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Electric dipole moments are very sensitive probes of physics beyond the Standard Model. The 

JEDI collaboration is dedicated to the search for the electric dipole moment (EDM) of charged 

particles making use of polarized beams in a storage ring. In order to reach the highest possible 

sensitivity, a fundamental parameter to be optimized is the Spin Coherence Time (SCT), i.e., the 

time interval within which the particles of the stored beam maintain a net polarization greater than 

1/e. To identify the working conditions that maximize SCT, accurate spin-dynamics simulations 

have been performed using BMAD. In this study, lattices of a "prototype" storage ring, which uses 

combined electric and magnetic fields for bending, and a "hybrid" storage ring using only electric 

bending fields with magnets for focusing, are investigated. This paper presents a model of spin 

behaviour in frozen-spin lattices that models spin tune with reasonable accuracy in both situations, 

as well as a technique to optimize the second-order beam optics for maximum SCT at any given 

working point. 
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1  Introduction 

Of all the observable matter antimatter asymmetry in the universe only a small fraction is 

accounted for by the currently accepted Standard Model (SM). Assuming the CPT theorem to 

hold true, it appears that this asymmetry can only be explained by additional CP violating 

processes than those accounted for in the SM [1]. A noticeable manifestation of CP violation is 

the presence of an Electric Dipole Moment in a proton, whose magnitude can indicate the 

existence of additional CP violation Beyond the Standard Model (BSM). While the SM predicts 

an EDM ≤ 10−31 𝑒 ∙ 𝑐𝑚, possible contributions from BSM theories could place it orders of 

magnitude higher. The current upper limit on the proton EDM is 7.9 × 10−25 𝑒 ∙ 𝑐𝑚 [2]. 

The JEDI collaboration is currently working on performing this measurement using storage 

rings. EDM can be measured using a storage ring through precise observation of the interaction 

of particle spin with electric and magnetic fields. Since the EDM will point in the same direction 

as the spin, the presence of EDM will result in a torque on the particle in response to an electric 

field. The visible effect of this torque can be magnified using specially configured external electric 

fields. To achieve a precision higher than the current lower limit on the proton EDM, the 

construction of a dedicated storage ring would be needed [3] [4]. But before building such a ring, 

its feasibility must be demonstrated. So, to this end the JEDI collaboration will approach this 

problem in three stages [3]. The first stage involves experiments at the Cooler Synchrotron 

(COSY) in FZ, Jülich, with only magnetic bending fields. The second stage involves experiments 

in a prototype storage ring which uses a combination of electric and magnetic bending fields, 

featuring the possibilities of simultaneous counter-rotating beams and frozen spin. 

Once the prototype has established the proof-of-principle, the final stage can be initiated, 

which would involve the measurement of the proton EDM at a purely electric storage ring, which 

would have the targeted precision to do so. 

2 Spin tune and Frozen Spin 

In a storage ring that confines particles with anomalous magnetic moment 𝐺 with a velocity 

�⃗� using an electric field �⃗⃗� and a magnetic field �⃗⃗� such that the three vectors are mutually 

perpendicular, the spins of the particles would undergo precession with respect to their velocity 

vectors due to the presence of a magnetic dipole moment (MDM), and an electric dipole moment 

(EDM). The frequency of this precession for a particle of mass 𝑚 and charge 𝑞 is given by the 

Thomas BMT equation [5]: 

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑚
[{[Ω⃗⃗⃗𝑀𝐷𝑀]

𝑟𝑒𝑙
} + {Ω⃗⃗⃗𝐸𝐷𝑀}] × �⃗⃗�

= −
𝑞

𝑚
[{𝐺�⃗⃗� + (𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗�} + {

𝜂

2
(�⃗⃗� + �⃗� × �⃗⃗�)}] × �⃗⃗� 

( 1 ) 

The expression for the precession frequency above allows us to define the “spin tune” (𝜈𝑠), 

which can be understood as the angle of precession of the spin in the particle rest frame (according 

to the Frenet-Serret Coordinate system) per radian of turn of the particle around the ring. In the 

case of a pure-magnetic storage ring (�⃗⃗� = 0), 𝜈𝑠 = 𝛾𝐺 [6], where 𝛾 is the Lorentz factor. 

