated the safe crossing of the resonance with
the partial Snake on and full depolarization with the partial Snake off. The ring contained one
detector, CMD-2 with a solenoidal field of 1 T, and two compensating solenoids with 3.5 T
(see figure 2). In the initial experiment, a room-temperature air core solenoid was installed in
the ring. After the first experiment, the partial Snake technique was employed many times to
avoid depolarization from the aγ = 1 imperfection resonance. In that later work, to arrange
the partial Snake option, the compensating solenoids of the CMD-2 detector were detuned
for the resonance crossing and then returned. There were problems with intrinsic betatron
resonances (the values of the betatron tunes were Qx = 3.06 and Qy = 3.09) at aγ = Qy − 2
and aγ = 4 − Qy . The intrinsic resonances were crossed by two methods: (i) a quick change
in the gradient steering coils in the quadrupoles (to ‘jump’ the betatron tunes) and (ii) fast
energy change by a pulse switch of a shunt to the dipoles power supply (energy jump about
20 MeV in 0.05 s), i.e. rapid crossing of a resonance.

The use of partial Snakes is not so simple, however. Note that when we wrote in (24.34) that
the Fourier harmonic from the partial Snake has to be much greater than that from the ring, we
tacitly assumed that the ring’s imperfection harmonic εk was one entity. As we know by now,
each central resonance is in fact surrounded by a set of synchrotron sidebands, whose strengths
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are given by Bessel functions. If the partial Snake strength is not large enough, the adiabatic
condition may not be satisfied at some of the sideband frequencies. In that case, the beam
will suffer depolarization during passage across those sideband resonances. The partial Snake
strength must therefore be large enough, so that the resonance width from the Fourier harmonic
of the partial Snake, i.e. λs, covers all the relevant low-order sidebands. The first sideband which
is not covered by the partial Snake-induced resonance should be so weak that it does not cause
serious depolarization.

In the work at VEPP-2M, we stated that the partial Snake strength was 5%. Hence, the
sidebands had to be compensated (weakened) by adjusting the rf system. A specific dip of the
rf-voltage was done to decrease the synchrotron tune to 0.007, aiming that only the 7th order
sideband could appear (λs = 0.05, 7 × Qs = 0.049), and its resonant harmonic was 10−4 less
than the main imperfection resonance strength.

24.9.3. Partial snakes for polarized proton beams. The first successful demonstration of the
use of a partial Siberian Snake to accelerate a polarized proton beam through a depolarizing
resonance, was that of a 10% Snake (a solenoid) at the IUCF Cooler (Blinov et al 1994).
A beam of polarized protons was accelerated through the Gγ = 2 imperfection resonance
without loss of polarization. Increasing the Snake strength to 20% or 30%, however, also
shifted the location of the intrinsic resonance Gγ = 7−Qy into the energy range of the beam,
causing some depolarization.

Arguably the most extensive, and most successful, use of partial Snakes has been at the
AGS. A 5% solenoid partial Snake (9˚ spin rotation) was installed in the AGS (Huang et al
1994) and was used to successfully cross 18 imperfection resonances, although there was some
depolarization due to intrinsic resonances. This was a warm solenoid, whose field was ramped
during the AGS energy ramp to maintain a 5% partial Snake strength at all energies. If the
solenoid were run at a fixed field (to achieve a 5% strength at top energy) it could be as much
as a 25% partial Snake at low energy in the AGS. However, a solenoid induces transverse
x–y betatron coupling and at a partial Snake strength of 25%, the solenoid induced too much
betatron coupling in the AGS. We shall review the use of partial Snakes at the AGS in more
detail in section 26.

As for synchrotron sidebands, when crossing imperfection resonances at the IUCF Cooler
or the AGS, we have not found evidence in the literature, and via personal communications,
that the synchrotron sidebands matter. The synchrotron tune in proton synchrotrons is much
smaller than in electron synchrotrons, and so the sidebands are evidently clustered so closely
to the parent that a 5% partial Snake (e.g. at the AGS) is able to satisfy the adiabatic condition
without special consideration for the sidebands. For example, Qs � 0.001 at the IUCF Cooler.
The value of the synchrotron tune is similar at the AGS. A 5% or a 10% partial Snake would
cover all the sidebands up to the fiftieth order or more.

24.10. Polarized deuterons: tensor polarization

The spectrum of the depolarizing resonances (imperfection and intrinsic) is the same for both
polarized protons and deuterons. This is because depolarization is caused by a decoherence
of the spins, and it does not matter if the spin value is 1

2 or 1 or higher. The magnetic moment
anomaly of a deuteron is Gd � −0.1427, hence the value of Gγ is negative. This is of course
completely irrelevant to the resonance spectrum. What is significant is that Gp/Gd � −12.5
and also mp/md � 1/2, hence the energy spacing of the imperfection resonances is roughly a
factor of 25 greater for deuterons. This greatly reduces the number of imperfection resonances
which must be crossed, when accelerating polarized deuterons.
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The asymptotic vector and tensor polarizations, after crossing an isolated resonance, are
P3f

P3i
= 2e−πε2/(2|α|) − 1,

P33f

P33i
= 3

2
(2e−πε2/(2|α|) − 1)2 − 1

2
.

(24.35)

Perhaps more clearly than in the case with protons and electrons, the acceleration of deuterons
illustrates the wisdom of writing |α| rather than α in the exponent. Note that

− 1

2
� P33f

P33i
� 1. (24.36)

Starting from a tensor polarization of P33i = 1, it is impossible to obtain P33f = −2. However,
starting from P33i = −2, it is possible to obtain P33f = 1.

This raises the question: starting from P33i = −2, why can we not run the system forward
to obtain P33f = 1, and then run it in reverse through the same resonance, to recover P33 = −2?
In principle, we could. The spins evolve under a Hamiltonian system, and the spin motion is
reversible. Even for the vector polarization, we could run the system backwards and recover the
full initial polarization. All of the above formulae, for both the vector and tensor polarizations,
assume implicit statistical averages. In the absence of a true stochastic mechanism, we are
slapping statistical averages on top of a Hamiltonian system, which may be reasonable but it
is not guaranteed to always be valid.

The first acceleration of a polarized deuteron beam was at the ZGS (Parker et al 1979).
We briefly review the acceleration of polarized deuterons at the KEK-PS (Booster and Main
Ring) below (Sato et al 1997). There are no depolarizing resonances for deuterons in the
KEK-PS Booster. There is one intrinsic resonance Gγ = −8 + Qy and one imperfection
resonance Gγ = −1 at the KEK-PS Main Ring. The polarized deuteron beam was injected
and accelerated in two patterns:

• First, the beam was injected at 294 MeV and accelerated up to 10.2 GeV and then
decelerated to 2 GeV, extracted and the vector and tensor polarizations measured at 2 GeV.
(All energies are kinetic energies.) The beam, therefore, crossed the weak intrinsic
resonance Gγ = −8 + Qy twice, on the way up and again on the way down, without
any resonance corrections being applied.

• Second, the beam was injected at 294 MeV and accelerated up to 2 GeV and extracted and
the vector and tensor polarizations were measured as above. Hence, no resonances were
crossed.

The results indicate that there was no difference in polarization between the two scenarios (for
either the vector or the tensor polarization), indicating that the depolarization from the intrinsic
resonance Gγ = −8 + Qy was indeed small.

The first reported resonant spin-flip of a polarized deuteron beam was claimed by
Morozov et al (2003b), in studies at the IUCF Cooler. The experimenters displayed graphs
of the values of the vector and tensor polarizations P3f and P33f . The data agree with (24.35),
with use of an empirical modification. Morozov et al (2003b) write

P3f

P3i

∣∣∣∣
emp

= (1 + ηv)e
−πε2

v /(2|α|) − ηv,

P33f

P33i
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emp

= 3

2
[(1 + ηt)e

−πε2/(2|α|) − ηt]
2 − 1

2
,

(24.37)

where εv and ηv are the vector polarization resonance strength and spin-flip efficiency,
respectively, and εt and ηt denote the corresponding quantities for the tensor polarization.
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The measurements indicate that a single value of ε, and also a single value of η, fit the
spin-flipping of both the vector and tensor polarizations of the deuteron beam at the IUCF
Cooler. In fact, the structure of the angular momentum operators dictates that this must be so.
Nevertheless, such details must be tested. Whatever mechanism originates the resonance
ε and/or the spin-flip efficiency η, it applies to the spins and not to a specific spherical
harmonic.

24.11. Figure-of-eight ring

We remark, in passing, on an alternative idea which has been proposed to avoid resonance
crossing. A new Cooler Synchrotron has been proposed at the Research Center for Nuclear
Physics (RCNP) in Osaka (Sato 1997). The synchrotron will accelerate beams of polarized
protons to a maximum momentum of 5.86 GeV c−1, for use in nuclear physics experiments.
The ring geometry will be a figure-of-eight, so that the overall spin precession angle after a
complete circuit will be zero, independent of the beam energy. This will avoid all the intrinsic
resonances and all of the imperfection resonances, except for νspin = 0 (it does not make sense
to write ‘Gγ = 0’). It is, therefore, only necessary to correct the one imperfection resonance.
It has been planned to rectify the above resonance using a partial Siberian Snake. Spin tracking
studies have indicated that the design looks promising (Hatanaka et al 1997).

25. Acceleration of nonradiatively polarized beams II

25.1. General remarks

This section describes some of the experimental work to accelerate polarized beams in
synchrotrons. The list of accelerators below is by no means exhaustive. Furthermore, the partial
Snake work at the AGS is discussed separately, in section 26. We begin with a brief description
of some of the early experimental work, from the 1970s and 1980s, on the acceleration of
polarized proton beams at four facilities, namely, the ZGS, AGS, SATURNE-II and KEK-PS,
in that order. See also the (very brief) listing of the early experimental work on the acceleration
of polarized proton beams to high energy in section 6.

The ZGS demonstrated the first acceleration of polarized proton beams to high energy
in a synchrotron. The maximum proton momentum was 12.5 GeV c−1. The tune jumping
technique was used to cross the intrinsic resonances (imperfection resonances were negligible
in the ZGS). The second machine is the AGS. Being a strong-focusing synchrotron, the
quadrupole field gradients (hence the strengths of the depolarizing resonances) were much
stronger at the AGS than at the ZGS. In particular, although the imperfection resonances
were negligible in the ZGS, they were not in the AGS, hence there were many more
resonances to cross when accelerating polarized protons in the AGS. The third machine is
SATURNE-II. Recall that the Froissart–Stora formula was motivated by the crossing of
depolarizing resonances in the original weak-focusing SATURNE synchrotron. The ring was
later rebuilt as a strong-focusing synchrotron SATURNE-II. A polarized proton programme at
SATURNE-II was envisaged from the outset, as well as the acceleration of other polarized
species such as deuterons. This is one of the rare examples where the machine lattice
was designed with the requirements of polarized beams in mind. The spin dynamics at
SATURNE-II displayed some noteworthy features which will be reviewed below. The fourth
is the KEK-PS, also a strong focusing synchrotron, where the first acceleration and transfer of
a polarized proton beam in a cascaded system was accomplished (Booster to PS Main Ring).
Note that a Booster synchrotron was later constructed as a pre-accelerator to the AGS, making
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it also a cascaded system, but this was done later, in the 1990s (see figure 1). In its own turn
the AGS is now an injector to RHIC.

To avoid repeating all the same ideas on tune jumping and resonance correction, for every
machine, we present a case study of the resonance crossings at one synchrotron. We also
select it to be a modern facility, where the use of polarized beams is an active part of the
experimental physics programme. The complex is ELSA, the Electron Stretcher Accelerator
at the University of Bonn. ELSA accelerates polarized electrons to a maximum energy of
3.5 GeV. The presence of synchrotron radiation has important consequences not found in
proton synchrotrons. In addition, a particularly nice accelerator physics study was carried out
at the KEK-PS, on the effects of the orbital chromaticity on the synchrotron sidebands of an
intrinsic resonance. This is a direct demonstration of the effects of nonlinear orbital motion on
the spin motion (the betatron oscillations of an intrinsic resonance are linear dynamical orbital
motion). To our knowledge, the chromaticity study has not been repeated at other accelerators.

25.2. Early work at selected high energy proton synchrotrons

25.2.1. ZGS. The ZGS was a weak-focusing synchrotron. Polarized protons were accelerated
at the ZGS until the machine ceased operations in 1979 (Khoe et al 1975, Cho et al 1976).
The imperfection resonances in the ZGS were fairly weak and could be ignored. However,
the intrinsic resonances were strong, and almost total depolarization resulted if the intrinsic
resonances were not corrected. The ZGS had a fourfold symmetry (superperiodicity P = 4),
with a partial eightfold symmetry. Hence, the intrinsic resonances of the form Gγ = 8k ±Qy

were stronger than those of the form Gγ = 8k + 4 ± Qy . There were a total of 11 intrinsic
resonances up to the full momentum of the ZGS of 12.5 GeV c−1. The intrinsic resonances
were crossed via the tune jump technique. The tune jump technique was pioneered at the ZGS
(contemporaneously with tune jumps for intrinsic resonances at VEPP-2M by Derbenev et al
(1977) mentioned earlier in section 24). Two pulsed quadrupoles were used to shift the
value of the vertical betatron tune rapidly (rise time of 20 µs), relaxing to the unperturbed
value after several ms. The polarized proton source delivered a polarization level of 75–80%.
Khoe et al (1975) reported that a polarization level of (73±8)% was delivered at a momentum
of 6 GeV c−1, and about (55±15)% polarization at a momentum of 8.5 GeV c−1. A later paper
(Spinka et al 1983) gives information which was used to correct the beam polarization values
used in experiments after the fact. In particular, it indicates that there was some depolarization
at 1.2 and 1.75 GeV, when previously it was thought there would be none below 3 GeV.

The ZGS complex also demonstrated, in 1978, the first ever acceleration of a high-
energy polarized deuteron beam (Parker et al 1979). By 1979, polarized deuterons had been
accelerated to the ZGS top momentum of 12 GeV c−1. Crabb et al (1979) reported the results
of an elastic polarized n–p scattering experiment, using a beam of 6 GeV c−1 polarized neutrons
(obtained by the breakup of the 12 GeV c−1 polarized deuterons from the ZGS) incident on a
fixed polarized proton target. The neutron polarization was 53% and the fixed-target proton
polarization was 75%. Both spins were oriented perpendicular to the n–p scattering plane.

25.2.2. AGS. After the ZGS ceased operations, a polarized proton programme was initiated
at the AGS. Being strong focusing, the quadrupole focusing gradients were larger in the AGS,
and the imperfection resonances were too strong to be ignored. Theoretical calculations of
the resonance strengths and development of correction techniques were performed (Courant
and Ruth 1980). Most of the results below are taken from Khiari et al (1989), who reported
the successful acceleration of polarized protons to a momentum of 22 GeV c−1. Consult that
work for references to earlier work on polarized proton acceleration in the AGS. The paper
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also discussed the experimental measurements of spin-flip effects in elastic pp scattering
using the extracted polarized proton beam, as well as the polarized proton source, but our
interest is in accelerator physics. The AGS has a superperiodicity of P = 12. A total of
95 correction dipoles were employed to correct the strengths of the imperfection resonances
(8 dipoles per superperiod with one dipole missing). This was an arduous task. The beam was
accelerated just before a resonance, extracted and its polarization measured. The beam energy
was then increased to cross the imperfection resonance and the corrector settings adjusted
to optimize the final polarization level. For acceleration up to 22 GeV c−1, a total of 39
imperfection resonances had to be crossed; the above procedure had to be performed for each
one. Six intrinsic resonances also had to be crossed during the energy ramp. The intrinsic
resonances were crossed using pulsed quadrupoles to induce tune jumps. There were 12 pulsed
quadrupoles, one in each superperiod. However, the requisite power supplies were expensive
and only 10 could be purchased at the time of the work reported by Khiari et al (1989), hence
2 pulsed quadrupoles were unused.

The polarized proton source delivered approximately 75% polarization. Approximately
10% was lost between injection and 13.3 GeV c−1, where P = (65 ± 3)%. There was a
depolarization of about 20% near 14 GeV c−1, attributed to an interference between the Gγ =
36−Qy intrinsic resonance and the Gγ = 27 imperfection resonance (Qy � 8.75 in the AGS).
The polarization at 16.5 GeV c−1 was (44 ± 4)% and at 18.5 GeV c−1 it was (47 ± 4)%. There
was no evidence of significant polarization loss from 14 GeV c−1 to 22 GeV c−1, where the
polarization was (42 ± 4)%.

It was only after some ten odd years that new ideas of partial Snakes and adiabatic excitation
of coherent betatron oscillations, to be discussed in section 26, were able to overcome the
arduousness of the above resonance correction and jumping procedures.

The intrinsic resonance Gγ = 60−Qy is very strong. Note that the AGS superperiodicity
is P = 12 but there is a weaker symmetry of P = 60. That resonance overlaps with the
imperfection resonance Gγ = 51 (recall Qy � 8.75). The above intrinsic resonance occurs
at an energy of roughly 26.8 GeV and sets an effective upper limit on the maximum energy of
the polarized proton acceleration in the AGS. The extraction and delivery of polarized protons
to RHIC is performed at Gγ = 46.5, below the energy of this resonance.

The AGS has not, to date, accelerated polarized ion species other than protons. There are
plans to accelerate polarized deuterons as well as polarized 3He for delivery to RHIC.

25.2.3. SATURNE-II. The material below is mainly from Aniel et al (1985) and
Maggiora (1995). (See also Grorud et al (1982).) Polarized protons were accelerated at
SATURNE-II starting around 1980. The ring also accelerated polarized deuterons and 6Li.
Polarized neutrons were produced by the breakup of polarized deuterons on a Be target. We
shall only discuss the acceleration of polarized protons and, very briefly, polarized deuterons.
The operating range of SATURNE-II spanned the six imperfection resonances Gγ = 2–7
(maximum proton kinetic energy of about 3 GeV). The ring superperiodicity was 4 so there
were two intrinsic resonances in this spin tune interval, namely,

Gγ = Qy, Gγ = 8 − Qy. (25.1)

The value of the vertical betatron tune was Qy = 3.6. As already stated, SATURNE-II was a
strong-focusing synchrotron, and so the depolarizing resonance strengths were much stronger
than in a weak-focusing synchrotron like the ZGS. Because of this fact, the imperfection and
intrinsic resonances were mainly crossed using the adiabatic spin-flip technique. The delivered
proton polarization level was as much as 80% up to the top energy. Polarization levels
of 90% were also recorded on some occasions (basically the minimum extraction energy).
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In fact, SATURNE-II had two extraction channels so that beams could be delivered at two
different energies to two different experiments. From the point of view of this paper, the
acceleration of the polarized proton beams at SATURNE-II was notable for three features. To
phrase the matter in a positive manner, the polarization was a sensitive probe of the machine
structure:

• Depolarization was observed from the betatron resonances Gγ = 7 − Qy and Gγ =
1 + Qy . These resonances were ‘unpredictable’ in the sense that they were due to
lattice imperfections, which broke the perfect superperiodicity of the machine. Hence,
the resonance strengths were not reproducible on startup after a machine shutdown.
Empirical correction methods had to be applied to overcome the depolarization from
these resonances.

• After acceleration to the desired top energy, the beam was held at ‘flattop’ (i.e. a constant
energy) for so-called ‘slow extraction’. Most experiments prefer the beam to be dribbled
out more or less continuously (with a concomitant lower peak current) over a period of one
to a few seconds, rather than to receive the whole proton bunch in one pulse. During the
flattop, weaker resonances have sufficient time to act in concert with the spin precession,
leading to depolarization. In particular, the horizontal betatron tune was set to Qx = 11/3
for slow extraction at SATURNE-II. Depolarization from the resonance Gγ = Qx was
clearly observed if the beam was extracted at a kinetic energy of (980 ± 5) MeV. The
observation of the resonance Gγ = Qx at flattop at SATURNE-II is a counterpart to the
resonances in the polarization of stored e+e− beams, which are held at a fixed energy for
several hours.

• The crossing of the lowest energy imperfection resonance Gγ = 2 displayed unexpected
behaviour. The Froissart–Stora formula failed badly for this resonance. Theory and
simulations eventually demonstrated that synchrotron oscillations were responsible for
the deviations from the Froissart–Stora formula. Because of the synchrotron oscillations
and the maximum achievable rate of acceleration, some particles crossed this resonance
line multiple times. Adiabatic spin-flip could not be used to cross this resonance. Instead
the resonance driving term was cancelled using corrector magnets.

As for polarized deuterons, recall that SATURNE-II was designed with the acceleration
of polarized beams in mind. Hence, the ring was designed so that the resonance strengths
would be strong enough for the complete spin-flip of polarized protons but weak enough to
avoid any depolarization for deuterons. Hence, there were no strong depolarizing resonances
for deuterons in the operating range of SATURNE-II. The first resonance Gγ = Qy − 4 was
out of the energy range of the machine for the standard operating tune of Qy = 3.607. The
delivered tensor polarization was in the range of 90–75% (minimum and maximum extracted
beam energy, respectively) and about 60% for the vector polarization.

25.2.4. KEK-PS. The KEK-PS was actually a cascaded system of two strong-focusing
synchrotrons, a Booster and a Main Ring, and depolarizing resonances had to be overcome in
each one. Furthermore, the polarized beam had to be transferred from the Booster to the Main
Ring without suffering losses in the transfer process. A schematic view of the accelerator
layout was shown in figure 12.

Most of the material below is from Sato (1988) and Sato et al (1988). In the Booster, two
pulsed quadrupoles were installed to jump the intrinsic resonances, and two pulsed dipoles to
correct the closed orbit imperfections. The superperiodicities are P = 8 for the Booster and
P = 4 for the Main Ring. The beam was accelerated to a kinetic energy of Tmax = 500 MeV
in the Booster. One imperfection resonance Gγ = 2 at T = 108 MeV and three intrinsic
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Figure 40. Dependence of the ratio of the final to the initial polarization on the vertical chromaticity
at the KEK-PS Booster, for crossing of the Gγ = Qy intrinsic resonance. From Toyama et al
(1989).

resonances were crossed. One of the intrinsic resonances is a coupling resonance given by the
horizontal betatron tune Gγ = Qx at T = 190 MeV. Approximately 8% relative polarization
loss was expected in crossing this resonance as opposed to negligible polarization loss from the
crossing of the other resonances. This demonstrates that the horizontal betatron oscillations
cannot always be ignored during polarized beam acceleration. The resonance strengths in the
Booster are tabulated by Sato et al (1988). Because the Booster was a combined-function
strong-focusing synchrotron, which included a strong sextupole field component to correct the
chromaticity, some depolarization arose from higher order resonances (not reviewed here).

In the KEK-PS Main Ring, 4 pulsed quadrupoles were used to jump the intrinsic resonances
and 28 corrector dipoles were used to correct the imperfection resonances. There were several
strong intrinsic resonances in the Main Ring; however, there were no coupling resonances.

This brings us to some beautiful accelerator physics. The effects of the synchrotron oscil-
lations could not be ignored, when using an adiabatic spin-flip to cross the intrinsic resonance
ν = Qy , in the KEK-PS Booster. Reducing the rf voltage, to reduce the synchrotron tune, led to
approximately 50% beam loss which was unacceptable. A clever observation was made, which
was to utilize the chromaticity to correct the effects of the synchrotron oscillations, presented
first at a conference (Hiramatsu et al 1989) and later published formally (Toyama et al 1990).

We reviewed the basic formulae of synchroton sideband resonances in section 20 (see
(20.33) etc). The basic idea is to use the orbital tune modulation, via the chromaticity, to
cancel that from the spin tune. The relevant criterion was given in (20.36):

ξx,y − Gγ0β
2
0 = 0. (25.2)

The value of the vertical chromaticity can be adjusted by tuning the sextupoles. As we pointed
out, this is an explicit example of nonlinear orbital dynamics influencing the spin dynamics.
A study was performed to test the above idea. The results are shown in figure 40. The value of
the vertical betatron tune used in the studies was Qy � 6.25, the resonance was Gγ0 = Qy and
β0 � 1. The horizontal axis shows the value of the vertical chromaticity (the authors employed
the notation ξz). The curves are theoretical calculations of Pf/Pi (final to initial polarization)
for two different values of the vertical betatron emittance, showing that one can achieve
Pf/Pi = −1 at ξy = Gγ0β

2
0 � 6.25. Two experimental data points are shown. Unfortunately,

due to lack of time more data could not be taken and the experiment was never repeated.
The polarization attained at the KEK-PS Booster and Main Ring was reported by

Sato (1988). The quoted values supersede those by Sato et al (1988), because of an



Spin-polarized charged particle beams 2177

improvement in the calibration of the analysing power of the polarimeter. As we have explained,
hadron polarimetry is phenomenological and is hampered by the lack of accurately calculable
interactions. The polarized proton source delivered a polarization level of about (55 ± 5)%.
Approximately 75% of the polarization was preserved in the Booster, with a polarization of
(44.2 ± 2)% at a kinetic energy of 500 MeV. The maximum energy of the KEK-PS Main Ring
was 12 GeV. A polarization level of 25% was achieved at 5 GeV and 5% in a study up to
7.6 GeV. The particle physics experiments were performed at an energy of 3.5 GeV, where the
polarization was (38.4 ± 1.5)%.

We reviewed the acceleration of polarized deuterons at the KEK-PS earlier (Sato et al
1997), when discussing the extension of the Froissart–Stora formula to the tensor polarization
of spin 1 particles.

25.3. Case study: ELSA

ELSA is the ELectron Stretcher Accelerator at the University of Bonn. The term ELSA denotes
the whole facility consisting of an electron gun (thermionic or polarized), linac, booster and
stretcher ring. It is a University facility, and University students participated in the design and
construction of the accelerator and experimental facilities. ELSA differs from most of the other
synchrotrons, which accelerate nonradiatively polarized beams, in that it accelerates polarized
electrons. The electron beam emits synchrotron radiation throughout the acceleration process.
The stretcher ring receives electron bunches (500 MHz structure) from a booster synchrotron
and accelerates them to an energy of 0.5–3.5 GeV. After acceleration, this bunched beam is
extracted over several seconds leading to a continuous beam (i.e. on a timescale larger than
a few nanoseconds, because the 500 MHz structure still exists) for delivery to fixed target
experiments for nuclear physics. ELSA also operates part-time as a dedicated synchrotron
light source, but our interest is in its use as a synchrotron. A schematic figure of the ring
and associated complex was shown in figure 13. Since 1997/98, experiments using polarized
electrons have been carried out there. Indeed, the future nuclear physics programme at ELSA
will rely mainly on polarized beams. A recent example achievement is the first measurement
of the Gerasimov–Drell–Hearn sum rule for 1H from 0.7 to 2.9 GeV (Dutz et al 2003). (The
energy range below 800 MeV had previously been investigated elsewhere.) The GDH sum rule
links the anomalous magnetic moment of the proton to the difference of the integrated cross-
sections for the absorption of circularly polarized photons with spins parallel and antiparallel
to that of the (longitudinally polarized) proton. Circularly polarized photons were produced by
bremsstrahlung from longitudinally polarized electrons in a thin metal radiator foil (Cu 15 µm),
at six electron beam energy settings of 1.0, 1.4, 1.9, 2.4, 2.9 and 3.0 GeV. The GDH experiment
ran from 1998 to 2002. More recent experiments, which we shall not describe in detail, are
the Crystal Barrel and TAPS (studies of photoproduction of meson resonances).

A polarized electron source is used when operating the ELSA facility in a synchrotron
mode. In the study we report below, which took place in 1997/8, polarized electrons were
injected at 1.2 GeV and accelerated to 2.1 GeV (Nakamura et al 1998, Steier et al 1998).
We shall describe more recent work (after 1998) later in this review. It had previously been
found that the imperfection resonances aγ = 1 and aγ = 2 in the booster ring are weak, but
strong depolarization occurs in the booster at the resonance aγ = 3 at 1.32 GeV (recall that for
electrons aγ increases by one unit every 440 MeV). There was not enough space in the booster
to install equipment for resonance correction. Hence, the injection energy into the stretcher
ring of ELSA had to be kept below 1.32 GeV. A total of five depolarizing resonances must be
crossed in this energy interval: two imperfection resonances (aγ = 3 and 4) and three intrinsic
resonances (aγ = Qy − 2, 8 − Qy and Qy). The stretcher ring superperiodicity is P = 2.
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Table 4. Resonance strengths at the ELSA stretcher ring up to 2.1 GeV. Reprinted from
Nakamura et al (1998). Copyright (1998) with permission from Elsevier.

E |ε| × 105 |ε| × 105

Resonance (GeV) (calculated) (measured)

Qy − 2 1.14 6.8 4 ± 1
3 1.32 100 108 ± 3
8 − Qy 1.5 3.9 9.4 ± 1
4 1.76 160 150 ± 20
Qy 2.0 87 60 ± 20

The value of the vertical betatron tune used in the studies was Qy = 4.57. (In later work,
a value of 4.431 was used (Hoffmann et al 2001).) The resonances are tabulated in table 4.

The resonances are identified, along with their energies, including the experimentally
observed and theoretically calculated resonance strengths. The value of the vertical betatron
tune was also only approximately constant during the ramp. The imperfection resonance
strengths were calculated using measured closed orbit values determined from beam based
alignment. Note that the first resonance occurs at an energy of 1.14 GeV, which is below the
normal injection energy of 1.2 GeV. The beam was injected at a lower energy of 1.1 GeV during
some studies, thereby crossing this resonance. The experimental data were obtained by fitting
to the Froissart–Stora formula. The theoretical values were also calculated without including
synchrotron oscillations. There is good agreement between the experimental and theoretical
numbers.

The actual experimental study was carried out in several steps. First, the beam was injected
at 1.2 GeV and extracted at 1.27 GeV (to stay below the imperfection resonance at 1.32 GeV).
No resonances are crossed in this small energy interval, hence no depolarization is expected,
if the polarization direction is vertical at injection. In the first study, the final polarization
was measured as a function of the spin orientation at the source. The direction of the injected
polarization can be controlled by a solenoid in front of the linac, from which it enters the
booster ring, before entering the stretcher ring. In later work, the solenoid was adjusted to
ensure that the polarization direction was vertical at injection into the stretcher ring.

The electron beam polarization was measured after extraction from the ring as follows.
The spins were rotated into the horizontal plane by a solenoid (superconducting, with a
maximum integrated field of 12.5 T m), and then precessed to the longitudinal direction via two
downstream bending magnets. The polarization was measured using a Møller polarimeter, to
determine the counting rate asymmetry from collision against a target foil containing polarized
electrons. The dipole magnets downstream of the solenoid rotate the spins through an energy-
dependent angle, hence the polarization is not exactly longitudinal at the polarimeter. A matrix
inversion is performed to determine the actual degree of polarization in the stretcher ring from
the value measured at the polarimeter. A detailed description of the Møller polarimeter is given
by Speckner et al (2004). The stretcher ring is also equipped with a Compton backscattering
polarimeter (Doll et al 2002).

The next study was to accelerate the beam to an energy of 1.37 GeV so that only the
imperfection resonance aγ = 3 was crossed during acceleration. The crossing speed was
varied in the study. The ratio of the final to the initial polarization is plotted against ε/

√
α

in figure 41, where ε is the resonance strength and α is the (dimensionless) crossing speed.
The ramping speed varied between 0.1 and 7 GeV s−1. Note that there are two sets of data
shown in the figure, one without any orbit correction of the resonance strength (ε1, in the spin-
flip domain) and one where harmonic orbit correction was employed to reduce the resonance
strength (ε2, non-flip domain). These data are an excellent validation of the Froissart–Stora
formula in both regimes. By 1997/8 the Froissart–Stora formula had, of course, been validated
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Figure 41. Ratio of the polarization before and after crossing the imperfection resonance aγ = 3,
at the ELSA stretcher ring, as a function of the resonance strength and crossing speed. Reprinted
from Nakamura et al (1998). Copyright (1998) with permission from Elsevier.
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Figure 42. Measured and calculated resonance strength, as a function of the amplitude of the
closed orbit bump, at the ELSA stretcher ring. Reprinted from Nakamura et al (1998). Copyright
(1998) with permission from Elsevier.

many times at other accelerators, but figure 41 is a particularly clean demonstration. The
harmonic correction was applied using two localized vertical closed orbit bumps. The phase
of one of the bumps was coincidentally in phase with the imperfection resonance driving term.
The amplitude of that bump is plotted on the horizontal axis of figure 42, while the vertical axis
shows the calculated and measured imperfection resonance strengths. The theory and the data
agree closely. In later work, nearly all the correctors in the ring were employed for harmonic
orbit correction, to avoid saturation effects in the corrector dipoles (Hoffmann 2001).

The situation was different when crossing the imperfection resonance aγ = 4 at 1.76 GeV;
it was not possible to fit the Froissart–Stora formula without also including significant
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contributions from the synchrotron oscillations and synchrotron radiation. However, once
that was done, the strength of the ‘parent’ term did agree with the theory. The experimental
results were modelled, using the spin tracking programme called SPINDANCE, which was
developed in-house (Hoffmann 2001). Because of the synchrotron radiation, transfer maps
for each individual dipole in the ELSA stretcher ring were calculated, and the energy loss
due to synchrotron radiation was calculated between the dipole maps. Using SPINDANCE
gave results in good agreement with the measurements for the depolarization observed in the
crossing of the imperfection resonance at 1.76 GeV (aγ = 4). To obtain agreement between
the simulations and the data to this level of accuracy, a coherent synchrotron oscillation with
an amplitude of about twice the equilibrium energy spread had to be included in the tracking.
Such a coherent synchrotron oscillation has, in fact, been observed in the ELSA stretcher ring
(Steier et al 1998). The amplitude used in the simulations is in approximate agreement with
the amplitude measured in the longitudinal bunch spectrum. Coherent synchrotron oscillations
have not been treated in the formal theory that we have presented in this paper. Even in the best
case, about 15% polarization loss (25% relative polarization loss) was observed upon crossing
this resonance. Overall, the injected polarization was 63% at 1.3 GeV and 45% was preserved
in going up to a beam energy of 1.9 GeV.

The intrinsic resonance aγ = Qy at 2.0 GeV is very strong. Nearly two-thirds of the
polarization was lost crossing this resonance. It is not possible to accelerate sufficiently and
rapidly across this resonance. Adiabatic spin-flip (very slow crossing speed) also does not
work because of the very strong spin diffusion due to the synchrotron radiation. Recall the
work by Yokoya (1983c), reported in section 6, on modifications to the Froissart–Stora formula
due to the effects of synchrotron radiation.

The above represents the status of polarized beam acceleration at ELSA up to 1997/8. In
later work, two tune jumping quadrupoles were installed to jump across this resonance, and
also all of the other intrinsic resonances (Steier et al 1999). The depolarization from the
aγ = Qy resonance was reduced to less than 1%.

Hoffmann et al (2001) report the progress on the acceleration of polarized beams at
ELSA since 1997/8. A new polarized electron source was installed, delivering a polarization
of 80% with a quantum efficiency of 0.4% and a current of 100 mA. About 5% polarization is
lost in the booster. The closed orbit imperfections in the stretcher ring were measured with a
beam position monitor system at 28 observation points, and corrected using 19 vertical and 21
horizontal corrector magnets. The resulting imperfections were less than 0.2 mm (rms). The
closed orbit was measured and corrected at the energy of each imperfection resonance and
the corrector settings recorded. Hence, a total of five sets of settings were stored. Between
the resonances a linear interpolation of the kick angles was performed. To achieve a good
final polarization, it was also necessary to apply additional, empirically determined harmonic
corrections. ‘Empirically determined’ means that the polarization of the extracted beam was
measured with the Møller polarimeter for different settings of the harmonic corrections. In
this way, a dynamic correction of all the imperfection resonances was achieved, resulting in
negligible depolarization. The intrinsic resonances were all crossed via tune jumps using
the pulsed quadrupoles. (It was not possible to increase the acceleration rate at ELSA to a
sufficiently high value to cross the resonances without depolarization.) The tune jump was
�Qy = 0.1 (maximum) with a rise time of 4–14 µs, and returned to its original value within
4–20 ms, before the next resonance was crossed. In practice, if good polarization could be
obtained using a tune jump of less than 0.1 then the smaller value was used to minimize the risk
of beam loss due to crossing a betatron resonance. With these improvements, a polarization
level of 72% can be delivered up to 2 GeV, 65% at 2.55 GeV and 55% at 3.2 GeV (see figure 14).
The figure also displays the progress in the delivered polarization level since 1997.
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Figure 43. Beam energy calibration at the ELSA stretcher ring using resonant depolarization.
From Hoffmann (2001).

We close with a mention of one additional study carried out before the above improvements
were implemented. This was to calibrate the beam energy of ELSA using resonant
depolarization (Hoffmann 2001). A polarized beam was accelerated to a preset final energy,
and the polarization of the extracted beam was measured. The energy was incremented by
a small step and the process repeated. The data are displayed in figure 43. The above
measurements were carried out across the energy of the aγ = 4 imperfection resonance
at 1.76 GeV. (Similar energy calibrations have also been performed for the aγ = 2, 3, 5, 6
and 7 imperfection resonances.) The sharp dip in the extracted polarization at the location
of the resonance is clearly visible. The 25% relative polarization loss upon crossing the
resonance, mentioned earlier, is also visible on the high energy side. The theoretical fit also
includes the two synchrotron sidebands of the parent resonance, namely, aγ = 4 ± Qs . The
experimental data do not resolve the synchrotron sidebands very clearly because the value of
the synchrotron tune was only approximate and not accurately constant during the ramp. The
determination of the centre of the parent depolarizing resonance yielded an energy calibration
of �E/E = 2 × 10−4, which was better than expected.

25.4. Concluding remarks

Clearly, the Froissart–Stora formula has been verified experimentally in great detail at several
synchrotrons, both for polarized protons and electrons. A number of innovative ideas have
been successfully implemented to overcome (or circumvent) the various types of depolarizing
resonances. There are, of course, yet more ideas to come.

We are grateful to Frommberger (2004) for generously sharing information about the
ELSA facility and copies of experimental data. We are also grateful to Sato (2004) for news
and publications of the activities of the polarized proton and deuteron beam group at KEK. Sato
was also a member of the team who discovered the second-order betatron spin resonance in
the IUCF Cooler mentioned in section 22 and, in fact, he suggested that the narrow resonance
observed in the studies (Ohmori et al 1995) was a higher-order betatron spin resonance,
which as we saw was confirmed by varying the horizontal betatron tune (keeping the vertical
tune fixed).
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26. The BNL complex: RHIC, AGS and the transfer line

26.1. General remarks

Many ideas for the acceleration of nonradiatively polarized beams were pioneered at BNL.
The early work at the AGS was reviewed in section 25. Here we review more modern work at
BNL. A special issue of Nuclear Instruments and Methods A was devoted to ‘The Relativistic
Heavy-Ion Collider Project: RHIC and its Detectors’ (2003 499 issues 2–3, 235–880). This
volume contains detailed information about all aspects of RHIC (of which polarized protons are
just one part). A second review titled ‘The RHIC Accelerator’ and devoted to the accelerator
physics (including the spin physics) was written by Harrison et al (2002). The two reviews
given above were major sources of information for the material below.

Polarized protons were first accelerated and collided (at 100 GeV) at RHIC in the run
from December 2001 to January 2002 (Roser et al 2003). The Snakes performed successfully.
The spin rotators were not in place yet; they were commissioned later (MacKay et al 2003b).
Roser (2003) gives a recent overview of the RHIC status and plans, while MacKay et al (2003a)
gives an overview of the spin dynamics at the AGS and RHIC. A schematic layout of the BNL
complex for polarized proton acceleration was shown in figure 1.

Since RHIC is a heavy ion (or a polarized proton–proton) collider, the particle species have
the same sign of charge. Hence, RHIC consists of two rings, called the Blue and Yellow rings.
Polarized protons circulate clockwise in the Blue ring and counterclockwise in the Yellow
ring. The rings lie side-by-side and intersect at six points. See figure 44 for a description of
the RHIC clock numbering system for the interaction points. Four of the six interaction points
of RHIC house experimental detectors: the large detectors STAR at 6 o’clock and PHENIX at
8 o’clock, and the smaller detectors BRAHMS at 2 o’clock (also the pp2pp detector to measure
the elastic pp scattering cross-section) and PHOBOS at 10 o’clock. The pC CNI polarimeters
(also the gas jet polarimeter) are at 12 o’clock and the spin-flipper (ac dipole) is at 4 o’clock.

Although RHIC is a planar ring, it does not lie in the same plane as the AGS, hence
the transfer line connecting the AGS to RHIC contains a vertical drop (RHIC is at a lower
elevation than the AGS). This raises some issues of spin matching, to avoid depolarization
during the transfer process, as we shall describe below.

With the advent of RHIC, it became essential that polarized proton acceleration at the AGS
become a robust turnkey operation. Old-style resonance correction and jumping is too labori-
ous. We shall review the new ideas employed at the AGS to accelerate polarized proton beams.

26.2. Accelerator chain

We begin with a highly condensed summary of all the components which will not be reviewed
in detail below. The material below is mainly from Huang et al (2003c). Polarized protons
(H− ions) are produced from a new ‘Optically Pumped Polarized Ion Source’ (Zelensky 1999).
The H− ions are accelerated in an RFQ (radio-frequency quadrupole) and a linac to a kinetic
energy of 200 MeV (γ = 1.21). The beam is then stripped and injected into a Booster. The
beam crosses two imperfection resonances in the Booster, namely, Gγ = 3 and 4, which are
crossed by increasing the amplitude of the vertical closed orbit imperfections so as to induce
adiabatic spin-flips. The protons are extracted from the Booster before they encounter the first
intrinsic resonance at Gγ = Qy = 4.9. Before 2004 the protons were extracted at an energy
corresponding to Gγ = 4.7, but starting in 2004 the value used is Gγ = 4.5 (Huang 2005).
The change in extraction energy was made to optimize the polarization transfer to the AGS. In
the AGS, the beam is accelerated to approximately 24.3 GeV total energy (γ = 25.94), but it
is more pertinent to write Gγ = 46.5 because the spins are transferred to RHIC at this value
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Figure 44. Schematic plan view of RHIC, greatly exaggerating the arcs. This figure corrects
some misprints in Alekseev et al (2003). Courtesy of MacKay (private communication) and BNL
Collider Accelerator Department.

of Gγ . The values Gγ = 47.5 and 48.5 have also been considered (but not used). Once in
RHIC, the polarized protons have been accelerated to 100 GeV, as of the time of the writing
of this paper. The eventual RHIC top energy is 250 GeV.

The polarization at the end of the linac is about 80%. There are polarimeters at several
points in the chain: one at the source, another at the end of the linac, others in the AGS
and in each of the RHIC rings. There are also local polarimeters at the STAR and PHENIX
experimental detectors at RHIC. The PHENIX local polarimeter was used, for example, to
commission the RHIC spin rotators.

26.3. RHIC

26.3.1. Snake placement. As stated earlier, RHIC consists of two side-by-side intersecting
rings. The rings cross each other in the interaction regions, although the beams collide head-on
at the actual interaction points (IPs). The shape of each RHIC ring is nominally a hexagon,
but because the rings cross each other, each ring actually consists of three inner arcs and three
outer arcs. Each RHIC ring, therefore, has a superperiodicity of P = 3 and not 6. A schematic
layout of RHIC, which greatly exaggerates the inner and outer arcs, is shown in figure 44.
Both the Snakes and the spin rotators are indicated in figure 44, as well as the direction of the
polarization in the two rings, assuming the polarization is vertically up at the injection point.
The injection points and direction of propagation of the beams are marked in the figure.
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The geometry of the inner and outer arcs raises an important point about the placement of
the Siberian Snakes at RHIC. We stated earlier, when deriving the stable polarization direction
and spin tune for Snakes in an idealized model of a planar ring, that the Snakes must be at
‘diametrically opposite’ points of the ring. Because RHIC has inner and outer arcs, the Snakes
must in fact be placed such that the beam direction is parallel at the locations of the two
Snakes; only then will the orbital bending in each half add up to 180˚. This implies an unequal
path length in the two halves connecting the Snakes. This is a subtlety hidden in the term
‘diametrically opposite’ when applied to a real machine.

26.3.2. Spin rotators: helicity combinations. In 2003, RHIC ran with 55 polarized proton
bunches in each ring at an energy of 100 GeV. The bunches were injected with vertical
polarization with a pattern of (+ +−−) in one ring and (+−+−) in the other ring. This pattern
ensures that all four helicity combinations are automatically delivered to the experiments,
during a single RHIC run, which helps to minimize systematic errors. This is an important
distinguishing feature as compared to a ring with a radiatively polarized beam such as HERA.
The HERA spin rotators can offer independent choices of lepton helicity at different interaction
points, but the helicity at a given IP cannot be changed during a run; the spin rotators must
instead be reconfigured for a new run.

RHIC is also equipped with a spin-flipper which has undergone preliminary
commissioning tests (Bai et al 2002). The spin-flipper can be used to selectively reverse
the directions of the spins in one ring only, thereby further reducing the systematic errors in
the experiments.

26.3.3. Snake calibration. Suppose the Snake spin rotation axis points at an angle φ to the
longitudinal, and the four-helix combination rotates the spins through an angle µ. The question
arises as to how to calibrate the helical fields so that the spin rotation axis points in the desired
direction and the spin rotation is µ = π . If the Snakes are perfectly set, the spin tune should
be 1

2 at all energies, but in practice a variation in the spin tune of 0.01 was observed during the
RHIC energy ramp from γ = 25.9364 to γ = 107.0922. This variation was small enough so
that the currents in the Snake helices were held fixed during the ramp.

Ranjbar et al (2002b) describes the Snake calibration procedure. Field maps of the helices,
and the orbit and spin dynamics through each Snake, taking into account higher-order field
components, have previously been generated. The RHIC spin flipper was used to measure the
spin tune and to verify the spin tune predictions against the measured values. First, one can
easily show by Pauli matrix multiplication that given angles (φ1, µ1) and (φ2, µ2) in the two
helical dipole modules (which we want to act as Snakes),

cos(νπ) = cos
µ1

2
cos

µ2

2
cos(πGγ ) − sin

µ1

2
sin

µ2

2
cos(φ2 − φ1). (26.1)

For RHIC, the desired settings are φ2 = −φ1 = π/4 and µ1 = µ2 = π . To calibrate the
RHIC Snakes, a set of µ and φ values for a range of input currents was generated. From this
a fourth order polynomial was generated. This was compared to the theoretical calculations.

The RHIC Blue ring was detuned to a theoretical value of ν = 0.48. Partial spin-flip
was observed, using the spin-flipper, for driving frequencies in the interval ν = 0.47 to 0.49.
Either the spin tune was not exactly 0.48 or else the spin tune distribution exceeded ±0.01.
It was also noticed that partial spin flipping took place in the Yellow ring, although that ring
should have been insensitive to the spin-flipper.

A possible explanation is as follows. The design of a RHIC Snake consists of four full-
twist helices. Helices 1 and 4 are powered in series, as are helices 2 and 3, hence a RHIC Snake
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contains two nested helix pairs. The design of the RHIC Snakes and spin rotators is reviewed
in detail in MSY1. According to calculations, the desired current values are 325 A for the
inner helices and 100 A for the outer helices. After more detailed investigations of one Snake
in the Yellow ring, it was found that the above current settings yielded µ = 179.956 475˚ and
φ = −44.085 3423˚ instead of ideal values of 180˚ and −45˚, respectively. This 1˚ offset of
the Snake spin rotation axis can account for a ±0.01 variation in the value of the spin tune,
which might explain the spin detuning in the Yellow ring.

Snake resonances are also used to calibrate the RHIC Snakes (Roser 2005). The fractional
part of the vertical betatron tune [Qy] is set to 0.24, i.e. close but not equal to 0.25. The currents
in the RHIC Snake helices are adjusted until depolarization is observed (a second-order Snake
resonance νspin − 2[Qy] = 0). From this information one can calculate the currents required
to achieve a spin tune of 0.5.

26.3.4. Spin rotator calibration. The spin rotators were calibrated as follows. To measure the
direction of the polarization at the interaction points, both the PHENIX and STAR detectors are
equipped with local polarimeters, which can measure the transverse polarization components
at the interaction point. When the polarization at the IP is longitudinal, the polarimeters show
no asymmetry, but the pC CNI polarimeter in the arcs show a nonzero vertical polarization. The
PHENIX local polarimeter, for example, was based on the observation from a test experiment
which revealed a left–right asymmetry in very forward neutron production from collisions of
protons with one transversely polarized beam.

First, both spin rotators were turned off. The asymmetry in the PHENIX polarimeter
response indicated that the vertical polarization was indeed of the opposite sign from that
at the pC CNI polarimeter, which was on the other side of the Snakes. After successful
commissioning, the PHENIX polarimeter registered a left–right asymmetry close to zero.

Actually, on the first try, a sign error in the spin rotation angles caused all the spin rotators
to be connected with the leads of the power supplies reversed (Mackay et al 2003b). This
resulted in an almost radial polarization at the PHENIX local polarimeter. Fortunately, the
design of the spin rotators was such that the error could be rectified by simply reversing the leads
to the power supplies. Although it was a mistake, the incident built confidence in both the
PHENIX polarimeter and the overall theoretical model of the spin rotators.

26.4. AGS

26.4.1. Partial Snakes. We have seen that a partial Snake effectively makes the imperfection
resonances stronger, so that adiabatic spin-flip is induced at every imperfection resonance. It is
much easier to increase the resonance strengths deterministically, via the use of a partial Snake,
than to correct the individual random terms to zero. Furthermore, after a machine shutdown
and startup, there is no need to recalibrate all the corrector settings for the imperfection
resonances.

The set of imperfection resonances at the AGS span the interval Gγ = 5–46 inclusive.
Transfer to RHIC, typically, occurs at Gγ = 46.5 (the value of 47.5 has also been considered
as a future possibility). The initial AGS partial Snake was a warm solenoid. The solenoid
field was ramped with the beam momentum to act as a 5% partial Snake at all beam energies
(Huang et al 1994). A partial Snake strength of about 5% is adequate to overcome the
imperfection resonances at the AGS. The alternative scenario would be to run the solenoid at
full current throughout the energy ramp. At low energies (injection), this would mean that the
solenoid would be a 25% partial Snake. However, this induced too much transverse betatron
coupling in the AGS.
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In spring 2004, a double-pitch helical-field partial Snake was installed and operated in
the AGS. The old solenoid was still in the ring, but the two partial Snakes were not run
simultaneously. The design of the helical-field device was described by Huang et al (2003b).
The helical magnet partial Snake induces much less transverse betatron coupling, although
the precise degree of coupling is not yet quantitatively known. The reduction of the betatron
coupling is expected to reduce or eliminate the coupling resonances, which depend on the
horizontal betatron tune. Since the helical-field partial Snake has transverse magnetic fields,
the fields are not ramped with the beam energy. The partial Snake strength is then proportional
to Gγ/p ∝ 1/β. The variation of particle speed is noticeable at the AGS, hence the helical-
field partial Snake strength is about 8% at low momentum, decreasing to about 5% at top
momentum. With the use of partial Snakes, almost all of the problems of the crossing of the
imperfection resonances at the AGS have been effectively solved.

26.4.2. Intrinsic resonances. The use of partial Snakes does not overcome the intrinsic
resonances. A partial Snake introduces Fourier harmonics at integer tune values only in the
spin precession vector (or in the Hamiltonian). This was already noted experimentally in the
initial work with a partial Snake at the AGS (Huang et al 1994). The magnitude of polarization
is preserved when crossing the imperfection resonances (integer values if Gγ ), but drops in
steps as successive intrinsic resonances are crossed (Gγ = Qy , 20 − Qy and 12 + Qy),
yielding a final polarization of P � 20%. Hence, additional ideas are required to deal with
the intrinsic resonances. Without a partial Snake, there is almost a total loss of polarization
during acceleration.

Studies with the solenoid partial Snake were performed to investigate the crossing of a
strong intrinsic resonance at Gγ = 0 + Qy (Huang et al 2003a). At this lower energy, the
solenoid was powered to a higher current so that it acted as an 11.4% partial Snake. This
value was a compromise between increasing the partial Snake strength and avoiding too much
betatron coupling. Huang et al (2003a) found that the beam was successfully accelerated
across the Gγ = 0 + Qy intrinsic resonance with no detectable depolarization.

However, the modern technique to cross intrinsic resonances at the AGS does not use a
partial Snake. To overcome the intrinsic resonances, the same basic idea of increasing the
resonance strength is employed. This must be done carefully, however. A coherent betatron
oscillation is induced when crossing an intrinsic resonance. Then ε will have a large value
for all the particles and the adiabatic spin-flip condition can be satisfied for all the particles
simultaneously. The intrinsic resonance can then be crossed via adiabatic spin-flip. Such an
idea was tried in the IUCF Cooler (Crandell et al 1996) and it did work. However, there were
side-effects. The beam was kicked to have a large coherent vertical betatron amplitude. This
changed the orbital phase-space distribution from a circle into an annulus (after decoherence
of the betatron oscillations), which resulted in the undesirable effect of increasing the vertical
betatron emittance.

Instead, at the AGS, an rf dipole is employed to increase the coherent betatron oscillation
amplitude adiabatically and to decrease it back to zero after the intrinsic resonance has been
crossed; this results in no loss of polarization and no increase of the vertical betatron emittance.
The principle of exciting, sustaining and de-exciting a coherent vertical betatron oscillation,
with no resultant increase in the emittance, was tested by Bai et al (1997). The application
of the idea to the crossing of intrinsic resonances was reported by Bai et al (1998). The
use of coherent betatron oscillations to cross intrinsic resonances is now standard at the AGS.
It is possible that when a coherent betatron oscillation is excited, the beam scrapes against
apertures in the ring resulting in a loss of intensity, albeit without depolarization. Such matters
are ongoing issues of research.
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Figure 45. Spin tune and stopbands as a function of Gγ for a planar ring and a partial Siberian
Snake.

In practice, the ac dipole is not operated at all of the intrinsic resonances. The ac dipole
is used to cross the strong intrinsic resonances 0 + Qy , 12 + Qy and 36 ± Qy . The ac dipole is
not used at the weaker intrinsic resonances 24 ± Qy and 48 − Qy ; instead the crossing speed
(rate of energy increase) is made as large as possible (no tune jump is employed). There are
also coupling resonances at 0 + Qx , 12 + Qx and 36 ± Qx . The crossing speed is again made
as high as possible. There is some loss of polarization from crossing the intrinsic resonances.
The imperfection resonances do not seem to result in any polarization loss.

Essentially, the full polarization of 80% was delivered from the source to the AGS in
the 2004 run. The polarization was about 40–50% at AGS extraction and transfer to RHIC.
The successful acceleration and storage of the polarized proton beams at RHIC was reviewed
in the companion paper MSY1.

We briefly remark that the use of a coherent betatron oscillation to cross the intrinsic
resonances was also considered at ELSA. A study of the ac dipole and other resonance crossing
schemes for use at ELSA is given by Steier (1999). For electron beams, because of synchrotron
oscillations and the stochastic nature of the synchrotron radiation, one gets multiple/stochastic
resonance crossings. Calculations indicated that, at higher energies at ELSA, the effect was
strong enough so that there is never a complete spin-flip, independent of how strong one makes
the intrinsic resonances with the ac dipole. As we saw earlier, tune jumps are employed at
ELSA to cross the intrinsic resonances. Tune jumps induce emittance growth in a proton ring,
but this is not the case in electron rings because the synchrotron radiation damping quickly
restores the emittance.

26.4.3. Stronger partial Snake. It is planned (for 2005) to install a cold, i.e. superconducting,
double-pitch helical magnet partial Snake into the AGS. (The warm and cold helical partial
Snakes may be operated together.) The reasoning is, at least partly, as follows. The spin
tune for a planar ring with a partial Snake of strength λs was worked out in (13.13) and is
given by cos(πν) = cos(πν0) cos(λsπ/2). A graph of the spin tune ν against ν0 = Gγ ,
for λs = 0.4, is shown in figure 45. This graph is very similar to figure 34 for the single
resonance model, except here the spin tune jumps not just once but at every integer value of ν0.



2188 S R Mane et al

RHIC

Y-line

Switching Magnet

Level Drop
of 1.73 m

20°  bend

12.5 mrad Vertical bend

12.5 mrad Vertical bend

8°  bend

4.25°  bend
AGS

Injection Section

X-line

W-line

U-line

Figure 46. Schematic plan view of the ATR line connecting the AGS to RHIC. Reprinted from
Alekseev et al (2003). Copyright (2003) with permission from Elsevier.

If the stopbands, i.e. the gaps or jumps in the spin tune, are sufficiently large, the vertical
betatron tune Qy can be placed in the stopband, in which case the spin tune will never cross
an intrinsic resonance and the adiabatic excitation of coherent betatron oscillations, etc will
become unnecessary. This idea has not been used with the current partial Snake because the
stopband is too small. The vertical betatron tune would be too close to an integer leading to
beam instabilities.

26.5. AGS–RHIC transfer line

In most cascaded systems, the individual accelerators are planar, and moreover the different
machines lie in the same plane. The stable polarization is vertical in all the components of
the accelerator chain. In the BNL complex, the linac, Booster and AGS all lie in the same
plane. The polarization is vertical at injection (Gγ = 2.18) and extraction (Gγ = 4.5) in the
Booster ring, and subsequent transfer to the AGS. Because of the 5% solenoid partial Snake in
the AGS (i.e. 9˚ spin rotation around the longitudinal axis), the stable spin direction is tilted at
4.5˚ from the vertical. The above analysis is for a solenoid partial Snake; the angle is different
for a double-pitch helical partial Snake. Furthermore, the plane of the AGS is 1.7 m higher
than that of RHIC. The transfer line connecting the AGS to RHIC (known as ATR) contains
interleaved horizontal and vertical bends. The beams are injected vertically into RHIC (and the
polarization is also vertical). A schematic view of the ATR transfer line is shown in figure 46.
The 12.5 mrad vertical bend is located in the region of the 20˚ horizontal bend. The level of
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Figure 47. Vertical spin component at the RHIC injection point as a function of Gγ , assuming
vertical polarization at extraction from the AGS. Reprinted from Alekseev et al (2003). Copyright
(2003) with permission from Elsevier.

the ATR drops by 1.73 m in this section. The first vertical bend angle is 12.5 mrad, but the
second is −12.46 mrad, to correct for the Earth’s curvature over the length of this section of
the ATR.

The beams are injected into RHIC vertically. From the end of the ATR, the beam is directed
into one of two arcs (see figure 46). The beam passes off-centre through two quadrupoles in
the RHIC ring which, therefore, also act as dipoles. This reduces the required strength of the
final kicker into RHIC to 1.73 mrad.

We have seen that for a ring equipped with a pair of Snakes, the stable spin direction is
vertical. Hence, there will be a loss of polarization if the injected polarization into RHIC does
not point vertically. The AGS–RHIC transfer line must, therefore, be ‘spin-matched’ to deliver
vertically polarized beams into the RHIC rings. The transfer line is optimized to operate at the
value of Gγ = 46.5 and this is the current value of Gγ for RHIC injection. The higher value
of 47.5 has also been considered. In practice, because the interleaved horizontal and vertical
bends lead to noncommuting spin rotations, and also because of the partial Snake in the AGS,
the spin match in the ATR is not perfect. A further complication is that because the transfer
line divides into two (for injection into the Blue and Yellow rings of RHIC, respectively), the
polarization direction can in fact be different in the two rings. A sketch of the vertical spin
component at the RHIC injection point as a function of Gγ , assuming vertical polarization at
extraction from the AGS (i.e. no partial Snake), is shown in figure 47. The value of the vertical
spin component is highest at Gγ = 46.5 since the ATR is optimized to operate at this energy.

27. Radiative polarization I

27.1. General remarks

The Sokolov–Ternov formula was basically a QED calculation. To understand the behaviour
of the polarization in actual storage rings, it is also necessary to pay attention to the statistical
mechanics of the electron (positron) beam dynamics. This is very much at the heart of the
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Derbenev–Kondratenko formula (Derbenev and Kondratenko 1973) and also later work by
Mane (1987a). This section presents the in-depth quantum-statistical-mechanical derivation
of the equilibrium radiative polarization.

27.2. Radiated intensity for g �= 2

The Sokolov–Ternov formula was derived assuming g = 2. In fact, the values of the asymptotic
polarization and the buildup time depend on g. The generalization to arbitrary g was given by
Derbenev and Kondratenko (1973) using semiclassical QED. The expressions below follow
Jackson (1976) (with an additional function F4). Define

F1(a) = 1 +
41
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a

|a| F2(a),

(27.1)

where a = (g − 2)/2. Suppose the direction of the equilibrium polarization direction is not
vertical, but is oriented at a polar angle θ0 to the vertical, and at an azimuthal angle φ0 relative
to the beam direction. Then the polarization buildup is still exponential, as in (2.2), but the
new expressions for the time constant and the equilibrium degree of the polarization are

τST

τpol
= F4(a) + (2F3(a) − F4(a)) sin2 θ0 cos2 φ0,

Peq = F2(a) cos θ0

F4(a) + (2F3(a) − F4(a)) sin2 θ0 cos2 φ0
.