However, in the presence of both electric and magnetic fields (but no EDM), it can be shown that: 
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𝜈𝑠 = 𝛾𝐺 −
𝑟(𝐺 + 1)

𝛾(𝛽 + 𝑟)
 ( 2 ) 

Where 𝑟 = 𝐸
𝑐𝐵⁄  is the normalized field ratio, and 𝛽 = 𝑣

𝑐⁄  . 

The values of �⃗⃗�, �⃗⃗� and 𝛾 in eq( 1 ) can be set to make the relative precession due to the 

MDM ([Ω⃗⃗⃗𝑀𝐷𝑀]
𝑟𝑒𝑙

) vanish altogether, effectively resulting in a zero spin tune. This is called 

“frozen spin” since in this configuration, the spin vector is aligned with the particle momentum 

at all times. Therefore, any precession of the particle’s spin is now solely due to the EDM, and 

will be in the vertical plane, causing a gradual build-up of vertical polarization among particles in 

the ring. The rate of this build-up will be proportional to the magnitude of the particle’s EDM. 

The field ratio to obtain frozen spin can be calculated from eq( 2 ) by setting 𝜈𝑠 = 0: 

𝜈𝑠 = 𝛾𝐺 −
𝑟(𝐺 + 1)

𝛾(𝛽 + 𝑟)
= 0 ⇒ 𝑟 =

𝛽𝛾2𝐺

1 − 𝛽2𝛾2𝐺
≈ 0.7147 ( 3 ) 

 

3 The Prototype EDM Storage Ring 

One such combination of fields respecting 

eq( 3 ) is implemented for a ring with a bending radius 

of 12.25 𝑚. The proposed design [6], which is the 

same lattice as used in [8], shown in Figure 1 consists 

of four unit-cells, each with two bending dipoles, 4 

quadrupoles and 4 sextupoles to provide sufficient 

flexibility in beam optics. The quadrupoles present on 

the ring are categorized into three families: QF (2 per 

unit cell, focussing), QD (1 per unit cell, defocussing) 

and QSS (1 per unit cell, in the straight section). The 

sextupoles are placed on the same locations as the 

quadrupoles and are categorized into similar families: 

SXF, SXD and SXSS. Each family of magnets have a 

common power supply for centralized control. During 

this study however, the QSS magnets were turned off. 

An RF-cavity is also placed at one of the straight 

sections for bunching (longitudinal focussing) of 

particles. 

3.1 Spin Tune in a frozen-spin storage ring 

3.1.1 RF cavity off 

The frozen spin condition fixes the spin tune of its reference particle1 at zero.  

 

 
1 Particle that is following the “reference trajectory” where it maintains its position and momentum at the design-

values such that no focusing is required. All phase-space parameters of real particles at any given time are with 

reference to those of this particle. 

Figure 1: The software generated floor plan 

of the prototype EDM ring. Dipoles are 

labelled with ‘EM’, quadrupoles 

corresponding to their family with ‘QF’, 

‘QD’ or ‘QSS’ and the cavity with ‘RF’. 
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However, this is not true for a real particle2. Of the six phase-space parameters that a particle 

exhibits at a given time, the largest contribution to the spin tune comes from the longitudinal 

momentum offset 𝛿 =
∆𝑝

𝑝⁄ .This can be closely approximated for reasonable perturbations by 

taking terms up to the second order: 

𝜈𝑠 = 𝜎0𝛿 + 𝜎1𝛿2 ( 4 ) 

 

While these “spin-tune factors” 𝜎0 and 𝜎1 (first and second order respectively) can be 

calculated directly from eq( 2 ), in a ring where the particle assumes relativistic speeds, the effects 

of phase slip have been shown to affect the values of these constants. Furthermore, the presence 

of quadrupoles in the ring have been observed to affect the spin tune. This contribution would 

depend on the transverse emittances of the particle. Finally, the presence of chromaticity in the 

ring have also been shown to produce an additional contribution to the spin tunes of particles with 

non-zero emittances through modifications to the path length [9]. Taking all these factors into 

consideration, and including the effects of phase-slip up to the second order, the spin tune of a 

particle in a frozen-spin storage ring can be modelled as follows: 

𝜈𝑠 = 𝜎0𝛿 + 𝜖𝑖𝑎𝑖 + 𝜖𝑖𝑉𝑖
𝑗𝜉𝑗 ( 5 ) 

Here, the indices 𝑖, 𝑗 ∈ {1,2,3}, and the Einstein summation convention is followed for 

repeated indices. The arrays 𝜖𝑖 and 𝜉𝑗 are assigned as follows: 

[𝜖𝑖] = [𝜖𝑥 𝜖𝑦 𝛿2] [𝜉𝑗] = [

𝜉𝑥

𝜉𝑦

𝜂1

] ( 6 ) 

…where 𝜖𝑥 and 𝜖𝑦 are the horizontal and vertical emittances, 𝜉𝑥 and 𝜉𝑦 are the horizontal 

and vertical chromaticities, and 𝜂1 is the second-order phase-slip factor. The three parameters 

arranged in the vector 𝑎𝑖 and the nine matrix elements 𝑉𝑖
𝑗 are free parameters which set the 

strengths/couplings of the respective contributions to the spin tune. 

In this study, single-particle simulations were performed, and simultaneous least-square 

fitting was done over a large sample-space to accurately determine these parameters, and the 

predictions were compared to measurements of more samples to test the validity of the model. 

3.1.2 Travel time 

The change in travel time in longitudinal beam dynamics is modeled as: 

𝛥𝑡

𝑡
= 𝜂0𝛿 + 𝜂1𝛿2 ( 7 ) 

However, it is also known that the presence of chromaticity in the ring affects the path length 

of particles with non-zero transverse emittances [9]… 

(
Δ𝐿

𝐿
)

𝛽
= −

𝜋

𝐿
(𝜖𝑥𝜉𝑥 + 𝜖𝑦𝜉𝑦) ( 8 ) 

…which could in turn influence the travel time. Thus, putting together the transverse and 

longitudinal contributions, the change in travel time can be modeled in a similar fashion as the 

spin tune: 

 

 
2 Particle that is not following the reference trajectory, i.e., having non-zero phase space parameters w.r.t the 

reference particle. 
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𝛥𝑡

𝑡
= 𝜂0𝛿 + 𝜖𝑖𝑇𝑖

𝑗𝜉𝑗 ( 9 ) 

3.1.3 RF cavity on 

The RF cavity, used to provide longitudinal bunching in storage rings, induces longitudinal 

oscillations on the particle, known as synchrotron oscillations. This changes the nature of the 

phase-space parameter 𝛿, thus needing a reconsideration of the way the spin tune is dealt with. 

𝛿 = ⟨𝛿⟩ + 𝛿𝑎 𝑠𝑖𝑛(𝜔𝑠𝜙 + 𝜑0) ( 10 ) 

Here, ⟨𝛿⟩ is the net momentum gained by the particle from the cavity, and 𝛿𝑎 and 𝜔𝑠 are the 

amplitude and frequency of the synchrotron oscillations. 

In the absence of longitudinal focusing, the particle’s momentum is (ideally) fixed, usually 

leading to the observation of a constant spin tune. However, in the presence of longitudinal 

focusing, the variation of 𝛿 leads to an oscillation of the spin along with the particle, resulting in 

an oscillating spin tune. The quantity of interest now would be the time-averaged spin tune 〈𝜈𝑠〉, 

where the pointy brackets 〈 〉 represent an averaging over many synchrotron oscillations. 

Averaging eq( 10 ) over many synchrotron oscillations allows the evaluation of 〈𝛿2〉: 

⟨𝛿2⟩ = ⟨𝛿⟩2 +
𝛿𝑎

2

2
≈

𝛿𝑎
2

2
 ( 11 ) 

Finally, the boundary condition for longitudinal focusing [10] can be applied, i.e., the 

synchrotron-averaged change in travel time must vanish. From eq( 9 ): 

⟨
𝛥𝑇

𝑇
⟩ = 𝜂0〈𝛿〉 + 〈𝜖〉𝑖𝑇𝑖

𝑗𝜉𝑗 = 0 ⇒ ⟨𝛿⟩ = −
1

𝜂0

〈𝜖〉𝑖𝑇𝑖
𝑗𝜉𝑗 ( 12 ) 