(27.2)

This corrects a misprint by Jackson (1976). For the important and special case of θ0 = 0, i.e.
polarization buildup in the vertical direction, the above expressions simplify to

τST

τpol
= F4(a), Peq = F2(a)

F4(a)
. (27.3)

There are some notable points in the above expressions:

• The equilibrium polarization and the buildup time depend only on a and not on aγ .
We have seen previously that for motion in transverse magnetic fields, the value of a

contributes to quantities such as the spin tune via the combination aγ . That is not the case
in the expressions for the spin-flip photon emission matrix elements.

• A graph of the equilibrium degree of polarization as a function of g is shown in figure 48.
A graph of the ratio of τ/τST, as a function of g, is shown in figure 49. If g → ±∞
then Peq → ±1, as a simple two-level system would suggest. Note, however, that if
0 � g � 1.2, then Peq is negative even though the value of g is positive. Hence, Peq < 0
although the magnetic moment is positive, i.e. the energetically unfavourable state is
preferentially populated. This is due to the contribution of the Thomas precession. In
particular, there is a nonzero polarization of Peq � −0.98 even at g = 0, i.e. no magnetic
moment. The graph of τ/τST is also not an even function of g.
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Figure 49. Graph of the buildup time τ of the radiative polarization in a uniform magnetic field,
as a function of the g-factor, and expressed as a ratio to the Sokolov–Ternov value τST.

27.3. Two-level system: magnetic dipole M1 transition

Since the polarization arises as a result of transitions between spin states, it is possible to
understand the phenomenon at a ‘simple’ level as a magnetic dipole M1 transition in a two-
level spin system. Such an approach was first published by Lyboshitz (1967). Jackson (1976)
has analysed this model in detail. We summarize the principal findings. Essentially, one
boosts to the instantaneously comoving frame, and treats a magnetic dipole M1 transition in
a nonrelativistic two-level system. One then boosts back to the lab frame. We begin with the
magnetic moment

µ = ge

2mc

h̄σ

2
, (27.4)
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where we write h̄σ/2 for the quantum spin operator, since we have used s to denote the classical
spin vector. Then, in a frame instantaneously comoving with the particle, the frequency splitting
of the two spin states is

�ω′ =
∣∣∣g
2

∣∣∣ γ 2 ωc, (27.5)

where we employ primes to denote quantities in the instantaneously comoving frame. Recall
that, ωc = v/ρ � c/ρ is the revolution (cyclotron) frequency. The spin-flip transition
probability per unit time, for a magnetic dipole transition, from the up to the down state is

w′ = 4

3h̄

(�ω′

c

)3
|〈↓ |µ| ↑〉|2 = 2

3

∣∣∣g
2

∣∣∣5 e2h̄γ 6

m2c2ρ3
. (27.6)

The time dilation in boosting to the lab frame reduces the transition rate by one power of γ , so

τ−1 = 2

3

∣∣∣g
2

∣∣∣5 e2h̄γ 5

m2c2ρ3
. (27.7)

This is an even function of g and vanishes for g = 0. Since the system is at essentially
zero temperature, all the particles fall to the ‘ground’ state (lower energy state), leading to an
asymptotic polarization of 100%. A simple check verifies that the polarization has the correct
sign for electrons and positrons. Comparing to τST, we see that for g � 2 the results are
almost the same. Clearly, certain parameters must appear simply on dimensional grounds.
But the powers of dimensionless quantities, such as γ , are also correctly given by the simple
two-level model. This shows that the naive model correctly describes the overall kinematics
of the polarization process. The naive model also shows, that for g �= 2, the value of τpol

is a function of g itself or a = (g − 2)/2 and not aγ . The more sophisticated calculations,
leading to the expressions in (27.3), are in agreement with this finding. The corrections for
g �= 2 are given simply by functions of a, not aγ , and with no additional terms in γ and ρ, etc.
The naive model obviously fails for g = 0, and cannot explain the negative polarization for
0 < g � 1.2. Hence, the simple model gives a good qualitative understanding of the radiative
polarization kinetics for charged ultrarelativistic particles. Lyboshitz (1967) pointed out that
the naive model is, in fact, exact for radiative polarization of uncharged particles possessing a
magnetic moment. For such particles, one must not write g and e, etc. One must use µ, etc.
For ultrarelativistic neutral particles the radiation is pure spin light.

27.4. Nonvertical asymptotic polarization

Up to now we have treated only a planar ring with a uniform magnetic field. The polarization
direction is obviously vertical. The case where the polarization does not build up in the
vertical direction was first addressed by Baier and Katkov (1967). Let us denote the direction
of the polarization buildup by n0, i.e. the one-turn periodic orbit of the spin motion along the
design orbit. Baier and Katkov (1967) obtained the following expressions for the asymptotic
polarization and buildup time:

Peq = 8

5
√
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∮
(dθ/|ρ|3) b̂ · n0∮

(dθ/|ρ|3) [1 − (2/9)(n0 · v̂)2]
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∮ ( dθ
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)
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9

)
(n0 · v̂)2].

(27.8)

Here v̂ is a unit vector parallel to the local velocity vector (tangent to the particle orbit), v̇ the
time derivative of v, with ˆ̇v = v̇/|v̇| (normal to the particle orbit) and b̂ = v × v̇/(|v × v̇|)
the binormal vector. For motion in a locally uniform magnetic field, b̂ is a unit vector in the
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direction of the local magnetic field, hence the notation. The functions F1,2,3,4(a) defined
above are in agreement with the Baier–Katkov results, setting a = 0.

The Baier–Katkov formulae are little-used. For a planar ring, especially to obtain simple
‘back of the envelope’ estimates, the Sokolov–Ternov formula is more popular. For more
complicated storage ring models, the Derbenev–Kondratenko formula to be presented below
supersedes the above formula.

Baier et al (1970) also worked out a formula for the time evolution of the polarization
vector, assuming motion in external magnetic fields only:

dP
dt

= Ω × P − 1

τST

[
P − 2

9
( P · v̂)v̂ +

8

5
√

3
b̂
]
. (27.9)

This is known as the Baier–Katkov–Strakhovenko formula. It is also relatively little-used.
Essentially, the equation says that the polarization vector rotates like a rigid body (the Ω × P
term) and the individual components of P relax to their equilibrium values, all with the same
time constant τST, which is not true. There is no point in pursuing the matter further.

27.5. Equilibrium radiative polarization

We now embark on the principal intellectual adventure of this section, i.e. the derivation of
the equilibrium radiative polarization, namely, the Derbenev–Kondratenko formula (Derbenev
and Kondratenko 1973). First note that the polarization vector is defined as the average of
the individual spin vectors P = 〈s〉. The angle brackets denote a sum over all the particles.
The above is a general formula. It is not restricted to equilibrium. It is always valid, but as it
stands, it is of little use. We now restrict ourselves to equilibrium. In that case, we need the spin
projections along n, at each point in the orbital phase-space. Recall that n is the quantization
axis of the spin eigenstates of the Hamiltonian at each point in the orbital phase-space. In the
case of a planar ring as treated by Sokolov and Ternov (1964), the spin quantization axis was
the same for all the particles, but we are now embarking on a much more general formulation.
We do not specify any particular restriction on the structure of the accelerator. The expression
for the equilibrium polarization is

Peq = 〈〈s · n〉n〉. (27.10)

Note very carefully that there are two statistical averages. For brevity, denote a point in the
orbital phase-space by z ≡ (q, p). The inner angle brackets denote an average over the spin
projection along n(z), i.e. a sum of spins (actually s · n(z)) in an infinitesimal phase-space
volume element centred at a particular value of z. The outer angle brackets denote a sum (or
integral) over the orbital phase-space, i.e. over all values of z.

The picture to bear in mind is this. At each orbital phase-space point z, there is a
subpopulation of spins, in an infinitesimal volume element dz centred on z. In addition,
there is of course a population density in the orbital phase-space. Note also that the statistical
averages in (27.10) are now equilibrium statistical averages (for both the orbit and spin).

We have previously remarked that because τpol � τorbit, the magnitude of the equilibrium
polarization density is uniform across the orbital phase-space. An individual particle carries
its spin all across the orbital phase-space many times before undergoing a spin-flip. What this
means, in the above formula, is that the value of 〈s · n(z)〉 is independent of the value of z.
Although the notation is rather compressed, we can factorize

Peq � 〈〈s · n〉〉〈n〉. (27.11)

The notation 〈〈s ·n〉〉 denotes an average over the spins (based on spin-flip transition rates), and
averaged over the full orbital phase-space. We shall discuss this in a moment. The term 〈n〉 is
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an average over a cone of quantization axes. The opening angle of this cone is negligible, for
all practical purposes, i.e. |〈n〉| � 1. (We have not proved the above statement here, but simple
calculations for sample models show that it is an excellent approximation.) Hence, we can
further approximate that the equilibrium degree of the polarization is simply

Peq � 〈〈s · n〉〉. (27.12)

We must now calculate this average. To do so, we must balance the spin-flip transition rates.
The answer is similar to before, for the Sokolov–Ternov formula, but with an important twist:

Peq = 〈p+ − p−〉
〈p+ + p−〉 . (27.13)

This is the key to the notation 〈〈· · ·〉〉: the spin-flip transition probabilities per unit time 〈p+〉
and 〈p−〉 are averaged over the orbital phase-space. One does not calculate ‘local’ spin-flip
transition rates, at a particular phase-space point z to obtain a ‘local’ polarization, followed by
an average over z. One averages the rates over z first, and then deduces a polarization for the
whole beam.

We now make a further simplifying approximation—an excellent one in practice. We
note that a synchrotron radiation photon is emitted almost entirely in the forward direction,
at an angle of O(1/γ ), relative to the particle momentum. We know that for ultrarelativistic
electrons 1/γ 	 1. Hence, it is satisfactory to assume that the principal effect of the particle’s
recoil is simply a loss of longitudinal momentum, i.e. a loss of energy.

We now come to one of the most important parts of the polarization calculation: the proper
characterization of the term ‘spin-flip’. This is one of the most important sections of this review.
Now we shall see why it is so important that n depends on the phase-space location z.

Because the particle loses energy during a photon emission and because n depends on z, the
orbital trajectory, and hence the value of n, is not the same before and after a photon emission.
Let us write n = n(z′, E), where z′ denotes all of the other orbital variables. It is important
to note that E here is the energy of an individual particle and not the average energy of the
whole beam. Then, after a photon emission, the orbital trajectory has the same value for z′

(we assume ‘point’ photon emission) but a lower energy E + δE, where δE = −h̄ωph. A spin
‘flip’ is then not a transition from an ‘up’ state |n〉 to a ‘down’ state |− n〉 along the same axis,
but to a down state along a different axis | − n(z′, E + δE)〉. A schematic diagram displaying
the quantization axes before and after a spin-flip photon emission is shown in figure 50. The
symbol γ (∂n/∂γ ) will be explained soon.

This was Derbenev and Kondratenko’s great insight: photon emission spin-flip is not a
180˚ reversal of the spin direction. The spin-flip photon emission matrix elements are actually

M∓ = 〈∓n(z′, E + δE)| Hint | ± n(z′, E)〉, (27.14)

where recall

Hint = −e (β · Arad − �rad) + Ωrad · sop. (27.15)

We now dispose of a minor technicality that was not handled correctly in the original works
by Derbenev and Kondratenko (1973) and Mane (1987a). The interaction Hamiltonian Hint

above is the semiclassical quantum electrodynamic Hamiltonian, with time t as the independent
variable. The vectors n(z′, E) and n(z′, E + δE) are specified in terms of orbital trajectories
using the ‘accelerator coordinates’ with the arc-length θ as the independent variable. The above
expression for the spin-flip matrix elements, therefore, mixes quantities based on different
independent variables. In fact, Derbenev and Kondratenko (1973) recognized this difficulty,
but did not solve it. In an earlier paper, Derbenev and Kondratenko (1972) introduced a phase-
space dependent spin quantization axis, where it was denoted by m and defined using θ as the
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Figure 50. Symbolic depiction of radiative spin-flip.

independent variable. However, by the time of their definitive 1973 paper, they had realized
that the photon emission interaction Hamiltonian must be based on time t as the independent
variable. Hence, n was defined by Derbenev and Kondratenko (1973) using t not θ . They
glossed over this change of definition. Mane (1987a) treated n as a function of t and then θ at
different points in his paper without comment.

What should really be done is to calculate the photon emission matrix elements using
the time t as the independent variable and between two arbitrarily oriented spin states (also
specified as functions of t), i.e. a general spin-dependent matrix element. It is adequate to treat
the particle motion as a locally circular arc, just as for ordinary synchrotron radiation. Then,
just as for ordinary synchrotron radiation one expresses the recoil in terms of a change to the
betatron and synchrotron oscillations, so also one expresses the change of spin state in terms
of the spin trajectories given by n(z′, E) and n(z′, E + δE). The above discussion is really a
technicality, just to clear up a theoretical nicety, which has gone uncorrected in literature for
30 years. The reader may safely skip the above statements as pedantic details.

What is of the utmost importance is the following. Because the initial and final spin states
are not exactly antiparallel, i.e. they are not exactly orthogonal states, the spin-independent term
in Hint, namely the term −e (β · Arad − �rad), can and does contribute to the spin-flip matrix
element. This term is normally considered to produce the classical synchrotron radiation, i.e.
nonflip radiation, because it does not couple to the spin operator. We see now, however, that
this term which mainly produces nonflip radiation, can and does contribute to the spin-flip
process, because of the change in the spin state induced by the particle recoil. It is a subtle
but important effect. In practice, because the value of δE/E is very small, the angle between
n(z′, E) and n(z′, E + δE) is also very small. However, because the magnitude of the spin-
independent term −e (β · Arad − �rad) is O(h̄0) = O(1), it is enormously greater than that of
the spin-dependent term Ωrad · sop (which is O(h̄)). Hence, the two sets of contributions to the
spin-flip matrix element are of comparable magnitude.

To summarize, spin-flip can occur via two mechanisms. One is the direct coupling of
a photon to the particle’s spin operator. This mechanism is easily understood. The other
mechanism is indirect. It proceeds via a change to the orbital trajectory, causing a change to
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the spin quantization axis, and thereby allowing the initial spin state to have a nonzero overlap
with the opposite final spin state. Because of quantum mechanics, the contributions of the two
mechanisms must be added in the matrix element, before squaring to calculate a cross-section.
The mechanisms can, therefore, interfere with each other. We shall see this below.

Since δE 	 E, we can write to the first order in small quantities,

n(z′, E + δE) � n(z′, E) + δE
∂n
∂E

� n(z′, E) +
δE

E

(
γ

∂n
∂γ

)
. (27.16)

In the last line, the various factors are written in dimensionless form, which is more elegant and
is the universal practice in the field. This introduces the very important phase-space derivative
γ (∂n/∂γ ) of n. For brevity many authors write d ≡ γ (∂n/∂γ ).

The partial derivative is taken at a point in the orbital phase-space by varying the particle
energy and assuming point photon emission. The definition of the partial derivative should
be understood carefully. As noted, when discussing the effect of a photon emission on the
orbital motion (much earlier in this review), the values of x ′ and y ′ do not change appreciably
under the approximation of ‘point photon emission’. The momenta px, py and pz on the other
hand, do change: they all suffer a fractional recoil p → p(1 − (h̄ωph/E)). It is also clear
that the particle coordinates do not change during a point photon emission. Hence, the partial
derivative is taken with respect to fixed x ′ and y ′

γ
∂n
∂γ

= γ
∂n
∂γ

∣∣∣∣
x,x ′,y,y ′,�t

, (27.17)

where �t is the time-of-arrival offset which is conjugate to the energy E. In general, the
notation γ (∂n/∂γ ) is employed without subscripts, because it is tedious to retain all the
subscripts, but it is important to understand which variables are held fixed when taking the
partial derivative. Since n · n = 1, a partial differentiation reveals that

γ
∂n
∂γ

· n = 0, (27.18)

i.e. the two vectors are orthogonal at every phase-space point (or rather the two vector fields
are orthogonal). The magnitude of γ (∂n/∂γ ) is not constrained by any upper limit and it can
become large at the locations of depolarizing spin resonances.

We can now proceed in one of two directions. Derbenev and Kondratenko (1973) attach
n to an individual particle and follow it around in the orbital phase-space, and take suitable
time averages over the orbital and spin motion. Mane (1987a) calculates spin-flip transition
rates, etc, in an infinitesimal phase-space volume element, and takes suitable averages over the
orbital and spin phase-spaces. By the hypothesis that the particle motion is ergodic, the two
formalisms yield the same answer. Either way, one needs to evaluate the spin-flip transition
probabilities per unit time via

p∓ =
∫ ∞

−∞
dτ

d3k
(2π)3

2π

h̄ω
〈±n(z′, E)

∣∣∣Hint

(
t +

τ

2

)∣∣∣∓ n(z′, E − h̄ω)〉

× 〈∓n(z′, E − h̄ω)

∣∣∣Hint

(
t − τ

2

)∣∣∣± n(z′, E)〉, (27.19)

where the energy and momentum of the emitted photon are h̄ω and h̄k, respectively. The limits
of integration can safely be approximated by ±∞ because the integrands fall off rapidly for
large τ and |k|. This is a standard practice in synchrotron radiation calculations. To evaluate
the spin-flip matrix elements, we write

D = h̄ω

E

(
γ

∂n
∂γ

)
. (27.20)
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We then note that to the leading order in h̄,

| − n(z′, E − h̄ω)〉 � ei(n×D)·sop/h̄| − n(z′, E)〉 (27.21)

and so

〈−n(z′, E − h̄ω)|Hint|n(z′, E)〉
� 〈−n|e−i(n×D)·sop/h̄Hint|n〉
�
〈
−n
∣∣∣[− ie

h̄
(n × D) · sop(�rad − β · Arad) + Ωrad · sop

]∣∣∣n〉. (27.22)

The term in Ωrad · sop yields the Sokolov–Ternov polarization, obviously. The term in n × D
yields the additional Derbenev–Kondatenko contributions. Note that the two terms appear in
the matrix element, hence, there is quantum-mechanical interference between them.

To dispose of another theoretical nicety, to express the above matrix element using proper
quantum field theory, we should point out that the initial and final states have zero and one
photons, respectively: the state | ± ni, 0〉 goes to | ∓ nf , γ 〉, with a symbolic notation ‘γ ’ for
the emitted photon. We have emphasized the electron spin state and omitted explicit mention
of the photon, but it should not be overlooked.

One substitutes the above expression for the spin-flip matrix element in (27.22) into (27.19)
to obtain the spin-flip transition probability per unit time. The quantities p± are then averaged
over the orbital phase-space as in (27.13). We omit the details of the calculations of the matrix
elements and of the spin-flip transition rates. We obtain the Derbenev–Kondratenko formula
for the equilibrium degree of the radiative polarization (Derbenev and Kondratenko 1973)

Peq = 8

5
√

3

〈∮ (dθ/|ρ|3)b̂ · [n − γ (∂n/∂γ )]〉
〈∮ (dθ/|ρ|3)[1 − (2/9)(n · v̂)2 + (11/18)|γ (∂n/∂γ )|2]〉 . (27.23)

The vectors v̂ and b̂ were defined earlier in connection with the Baier–Katkov formula (see the
statements after (27.8)). The integral over θ is around the circumference of the ring and the
angle brackets are over the orbital phase-space. The term in γ (∂n/∂γ ) in the numerator is
the result of quantum mechanical interference between the terms −e (β · Arad − �rad) and
Ωrad · sop of the interaction Hamiltonian Hint, in the spin-flip photon emission matrix elements.
The corresponding expression for the polarization buildup time is

τ−1
eq = τ−1

ST

〈∮ dθ

|ρ|3
[

1 − 2

9
(n · v̂)2 +

11

18

∣∣∣γ ∂n
∂γ

∣∣∣2 ] 〉. (27.24)

The derivative γ (∂n/∂γ ) vanishes for a planar ring, because n = b̂ on all orbits, hence for a
planar ring the above expression reduces to the Sokolov–Ternov result.

The above formulae were derived by setting g = 2 in the photon emission matrix elements.
Mane (1986) calculated the first order corrections in a to the terms in γ (∂n/∂γ ) in (27.23)
and (27.24). The results are of academic interest only. They are insignificant for real rings.

Very significantly, the Derbenev–Kondratenko formula is a completely abstract formula,
based purely on fundamental physical principles of higher classical dynamics (the definition
of n), statistical mechanics (the numerous averages and most especially the proper
characterization of the concept of spin-flip) and semiclassical quantum electrodynamics (the
actual interaction Hamiltonian and matrix elements). We never, at any stage, wrote down a
beta function or assumed decoupled betatron oscillations, or anything about nonlinear orbital
dynamics, etc. All of the details of the accelerator structure are encapsulated in the vector field
n and its partial derivative γ (∂n/∂γ ).

This is the great power of the Derbenev–Kondratenko formulation: it cleanly separates the
quantum electrodynamic perturbation theory from the accelerator physics perturbation theory
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(expansion in powers of the amplitudes of the orbital oscillations). To actually evaluate the
above formula for a (model of a) real accelerator, we need to calculate both n and γ (∂n/∂γ ),
as functions of the orbital phase-space variables. This usually entails the use of perturbation
theory, although modern nonperturbative algorithms do now exist, and have been reviewed
above. The expressions for n and γ (∂n/∂γ ) depend heavily on the product aγ , and aγ � 1
in modern machines such as LEP and HERA. But a perturbation expansion in the orbital
oscillation amplitudes is distinct from perturbation theory in the quantum electrodynamics.

The Derbenev–Kondratenko formula assumes that the photon emission takes place in a
locally uniform magnetic field, i.e. the synchrotron radiation is assumed to be emitted from
dipole magnets. It does not take into account synchrotron radiation from more complicated
devices such as undulators or free-electron lasers, etc.

27.6. Useful approximate formula

A good approximation to the Derbenev–Kondratenko formula (27.23) is the following. Since
almost all storage rings are planar, b·n � 1, and also b·γ (∂n/∂γ ) � 0 to a good approximation.
The denominator term (n · v̂)2 also vanishes to a good approximation. Hence, all that is left is
the term in |γ (∂n/∂γ )|2. We then approximate (27.23) via

Peq � 8

5
√

3

(
1 +

τST

τdepol

)−1
, (27.25)

where τST is the Sokolov–Ternov polarization buildup time and τdepol is a ‘depolarizing’ time,
given by

τST

τdepol
= 11

18

〈∮ (dθ/|ρ|3)|γ (∂n/∂γ )|2〉∮
(dθ/|ρ|3) . (27.26)

Equation (27.25) has an immediate interpretation as a competition between a Sokolov–Ternov
‘polarizing rate’ and a ‘depolarizing rate’ (leading to a lower asymptotic level), arising from
resonance driving terms. It is a good approximation in practice. Indeed, (27.25) is quoted far
more widely than (27.23). See the discussion of spin diffusion below.

27.7. Spin diffusion

The term ‘spin diffusion’ is widely used in the literature on radiative polarization. It is an
alternative way of visualizing the depolarization induced by the stochastic fluctuations. It has
the merit of being simple to visualize. The concept of spin diffusion is actually older than
the Derbenev–Kondratenko formula. In fact, one year before their definitive 1973 paper, they
published a paper with the title ‘Diffusion of Particle Spins in Storage Rings’ (Derbenev and
Kondratenko 1972). Theoretical calculations of the depolarizing resonances in the VEPP-2
storage ring were carried out using the spin diffusion model (Shatunov 1969). See figure 56
for a graph of the polarization rate in the VEPP-2 storage ring (Khoze 1971). The review by
Baier (1972) cites Baier and Orlov (1966) for the development of the spin diffusion model.
The 1966 paper treated spin diffusion based on a parent intrinsic resonance. The later spin
diffusion work by Derbenev and Kondratenko (1972) is more general.

As with the semiclassical quantum derivation, spin diffusion also does require a recognition
that the spin quantization axis depends on the orbital phase-space location; this fact is explicitly
noted by Baier (1972). An alternative way to view the photon emission process is to consider
that, during a photon emission, a classical spin vector s does not change, just as the orbital
position vector r also does not change (point photon emission). However, the quantization
axis n changes, as we have noted. Hence, the spin projection s · n changes slightly by virtue
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of the change in n. Note that when we say the spin vector ‘does not change’ during a photon
emission, we are tacitly neglecting the Sokolov–Ternov spin-flip terms. Indeed, to discuss
spin diffusion, let us for the moment neglect the Sokolov–Ternov spin-flip terms.

We follow the derivation by Shatunov (2001). Also consult figure 50 for the vectors n and
δn before and after a photon emission. Denote the average spin projection along n by Sn, and
neglect the Sokolov–Ternov terms. Then

δSn = (Sn · δn) = Sn(n · δn) + S⊥�(k∗ · δn). (27.27)

Here k is the generalization of the vector k0 = l0 + im0, i.e. a solution of the spin precession
equation and orthogonal to n. Because the radiation does not depend on the spin phase, the
term in S⊥ averaged over many photon emissions yields zero. The resulting change to Sn is
diffusive: it is of the second order in the fluctuations, i.e.

δSn � − 1
2 (δn)2Sn, (27.28)

which yields

dSn

dt
= −1

2
Sn

〈∣∣∣γ ∂n
∂γ

∣∣∣2 d(δγ /γ )2

dt

〉
θ

≡ −α+ Sn, (27.29)

where recall δn � −(h̄ωph/E)γ (∂n/∂γ ). Equation (27.29) is identical to equation (4.46) in
Baier (1972), with appropriate changes of notation. Recall also from (9.9) that

d(δγ /γ )2

dt
= 55

24
√

3

e2h̄γ 5

m2c2

1

|ρ|3 . (27.30)

Hence

α+ = 5
√

3

8

e2h̄γ 5

m2c2

11

18

〈∮ dθ

|ρ|3
∣∣∣γ ∂n

∂γ

∣∣∣2〉. (27.31)

This is the (11/18)|γ (∂n/∂γ )|2 term in (27.23). This is spin diffusion: the value of the
average spin projection Sn evolves diffusively due to terms of second order in the fluctuations
(the first-order fluctuations average to zero).

This is the most common way to view the term in |γ (∂n/∂γ )|2 in the polarization buildup
time and in the denominator of the equilibrium radiative polarization level. It is at the heart
of the approximate polarization formula we described above, namely, a competition between
a Sokolov–Ternov ‘polarizing rate’ and a spin diffusion ‘depolarizing rate’. One can compare
them to damping and fluctuation terms, although in the case of spin the ‘damping’ term is
not the average of the synchrotron radiation, nor is the fluctuation, a zero-mean term, centred
on the damping contribution.

Note that there is also another diffusive contribution to the polarization level, namely,
Peq ∝ |〈n〉|, where the equilibrium distribution of the spin quantization axes is also established
by the diffusion of the orbital motion over the orbital phase-space. This is also a diffusion in a
very real sense and the value of this term is also calculated by Baier (1972), but it is not what
is meant by the term ‘spin diffusion’. The value of |〈n〉|, as we have explained earlier, is very
close to unity and can usually be ignored.

The equation for the polarization buildup can be written as

dP

dt
= α− − α+ P. (27.32)

In terms of the spin-flip probabilities per unit time,

α− = 〈p↑ − p↓〉, α+ = 〈p↑ + p↓〉. (27.33)
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The equilibrium polarization is Peq = α−/α+ and the solution for P(t), starting from P = 0
at t = 0 is

P(t) = α−
α+

(1 − e−α+t ). (27.34)

Hence, α+ is a damping rate: the polarization degree relaxes exponentially to its equilibrium
value at the rate α+. Now note that the spin diffusion term |γ (∂n/∂γ )|2 enters the polarization
formula via a contribution to α+ only. In other words, the spin diffusion contributes to the
polarization damping rate. For the above reason, the term ‘diffusion’ as used in the context of
spin dynamics must be interpreted with some care.

Spin diffusion does not directly address the linear term in d = γ (∂n/∂γ ) in the numerator
of (27.23). A marriage of classical and quantum spin models is used to derive the linear term
in d, e.g. see Shatunov (2001). Later in this section, the Derbenev–Kondratenko formula will
be extended to also include the O(1/γ ) effects of the transverse recoils to the orbital motion.
Nobody has come up with a classical–quantum spin diffusion model for the extra terms which
appear. All of the derivations are quantum-mechanical.

27.8. Calibration of polarimeters

Let us set aside the abstract statistical-mechanical theory and consider a practical usage of the
spin diffusion model. Equation (27.25) is used to calibrate the polarimeters in high-energy
storage rings. The asymptotic value of the polarization is experimentally determined in the
following way. From the parametrization, in terms of a polarizing and depolarizing rate, the
asymptotic polarization is related to the buildup time via (writing x = τST/τd)

P(t) = PST

1 + x
(1 − e−(1+x)t/τST). (27.35)

By measuring the buildup rate τ , and by calculating the Sokolov–Ternov term τST, one can
equate

P∞ = PST

1 + x
. (27.36)

If x � 1, which also implies a low asymptotic polarization level, then the polarization
equilibrates quickly and one can simply observe the polarization settle to equilibrium. By
measuring the polarization rise time, one can deduce the asymptotic polarization level. This
is in fact the standard practice. Most graphs of experimental data of radiative polarization
measurements display the extrapolated asymptotic polarization level.

27.9. Correlation of polarization rate and asymptotic level

Mechanisms which speed up the rate of the polarization buildup also tend to decrease the
asymptotic polarization level. This is because the mechanisms for speeding up the rate of
the polarization buildup are usually isotropic. They increase the rate of spin-flip in both the
directions equally. Hence, the value of α+ increases while that of α− does not change.

One idea to speed up the polarization buildup, without decreasing the asymptotic
polarization level, is to employ asymmetric wigglers. An asymmetric wiggler has a short
sharp positive bend and a long gentle negative bend, with a total field integral of zero, as
described in the work on spin light in section 2. The asymmetric wiggler is placed in a region
of zero dispersion so as not to excite quantum fluctuations which would increase the beam
size. Then the rate of synchrotron radiation, including spin-flip radiation, increases so that the
polarization buildup speeds up.
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Figure 51. Measurement of the kinetic polarization at AmPS. An empirical fit to the data is shown
as well as the theoretical curves using the codes SLIM and ASPIRRIN (the figure mislabels the
code as ‘aspirin’). The SLIM and ASPIRRIN curves lie on top of each other. From Passchier
(2000).

The use of asymmetric wigglers was suggested for LEP, because otherwise at a beam
energy of 45.6 GeV (the so-called LEP1) the Sokolov–Ternov polarization buildup time was
in excess of 5 h. A set of so-called ‘polarization wigglers’ were, therefore, installed at LEP.
They turned out to be successful for applications having nothing to do with the spin, and not
successful for polarization work. The LEP polarization wigglers increased the energy spread of
the beam; this enhanced the strength of the depolarizing resonances (basically the synchrotron
sideband resonances), thereby reducing the asymptotic polarization to a low level. Ultimately,
they were not used for polarization work. Nevertheless, the name ‘polarization wigglers’ was
retained. The polarization wigglers were extremely useful for LEP2, enabling much higher
beam currents and luminosities to be attained.