This condition allows for the elimination of the ⟨𝛿⟩ term in the final expression for 〈𝜈𝑠〉, 

resulting in the following expression for the synchrotron-averaged spin tune of a particle: 

⟨𝜈𝑠⟩ = 〈𝜖〉𝑖𝑎𝑖 + 〈𝜖〉𝑖𝑀𝑖
𝑗𝜉𝑗 ( 13 ) 

…where: 

𝑀𝑖
𝑗 = 𝑉𝑖

𝑗 −
𝜎0

𝜂0
𝑇𝑖

𝑗

[〈𝜖〉𝑖] = [𝜖𝑥 𝜖𝑦

𝛿𝑎
2

2
]
 ( 14 ) 

3.2 Linear map from sextupole settings to chromaticity and second-order phase slip 

It was observed that there exists a linear map between the sextupole field strengths and the 

chromaticities. Therefore, if a lattice has two functioning families of sextupoles, the horizontal 

and vertical chromaticities can be simultaneously set. 

𝜉𝑥 = 𝜉𝑥0
+ 𝑋11𝑡1 + 𝑋12𝑡2

𝜉𝑦 = 𝜉𝑦0
+ 𝑋21𝑡1 + 𝑋22𝑡2

 ( 15 ) 

 …where 𝜉𝑥0
 and 𝜉𝑦0

 are the natural chromaticities3, and 𝑡1,2 are the sextupole field 

strengths. Furthermore, since the second order phase-slip factor can also be set via sextupole 

settings in a similar way, 

𝜂1 = 𝜂10 + 𝑋31𝑡1 + 𝑋32𝑡2 ( 16 ) 

 

 
3 The chromaticity present in the ring by default, when the sextupoles are turned off. 
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 …having three sextupole families would enable the access of any configuration of the three 

second-order optical parameters that determine the spin tune. 

𝜉𝑖 = 𝜉0
𝑖 + 𝑋𝑖

𝑗𝑡𝑗  ( 17 ) 

 

Figure 2: A plot comparing the values of 𝜉𝑖𝜉
𝑖 as measured by BMAD at the sample sextupole setting and 

as predicted by the linear map of eq( 17 ). A perfect overlap of the points would signify that the model is 

an accurate representation of (simulated) reality. 

This linear map, when combined with three families of sextupoles present in the lattice, 

allows access to the entire domain of the spin tune (full optical flexibility). 

Using the three sextupole families present in the prototype ring, the matrix elements 𝑋𝑖
𝑗 

were determined and used to determine the optical parameters 𝜉𝑖 for a regular grid of sample 

sextupole settings. These calculated values were then compared with the measurements of 𝜉𝑖 done 

by BMAD. The result of this comparison is shown in Figure 2. 

4 Results and Discussion 

4.1 RF off 

A large sample set of points, each representing a particle with a particular 𝜖𝑥, 𝜖𝑦 and 𝛿, being 

simulated in a ring with a particular combination of 𝜉𝑥, 𝜉𝑦 and 𝜂1, was used to determine the 

constants in eq( 5 ). Once determined, the model was used to determine spin tunes for a new set 

of sample points. The comparison of these calculated values and those measured by BMAD at 

those points is shown in Figure 3. 

 

Figure 3: A plot comparing the spin tunes as measured by BMAD and those determined by the spin tune 

model of eq( 5 ). 

A similar determination of constants and subsequent testing was done with the change in 

travel time (
𝛥𝑡

𝑡
). This is shown in Figure 4. 
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Figure 4: A plot comparing the spin tunes as measured by BMAD and those determined by the spin tune 

model of eq( 5 ). 

A perfect alignment of the data points with one-another in these comparisons would imply 

that the model exactly reflects the variation of the spin tune or travel time by the simulator. 

However, slight misalignments were observed between the measured and calculated values. It is 

also interesting to observe the similarity in the variations of the spin tune and the change in travel 

time. The close correlation between the two also adds merit to the mechanism of changes in travel 

time due to phase-slip being the primary force behind changes in spin tune. 