Ultimately, it remains the case for all known machines that an increase in the polarization
buildup rate is accompanied by a reduction in the asymptotic polarization level.

27.10. Kinetic polarization

The linear term in b̂ ·γ (∂n/∂γ ) in (27.23) is called the ‘kinetic polarization’ term. It has never
been observed. In general, n is almost vertical in the arcs, and so b̂ · n � 1 and so b̂ · d � 0
in most machines. One needs b̂ · n = 0 on the design orbit and also b̂ · d �= 0 to truly observe
the kinetic polarization. Such is the case in an electron ring with a single Siberian Snake
(AmPS and SHR). Figure 51 is, from an attempted measurement, the kinetic polarization at
AmPS (Passchier 2000). The data are limited. The theoretical fits were performed using the
codes SLIM (Chao 1981b) and ASPIRRIN (Perevedentsev et al 2003). The theoretical fits
are preliminary, and do not really fit the data. A direct observation of the kinetic polarization
term would spectacularly verify the Derbenev–Kondratenko formula.

27.11. Statistical-mechanical evolution equation for spin–orbit distribution

The Derbenev–Kondratenko formula (27.23) is to this day the definitive formula to calculate the
equilibrium radiative polarization in high-energy electron and positron storage rings. Further
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work in the field has been to mainly develop formalisms to evaluate the formula for models of
actual storage rings (e.g. as opposed to the idealized case of a purely planar ring). In most cases,
these formalisms are numerical algorithms, and have been coded into computer programs. We
have already seen many of the formalisms, although we discussed only n and not the derivative
γ (∂n/∂γ ).

As for formal theory, note that the Sokolov–Ternov and Derbenev–Kondratenko formulae
all describe the equilibrium or asymptotic polarization. They do not describe the evolution
of the polarization as a function of the time, or, in accelerator coordinates, the azimuth, other
than to say that the polarization of an initially unpolarized beam builds up exponentially. The
formalisms do not treat decoherence (of the spins), for example. An important equation to
describe the transport and diffusion of a beam distribution in phase-space is the Fokker–Planck
equation. Jowett (1987) gives an account of the stochastic processes and statistical mechanics
for the orbital motion in high-energy electron storage rings. Barber and co-workers have
pursued the idea of extending the Fokker–Planck equation to also include spin transport and
diffusion (Heinemann and Barber 2001a, 2001b). As before, we denote a point in the orbital
phase-space by z and the azimuth by θ . Let the orbital phase-space density of the particles be
ψ(z, θ). The Fokker–Planck equation for ψ is

∂ψ

∂θ
= LFP,orb ψ(z, θ), (27.37)

where the orbital Fokker–Planck operator LFP,orb can be written as

LFP,orb = LHam + L0 + L1 + L2. (27.38)

Here, LHam simply contains a Poisson bracket with the orbital Hamiltonian and would lead to
a nonradiative equation of motion. The other operators L0,1,2 are terms due to the radiation
damping and noise. Explicit expressions for the operators are given by Jowett (1987). In
this formulation, the photon emission is modelled as a Gaussian white noise process (with
zero mean) plus continuous radiation damping. The operators L0,1,2 contain the zeroth, first
and second order derivatives, respectively, for the components of z. The key idea, to derive
a corresponding equation for the polarization, is to introduce the notion of a phase-space
polarization density P of the form

P(z, θ) = Ploc(z, θ) ψ(z, θ), (27.39)

where Ploc is the ‘local’ polarization in an infinitesimal phase-space volume element
centred on z. It is essential to note that a Fokker–Planck equation cannot be written
for Ploc itself. One must work with P , which contains a joint spin–orbit density.
See Heinemann and Barber (2001a) for details. The final equation is

∂P
∂θ

= LFP,orb P + W × P, (27.40)

where recall W = W(z, θ) is the spin precession vector at a particular point in the orbital phase-
space. This equation is much more comprehensive than the Baier–Katkov–Strakhovenko
formula (27.9). The polarization of the whole beam, at an azimuth θ , is given by

P(θ) =
∫

P(z, θ) dz. (27.41)

The evolution equation is for the joint spin–orbit distribution. There is no simple evolution
equation for only the polarization P itself. Heinemann (1997) has applied (27.40) to various
simple exactly solvable models, e.g. to calculate the decoherence of the spins of a spin-polarized
beam after injection into an accelerator (see section 21).
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27.12. Transverse momentum recoils

27.12.1. General remarks. We now extend the theory to include the momentum recoil in both
the transverse and longitudinal directions. The contribution from the transverse recoils is much
smaller, by roughly O(1/γ ), than from the longitudinal recoils. They have no significance in
present-day storage rings. They are of theoretical interest, however, because they connect to
some interesting work on the coupling of the Unruh effect to the electron spin in ultrarelativistic
accelerators. We discuss the Unruh effect below.

27.12.2. Unruh effect. Unruh (1976) showed that an observer in a uniformly accelerated
reference frame would observe the vacuum electromagnetic fluctuations to have a thermal
(blackbody) spectrum with a temperature

T = h̄a∗
2πckB

. (27.42)

Here, a∗ is the proper acceleration of the observer (the acceleration in an inertial reference frame
instantaneously comoving with the observer) and kB is Boltzmann’s constant. This followed
from an earlier finding by Hawking (1974) that the effects of a strong gravitational field on
the quantum fluctuations of the vacuum would cause a black hole to radiate with a temperature
T ′ = (h̄g∗)/(2πckB), where g∗ is the acceleration due to gravity at the surface of the black hole.
We append subscript asterisks to the accelerations, to avoid confusion with the quantities a

and g for a particle spin. The fact that the vacuum has a nonzero temperature in an accelerated
reference frame is called the Unruh effect, and the temperature T is called the Unruh, or
Hawking–Unruh, temperature. Some years later, the late John Bell (of Bell’s theorem fame),
in collaboration with various co-workers, investigated the possibility of using the coupling of
an electron’s spin to the vacuum fluctuations of the electromagnetic field as a possible detector
of the Unruh effect (Bell and Leinaas 1983, 1987, Bell et al 1985). The latest of those works
is the most definitive and supersedes the previous ones, and will be reviewed below. Note that
Leinaas (2002) has also written a summary of the Bell–Leinaas work.

First, the Unruh temperature mentioned above is for an observer undergoing linear
acceleration. For all realizable accelerations in a laboratory, the Unruh temperature is too small
to be observable. However, the centripetal acceleration in ultrarelativistic circular motion in
an orbit of radius ρ is c2/ρ, and for values of ρ in present-day accelerators, this acceleration
is very much larger than any achievable linear acceleration. The possibility of detecting the
Unruh effect is, therefore, much more promising in a circularly accelerated reference frame.
Hence, Bell et al were led to study the vacuum fluctuations of the electromagnetic field in a
circularly accelerated reference frame. This is known as the circular Unruh effect. In this case,
Bell and Leinaas (1987) reported an effective temperature of

T = 13

96

√
3

h̄a∗
ckB

(27.43)

for the vacuum fluctuations which couple to the particle spin. This is a higher effective
temperature than in the linear case. Hacyan and Sarmiento (1989) calculated the energy–
stress–momentum tensor of the vacuum electromagnetic field, for both linearly and circularly
uniformly accelerated observers. Another paper on the subject is by Hirayama and Hara
(1999). The Hacyan–Sarmiento and Hirayama–Hara papers do not treat the coupling to a
particle spin, and so they are not directly relevant to this paper, but they did find that for
circular acceleration, the vacuum fluctuations do not have a thermal spectrum. Unruh (1998)
re-examined his original calculation and also the case of circular acceleration and confirmed
the Bell–Leinaas finding. Unruh (1998) reported that the higher effective temperature is due
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to the details of the spin–orbit coupling, rather than the nonthermal nature of the vacuum
fluctuations.

Bell et al investigated the coupling of the vacuum electromagnetic fields to the spin of
a particle, where the spin is at rest (say at the origin), of a uniformly circularly accelerated
reference frame. The motivating idea is that the vacuum fluctuations might polarize the spin.
The value of the polarization, as a function of suitably defined parameters, might have a
unique signature which could signal the Unruh effect. Bell and Leinaas (1987) calculated
the polarization for particle motion in a planar ring. As we know, in addition to inducing
spin-flip, the vacuum fluctuations also induce recoils in the particle motion. They considered
the effect of the transverse momentum recoils on the vertical momentum of the particle, i.e.
the vertical betatron emittance induced by the transverse momentum recoils. This effect is
small and is neglected in most practical calculations for real rings. The previous Derbenev–
Kondratenko formalism treated only the longitudinal recoils (energy loss), as noted earlier.
Bell and Leinaas (1987) treated a perfectly aligned planar ring (zero vertical dispersion) with
weak focusing of the vertical betatron oscillations. (‘Weak’ focusing just to simplify the
theoretical analysis. Strong focusing will also prove their point. See below.) They found
that, at a suitable energy, the polarization would exhibit a resonance, and the maximum value
of the polarization is approximately 99.2%. Far away from the resonance, the polarization
approached the Sokolov–Ternov value of 8/(5

√
3) � 92.4%. The Bell–Leinaas expression

for the equilibrium degree of the polarization in a planar weak-focusing ring is

PBL = 8

5
√

3

1 − (fBL/6)

1 − (fBL/18) + (13/360)f 2
BL

, (27.44)

where

fBL = 2

γ

Q2
yν

Q2
y − ν2

= 2a

1 − (ν/Qy)2
. (27.45)

Here, ν = aγ and recall a = (g−2)/2 and γ is the Lorentz factor of the beam energy. Finally,
Qy is the vertical betatron tune. For a weak-focusing machine 0 < Qy < 1. At ν = Qy

the term in (27.45) diverges, i.e. there is a resonance. A graph of PBL as a function of ν/Qy

is plotted in figure 52. The polarization actually drops to a negative value on the low energy
side of the resonance, with a minumum value of approximately −0.169, and climbs to a high
value, with a maximum of approximately 0.992, on the high energy side. Far from resonance,
fBL → 0 and the degree of the polarization is the Sokolov–Ternov value of 8/(5

√
3) � 0.924.

Obviously, an infinity in fBL is an artifact of the perturbation theory.
The above finding of a high polarization, and a possible detectable signal of the circular

Unruh effect, aroused considerable interest. The most obvious question is, of course, how/why
is this result different from that of quantum electrodynamics? The answer is that it is not. We
review the quantum electrodynamic formulation of this problem in the next section.

27.12.3. QED formulation. Bell and Leinaas (1987) treated a model of a planar ring
and included the effects of the vertical transverse recoils due to the photon emissions (they
did not treat the horizontal transverse recoils). Sokolov and Ternov (1964) included only
the longitudinal recoils (energy loss) in their treatment of a planar ring. The Derbenev–
Kondratenko formalism treats spin resonances, but their formula also only treats longitudinal
recoils. Barber and Mane (1988) extended Derbenev and Kondratenko’s formalism to treat
both longitudinal recoils and transverse recoils, parallel to the local magnetic field. Their
generalized formula reproduces the Bell–Leinaas findings. Hence, we can conclude that the
circular Unruh effect calculations provide an independent confirmation of the semiclassical
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Figure 52. Graph of the Bell–Leinaas polarization PBL as a function of the ratio ν/Qy , where
ν is the spin tune and Qy is the vertical betatron tune. The Sokolov–Ternov polarization
PST = 8/(5

√
3) � 0.924 is also indicated by a dashed line.

QED radiative polarization calculations. We describe the Barber–Mane calculation briefly
below.

Recall the coordinate system for motion in a locally circular arc, namely, (v̂, ˆ̇v, b̂), defined
earlier. Denote the momentum of the particle by p and its dimensionless velocity vector by
β = v/c. The component of β parallel to b̂ is denoted by βb = β ·b̂. Then define the additional
partial derivative ∂n/∂βb. The polarization formula, taking into account both longitudinal
recoils and those along b̂, is then (Barber and Mane 1988)

PBM = 8

5
√

3

αBM
−

αBM
+

,

αBM
− =

〈 ∮ dθ

|ρ|3
[

n · b̂ − γ
∂n
∂γ

· b̂ +
1

3γ

∂n
∂βb

· v̂
] 〉

, (27.46)

αBM
+ =

〈 ∮ dθ

|ρ|3
[

1 − 2

9
(n · v̂)2 +

11

18

∣∣∣γ ∂n
∂γ

∣∣∣2 +
1

9γ
˙̂v ·
(

n × ∂n
∂βb

)
+

13

90γ 2

∣∣∣ ∂n
∂βb

∣∣∣2 ] 〉.
The above formula is quite general and is applicable to both strong and weak focusing
accelerators. We now specialize to the case of a planar ring with vertical (not necessarily
weak) focusing. It can be shown that γ (∂n/∂γ ) vanishes in this model, just as it does in the
Sokolov–Ternov model, although we do not prove it here. Then define a new vector

fBM = − 2

γ

∂n
∂βb

. (27.47)

The equilibrium polarization in a planar ring with vertical focusing is

P ′
BM = 8

5
√

3

〈 ∮ (dθ/|ρ|3)[b̂ · n − (1/6)v̂ · fBM]〉
〈 ∮ (dθ/|ρ|3)[1 − (2/9)(n · v̂)2 − (1/18) ˙̂v · (n × fBM) + (13/360)|fBM|2]〉 .

(27.48)
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We must evaluate n and fBM for this model, in the special case of weak focusing. The reader
is directed to Barber and Mane (1988) for the explicit calculations. The answer is

fBM =
[ 2

γ
+

2a

1 − (ν/Qy)2

]
v̂. (27.49)

Hence, define

fBM = 2

γ
+

2a

1 − (ν/Qy)2
= fBL +

2

γ
. (27.50)

We obtain

PBM = 8

5
√

3

1 − (fBM/6)

1 − (fBM/18) + (13/360)f 2
BM

, (27.51)

which is basically the same as (27.44). The difference between fBL and fBM is a nonresonant
term, and hence is not important. We can, therefore, claim that the Barber–Mane and the
Bell–Leinaas expressions agree.

We can also solve for n, for a planar ring with strong focusing, and substitute the results
into (27.48). There is still a resonance.

This demonstrates that lab-frame QED can indeed explain the Bell–Leinaas result. The
modern view is that the radiative polarization of the particle spins in a storage ring is, therefore,
a manifestation of the circular Unruh effect. There is no ‘extra’ contribution to the polarization
beyond that of lab-frame QED, but there is, rather, an independent confirmation of QED.

27.13. Transverse momentum recoils in all planes

Mane (1987c) extended the polarization formula to include transverse recoils in all planes.
Hand and Skuja (1987, 1989) also published a formalism to calculate the equilibrium radiative
polarization, treating recoils in all planes. The slight differences of detail in some of the
transverse recoil terms between the Mane and Hand–Skuja formulae have never been resolved;
the terms in question are simply too small to be of any practical significance.

28. Radiative polarization II

28.1. Spin–orbit coupling vector

The quantity γ (∂n/∂γ ) is called the spin–orbit coupling function or the spin–orbit coupling
vector. It is, of course, a vector field, but no matter. Shatunov (2001) employs the designation
‘vector of spin–orbit coupling’ in his lecture. The origin of the name is historical, basically a
compromise to clarify certain confusions. As far as we can trace the matter, the term ‘spin–orbit
coupling vector’ was suggested by Kondratenko at the 1982 Workshop on Polarized Electron
Acceleration and Storage at Hamburg, available as DESY Report M-82/09. Many non-Soviet
authors designated γ (∂n/∂γ ) by names such as the ‘spin dispersion’ or the ‘spin chromaticity’
but all such names are now obsolete. The term ‘spin–orbit coupling vector’, although a bit
vague, is the universal modern name.

In recent years, the term ‘spin chromaticity’ has resurfaced, with the correct interpretation
as the variation of the spin tune for an off-axis particle with a momentum offset �p/p.
Analogously to the orbital chromaticity, one can write, starting from the closed-orbit spin tune,

ν = νc.o. + ξspin
�p

p
. (28.1)

We have in fact discussed the spin chromaticity, defined in this way, earlier in this review.
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In this section, we review some of the formalisms which have been developed to evaluate
the theoretical formulae for actual accelerators. Most of the formalisms below are analytical.
There is one formalism which is purely numerical, i.e. it tracks particles and their spins via
numerical integration of the equations of motion, with Monte Carlo simulations of stochastic
fluctuations, damping and spin-flip, etc. That programme is SITROS (Kewisch et al 1989).
It will not be reviewed in detail below.

28.2. Solution of simple model

We treat a planar ring with a single solenoid, which we take to be a full-strength Siberian Snake.
We assume ultrarelativistic motion so the spin precession angle in the solenoid is proportional
to 1/γ . The model was solved by Korostelev and Shatunov (2001). They included the
contribution of both the betatron and synchrotron oscillations, and gave the solution for d0 at
all azimuths around the ring. The derivation below is a special case of theirs, treating only the
synchrotron oscillations, and we give the solution only at the origin. We place the origin just
before the solenoid. The spin precession vector is

W = aγ e3 + π
γ0

γ
δp(θ − 0+) e2. (28.2)

The one-turn map is

M = e−iπaγ σ3 e−iπ(γ0/γ )σ2/2

= cos(πaγ ) cos

(
π

2

γ0

γ

)
+ iσ1 sin(πaγ ) sin

(
π

2

γ0

γ

)

− iσ2 cos(πaγ ) sin

(
π

2

γ0

γ

)
− iσ3 sin(πaγ ) cos

(
π

2

γ0

γ

)
≡ cos(πν) − i sin(πν)σ · n. (28.3)

The design-orbit map is of course

M0 = iσ1 sin(πν0) − iσ2 cos(πν0), (28.4)

with ν0 = aγ0, Then νc.o. = 1
2 and

n0 = −e1 sin(πν0) + e2 cos(πν0). (28.5)

Now

cos(πν) = cos(πaγ ) cos

(
π

2

γ0

γ

)
. (28.6)

Hence,

− πγ
∂ν

∂γ
sin(πν) = −πaγ sin(πaγ ) cos

(
π

2

γ0

γ

)
+

π

2

γ0

γ
cos(πaγ ) sin

(
π

2

γ0

γ

)
. (28.7)

Evaluating on the design orbit,

γ
∂ν

∂γ

∣∣∣∣
c.o.

= −1

2

cos(πν0)

sin(πν0)
, (28.8)

which is finite as long as sin(πν0) �= 0. As for n,

γ
∂

∂γ
(sin(πν)σ · n) = πγ

∂ν

∂γ
cos(πν)σ · n + sin(πν)σ · d, (28.9)

writing d for γ (∂n/∂γ ). Evaluating on the design orbit, cos(πνc.o.) = 0 and sin(πνc.o.) = 1,
hence [

γ
∂

∂γ
(sin(πν)σ · n)

]
c.o.

= σ · d0. (28.10)
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From the one-turn map,

γ
∂

∂γ
(sin(πν)σ · n) = −σ1

[
πaγ cos(πaγ ) sin

(π

2

γ0

γ

)
− π

2

γ0

γ
sin(πaγ ) cos

(π

2

γ0

γ

)]
− σ2

[
πaγ sin(πaγ ) sin

(π

2

γ0

γ

)
+

π

2

γ0

γ
cos(πaγ ) cos

(π

2

γ0

γ

)]
+ σ3

[
πaγ cos(πaγ ) cos

(π

2

γ0

γ

)
+

π

2

γ0

γ
sin(πaγ ) sin

(π

2

γ0

γ

)]
. (28.11)

Evaluating on the design orbit,

d0 = −πν0[e1 cos(πν0) + e2 sin(πν0)] + e3
π

2
sin(πν0). (28.12)

Evidently, n0 · d0 = 0. Depending on the value of ν0, the magnitude of d0 can be arbitrarily
large.

28.3. SMILE

The SMILE algorithm was reviewed earlier in this paper, in section 17. The solution for n was
expressed as a θ -ordered exponential of noncommuting angular momentum operators, which
was evaluated using a Taylor expansion in powers of the orbital amplitudes around the closed
orbit. Consult section 17 for the details. Treating only linear orbital dynamics, one can express
the orbital trajectory X as a sum of eigenvector modes X =∑j aj Ej , where j = ±1, ±2, ±3.
Furthermore,

γ
∂X

∂γ
=
∑

j

γ
∂aj

∂γ
Ej , (28.13)

where from (10.15)

γ
∂aj

∂γ
=
{−iE∗

5j j > 0

iE∗
5j j < 0.

(28.14)

All of this is directly applicable to the SMILE algorithm. One can expand V1, say, into a sum of
spin integrals over orbital eigenvector modes

V1 =
∑

a
m1
1 a

m−1

−1 a
m2
2 a

m−2

−2 a
m3
3 a

m−3

−3 V
m1m−1m2m−2m3m−3

1 . (28.15)

Then

γ
∂V1

∂γ
=
∑

γ
∂

∂γ
(a

m1
1 a

m−1

−1 a
m2
2 a

m−2

−2 a
m3
3 a

m−3

−3 )V
m1m−1m2m−2m3m−3

1 , (28.16)

i.e. a term-by-term sum of phase-space derivatives, assuming of course that the whole thing
converges, which as we have seen (for n) it may not. The phase-space derivative of an individual
term is given by

γ
∂

∂γ
(a

m1
1 a

m−1

−1 a
m2
2 a

m−2

−2 a
m3
3 a

m−3

−3 ) = m1

(
γ

∂a1

∂γ

)
a

m1−1
1 a

m−1

−1 a
m2
2 a

m−2

−2 a
m3
3 a

m−3

−3

+m−1

(
γ

∂a−1

∂γ

)
a

m1
1 a

m−1−1
−1 a

m2
2 a

m−2

−2 a
m3
3 a

m−3

−3 + · · · . (28.17)

The same ideas apply also to V0 and V−1. The statistical averages required are 〈n〉, 〈γ (∂n/∂γ )〉,
〈(n · v̂)2〉 and 〈|γ (∂n/∂γ )|2〉. The one over |γ (∂n/∂γ )|2 is typically the most important.
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28.4. SLIM

Historically, before a general Taylor series expansion to all orders in all the orbital modes was
developed, there was, for several years, a solution to the first order in the orbital amplitudes
only. This was the SLIM algorithm, developed by Chao (1981a). It is an important formalism.
We shall ignore any sociological issues concerning the fact that previous Soviet theoretical
solutions may have existed for n and d to the first order in the orbital amplitudes, e.g. see
equation (3.7) of Derbenev et al (1979c). Chao (1981a) formulated the SLIM algorithm
using the so-called ‘generalized matrices’ but we shall employ a different derivation to avoid
introducing yet more formalism. Recall from (15.12) that the solution for n can be parametrized
as n = n0

√
1 − |ζ |2 + �(ζk∗

0) and to the first order in the orbital amplitudes, the solution for
ζ is (see (15.16))

ζ � −i
∫ θ

−∞
w+ dθ ′. (28.18)

All of the notation has been explained in sections 15 and 17. In terms of the orbital symplectic
eigenvector formalism, we write

ζ � −i
∑

j

aj

∫ θ

−∞
wj+ dθ ′. (28.19)

The wj+ are proportional to the orbital oscillation modes Ej . To calculate d, we want the
derivative γ (∂ζ/∂γ ). To this level of approximation d � d0, with obvious notation. Then

d0 = �
{
γ

∂ζ

∂γ
k∗

0

}
. (28.20)

To the first order, using (10.15),

γ
∂ζ

∂γ
= − i

∑
j

γ
∂aj

∂γ

∫ θ

−∞
wj+ dθ ′

= −
∑
j>0

E∗
5j

∫ θ

−∞
wj+ dθ ′ +

∑
j<0

E∗
5j

∫ θ

−∞
wj+ dθ ′. (28.21)

This is, of course, the type of expression which SMILE later generalized to higher orders, but
it not easily visualizable in terms of the machine lattice parameters (the beta and dispersion
functions, etc).

A more transparent expression was given by Yokoya (1982), in terms of the accelerator
lattice functions. We follow the above paper, with small changes of notation to conform to the
definitions in this paper, and write

d0 = 1
2 �{k∗

0(�xβ + �−xβ + �yβ + �−yβ + �zβ + �−zβ)}. (28.22)

Yokoya (1982) employed the (x, y, z) coordinate basis, where z points clockwise around the
ring. Hence, the expressions for �±xβ contain some ± sign differences relative to what one
would obtain using the e1,2,3 basis. Furthermore, the subscripts on �±xβ suggest (correctly) that
the orbital motion is decomposed into uncoupled horizontal and vertical betatron oscillations
and synchrotron oscillations. By contrast, the orbital eigenvector modes Ej above are fully
general symplectic solutions, which include arbitrary linear x–y coupling. The orbital motion
in most accelerators can be described by uncoupled betatron and synchrotron oscillations, the
�±xβ . Then define

k0 = kx x̂ + ky ŷ + kzẑ (28.23)
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and also the focusing functions

Gx = 1

ρ2
x

+
1

Bρ

∂By

∂x
, Gy = 1

ρ2
y

− 1

Bρ

∂By

∂x
. (28.24)

To write down the expressions for �±x , we actually follow Yokoya (1983a) which presents
more general expressions than does Yokoya (1982). The expressions for �±x are

�±xβ(s) = aγ + 1

ei2π(νc.o.±Qx) − 1

×
{e∓iψx

√
βx

[−Dx ± i(βxD
′
x + αxDx)]

}
s

∫ s+C

s

[kyGx

√
βx e±iψx ]s ′ ds ′,

�±yβ(s) = aγ + 1

ei2π(νc.o.±Qy) − 1

×
{e∓iψy√

βy

[−Dy ± i(βyD
′
y + αyDy)]

}
s

∫ s+C

s

[kxGy

√
βy e±iψy ]s ′ ds ′,

�±zβ(s) = 1

ei2π(νc.o.±Qz) − 1
e∓iψz(s)

×
∫ s+C

s

{[
(aγ + 1)GxDx − 1

ρx

]
ky −

[
(aγ + 1)GyDy − 1

ρy

]
kx

}
s ′

e±iψz(s
′) ds ′.

(28.25)

Here, αx,y and βx,y are the Twiss functions and ψx,y,z are the betatron phases, and Dx,y are the
horizontal and vertical dispersions. (Dy = D′

y = 0 in a perfectly aligned planar ring.) Note
that, just like n0, the vector d0 is also periodic around the ring:

d0(θ + 2π) = d0(θ). (28.26)

Inspection of the individual �j reveals that

�j(θ + 2π) = �j(θ) j = ±x, ±y, ±z. (28.27)

The same periodicity could also have been derived using the general orbit eigenvector
formalism.

To summarize, the vector d0 is the value of d on the closed orbit. It does not depend on
the orbital action-angles (or the beam emittances, when averaging over the beam), because the
orbital action-angles disappeared when taking the partial derivative γ (∂ζ/∂γ ). Hence, when
the Derbenev–Kondratenko formula is evaluated using only n0 and d0, the statistical average
over the orbital phase-space is trivial.

Since the SLIM formalism only treats the orbital motion to the first order, the approximate
solution for d, namely, d0, only diverges at the first order resonances. This fact unfortunately
led workers in the field to conclude that the higher-order resonances require nonlinear orbital
dynamics. We now know that this is not so: linear orbital dynamics can drive all of the
higher-order spin resonances.

28.5. Spin integrals

The numerators of the �j in (28.25), without the resonance denominators, are called the Chao
spin integrals (Chao 1981a) or also the Chao–Yokoya spin integrals (Chao and Yokoya 1981).
We ignore the sociological fact that these integrals were known in Soviet papers long before
Chao and Yokoya’s work. Buon (1981) also found the same functions. We shall just write
‘spin integrals’ or ‘first-order spin integrals’ below. In more detail, let us write

�j(s) = �̃j (s)

ei2π(νc.o.±Qj ) − 1
. (28.28)
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The numerators �̃j are the spin integrals. It is more usual not to employ a complex notation
and to express the integrals using real integrands. A very important point to be noted is that in
a perfectly aligned planar ring all the first-order spin integrals vanish. This is because:

• for �±xβ , the vector k0 lies in the horizontal plane and so ky = 0 and so the integrand in
(28.25) is zero.

• for �±yβ , the integrand is nonzero because kx is nonzero, but the multiplier in (28.25)
vanishes because the vertical dispersion is zero in a perfectly aligned planar ring:
Dy = D′

y = 0.
• the vanishing of �±zβ is due to a combination of two effects. One is that ky = 0, so

Dxky = 0 and the other is that Dy = 0 and also ρ−1
y = 0, so the whole integrand also

vanishes.

Hence, in a planar ring, which most accelerators are by design, the nonvanishing of the spin
integrals, i.e. of d0, is actually entirely due to lattice imperfections. Note that the spin basis
vectors l0, m0 and n0 are referenced to the closed orbit, and not the design orbit. The presence
of imperfections does not cause the vertical dispersion to vanish identically, and also causes
the horizontal betatron oscillations to couple into the vertical plane. Similarly, the contribution
from the synchrotron oscillations also does not vanish.

At higher orders (the SMILE perturbation series), the higher order integrals are all
proportional to the values of the first-order spin integrals, and so, in a perfectly aligned planar
ring, all of the spin integrals also vanish. The nonvanishing of the individual terms is due to
the lattice imperfections.

28.6. Imperfection resonance driving terms

The six first-order integrals in the solution for n diverge at the first-order spin resonances
ν = k ± Qj (k = integer). What about the integer resonances, or ‘imperfection resonances’
ν = k? For nonradiatively polarized beams, the imperfection resonance driving terms arise
from the closed-orbit imperfections. The situation is more subtle for radiatively polarized
beams. For radiatively polarized beams, the contributions of the (vertical and horizontal)
closed-orbit imperfections are built into the values of the closed-orbit vectors l0, m0 and n0.
In particular, if the value of the spin tune is close to an integer, then the direction of n0 can be
strongly tilted away from the vertical. Given the ‘imperfect’ vectors n0 and k0, the values of
the Chao–Yokoya first-order spin integrals are then strongly nonzero, and so the value of the
equilibrium polarization is strongly reduced.

Hence, in algorithms to calculate the equilibrium radiative polarization, the effects of the
closed-orbit imperfections are implicit in the values of the spin basis vectors and do not appear
as explicit resonance driving terms. For this reason it is important to recognize that the spin
basis vectors are referenced to the imperfect closed orbit, not the ideal design orbit.

28.7. Scaling with energy

An important feature of d0 in a planar ring is that |d0| ∝ (aγ + 1), as is evident from the
expressions for the �j in (28.25). There are also terms of order O(1/ρx,y), but for most
machines these terms are of lesser magnitude. Since |d|2 appears in the denominator of the
Derbenev–Kondratenko formula, and aγ � 1 for energies of several GeV, this means that at
high energies, the equilibrium polarization level scales according to

Peq � 8

5
√

3

1

1 + α2E2
, (28.29)
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where α is some function of the ring lattice. As far as we can trace the matter, this scaling was
first pointed out by Buon (1982). The scaling law is of course based on first-order perturbation
theory, and as the magnitude of the first-order terms increases so will that of the higher-order
terms. Eventually the degree of the equilibrium polarization will drop off even faster than the
rate given by (28.29). As we shall see for LEP, later in this paper, the above scaling worked
up to about 46 GeV (LEP1), but the degree of polarization fell off more rapidly with energy
for beam energies going up from 46 GeV to over 60 GeV (Assmann et al 2001), due to higher
order resonances.

28.8. Strong spin matching

Naturally, one wants to reduce the magnitude of |d|2 in a storage ring, to improve the equilibrium
polarization level. In particular, the installation of spin rotators in a ring, such as at HERA,
makes a ring nonplanar, hence d will be nonzero even in a perfect design. This will seriously
reduce the achievable radiative polarization in a storage ring, potentially. Strong spin matching
consists of designing the accelerator lattice so that all the first-order spin integrals vanish:
�̃j (s) = 0 at every point around the ring circumference. A ring which is spin matched is said
to be spin transparent.

Since there are six orbital modes (six values of j ), and each �̃j is complex, this implies
twelve conditions at each value of s. In practice, because the synchrotron tune is small,
Qs 	 1, it is usual to approximate Qs � 0 in the spin integrals, in which case there are ten
conditions which must be satisfied at each value of s.

The strong spin matching conditions must be satisfied at every value of s, because the
overall polarization is determined by the entire structure of the accelerator. This makes strong
spin matching a very restrictive constraint on the design of an accelerator. One typically
employs some symmetry to reduce the number of constraints, but even then, strong spin
matching is very difficult to achieve. In practice, one attempts to reduce the value of |d|2
integrated around the circumference. More precisely, one attempts to minimize the value of∮ |ρ|−3|d|2 ds ′. Most of the effort in the design of the Buon–Steffen minirotator of HERA
(Buon and Steffen 1986) was devoted to the spin-matching of the minirotators to the HERA
lattice.

28.9. Harmonic spin matching

Evidently, strong spin matching is almost impossible to achieve in practice. It may also
be unnecessary for practical applications. The related and important technique of harmonic
spin matching addresses this issue. The notion of harmonic spin matching is described by
Rossmanith and Schmidt (1985). See also the earlier work by Derbenev et al (1977). Froissart
and Stora (1960) also described ideas for correction of the Fourier harmonics of the imperfect
closed orbit (for nonradiatively polarized beams). Harmonic spin matching is based on two
observations: first, it is known that the major perturbations to the spins in a planar ring arise
from vertical orbital motion in the quadrupoles. Second, the major driving terms of the
depolarizing spin resonances (to first order, anyway) are the integer harmonics (what would
be called imperfection resonances for nonradiatively polarized beams). We decompose d into
Fourier harmonics, and write, approximately (noting that |d| ∝ (aγ + 1)),

|d|2 ∝ (aγ + 1)2
∑

k

|ck|2
(ν0 − k)2

, (28.30)

where k is an integer and recall ν0 = aγ . The above expression assumes that the
Fourier harmonics (the resonance driving terms) are uncorrelated. It is a reasonable starting
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approximation. The task is then to identify the harmonics which contribute the most to the
depolarization, i.e. to |d|2. If the harmonics are of roughly equal magnitude (again a reasonable
working hypothesis), then the relevant harmonic will be the one closest to the spin tune ν0.
In the case where the fractional part of ν0 is close to 1

2 , the two nearest harmonics have to be
corrected.

The correction procedure uses a technique similar to that employed for nonradiatively
polarized beams. A set of vertical corrector dipoles, distributed around the ring, are employed
to generate Fourier harmonics to counter those from the machine imperfections. As we have
seen with nonradiatively polarized beams, localized vertical closed orbit bumps can also be
used, instead of correctors distributed around the whole circumference. Although nominally
the quantity being corrected is |d|2, in practice the driving terms of both n and d are the Fourier
harmonics in the off-axis spin precession vector w.

Harmonic spin matching is usually implemented empirically. One adjusts the values of
the correctors (or vertical closed orbit bumps) to optimize the measured polarization. The
corrector settings are saved for future reference. In some machines, such as LEP, where the
detector solenoids induced reproducible perturbations to the spin motion, a ‘deterministic’
harmonic spin matching technique was implemented, where the settings of the vertical closed
orbit bumps could be calculated as a function of the solenoid fields and lattice parameters. We
shall review the harmonic spin matching work at LEP in section 31.

Harmonic spin matching is an important technique and has been successfully employed
at a number of high-energy electron storage rings. It is much simpler to implement than
strong spin matching (which requires a (re)design of the accelerator lattice), and can easily be
modified as the machine operating point changes, or upgrades to a machine are implemented.

28.10. Nonplanar rings

We treat only one example of a nonplanar ring, namely, a storage ring with a single Siberian
Snake, and we take the Snake to be a solenoid, since that is the only Snake design which has
ever been used in real rings. We have shown previously that, when solving for n, the first-
order integral

∫ θ

−∞ w+ · k0 dθ ′ did not vanish in a perfectly aligned ring with a single Snake.
Similarly, the value of d0 also does not vanish in a perfectly aligned ring with a single Snake.
Examining the spin integrals in (28.25), we see that ky �= 0. Furthermore, with a solenoid in
the ring, there may be transverse betatron coupling, so Dy may not vanish.

The Sokolov–Ternov radiative polarization vanishes in a ring with a single Snake. Hence,
the principal interest in d, for a ring with a single Snake, is to observe the kinetic polarization
term. As mentioned earlier, attempts to observe the kinetic polarization have been inconclusive.
It is stated by Korostelev and Shatunov (2001) that a maximum polarization level of about 80%
may be achievable for |d| � 1.2. If confirmed, this would be a spectacular triumph of spin
dynamics in accelerators.

Calculations of γ (∂n/∂γ ) to first order have been carried out for AmPS (de Jager et al
1997) and SHR (Korostelev and Shatunov 2001). The calculations are basically the same and
will be reviewed as one. In both rings the Snake system consists of two solenoids in series and
one pair of quadrupoles and two pairs of skew quadrupoles. The schematic design is (not to
scale)

SQ1–SQ2–SOL–Q–Q–SOL–(−SQ2)–(−SQ1).

The notation (−SQn) means that the skew quad is rotated in the opposite sense to SQn, for
n = 1, 2. We follow Korostelev and Shatunov (2001). They write d0 = �(iDη∗), which we
have written as d0 = �(�k∗

0), so � = −D and η = k0. The origin is just after the Snake.
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The solution for n0 is, for θ ∈ (0, 2π),

n0(θ) = sin(ν0�) e1 + cos(ν0�) e2, (28.31)

where

�(θ) = π −
∫ s(θ)

0

ds ′

ρx(s ′)
. (28.32)

The closed-orbit spin precession vector in the arcs is not necessarily uniform around the
circumference. We further recognize that at both AmPS and SHR the horizontal and vertical
dispersions both vanish at the location of the Snake (Dx = Dy = 0 at θ = π ). We also note
that the quadrupole and skew quadrupoles fully compensate the transverse betatron coupling
outside the Snake region. Then, there are two contributions to �, written as � = �γ + �β .
The term �γ arises from the direct dependence of n on the particle energy, while �β results
from the jump of the betatron amplitudes during the emission of photons. Then,

�γ = π

2
sin(πν0) − iν0�,

�β = πν0

4 cos(πQx)
[cos(πν0)�(eiπQx J (θ)G∗

1x) + i�(eiπQx J (θ)G∗
1y)].

(28.33)

The expression for d0 in (28.12) is a special case of �γ , setting θ = 2π (i.e. � = −π ). Here,

G1x,y = f ′
1x,y(out) − f ′

1,x,y(in) (28.34)

is the difference between the derivative of the first-mode Floquet functions f1x,y at the exit of
the solenoid (‘out’) and the entrance (‘in’). At both AmPS and SHR ‘the’ solenoid consists
of two solenoids in series, so ‘in’ means the entrance of the first solenoid and ‘out’ means the
exit of the second solenoid. The function J (θ) is given by

J (θ) = f1xD
′
x − f ′

1xDx. (28.35)

Although the betatron modes are fully decoupled outside the Snake system there is nonzero
x–y betatron coupling inside the Snake system, hence, one must express the orbital motion in
terms of Floquet modes.

The real parts of �γ and �β couple to e3, and therefore contribute to the b̂ · d kinetic
polarization term. Treating only �γ , the contribution is, assuming a uniform bending radius
ρx(s) = ρ, ∮

ds

|ρ3
x |

b̂ · d = π2

2ρ2
sin(πν0). (28.36)

28.11. Synchrotron sidebands

28.11.1. Enhancement factors. We pointed out earlier that the most important higher-order
spin resonances are the synchrotron sidebands of the parent resonances. Obviously γ (∂n/∂γ )

also contributes to such sidebands. We shall treat only planar rings, since we are studying
radiative polarization. Many important papers exist on the subject of the synchrotron sideband
spin resonances for radiatively polarized beams. A short list is Derbenev et al (1979c),
Yokoya (1983a), Biscari et al (1984), Buon (1989) and Mane (1990, 1992b).

We follow Yokoya (1983a) and Mane (1990) below. Actually Mane (1990) is a correction
of some errors of algebra in Yokoya (1983a). Once again, the formulae below were derived
using an (x, y, z) coordinate basis, where z propagates clockwise around the ring. The vector
n is again parametrized via complex ζ : n = n0

√
1 − |ζ |2 + �(ζk∗

0), with the approximate
equation of motion (15.15). The solution is (see (15.18))

ζ � −ie−iχ(θ)

∫ θ

−∞
eiχ(θ ′) ω · k0 dθ ′, (28.37)
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where

χ(θ) = −
∫ θ

−∞
w · n0 dθ ′. (28.38)

All of this was worked out earlier and is completely general. In principle, all the orbital
oscillation modes contribute to χ , but the betatron oscillations average almost to zero because
Qx,y � 1. Only the synchrotron oscillations add up coherently to a large total, because
Qs 	 1. This was explained earlier in this paper. Hence, only the synchrotron oscillations
are retained in χ below. For a planar ring, we define uε = aγ /Qs and then integrate to obtain

χ =
√

2Iz uε sin φz, (28.39)

which yields

ζ = e−iχ
∞∑

m=−∞

[m

uε

Am(θ) +
∑
±

√
2Ixβx e±i(φx+ψ̃x )Bm,±x(θ)

]
eimφz Jm(

√
2Iz uε), (28.40)

where

Am(θ) = −i
e−imQsθ

ei2π(ν0+mQs) − 1

∫ θ+2π

θ

eimQsθ
′
ωε · k0 dθ ′,

Bm,±x(θ) = − i

2

e∓i(ψ̃x+Qxθ)−imQsθ

(ei2π(ν0±Qx+mQs) − 1)
√

βx

∫ θ+2π

θ

e±i(φ̃x+Qxθ
′)+imQsθ

′√
βx ωx · k0 dθ ′.

(28.41)

All of this was also worked out before and the notation explained there. The term in Am

describes the synchrotron sidebands of a parent synchrotron resonance and the terms in Bm,±x

describe the synchrotron sidebands of a parent horizontal betatron resonance, and there is
correspondingly a term for the synchrotron sidebands of a parent vertical betatron resonance.
To solve for γ (∂n/∂γ ), we need the phase-space derivative γ (∂ζ/∂γ ). From Yokoya (1983a)

γ
∂

∂γ

[√
2Ixβx e±i(φx+ψ̃x )

] = −Dx ± i(αxDx + βxD
′
x),

γ
∂

∂γ

[
Jm(
√

2Iz uε) eimφz
] = uε

2

[
Jm−1(

√
2Iz uε) ei(m−1)φz + Jm+1(

√
2Iz uε) ei(m+1)φz

]
,

(28.42)

with a similar expression for the vertical betatron oscillations. Then, omitting much algebra,

γ
∂ζ

∂γ
= e−iχ

∞∑
m=−∞

Cm(θ) Jm(
√

2Iz uε) eimφz , (28.43)

where

Cm(θ) = 1
2 [(m + 1)Am+1(θ) − (m − 1)Am−1(θ)]

+
∑
±

{
[−Dx ± i(αxDx + βxD

′
x)]Bm,±x(θ)

+
√

2Ixβx e±i(φx+ψ̃x )
uε

2
(Bm+1,±x(θ) − Bm−1,±x(θ))

}
+
∑
±

{
[−Dy ± i(αyDy + βyD

′
y)]Bm,±y(θ)

+
√

2Iyβy e±i(φy+ψ̃y )
uε

2
(Bm+1,±y(θ) − Bm−1,±y(θ))

}
. (28.44)
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To calculate 〈d〉 we need 〈γ (∂ζ/∂γ )〉, which is not important. Of far greater interest is the
quadratic term 〈|d|2〉. For this we need 〈|γ (∂ζ/∂γ )|2〉. The average over the synchrotron
oscillations is given by

〈∣∣∣γ ∂ζ

∂γ

∣∣∣2〉 =
∞∑

m=−∞
|Cm(θ)|2

∫ ∞

0

dIz

〈Iz〉e−Iz/〈Iz〉J 2
m(
√

2Iz uε)

=
∞∑

m=−∞
|Cm(θ)|2 e−σ 2

Im(σ 2), (28.45)

where we recall the tune modulation index is

σ 2 = 〈Iz〉u2
ε =

(σE

E

)2 (aγ )2

Q2
s

. (28.46)

The physics is most clearly illuminated if we expand w in Fourier harmonics. Then

wε · k0 =
∞∑

n=−∞
anei(ν0+n)θ ,

e±i(ψ̃x+Qxθβ1/2
x wx · k0 =

∞∑
n=−∞

bn,±xei(±Qx+ν0+n)θ .

(28.47)

The vertical betatron oscillations will be omitted to avoid cluttering the exposition. They can
be worked out by analogy with the horizontal betatron oscillations. Then

Am(θ) = −
∑

n

an

ν0 + n + mQs

ei(ν0+n)θ ,

Bm,±x(θ) = −1

2

∑
n

bn,±x

ν0 + n ± Qx + mQs

e∓iψ̃x+i(ν0+n)θ

√
βx

.

(28.48)

The case of greatest interest is the sidebands of an isolated parent resonance, i.e. to select a
single term an or bn,±x . Let us begin with the sidebands of a pair of first-order synchrotron
resonances centred on an integer, i.e. an. We define �ν = ν0 + n. Then, omitting the
calculations of all the averages〈∣∣∣γ ∂ζ

∂γ

∣∣∣2〉 = |an|2Fn,z. (28.49)

It is conventional to express the strengths of the synchrotron sidebands as a ratio relative to the
strength of the parent resonance, i.e. when σ 2 = 0. In this case the parent resonance strength
is |an|2. Hence, the ratio is

Fn,z =
∞∑

m=−∞

(�ν)2 e−σ 2
Im(σ 2)

[(�ν + mQs)2 − Q2
s ]2

. (28.50)

This formula was derived by Derbenev et al (1979c). It is an important formula, and has been
(re)derived by several authors, e.g. Yokoya (1983a), Biscari et al (1984), Buon (1989) and
Mane (1989a).

As for the synchrotron sidebands of a horizontal betatron resonance, set �ν = ν0 +n±Qx ,
and recall the symbol H D

x from (9.14). One then has〈∣∣∣γ ∂ζ

∂γ

∣∣∣2〉 = H D
x

4

|bn,±x |2
(�ν)2

Fn,x, (28.51)
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where the ratio relative to the strength of the parent resonance (i.e. when σ 2 = 0) is now
(Buon 1989, Mane 1989a)

Fn,x =
∞∑

m=−∞

(�ν)2

(�ν + mQs)2
e−σ 2

[(
1 +

Js

Jx

)
I|m|(σ 2) +

Js

Jx

σ 2 I|m|+1(σ
2)
]
. (28.52)

Here Jx and Js are the partition numbers mentioned in section 9.4.

28.11.2. Chromaticity modulation. We pointed out earlier, in connection with experimental
studies at the KEK-PS Booster, that if one has a spin integral of the form

ζ = −i
∫

f (θ)ei(ν0θ
′−φ′

x ) dθ ′, (28.53)

where f is a function of no interest to the current discussion, then the betatron phase advance
would also display tune modulation, via the chromaticity. Treating only the ultrarelativistic
case, we can write

Qx → Qx0 + ξx

�γ

γ0
. (28.54)

Hence, with an obvious notation,

ν0θ − φx → ν0θ − φx0 + (ν0 − ξx)

√
2Iz

Qs

sin φz. (28.55)

Then the tune modulation index should read

σ 2 =
(σE

E

)2 (aγ − ξ)2

Q2
s

. (28.56)

In particular, if aγ = ξx , the modulations of the spin tune and the betatron tune cancel and
there are no synchrotron sideband resonances. This was derived in section 20 for nonradiative
beams. Evidently, the same reasoning applies for radiatively polarized beams (Mane 1990).

29. Radiatively polarized stored beams

29.1. General remarks

In this section, we shall review some experimental measurements of radiative polarization
at several storage rings. We include both modern work and important historical work, but
there are many measurements that are omitted for reasons of space. This section focuses on
purely ‘accelerator physics’ issues. Subsequent sections will describe the uses of radiative
polarization for precision measurements, e.g. tests of the Standard Model.

29.2. HERA: longitudinal radiative polarization

HERA is the Hadron Elektron Ring Anlage at DESY, Hamburg. It is a two-ring lepton–
hadron collider. The proton ring HERA-p originally operated at 820 GeV, and now has been
upgraded to 920 GeV (so-called HERA2). The lepton ring HERA-e was designed to operate at
27–35 GeV and usually runs at 27.5 GeV. HERA-e has circulated both electrons and positrons.

The collision of leptons and hadrons (protons, and possibly other species at a later date)
provides a deep-inelastic leptonic probe of hadronic structure at momentum transfers not
available at other facilities. For such physics, it is natural to demand longitudinal polarization
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of the lepton beam at the interaction point. HERA was therefore designed at the outset to utilize
the Sokolov–Ternov radiative polarization of the lepton beam, with spin rotators to provide
longitudinal lepton polarization at the interaction points. The Buon–Steffen minirotator
(Buon and Steffen 1986) was reviewed in detail in MSY1. HERA has to date operated with
unpolarized protons, but see MSY1 for a review of design studies for Siberian Snakes to
accelerate and store polarized protons in HERA-p.

HERA was the first high-energy storage ring to attain longitudinal radiative polarization
of a stored electron beam. HERA has also stored longitudinally polarized high-energy positron
beams, something no other accelerator has ever done. The SLC, to be discussed briefly later in
this paper, collided longitudinally polarized electrons against unpolarized positrons at a higher
beam energy of 45.6 GeV, but the SLC was a linear collider, not a ring, and so required a
polarized electron source.

The first observation of electron spin polarization at HERA (in the transverse direction)
took place in November 1991, and was at about the 8% level (Barber et al 1993). Steps
to improve the polarization level were taken via orbit correction and also the technique of
harmonic spin-matching to eliminate the driving terms of specific spin resonances. By 1994
the asymptotic vertical polarization had been increased to about 60% (Barber et al 1994).

The first pair of spin rotators was installed in the HERA East Hall in May 1994
(Barber 1995a). The asymptotic vertical polarization was about 65% with the rotators off. After
activating the spin rotators, and without further orbit correction, an asymptotic polarization
of about 56% was recorded (Barber et al 1995b). The longitudinal polarization (asymptotic)
level was increased to about 65% in the next few days. In November 1994, longitudinal
positron polarization was observed, also with an asymptotic level of about 65%. The lepton
and proton beams do not collide in the HERA East Hall. Instead HERMES, an internal gas jet
experiment, colliding a gas jet of protons against longitudinally polarized electrons/positrons,
operates there. A sample result from the HERMES experiment, of asymmetry measurements
in deeply virtual Compton scattering, using a longitudinally polarized positron beam and an
unpolarized hydrogen gas jet target, is shown by Airapetian et al (2001).

The HERA West Hall has a transverse Compton backscattering polarimeter (Barber et al
1990), which measures the vertical polarization, and a longitudinal Compton backscattering
polarimeter (Beckmann et al 2002) in the HERA East Hall, just upstream of the HERMES
experiment. Zetsche (1997) reported on resonance depolarization measurements (using the
transverse polarimeter) to calibrate the HERA-e beam energy. Note that the spin rotators had
to be turned off for this work, because the spin rotators induce small spin tuneshifts (so then
ν �= aγ ).

In 2003, mini-rotator pairs were installed at the interaction points of the H1 and ZEUS
high-energy physics detectors. A recent report on the status of HERA-e is given by
Barber et al (2004). The delivered (not asymptotic) longitudinal positron polarization level,
in the presence of e+p collisions, is about 40%, increasing to about 50% at the end of a
run. The data also indicate that the asymptotic polarization level itself increases with time
(Barber et al 2004).

During the time interval of nine years from 1994 to 2003 between the installation of
the first mini-rotator pair and the others, HERA underwent a luminosity and energy upgrade
(increase of proton beam energy to 920 GeV), becoming HERA2. The upgrade had some
serious consequences for the attainment of longitudinal polarization. In particular, the anti-
solenoids, which had been compensating the main detector solenoids in the North and South
interaction regions, were removed. The quadrupoles in the interaction regions also became
stronger. Details of the lepton orbital dynamics are given by Hoffstätter and Willeke (1999).
(Note that the above authors do not discuss the spin dynamics.) The effects on the polarization
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were studied, and a more sophisticated model of the spin motion with the new HERA optics was
developed (Berglund et al 1998). In particular, the polarization direction is not always parallel
to the solenoid field direction in the H1 detector. A more accurate solenoid representation was
tested using a parametrization of the measured field (especially the fringe fields at the H1
solenoid entrance and exit). A later review, describing the success of HERA polarization
operations after the upgrade, is given by Barber and Gianfelice (2002).

All the theory presented in this paper has been for noncolliding beams. In practice, the
beam–beam interaction is frequently a limiting factor in the performance of modern high-
energy colliders. Over the years, HERA has naturally undergone improvements to increase
the proton current and the specific luminosity (= luminosity/current). A definite correlation
between the luminosity and the lepton polarization has been observed, but by careful tuning of
the machine optics it has been possible to deal with the beam–beam interaction and to deliver
a high degree of longitudinal polarization (Gianfelice 2003).

29.3. SPEAR polarization data

29.3.1. General remarks. The SLAC–Wisconsin collaboration (Johnson et al 1983)
measured the polarization of the positron beam at SPEAR (see figure 6). Although the official
publication of the measurements is dated 1983, the data were taken several years earlier (by
1979). Several spin resonances, including both first-order and higher-order, are visible. The
SPEAR polarization data remain to this day the best example of an energy scan displaying the
spin resonances of a radiatively polarized stored electron or positron beam. SPEAR was run
in a single-beam mode and the positron polarization was measured in the studies. The beam
energy was above 3.5 GeV so that the polarization buildup time would be �15 min, to allow
numerous points to be scanned in a reasonable time. Note that the measurements in figure 6
were not performed in a single energy scan. The polarization was measured parasitically over
several machine shifts. The machine tunes, etc, were not held fixed in the scans. A rudimentary
effort was made to shift the energy (i.e. spin tune) to a common baseline, and this is how the
data in figure 6 were compiled.

In fact the SLAC–Wisconsin collaboration did take limited data with colliding e+e− beams.
Some of those data were published by Johnson et al (1983). The results are rather limited, and
are not presented here. To this day the effects of the beam–beam interaction on the polarization
of stored colliding beams are poorly understood.

The curve through the data in figure 6 is a guide to the eye, not a theoretical fit. Four
theoretical fits to the SPEAR data were published:

• Chao (1981b)—first order resonances
• Mane (1988a)—all resonances
• Buon (1989)—synchrotron sideband resonance
• Lee and Berglund (1996)—synchrotron sideband resonances

The fits by Chao and Mane were ab initio calculations which constructed a model for the
resonance strengths using the SPEAR machine lattice. The other two calculations (by Buon
and Lee and Berglund), fit the ratios of resonance widths. The machine lattice-dependent
quantities cancel out in the ratio. The fits by Chao, Mane and Buon employ the Derbenev–
Kondratenko formula, while the Lee–Berglund formalism does not. We shall discuss this
surprising fact below.

29.3.2. Theoretical fit 1: Chao. Chao (1981a) fitted the SPEAR polarization data using
the SLIM algorithm (Chao 1981b), which he developed. The SLIM programme calculates
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Figure 53. Theoretical fit of the SPEAR polarization data using SLIM. From Chao (1981b).
Copyright (1981) by the American Institute of Physics.

the vectors n0 and d0 on the closed orbit only, and yields only first-order spin resonances.
As explained earlier, all the resonance strengths vanish in a perfectly aligned planar ring
(SPEAR was planar). Hence, a Monte Carlo simulation of the machine imperfections was
required, to fit the data theoretically. A fit to the data, using SLIM, is shown in figure 53. The
program exhibits depolarization at the first-order resonances ν = νx + 3 and ν = νy + 3 (the
notation used was νx,y,s for the orbital tunes). The higher-order resonance ν = 3 + νx − νs ,
also visible in the graph, is not fitted by the theory.

Notice that in marked contrast to the situation in hadron synchrotrons, where the dominant
intrinsic resonances are due to the vertical betatron oscillations, in SPEAR the horizontal
betatron resonance ν = νx + 3 is much wider than the vertical betatron resonance ν = νy + 3.
Note also from figure 53 that the theoretical fit to the vertical betatron resonance is narrower
than the experimental data. We shall comment on this below.

29.3.3. Theoretical fit 2: Mane. Mane (1988a) fitted the SPEAR polarization data using his
programme SMILE (Mane 1987b). See also Mane (1989b) for more details. The fit to the data
was shown in figure 7. The SMILE formalism was explained earlier, and can go to arbitrarily
high orders in principle, hence, it fits many more resonances than did SLIM. Figure 7 remains
to this day the most extensive fit of the spin resonances of a radiatively polarized beam. There
are several notable features in the fit.

(a) As with SLIM, it was necessary to generate a model of the SPEAR lattice imperfections.
To calibrate the magnitude of the imperfections, the theoretical model was fitted to the width
of the first-order horizontal betatron resonance ν = νx + 3 at 3.65 GeV. Hence, the width of
this resonance was an input to the theory.

(b) As Chao (1981a) found, when fitting the vertical betatron resonance ν = νy + 3 using
SLIM, the SMILE theoretical fit was narrower than the observed resonance width. Since SMILE

calculated the resonance widths using linear dynamics of high orders, this showed that the
width of the first-order spin resonance ν = νy + 3 was due to nonlinear orbital dynamics. The
experimenters (Johnson et al 1983) stated that the width of the ν = νy + 3 was determined by
the tune spread of the vertical betatron oscillations. The vertical betatron resonance ν = νy + 3
at 3.605 GeV in the SPEAR data is, therefore, an example of a first-order nonlinear spin
resonance. It is not true that the higher-order resonances are due to nonlinear orbital dynamics,
nor that the first-order resonances are purely due to linear orbital dynamics.
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Figure 54. Theoretical interpretation of the cluster of closely spaced resonances in the SPEAR
polarization data near 3.688 GeV. From Mane (1988a).

(c) The horizontal betatron resonance ν = νx + 3 at 3.65 GeV is surrounded by several
clearly visible synchrotron sidebands (up to m = ±2). The widths of the synchrotron sidebands
were fitted without further adjustment of the theoretical inputs, once the tunes and the lattice
imperfections had been fixed. The second order synchrotron sidebands ν = 3 + νx ± 2νs at
3.61 GeV (m = −2) and 3.688 GeV (m = 2) are particularly interesting. According to theory,
these two resonances should have equal width, but according to the guide to the eye in figure 6,
the m = 2 sideband at 3.688 GeV is considerably wider than the m = −2 sideband at 3.61 GeV.
Why was this? The answer is as follows. Note that there are many data points in the vicinity
of the resonance at 3.688 GeV, some with quite high polarization (P/P0 > 80%). There is
another resonance ν = 2νy − 2 very close to the m = 2 synchrotron sideband ν = 3 + νx + 2νs

at 3.688 GeV. The SMILE fit to the data showed two narrow resonances at 3.688 GeV. The points
of high polarization in the middle of the ‘resonance’ are real, not noise. The polarization drops,
rises, then drops again, as one sweeps the beam energy. The m = ±2 synchrotron sideband
resonances are indeed of equal width. Mane (1988) interpolated the SPEAR data ‘by hand’
to denote a cluster of five resonances, indicated in the inset in figure 7 and displayed in detail
in figure 54. No other theoretical formalism has explained the experimental SPEAR data near
3.688 GeV in figure 6.

29.3.4. Theoretical fit 3: Buon. Buon (1989, 1990) independently derived formulae to fit
the ratio of the synchrotron sideband resonance widths to that of a parent betatron resonance
ν = n+Qx,y , or a doublet of synchrotron resonances ν = n±Qs . The formulae were displayed
in (28.50) and (28.52). Buon also stated that there was only definitive data to quantitatively
fit the m = −1 synchrotron sideband ν = 3 + νx − νs (at 3.63 GeV) of the parent horizontal
betatron spin resonance ν = 3 + νx (at 3.65 GeV). The energy spread of SPEAR was a known
quantity, as was the synchrotron tune and the value of aγ . From this information, one could
deduce that the value of the tune modulation index was σ 2 � 0.03. Buon did not attempt to
explain the disparity between the widths of the m = ±2 synchrotron sidebands at 3.61 and
3.688 GeV, nor any of the other resonances in the SPEAR data.

29.3.5. Theoretical fit 4: Lee and Berglund. The fourth (and final, to date) theoretical fit of
the SPEAR data was by Lee and Berglund (1996), with more details by Lee (1997). We review



2222 S R Mane et al

their work briefly. Their formalism is considerably different from the first three fits reviewed
above. Mari Berglund (2004) kindly brought to our attention her PhD thesis (Berglund 2001), in
which she addressed many details not adequately discussed in the above references. Lee (2005)
kindly explained to us that the basic idea is a phenomenological fit, to see what information
one can extract from the data with a minimum of theoretical inputs. It is not a ‘fundamental’
derivation like the earlier works.