4.2 RF on 

Using the spin tune model optimized for the RF cavity being on (eq( 13 ) and eq( 14 )), a 

sample set of points were simulated again, but this time with the RF cavity on. The result of the 

comparison of the measured time-averaged spin tune with those predicted by the model is shown 

in Figure 5. 

 

Figure 5: A plot comparing the spin tunes as measured by BMAD and those determined by the spin tune 

model of eq( 13 ) for a storage ring with longitudinal focusing. 

While the model shows decent agreement with the findings, the increased misalignment 

between the measured and predicted values is a matter of concern. To better understand the 

reasons for this increased misalignment, the constants 𝑎𝑖 and 𝑀𝑖
𝑗 were redetermined using a 

sample set similar to the one used before, but this time where the particles are simulated with 

longitudinal focusing turned on. The model, now updated with the newly determined constants, 

was tested again with a fresh set of sample points, whose results are shown in Figure 6. 

As can be seen from the plot, the predictions now align perfectly with the measurements. 

This suggests that while the RF-on model accurately reflects spin behavior in the storage ring, the 

process of determining the constants with the RF off and using them to estimate those in the RF-

on model may also allow for the propagation of errors. Moreover, the higher disparity in the RF-

  

 
=  0 +    

 
  

 

  =    
 +    
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off result (Figure 3) than in the RF-on case (Figure 6) also points toward systematic errors in the 

RF-off optimization process. 

 

Figure 6: A plot comparing the spin tunes as measured by BMAD and those determined by the spin tune 

model of eq( 13 ), updated with constants determined while the longitudinal focusing was on.  

4.3 Importance of modelling spin tune in optimization of Spin Coherence Time 

In [8], the measurement and optimization of Spin Coherence Time is discussed in detail. 

Here, essentially a brute-force method is implemented where SCT is measured using simulations 

of bunches rather than individual particles. While this method is highly accurate, it unfortunately 

demands a lot of time and computing power to carry out. 

However, accurate spin-tune modelling can remove the need for such large-scale 

simulations. If eq( 13 ) were re-written as… 

⟨𝜈𝑠⟩ = 〈𝜖〉𝑖(𝑎𝑖 + 𝑀𝑖
𝑗𝜉𝑗) ( 18 ) 

…it is intuitive to understand that there can exist a particular optical setting such that: 

𝑎𝑖 + 𝑀𝑖
𝑗𝜉𝑗 = 0 ( 19 ) 

In such a setting, it is clear that the time averaged spin tune of a particle would essentially 

be zero regardless of its emittance or momentum offset amplitude. A many-particle bunch being 

simultaneously stored in a storage ring is simply particles with different 〈𝜖〉𝑖 being subject to the 

same special optical setting 𝜉𝑗. Therefore, it can be seen that in principle, all the particles in the 

bunch should exhibit close to zero spin tune and so the bunch as a whole would have a very high 

spin coherence time. 

Given that the model be highly accurate, this special setting is simply estimated by: 

𝜉𝑗 = −(𝑀−1)𝑗
𝑖𝑎𝑖 ( 20 ) 

This way the optimized point can be determined through single particle simulations alone. 

5 Conclusions 

In this paper, a model of the spin tune of a single particle stored in a prototype storage ring 

that achieves frozen spin using a combination of electric and magnetic fields is described. The 

model predicts the spin tune not only at various settings of the prototype ring but also at other 

frozen-spin lattices, such as a modified prototype and also the Hybrid Storage Ring [11] with a 

reasonable accuracy. The model was tested extensively with the prototype ring and the degree of 

accuracy in predicting spin behaviour achieved so far have been presented. 

While the method to optimize spin coherence time was attempted at a few working points, 

the field settings of the optimized point as determined by the model were close to those already 

measured using brute force, but not close enough to exhibit spin coherence times higher than 1000 

  =    
 +    
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seconds. As concluded from previous works [8] [12], the optimized setting for SCTs higher than 

1000s is highly sensitive to the sextupole settings. To be able to determine this from the single-

particle model demands a much higher precision from the model. This is currently the primary 

focus of this ongoing work. 
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