Basically, Lee and Berglund (1996) parametrized the resonances using Lorentzians (as
one obtains from the single resonance model, see section 16)

P LB
eq � 8

5
√

3

δ2

δ2 + |ε|2 , (29.1)

where δ = ν − νres is the distance to the resonance and ε is the resonance strength. Note
that in the close vicinity of a resonance, one can show that |γ (∂n/∂γ )| ∝ |ε/δ|, e.g. as in the
harmonic spin matching technique. Then, neglecting factors of 11/18, etc, the spin-diffusion
approximation to the Derbenev–Kondratenko formula yields

Peq � 8

5
√

3

1

1 + |ε|2/δ2
, (29.2)

which is equivalent to (29.1). Hence, the Lee–Berglund parametrization is basically valid close
to a resonance, with a phenomenological value for ε. For brevity we define λ =

√
δ2 + |ε|2.

When there are multiple parent resonances, indexed by i, they express the overall magnitude
of the polarization by

P LB
eq = PST

∏
i

δ2
i

λ2
i

, (29.3)

i.e. a product of single resonance terms. They retrofitted the widths of the parent resonances
ν = νx + 3, ν = νy + 3 and ν = 8 + νx − νy from the experimental data. The synchrotron
sideband resonances were added using a Bessel-function ‘comb’ as derived earlier for the
single resonance model, with the tune modulation index σ 2 = (σE/E)2(aγ /νs)

2. They
wrote the Bessel functions as Jm(g) (i.e. before an average over the beam distribution), where
g = β2 ν0 â/νs . They employed a ‘95% emittance’ value â = √

6σp/p, and obviously β2 � 1.
For SPEAR, they obtained g � 0.42. Comparing with the value found by Buon earlier, we find
that 1

6g2 � 0.0294, in agreement with Buon’s finding σ 2 � 0.03 reported above. Lee and
Berglund (1996) only fit up to 3.66 GeV and thus covered only the lower (m = −1 and m = −2)
synchrotron sidebands of the horizontal betatron resonance ν = νx + 3 at 3.65 GeV. Therefore,
they do not explain the discrepancy in the observed widths of the m = ±2 sidebands.

29.4. VEPP-4

A spin resonance scan as a function of beam energy was performed at VEPP-4. The data are
shown in figure 55. The data span the energy interval from roughly aγ � 10.5 to aγ � 12. The
values of the orbital tunes are indicated in the figure. Several integer and first-order betatron spin
resonances are visible. No synchrotron sideband resonances are indicated, possibly because
the synchrotron tune was too small to resolve distinct sideband resonances. No theoretical fit
to the VEPP-4 data was published.

The data were taken as part of the effort to measure the masses of the vector mesons
ϒ , ϒ ′ and ϒ ′′. Precision measurements of the masses of vector mesons produced by e+e−

will be reviewed in section 30. There is substantial polarization at the beam energies 1
2Mϒc2

and 1
2Mϒ ′′c2, but relatively little at 1

2Mϒ ′c2, because of the proximity to various first-order
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Figure 55. Resonance scan at VEPP-4 in the energy range of the ϒ , ϒ ′ and ϒ ′′ mesons.

betatron depolarizing resonances due to the values of the betatron tunes. Hence, the beam
energy calibration was performed at a point offset by 30 MeV from the peak of the ϒ ′

resonance (60 MeV centre-of-mass) and the energy at the operating point for the experiment
was obtained by extrapolation using magnetic field calibrations. The beam energy calibrations
were performed both below and above the e+e− → ϒ ′ → hadrons resonance peak.

The energy of the VEPP-4 ring was initially 3 GeV, before an upgrade to reach the mass
of the ϒ . In its earlier version, VEPP-4 was also used to measure the masses of the charmed
mesonsJ/ψ andψ ′ (Zholents et al 1981). Since the polarization buildup time strongly depends
on the beam energy, at the lower beam energy of 1.6 GeV, the Sokolov–Ternov polarization
buildup time at VEPP-4 was over 100 h. Hence, the electrons were radiatively polarized in the
VEPP-3 booster ring, where τpol � 1.5 h and the polarized beam was transferred to VEPP-4.
The principal concern, then, was not polarization but depolarization. The depolarization time
in VEPP-4 at E � 1.6 GeV was estimated theoretically by Zholents et al (1981); consult that
paper for a graph of the theoretical calculations. Although there are depolarizing resonances
present in the vicinity of E = 1

2Mψ ′c2, the polarization survived long enough to make accurate
measurements.

29.5. VEPP-2M

Earlier in this review, we showed a graph of the buildup of the polarization in VEPP-2M
(see figure 3). It was one of the early observations of radiative polarization in storage rings
(Serednyakov et al 1976). In that same paper, the authors also calculated (estimated) the
strength of the depolarizing resonances in the ring. It is a calculation of first-order resonances,
some with sidebands. The paper, unfortunately, does not contain a graph of a comparison of
theory with data.

29.6. VEPP-2

VEPP-2 was a weak-focusing storage ring (the later ring VEPP-2M was strong-focusing).
Some of the earliest observations of radiative polarization were made at VEPP-2. We have cited
those measurements earlier in this review (Baier 1972). A beautiful theoretical estimation of the
depolarizing resonances is available. The function plotted was the overall polarization buildup
rate τ−1 as a function of the beam energy. The graph is shown in figure 56. Several features
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Figure 56. Theoretical estimate of polarization rate at VEPP-2, including higher-order resonances.
From Khoze (1971).

of the calculation are notable:

• The calculation employed the spin diffusion model. The calculation assumed a vertical
unperturbed axis (planar ring). The Derbenev–Kondratenko formula (dated 1973) was
the eventual formal general formula, but approximate techniques for both synchrotron
and betatron spin resonances, and sufficiently powerful for application to actual rings,
were already known as the INP at Novosibirsk before then. Regrettably, these ideas
remained unknown to the outside world for many years. The techniques to calculate the
higher-order resonances were not formally published as an algorithm, unlike SLIM and
SMILE, etc.

• Note that figure 56 depicts second-order betatron spin resonances, plus synchrotron
sidebands, in the vicinity of 660 MeV. We follow the notation in the figure and write
νx,z. The first-order resonances in a planar ring all arise from imperfection terms. We
also know that in a planar ring, w · n0 vanishes for the vertical betatron oscillations,
but is nonzero for the horizontal betatron oscillations. Hence, the strongest second-order
betatron spin resonances will be k±2νx and νx ±νz. The resonances k±2νz will be weak.
This is exactly what the resonance calculations in figure 56 indicate: three second-order
betatron spin resonances are shown, at approximately 660 MeV, and they are 3 − 2νx ,
2νx and νx + νz. Note from the figure that νx = 0.7614 and νz = 0.8093, so the three
resonances are close together in energy. The resonance 2νz should appear at a slightly
higher energy, but it is too weak.
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30. Precision measurements I

30.1. General remarks

In this section we review some high-precision physics measurements using polarized beams.
All the experiments below used radiatively polarized beams; for high-precision work one
requires stable machine operating conditions, i.e. storage rings and not synchrotrons, and this
basically implies radiative polarization. By far the most important use of radiatively polarized
stored beams is the calibration of the beam energy, which is usually accomplished by the
technique of resonant depolarization, but we shall also describe some other techniques below.
The basic ideas of resonant depolarization and resonant spin-flip were described earlier in this
review. In all the particle-physics experiments below, we employ ‘natural units’ and put c = 1
(h̄ will not appear below).

The resonant depolarization of polarized beams in e+e− annihilation (electro- hadro-
production) experiments provides, in many cases, the most accurate measurements of the
masses of vector mesons with assignment J PC = 1−−. The machine is operated at the peak
of the resonance cross-section of the vector meson, and resonant depolarization is employed
to calibrate the beam energy. Resonant depolarization is not limited to measurements of the
masses of vector mesons. The mass of the Z0 intermediate vector boson, which carries the
weak neutral current, was measured to an accuracy of 2.1 MeV using resonant depolarization
at LEP. The whole of section 31 will be devoted to the excellent work with polarized beams
at LEP.

Note that, if the only interest in polarized beams is to calibrate the beam energy via resonant
depolarization, it is not necessary for the spins to have a high level of polarization. It is only
necessary to be able to identify the centre of the depolarizing resonance accurately. This is
especially important in cases where the Sokolov–Ternov polarization buildup time may be
long, or the presence of depolarizing resonances limits the asymptotic degree of polarization
to a value much less than the Sokolov–Ternov limit of 92.4%. For example, a polarization
level of as little as 10% will suffice.

An rf kicker may resonate with a synchrotron sideband rather than the central resonance.
This is a source of experimental error in the energy calibration measurements. One must justify
that the kicker frequency is aliased to the central line. This can be done by varying the value
of the synchrotron tune, e.g. by varying the rf voltage, and verifying that the location of the
resonance does not vary with changes in the synchrotron tune.

30.2. Measurements of particle masses

We do not give an exhaustive list of the mass measurements of all the vector mesons. We
consider below two experiments to measure the mass of the ϒ (officially ϒ(1S)). MacKay et al
(1984) reported the value of the ϒ mass to be

Mϒ = 9459.97 ± 0.11 ± 0.07 MeV, (30.1)

where the first error is statistical and the second is systematic. The measurement was made
at CESR using the nonmagnetic CUSB detector. The solenoid in the other particle detector
(CLEO) was switched off, to avoid systematic errors in the spin precession formula caused by
the presence of longitudinal fields in the ring. The positron beam energy was measured using
laser Compton backscattering. The above value is combined with that from Artamonov et al
(2000), who obtained

Mϒ = 9460.51 ± 0.09 ± 0.05 MeV. (30.2)
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This gives a world average value in the Particle Data Book (Eidelman et al 2004) of

Mϒ = 9460.30 ± 0.26 MeV. (30.3)

There is an interesting twist to one of the experiments. The value quoted by Artamonov et al
(2000) is from a reanalysis of two earlier experiments at VEPP-4 (Baru et al 1992 and
Artamonov et al 1984), using a revised value for the electron mass. The latter experiment
subsumes an earlier experiment reported by the same group (Artamonov et al 1982). The
1982 experiment is particularly interesting from an accelerator physics standpoint. The
beam polarization was measured using two techniques. One method was laser Compton
backscattering. The other method is unusual, developed in-house at Novosibirsk, and never
tried up to that time in particle accelerators. As far as we are aware it has not been tried in
other e+e− colliders.

It is well-known that classical synchrotron radiation (which dominates the emitted photon
intensity) is strongly linearly polarized in the median plane of the beam orbit. However, the
out-of-plane radiation, above and below the median plane, contains a circular polarization
component. Hence, the electron and positron beams in VEPP-4 were separated vertically, and
the circularly polarized photons from the out-of-plane synchrotron radiation of one beam were
used to scatter against the particles in the oppositely moving beam. The optimal vertical beam
separation in the experiment was 120 µm and the rms vertical beam size was 30 µm. The
beam polarization at VEPP-4 was about 80%. Using the synchrotron radiation, the Compton
backscattering asymmetry was 5%, for both the electron and positron beams. Using laser
Compton backscattering, the asymmetry was 1.3%, where the laser was fired against the
electron beam only. The higher asymmetry was because the synchrotron radiation photons had
an energy of 100 eV, whereas the laser photons had an energy of only 2 eV. The depolarization
was performed using a radially directed rf magnetic field. The experiment reported a value of
(Artamonov et al 1982)

Mϒ = 9459.6 ± 0.6 MeV. (30.4)

As stated above, this value has been superseded by more accurate measurements by the same
group, and by other groups also using VEPP-4.

In conjunction with e+e− annihilation, resonant depolarization has been used to calibrate
the masses of many vector mesons from the ω(782) on up. Such measurements fall into
the field of metrology. Many of these measurements were made using the VEPP-2M and
VEPP-4 e+e− storage rings at Novosibirsk, and many are still current in the Particle Data Book
(Eidelman et al 2004). The masses of the ω, φ, K± and K0 were measured at VEPP-2M
and the masses of the J/ψ , ψ ′, ϒ , ϒ ′ and ϒ ′′ were measured at VEPP-4. Precision mass
measurements were also made at other accelerators, e.g. at DORIS for the ϒ ′ (Barber et al
1984) and, of course, at CESR for the ϒ (MacKay et al 1984). A comprehensive review of the
precision mass measurements at the VEPP-2M and VEPP-4 rings was given by Skrinsky and
Shatunov (1989). We review here some noteworthy results pertaining to the φ(1020) meson
and also the kaons. In particular, kaons are spin zero pseudoscalar mesons—how can e+e−

annihilation be used to measure their mass?
The measurement of the mass of the φ(1020) in 1975 was historically the first precision

mass measurement at Novosibirsk (Aul’chenko et al 1975). The experiment was conducted
at the VEPP-2M storage ring using the OLYA detector. The information below is from
Bukin et al (1978) and the review by Skrinsky and Shatunov (1989). At such a low beam
energy (510 MeV), the radiative polarization buildup time at VEPP-2M is too long. Hence, the
beam was stored at the maximum energy of the ring (700 MeV), where the polarization time
was approximately 50 min and a polarization level of about 80% was attained. One sees that
precision mass measurements are not always as simple as simply placing the beam at the peak
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Figure 57. Annihilation cross-section at the φ(1020) resonance peak for the two decay channels
e+e− → φ → K0

LK0
S and e+e− → φ → π+π−π0 and the background event level. Reprinted

with permission from Bukin et al (1978). Copyright (1978) by the American Institute of Physics.

of the resonance cross-section. After the beams had polarized, the beam energy was lowered
through several weak depolarizing spin resonances to the φ meson region. The spin precession
frequency was measured by observing a jump in the intrabeam scattering loss rate (Touschek
effect) upon sweeping the frequency of a depolarizer. The beam energy measured in this way
was calibrated againt the frequency of an NMR probe. This was done at several energy points.
In this way, a calibration of the beam energy against the NMR probe frequency was determined.
The experiment then proceeded as follows. The beam energy in the vicinity of the φ peak was
calibrated via the NMR frequency at the beginning of the experiment and also at the end. The
accuracy of the energy calibration was

�Ecm

Ecm
� 1.0 × 10−4. (30.5)

The φ resonance peak was measured in the two decay channels e+e− → φ → K0
LK0

S and
e+e− → φ → π+π−π0. The energy distribution of the events is shown in figure 57. The
data in figure 57 are plotted taking account of the radiative corrections and also the ω − φ

interference. The φ meson mass and width from the data in figure 57 are

Mφ = (1019.52 ± 0.13) MeV, �φ = (4.36 ± 0.19) MeV. (30.6)

The above results were published by Bukin et al (1978). The result is still competitive with
more modern measurements. The current world average value from the Particle Data Book
(Eidelman et al 2004) is

Mφ = (1019.456 ± 0.02) MeV, �φ = (4.26 ± 0.05) MeV. (30.7)

We now briefly discuss the measurement of the masses of the kaons. Most of the current
best measurements of the charged kaon mass come from kaonic atoms. Only one is from
e+e− annihilation. For the K0 the e+e− annihilation experiments are still quite competitive.
The fundamental question, however, is how can one employ e+e− annihilation to measure
the masses of kaons? The kaons are after all spin zero pseudoscalar mesons, and cannot be
produced as a resonance (like the φ or ϒ , etc) in e+e− annihilation.
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We begin with the neutral K0 meson. The information below is taken from Barkov et al
(1987). The results from this experiment are still a major component of the world average in the
Particle Data Book. Basically, the measurement technique for kaons proceeds indirectly via
the φ resonance. The reaction studied was e+e− → φ → K0

LK0
S , where the K0

S subsequently
decayed into charged pions via K0

S → π+π−. The kaons produced from the decay of a φ

at rest moved slowly and the K0
S decayed in the detector. Furthermore, being produced via

resonant e+e− annihilation (the φ), the K0
LK0

S production cross-section is large resulting in a
large data sample. The decay π+π− were observed in the CMD detector. The high resolution
of the detector permitted one to reconstruct, from the vector sum of the momenta of the π+

and π−, the momentum of the K0
S which produced them. One can also measure the opening

angle φ between π+ and π−, in particular the minimum value ψ0. At this minimum opening
angle, the pions are emitted in the K0

S rest frame in a direction perpendicular to the lab-frame
K0

S momentum. The kaon mass is calculated from the formula

MK0 =
[
E2

K sin2 ψ0

2
+ 4m2

π cos2 ψ0

2

]1/2
. (30.8)

Here EK is the kaon energy, which up to radiative corrections is equal to half the total energy
of the colliding e+e− beams—measured via resonant depolarization, remember—and mπ is
the pion mass, which must be determined independently.

According to Barkov et al (1987), the e+e− beam was set on the left-hand slope of the
φ resonance peak, at 2E = (1018.64 ± 0.3) MeV. By 1987 the beam lifetime at VEPP-2M
had improved to the point where it was feasible to allow the beams to polarize radiatively at
the energy of the φ resonance itself (τpol � 3 h). The beams were held at the above energy for
3–4 h, yielding a polarization level of 50–60%. The average beam energy was measured to be
constant to an accuracy of 15 keV. The result reported by Barkov et al (1987) was

MK0 = (497.661 ± 0.033) MeV. (30.9)

As stated above, this value is still current, and contributes to the world average.
For charged kaons, five of the six experiments for MK± used to compute the world

average in the Particle Data Book are from kaonic atoms. The sixth is via annihilation
e+e− → φ → K+K− near the peak of the φ resonance (Barkov et al 1979). It is that
experiment which we review below. The principle of the experiment is simple. One employs
the energy–momentum relationship E2 = p2 + m2. Since the kaons are produced in the φ rest
frame, one has EK± = 1

2Ecm, the value of which is measured via resonant depolarization of
the e+e− beams. The kaon momentum was determined via range measurements in a detector
of five layers of photoemulsion. The result was (Barkov et al 1979)

1
2 (MK+ + MK−) = (493.670 ± 0.029) MeV. (30.10)

Note that the kaonic atom experiments give the mass of only the negative kaon MK− . The
above experiment can be used to deduce a value for MK+ , with practically the same accuracy
as that quoted above, since the value of MK− is well-known from the kaonic atoms. Indeed,
of all the experiments listed in the Particle Data Book, the one by Barkov et al (1979) is the
only one which gives a mass for the K+.

A new set of high-precision measurements of meson masses has recently been completed
at VEPP-2M, using the CMD2 detector (see also Akhmetshin et al (2004) for a reanalysis of
earlier data). A new round of precision mass measurements at the upgraded VEPP-4M storage
ring was announced by Blinov et al (2002), including the τ -lepton as well as vector mesons.
New results for the masses of the J/ψ and ψ ′ were published by Aul’chenko et al (2003).
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30.3. CPT invariance

We now turn to other measurements, not connected with the particle masses. Experiments were
conducted at VEPP-2M to compare the ratio of the values of the anomalous magnetic moments
of the electron and the positron to high accuracy. Note that the experiments measured the ratio;
the actual magnetic moment anomalies were not measured to the same degree of accuracy.
The equality of the anomalous magnetic moments of the electron and positron provides a
precision test of CPT invariance. In two earlier experiments, Serednyakov et al (1977) and
Vasserman et al (1987a), resonant depolarization was used to establish the equality of the spin
tunes of the electron and positron beams. A different and innovative technique was used in a
later work by Vasserman et al (1987b). This is the experiment described below.

The Sokolov–Ternov radiation caused the electron and positron spins to polarize vertically
with equal and opposite values. Now recall the Froissart–Stora formula, from section 6. If
the adiabatic condition is satisfied, i.e. ε2/|α| � 1, then there will be complete reversal of
the spin direction with negligible loss of polarization. However, suppose we stop halfway,
i.e. when the value of aγ crosses the tune of the resonance driving term. Then the spins will
be rotated into the horizontal plane with negligible loss of polarization. This was done by
Vasserman et al (1987b). Define ωr = ωrev(1 + aγ ) as the resonant frequency. A horizontal
radio-frequency field was applied, starting from some initial value ωi 	 ωr and increasing in
value slowly so as to satisfy the adiabatic condition ε2/α � 1. The radio-frequency field was
switched off at the resonant frequency ωr and the spins were allowed to precess freely in the
horizontal plane. After a time, the spins were rotated back to the vertical, by reapplying the
radio-frequency field starting at the frequency ωr and sweeping backwards to the initial value
ωi. Note that the same radio-frequency kicker sufficed to rotate the spins of both beams. This
can be seen by the consideration of signs of the particle charges, and the velocities and initial
spin orientations. The magnitude of the restored polarization was

Pf = P0 e−(δψ)2/2. (30.11)

Here, δψ is the angle of the spread of the spins (while precessing in the horizontal plane). The
rotation of the spins back to the vertical cancels the first-order spread in the spin directions, but
cannot cancel the second order spread 1

2 (δψ)2; this leads to (30.11). The spins were allowed to
polarize again, via Sokolov–Ternov radiation. The whole process was repeated several times
during a machine fill. While the spins were in the horizontal plane, the difference in the spin
rotation angle in a time interval T was

�ψ =
∫ T

0
(�e+ − �e−) dt, (30.12)

with obvious notation. The angle �ψ should not be confused with the spread δψ . The value
of T was limited by the depolarization time of the spins. If the spin precession angles were
equal then the restored polarization ratios should be equal:

P +
f

P +
0

= P −
f

P −
0

, (30.13)

with an obvious notation. Hence, the e+ and e− polarizations were measured before and after
the rotation of the spins to the horizontal plane. An example of such a measurement is shown
in figure 58. The variables plotted are (the authors use S not P )

S+

S0
= S cos ψ,

S−

S0
= S cos(ψ + �ψ), (30.14)

where S = e−(δψ)2/2 is the remanent polarization ratio after the free precession and restoration
to the vertical. If the spin precession frequencies were equal, then the graph would be exactly
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Figure 58. Comparison of the restored vertical polarization of the electron and positron beams (after
free precession in the horizontal plane) at VEPP-2M. Reprinted from Vasserman et al (1987b).
Copyright (1987) with permission from Elsevier.

a straight line. To obtain a better calibration of the value of S, a radial static electric field was
applied in one part of the ring, while the spins were precessing in the horizontal plane to cause
a separation of the spin precession frequencies. From (5.81), one finds that the frequency
split is

� = �+ − �− = 2a
e

mc
〈E〉 = 2aγ

〈E〉
〈By〉 ωrev, (30.15)

which evaluated to 2.5 Hz for this experiment. In other measurements, the electric field was
increased by a factor of 2.5. The graphs of S−/S0 against S+/S0, for the various settings of
the electric field, are essentially Lissajous figures. The same value of S was used to fit all the
data. The overall conclusion for the case of zero electric field was that the phase difference
was |�ψ | < 5˚, which implied, assuming me+ = me− (Vasserman et al 1987b)

�e+ − �e−

�avg
= ae+ − ae−

aavg
� 1 × 10−8. (30.16)

The above result was for a time the best limit on CPT invariance for leptons, but is now obsolete,
having been superseded by more accurate measurements using Penning traps. Multiplying by
(g − 2)/g � 1.2 × 10−3 to compare to other results, the above bound is (Particle Data Book,
Eidelman et al 2004)

ge+ − ge−

gavg
� 12 × 10−12, (30.17)

as compared to the current best limit using Penning traps (Dyck et al 1987)

ge+ − ge−

gavg
� −0.5 × 10−12. (30.18)

However, note that the trap experiments measure the value of g (or g − 2). The accelerator
experiment measured the difference in spin precession frequencies, so that the experiment really
demonstrated the equality of eae/(mc2), in principle a different combination of fundamental
constants.
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Figure 59. Measurement of the SPEAR positron beam polarization in the vicinity of the vertical
betatron spin resonance νy + 3. From Fischer et al (1979).

30.4. SPEAR: energy calibration via betatron spin resonance

The measurements at SPEAR (Fischer et al 1979) were the first use of resonant depolarization
to calibrate the beam energy using a laser Compton backscattering polarimeter. Previous
energy calibrations using resonant depolarization (e.g. at VEPP-2M and VEPP-4) employed
Touschek scattering for the polarimetry. Also note that in contrast to other experiments, the
SPEAR beam energy was calibrated by measuring the (vertical) betatron tune, and not by
sweeping the frequency of an rf kicker.

The (noncolliding, positron) beam energy was held fixed at E � 3.6061 GeV and the
polarization was plotted against the vertical betatron tune (the other machine tunes were held
fixed). The resonance ν = νy + 3 was chosen because it was narrow, thereby permitting a
precise determination of its centre (see figure 6 and the discussion in section 29). The data are
shown in figure 59. The error bars indicate the polarization uncertainty and also the betatron
tunespread. From the measurement ν

exp
y = 5.1838 ± 0.0015, the energy was calibrated to be

E = mec
2

ae
(νexp

y + 3) = 3.6061 ± 0.0007 GeV, (30.19)

a relative accuracy of ±0.02%. Magnetic field measurements could achieve only ±0.1%. We
were informed (Sinclair 2004) that the technique was used later to measure the mass of the ψ ′

meson (although not formally published).

30.5. CESR and the B-factories

A study of the feasibility of longitudinal polarization at CESR has been reported by
Wang (2001). Otherwise (other than the measurement of the ϒ mass), little or nothing has
been done with polarized beams at CESR and the PEP-II and KEK-B B factories.

30.6. TRISTAN

Radiative polarization was observed at TRISTAN (Mizumachi et al 1990) before the ring was
converted into a part of KEK-B. The material below is mainly from Nakajima et al (1991)
and Nakajima (1993). A laser Compton backscattering polarimeter was used. Initially, a
single-photon Compton backscattering polarimeter was employed. The polarimeter could
simultaneously measure both the vertical and longitudinal polarization components of the
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electron beam. According to Nakajima et al (1991), a vertical polarization of 33% and a
longitudinal polarization of 18% was observed at a beam energy of 29 GeV, corresponding
to a total polarization of 37% and tilted at an angle of 29˚ to the vertical. The degree of the
longitudinal polarization was also found to be correlated with the strength of the solenoid
fields in the particle detectors during colliding-beam operations. The tilt of the polarization
by 29˚ is surprising. Unfortunately, the measurements were not pursued in greater detail. At
TRISTAN, the Sokolov–Ternov polarization time at a beam energy of 29 GeV was only 140 s.
Later, the polarization was measured at 14.76 GeV and an asymptotic polarization level of
70% was recorded (Nakajima 1993). The Sokolov–Ternov polarization time at a beam energy
of 14.76 GeV was 68.5 min, as expected from the E−5 dependence of the polarization buildup
time. Resonant depolarization was also employed at TRISTAN to calibrate the electron beam
energy during colliding-beam operation, yielding a measurement of (Nakajima 1993)

E = 28 887.639 ± 0.022 MeV, (30.20)

which is a relative accuracy of 10−6. Later, a multi-photon Compton backscattering polarimeter
was employed, which had less error from background but could only measure the transverse
polarization.

30.7. Synchrotron radiation light sources

30.7.1. General remarks. This is a somewhat peripheral topic, but deserves a brief mention.
The use of polarized beams for precision measurements is not restricted to high-energy
particle physics. Synchrotron radiation light sources are important research facilities for
materials science, diffraction studies of biological molecules, etc. An overview is given
by Margaritondo (2002). Modern light sources are equipped with excellent beam position
monitoring and orbit correction feedback systems. The beams have very small emittances to
supply photon beams of high brightness and brilliance. Hence, the depolarizing spin resonances
are weak.

It is desirable for the machine operation to have an accurately calibrated beam energy. In
practice, the absolute energy calibration is not necessarily critical; what is of much greater
importance, is to have a stable beam energy during machine operations. For this reason, it is
typically more important to record changes in the beam energy. The polarization buildup time
may or may not be much shorter than the beam storage time. When the BESSY I light source
operated at its top energy of 800–850 MeV, the Sokolov–Ternov buildup time was roughly 3 h
(Klein et al 1997). When the ring operated in a lower energy mode at 340 MeV, the use of
radiative polarization was impractical. Nevertheless, a laser Compton backscattering system
was installed at BESSY I to measure the electron beam polarization and resonant depolarization
measurements were carried out at the energy of 800 MeV (Klein et al 1997, 1998). At the newer
light source, BESSY II, the use of resonant depolarization energy calibration helped to improve
the stability of the beam energy from ±7 × 10−4 to ±3 × 10−4 (Kuske and Goergen 2000).

In many modern synchrotron light sources, but not all, the beam emittances are so small
and the particle density, therefore, so high that the beam loss lifetime is dominated by the
Touschek effect. At the ALS, SLS and BESSY II, the Touschek lifetime measurement was
employed as the polarimeter. BESSY I had a Compton polarimeter, as stated above.

At the ALS (see figure 16), the beam energy is 1.5–1.9 GeV and the relative accuracy
of the resonant depolarization measurements is 1 × 10−5, which is an order of a magnitude
better than alternative techniques. Note, however, the principal method of correcting energy
variations at the ALS is to record the changes in the orbit position in dispersive regions and
feedback on the rf frequency. The use of resonant depolarization is an additional tool.
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Figure 60. Measurement of the beam energy variation as a function of the rf frequency at the ALS.
The slope is the negative inverse of the momentum compaction factor. Courtesy of Byrd (private
communication) and ALS.

We mention here an elegant piece of accelerator physics, using the beam energy calibration
(via resonant depolarization), to accurately measure the momentum compaction factor of the
ring (Steier et al 2000). For ultrarelativistic particles, we can approximate

�E

E
= − 1

α

�frf

frf
. (30.21)

The beam energy was changed slightly by varying the frequency of the rf cavities, but without
altering the magnetic field in the bending dipole magnets. This shifted the energy (and spin
tune) and the orbital revolution frequency. A graph of �E/E against �frf/frf is plotted in
figure 60. The value of α is the negative inverse slope of the line. The value so obtained is
α = (1.628±0.004)×10−3. This agrees well with calculations, based on a calibrated model of
the machine, which yield α = (1.616±0.008)×10−3. The momentum compaction factor has
also been measured in this way at BESSY I (Klein et al 1997) and at the SLS (Leemann et al
2002a).

An extremely pretty graph showing depolarization from the parent resonance and its first
synchrotron sideband is shown in figure 61 (Leemann et al 2002a). The measurements were
made at the SLS (see figure 17). Two frequency sweeps are displayed. The synchrotron tune
varies with the rf voltage like Q2

s ∝ Vrf . Hence, the rf voltage was increased by 11% in the
second sweep, thereby raising the value of the synchrotron tune Qs from 0.006 17 to 0.006 48,
a roughly 5% increase. The synchrotron sideband can be clearly distinguished because its
location shifts, whereas that of the parent resonance does not. Using the data in figure 61, a
more detailed fit of the depolarization across the parent resonance was performed by fitting
to the Froissart–Stora formula. This led to an energy calibration of (2.4361 ± 0.000 24) GeV,
where the uncertainty is half of the FWHM of the fit. Later work improved the calibration to
(2.4361±0.000 18) GeV. This is 1.5% higher than the design energy. The difference has not yet
been explained (Leemann 2002b). The momentum compaction factor was also measured at the
SLS, including the second order term. The results are α1 = 5.6 × 10−4 and α2 = 4.4 × 10−3.
(See Leemann et al (2002a) or (21.33) for the definition of α1 and α2.) No error bars are
quoted because only three energy points were measured. Independent measurements (not
using polarized beams) yield α1 = 6.0 × 10−4 and α2 = 4.2 × 10−3.
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Figure 61. Dip patterns of two sweeps at the SLS differing by an 11% increase of the rf voltage
(shift in the value of the synchrotron tune). Courtesy of Leemann (private communication) and SLS.

We are grateful to Byrd (2004) and Steier (2004) who kindly supplied copies of data and
information about the experimental techniques employed at the ALS and to Leemann (2004)
who kindly supplied details about the SLS and his work.

31. Precision measurements II

31.1. General remarks

In the previous section, we reviewed work on precision measurements with radiatively
polarized beams at a number of accelerators. Here we shall review work at one accelerator
only, the biggest ever built to date, where the concept of ‘energy calibration’ became not just
an occasional measurement but part of the very soul of the machine. That accelerator is LEP.
The figures below were kindly supplied by Wenninger (2004), also including a list of relevant
references to the literature.

31.2. Background

CERN (Centre Européen pour la Recherche Nucléaire) is the European Laboratory for Particle
Physics in Geneva, Switzerland. In the late 1980s and through the 1990s, the high-energy
frontier was the mass scale of the Z0 and W± bosons of the electroweak theory. The Z0 and
W± were discovered at CERN, using the Spp̄S, the Super Proton Synchrotron converted into
a pp̄ collider. The next step after the discovery of the Z0 and W± was to study their properties
in detail. CERN met this challenge by building the e+e− collider LEP. Because of its high
beam energy (approximately 46 GeV in LEP1, increased to about 100 GeV in the second phase
LEP2), the dissipated synchrotron radiation power output was enormous (several tens of MW).
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To mitigate this, LEP was designed with a circumference of 27 km, sitting astride the Swiss–
French border. LEP operated from 1989 to 2000, initially as a dedicated Z0 factory with a
centre-of-mass energy of approximately 91 GeV (LEP1, 1989–95) and later (LEP2, 1995–
2000) with higher beam energies up to a centre-of-mass energy of 209 GeV, for open W +W−

production.
Since the Z0 boson can be (copiously) produced on resonance via e+e− annihilation, LEP

not surprisingly operated in its initial phase as a dedicated Z0 factory (the so-called LEP1) to
measure the parameters of the electroweak theory with precision. Two of the most important
parameters are the mass MZ and the decay width �Z of the Z0. LEP was uniquely positioned
to measure both parameters to an accuracy unrivalled by other machines and it did so. Over
20 million Z0 decays were recorded by the various detectors, by operating LEP at the peak of
the Z0 resonance, and at two energy points just above and below the peak.

Accumulating many decay events was not sufficient, however; the machine beam energy
should also be accurately calibrated. We have seen that the technique of resonant depolarization
furnishes the most accurate method of measuring the beam energy, and thereby for determining
the masses of vector mesons produced in e+e− annihilation. The Z0 boson can also be produced
as a resonance in e+e− annihilation and its mass can, therefore, be accurately determined by
setting the e+e− beam energy on the peak of the Z0 resonance. The decay width �Z can be
determined by operating the machine at energy points slightly above and below the resonance
peak. This section is devoted to a description of the development of the ‘LEP Energy Model’.
It was fortunate that the mass of the Z0 is approximately 91.2 GeV, because this meant that the
required spin tune was

aγ = (1/2)MZ

me/a
� 45.6

0.440 6486
� 103.5. (31.1)

Hence, the peak of the Z0 resonance cross-section was also a point where the fractional spin
tune was nearly one-half, i.e. an optimal value for polarization measurements. In practice,
LEP1 was mainly run at a spin tune of aγ = 103.5.

The world average value for the mass of the Z0 is, from the Particle Data Book
(Eidelman et al 2004),

MZ0 = 91.1876 ± 0.0021 GeV. (31.2)

The above figure is based on data from all four LEP experiments, but one must be aware that
an accurate calibration of the LEP beam energy is also essential to obtain the small error of
2.1 MeV, a relative accuracy of ±2.3 × 10−5.

LEP operated exclusively with transversely polarized beams, which were used for energy
calibration (the polarization was zero during high-energy physics data taking). The polarization
was generated naturally by the synchrotron radiation. Although plans were mooted for spin
rotators to provide longitudinal polarization at the interaction points and a design of a spin
rotator matched to the LEP optics was proposed (Grote 1995), no spin rotators were ever
installed.

31.3. Early work and initial measurements: 1990–1

Interest in utilizing the radiative polarization at LEP was present from the inception of the
project. We are not competent to offer a historical review of all such early work; the CERN
archives, no doubt, have detailed information. We begin with the publication of plans for a
Compton backscattering polarimeter at LEP (Placidi and Rossmanith 1989) (see figure 28 for
a schematic of the LEP polarimeter). The commissioning of the Compton polarimeter was
reported by Badier et al (1991b). Transverse polarization was first observed at LEP in 1990



2236 S R Mane et al

(Badier et al 1991a, Knudsen et al 1991). The asymptotic degree of the polarization was
(9.1 ± 0.3 (stat) ± 1.8 (syst))%. The spin tune was approximately ν0 = 103.53, close but
(by choice) not exactly equal to the centre of the Z0 peak. The essential point being that
transverse polarization had been observed at the desired energy scale.

By 1991, the combined 1989–90 experimental data from the four LEP experiments
had established a statistical precision of ±5 MeV on MZ and ±9 MeV on �Z , whereas the
systematic error due to the beam energy uncertainties was ±20 MeV on MZ and ±6 MeV
on �Z . The need for an improved calibration of the LEP beam energy was clear. The first
measurement of the LEP beam energy, by means of resonant spin depolarization, took place
in four scans from 16 September to 11 November 1991 and was reported by Arnaudon et al
(1992). Even though the LEP beam energy was high, the machine circumference was also large
so that the Sokolov–Ternov buildup time at LEP at 46 GeV was in fact quite large, τST � 5–6 h.
The depolarizing resonance driving terms reduced the polarization buildup time to only 35 min,
but at the cost of a greatly reduced asymptotic polarization level. Nevertheless, the minimum
required polarization level to perform reliable resonant depolarization measurements at LEP
was 5%, and a polarization of 10% met this criterion.

The radio-frequency kicks to induce depolarization were applied using a vertical kicker,
which was normally used for vertical betatron tune measurements. It was noted that the use
of this kicker could also excite the vertical betatron oscillations leading to large fluctuations in
the electron beam position and distorting the readings in the polarimeter. This could happen if
the kicker frequency or one of its harmonics were in tune with a higher order vertical betatron
resonance. These are some of the practical difficulties which a review devoted purely to theory
could not point out. It was also observed that the beam energy of LEP (i.e. the location of the
resonant frequency) would drift over a timescale of a few hours, not inconsistent with the short
term stability of LEP, of order 10−5.

The availability of stable transverse polarization and the use of resonant depolarization
allowed the systematic uncertainties in the Z0 mass and width to be reduced to ∼6.3 MeV
for MZ and ∼4.9 MeV for �Z in 1991. Perhaps most significantly, however, the analysis of
the 1991 data suggested that the reproducibility of the LEP beam energy might be affected
by sources other than temperature changes in the LEP dipoles. Fischer and Hofmann (1992)
pointed out that tidal effects might be the cause. Arnaudon et al (1992) reported fluctuations in
the energy calibrations indicating a correlation to gravity variations in the Geneva area related
to tidal forces. This set the stage for one of the most delightful pieces of accelerator physics
that we shall encounter in this review: the LEP TidExperiment.

31.4. LEP and the moon: the TidExperiment

The gravitational attraction of the Moon and the Sun is not uniform over the globe because
of the 1/r2 dependence of the gravitational force, where r is the spatial separation between
the bodies. This results in a small elastic deformation of the Earth’s crust. The lunar and the
weaker solar tides interfere to daily produce two tide bulges. These tides are of the same origin
as the water tides of the oceans. In addition to the diurnal variation, there are also a number
of other periodicities, including eccentricity and small oscillations of the Earth’s and Moon’s
orbits. A sketch of the deformation of the Earth (greatly exaggerated) due to the lunar tides is
shown in figure 62.

What this means to us is that the circumference of LEP got stretched and this affected
the beam energy. Recall the momentum compaction factor, which we shall write in the
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Figure 62. Schematic of tide bulges (greatly exaggerated) in the Earth due to the Moon. Courtesy
of Wenninger (private communication) and CERN.

following way:

�E

E
= − 1

α

�C

C
(31.3)

and α � 1.86 × 10−4 for LEP. This meant that a fractional change in the circumference was
magnified by around 6000, in its effect on the fractional change in the energy. Based on this
information, let us consider a few simple numerical estimates. First, we wish to calibrate the
Z0 mass to better than 10 MeV, say, given MZ � 91 GeV. Hence, we seek an accuracy level of
�E/E � 10×10−3/90 � 1.1×10−4. Hence, we need a knowledge of �C/C to an accuracy
of α(�E/E) � 1.86 × 1.11 × 10−8 � 2 × 10−8. Given the LEP circumference C = 26.7 km,
the energy calibration is therefore sensitive to a variation in the ring circumference at the level
of �C � 26.7 × 106 × 2 × 10−8 � 0.5 mm or half a millimeter. Really!

The local strain on the Earth’s crust is a tensor and is difficult to monitor. Much simpler to
measure and predict is the time-dependent local gravity variation �g(t). To a good accuracy,
the horizontal strain is proportional to the gravity variation and one can write

αstr = �C(t)/C0

�g(t)/g0
, (31.4)

where g0 = 980 gal (1 gal = 1 cm s−2), and we stated earlier that C0 = 26.7 km. The value of
�g(t) reaches a maximum of about 140 µgal at high tide in the Geneva area. Hence, overall
one has

�E(t)

Etide=0
= −αstr

α

�g(t)

g0
≡ κtide �g(t). (31.5)

Figure 63 shows a graph of the correlation of the LEP energy variation (measured using resonant
depolarization) against the local gravity at Geneva in 1991.

Based on the above reasonings, a dedicated beam energy calibration experiment was
scheduled, on the night of a full moon, to record the LEP beam energy as a function of the time
of day: this was the LEP TidExperiment, which took place over a 24 h interval on 11 November,
1992. All the LEP experimental detector solenoids were switched off and the machine given
over entirely to beam energy calibration (Arnaudon et al 1993). The variation of the energy
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Figure 63. Correlation between relative energy measurements and the local gravity at LEP in 1991.
Courtesy of Wenninger (private communication) and CERN.
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Figure 64. The LEP TidExperiment: predicted and measured variation of the LEP energy
calibration with the time of day over a 24 h interval on the night of a full Moon. Courtesy of
Wenninger (private communication) and CERN.

calibration with the time of day is shown in figure 64, the famous LEP TidExperiment graph.
The fitted value of κtide is κtide = −0.86 ± 0.08 ppm µgal−1 (Arnaudon et al 1995a). The
change in the LEP circumference was about ±1 mm. When the effect of the Moon on LEP
was announced, it made the headlines. Starting in 1993, all energy calibrations of the LEP
beam energy also recorded the phase of the Moon.

A detailed exposition on the radial deformations of the LEP ring is given by
Wenninger (1995b), for example, the changes in beam energy calibration as a function of
the water level in lake Leman: the lake is emptied between January and April and refilled in
May. This is done to produce electricity and also to make room for the influx of melting water
from the Alps. Over a two-year period the LEP circumference displayed periodic fluctuations
of about 2 mm. Wenninger (1999) reports the variation of the LEP circumference for a period
of six years, 1993–8 (see figure 65).
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Figure 65. Variation of the LEP circumference in the period 1993–8. Courtesy of Wenninger
(private communication) and CERN.

A detailed description of the accurate measurement of the LEP beam energy, using
the 1993 data, was published by Arnaudon et al (1995b). Tidal effects were taken into
account, including longer term variations not treated in the abbreviated description above,
and also details of the increased sophistication of the resonant depolarization measurements
were provided. The paper also discussed other effects such as spin tune shifts due to radial
magnetic fields (imperfections in the vertical closed orbit resulting in radial perturbing fields
in the LEP quadrupoles). Significantly, Arnaudon et al (1995b) also stated that NMR probes
were installed in reference magnets and read out every few minutes. It was stated that ‘this
instrument is not completely understood’. This will take us to the next episode on the LEP
Energy Model.

31.5. TGV

Most of the information below is taken from Assmann et al (1999b). This paper is the
definitive CERN publication on the beam energy calibrations for LEP1. Up to 1993, the only
measurement of the dipole field in LEP was provided by a special reference magnet connected
in series with the LEP dipoles. The reference dipole was not the same as the regular machine
dipoles; it was a high-precision iron-core magnet, unlike the cheaper concrete-reinforced ring
dipoles, and it was installed in a thermally controlled environment in a surface building, not
underground in the LEP tunnel. The reference magnet housed a flip-coil device and an NMR
probe, both of which were read every eight minutes. In 1995 direct measurements of the ring
dipole fields were provided by two additional NMR probes which were mounted on top of the
vacuum chamber in two dipoles in the LEP tunnel near IP4 and IP8. (An additional 14 probes
were installed in 1996, covering all eight LEP octants.)

Glossing over many details, the tunnel NMR data indicated that instead of remaining
constant, the field in the LEP dipoles increased throughout a fill. This rise was significantly
larger than that previously recorded in the reference magnet. Part, but not all, of the rise
could be attributed to temperature effects. Of principal interest to us is that the NMR probes
also displayed significant short-term fluctuations which were correlated with the time of
day: things were much quieter between midnight and 05:00, after which the noise resumed.
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Figure 66. Sketch map of train leakage currents at LEP. Courtesy of Wenninger (private
communication) and CERN.

This correlation suggested human activity. Measurements revealed an extra current flowing
on the LEP beam pipe. This brings us to the LEP Train Effect.

The TGV is an electric train, and the current nominally returns to the power station through
the train rails. However, it is known that as much as 25% of the current does not do this, but finds
other pathways through the ground. These leakage currents are known as vagabond currents
and are a well-documented source of electrical nuisance and electrochemical corrosion. The
leakage currents from the local railway system were finding their way underground and found
the LEP beam pipe to be a very good electrical pathway. To be precise, the leakage currents
came from the French lines, which operated on dc, for historical reasons. Vagabond currents
are mainly due to dc lines. The Swiss rail network operated on ac, and caused no observable
effects on the LEP beam energy. A schematic sketch of the path of the currents is shown in
figure 66. Figure 67 shows the synchronous measurement of the voltage difference between
the ground and the train rails (a), the voltage difference between the LEP beam pipe and ground
(b) and the NMR readings (c). Armed with this knowledge of the vagabond currents, the LEP
Energy Model had to be revised.

31.6. LEP1 energy model

Ultimately, for LEP1 operations, the beam energy was computed as a function of the time t

every 15 min (Assmann et al 1999b) according to the formula

Eb(t) = Enorm(fill) · (1 + Crise(tday, tfill)) · (1 + CT-dipole(t) · (1 + Ctide(t))

· (1 + Corbit(fill)) · (1 + Ch.corr(t)) · (1 + CQFQD(t)). (31.6)
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difference between LEP beam pipe and ground and (c) NMR readings as a function of time of day.
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Here Enorm was used for absolute normalization. All the other terms follow relative energy
variations. The meanings of the terms in the above formula are:

• Enorm was the energy from the resonant depolarization calibration for that fill. Some
fills were not calibrated by resonant depolarization, if, for example, the beam was
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lost prematurely. In ‘uncalibrated fills’, the value of Enorm was set equal to the mean
normalization for all of the calibrated fills at that energy point.

• Crise(tday, tfill) was the term accounting for the rise in the bending field due to the leakage
currents (vagabond currents) from the TGV trains. This term was not present in earlier
versions of the LEP energy model.

• CT-dipole was the temperature correction for the ensemble of ring dipole magnets.

• Ctide was the correction due to the tides.

• Corbit was the correction for the deviation of the horizontal position of the orbit from
the design orbit (which has no quadrupole bending). This effect was calculated after the
expected variations for the tide had been removed.

• Ch.corr was the correction due to the setting of the horizontal correctors, and was not present
in earlier versions of the LEP Energy Model.

• CQFQD was a correction for the current in a QFQD compensation loop.

Consult Assmann et al (1999b) for a detailed description of these effects, and a quantification
of their magnitudes. Based on the information gleaned in 1995, the energy calibrations for
1993 and 1994 were revised; the energy had been overestimated by about 4 MeV.

31.7. Harmonic spin matching

We mentioned earlier that the asymptotic polarization level in the early resonant depolarization
measurements was only about 10%. What we did not say was that in 1992, as much as 12 h
of optimization were required to achieve that 10% polarization. It was, therefore, decided in
1993 to improve the theoretical and experimental handling of the polarization. Most of the
information below is taken from Arnaudon et al (1994) and Assmann et al (1994b).

Prior to 1993, the energy calibration measurements were performed in separate shifts with
the experimental detector solenoids switched off. If polarization measurements were attempted
with the detector solenoids on, an insignificant degree of polarization was observed. However,
the spin rotations induced by the detector solenoids could be compensated by a configuration
of vertical closed orbit bumps (Blondel 1990). This was an instance of harmonic spin matching
(see section 28).

The harmonic correction procedure involved two steps, as explained by Wenninger (1995a).
The solenoids were compensated using a set of vertical closed orbit bumps; this procedure
was called SOLSPIN. The maximum orbital excursion was about 7 mm. Next, the Fourier
spectrum of the harmonics in LEP was measured. The most significant harmonics were cor-
rected using a different set of vertical closed orbit bumps. This procedure was called Harmonic
Spin Matching (HSM). The maximum orbit amplitude was a few mm. The results are shown
in figure 68. First SOLSPIN was applied, and then HSM. A polarization level of over 40%
was attained. According to Assmann et al (1994b), the whole HSM procedure took less than
5 min. Using HSM, an asymptotic polarization level of over 35% could always be achieved
in dedicated machine shifts, with the average around 50%. A value of between 10–25% was
more typical in the end-of-fill energy scans in regular operations. The best level attained in
1993 was (57 ± 3)% (see figure 5). The success of HSM vindicates, a posteriori, the validity
of the approximation of first-order perturbation theory for LEP, even at a beam energy of
45.6 GeV. With these improvements it became unnecessary to devote dedicated machine shifts
to measure the beam energy; instead it became possible to perform resonant depolarization at
the end of LEP fills.
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Figure 68. Polarization level at LEP after compensation of the spin rotations in the detector
solenoids (procedure SOLSPIN) and harmonic spin matching (HSM). Courtesy of Wenninger
(private communication) and CERN.

Figure 69. The maximum attained asymptotic polarization levels at different high-energy
e+e− storage rings, with and without harmonic spin matching. Courtesy of Wenninger (private
communication) and CERN.

31.8. Maximum attained polarization

We remarked earlier, in section 28, that the maximum achievable radiative polarization in a
storage ring roughly follows the rule

P � PST

1 + (αE)2
. (31.7)

This formula assumes first-order perturbation theory in the orbital amplitudes, and that
the major perturbation is due to motion in the quadrupoles, but we have seen that these
are reasonable approximations, even for LEP at 45.6 GeV. A comparison of the maximum
measured transverse polarizations in various storage rings is shown in figure 69. As can also
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be seen, the polarization level dropped precipitously at high energies (beyond the Z0 peak)
at LEP.

31.9. PIC: polarization in collision

Usually only the polarizaton of the electron beam was measured. The positron polarization
was measured once or twice per year (Assmann et al 1999b). Once harmonic spin matching
became a standard part of LEP operations, the resonant depolarization measurements could
be performed routinely, but with separated beams. When carrying out resonant depolarization
measurements at the end of a physics fill, the positron beam was first dumped, or else the
beams were separated at the interaction points. Transverse polarization with colliding beams
was obtained only in special conditions, far from the parameter values of normal operation.
The effect of the beam–beam interaction on the polarization is poorly understood. Three
studies with colliding beams in LEP were reported by Assmann et al (1995). It was found
that the beam–beam interaction does not necessarily depolarize the spins.

31.10. LEP2

By 1995, the luminosity of LEP had increased to the level where one good weekend produced
as many data as the whole of the 1989 run. Dedicated running on the Z0 peak ceased in October
1995. The next phase LEP2 then began, to push to higher beam energies to attain open W+W−

production. LEP ultimately reached a centre-of-mass energy of 209 GeV (Arduini et al 2001).
A detailed paper describing the energy calibration of LEP2 is in preparation (Assmann et al
2004).

Transverse radiative polarization was observed at LEP at energies beyond the Z0 peak.
However, the strengths of the depolarizing resonances increased with energy. Resonant
depolarization was practicable at LEP up to a beam energy of 60.6 GeV. This was the highest
energy at which a polarization level useful for resonant depolarization (minimum 5% required)
was observed (Assmann et al 1999a). The polarization level was (7.7±0.4)%. Note the error
bar of ±0.4%, compare this to the early error bars of ±(2–3)%. Resonant depolarization was
not possible in LEP2 beyond 60.6 GeV.

31.11. Concluding remarks

The success of the energy calibration was one of the highlights of LEP1. It was originally
expected that the mass of the Z0 would be measured to an accuracy of ±20 MeV; instead
the accuracy achieved was ±2.1 MeV, a full order of magnitude better. As an example of
particle physics work on the Z0, we present just one example, by Abbiendi et al (2001),
on ‘Zedometry’ (simply because of its title). At LEP, the energy calibration via resonant
depolarization was an essential part of the daily machine operations, not just an occasional
exotic exercise. There was no other technique of comparable accuracy to measure the Z0 mass.
The CERN scientists quantified the systematic errors in the resonant depolarization technique
to an unprecedented level of detail. LEP demonstrated, perhaps more clearly than any other
machine, the enormous variety and subtlety of the systematic errors which must be accounted
for in the actual usage of the spin dynamics. The CERN scientists met the challenge required
to extract precision information via the spin dynamics, and succeeded well beyond their initial
expectations. It is worthwhile to recall that all of the spin dynamics was derived from the
humble equation ν = aγ . Who would think that the Moon and TGV trains would contribute
to the systematic errors in the use of this formula?
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32. Linear accelerators

32.1. General remarks

We consider only one linear accelerator below, namely, the two-mile long linac of SLAC,
the Stanford Linear Accelerator Center. Within that framework, we briefly review two items.
The first is the SLC, the Stanford Linear Collider. As e+e− colliders increase in energy, the
financial cost of the synchrotron radiation output becomes prohibitive. To reduce the power
output, rings of large radius are required. The ‘new physics’ frontier for e+e− colliders in
the late 1980s was 50 GeV beams, to study electroweak physics at the scale of the Z0 mass
(approximately 91 GeV). Two laboratories met this challenge, CERN and SLAC. We have
seen that CERN built LEP, a conventional circular storage ring. To minimize the power
loss, LEP was constructed with a circumference of 27 km. Even so the synchrotron radiation
power output was tens of MW, especially with 100 GeV beams in LEP2. SLAC pioneered
a novel solution to the problem by converting its two-mile long linac into a linear collider,
the SLC. The linac energy was upgraded to 50 GeV. Electron and positron beams were sent
down the linac in alternating bunches, and diverted to two oppositely bending arcs, to bring
the beams into head-on collision at an interaction point, where a detector recorded the events.
The SLC was, therefore, not only a high-energy physics accelerator but also a pioneer of
a new technology. It is anticipated that high-energy e+e− accelerators of the future will be
linear colliders. However, partly because of the newness of the technology, the luminosity of
the SLC was far lower than that of LEP. Each of the four LEP experiments acquired a data
sample about ten times larger than the total events accumulated at the SLD (the detector at
SLC: by its nature the SLC could only have one detector), roughly 5 million Z0 decays at
each LEP experiment and 500 k decays at the SLD. Nevertheless, the SLC did achieve results
competitive with LEP. The key to this success was the use of polarized beams. Starting in
1992, the SLC accelerated exclusively longitudinally polarized electron beams. (The positrons
were unpolarized.) Because of the parity-violating coupling of the Z0 boson to fermions,
the availability of even single-spin longitudinal polarization enabled the SLC to obtain results
competitive with LEP. LEP operated exclusively with transversely polarized beams, for energy
calibration only (typically P � 10–25%, after optimization). Longitudinally polarized beams
were, therefore, truly the saving grace of the SLC. A good overview of the combined LEP and
SLC electroweak results is given by the LEP Collaborations et al (2003). This report presents
results from all four LEP experiments and the SLD, from data presented at various conferences
in 2003.

The SLC concluded operations in 1997/98. SLAC also has a long history of fixed-target
experiments with polarized beams and polarized targets, starting with the historic experiment
by Prescott et al (1978), observing parity violation in inelastic electron scattering. There was a
series of fixed target experiments lasting almost a decade, with polarized beams and polarized
targets, to measure the neutron and proton spin structure functions. The experiments were
E-142, E-143, E-154 and E-155. E-142 and E-154 used an optically pumped 3He target, and
E-143 and E-155 used polarized NH3 for the neutron and proton, respectively. For E-142, an
AlGaAs photocathode source was used with a polarization of about 40%. E-143 and the later
experiments used strained GaAs, with a higher polarization level of 78–80%. These were the
most high-tech fixed target experiments ever carried out at SLAC, resulting in the most precise
measurements of the spin structure functions in the SLAC kinematic range. They addressed
what was known at the time as the ‘spin crisis’, namely, the quark spin polarization only
accounted for about a third of the proton and neutron spins. Today, we know that the gluons
contribute an important part of the nucleon spin, and that a full QCD treatment is needed to
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explain things. In this sense, there never was a ‘spin crisis’. Following the above series of
experiments, the recently concluded E-158 experiment addressed electroweak physics with
a parity violation measurement in Møller scattering. Improvements to the polarized source
resulted in a source polarization level of >80% for this experiment. For the final E-158
run in 2003, further improvements resulted in a polarization of 85–90%, better than almost
anything that has ever been achieved with radiatively polarized beams. We include a very brief
description of the E-158 experiment below.

Much of the information below was kindly supplied by Prepost (2004) and Woods (2004b).
We are indebted to them both.

32.2. SLC

A schematic view of the ‘polarized SLC’ was shown in figure 19. Let us follow the history
of the electron beam as it travels from the source to the interaction point. A lucid account
of the SLC machine operations is given by Woods (1997), and is the principal source of
the information below (plus ancillary sources as cited along the way). The electrons were
produced by a polarized electron source (Alley et al 1995). For a more recent description, see
Clendenin et al (2003). The electron polarization at the source was 78–80% (see above), and
was longitudinal. Almost the full polarization was preserved to the interaction point (about
77%, see Woods et al (1997) for a description of the SLC longitudinal Compton polarimeter,
also Shapiro et al (1993) for a description of earlier work). The helicity of the electrons
could be of either sign, and was varied quasi-randomly to avoid systematic errors arising from
correlation with the accelerator periodicities. The pulse rate of the SLC was 120 Hz. Two
electron bunches at a time were produced from the source and were accelerated down the linac
to an energy of 1.19 GeV, and kicked by a pulsed magnet to the LTR (Linac-to-Ring) transfer
line to be transported to the electron damping ring (DR). The DR was a small storage ring,
whose purpose was to generate synchrotron radiation to induce radiation damping of the beam
emittances. The beam was stored in the DR for 8 ms. There is no significant Sokolov–Ternov
radiative polarization buildup in such a short time. The electron polarization was vertical in
the damping ring. The longitudinal polarization in the injector before the DR was rotated
by an angle of 450˚ by dipole bending magnets in the LTR transfer line, and then to the
vertical direction by a solenoid. Upon exit from the DR, the polarization was vertical, and
remained so upon injection into the linac, and subsequent acceleration to 46.6 GeV (but see
below). The two electron bunches were preceded by a positron bunch. The three bunches
were accelerated down the linac. The positron bunch and first electron bunch were accelerated
to the final energy of approximately 46.6 GeV, while the trailing bunch was accelerated to
30 GeV, and was extracted and sent to a positron production target. Positrons in the energy
range of 2–20 MeV were collected, accelerated to 200 MeV, and transported to near the start
of the linac for transport to the positron damping ring, where they were stored for 16 ms.
The 2 : 1 ratio relative to the electron damping ring was because two electron bunches were
extracted for every positron bunch. At the end of the linac, the positron and electron energies
were 46.6 GeV. Note that a linac does not suffer from any resonance crossing issues during
acceleration. At the end of the linac, a magnet deflected the electron (positron) bunch into
the north (south) collider arc, for transport to the interaction point (IP). The beams lost about
1 GeV due to synchrotron radiation in just a single pass through the arcs, so the centre-of-mass
collision energy matched the Z0 rest energy of 91.2 GeV. The beam energies were measured
to an accuracy of 20 MeV by energy spectrometers. Significantly, the SLC arcs were not flat.
They were ‘terrain following’. Each arc comprised 23 achromats, each of which consisted of
20 combined function (dipole + quadrupole) magnets.
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At 46.6 GeV, the spin precession in each arc achromat was 1085˚, while the vertical
betatron phase advance was 1080˚. Hence, although an arc was a single-pass system, it
operated near a spin tune resonance. The term ‘resonance’ is used here to denote a large
response to a small input, which adds coherently in the successive achromats. Because of
this resonance, and the fact that vertical rotations do not commute with horizontal rotations
from the horizontal bend magnets, the vertical betatron oscillations in the arcs could tilt the
spins away from the vertical, and the effect added cumulatively in successive achromats. The
resulting spin component in the plane of the arc would then precess significantly. The spin
tune resonance, combined with the misalignments and complicated rolls in the arcs, meant
that it was actually not possible to calculate the spin transport through an SLC arc. However,
two methods were available to control the spin direction of the electron bunches. In the first
method, used up to 1993, two solenoids were employed, one in the RTL (ring-to-linac) transfer
line, and one in the linac itself, to rotate the spin direction to any direction along the x, y and
z axes. The longitudinal component of the arc spin transport matrix was measured using the
SLC Compton polarimeter (Woods et al 1997). The longitudinal polarization was measured
for each of the x, y or z spin orientations at the end of the linac. From the relation

P C
z = RzxP

L
x + RzyP

L
y + RzzP

L
z , (32.1)

where ‘C’ and ‘L’ stand for Compton and linac, respectively, one could determine the matrix
elements Rzx , Rzy and Rzz, which is sufficient to determine the full rotation matrix. The
matrix R was inverted to determine the desired spin orientation at the end of the linac
to achieve longitudinal polarization at the IP. The solenoids in the RTL and linac were
then set appropriately. As pointed out earlier, a polarization of about 77% was attained at
the IP. This demonstrates that the spin tune resonance in the arcs induced precession, but not
depolarization.

However, the above solenoids also introduced significant x–y coupling of the horizontal
and vertical betatron oscillations. Since 1993, the SLC operated in ‘flat-beam’ mode, where
the emittance in the vertical plane was much smaller than in the horizontal. This was of course
to increase the luminosity. Hence, another method was employed to orient the spins, which
was to take advantage of the spin tune resonance itself. A pair of vertical betatron oscillations
(‘spin bumps’), each spanning 7 achromats in the last third of the arc, was introduced to rotate
the spin. The amplitudes of the spin bumps were empirically adjusted to achieve longitudinal
polarization at the IP. Viewed in this way, the use of spin bumps was not dissimilar to the
technique of vertical closed orbit bumps in circular accelerators to induce a spin rotation
of controlled magnitude. Indeed, we saw that LEP used spin bumps for the harmonic spin
matching (HSM) procedure. Since aγ � 100, at an energy of 45.5–46.5 GeV, the spin rotations
were greatly amplified relative to the orbit; hence the orbital deflections did not have to be
large. The use of spin bumps was the preferred method since 1993, because they did not couple
the horizontal and vertical betatron oscillations.

As already pointed out, the SLC was equipped with a longitudinal Compton polarimeter.
Circularly polarized laser photons hit the electron beam after the e+e− collision region, but
before the electrons passed through any dipole magnets. Unique to this Compton polarimeter,
the scattered electrons were detected, rather than the backscattered photons. During the period
1992–5, several dedicated accelerator physics studies were carried out to establish the integrity
of the polarimetry. The electron bunch helicity transmission was verified by setting up a
current/helicity correlation in the SLC, and additional Møller and Mott polarimeters confirmed
the precision of the Compton polarimeter to about 3%. In 1997, two additional devices were
added to detect the Compton backscattered photons (Berridge et al 1999)—recall the Compton
scattered electrons were detected in the primary device. More details about these secondary
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devices are given by Onoprienko (2000). In addition, experiments at EndStation A with a fixed
target polarimeter confirmed that the positron polarization was consistent with zero. This was
an important point, because the expression for the asymmetry A0

LR (see below) changes if the
positrons are polarized.

We have previously pointed out that a Compton polarimeter only measures a small sample
of the electron spins, i.e. the electron polarization Pe averaged over the beam. This can differ
by a small amount from the luminosity weighted beam polarization Pe(1+ξ). The polarization
is uniform across the beam for radiative Sokolov–Ternov polarization, but it need not be so
for nonradiatively polarized beams. The dominant effect at SLC was a chromatic one due to
the beam energy spread: because of the energy spread of the particles, the spin orientation
after passage through the arc, has an energy dependence, and chromatic aberrations in the final
focus just before collision result in a luminosity dependence on the beam energy. The use of
the spin bumps allowed a reduction of the polarization chromaticity (E(dP/dE)), reducing
the polarization correction from ξ > 1% in 1993, to ξ < 0.2% by 1995.

Rowson et al (2001) gives a good summary of the SLC physics. A high-precision
measurement of the left–right Z0 boson cross-section asymmetry was published by Abe et al
(2000). The result, combined with earlier SLD data, yielded a value for the weak mixing
angle of

sin2 θ eff
W = 0.230 97 ± 0.000 27. (32.2)

This determination of sin2 θ eff
W is comparable in accuracy to the average of the measurements

performed by all four LEP experiments, despite the fact that each LEP detector had a data
sample about ten times bigger than the SLD. The LEP experiments had several other ways to
measure the weak mixing angle (not requiring longitudinally polarized beams), from forward–
backward leptonic and b-quark asymmetries, and from τ polarization.

The left–right asymmetry is defined as

A0
LR = σL − σR

σL + σR
, (32.3)

where σL and σR are the e+e− production cross-sections for Z0 bosons at the Z0 pole energy,
with left-handed and right-handed electrons, respectively, and the positrons are unpolarized.
Recall from above that it was verified that the positrons at the SLC were unpolarized. The
Z0 polarization depends on the polarization of both the e− and e+ beams, and the expression
given below is only valid if the positrons are unpolarized. The Standard Model predicts that
A0

LR depends on the effective vector (ve) and axial-vector (ae) couplings of the Z0 boson to
the electron current

A0
LR = 2veae

v2
e + a2

e

= 2[1 − 4 sin2 θ eff
W ]

1 + [1 − 4 sin2 θ eff
W ]2

, (32.4)

where the effective electroweak mixing parameter is defined as sin2 θ eff
W = (1−ve/ae)/4. The

quantity A0
LR is a sensitive function of sin2 θ eff

W and depends upon virtual electroweak radiative
corrections, including those involving the Higgs boson and phenomena beyond the Standard
Model. Presently, the most stringent bounds on the Higgs mass are from measurements of
sin2 θ eff

W .

32.3. Fixed target experiments at SLAC: E-158

The SLC ceased operations in 1997/98. Work with polarized electron beams continues at
SLAC, with fixed-target experiments. We include a very brief description of the recently
concluded E-158 experiment. Most of the information below is from Woods (2004a).
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This experiment collided polarized electrons from the linac against a fixed target of unpolarized
electrons. The source electron polarization was longitudinal and remained longitudinal through
the linac. There is no need for damping rings and spin rotations by solenoids, etc. See
Clendenin et al (2003) for a description of improvements to the polarized electron source.
The spins precess in the ‘A-line’ bending magnets to EndStation A. The overall bend is 24.5˚, so
the spin precession angle increases by 180˚ for every 3.2 GeV increase in beam energy, leading
to a set of so-called ‘magic energies’. (These magic energies should not be confused with the
magic energy of the muon g − 2 storage rings at BNL and CERN.) The E-158 experiment
recorded the first observation of parity violation in Møller scattering, caused by the interference
between the exchange of a virtual photon and a virtual Z0 boson (Anthony 2004). The parity
violation measurements yield a value for sin2 θW, but at a much lower energy scale than the
Z0 resonance. The experiment measured the parity-violation asymmetry

APV = σL − σR

σL + σR
, (32.5)

for small-angle Møller scattering, where σL and σR are the cross-sections for left-handed
and right-handed incident electrons, respectively, on an unpolarized electron target (cf (32.4)
above). The asymmetry arises from the interference between the weak and electromagnetic
amplitudes, and is sensitive to the weak mixing angle. The lowest-order (tree-level) expression
for APV is

APV = GFQ
2

√
2 πα

1 − y

1 + y4 + (1 − y)4
(1 − 4 sin2 θW). (32.6)

Here, GF is the Fermi constant, Q2 is the invariant four-momentum transfer, and is
approximately 0.03 GeV2 for the E-158 kinematics and y = Q2/s. For E-158, 〈y〉 � 0.6.
The expected asymmetry at the tree level is approximately 3.2 × 10−7. Radiative corrections
reduce this asymmetry by about 50%. The E-158 value for the asymmetry is5

A
exp
PV = (−131 ± 14 (stat.) ± 10 (syst.)) × 10−9, (32.7)

with a significance of about 6.3σ for observing parity violation. In the context of the Standard
Model, the weak mixing angle is, at Q2 = 0.026 GeV2,

sin2 θMS
W = 0.2397 ± 0.0010 (stat.) ± 0.0008 (syst.). (32.8)

33. Recirculating linacs

We treat only one recirculating linac below, which is CEBAF, the Continuous Electron Beam
Accelerator Facility at the Jefferson Laboratory (JLab) in Newport News, Virginia. A recent
overview of the CEBAF facility was published by Leemann (2001). A schematic view of
CEBAF was shown in figure 20. Most of the information below was supplied by Sinclair (2004)
and Grames (2004). We thank them both. CEBAF delivers a continuous electron beam, of
energy up to approximately 5.7 GeV, to fixed-target experiments for nuclear physics. The
electron source delivers a continuous series of electron bunches at the characteristic frequency
(1497 MHz) of the linacs. Since 1999, CEBAF has operated exclusively with polarized
electron beams. It is the only accelerator facility which currently operates exclusively with
polarized beams. (The SLC operated exclusively with polarized electrons starting in 1992,
until it ceased operations in 1997/8.) Due to improvements in polarized electron source
technology, the CEBAF polarized gun delivers far greater intensity than did that at the SLC.

5 Note added in Proof The E-158 collaboration announced their final results while this article was going to press
(Anthony et al 2005). We quote their final measurements below.
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Figure 70. Schematic of chicane in a CEBAF spreader. Courtesy of Grames (private
communication) and JLab.

The CEBAF polarized gun is the world’s most intense source of polarized electrons. The
integrated charge amounts to hundreds of Coulombs per year, and as much as 8 C day−1.
A recent review of polarized electron sources is given by Sinclair (1999), which includes a
description of the CEBAF polarized electron gun. See also Sinclair (1989), for an earlier
review of polarized electron sources. The CEBAF source delivers longitudinally polarized
electrons with a polarization level of approximately 75%. By virtue of the very high intensity
of the polarized electrons, and the high degree of polarization, the experiments at CEBAF
are able to probe nuclear sructure to a level of detail that is difficult to attain elsewhere.
For example, parity violation experiments by the HAPPEX collaboration (Hall A Proton
Parity EXperiment) to probe the proton structure have revealed that the proton is ‘not strange’
(Aniol et al 2001). See the statements about the ‘spin crisis’ in connection with fixed-target
polarized beam experiments at SLAC. A practical way to measure the strange vector elements
is to measure the electroweak asymmetry in polarized electron scattering. The HAPPEX
experiments have demonstrated that the strange nucleon form factors are negligible. This
experiment was also the first fixed-target parity-violation experiment to use a strained GaAs
photocathode to produce highly polarized electrons, and also (for fixed target parity-violation
work), the first to use a laser Compton polarimeter to continuously monitor the electron beam
polarization. Longitudinally polarized electrons with 67–76% polarization and 3.3 GeV energy
were scattered from a 15 cm liquid hydrogen target. The latest findings have been published by
Aniol et al (2004).

As shown in figure 20, the CEBAF layout is a racetrack with a pair of linacs joined by
180˚ arcs. The beams make a total of five passes through each linac, increasing their energy
significantly on each pass. Hence, the beam energy in the arcs is very different on each
pass. Therefore, each ‘arc’ (East and West) consists of a set of 180˚ arcs, stacked vertically.
A ‘spreader’ directs a beam, upon exit from a linac, into the arc appropriate to its energy, and a
‘recombiner’ redirects the beam, upon exit from an arc, into the other linac. Beams with the least
(most) energy bend the most (least), and are directed to the top (bottom) arc. The transfer of the
beam from a linac to the arcs, and vice-versa, is achieved using a ‘chicane’, which is, essentially,
a set of two vertical bends of equal and opposite integrated field strength as shown in figure 70.
Since there are no interleaved horizontal and vertical bends, and also no quadrupoles between
the bends, the orbit undergoes a simple vertical translation, and the spin rotations cancel out.

The essential point is that, as far as the spin is concerned, CEBAF is equivalent to a
planar machine. The vertical bends simply cancel out. Despite the term ‘recirculating’, as
far as the spin is concerned, CEBAF is effectively a single-pass system, since the beams
pass through each arc only once. Spin resonance issues are basically negligible in CEBAF.
Admittedly, the chicane generates some vertical dispersion in the arcs, so particles with
different energy offsets travel in slightly different vertical orbits, and see slightly different
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radial perturbing fields. However, (i) the energy spread of the CEBAF beam is very small, and
(ii) because CEBAF is a single-pass system, there is no opportunity for the perturbations to
accumulate coherently.

Grames (2000) investigated the sensitivity of the spin rotations and polarization to vertical
orbit perturbations in arc 7 of CEBAF. His results basically confirm that the perturbations to
the electron beam polarization, under normal CEBAF operating conditions, are negligible.
Hence, in CEBAF, the spins precess in the arcs, but they do not decohere. The beams are
delivered from source to target essentially without depolarization. What is more important in
CEBAF is spin control to deliver a beam of the desired spin orientation to an external beamline.

CEBAF has three experimental halls. Since the electron polarization is longitudinal at the
source, and precesses in the arcs, the polarization will not, in general, be longitudinal in any of
the external beamlines. There are two solutions to this issue. One is to determine those energies
at which the final polarization is longitudinal. This, of course, constrains the operating energy
of the facility to a certain set of values. The other solution is to rotate the spins upon exit from
the source, so that the final delivered polarization will be longitudinal. A combination of both
methods is used. Note that the three halls imply three external beamlines. At certain energies,
the spin precession angle between successive beamlines is a π rotation, hence longitudinal
polarization can be delivered to all three beamlines simultaneously. However, the choice
of electron helicity in the beamlines is not independent. In practice, the situation is not so
simple because of the differing needs of the various experiments. Hence, a compromise must
sometimes be made as to the polarization direction in each beamline.

Since for spin rotations, CEBAF is effectively planar and the injected polarization is
longitudinal, it is sufficient, in principle, to have a spin rotator whose axis points vertically.
In practice, there are inevitably imperfections in the system, and so it is prudent to install a
second spin rotator with a different spin rotation axis. CEBAF employs a Wien filter to rotate
the spins about the vertical axis, followed by a solenoid to rotate them about the longitudinal
axis. (see figure 20). In the studies carried out by Grames (2000), two solenoids in series
were employed to achieve adequate integrated field strength. The overall spin rotator system
is located after the polarized electron source, but before the preaccelerator and the rest of
the CEBAF transport system. One can set the spin rotation angles in the Wien filter and the
solenoids, to orient the spins (polarization) as desired.

CEBAF is equipped with Mott, Møller and Compton laser polarimeters. As pointed out
in section 12 on polarimetry, a recent comparison was made of the analysing powers of five
different electron polarimeters, of four different types (Grames et al 2004). The comparison
was possible because CEBAF delivers a beam of the same polarization to all the polarimeters
simultaneously, since, as we just noted, there is no depolarization through the system. A graph
of the relative analysing powers of the CEBAF polarimeters is shown in figure 71.

As we have noted, the principal accelerator physics use of the polarization is to calibrate
the beam energy, and CEBAF is no different in this respect. In June 1999, a two-day event
called the energy festival took place (Mitchell 1999) to determine the final beam energy in
the three CEBAF experimental halls. The beam energy was measured using three different
techniques. The information below is taken from Grames (2000). Briefly, the first method was
to measure the precession of the beam polarization between two polarimeters, at the injector
and an end station, respectively. The second method involved the calibration of the magnetic
field (bend angle) in the beam extraction switchyard to the experimental Halls A and C, plus a
calibration of the beam trajectory. From this information, the beam momentum (hence energy)
could be determined. The third method involved the measurement of the kinematics of elastic
electron–proton scattering in Hall A to determine the opening angle between the scattered
electron and recoil proton. Such equipment is part of the standard Hall A hardware.
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Figure 71. Relative analysing powers of the Jefferson Laboratory electron beam polarimeters,
normalized to the Mott polarimeter for comparison. Solid symbols: dataset limited to be within
25% of the maximum measured polarization. Open symbols: all data. Reprinted with permission
from Grames et al (2004). Copyright (2004) by the American Physical Society.

Table 5. Summary of the average CEBAF linac energy (Elinac) determined during the experiment
in Grames (2000) as compared to the energy festival result. From Grames (2000). Courtesy of
Grames (private communication) and JLab.

Description Elinac (MeV)

Hall C arc method 420.51 ± 0.11
Spin precession 420.00 ± 0.50
Energy fest (for comparison) 420.19 ± 0.39

Grames (2000) presents the results of energy measurements of the average linac energy
Elinac from two techniques carried out in his thesis, and the results of the energy festival. The
results are displayed in table 5. All three sets of results match closely.
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Appendix A. Formal canonical transformation theory

Appendix A.1. General remarks

The formal canonical transformation theory to diagonalize the spin–orbit Hamiltonian is very
abstract. The principal papers on the subject are by Derbenev and Kondratenko (1973),
which introduced the concept of a phase-space dependent spin quantization axis, (although,
preliminary steps in this direction were published earlier by Derbenev and Kondratenko (1972))
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and by Yokoya (1986). The latter paper presents a more detailed exposition of the subject and
corrects some loopholes in Derbenev and Kondratenko’s logic. A few additional details were
added by Mane (2003b). We do not review Mane’s work below. Other formalisms, such as map-
based algorithms and computer programs, are ultimately based on the foundation laid down by
the formal canonical transformation theory. We mainly employ Yokoya’s formalism below.

Appendix A.2. Canonical transformation

The orbital motion is treated semiclassically and the spin is modelled by a classical spin vector.
The standard canonical transformation theory then makes two crucial assumptions:

• First, it is assumed that in the absence of the spin term, the orbital motion is integrable.
More precisely, starting from H = Horb(q, p) we assume that the orbital motion is
expressible using action-angle variables (I, φ), so Horb = Horb(I).

• The second important assumption is that, when the spin term is included, the perturbation to
the orbital motion caused by the spin is so weak that the orbital motion remains integrable
and the change to the orbital action-angles can validly be calculated using (first order in h̄)
canonical perturbation theory.

It is necessary to distinguish between the dynamical variables before and after the canonical
transformation. Hence, the original Hamiltonian has the form

H 0 = Horb(I0) + W(I0, φ0) · s. (A.1)

The next step is to find action-angle variables for the spin motion so as to express the entire
spin–orbit motion in action-angle form. This requires a canonical transformation of the
variables in (A.1). It was a key insight by both Derbenev and Kondratenko (1973) and later by
Yokoya (1986) that the generating function of such a canonical transformation must involve
both the orbital and spin variables—we cannot transform only the spin variables. Basically,
this is a consequence of the Stern–Gerlach force; if the spin precession vector W contains
gradient terms, as it must in the quadrupoles, etc, then the spin motion must react back on the
orbit. The canonical transformation is carried out only to first order in h̄, because throughout
our work we have retained the spin terms only to the first order in h̄. This is again a recognized
approximation. We denote the spin action-angles by (J, ψ) and the spin tune by ν and the
perturbed orbital action-angles by (I, φ), without superscripts. Then we seek to express the
transformed Hamiltonian in the form

H = Horb(I ) + νJ, (A.2)

where Horb is actually the same as before with the substitution I0 ← I. Up to O(h̄), I and J

are true actions because
dIj

dθ
= −∂H

∂φj

= O(h̄2),
dJ

dθ
= −∂H

∂ψ
= O(h̄2). (A.3)

We now describe the formal canonical transformation to diagonalize the spin–orbit
motion. The unperturbed orbital variables are (q0, p0) and we recognize that the unperturbed
Hamiltonian may depend explicitly on θ . To handle this situation, one employs an ‘extended
phase-space’. We promote θ to a dynamical variable and introduce a new independent variable
τ , such that dθ/dτ = 1 so that θ = τ + constant along a trajectory. We also introduce a
dynamical variable −E, conjugate to θ . The extended Hamiltonian is

H 0 = Horb(q0, p0, θ0) + (−E0) + W(q0, p0, θ0) · s, (A.4)

where we have written θ0 and −E0, in keeping with the fact that these are unperturbed variables.
It is more elegant to treat all of the orbital variables in a unified notation by defining q4 = θ
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and p4 = −E (and a tune Q4 = 1). We shall employ Greek subscripts to denote a range
λ = 1, 2, 3, 4, while Roman subscripts will denote a range j = 1, 2, 3 below. We do assume
that the unperturbed orbital motion (without spin) is expressible in action-angle form, so the
Hamiltonian is expressible as

H 0 = Horb( p0
λ) + W(q0

λ, p0
λ) · s, (A.5)

i.e. q0
λ does not appear in Horb. We also assume that H 0 is unaltered under a shift q0

λ → q0
λ+2π ,

for any λ = 1, 2, 3, 4. In other words, H 0 can be Fourier-expanded in the q0
λ . The Fourier

coefficients would be functions of the p0
λ. The unperturbed orbital tunes are

dq0
λ

dτ
= ∂H 0

orb

∂p0
λ

≡ Qλ( p0
µ), (A.6)

with Q4 = 1. The spin equation of motion is
ds
dτ

= {s, H 0} = W × s. (A.7)

However, to formulate the canonical transformation properly, we must express the spin in
terms of components in a clearly defined basis. We denote the original basis by {e1, e2, e3},
and we express s in terms of components in this basis as

s =
∑

j

s0
j ej . (A.8)

Then the Hamiltonian is

H 0 = Horb( p0
λ) +

3∑
j=1

W(q0
λ, p0

λ) · ej s0
j . (A.9)

The transformation is to a new basis {u1, u2, u3} with spin components

s =
∑

j

sj uj , (A.10)

with suitably defined properties. This new basis must be found.
We only present the final results here; consult Derbenev and Kondratenko (1973) and

Yokoya (1986) for the derivations. Since the Hamiltonian must be a function of dynamical
variables only, the vectors uj must be functions of phase-space variables only, i.e. p0

λ and q0
λ.

They must be explicitly independent of τ . Furthermore, they must be periodic in the q0
λ , i.e.

expressible as Fourier series in q0
λ, because (p0

λ, q
0
λ) and (p0

λ, q
0
λ +2π) represent the same phase-

space point. We choose n = u3 as the spin quantization axis, so we want (s1, s2, s3) = (0, 0, J )

where J is invariant to be a solution of the spin equation of motion. Hence, s = Ju3 satisfies
(A.7), i.e. u3 must be a solution of (A.7). Thus, the transformed Hamiltonian H must be a
function of s3 only. So the prescription for u3 is that it is an explicitly τ -independent solution
of (A.7):

du3

dτ
= W × u3,

∂u3

∂τ
= 0. (A.11)

We also find two other orthonormal solutions of (A.7), say η1 and η2. These vectors depend
explicitly on τ in general. By partial differentiation, we see that

d

dτ

∂ηj

∂τ
= W × ∂ηj

∂τ
(j = 1, 2), (A.12)

so ∂η1,2/∂τ also satisfies the spin precession equation (A.7). Using ηj · n = 0, it follows that
(∂ηj /∂τ) · n = 0. Hence, ∂η1/∂τ ‖ η2 and ∂η2/∂τ ‖ η1. We construct the vector

a ≡ 1

2

(
η1 × ∂η1

∂τ
+ η2 × ∂η2

∂τ

)
. (A.13)
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From the discussion about the directions of ∂η1,2/∂τ , it follows that a ‖ n, say a = Fn. One
also sees that da/dτ = W × a, so |a| is constant, i.e. dF/dτ = 0 so F = F(q0

λ − Qλτ ).
Yokoya (1986) (and earlier, Derbenev and Kondratenko (1973)) concluded that F can be
expanded in a Fourier series in q0

λ. Mane (2003b) showed that this is not always possible.
However, the circumstances where a Fourier expansion is not possible are very rare and not
important here. We assume the Fourier expansion is valid below. To this level of approximation,
we can drop the superscript ‘0’:

F = F0 +
∑

mλ �=0

Fmλ
eimλ· (qλ−Qλτ ). (A.14)

We then choose η1 and η2 such that all the Fmλ
vanish for the nonconstant Fourier harmonics,

leaving F = F0 only. Consult Yokoya (1986) for a proof that this is possible. Then
∂ηj

∂τ
= F0n × ηj (j = 1, 2). (A.15)

We then set

u1 + iu2 = (η1 + iη2) eiF0τ . (A.16)

It is easily verified that ∂u1,2/∂τ = 0 and

duj

dτ
= (W − F0u3) × uj (j = 1, 2). (A.17)

We can extend the above equation to j = 3 because F0u3 × u3 = 0. The basis vectors satisfy
the equation of motion

duj

dτ
= U × uj (j = 1, 2, 3), (A.18)

where we see that U = W − F0u3. The equation of motion for the spin in the new reference
frame is

dsi

dτ
=
∑
jk

εijk (W − U) · uj sk. (A.19)

We must clearly identify the spin basis we are referring to (the uj ). The transformed
Hamiltonian, starting from (A.9), is

H = Horb( pλ) +
3∑

j=1

(W(qλ, pλ) − U(qλ, pλ)) · uj sj . (A.20)

The superscript ‘0’ has been dropped from qλ and pλ because they have been transformed
as well. In W and U, we can simply ignore the distinction between (q0

λ, p0
λ) and (qλ, pλ)

because the term is already of O(h̄) because of the sj . Note that Horb is a function of pλ only,
just as it was a function of only p0

λ in (A.9). The transformed orbital Hamiltonian Horb is
the same as the untransformed one with the simple substitution p0

λ ← pλ. We also see that
Ω = W − U = F0u3, so the transformed Hamiltonian is of the desired form

H = Horb( pλ) + �( pλ) s3. (A.21)

The value of � = F0 is the spin tune and is an invariant. The canonical transformation of the
orbital variables is

qλ = q0
λ +

1

2

∑
jk

sj uj · (uk × {uk, q
0
λ}),

pλ = p0
λ +

1

2

∑
jk

sj uj · (uk × {uk, p
0
λ}).

(A.22)
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If the vector n = u3 exists, it is unique, as long as the motion is not on a spin resonance.
Suppose there is a vector n′ �= ±n, which is also explicitly τ -independent and satisfies (A.7).
Since it is easily seen that d(n · n′)/dτ = 0, the vectors maintain a fixed angle with respect
to each other, so they are never parallel for any τ . Then construct a third vector n′′ ≡ n × n′.
Clearly, n′′ is also explicitly independent of τ , and is linearly independent of n and n′. Its
equation of motion is

dn′′

dτ
= (W × n) × n′ + n × (W × n′) = W × (n × n′) = W × n′′. (A.23)

Hence, we have three linearly independent solutions of (A.7), all explicitly independent of τ ,
which we shall see in a moment means that the spin motion is resonant. Unlike n, however,
the vectors u1 and u2 are not unique. We can define another pair via

u′
1 + iu′

2 = (u1 + iu2) e−imλ· qλ , (A.24)

where mλ is a set of integers. Then

d

dτ
(u′

1 + iu′
2) = (U + mλ · Qλ u3) × (u′

1 + iu′
2). (A.25)

Clearly

du3

dτ
= (U + mλ · Qλ u3) × u3, (A.26)

so U′ = U + (mλ · Qλ) u3, W − U′ ‖ u3 and �′ = � − mλ · Qλ. Evidently d�′/dτ =
∂�′/∂τ = 0, hence �′ is an equally valid candidate spin tune. This is the proof that the spin
tune is arbitrary up to a linear combination of the orbital tunes (plus an integer). If the value
of � is such that we can find a set of integers mλ, such that �′ = 0, then all three vectors u1,2,3

satisfy (A.7) and all are explicitly independent of τ . Then we choose U = W, it follows that
� = 0 and n is not uniquely defined.

Let us comment briefly on the non-uniqueness of the spin tune. For planar rings, we have
stated in several places that ‘the’ spin tune is aγ (or Gγ in hadron rings), but according to
the formal canonical transformation theory this is not a unique choice for the value of the spin
tune. However, when performing a canonical transformation to a new spin basis, one must
note that the spectrum of all the Fourier harmonics which drive the spin resonances also gets
shifted. For example, the AGS has a superperiodicity of 12 and a weaker superperiodicity of
60. The intrinsic resonance Gγ = 60 − Qy � 51.25 is so strong that it sets an effective upper
limit on the energy up to which polarized protons can be accelerated at the AGS. A canonical
transformation to change the value of the spin tune (say by an integer) would shift the locations
of all the resonances by the same integer. The upper limit on the energy up to which polarized
protons can be accelerated at the AGS, cannot be changed by a canonical transformation.
Hence, in practice, there may be certain choices of spin bases which are more ‘natural’ or
‘useful’ than others. The formal canonical transformation theory treats all the choices for u1

and u2 as equally good.

Appendix A.3. Single resonance model

We apply the above formal procedure to the single resonance model. In section 16, we simply
‘transformed to a frame rotating at a tune Q around the vertical axis’. We now solve the model
following the formal procedure. The choice for U, to rotate at a tune Q around the vertical
axis, is U = Q e3. Then

W̃ = (ν0 − Q) e3 + ε(e1 cos φ + e2 sin φ) = Ω. (A.27)
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Define the auxiliary orthonormal vectors

v1 = e1 cos φ + e2 sin φ, v2 = −e1 sin φ + e2 cos φ, v3 = e3. (A.28)

Then we set

u1 = 1

�
[(ν0 − Q) v1 − ε v3], u2 = v2, u3 = 1

�
[(ν0 − Q)v3 + ε v1]. (A.29)

It is easily verified that duj /dθ = U × uj for j = 1, 2, 3, and furthermore that du3/dθ =
W × u3. Then u3 = Ω/�, which we have seen earlier is the correct answer for n. Also
W̃ = � u3 and so the spin tune is

ν = � =
√

(ν0 − Q)2 + ε2. (A.30)

As we have noted, the spin tune is arbitrary up to the addition of an integer linear combination
of orbital tunes, so we can define new suitable new vectors u′

1 and u′
2 to change the value of the

spin tune to ν → Q ±
√

(ν0 − Q)2 + ε2, if desired. Hence, we have confirmed the previously
derived solution for the single resonance.

What the solution (without a canonical transformation) did not indicate was that the orbital
variables would also be transformed. For brevity, we display only the change to the orbital
action, which is a more interesting case. We do not distinguish between (I0, φ0) and (I1, φ1)

below because the spin term is already of O(h̄). There is only one orbital mode (I, φ) in the
SRM. Then

{u1, I } = ∂u1

∂φ
= ν0 − Q

�

∂v1

∂φ
= ν0 − Q

�
v2,

{u2, I } = ∂u2

∂φ
= −v1, (A.31)

{u3, I } = ∂u3

∂φ
= ε

�

∂v1

∂φ
= ε

�
v2.

Omitting the tedious algebra, the answer is

I 0 = I 1 − ν0 − Q

�
J +

ε

�

√
s2 − J 2 cos ψ. (A.32)

Recall that the value of I 1 is constant along a trajectory. Hence, the value of I 0 is shifted away
from I 1 by a constant which is of O(h̄), plus an oscillatory term (which averages to zero) which
is also of O(h̄). This implies a nonzero time-average shift in the value of the orbital action:

�I = I 1 − I 0 = ν0 − Q

�
J. (A.33)

Setting J = ±h̄/2, we obtain two values of opposite sign for �I , i.e. a spatial separation of the
spin states for charged particle beams. As explained above, we must recognize that the orbital
trajectory itself has an uncertainty of O(h̄), which is neglected in the semiclassical model.

Nevertheless, we cannot simply claim (as some authors do) that the change to the orbital
motion in the canonical transformation does not exist. We have set up a formal (semiclassical)
accelerator model and to diagonalize it, we must operate within the proper rules of Hamiltonian
theory. It is then our responsibility to realize that the model orbital variables are approximations
to the true coordinates and momenta of the actual particles in an accelerator, and no violation
of the basic principles of quantum mechanics is implied.
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